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Abstract— Auscultation is a widely used technique in clinical
activity to diagnose heart diseases. However, heart sounds are
difficult to interpret because a) of events with very short
temporal onset between them (tens of milliseconds) and b)
dominant frequencies that are out of the human audible
spectrum. In this paper, we propose a model to segment heart
sounds using a semi-hidden Markov model instead of a hidden
Markov model. Our model in difference from the state-of-
the-art hidden Markov models takes in account the temporal
constraints that exist in heart cycles. We experimentally confirm
that semi-hidden Markov models are able to recreate the “true”
continuous state sequence more accurately than hidden Markov
models. We achieved a mean error rate per sample of 0.23.

I. INTRODUCTION

The phonocardiogram (PCG) signal is obtained during

an auscultation using a traditional or an electronic stetho-

scope. The PCG contains important information concerning

the mechanical activity of the heart valves [1]. The signal

processing of a PCG has two main goals: the first one, is to

split the PCG into heart cycles. Each heart cycle is composed

by the first heart sound (S1), the systolic period (siSys), the

second heart sound (S2), and the diastolic period (siDia).

The second goal is the detection of other sounds such as

the third and fourth heart sounds (S3 and S4 respectively)

as well as heart murmurs that may be associated to cardiac

pathologies.
For heart sound segmentation, the methods can be divided

depending on which domain they are applied: the time

domain (Shannon energy [2]), the frequency domain (ho-

momorphic filter [3]) and the information domain (entropy

gradient [4]). For heart sound classification different clas-

sifiers have been proposed like Artificial Neural Networks

(ANN) [5], k-Nearest Neighbors (k-NN) [6], Support Vector

Machines (SVM) [7] and Hidden Markov Models (HMM).

HMMs seems to be the ideal statistical model for the highly

dynamic and non-stationary nature of the cardiac system,

since it is assumed that a sequence of events happens

sequentially, and they are highly correlated both temporally

and spatially.
Recently, HMMs has shown to be very effective in

modeling the heart sound signals: in Gill [8], the signal
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is pre-processed and a subset of candidates (peaks) are

extracted from homomorphic envelogram, these candidates

are classified using a discrete-time HMM, where the state-

distribution is modeled using the time-duration from the

preceding candidate to the current one. Chung [9], detected

and classified heart sounds using first a left-right HMM

model (the first state is assumed to be known) and later

an ergodic HMM (the initial state is assigned a probabilistic

distribution), the variability in each state is modeled by using

multiple mixtures of a Gaussian multivariate distribution.

Schmidt [10], implemented a duration-dependent HMM

using the homomorphic filtering envelogram as observation

to the system. This has the advantage (compared to the

traditional HMM) that every state duration is explicitly

modeled in the state transition matrix. The state duration

distribution function is modeled by a Gaussian distribution,

where the systolic (siSys) and diastolic (siDia) duration

parameters are estimated through autocorrelation analysis of

the homomorphic filtering envelogram.

Our contributions are: (1) we present an alternative ap-

proach for modeling the sojourn time (waiting time) by

a semi-hidden Markov Model (HSMM) [11]; (2) we ap-

proximate the sojourn time distribution by using a Poisson

distribution; (3) we conduct experiments over 32 different

models (4 suitable observation features ×4 dataset fractions

×2 model types) over a real life dataset of 13 individuals.

The paper is organized as follows: in the second section we

present a survey of HMMs and HSMMs. In the third section,

we explain the used materials, the extracted features, and

the experimental setup. In the fourth section, the results are

presented. Finally, we present conclusions and future work.

II. HIDDEN MARKOV MODELS

HMMs are stochastic finite state automata. Where the

observation sequence X = x1, x2, · · · , xn depends on the

underlying hidden state sequence S = s1, s2, · · · , sn and

the unobserved Markov process. The ergodic hidden Markov

model assumes that the state transition probability matrix Γ
is homogeneous:

γij = Pr(st = j|st−1 = i), (1)

the γij is the probability of being in state j knowing that

the previous state was i, is independent of current evaluation

time t [9].

The state depended distribution matrix P is assumed to be

a continuous Gaussian function:

p(xt|μs, σs) =
1

σs

√
2π

e−(xt−μs)
2/(2σ2

s), (2)

978-1-4577-0220-4/16/$31.00 ©2016 IEEE 3449



Fig. 1. Four state HMM for a cycle of a normal heart sound signal (adapted
from [9]).

with σs being the standard deviation and μs the mean value

in state s.

It is assumed that each state of a HMMs corresponds to an

element of the heart sound signal because the signal charac-

teristics in each element are thought to be homogeneous, as

it is depicted in Figure 1. For simplicity, this model ignores

S3, S4 and murmur sounds.

The likelihood of a state sequence S of a HMM with

observation sequence X is:

P (X,S,Θ) = π1

{
n∏

t=2

γst−1st

}
n∏

t=1

Pst(xt), (3)

where Θ = {π1,Γ, P} denotes the model parameters such

as the initial state distribution π1, state transition probability

matrix Γ and state depended distribution matrix P .

A. Semi-hidden Markov Models

In standard HMMs, the sojourn time (waiting time) is

geometrically distributed over all states. This is an unrealistic

assumption in heart sound signals, since the state transition

probabilities are constantly changing over time. The solution

we propose is to model explicitly the sojourn time by using

a HSMM.

We first define, D as the sojourn time distribution matrix.

In our case we use the Poisson distribution function:

dsk(uk|λsk) =
e−λskλuk

sk

uk!
, (4)

dsk(uk) is the probability of spending uk units of time in

the state sk. Furthermore we define, d∗sk(uk) as the survivor

function for the sojourn time:

d∗sk(uk) =
∑
v≥uk

dsk(uk). (5)

We also define r as the total number of state transitions that

occured until time n; and finally, we also define as N(t) as

the current state at time t.
The likelihood of a state sequence S of a HSMM is:

P (X,S,Θ) =π1

{
r−1∏
k=2

γsk−1skdsk(uk)

}
γsr−1srd

∗
sr (ur)

·
n∏

l=1

PsN(l)
(xl),

(6)

where sk is the kth visited state and uk is the sojourn time

of the kth state. Therefore, a HSMM is specified by the

quadruple Θ = {π1,Γ, P,D} [11].

B. Optimizing the Parameters of HMM and HSMM

In order to solve Equations 3 and 6, it is necessary

to choose a good parameter initialization. The parameters

Θ are estimated using the expectation maximization (EM)

algorithm, which assigns posterior probabilities to each

component with respect to each observation. The method

uses an iterative algorithm that converges to an optimal

solution [9].Unlike in HMMs, in HSMMs we also need to

optimize D. For HSMM in the expectation step, we need to

calculate the expected number of times ηiuk
that the model

remains in state i for uk time steps:

ηiuk
=

uk∑
v=1

P (suk
�= i, suk−v = i|X,Θ)+

uk−1∑
v=0

n∑
t=1

P (st+uk+1 �= i, st+uk−v = i, st �= i|X,Θ),

(7)

Again only for HSMM, in the maximization step, the Poisson

parameter λsk is calculated by:

λsk =
n∑

v=1

ηiv(v − β), (8)

where β is all possible shifts parameters, β =
1, . . . ,min(uk : ηiuk

> 0). The maximization step chooses

the β which gives the maximum likelihood of Equation 6.

Finally, we use the Viterbi algorithm to determine the most

likely state sequence.

C. Using the Poisson distribution

For our application, the duration probability distribution

D is approximated by a Poisson distribution. We chose

the Poisson distribution, as the more suitable to model the

behavior of PCG signals because:

1) We need to count the number of state transitions in a

large number of trials (n-sampling size).

2) The state transitions in PCG signals are rare events be-

cause we sample at a high frequency (our signals have

a sampling rate f = 4kHz). Heart sounds frequency

fh lies between 20Hz and 2 kHz and Nyquist rate

imposes that the sampling rate f should be f ≥ 2∗fh.

Attempting to sample in a lower frequency would

create aliasing, resulting in a loss of information.

3) The successful events are also very unlikely in heart

sound signals, because of some physiological time

constraints that exist in the cardiac cycle, for example:

the cardiac muscle (like any excitable tissue) exhibits

a refractory period to re-stimulation. During this time

interval normal cardiac impulse cannot re-excite an

already excited area of cardiac muscle. The normal

refractory period of the ventricle is 0.25 to 0.30 second.

To use a Poisson distribution, we have made an assump-

tion that the outcome trials in different time instances are

“weakly” dependent but not necessarily independent.
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Fig. 2. Signal and the extracted Homomorphic envelogram.

III. METHOLOGY

A. Materials
The dataset we use is composed by samples from 13

healthy individuals from six months to 17 years old. The

heart sounds have been collected in Real Hospital Por-

tuguês (Recife, Brasil) using a Littmann 3200 stethoscope

embedded with the DigiScope technology. The DigiScope

technology was developed within the homonymous project to

collect, transmit and record heart sounds without interfering

with clinical routine [12]. The heart sounds are recorded in

the mitral spot, for about 15 seconds at 4000Hz sampling

frequency. Two cardiacpulmonologists manually annotated

the S1 and S2 states beginning and ending using the Au-

dacity software.

B. Features extraction
The system first filters the original signal using a zero-

phase Butterworth bandpass filter of order 10. We use a lower

cutoff frequency of 30Hz and a higher cutoff frequency of

460Hz. Then the signal is normalized (mean subtraction)

and scaled. From the filtered signal, different envelograms

are extracted: Shannon energy in the frequency domain;

homomorphic filtering; Shannon energy in the time domain;

and the entropy gradient. Figure 2 presents the signal and

the extracted Homomorphic envelogram.
Shannon energy in the frequency domain which we com-

pute as in [13], accentuates the pressure differences found

across heart valves, which leads to distinct frequency signa-

tures of the valve closing sounds.
Homomorphic filtering, the signal is viewed as a prod-

uct of slowly varying components (heart sounds) with fast

oscillatory components (noise). These fast components are

rejected by applying a non-linear transformation and is

compute as in [8].
Shannon energy in the time domain which is computed

as in [2], is used to emphasize the medium intensity of

the signals and attenuate high intensity. This tends to make

medium and high intensity signals similar in amplitude.
Finally, entropy gradient envelogram measures the pre-

dictability of the heart sound components in a signal by

looking to the total entropy fluctuation in the “expanded

region” as the original time series is shifted in a circular

motion and is compute as in [4].

C. Experimental Setup

In order to optimize the HMM and HSMM parameters we

used the EM algorithm [11] also known as the Baum-Welch

algorithm.

In our experimental setup all states have equal starting

probabilities (π1). The Γ parameters are fixed to:

Γ =

S1 siSys S2 siDia
S1 0 1 0 0

siSys 0 0 1 0
S2 0 0 0 1

siDia 1 0 0 0

, (9)

because in the normal cardiac system the state sequence

{S1 → siSys → S2 → diSys → S1} is fixed as is shown

in Figure 1.

To compute the initial parameters P (μs, σs∀s ∈ S)

we use an envelogram segment around the corresponded

annotated state s. To compute the initial parameters D
(λs∀s ∈ S) we use the annotated time lapse between the

beginning and the end of the corresponding state s. We use

from 1
3

rd
to 3

4

th
of the first part of each subject signal to

initialize P,D and use the rest as a test dataset.

Since insufficient annotated heart beats are used for com-

puting the initial parameters, the initial standard deviations

σ of the Gaussian distributions are biased. In order to reduce

the bias, we widen the Gaussian distribution by multiplying

σ by a factor of 102.

We use this methodology because the true parameters

diverge from subject to subject. Attempting to generalize

over all subjects, leads to inaccurate parameter initialization

and the algorithm does not converge to an optimum solution.

The signal features are extracted in Matlab and the ex-

periments are conducted using mhsmm package for R [11].

For more implementation details on the Viterbi or the Baum-

Welch algorithm see [11].

IV. RESULTS

The performance of the HSMM and HMM was measured

as the model’s capacity to recreate the continuous state

sequence annotated by the cardiacpulmonologists. The mean

error rate per sample is calculated by:

μ̄E =
# False labeled Samples

# Samples
(10)

A sample in the instance t is labeled falsly, when the

predicted state of the sample and the annotated state of the

sample are not equal.

As can be seen from the Figure 3, the best results with the

standard HMM has a μ̄E = 0.57, using the Homomorphic

filtering as observational input and a training dataset fraction

size of 3
4

th
. The best HSMM results were achieved using

Shannon energy in the frequency domain with a μ̄E = 0.23,

for a training dataset fraction size of 1
3

rd
. For all types of

observational input, the HSMM performed better than the

equivalent HMM.

Figure 4(a) illustrates the true state sequence of the signal.

The HMM is not capable to detect the right sequence of

events and not even the state duration in each state as it can

be seen in Figure 4(b), this might be a consequence of using
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static state transition matrix. In the HSMM, the assumption

that the Markov chain is homogeneous is dropped, instead

it is assumed that the state transition matrix is dependent on

time (following a Poisson distribution in the present case),

and this ultimately leads to a model capable of describing the

non-stationary events in the heart sound signal as depicted

in Figure 4(c) with more accuracy than the standard HMM.

Finally, we noticed in some case that the starting state was

misclassified and as a result the signal has classified reversely

by the HSMMs, These signals are properly classified if we

set an observed starting state.

V. CONCLUSION AND FUTURE WORK

In this paper, a heart sound classification algorithm is

proposed using HMMs or HSMMs, furthermore we used four

different type of features as input to the system. These fea-

tures are very descriptive and sensitive to S1 and S2 events.

Our experiments shows that HSMM outperformed HMM

regardless the observational features tested, this suggests that

using information concerning the duration probability distri-

bution in each state is a requirement step in modeling heart

sound signals. We approximated the duration probability

distribution by the Poisson distribution. Furthermore, from

all the observation features tested Homomorphic filtering and

Shannon energy in the frequency domain showed the best

performance for both HMMs and HSMMs.

For future work, we intend to conduct extensive experi-

ments with different distributions in order to approximate the

duration probability distribution of the HSMM. Furthermore,

we want to conduct experiments where we test the influence

of heart rate variability (such as the heart rate of infants and

subjects with arrhythmia) in HMMs or HSMMs. Finally, the

proposed algorithm can be adapted and applied to different

situations, such as the detection of S3 and S4, murmurs and

valves defects.
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