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Abstract—Chest radiography is one of the most ubiquitous
imaging modalities, playing an essential role in screening, di-
agnosis and disease management. However, chest radiography
interpretation is a time-consuming and complex task, requiring
the availability of experienced radiologists. As such, automated
diagnosis systems for pathology detection have been proposed
aiming to reduce the burden on radiologists and reduce variabil-
ity in image interpretation. While promising results have been
obtained, particularly since the advent of deep learning, there
are significant limitations in the developed solutions, namely the
lack of representative data for less frequent pathologies and
the learning of biases from the training data, such as patient
position, medical devices and other markers as proxies for certain
pathologies. The lack of explainability is also a challenge for the
adoption of these solutions in clinical practice.

Generative adversarial networks could play a significant role
as a solution for these challenges as they allow to artificially
create new realistic images. This way, new synthetic chest
radiography images could be used to increase the prevalence
of less represented pathology classes and decrease model biases
as well as improving the explainability of automatic decisions by
generating samples that serve as examples or counter-examples
to the image being analysed, ensuring patient privacy.

In this study, a few-shot generative adversarial network is
used to generate synthetic chest radiography images. A minimum
Fréchet Inception Distance score of 17.83 was obtained, allowing
to generate convincing synthetic images. Perceptual validation
was then performed by asking multiple readers to classify a mixed
set of synthetic and real images. An average accuracy of 83.5%
was obtained but a strong dependency on reader experience
level was observed. While synthetic images showed structural
irregularities, the overall image sharpness was a major factor in
the decision of readers. The synthetic images were then validated
using a MobileNet abnormality classifier and it was shown
that over 99% of images were classified correctly, indicating
that the generated images were correctly interpreted by the
classifier. Finally, the use of the synthetic images during training
of a YOLOv5 pathology detector showed that the addition of
the synthetic images led to an improvement of mean average
precision of 0.05 across 14 pathologies.

In conclusion, the usage of few-shot generative adversarial
networks for chest radiography image generation was shown and
tested in multiple scenarios, establishing a baseline for future
experiments to increase the applicability of generative models
in clinical scenarios of automatic CXR screening and diagnosis
tools.
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01-0247-FEDER-045905) and UIDB/50014/2020.

I. INTRODUCTION

Chest radiography (CXR), also known as x-ray, is one
of the most common medical imaging modalities globally,
playing an essential role in screening, diagnosis and disease
management. In comparison to other imaging modalities, it
has significant advantages, namely its wide availability, low
cost, portability and low radiation dosage. However, CXR
interpretation is a time-consuming and complex task, requiring
the availability of experienced radiologists. As such, computer-
aided diagnosis (CAD) systems for CXR pathology detection
have long been proposed, providing a valuable second opinion
for radiologists. The advent of deep learning, as well as
the release of large CXR datasets such as ChestXRay-8 [1]
and CheXpert [2], have fostered the development of multi-
disease detection approaches, while simultaneously improving
performance in the detection of single pathologies [2].

While promising results have been obtained [2], there are
significant limitations in current solutions. Firstly, the lack of
representative data/annotations can hinder the robust training
of deep learning approaches. In spite of the large available
datasets such as ChestX-ray14 (224,316 images) and MIMIC-
CXR (473,064 images), these datasets tend to be highly im-
balanced with normal cases and/or more common pathologies
being much more represented than other pathologies, which
may lead to degraded performance in less-represented patholo-
gies [2]. Furthermore, significant bias sources can be present
in the data. For example, the presence of medical devices
or even the position of the patient can be interpreted by the
algorithm as a proxy for certain pathologies [3] which is highly
undesirable as it could lead to unexpected misclassification of
CXRs. Secondly, the lack of explainability of the decisions
made by deep learning methods hinders the adoption of these
techniques in clinical practice. Typical deep learning methods,
which rely on convolutional networks and are the current state
of the art in terms of performance, have a black-box behaviour
and it is challenging to explain their decisions in a human-
understandable way.

Generative adversarial networks (GAN) [4] could play a
role in both these challenges as they allow to artificially create
new examples of images from a learned distribution. In this
way, new CXR images can be created which can be used
for training, effectively increasing the prevalence of minority
classes and decreasing biases of trained models. GANs can
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also be used to improve the explainability of deep learning
solutions by generating examples that have strong similarities
to the image being analysed or, alternatively, examples repre-
senting the opposite (counterexamples), which are also of great
importance to the understanding of the decision. In contrast
to the use of real images, the use of artificial CXR images is
particularly important to avoid privacy concerns associated to
the use of real images in a clinical setting.

Given that insufficient data quantity/quality is a common
issue in medical imaging, GANs have been widely applied in
multiple image modalities but their use in CXR applications
has been limited. Deep convolutional GANs (DCGAN) [5]
have been successfully used for the generation of both normal
and pathological CXR images [6], [7], [8]. An Auxiliary
Classifier GAN (ACGAN) has also been applied for CXR
image synthesis by Waheed et al. in the context of COVID-
19 detection [9]. In all four studies, authors demonstrated
that the addition of synthetic data during training of deep
learning pathology detection classifiers improved classification
performance. Other applications of GANs in CXR include rib
suppression [10] and the conversion of pathological to normal
CXRs and viceversa as an explainability tool [3].

In spite of the promising results obtained, traditional GANs
rely on large quantities of data during training to guarantee the
generation of realistic images. While this is not an issue for the
synthesis of normal CXRs or the most represented pathologies,
it can be problematic in minority classes or CXRs presenting
rare pathologies with limited data. Given that these classes and
pathologies would be the ones that would profit the most from
additional data representation, it is of the utmost importance to
validate strategies for CXR synthesis in limited data scenarios
using few-shot learning GANs.

The goal of this work is thus to test and validate a high-
fidelity few-shot learning approach for CXR image synthesis.
For this purpose, a lightweight GAN was used to synthethize
CXRs, which are then validated by radiologists and non-
experts through perceptual analysis and their influence in
training/inference scenarios in pathology screening is tested.

II. METHODS

A. Dataset

The CXR images used in this study were obtained from the
VinDr-CXR dataset [11], a public dataset collected from two
major hospitals in Vietnam, Hospital 108 and Hanoi Medical
University Hospital. The dataset consists of 18,000 postero-
anterior (PA) CXR scans, of which 15,000 were manually
annotated by three radiologists. Both the localization of critical
findings and the classification of common thoracic diseases
was performed by each radiologist independently.

B. Chest Radiography Image Synthesis

CXR image synthesis was performed using a model based
on the lightweight GAN (LWGAN) proposed in Liu et al.
[12]. The LWGAN is a model inspired on the DCGAN with
a minimalistic design with a single convolution layer on each

resolution of the generator. It also features skip-layer channel-
wise excitation layers, inspired on residual structures [13],
to improve gradient transfer across layers without increasing
computational cost. The discriminator features an autoencond-
ing block to reconstruct the original image at a downsampled
resolution, as well as a high resolution crop, allowing to
generate more representative features for the discriminator. For
additional details on the LWGAN architecture the reader is
referred to the original publication [12].

For CXR image synthesis, the model was modified to
generate/discriminate 1-channel images, compatible with CXR
grayscale images. Furthermore, to improve the modeling of
long-range dependencies in the network, global self-attention
(GSA) modules as proposed by Shen et al. [14] were added
to the generator and discriminator modules.

Training was performed using a combination of the hinge
adversarial loss [15], a mean squared error loss LAE for
the discriminator’s autoenconder branches [12] and a gradient
penalty loss LGP [16]:

LD =− Ex∼Ireal
[min(0,−1 +D(x))]

− Ex∼G(z) [min(0,−1−D(x))]

+ LAE + λLGP

(1)

LG = −Ez∼N [D(G(z)] (2)

where D and G are the discriminator and generator modules,
Ireal is the set of real images, z is a noise vector sampled
from a normal distribution N and λ is a weight given to the
gradient penalty loss. LAE and LGP are defined as:

LAE = −Ex∼Ireal

[∑
b

‖Db(x)− Pb(x)‖

]
(3)

LGP = −Ex∼Ireal
[(‖∇xD(x)‖ − 1)

2
] (4)

where Db(x) is the output of the autoencoding branch b of
the discriminator including the processing function applied to
the intermediate feature map and Pb is the processing function
applied to sample x for autoenconding branch b and ∇xD(x)
is the gradient of D(x) with regard to input x.

III. EXPERIMENTS

A. Chest Radiography Image Synthesis

A total of 2,000 CXRs, randomly selected from the dataset,
were used to train the LWGAN. Only CXRs labelled as “No
Finding” were chosen given that they are representative of
generic CXR structures. CXRs were resampled to 512×512
resolution as state-of-the-art pathology detection approaches
typically use CXRs at resolutions of 512×512 or lower [2].
Data augmentation, namely translation, horizontal flip, cutouts
and brightness changes, was applied to the images during
training with a probability of 0.25. The weight factor λ was
empirically set to 10 and training was performed with a batch
size of 6 and a learning rate of 0.0002 for a maximum of 150
epochs. Four different models were tested: one without GSA

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 10,2023 at 08:02:37 UTC from IEEE Xplore.  Restrictions apply. 



1793

modules and the remaining with GSA modules on the 32×32
layers, on layers 32×32 up to 128×128 and on layers 32×32
up to 512×512.

To evaluate the progression of the generative module during
training, the Fréchet Inception Distance (FID) score [17]
was computed from a set of 5,000 real CXRs and a set of
5,000 synthetic CXRs. The final generative model was then
selected based on the epoch with the minimum FID score. The
Inception Score (IS) [18] and the Kernel Inception Distance
(KID) [19] were also calculated for the final generative model
using the same set of 5,000 synthetic CXRs.

B. Perceptual Validation

In order to complement the quantitative evaluation metrics,
qualitative evaluation methods were used, based on the per-
ceptual validation of the images. For this purpose, a mixed set
of real images and artificially generated images was created
and evaluated by six readers independently: two radiologists
(Rad1 and Rad2), two PhD students in the field of medical
image analysis acquainted with CXR (PhD1 and PhD2) and
two readers inexperienced with CXR and medical imaging
(Ixp1 and Ixp2). Images were presented in a random order
using a graphical user interface designed for this purpose.
Each reader was required to classify each CXR in terms of
authenticity, i.e. real or fake. The two radiologists were also
required to classify each CXR in terms of abnormality, i.e.
normal or pathological.

A total of 100 randomly selected CXRs were used for
this validation, of which 50 were artificially generated, 25
were real images labeled as “No Finding” and 25 were real
images not labeled as “No Finding”, i.e. pathological images.
Real images were downsampled to 512×512 to avoid readers
from using resolution as a criteria for distinguishing real and
synthetic images.

C. Abnormality Classification Inference

In order to establish if the generated images contain fea-
tures representative of normal CXR images, an abnormality
classification model trained on the VinDr-CXR dataset was
used. This model is based on a MobileNet architecture [20]
with one output node corresponding to the probability that the
CXR presented any of the pathologies annotated on VinDr-
CXR. For training, the 15,000 CXRs of VinDR-CXR were
randomly divided into train (60%), validation (20%) and test
(20%) sets, preserving the approximate prevalence of each
pathology as much as possible between the three divisions.

Two CXR sets, both composed uniquely of normal CXRs,
were given to the classification model for inference: 1) 6,000
synthetic CXRs; 2) 2,120 real CXRs of the test set labeled as
“No Finding”.

D. Training of a Pathology Detection

In order to establish if the generated images are of sufficient
quality for the training of deep learning models, a YOLOv5
object detection architecture [21] was used with the same
division of the dataset into training, validation and test as

GSA FID IS KID
None 24.13 2.047± 0.0267 0.017± 0.001
32×32 17.83 2.109± 0.034 0.012± 0.001
32×32-128×128 77.22 2.318± 0.051 0.082± 0.002
32×32-512×512 52.39 2.065± 0.047 0.058± 0.002

TABLE I: Quantitative evaluation metrics for each of the
CXR image generation models. Bold indicates the best score
obtained for each metric.

Reader Authenticity Abnormality
Acc Spc Sns Acc Spc Sns SpcR SpcA

Rad1 98 98 98 87 83 100 64 92
Rad2 80 96 64 84 80 96 72 84
PhD1 100 100 100 - - - - -
PhD2 65 60 70 - - - - -
Ixp1 91 88 76 - - - - -
Ixp2 67 76 58 - - - - -

TABLE II: Perceptual validation results. Acc, Spc and Sns
indicate accuracy, specificity and sensitivity, wheras SpcR and
SpcA indicate specificity for the real and artificial images
respectively. All values in percentage.

in Section III-C. Additionally, the 6,000 synthetic CXRs
generated in Section III-C were used in one of three different
training strategies: 1) using only real pathological images; 2)
using all real images, both normal and pathological; 3) using
both real pathological images and artificially generated normal
images. The performance of each of these three scenarios was
evaluated in terms of average precision (AP) [22] computed
from the precision-recall curve for each of the 14 pathologies
annotated on VinDR-CXR at an intersection over union > 0.4.

IV. RESULTS

A. Chest Radiography Image Synthesis

Table I shows the quantitative evaluation metrics obtained
for each of the final CXR image generative modules. It can be
seen that the best results in terms of FID and KID are obtained
with the model containing GSA modules on the 32×32 layers,
whereas the best IS is obtained with GSA modules on the
32×32-128×128 layers. Because the FID and KID are more
complete metrics for GAN evaluation, the 32×32 GSA model
was used for all experiments in the remainder of this study.

B. Perceptual Validation

Figure 2 shows the confusion matrices of the six readers in
terms of authenticity and abnormality classification whereas
Table II shows the accuracy, sensitivity and specificity of each
reader. Additionally, for abnormality classification, the speci-
ficity in abnormality classification was computed separately
for real and artificial images.

As seen in Table II, the radiologists obtained the best overall
authenticity classification performance, followed by the PhD
students and lastly by the inexperienced readers. Nevertheless,
a high discrepancy between readers 1 and 2 in each group can
be observed, with the best authenticity classification perfor-
mance obtained by PhD1. Regarding the additional task of
abnormality classification, both radiologists correctly labeled
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Fig. 1: Randomly sampled synthetic CXRs generated by the model with GSA modules on the 32×32 layer.

Fig. 2: Authenticity and abnormality classification confusion matrices of all six readers. A and R in the authenticity classification
indicate artificial and real CXR images respectively whereas N and P in the abnormality classification indicate normal and
pathological CXR images respectively.

most of the pathological images, leading to a high sensitivity.
However, both radiologists misclassified a similar number of
normal images as pathological, leading to a lower specificity.
Comparing the specificity for real and synthetic images in
separate, it can be seen that a significantly higher specificity
was obtained for the synthetic images, indicating that real
images were more often misclassified as pathological by the
radiologists than synthetic images.

Figure 3 shows six examples of real and synthetic CXRs
used in the perceptual validation. The two leftmost figures
show synthetic images which were classified as real by at least

one radiologist. The two center figures show artificial CXRs
identified as artificial due to distorted ribs (top figure, red
arrow) and a distorted clavicle (bottom figure, red arrow). Fur-
thermore, the two center figures were classified as pathological
by the radiologists, namely due to an apical assymmetry (top
figure, yellow arrow) and cardiomegaly (bottom figure, yellow
arrow). The two rightmost figures show real and normal CXRs
which were labeled as real and pathological by the radiologists
due to cardiomegaly (top figure, yellow arrow) and aortic
enlargement (bottom figure, yellow arrow). Note that these
CXRs are labeled as “No Finding” in VinDr-CXR, meaning
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Image Set Prediction
Normal Pathological

Real 93.35 6.65
Artificial 99.12 0.88

TABLE III: Abnormality classification prediction of the real
and artificial images. All values in percentage.

that these findings had not been identified.

C. Abnormality Classification Inference

Figure 4 shows the relative frequency histograms of the
predicted abnormality probability by the MobileNet architec-
ture for the real and artificial images. It can be seen that
the set of real images has a higher incidence of very low
probability images, corresponding to a prediction of normality.
However, the real image set also has a higher incidence of
higher probability predictions, corresponding to a prediction
of pathology. This is corroborated by Table III which shows
the percentage of images predicted as normal and pathological
from the real and pathological CXRs. While the majority
of images in both sets were correctly classified as normal,
a significantly higher proportion of images were incorrectly
classified as pathological in the set of real images when
compared to the artificial images.

D. Training of a Pathology Detection

Figure 5 shows the AP obtained for each of the pathological
classes in each of the three training strategies. It can be seen
that the best overall performance was obtained with the model
trained with both real normal and real pathological CXRs with
a mean AP of 0.381, followed by the model trained with
real pathological CXRs and artificial normal CXRs with a
mean AP of 0.329, and lastly the model trained only with
real pathological CXRs with a mean AP of 0.279.

V. DISCUSSION

A. Chest Radiography Image Synthesis

Table I shows that the addition of the GSA modules in
the lower resolution layers was beneficial for CXR image
generation. However, this was only true for the 32×32 GSA
model and both FID and KID metrics were worse when the
GSA modules were added to higher resolution layers. It would
be expected that adding GSA layers to higher resolution would
improve the representation of higher resolution details in the
generated images. However, this was not the case and the
convergence of the model was significantly degraded in these
experiments. Compared to previous work in CXR synthetiza-
tion, a lower FID was reported in [7] using a DCGAN trained
on normal CXRs. However, the fact that a different dataset
and Inception layer were used to calculate FID means that a
direct comparison is not straightforward.

B. Perceptual Validation

In terms of the perceptual validation, it was observed that
real and synthetic images could in the majority of cases
be distinguished in spite of the realism of the synthetic

images. Nevertheless, a comparison of the performances of
radiologists, PhDs and inexperienced readers indicates a strong
effect related to the experience of the readers as radiologists
obtained the highest accuracy, followed by PhDs and only then
the inexperienced individuals.

Regarding the disparities observed between the two readers
in each of the groups, it was clear by debriefing with each
of the readers after the classification that different strategies
were used. While all readers identified structural irregularities
in synthetic CXRs, Rad1, PhD1 and Ixp1 took into account the
overall appearance and sharpness of the CXR as an indicator
of authenticity. In spite of the downsampling applied to the
real CXRs, synthetic images were more blurred than real
CXRs and while that might not be apparent in Figure 3, it
could be identified in a one-to-one comparison in a large
monitor. The other three participants - Rad2, PhD2 and Ixp2 -
however did not use this factor for authenticity classification.
Both Rad2 and PhD2 noted during the debriefing that blurred
CXR images or with lower quality can occur in a clinical
environment and that this factor alone could not be used to
determine if a CXR was real or synthetic. Instead, this second
group focused solely on structural irregularities in the CXRs.
The main irregularities found were ripples and undulations
in the edges of the bones and particularly the ribs, distortion
of the clavicles, asymmetries in the images and angulation
of other anatomical structures, with some examples shown
in Figure 3. This difference in the method used during the
classification justifies why Rad2, PhD2 and Ixp2 obtained an
average accuracy of 70.6%, which is significantly lower than
the average 96.3% obtained by Rad1, PhD1 and Ixp1.

As for the results of the abnormality classification by the
radiologists, a very high sensitivity was obtained, meaning
that radiologists correctly identified the majority of patholog-
ical images. However, specificity was much lower for both
radiologists with a significant proportion of normal images
being labeled as pathological. Furthermore, most of the normal
images labeled as pathological were common between the
two radiologists. In the debriefing after classification, both
Rad1 and Rad2 confirmed that these images presented findings
indicative of pathology, as shown in the examples of Figure
3. Looking separately at the specificity in the sets of synthetic
and real CXRs, it can be seen that the presence of findings
indicative of pathology was most frequent in the real images,
where an average specificity of 68% was obtained compared
to 88% for the synthetic CXRs. Additionally, the findings
identified by the radiologists on the synthetic CXRs, were
mainly distortions in anatomical structures, whereas with real
images, these findings were identifiable pathologies belonging
to the VinDr-CXR dataset classes such as cardiomegaly, aortic
enlargement and enlarged mediastinum or lung opacities and
nodules. The fact that these findings are part of the VinDr-CXR
dataset classes, and should thus have been annotated on the
dataset, means that both Rad1 and Rad2 are in disagreement
with the three radiologists that annotated each of these CXRs
in the VinDr-CXR dataset. This is once more a testament to the
inherent challenge of CXR analysis and the inherent variability
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(a) Synthetic CXRs incorrectly classified as
real.

(b) Synthetic CXRs correctly classified as
artificial but classified as pathological due to

structural irregularities.

(c) Real and normal CXRs correctly
classified as real but classified as

pathological.
Fig. 3: Examples of real and synthetic CXRs and their authenticity and abnormality classification by radiologists. Red and
yellow arrows indicate respectively the structural irregularities and pathological findings identified by radiologists as contributing
to their decision regarding authenticity and abnormality classification.

between radiologist and is a reminder of the importance of
the development of automatic solutions for CXR screening
and pathology detection which can improve the variability
and performance of radiologists in this task. Furthermore, and
particularly since VinDr-CXR is the only large volume dataset
with manual annotations, it is important to be aware that this
does not preclude the existence of mislabeled CXRs and future
studies should have this into account.

C. Abnormality Classification Inference

From Figure 4, it can be concluded that even though human
readers could correctly distinguish the majority of synthetic
and real images, the synthetic image features can correctly be
interpreted by the binary classification model, with the large
majority of these images being classified as normal and having
a distribution similar to that of real normal images.

As discussed in the previous section, a significant amount
of images in the VinDr-CXR dataset are labeled as “No
Finding” while, according to Rad1 and Rad2, they show
findings indicative of pathology. This mislabeling can once

more be seen in the histograms shown in Figure 4 and Table
III, where the classification model classifies 6.65% of the real
images as abnormal, including some with a high probability
of abnormality. The synthetic images, however, do not follow
this distribution, with less than 1% of CXRs being classified as
pathological. This is in agreement with the higher specificity
in abnormality classification by the radiologists in synthetic
images in comparison to real images (Table II). Given that the
LWGAN was trained on VinDr-CXR data which also likely
has a percentage of mislabeled CXRs, it could be expected
that synthetic CXRs also showed signs of pathology. However,
since the LWGAN learns a statistical representation of the
data, the pathological cases are likely considered as outliers
during training, leading the generator to mostly generate CXRs
which are classified as normal by the binary abnormality
classifier and by the radiologists.

D. Training of a Pathology Detection

Regarding the training of the YOLOv5 for pathology detec-
tion with synthetic images, when compared to the performance
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.........

Fig. 4: Relative frequency histogram for the real and artificial
according to the binary abnormality classification model.

of the model trained with only real pathological images, Figure
5 shows a clear improvement in performance in almost all
classes. Nevertheless, when compared to the model trained
with both real normal and real pathological CXRs, it can
be seen that this model outperforms the one trained with
synthetic images, even though approximately the same number
of normal CXRs was used during training. This indicates that,
although the synthetic images are not on par with real images,
they still provide an improvement on the overall performance
of the classification model for pathological classes. Although
one could hope that synthetic and real images would provide
the same performance improvement, the fact that 2,000 CXRs
were used to train the LWGAN instead of the 6,000 real nor-
mal CXRs used to train the YOLOv5 is a clear disadvantage
for the model trained with synthetic images. Furthermore, and
as seen in Section V-B, the trained LWGAN does not seem
able to generate images that completely represent and pose as
real images, which could have an influence on the result of the
classifier trained on synthetic CXRs and the lower performance
when compared to the model trained with real normal CXRs.

Compared to previous similar work, the results presented
in [6], [7], [8] and [9] show an overall improvement in
CXR classification accuracy for both pathological and normal
images in models trained with real images supplemented with
artificially generated samples as well. However, the number
of training samples in the work by Salehinejad et al. was
significantly larger than the one used in the LWGAN models.

E. Limitations

Furthermore, while the aim of this manuscript was to study
use cases of GANs in CXR, one of the main applications of
GANs is the generation of synthetic data for training, partic-
ularly for pathological cases in minority classes. However, in

this study only normal cases were used for CXR generation,
which is a major limitation. As discussed in Section III-A,
only normal CXRs were used as these are representative
of the generic CXR structures. However, pathological CXRs
naturally contain additional challenges, one of which is that,
while normal CXRs necessarily belong to a single class -
“No Finding” - pathological images typically show multiple
findings pertaining to different pathologies and thus multiple
classes which might be an issue for data representation during
training. Feature disentanglement or conditional GANs could
be a possible solution by allowing for multiple pathologies
to be generated by the same generative model, which has the
advantage that features from prevalent pathologies can be used
in the training and generation of images from minority classes.
Alternatively, the local annotations of VinDr-CXR could be
used to train a patch-based GAN [23] which would be able
to learn to generate any of the pathologies in a given region,
independently of other pathologies present in that same image.

An additional limitation is the resolution used for image
generation. Although the 512 × 512 resolution appears to be
enough for training classification models in current state of
the art, future architectures may rely on higher resolutions.
Furthermore, if the goal is to fully represent the native data,
even regarding resolution, a significant improvement must
still be done. While it was not possible to generate higher
resolution images with the current LWGAN architecture, it
would be important to develop architectures that can work
with increasing resolutions and progressively growing GANs
are a promising approach [24].

Finally, while the model with GSA modules in the lower
resolution layers proved to be the best, the structural irreg-
ularities observed by the radiologists during the perceptual
validation point to the fact that the synthetic CXRs are not
on par with real CXRs. The addition of GSA layers in higher
resolution layers could have helped in fixing these issues, but
the convergence of the model was not as efficient as in the
32×32 GSA model. It would thus be important for future
work to continue investigating few-shot GAN architectures and
training schematics that can better generate realistic synthetic
data.

VI. CONCLUSION

In conclusion, a few-shot CXR image generator was pro-
posed in this study and its application in CXR pathol-
ogy/abnormality detection scenarios tested. It was shown that
the LWGAN was able to generate convincing CXRs, but
the perceptual validation revealed that most artificial CXRs
were detected, with a dependency on reader experience level.
While structural irregularities were found, the overall image
appearance and sharpness was a major factor in the decision
of half of the readers. In spite of this, the image features of
the synthetic CXRs were successfully interpreted by a binary
abnormality classifier, which correctly identified no findings
indicative of pathology. Furthermore, it was shown that using
synthetic CXRs in the training of a CXR pathology detector
led to a significant improvement of performance. As such,
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Fig. 5: Pathology detection performance in each of the training scenarios for the 14 pathologies. Pathologies were sorted in
terms of performance when trained with real pathological CXRs.

and in spite of the challenges it poses, few-shot CXR image
generation could come to play a role in pathology detection
in CXR, increasing performance and robustness.
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[19] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demysti-
fying MMD GANs,” arXiv preprint arXiv:1801.01401, 2018.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[21] G. Jocher, A. Stoken, J. Borovec, A. Chaurasia, L. Changyu,
V. Laughing, A. Hogan, J. Hajek, L. Diaconu, Y. Kwon
et al., “Ultralytics/YOLOv5,” 2021. [Online]. Available:
https://github.com/ultralytics/yolov5

[22] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The PASCAL visual object classes (VOC) challenge,” Interna-
tional journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[23] H. Liu, Z. Wan, W. Huang, Y. Song, X. Han, and J. Liao, “PD-GAN:
Probabilistic diverse GAN for image inpainting,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 9371–9381.

[24] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of GANs for improved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 10,2023 at 08:02:37 UTC from IEEE Xplore.  Restrictions apply. 


