
Horus: Non-Intrusive Causal Analysis

of Distributed Systems Logs

Francisco Neves

INESC TEC and U. Minho

Braga, Portugal

francisco.t.neves@inesctec.pt

Nuno Machado

Amazon and INESC TEC

Madrid, Spain

nuno.a.machado@inesctec.pt

Ricardo Vilaça and José Pereira

INESC TEC and U. Minho

Braga, Portugal

{rmvilaca,jop}@di.uminho.pt

Abstract—Logs are still the primary resource for debugging
distributed systems executions. Complexity and heterogeneity
of modern distributed systems, however, make log analysis
extremely challenging. First, due to the sheer amount of messages,
in which the execution paths of distinct system components
appear interleaved. Second, due to unsynchronized physical
clocks, simply ordering the log messages by timestamp does not
suffice to obtain a causal trace of the execution.

To address these issues, we present Horus, a system that
enables the refinement of distributed system logs in a causally-
consistent and scalable fashion. Horus leverages kernel-level
probing to capture events for tracking causality between
application-level logs from multiple sources. The events are then
encoded as a directed acyclic graph and stored in a graph
database, thus allowing the use of rich query languages to reason
about runtime behavior.

Our case study with TrainTicket, a ticket booking application
with 40+ microservices, shows that Horus surpasses current
widely-adopted log analysis systems in pinpointing the root cause
of anomalies in distributed executions. Also, we show that Horus
builds a causally-consistent log of a distributed execution with
much higher performance (up to 3 orders of magnitude) and
scalability than prior state-of-the-art solutions. Finally, we show
that Horus’ approach to query causality is up to 30 times faster
than graph database built-in traversal algorithms.

I. INTRODUCTION

Anomalies in systems can potentially impact users’ lives and

undermine their trust in a blink of an eye. Identifying and trou-

bleshooting unexpected behavior in a quick and effective way

is thus essential to maintain dependable services. Developers

still use logs as the primary resource for debugging anomalies

in distributed systems [1], as they are usually available out-of-

the-box on every component via standard logging libraries [2],

[3]. While the content of a log file may vary depending on the

application and vendor, the common procedure is to have a

sequence of unstructured textual messages with miscellaneous

information regarding the system’s state (e.g. timestamps,

object identifiers, variable values, etc).

However, as modern distributed architectures increase in

size, complexity and heterogeneity, troubleshooting issues via

log inspection can be a daunting task for two main reasons:

• Large number of intertwined events. The log of a

distributed execution often comprises a huge number of

messages that belong to different requests and appear in-

terleaved with each other. Since only a few log messages

are actually relevant to diagnose an anomaly [4], [5],

blindly analyzing the log for the whole execution is a

metaphorical search for a needle in a haystack, which

will only cause the problem to linger on.

• Lack of causality. As observed by Lamport, causality

is fundamental to consistent reasoning about distributed

executions [6]. Unfortunately, physical clocks on dif-

ferent machines drift apart, which prevents nodes of a

distributed system from relying on real time to derive

causality [7]. As the processing of a single request can

be split across different nodes, one cannot reconstruct a

request’s causal history simply by collecting the nodes’

log files and sort their messages by timestamp.

A popular approach to address the first challenge is to use

toolsets such as the Elastic stack [8]. The Elastic stack provides

support for aggregating, storing, analyzing, and visualizing

logs from multiple components of a distributed system. The

analysis of those logs is driven by a query language that en-

ables the filtering of timestamped messages using conditional

and regular expressions. Although widely used by developers

to debug issues in production environments, the Elastic stack

is no panacea. Since log messages are ordered by physical

timestamp instead of causal dependencies, this toolset falls

short for reasoning about bugs stemming from concurrent

interactions across different nodes. In Section II-C, we show

a concrete example of this limitation.

To tackle the aforementioned challenges, we propose Ho-

rus, a system that enables causally-consistent refinement of

distributed system logs in a non-intrusive and scalable fashion.

Horus traces lightweight kernel-level events with a clear

happens-before relationship [6] (e.g. socket send and receive

events), which are then used to encode a partial order of

log messages from different sources. Since the inter-node

causal dependencies stemming from the kernel-level events are

independent of the message timestamp, Horus is not prone to

physical clock drifting.

This idea of tracking causality in a distributed execution us-

ing kernel-level events was pioneered by Falcon [9]. However,

Falcon relies on a Satisfiability Modulo Theories constraint

solver to perform the causal ordering, which, using current

state-of-the-art solvers [10], does not scale to executions with

more than a few thousands of events, thus being unsuitable

for production environments [11]. Moreover, Falcon does not

provide support for filtering nor querying the resulting exe-

212

2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-6654-3572-7/21/$31.00 ©2021 IEEE
DOI 10.1109/DSN48987.2021.00035

20
21

 5
1s

t A
nn

ua
l I

EE
E/

IF
IP

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

ep
en

da
bl

e
Sy

st
em

s a
nd

 N
et

w
or

ks
 (D

SN
) |

 9
78

-1
-6

65
4-

35
72

-7
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

SN
48

98
7.

20
21

.0
00

35

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

cution trace, which further hinders its ability to troubleshoot

issues in real-world distributed systems.

Horus overcomes Falcon’s limitations by explicitly encod-

ing causality as a directed acyclic graph (DAG), where nodes

represent events (i.e. log messages and low-level operations)

and edges indicate the causal dependencies between them. This

execution graph is then stored in a graph database, allowing

for both better scalability and the use of rich query languages

to analyze the content of the logs.

To speed up graph traversals for query computation, Horus

assigns both logical [6] and vector [12] clocks to each event.

Given the DAG properties of the execution graph, the logical

timestamps can be used to bound the subset of events relevant

to a given query. This way, portions of the graph that comprise

events outside the time span given by the logical clocks can

be safely and efficiently excluded from the traversal, as they

will not contribute to the result set.

Our case study with TrainTicket [1], a ticket booking

application with 40+ distributed microservices, shows that

Horus surpasses the Elastic stack in pinpointing the root cause

of an anomaly in a distributed execution via log analysis.

We also conducted an experimental evaluation of Horus that

demonstrated that our system is capable of causal ordering

the log messages of a distributed execution with much higher

performance (up to 3 orders of magnitude) and scalability

than prior state-of-the-art solutions such as Falcon. Moreover,

we show that, by leveraging logical time, Horus is able to

dramatically reduce the query computation time (up to 30×)

with respect to traditional traversals in graph databases.

In summary, this paper makes the following contributions:

• A system, named Horus, that combines log messages and

kernel-level operations to produce a graph of a distributed

execution that can be inspected with rich queries.

• A technique that leverages logical clocks to dramatically

reduce the time to run high-level queries that search of

anomalies over a stored execution graph.

• An evaluation, using multiple benchmarks, that demon-

strates the efficiency and effectiveness of Horus with

respect to other state-of-the-art solutions to analyze logs

of distributed systems.

The rest of this paper is organized as follows. §II presents

a motivating example. §III provides an overview of Horus,

while §IV and §V detail how it achieves causality and query

refinement, respectively. §VI shows how Horus can be used in

practice using a case study. §VII discusses the experimental

evaluation. §VIII overviews the related work. Finally, §IX

summarizes the main findings of this paper.

II. BACKGROUND AND MOTIVATION

Causality is key to understand the behavior of a distributed

system and, therefore, should be a core feature of any log

analysis tool. In this section, we start by reviewing the concept

of causality from the literature and, then, present a motivating

example with TrainTicket to demonstrate that current log

analysis solutions without causality guarantees fall short for

debugging distributed system bugs.

A. The Need for Causality

Lamport introduced the happens-before relation→ to enable

a correct reasoning about causality in distributed executions

[6]. Formally, there is a happens-before relationship between

two events a and b, denoted a → b, if: a and b belong to

the same process and a precedes b in the execution, and a
and b belong to different processes and a is the sending of a

message m and b is the reception of m.

The happens-before relation is transitive, irreflexive and

antisymmetric. When a � b and b � a, then a and b are

considered to be concurrent.

The ability to order log messages respecting causality is thus

paramount to effectively troubleshoot a distributed execution,

as illustrated by the motivating example in the next section.

B. Motivating Example – TrainTicket

TrainTicket [1] is an open-source train ticket application

developed to foster research on fault analysis and debugging

of distributed systems, namely those based on microservices.

It consists of a ticket booking application with multiple func-

tionalities: ticket inquiry, reservation, payment, order updates,

and user notifications. TrainTicket’s architecture comprises

40+ microservices written in different programming languages

(e.g., Java, Nodejs, Python, Go), along with a user interface

and third-party components, namely MongoDB for data stor-

age and RabbitMQ for message queueing.

We use TrainTicket in this work because it mimics a real-

world, complex distributed system and already contains 22

representative faults collected from a recent industrial survey

on microservice applications [1]. Each fault was injected into

an independent source code snapshot, available at a public

repository.1 For this motivating example, we use the one

labeled as F13, as it represents an order violation caused

by a message race, which is a common type of distributed

concurrency bug [13].

a) The F13 fault: The F13 fault results from the inter-

leaved processing of two messages arriving concurrently at the

system. In TrainTicket, each order has a property representing

its current state. When an order is created, it has state UNPAID.

The order state can then migrate to either PAID or CANCELED,

according to whether the client issues a Payment Order or a

Cancel Order, respectively.

The Payment Order succeeds when both the following

conditions hold: i) the client has enough funds, and ii) the

order state transition from UNPAID to PAID is valid. Otherwise,

the request fails, and the order state remains unchanged. In

turn, the Cancel Order succeeds if the state can be set to

CANCELED.

Since both requests change the state of an order and

the TrainTicket application processes them without synchro-

nization guarantees, their concurrent execution may non-

deterministically lead to a payment failure.

The test driver for replicating this error in TrainTicket

consists in a client application, Launcher, that first books a

1https://fudanselab.github.io/research/MSFaultEmpiricalStudy

213

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

1 [Launcher-1.1] - [Reservation Result] Success

2 [Payment-1.1] - [URI:/pay][Request: {"orderId":"652aaf9b"}]

3 [Order-1.1] - [URI:/getById][Request: {"orderId":"652aaf9b"}]

4 [Order-1.2] - Response: {"status":true, order":{"id":"652aaf9b", "status":"UNPAID"}}

5 [Payment-1.2] - Response: "false"

6 [Cancel-1.1] - [URI:/cancelOrder][Request: {"orderId":"652aaf9b"}]

7 [Order-2.1] - [URI:/getById][Request: {"orderId":"652aaf9b"}]

8 [Order-2.2] - Response: {"status":true, order":{"id":"652aaf9b", "status":"CANCELED"}}

9 [Payment-2.1] - [URI:/drawBack][Request: {"userId":"c01d7008"}]

10 [Payment-2.2] - Response: "true"

11 [Cancel-1.2] - Response: {"status":true, "message":"Success."}

12 [Launcher-1.2] - java.lang.RuntimeException: [Error Queue]

Fig. 1: The set of log records aggregated by Elastic Stack for the failed payment request. Records are ordered by the timestamp

assigned at the moment they were collected. To ease readability, we tag each record with the service in which it occurred and

a local event counter (e.g., Launcher-1.2 is the second event generated by the first thread in the Launcher service).

train trip with a new client account and, then, issues concurrent

Payment Order and Cancel Order requests. When the payment

fails, TrainTicket renders a page with the error message.

C. Debugging F13 with Elastic Stack

The increasing size and complexity of architectures mo-

tivated the industry to adopt toolsets tailored for distributed

log monitoring. Among those toolsets, the Elastic Stack [8] is

arguably one of the most popular and widely used. It provides

support for collecting large sets of log data from multiple

sources (via Logstash), analyze them using queries and filters

(via Elasticsearch), and creating user-friendly visualization

dashboards (via Kibana).

However, the Elastic Stack does not guarantee that log data

is causally ordered, which hinders its effectiveness to diagnose

unexpected behavior in distributed systems. In this section, we

demonstrate such limitation during the F13 fault’s diagnosis.

For this experiment, we deployed TrainTicket on a cluster of

three n1-standard-8 Google Cloud Engine instances managed

by Docker Swarm. In addition, we set up a Docker container

running the Elastic Stack toolset to collect and aggregate

the logs produced by the TrainTicket microservices. More

concretely, we placed a Filebeat daemon on each instance to

continuously send container log messages (application logs

augmented with container monitoring data) to Logstash, which

is the event processing component of the Elastic Stack. Finally,

we ran the F13 test driver until observing a failing execution

and collected the corresponding logs captured by the toolset.

In the following, we describe how a developer would

typically use Elastic Stack for debugging the error observed

in the experiment, using an fictional character named Steve.

Steve is a software engineer at the company that owns

TrainTicket and has been assigned to fix an issue ticket

reporting an intermittent error related to payment requests.

Steve starts by inspecting the logs produced by the Launcher

service, as it was the service in which the unexpected behavior

surfaced. Using the container information present in the logs,

Steve is able to isolate the services that processed the request

and find the events that delimit the payment request. Having

identified the portion of the logs relevant to the analysis, he

finally gathers the log messages that will hopefully reveal the

root cause of the failure.

Figure 1 unveils the subset of log messages, ordered by

timestamp, that Steve relies on to reason about the execution

path that led to the error at line 12. Each log statement begins

with the corresponding service’s name where it was collected.

The events logged by the Launcher service (lines 1 and 12)

delimit the portion of the execution that comprises the failure.

The log messages in-between (lines 2-11) were recorded by

three other services, specifically Payment, Order, and Cancel,

and provide applicational context such as the identifier and the

status of the order at any given moment.

By inspecting the logs, Steve realizes that, after completing

the reservation step, the client sent a payment request (line 2),

followed by a cancellation request for the same order (line 6).

Throughout the processing of the payment request, the logs

show that the Payment service fetched the details of the order

from the Order service (lines 3 and 4). At that moment, the

order’s state was UNPAID – a valid state for transitioning to

PAID (line 4). Yet, the request later returned false (line 5),

thus indicating that the payment had failed to complete.

In turn, the cancel request completed successfully (line 11),

as it managed to set the order’s state to CANCELED (lines 7 and

8) and issue a refund through the Payment service (lines 9 and

10).

The fact that the order’s state was valid for the payment

request (i.e., the response in line 4 had status UNPAID) leads

Steve to believe that the reason for the payment failure was

insufficient money. However, after carefully reviewing the

account balance, he verifies that there were enough funds to

pay for the reservation order.

Steve thus concludes that there is surely some other

factor causing the error, although from the logs it is not

clear what that factor might be. Moreover, as the failure is

non-deterministic, Steve is unable to obtain additional details

about the problem simply by re-executing the application.

Consequently, he marks the ticket as ”cannot reproduce” and

the issue remains unresolved.

214

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

This cautionary tale aims at showing that the lack of causal-

ity in toolsets like Elastic Stack often renders the analysis

of distributed system logs an inconclusive task, which further

contributes to the lingering of harmful bugs in production.

In the next sections, we describe Horus in detail. Later, in

Section VI, we show how it can be used to debug the failure

presented in this example.

III. HORUS OVERVIEW

We propose Horus, a system that addresses the limitations

of prior log analysis solutions to further ease the burden of

debugging distributed executions. To this end, Horus provides

the following key features:

• Lightweight and non-intrusive causality tracking. Ho-

rus leverages kernel probes to efficiently capture low-level

operations (e.g. socket sends and receives) that are then

used to establish a causal order of log messages. These

kernel probes rely on eBPF, a low-overhead technology

widely used in performance analysis tools [14]–[18].

• Causally-consistent aggregation of distributed events.

Horus combines both kernel events and logging events

from different sources into a single directed, acyclic graph

of the production run. In this graph, nodes represent the

execution events and edges represent the happens-before

(HB) relations between them. Intra-node HB relations are

encoded using the original event timestamps, whereas

inter-node HB relations are encoded using the kernel-

level event causality rules.

• Execution analysis and refinement via rich query-

ing. Casting the causal aggregation of multiple logs of

a distributed execution as a graph generation problem

gives Horus the ability to leverage off-the-shelf third-

party graph databases [19], [20], which not only scale

to executions with millions of events, but also provide

support for rich query languages.

To better understand how Horus operates, we depict its

architecture and execution flow in Figure 2. As shown in the

figure, Horus comprises four main components: Event Sources,

Event Queue, Event Processor, and Graph Database. Each

component is described as follows.

a) Event Sources: This component represents the set of

heterogeneous and independent sources that produce events

at runtime. To handle different types of event sources, Horus

requires the existence of adapters, which are responsible for

collecting the data, normalizing it into a Horus-compatible

format, and shipping it to the Horus backend for further

processing (see 1 in Figure 2). Our current prototype provides

adapters to automatically collect events from:

• Log4j [2]. The adapter for Log4j consists of a simple

formatter which outputs log messages as JSON objects

indicating the timestamp, the name of the process/thread,

and the textual message written in the source code. Each

log message is thus considered an independent event.

• I/O and Process System Calls. The adapter for I/O and

process system calls reuses eBPF probes from Falcon [9]

Intra-process
HB encoder

Inter-process
HB encoder

Graph
Database

Event Processor

Application Trace
Causal Diagram

Causally-Ordered
Application Trace

Event
Sources

Event
Queue

inter-process
relationships

events and
intra-process
relationships

? Custom
Causal QueriesQuery Evaluation

1

3

2
4

5

6

Fig. 2: Horus architecture and event flow.

to trace events regarding: the start, end, fork, join of a

process or thread; the request and accept of a network

connection between two processes; and the sending and

receiving of a message. eBPF allows implementing effi-

cient and safe programs that run inside the kernel for mul-

tiple purposes [18], namely I/O analysis, performance,

monitoring, security and tracing.

We plan to extend Horus with adapters for additional logging

libraries in the future, such as Logrus [21].

b) Event Queue: This component abstracts a set of

persistent, distributed, and replicated queues within Horus that

keep events waiting for being processed. In detail, Horus

maintains two types of event queues: one responsible for

storing the stream of events coming from the sources (see

2), and another responsible for linking the different stages

for building the causal graph (see 4). The current prototype

uses Apache Kafka [22] to manage the event queues.

c) Event Processor: This component is the processing

core unit of Horus and aims at generating the execution

causal graph. To this end, the Event Processor comprises

two sub-components that operate as a two-stage pipeline. In

the first stage, the Intra-Process HB Encoder establishes the

HB relations between events of the same process, which are

then periodically persisted in the graph database (see 3) and

forwarded to the next processing stage (see 4).

In the second stage, the Inter-Process HB Encoder encodes

the HB dependencies between events of distinct processes,

which are then flushed to the database in periodic batches like

in the previous step (see 5). Section IV describes the causal

graph generation procedure in more detail.

d) Graph Database: The current prototype of Horus uses

Neo4j [19] to store the execution causal graph and computing

the developer’s queries at debugging time (see 6). Neo4j is

a graph database that provides a rich query language named

Cypher for filtering, refining, and visualizing graphs.

Although Neo4j supports graphs with millions of events, our

experiments have shown that the execution of causality queries

does not scale well with the size of the graph. In Section V,

215

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

we show how Horus dramatically improves query processing

in Neo4j with a novel technique that leverages logical time to

prune irrelevant portions of the graph.

Our prototype of Horus is publicly available at https://

github.com/DistributedSystemsAnalysis/horus.

IV. CAUSAL GRAPH GENERATION

This section details how Horus builds the causal graph of

a distributed execution. As mentioned before, the nodes of

this graph denote execution events (i.e., log messages and

kernel operations) and the edges indicate the happens-before

relationships between them. More concretely, there are two

types of edges: intra-process and inter-process.

A. Intra-Process HB Relationships

In the first stage of Horus’ event processing pipeline,

the Intra-Process HB Encoder computes the happens-before

relationships between the subsets of events belonging to the

same process. As stated by the first property of the definition of

causality (see Section II-A), these relationships can be derived

directly from the program order.

In practice, logging libraries already assign timestamps

to the log messages with the purpose of later easing their

analysis. This means that, for the same process, it suffices to

order the messages by timestamp in order to obtain the causal

ordering of events at runtime.

However, in scenarios with multiple independent loggers

and tracers, the same process may trigger those tools without

any kind of synchronization, thus permitting the resulting

events to arrive out of order at the Event Queue component.

For that reason, Horus requires the timestamp source adopted

by those tools (e.g., physical clock) to be the same and

accurate enough to define a total order of events across them.

Otherwise, the program order property ceases to hold.

To handle events coming from several sources, the Intra-

Process HB Encoder maintains process timelines. A timeline

corresponds to a sequence of events, ordered by timestamp,

that were executed by the same process. For each incoming

event, the Intra-Process HB Encoder is responsible for insert-

ing it into the corresponding process timeline in the correct

position based on its timestamp. This procedure guarantees

that, for a given process, events enqueued out of order will

still produce a causally-consistent timeline.

The Intra-Process HB Encoder then periodically flushes the

process timelines to the graph database. The flush interval is a

tunable parameter: longer flush intervals provide lower runtime

overhead (due to fewer connections to the database) at the cost

of more memory consumption to maintain pending established

causal relationships. Shorter intervals, in turn, reduce the

memory footprint and make data more quickly available for

querying (which is useful for online monitoring), but incur a

performance slowdown.

In practice, storing a process timeline consists of creating a

new node per event and encoding intra-process edges between

pairs of nodes that correspond to contiguous events in the

timeline. As an example, let us consider a timeline T with

four events {A,B,C,D} sorted in ascending order of their

timestamp. Upon persisting T into the database, the Intra-

Process HB Encoder creates four nodes – A,B,C,D – and

three edges – (A,B), (B,C), (C,D).
Finally, the Intra-Process HB Encoder sends the timeline

events to the queue of the next processing stage.

B. Inter-Process HB Relationships

In the second processing stage, the Inter-Process HB En-

coder computes the happens-before relationships between

events of two different processes.

Inter-process causality stems from the second property of

the happens-before definition and, in contrast to intra-process

causality, does not rely on timestamps. Instead, it relies on a

message m that unequivocally identifies that its departure from

a process causally-precedes its arrival at another process. In

practice, m is usually either a unique message identifier or a

piece of context data that indicates the causal relation.

In the current version of Horus, the Inter-Process HB

Encoder determines inter-process causal dependencies based

on the event attributes captured by eBPF kernel probes. For

instance, in a TCP connection scenario, events of sending

(SND) and receiving (RCV) bytes include attributes concern-

ing the source and destination IP addresses and ports. Hence,

considering the TCP delivery and ordering guarantees, one

can establish SND → RCV causal pairs for each connection

channel. Alongside, one can define the following causal pairs

of events between a parent process p and a child process c:
FORKp → STARTc and ENDc → JOINp.

The Inter-Process HB Encoder operates in a stream fashion,

building inter-process causal dependencies according to the

nature of each event. To improve performance, incomplete

causal pairs are kept in memory until the corresponding pairing

event is consumed from the queue.

Periodically, Inter-Process HB Encoder flushes the complete

causal pairs by inserting a new edge per pair into the graph

database. Once the causal pairs are persisted, the events exit

the processing pipeline and become available for analysis.

We note that the Inter-Process HB Encoder can be easily

extended with new causality rules based on event attributes.

This feature renders Horus with the ability to accommodate

arbitrary types of events and happens-before dependencies into

the execution causal graph.

V. EFFICIENT CAUSAL GRAPH QUERYING

Once the causal graph is stored in the graph database, the

developer can start zeroing in on the error’s root cause. In

Horus, this is done via refinement queries written in Cypher

(which is an expressive query language provided by Neo4j).

In general, the analysis of the causal execution graph

comprises two main types of queries:

Q1. May event a causally affect event b?

Q2. What are the causal paths between a and b?

Q1 is the fundamental query for evaluating the happens-

before relation between any two events a and b. In turn, Q2

aims at extracting the sub-graph of causal events occurring

216

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

1

2

3

4

5

6

7

8

9

10

Vector Clock
Timestamps
[1,0,0]

[2,0,0]; [1,1,0]

[2,0,1]

[2,0,2]

[2,2,2]; [2,0,3]

[2,3,2]

[2,3,4]

[2,4,2]; [2,3,5]

[3,3,5]

[4,4,5]

F

A

B

I

C

G

D

H

E

K

L J

M

P1 P2 P3

Fig. 3: Causal graph with three process timelines. Nodes

denote events along their execution, and edges their causal

dependencies. Logical clocks and vector clocks are depicted

on the left and on the right of the events, respectively. Thick

borders (respectively, shades) indicate the nodes explored by

a default graph database traversal (respectively, Horus) to

compute the causal paths between C and F .

in-between them, which is particularly useful to reconstruct

the causal trace of a request. For instance, computing Q2 for

events Launcher-1.1 and Launcher-1.2 in Figure 1 would

produce a graph with all events in the figure causally ordered.

These queries can be expressed with path discovery and

traversal operations that are provided by the graph database.

More concretely, one can answer Q1 with a shortest path

algorithm, and answer Q2 by finding all paths between the two

events. Unfortunately, as these built-in traversals are oblivious

to the semantics of distributed systems, they are inefficient for

causal queries and cannot scale for large graphs. To understand

why this is the case, let us consider the causal graph depicted

in Figure 3 with three process timelines (P1, P2, and P3).

Recall that nodes denote events along their execution and

edges the happens-before relations between them.

Assume that we want to obtain the events that happened

between C and F , which is a query of type Q2. Answering this

with a graph database’s default traversal would correctly yield

the result set {C,D,E, F}, although at the expense of visit-

ing the nodes {C,D,E,G, F,H, I, L,M,K} (represented in

Figure 3 with a thick border). Observing the figure, one can

notice that this approach is far from optimal, as, for example,

nodes I and J are visited despite being clearly irrelevant to

the query because they occur after F . The reason behind this

inefficiency is that the traversal performed by the database

does not take into account the notion of time nor the directed

acyclic properties of the causal graph.

To address this limitation and speed up query processing,

Horus augments the causal graph with logical timestamps,

namely logical clocks (LC) [6] and vector clocks (VC) [23].

Logical clocks are scalar values assigned to each event such

that, for every two events a and b, the following condition

holds: a → b =⇒ LC(a) < LC(b). In Figure 3, logical

clocks are depicted as the timestamps on the left. For example,

B → G =⇒ LC(B) = 2 < LC(G) = 5. Note, however,

that the reverse implication is not guaranteed: LC(C) = 2 <
LC(G) = 5, but C does not happen before G. In fact, logical

clocks alone are not enough to reason about event causality.

In contrast, vector clocks suffice to reason about the causal

ordering of events in a distributed execution by providing the

property: a → b ⇐⇒ V C(a) < V C(b). We represent

vector clocks in Figure 3 next to each event: for example,

C → D ⇐⇒ V C(C) = [2, 0, 0] < V C(D) = [2, 0, 1]. In

turn, for events C and G, since neither V C(C) < V C(G)
nor V C(G) < V C(C) holds, we can conclude that they are

concurrent.

Horus performs a graph traversal similar to topological

sorting to assign both logical and vector clocks to each event

in the graph. These logical timestamps are then used to speed

up querying in a twofold fashion, as described below.

Let G = (V,E) be the causal graph under analysis and

a, b ∈ V the start and end event of a query, respectively.

First, Horus leverages the logical clocks of a and b to

quickly bound the portion of the graph that is relevant to

the query. In practice, this corresponds to using the logical

clocks as database indexes and compute the following over-

approximation V ′ of the nodes in the result set: V ′ = {v ∈
V | LC(a) <= LC(v) <= LC(b)}. For the example of

computing the causal paths between C and F considered

earlier in this section, this step produces the following subset

of nodes {C,B,D,E,G, F} (shaded nodes in Figure 3). Note

that VCs would also allow computing V ′, however they are

inappropriate for graph database indexing due to their non-

scalar nature.

Second, Horus uses vector clocks to prune out the events in

V ′ that are concurrent to a and b. This operation yields a sub-

set V ′′ containing only the events in the causal paths between

a and b: V ′′ = {v ∈ V ′ | V C(a) < V C(v) < V C(b)}. For

the previous example, this step will discard events B and G
and leave only the sub-set {C,D,E, F}.

Finally, Horus computes the result set of the query by

collecting the edge set E′ with the connections between the

nodes in V ′′: E′ = {ex→y ∈ E | x ∈ V ′′ ∧ y ∈ V ′′}.
In summary, Horus leverages logical time to answer the two

types of refinement queries as follows.

Q1. V C(a) < V C(b);
Q2. CausalPatha→b = (V ′′, E′), where:

V ′ = {v ∈ V | LC(a) <= LC(v) <= LC(b)}
V ′′ = {v ∈ V ′ | V C(a) < V C(v) < V C(b)}
E′ = {ex→y ∈ E | x ∈ V ′′ ∧ y ∈ V ′′}

We implemented the logical time optimizations in Neo4j

as two new procedures denoted happensBefore() and

getCausalGraph(). This way, it becomes possible to write

and execute efficient causal queries using Cypher.

217

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

Event Type Occurrences (approx. %)

LOG 4,531 (22.52%)
RCV 4,339 (21.57%)
CREATE 3,618 (17.99%)
START 3,340 (16.60%)
SND 2,689 (13.37%)
END 660 (3.28%)
JOIN 357 (1.77%)
CONNECT 260 (1.11%)
FSYNC 173 (0.86%)
ACCEPT 149 (0.74%)

Total Events 20,116

TABLE I: Number of events per type present in the causal

graph under analysis. LOG events are produced by the log4j

logging library, while the rest is captured by Horus’ kernel-

level tracer.

VI. CASE STUDY – DEBUGGING F13 WITH HORUS

Recall the TrainTicket’s F13 fault introduced in Section II,

which causes an error due to the interleaved execution of two

requests. In this section, we demonstrate how Horus’ causal-

consistent approach overcomes the limitations of toolsets like

Elastic Stack and allows troubleshooting the F13 error.

For collecting TrainTicket’s events at runtime, we set up

Horus with two event sources, as follows. First, we configured

Horus’ kernel-level tracer to attach details about the Docker

containers in which TrainTicket’s services run. The goal was

to later allow uniquely identifying each individual host in the

system. Second, we enabled a new log4j appender for attach-

ing useful process information to TrainTicket’s log messages

before forwarding them to Horus. We note that, on each host,

both event tracers rely on the same monotonically increasing

physical clock to later ensure the correct encoding of the intra-

process causality.

Table I reports the amount of events, grouped by type,

captured by Horus when building the causal graph for

TrainTicket’s F13 failing execution. This causal graph results

from six minutes of execution, which generated 20,116 events,

spread across 96 process timelines, and 27,859 causal rela-

tionships, from which 4,593 (16.49%) encode inter-process

causality. Despite LOG being the most common event type,

SNDs and RCVs together, which are essential for encoding

inter-process causality, account for around 35% of the graph.

The discrepancy between the percentage of SND and RCV

events is explained by different buffer sizes on the hosts, which

can cause a single message to be read by multiple partial

RCVs.

In the following, we revisit the cautionary tale from

Section II-C and describe how Steve, our fictional

TrainTicket’s software engineer, would use Horus to

debug the payment failure report in the issue tracker.

Steve starts the day with an issue ticket on his hands,

reporting that an error popped up when a user performed

the payment request for order 652aaf9b. Fortunately, the user

has also provided the error message in the ticket description:

java.lang.RuntimeException: [Error Queue].

Steve decides to inspect the logs recorded from the moment

the payment request started until the moment in which the

error message appeared. To this end, he has to first identify

the events in the causal graph that delimit that relevant portion

of the execution.

The beginning of the payment is defined by a message

sent from the Launcher service to the Payment service. Steve

knows that, in Horus, this message is represented by the

first SNDLauncher → RCVPayment causal pair. As such, he is

able to obtain the logs concerning the failing request by

executing a query to compute the causal graph from that

SNDLauncher event to the LOGLauncher event containing the

message java.lang.RuntimeException: [Error Queue].

Also, to ensure that he is focusing on the right request, Steve

augments the query with an additional clause stating that the

START event of the payment request must happen before (in

terms of logical time) the error event.

Figure 4a details the aforementioned Cypher query to refine

the causal graph for the failing request under analysis. The

query is composed of three parts, identified by the three

comment blocks in Figure 4a. The first part filters the events

that either belong to the beginning of a payment request or

represent an error message. In other words, this part aims at

finding the potential boundaries of the failing request.

The second part computes the causal paths that connect

the events returned in the previous step and collects the log

messages for each one of them. Note how Horus extends

Neo4j with the procedure getCausalGraph() for efficiently

extracting the causal graph between two events in the graph.

Finally, the third part of the query aims at filtering the events

belonging solely to the order 652aaf9b. The final output of the

query is depicted in Figure 4b. Note that the log statements in

the figure are the same as those in Figure 1, but this time the

events are causally ordered.

After executing the query, Steve proceeds with the analysis

by inspecting the log messages. At this point, he notices that

the order status changed from UNPAID (line 4) to CANCELED

(line 6). The only valid state transition after a payment request

is from UNPAID to PAID. However, the logs show that the order

state transits unexpectedly from UNPAID to CANCELED, which

is an invalid final state for a payment request. On the other

hand, Steve realizes that, in addition to the payment request

(line 1), the logs also report a cancellation request (line 2)

for the same order. Consequently, he suspects that the failure

might be related to the concurrent execution of both requests.

To clarify the suspicion that the cancellation request was the

culprit of the invalid state change, Steve decides to render the

execution causal graph in ShiViz [24], a popular space-time

diagram visualizer compatible with Horus.

Figure 4c illustrates the diagram rendered by ShiViz. It

comprises four process timelines regarding the Launcher,

Payment, Cancel and Order services, respectively. Each thick-

bordered number identifies the corresponding LOG event in

218

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

// Find events that denote the beginning of the payment request and the noticed error.
MATCH
 (reqSnd:SND {host: ’Launcher’})-->(:RCV {host: ’Payment’}),
 (reqError:LOG {host: ’Launcher’})
WHERE
 reqError.message CONTAINS 'java.lang.RuntimeException: [Error Queue]’
 reqError.lamportLogicalTime > reqSnd.lamportLogicalTime
WITH
 reqSnd.lamportLogicalTime as reqSndTime,
 min(reqError.lamportLogicalTime) as reqErrorTime

MATCH
 (reqSnd:EVENT {host: ’Launcher’, lamportLogicalTime: reqSndTime}),
 (reqError:EVENT {host: ’Launcher’, lamportLogicalTime: reqErrorTime})

// getCausalGraph(startNode, endNode, onlyLogs)
CALL horus.getCausalGraph(reqSnd, reqError, true) yield node
WITH reqSnd, reqError, node ORDER BY node.lamportLogicalTime ASC
WITH
 reqSnd.eventId as startEventId,
 reqError.eventId as endEventId,
 collect(node) as logs

// Return:
// 1. startEventId: the event that denotes the start of the payment request
// 2. endEventId: the event that denotes the noticed error
// 3. logs: log messages containing the order identifier.
UNWIND logs as log
WITH startEventId, endEventId, log
WHERE log.message CONTAINS ’652aaf9b’
RETURN startEventId, endEventId, collect(log.message) as logs

a) Query to retrieve the events that denote the beginning of the payment request concerning

the order '652aaf9b’ and the noticed error. The returned result contains the events’

identifiers and the logs containing the order identifier.

b) Causally-ordered log messages from the moment the request starts to the moment the

error is noticed for order 652aaf9b. Each log statement is prefixed with its originating

service’s name and its thread’s local counter.

[Payment-1.1] - [URI:/pay][Request: {"orderId":"652aaf9b"}]

[Cancel-1.1] - [URI:/cancelOrder][Request: {"orderId":"652aaf9b"}]

[Order-1.1] - [URI:/getById][Request: {"orderId":"652aaf9b"}]

[Order-1.2] - Response: {"status":true, order":{"id":"652aaf9b", "status":"UNPAID"}}

[Order-2.1] - [URI:/getById][Request: {"orderId":"652aaf9b"}]

[Order-2.2] - Response: {"status":true, order":{"id":"652aaf9b", "status":"CANCELED"}}

[Payment-1.2] - Response: "false"

[Payment-2.1] - [URI:/drawBack][Request: {"userId":"c01d7008"}]

[Payment-2.2] - Response: "true"

[Cancel-1.2] - Response: {"status":true, "message":"Success."}

1
2

4

3

5

6

8

7

9

10

// startEventId: hipster-1.europe-west2-c.c.horus-262311.internal64523
// endEventId: ts-launcher-LOG-584277764938

c) Space-time diagram rendered

by ShiViz for the failed

payment request.

Launcher Payment Cancel Order

5

6

10

7

8

9

4

3

1 2

Fig. 4: Refinement queries, written in Cypher, used to debug the F13 failure, along with a snippet of the ShiViz diagram

generated for the causal graph produced by Horus after processing the queries.

Figure 4b. The execution path of the payment request under

analysis is highlighted in red.

In the diagram, Steve observes that log messages 1 and 2

appear at the same level, which confirms that both payment

and cancellation requests started concurrently. Since both

requests depend on the order’s status, the diagram shows each

one issuing a getById request to the Order service (3 and

5). However, while the response sent to the Cancel service

indicated the status UNPAID (4), the one sent to the Payment

service revealed that the order status was CANCELED (6). Steve

thus confirms his suspicion: somehow the order state changed

between events 4 and 5 .

From a closer look at the diagram, he identifies that, after

receiving the order details, the Cancel service issued another

request back to the Order service, this time to update the order

state to CANCELED (see the red dashed box). Since this request

219

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

executed right before the arrival of the Payment’s request,

the order was already canceled at the time of the fetching.

However, the application requirements state that users cannot

pay orders that are already canceled.

Steve was finally able to explain the root cause of the failure:

as the order status was changed after the payment had started,

the payment request received the response false (7), which

then raised an exception in the Launcher service. The fact that

the TrainTicket permits a payment request to be performed

after an order cancellation represents an order violation, a

common type of distributed concurrency bugs.

To fix this incorrect behavior once for all, Steve implements

a synchronization mechanism to enforce the correct execution

between payment and cancellation requests. It took a full day

of work, but he successfully managed to mark the issue ticket

as ”resolved” and accomplish his goal.

VII. PERFORMANCE EVALUATION

In this section, we conduct an experimental evaluation

of Horus aimed at assessing the benefits and limitations of

our system with respect to: i) the scalability of the event

processing pipeline; ii) the performance of the logical time

assignment algorithm, and iii) the performance impact of

leveraging logical time during query processing.

To enable experiments with causal graphs of different sizes,

we implemented a synthetic event generator that mimicks an

arbitrary number of rounds of a synchronous client-server

scenario. In detail, it generates request-reply interactions be-

tween two processes P1 and P2 by creating the causal pairs

SNDP1 → RCVP2 and SNDP2 → RCVP1. The output of this

micro-benchmark is thus an execution causal graph with N
events and 3N/2 − 2 edges in total (comprising both intra-

and inter-process edges).

In the rest of this section, we describe the environment setup

and discuss the results for each experimental scenario.

A. Event Processing

Event processing consists of determining intra- and inter-

process causality for each event and storing the event and its

corresponding causal relationships in the graph database.

In this experiment, we evaluate how Horus scale in terms

of the number of processed events per time unit.

We configured two instances in Google Cloud Platform. The

first instance is of type n1-standard-16 (16 vCPUs and 60GB

RAM) and hosts the Horus’ pipeline. The other instance, n1-

standard-8 (8 vCPUs and 30GB RAM), hosts event generator

clients. Each experiment ran for 15 minutes, with stress clients

performing an intensive workload by submitting as many

events as possible to Horus. The flush interval is set to 100ms

and 200ms for events and causal relationships, respectively.

Figure 5 illustrates the evolution of the event processing

throughput as the amount of clients increases. The dashed line

indicates the incoming event rate measured in Apache Kafka.

Horus follows the incoming rate until the 18 clients setting,

which produces close to 6,000 events/second. Note that this

is a stress scenario, as the 18 clients generate in less than 4

 0

 1k

 2k

 3k

 4k

 5k

 6k

 7k

 8k

 2 4 6 8 10 12 14 16 18 20 22

T
h
r
o
u
g
h
p
u
t

(
e
v
e
n
t
s
/
s
e
c
)

Clients

Incoming Rate Horus

Fig. 5: Horus throughput as the number of clients increases.

The incoming event rate reveals the amount of events produced

by running clients in a stress scenario.

seconds the same amount of events generated by TrainTicket

in 6 minutes. Thus, Horus would scale to a setup with 1500+

microservices performing the same workload as TrainTicket.

When Horus reaches its maximum throughput, pending

events still remain in the event queues. Therefore, Horus will

still be able to process all events generated during workload

peaks and make them available for analysis, even with delay.

Horus architecture, however, allows for scale-out of causal-

ity encoders within the pipeline. To achieve this, one must

configure Horus to ensure the following: i) all events in a pro-

cess are processed by the same intra-process causality encoder,

thus preserving the program order; ii) the events belonging to

a causal pair are delivered to the same inter-process causality

encoder; and iii) the program order is preserved from the

intra-process encoder to the inter-process encoder. This allows

distributing event processing among several encoders without

requiring synchronization and still guarantees correctness in

constructing the causal execution graph.

In short, this experiment shows how many events can be

handled in real-time with a single event-processing server,

while knowing that, even when this rate is exceeded momen-

tarily, no events are lost.

B. Logical Time Assignment

Horus introduces an algorithm based on graph traversal to

assign logical time to events in the stored causal graph.

In this experiment, we compare the performance of the

Horus’ algorithm with the Falcon’s approach that, in turn,

resorts to a state-of-the-art SMT constraint solver to causally

order logs. We first populated the Horus database using the

synthetic event generator. Then, we exported the unordered

events in the format compatible with the Falcon’s solver.

Figure 6 illustrates the evolution of the execution time of the

Falcon’s solver and the Horus’ algorithm for execution graphs

with different sizes. The Falcon’s solver depicts exponential

behavior as graph size increases whereas Horus evolutes

slightly linearly.

Falcon is thus unable to assign logical time to more than few

thousands of events in a timely manner. It spends more than

220

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

 0.1

 1

 10

 100

 1000

2500 5000 10000 20000 40000 80000

T
i
m
e

(
s
e
c
)

Execution Graph Size (#events)

Falcon Solver

14.84

100.92

758.19

Horus

0.23
0.45

0.89
1.78

3.54
7.08

Fig. 6: Comparison between the execution time of Falcon and

Horus to assign logical clocks on different graph sizes.

12 minutes for 10,000+ events, while the Horus’ algorithm

spends 7 seconds to assign the logical time.

This algorithm can perform with low execution time, even

when graph increases over time. In fact, running in a periodic

basis, the algorithm is able to resume the procedure from the

most recent event of each process timeline already with logical

timestamps and proceeding to the recently added events. Thus,

the execution time does not depend on the total amount of

events in the graph but the amount of unprocessed events.

In summary, the execution time of the proposed logical time

assignment algorithm scales with the amount of events and

causal relationships in the execution graph and thus is suitable

for real use cases.

C. Causal Graph Querying

Horus enables developers to refine the causal graph using

the database’s built-in query language, as it provides filtering

and grouping operations for graph algorithms. As discussed in

Section V, the built-in algorithms are not efficient to answer

graph refinement queries such as Q1 and Q2. Horus addresses

this limitation by annotating events with logical time.

In this section, we conduct separate evaluations for Q1 and

Q2 query types. For each type, we compose the corresponding

Cypher queries on each approach, one resorting to built-in path

traversal algorithms and the other leveraging logical time.

We setup a n1-standard-16 instance that hosts the Horus

pipeline, alongside the Neo4j database. For each experiment,

we populated the database using the synthetic event generator.

a) Evaluation for Q1.: The Cypher query that follows a

path-traversal-based approach makes use of the shortest path

algorithm to determine whether a causal path between the two

events exist. For the Horus’ approach, in turn, the query just

compares the logical timestamps of the two events.

We selected ten event pairs, each whose causal graph

contains 10% of the graph’s total events, and then executed the

queries for each pair. For instance, for a graph with 100 events,

each causal graph contains 10 events. Clearly, the dimension

of each pair’s causal graph also increases with the graph size.

Figure 7 unveils the execution time of each query for

different graph sizes. Observe that both axes are represented

 1

 10

 100

 1000

 100 1k 10k 100k

T
i
m
e

(
m
s
)

Execution Graph Size (#events)

Horus

1.84 1.78
3.46

1.89

Shortest Path

5.04

109.0

Fig. 7: Comparison between the execution time of the shortest

path algorithm and Horus to answer query Q1, for different

graph sizes.

100
101
102
103
104
105
106
107

 100 1k 10k 100k
T
i
m
e

(
m
s
)

Execution Graph Size (#events)

Horus

151.3

5.92
20.4

4.07

Path Traversal Query

52
152

4166

51581

1653157

Fig. 8: Evolution of the execution time of obtaining the causal

graph between two events using traversal-based query and the

logical-time-based approach implemented in Horus.

using logarithmic scale. One important note, derived from the

negligible std. dev., is that both queries are insensitive to pair

location. This is, each query shows similar performance either

for a pair positioned at the top of the graph or for a pair

positioned at the middle or at the bottom of it.

The performance of the shortest path algorithm decreases

as the graph grows. For 100,000+ nodes, it becomes ≈30

times slower than comparing logical timestamps. This happens

because comparing the logical time of any two events does not

require any sort of path traversal. Instead, it compares logical

timestamps according to the properties of vector clocks.

b) Evaluation for Q2.: For this experiment, the Cypher

query that relies on built-in algorithms simply aims at finding

all paths between the two events. In this case, the position of

the pair and the direction of the internal traversal algorithm in-

fluence the query performance in the traversal-based approach.

For instance, a pair positioned at the top would lead the query

to be less performant if the traversal’s direction from the top

the the bottom of the graph and vice-versa.

To perform a rigorous and fair comparison, we evaluate the

traversal-based query with the pair positioned in the middle of

the graph, which causal graph contains 10 nodes. We selected

221

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

this pair for two reasons: 1) we assume that most analysis do

not focus on the beginning nor on the bottom of the causal

graph; and 2) the performance of the path traversal is the same,

independently of direction it takes.

In turn, for evaluating the Horus’ approach, we adopt the

same procedure as in for Q1, that is, we choose ten event pairs,

each which causal graph contains 10% of the total events.

Figure 8 shows the performance degradation incurred when

using the traversal-based query to extract causal paths on small

graphs (from 10 to 100 nodes).

In contrast to the traversal-based query, our proposed

logical-time-based approach is insensitive to pair location in

the graph. Therefore, we can compare the performance of both

approaches in the scenario of a graph with 100 events.

For the scenario that compares both approaches, i.e., graph

with 100 events, using logical time decreases the execution

time from ≈1653 seconds to ≈4 milliseconds.

In summary, the Horus’ logical-time-based approach scales

much better than traversal-based query for causal queries.

VIII. RELATED WORK

Context propagation is a distributed tracing technique for

causal debugging and performance analysis in distributed

systems [25]. To capture causality, X-Trace [26], Dapper

[27], Pivot Tracing [28], Canopy [29] and others [30]–[32]

propagate identifiers in requests, jobs and tasks across software

component and machine boundaries. Nonetheless, it requires

instrumentation of the source code of software components,

otherwise the context-propagation chain is incomplete. More-

over, all these are workflow-centric approaches, while Horus

provides a comprehensive view of concurrent requests.

Watermelon [33] is distributed debugging framework capa-

ble of tracking comprehensive causality. Yet, it requires a train-

ing phase in which engineers must inspect execution traces

of component’s communications and write specifications that

determine which request contributed to the values read by a

later request. In modern distributed systems, analyzing execu-

tion traces of dozens of heterogeneous software components

poses a hard challenge to adopt Watermelon.

XVector [34] is a vector clock logging library that augments

log messages with vector timestamps to enable visualization of

distributed executions using ShiViz [24]. However, it requires

developers to adopt it as logging library, which may be

unpractical for third-party components.

Log messages often carry valuable information about sys-

tem’s state and execution flow. As such, previous works resort

to processing log entries for performance analysis [5], [35] and

anomaly detection [36]–[39]. Briefly, lprof [5] resort to static

analysis to detect possible identifiers that aid correlation of

requests log entries. LRTrace [35] applies pattern matching to

unstructured logs to correlate resource usage metrics with logs.

Log3C [36] samples, clusters and matches log sequences for

identifying problems by correlating clusters of log sequences

with relevant key performance indicators. LogRobust [37],

DeepLog [38] and CloudRaid [39] leverage machine learning

techniques to aid log-based analysis, detect anomalies and

automatically find concurrency bugs, respectively.

The operating system internals has been an exploration path

to infer causality in end-to-end requests [9], [40], [41]. vPath

[41] is an application-agnostic monitor that intercepts commu-

nication and process syscalls to precisely discover request pro-

cessing paths in systems that follow well-established program-

ming patterns. Falcon [9] is the most closely related work to

Horus and the current state-of-the-art for tracking causality in

a distributed execution via low-level tracing. Briefly, Falcon is

a pipeline tool that generates a causally-coherent trace of logs

from several logging sources by intercepting system calls and

leveraging well-established causality between kernel events to

construct a causal trace of application logs. Falcon relies on

a Satisfiability Modulo Theories constraint solver, which does

not scale to executions with more than a few thousands of

events, as shown in Section VII-B. Moreover, Horus offers a

powerful query language inherited from the underlying graph

database and is able to output traces compatible with the causal

diagram visualizer ShiViz [24].

IX. CONCLUSIONS

In this paper, we introduce Horus, a system for analyzing

distributed system logs in a non-intrusive, causally consistent,

and scalable fashion. Horus leverages kernel-level operations

traced at runtime to generate a graph of the distributed

execution in which log messages are causally ordered.

Given the large volume of data generated by kernel-level

tracing in real applications, the key contributions of Horus are

the storage and processing techniques proposed that deal with

scale, in terms of the amount of data, but also conceptually,

allowing debugging operations to be encoded in a high-level

graph querying language. In particular, the combination of

both scalar and vector clocks dramatically reduces the time

to run queries over the execution graph.

Our case study with TrainTicket, a ticket booking appli-

cation with 40+ microservices, demonstrates that Horus is

effective in pinpointing the root cause of anomalous behavior.

Moreover, the experimental evaluation of Horus against prior

state-of-the-art solutions shows that it i) scales better with the

number of events, ii) is faster to aggregate logs from multiple

sources into a causally consistent execution trace, and iii)

executes analysis queries over the trace more efficiently.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd,

Cheng Li, for their helpful comments and suggestions. This

work is funded by project AIDA (POCI-01-0247-FEDER-

045907), co-financed by the European Regional Development

Fund (ERDF) through the Operacional Program for Compet-

itiveness and Internationalisation (COMPETE 2020) and by

the Portuguese Foundation for Science and Technology (FCT)

under CMU Portugal, and by National Funds through the

Portuguese funding agency FCT - Fundação para a Ciência

e a Tecnologia with grant SFRH/BD/129771/2017 and within

project UIDB/50014/2020.

222

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Transactions on Software

Engineering, pp. 1–1, 2018.

[2] “Apache log4j,” https://logging.apache.org/log4j/2.x/.

[3] “Simple logging facade for java (slf4j),” http://www.slf4j.org/.

[4] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang,
P. U. Jain, and M. Stumm, “Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-intensive
systems,” in Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation, ser. OSDI?14. USA: USENIX
Association, 2014, p. 249?265.

[5] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and
M. Stumm, “Lprof: A non-intrusive request flow profiler for distributed
systems,” in Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation, ser. OSDI?14. USA: USENIX
Association, 2014, p. 629?644.

[6] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, 1978.

[7] A. Sampath and C. Tripti, “Synchronization in distributed systems,” in
Advances in Computing and Information Technology, N. Meghanathan,
D. Nagamalai, and N. Chaki, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012.

[8] “Elastic Stack: Elasticsearch, Logstash and Kibana,” https://www.elastic.
co/pt/products/.

[9] F. Neves, N. Machado et al., “Falcon: A practical log-based analysis tool
for distributed systems,” in 2018 48th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN). IEEE, 2018,
pp. 534–541.

[10] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS

’08/ETAPS ’08. Springer-Verlag, 2008.

[11] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold,” in Proceedings of the 26th Sympo-

sium on Operating Systems Principles, 2017, pp. 565–581.

[12] F. Mattern, “Virtual time and global states of distributed systems,” in
Parallel and Distributed Algorithms. North-Holland, 1988, pp. 215–
226.

[13] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, “Taxdc:
A taxonomy of non-deterministic concurrency bugs in datacenter
distributed systems,” in Proceedings of the Twenty-First International

Conference on Architectural Support for Programming Languages

and Operating Systems, ser. ASPLOS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 517–530. [Online].
Available: https://doi.org/10.1145/2872362.2872374

[14] F. Neves, R. Vilaça, and J. Pereira, “Black-box inter-application traffic
monitoring for adaptive container placement,” in Proceedings of the

35th Annual ACM Symposium on Applied Computing, ser. SAC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
259–266. [Online]. Available: https://doi.org/10.1145/3341105.3374007

[15] “Recap: High-performance Linux Monitor-
ing with eBPF,” https://www.weave.works/blog/
recap-high-performance-linux-monitoring-with-ebpf/.

[16] “eBPF - The Future of Networking and Security,” https://cilium.io/blog/
2020/11/10/ebpf-future-of-networking/.

[17] “Sysdig and Falco now powered by eBPF,” https://sysdig.com/blog/
sysdig-and-falco-now-powered-by-ebpf/.

[18] “iovisor/bcc: Bcc - tools for bpf-based linux io analysis, networking,
monitoring, and more,” https://github.com/iovisor/bcc.

[19] “Neo4j graph platform – the leader in graph databases,” https://neo4j.
com/.

[20] “Janusgraph - distributed, open source, massively scalable graph
database,” https://janusgraph.org/.

[21] “Logrus: Structured logger for Go,” https://github.com/sirupsen/logrus.

[22] “Apache kafka: A distributed streaming platform.” https://kafka.apache.
org/.

[23] C. J. Fidge, “Timestamps in message-passing systems that preserve the
partial ordering,” 1987.

[24] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging dis-
tributed systems: Challenges and options for validation and debugging,”
Communications of the ACM, vol. 59, no. 8, pp. 32–37, Aug. 2016.

[25] J. Mace and R. Fonseca, “Universal context propagation for distributed
system instrumentation,” in Proceedings of the Thirteenth EuroSys

Conference, 2018, pp. 1–18.
[26] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace:

A pervasive network tracing framework,” in NSDI ’07. USENIX
Association, 2007.

[27] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” Tech. Rep.

[28] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in SOSP ’15. ACM, 2015.

[29] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W.
Ong, B. Schaller, P. Shan, B. Viscomi et al., “Canopy: An end-to-end
performance tracing and analysis system,” in Proceedings of the 26th

Symposium on Operating Systems Principles, 2017, pp. 34–50.
[30] “Opentelemetry,” https://opentelemetry.io/.
[31] “Zipkin,” https://zipkin.io.
[32] “Lightstep,” https://lightstep.com.
[33] M. Whittaker, C. Teodoropol, P. Alvaro, and J. M. Hellerstein, “Debug-

ging distributed systems with why-across-time provenance,” in Proceed-

ings of the ACM Symposium on Cloud Computing. ACM, 2018, pp.
333–346.

[34] I. Beschastnikh, P. Liu, A. Xing, P. Wang, Y. Brun, and M. D.
Ernst, “Visualizing distributed system executions,” ACM Trans. Softw.

Eng. Methodol., vol. 29, no. 2, Mar. 2020. [Online]. Available:
https://doi.org/10.1145/3375633

[35] A. Pi, W. Chen, X. Zhou, and M. Ji, “Profiling distributed systems in
lightweight virtualized environments with logs and resource metrics,” in
Proceedings of the 27th International Symposium on High-Performance

Parallel and Distributed Computing, 2018, pp. 168–179.
[36] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,

“Identifying impactful service system problems via log analysis,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, 2018, pp. 60–70.
[37] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,

Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2019, pp. 807–817.
[38] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly

detection and diagnosis from system logs through deep learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1285–1298. [Online].
Available: https://doi.org/10.1145/3133956.3134015

[39] J. Lu, F. Li, L. Li, and X. Feng, “Cloudraid: Hunting concurrency bugs
in the cloud via log-mining,” in Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, ser. ESEC/FSE 2018.
New York, NY, USA: Association for Computing Machinery, 2018, p.
3–14. [Online]. Available: https://doi.org/10.1145/3236024.3236071

[40] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat,
“Wap5: black-box performance debugging for wide-area systems,” in
Proceedings of the 15th international conference on World Wide Web,
2006, pp. 347–356.

[41] B.-C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and R. N.
Chang, “vpath: Precise discovery of request processing paths from black-
box observations of thread and network activities.” in USENIX Annual

technical conference, 2009.

223

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 14,2021 at 15:03:57 UTC from IEEE Xplore. Restrictions apply.

