
An Approach for Graphical User Interface Bad

Smells Detection

J.C. Silva1 J.C Campos2 J. Saraiva2 J.L. Silva3
1 Dep. Tecnologias, Instituto Politécnico do Cávado e do Ave, Barcelos,

Portugal
2 Dep. Informática, Universidade do Minho and HASLab / INESC TEC,

Braga, Portugal
3 M-ITI, Universidade da Madeira, Funchal, Portugal

jcsilva@ipca.pt, {jose.campos,jas}@di.uminho.pt, jose.l.silva@m-iti.org

Abstract. In the context of an e↵ort to develop methodologies to sup-
port the evaluation of interactive system, this paper investigates an ap-
proach to detect graphical user interface bad smells. Our approach con-
sists in detecting user interface bad smells through model-based reverse
engineering from source code. Models are used to define which widgets
are present in the interface, when can particular graphical user interface
(GUI) events occur, under which conditions, which system actions are
executed, and which GUI state is generated next.

Keywords: GUI, Reverse Engineering, Bad Smells.

1 Introduction

In the Software Engineering area, the use of reverse engineering approaches has
been explored in order to derive models directly from existing interactive system
using both static and dynamics analysis [13] [14] [15]. Static analysis is performed
on the source code without executing the application. Static approaches are well
suited for extracting information about the internal structure of the system, and
about dependencies among structural elements. Classes, methods, and variables’
information can be obtained from the analysis of the source code. On the con-
trary, dynamic analysis extracts information from the application by executing
it. Within a dynamic approach the system is executed and its external behaviour
is analysed. Reverse engineering is a process that helps understand a computer
system. Similarly, user interface modelling helps designers and software engineers
understand an interactive application from a user interface perspective. This in-
cludes identifying data entities and actions that are present in the user interface,
as well as relationships between user interface objects. This paper makes use of
user interface models to detect bad smells of interactive systems. This aims to
be achieved through a reverse engineering approach from source code.

The first step of our approach enables to extract models containing GUI
characteristics. Models allow to analyse systems and could be used to detect

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-05948-8_19



bad smells at reasonable cost [9]. Di↵erent types of models can be used for
interactive systems, like user and task models. Models must specify which GUI
components are present in the interface and their relationship, when a particular
GUI event may occur and the associated conditions, which system actions are
executed and which GUI state is generated next. The main goal of this paper is
to describe an approach to detect bad smells presence.

This paper is structured into seven logical sections. The first one presents
an introduction. An user interface modelling is exposed, and the aspects usually
specified by graphical user interfaces are described. It is described over section 2.
Section 3 describes bad smells in graphical user interfaces, and section 4 presents
background information on bad smells. This paper presents the approach pro-
posed in sections 5 and 6. Section 5 presents methodologies for internal bad
smells detection. Section 6 presents relevant preliminary results. Finally the last
section presentsconclusions concerning the present research.

2 User Interface Modelling

User interface models can describe the domain over which the user interface acts,
the tasks that the user interface supports, and others aspects of the graphical
view presented to the user. The use of interface models gives an abstract de-
scription of the user interface, potentially allowing to express the user interfaces
at di↵erent levels of abstraction, thus enabling choice of the most appropriate
abstraction level, re-use user interface specifications between projects, thus de-
creasing the cost of development, reason about the properties of the models, thus
allowing validation of the user interface within its design, implementation and
maintenance processes.

Previous research from authors enable to extract dialogue models [4]. On the
one hand they are one of the more useful type of models to design or analyse
the behaviour of the system. On the other hand, they are one of type of mod-
els that is closest to the implementation, thus reducing the gap to be filled by
reverse engineering. Dialogue models describe the behaviour of the user inter-
face. Unlike task models, where the main emphasis is the users, dialogue model
focus on the device, defining which actions are made available to users via the
user interface, and how it responds to them. These models capture all possible
dialogues between users and the user interface. Dialog models express the inter-
action between human and computer. To this end, they stipulate all the widgets
the user can interact with (e.g. buttons, commands, etc.) and the results of those
interactions on the system.

Using dialogue models, we focus our attention on bad smells and on auto-
matic processes for their detection. Code smells are structural or behavioural
characteristics of software that may indicate a code or design problem. Code
smell concept was introduced by Fowler [11] who defined 22 di↵erent kinds of
smells. Code smells are usefull to enhance software’s internal quality through
refactoring process.



3 Bad Smells in Graphical User Interfaces

The analysis of source code can provide a means to guide the evaluation of
the application. Bad smells detection aim to address software quality. For that
purpose, bad smells must be defined and searched in source code. Bad smells
can be divided into two groups: external and internal. External bad smells are
defined in relation to running software. In what concerns GUIs, external bad
smells can be used as usability indicators. However, external bad smells are not
obtainable from source code analysis, rather through users feedback. In contrast,
internal bad smells are obtained from the source code, and provide information
to improve software development. With our approach, we aims to extract internal
bad smells obtained from source code through a reverse engineering process.

Internal bad smells are structural characteristics of source code that may
indicate a code or design problem. Internal bad smell concept was introduced
by Fowler [11] who defined 22 di↵erent kinds of smells, being usefull to enhance
software’s internal quality through refactoring process. Di↵erent smells types
were specified by Fowler, like:

– Duplicated Code: means that the same code structure appears in more than
one place;

– Feature Envy: means that a method is in the wrong place since it is more
tightly coupled to the other class than to the one where it is currently located;

– God Class: refers to class that tends to perform too much work;

– Large Class: referes to classes that have too many instance variables or meth-
ods;

Considering di↵erent types of bad smells, we aim to detect them and dis-
cuss some of the relevant problems which we have to face for their automatic
detection in interactive systems. To achieve that purpose adequate metrics must
be specified and calculated. In what concerns graphical user interfaces, external
bad smells presence can be used as usability indicator, while internal bad smells
presence provide information to improve software structure.

As an example, duplicates structures can be detected by measuring the per-
centage of duplicated code lines in the system. However our objective will be to
find not only exact duplication, wich is simple to detect, but also other kinds
of duplication, including entity renaming or aliasing and also duplicated code
slightly modified and mixed with di↵erent code. The detection of Feature Envy
can be achieved by measuring the connections that a method has to methods
belonging to foreign classes. As example, from a graphical perspective, a method
related to a particular widgets may need to belong to the form’s class where the
widget is defined. By calculating metrics over dialogue models, relevant knowl-
edge may be acquired about the structural characteristics of interface that may
indicate a code or design problem.



4 Bad Smells Background

As described above, Fowler created a list of 22 smells and defined a possible
solution for each of them [11]. In the sequence of Fowler study, Mantyla et al.

[12] presented a taxonomy to categorize similar bad smells. The taxonomy makes
the smells more understandable and recognizes the relationships between smells.
Mantyla et al. created five groups of smells, namely, the bloaters, the object-
oriented abusers, the change preventers, the dispensables and the couplers. Both
Fowler and Mantyla use metrics to bad smell detection. Stamelos et al. [6] used
also metrics within the Logiscope2 tool in order to study the quality of open
source code. Ten di↵erent metrics were used. The results enable evaluation of
each function against four basic criteria: testability, simplicity, readability and
self-descriptiveness. While the GUI layer was not specifically targeted in the
analysis, the results indicated a negative correlation between component size
and user satisfaction with the software.

5 Metrics for Internal Bad Smells Detection

The approach described in this paper makes use of a fully functional reverse
engineering prototype tool developped by authors. The tool makes use of static
analysis as in [5] and is able to derive user interface models of interactive appli-
cations from source code.

The interactive source code extraction process starts by defining/reusing a
front-end for the programming language of the interactive applications source
code. Modern parser generators automatically produce a parser and the con-
struction of the Abstract Syntax Tree (AST) given the context-free grammar
defining the programming language of the source code. Using this front-end, an
AST is obtained from the source code of the system for which the user interface
related code is to be analysed. Then, the process needs to identify all fragments
in the AST that are members of the GUI layer. To achieve this a set of ab-
stractions is used. In order to extract user interface relevant data from the AST,
a slicing function was proposed which enables to isolate the GUI sub-program
from the entire program. Behavioural models may be generated which capture
graphical user interface behaviour by detecting components in the user interface
through source code analysis. These components include user interface objects,
events, actions and respective control flow. The technique will help in identifying
graphical user interface abstractions from source code.

Di↵erent metrics have already been applied to the generated models. These
metrics are used to detect bad smells like duplicated code, methods in wrong
place (feature Envy), classes performing too much work (God Classes), classes
with too many instance variables or methods (Large Class), methods too long
(Long Method), parameter list too long (Long Parameter List). Another metrics
have been applied to detect internal bad smells related to the interaction between
users and the system, namely pagerank and betweenness.

Pagerank is a link analysis algorithm, that assigns a numerical weighting
to each node [19]. Pagerank is a distribution used to represent the probability



that users randomly executing events will arrive at any particular state [19]. A
probability is expressed as a numeric value between 0 and 1. The main objective
is to measure the relative importance of the states. Larger nodes specifies window
internal states with higher importance within the overall application behaviour.
This metric is used to detect internal bad smells, for example, to find erroneous
distributed complexity along the application behaviour.

Betweenness is a centrality measure of a vertex or an edge within a graph [20].
Vertices that occur on many shortest paths between other vertices have higher
betweenness than those that do not. Similar to vertices betweennes centrality,
edge betweenness centrality is related to shortest path between two vertices.
Edges that occur on many shortest paths between vertices have higher edge
betweenness. Betweenness values are expressed numerically for each vertices and
edges. Highest betweenness edges values are represented by larger edges. Some
states and edges have the highest betweenness, meaning they act as a hub from
where di↵erent parts of the interface can be reached, representing a central axis
in the interaction between users and the system. Like pagerank, this metric is
used to detect internal bad smells, for example, to find misplaced central axis in
the interaction between users and the system.

6 Relevant preliminary results

(a) Pagerank result (b) Betweeness result

Fig. 1. HMS behavioral results

The application of our approach has been implemented to a large real inter-
active system written by third party: a Healthcare management system (HMS).
This application is a proof of concept for the approach. The HMS system is im-
plemented in Java/Swing and supports patients, doctors and bills management.



The implementation contains 66 classes, 29 windows forms (message box in-
cluded) and 3588 lines of code. The approach enabled the extraction of di↵erent
behavioural models. Methodologies have been also applied automating the activ-
ities involved in GUI model-based reasoning, such as, pagerank and betweenness
algorithms. GUI behavioural metrics have been used as a way to detect bad
smells. As example, through Figure 1 one can observe pagerank and betweeness
HMS automatically generated results, which enable to detect visually internal
bad smell related to overall HMS system complexity. For both models (Figures
1(a) and 1(b)) each node specify a particular window state and each edge spec-
ify a particular transition between windows states. The left model (Figure 1(a))
enables to visually detect erroneous distributed complexity along the applica-
tion behaviour. The right model (Figure 1(b)) enables to find visually misplaced
central axis in the interaction between users and the system. This case study
demonstrate that the approach enables the analysis of real interactive applica-
tions written by third parties.

7 Conclusions and Future Work

Tools are currently available to developers that allow for the fast development
of user interfaces with graphical components. However, the design of interactive
systems does not seem to be much improved by the use of such tools. As described
in this paper Fowler popularized the concept of program smells in the context of
object-oriented programming. The presence of bad smells in software code can
make programs harder to understand, maintain, and evolve. The detection of
bad smells allows programmers to improve their programs by eliminating them.

In this paper we have discussed an approach for the detection of graphical
user interface bad smells through model-based reverse engineering from source
code. We have presented smells that could be considered from a GUI enhance-
ment perspective. In the future, we intend to extend the approach presented
in this paper enabling it to detect automatically a more significant amount of
smells using our tool. To discover smells our approach is based on software met-
rics which aim to address software quality by measuring software aspects. Since
the smells are usually associated with refactorings that can eliminate them, we
plan to improve GUI application through refactoring. These are promising re-
search directions that we are already exploring and whose results we plan to
bring out in the near future.

References

1. Brad A. Myers, Separating Application Code from Toolkits: Eliminating the Spaghetti

of Call-backs, School of Computer Science, Carnegie Mellon University, 1999.
2. A. M. Memon. A Comprehensive Framework for Testing Graphical User Interfaces.

PhD thesis, Department of Computer Science, University of PittsBurgh, july 2001.
3. B. Berard. Systems and Software Verification. Springer edition, 2001.



4. João Carlos Silva, José Creissac Campos, and João Saraiva. A generic library for

GUI reasoning and testing. 24th Annual ACM Symposium on Applied Computing,
USA, March 2009.

5. M. M. Moore. Rule-based detection for reverse engineering user interfaces. Proceed-
ings of the Third Working Conference on Reverse Engineering, pages 42-8, Monterey,
CA, november 1996.

6. Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L. Bleris.
Code quality analysis in open source software development. Information Systems
Journal, 12:4360, 2002.

7. Young Sik Yoon andWan Chul Yoon. Development of quantitative metrics to support

ui designer decision-making in the design process. In Human-Computer Interaction.
Interaction Design and Usability, pages 316324. Springer Berlin / Heidelberg, 2007.

8. Harold Thimbleby and Jeremy Gow. Applying graph theory to interaction design.
pages 501519, 2008.

9. Steven P. Miller, Alan C. Tribble1, Michael W. Whalen1, and Mats P.E. Heimdahl.
Proving the shalls early validation of requirements through formal methods. 2004.

10. J. Nielsen. Usability Engineering. Academic Press, San Diego, CA, 1993.
11. Fowler, M. Refactoring: Improving the Design of Existing Code. Addison-Wesley,

Boston, MA, USA. 1999.
12. Mantyla, M., Vanhanen, J., Lassenius, C. A taxonomy and an initial empirical

study of bad smells in code. In: Proceedings of the International Conference on
Software Maintenance. pp. 381-384. ICSM’03, IEEE Computer Society, Washington,
DC, USA. 2003.

13. Ana C. R. Paiva, João C. P. Faria, and Pedro M. C. Mendes, editors. Reverse
Engineered Formal Models for GUI Testing, 10th International Workshop on Formal
Methods for Industrial Critical Systems, 2007.

14. J. Chen and S. Subramaniam. A GUI environment for testing guibased applica-

tions in Java. Proceedings of the 34th Hawaii International Conferences on System
Sciences, 2001.

15. T. Systa. Dynamic reverse engineering of Java software. Technical report, Univer-
sity of Tampere, Finland, 2001.

16. Yoshio Kataoka, Takeo Imai, Hiroki Andou, and Tetsuji Fukaya. A quantitative

evaluation of maintainability enhancement by refactoring. In Proceedings of Inter-
national Conference on Software Maintenance (ICSM 2002), pages 576585, Montral,
Canada, October 2002. IEEE Computer Society. doi:10.1109/ICSM.2002.1167822

17. Ladan Tahvildari and Kostas Kontogiannis. A metric-based approach to enhance

design quality through meta-pattern transformations. In Proceedings of the Seventh
European Conference on Software Maintenance and Reengineering, pages 183192,
Benevento, Italy, March 2003. doi:10.1109/CSMR.2003.1192426.

18. Francesca Arcelli Fontana and Stefano Spinelli. Impact of refactoring on quality

code evaluation. In Proceeding of the 4th workshop on Refactoring tools, WRT 11,
pages 3740, Waikiki, Honolulu, HI, USA, 2011. ACM. Workshop held in conjunction
with ICSE 2011. doi: 10.1145/1984732.1984741.

19. Pavel Berkhin. A survey on pagerank computing. Internet Mathematics, 2:73120,
2005.

20. Shu Yan Shan and et al. Fast centrality approximation in modular networks, 2009.


