Science of Computer Programming 98 (2015) 764-784

-
cience of Computer

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A perspective on architectural re-engineering ®<:mssMark

Alejandro Sanchez 3D Nuno OliveiraP®, Luis S. Barbosa”*, Pedro Henriques ©

@ Universidad Nacional de San Luis, San Luis, Argentina
b HASLab - INESC TEC & Universidade do Minho, Braga, Portugal
€ CCTC, Universidade do Minho, Braga, Portugal

ARTICLE INFO ABSTRACT

Article history: Continuous evolution towards very large, heterogeneous, highly dynamic computing
Received 9 March 2012 systems entails the need for sound and flexible approaches to deal with system modifica-
Rece“’e‘(jj n revg?d form 16 February 2014 tion and re-engineering. The approach proposed in this paper combines an analysis stage,
Accepted 17 February 2014 to identify concrete patterns of interaction in legacy code, with an iterative re-engineering
Available online 18 March 2014 . .

process at a higher level of abstraction. Both stages are supported by the tools CoordPat
and Archery, respectively. Bi-directional model transformations connecting code level and

Keywords:

Software architecture design level architectural models are defined. The approach is demonstrated in a (fragment
Coordination patterns of a) case study.

Re-engineering © 2014 Elsevier B.V. All rights reserved.

1. Introduction

Legacy software has to be maintained, improved, replaced, adapted and regularly assessed for quality, which brings their
re-engineering to the top of concerns of the working software architect. This is not, however, an easy task. On the one
hand a systems’ architecture relies more and more on non-trivial coordination logic for combining autonomous services and
components, often running on different platforms. On the other hand, often such a coordination layer is strongly weaved
within the application at the source code level.

The Coordinspector tool [1,2] was a first attempt to address this problem by systematically inspecting code in order to
isolate the coordination threads from the computational layer. This is done in a semi-automatic way through the combina-
tion of generalised slicing techniques and graph manipulation.

Such a stage of architectural discovery constitutes a necessary, but not sufficient step in a re-engineering process. Actually,
experience shows that

e recovering an architectural model from code would be much more effective if driven by some notion of pattern encoding
typical interactions;

e in any case, the low level model produced through slicing and code analysis, needs to be mapped to a more structural
one, to precisely abstract and identify components and connectors and enable their re-engineering.

This paper, combining previous research on both program understanding and software architecture, addresses the challenge
as follows:

e First of all it introduces a notion of a coordination pattern directly extracted from the program dependency graph of the
legacy system, as well as a language, CoordL, to describe such patterns. A collection of coordination patterns constitutes

* Corresponding author.

http://dx.doi.org/10.1016/j.scic0.2014.02.026
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.02.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://dx.doi.org/10.1016/j.scico.2014.02.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.02.026&domain=pdf

A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784 765

1.CoordPat

CoordL Model

Fig. 1. An approach to architectural re-engineering.

a low level architectural description in terms of execution threads and interaction points. Its main purpose is to act as
a template to inspect code and represent its coordination layer. CoordPat, a pattern search facility based on this idea,
was combined with Coordinspector to enhance the tool support for the technique.

e Then a systematic method is proposed to translate such patterns into a high-level architectural model in Archery [3]
which provides a proper setting for studying and simulating architectural changes. This iterative process is illustrated in
Fig. 1 through the loop arrow from the Archery model.

e Finally, a reverse translation method is proposed to transform the new architectural model back to a collection of
coordination patterns which guides the re-implementation process.

Fig. 1 sums up the proposed approach for architectural re-engineering. The combination of CoordPat and Archery equips
the architect with suitable tool-support for recovering architectural decisions, reconstructing an architectural model, and
analysing the impact of different possible modifications. Since the two frameworks work at different abstraction levels, (the
first providing abstractions over dependency graphs; the second entailing a components-and-connectors view of architectural
organisation), ‘translations’ .A and C in Fig. 1 are central to the proposed method. Their application is illustrated in detail
through an example, extracted from a real case study.

A main motivation for this work is the problem of quality assessment and re-engineering of Open Source Software (OSS)
as discussed in [4]. Availability of code makes OSS particularly suited to application of backward analysis and program
understanding techniques [5]. Often architectural decisions are only partially documented in OSS due to the pay-as-you-go
documentation style and the distributed and heterogeneous nature of its development. Architectural re-engineering plays
nevertheless a main role in OSS maintenance and evolution: it is particularly critical to endow OSS communities with
techniques and tools to identify and to control architectural drift, i.e., the accumulation of architectural inconsistencies
resulting from successive code modifications, that may affect different quality attributes of the system.

The paper is organised as follows: Section 2 describes the approach and the example we use to illustrate it; Sections 3
and 4 introduce, respectively, CoordPat and Archery, the two main methods/tools in this process; Section 5 describes the
systematic translations of CoordL to Archery models and back; Section 6 illustrates the approach through a detailed example;
finally, Section 7 reports on related work and concludes.

2. An approach to architectural re-engineering

The approach proposed in this paper for architectural re-engineering of legacy code is depicted in Fig. 1. As explained
above, it resorts to the combination of a tool for extracting coordination patterns from source code (CoordPat) and a high
level architectural description language (Archery) plus a guide to map patterns back and forth between these two levels.

The example chosen to illustrate the approach is part of a real case study on software integration described in [2].
It concerns a service to control the updating of user profiles and information common to a number of components of a
company’s information system. In its original formulation the context is that of a company offering professional training
through e-learning courses. The information system comprises the following three main components: an Enterprise Re-
source Planner (ERP) for controlling expenses and profits; a Customer Relationship Management (CRM) for managing both
general and customer-focused course campaigns; and a Training Server (TS) for managing the courses. These components
worked almost independently, all information being shared by a set of scripts executed manually, which gave rise to fre-
quent synchronisation problems. The decision to perform a global architectural analysis and reconstruction was pushed by
a sudden growth in the company market share and the need for introducing a web portal for on-line sales.

CoordPat is first applied in the re-engineering process. The tool aims at uncovering, registering and classifying architec-
tural decisions often left undocumented and hardwired in the source code. It implements a rigorous method [6] to extract
the architectural layer which captures the system behaviour with respect to its network of interactions. This is often referred
to as the coordination layer, a term borrowed from research on coordination models and languages [7] which emerged in the
nineties to exploit the full potential of parallel systems, concurrency and cooperation of heterogeneous, loosely-coupled
components.

The extraction stage combines suitable slicing techniques to build a family of dependency graphs by pruning a system
dependency graph |8] first derived from source code. After the extraction stage, the tool exploits such graphs to identify and
combine instances of coordination patterns and then reconstruct the original specification of the system coordination layer.
CoordPat maintains an incrementally-built repository of patterns to guide the analysis process.

766 A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784

(1- CallWS(CRMReadUser,2)

2 - CallWS(CRMCreateUser,2)

3 - CallWS(ErpReadUser,2)

4 - CallWS(ErpCreateUser,2)

5 - CallWS(TSReadUser,2)
6 - CallWS(TSCreateUser,2)

p @:}x 7 - CallWS(CRMUpdateUser,2)
8 - CallWS(ERPUpdateUser,2)
\9 - CallWS(TSUpdateUser,2)

Fig. 2. A CoordL coordination pattern extracted from the original system.

3 - CallWSs
4 - CallWS
5 - CallWS
6 - CallWS

ErpReadUser,2)
ErpCreateUser,2)
TSReadUser,2)
TSCreateUser,2)

_ ===

Fig. 3. The P; fragment.

CoordPat coordination patterns are described in CoordL, a graph-based language with both a textual and a graphical
representation. The later is almost self-explanatory. A base node is represented by a circle, a fork is represented by a
triangle, a join by an inverted triangle, while a thread trigger is represented by a square. A greyed square is used for pattern
instances. Edges are depicted by labelled, full arrows. Dashed arrows are used for connecting failed-synchronisation nodes
that come out of thread triggers. Consider, for example, the specification in Fig. 2. It reproduces one of the coordination
patterns recovered from the original system, which describes the user-updating service, that originates calls to user-read,
-create and -update operations, offered by each of the three main components (CRM, ERP and TS). The fragment which
includes nodes labelled as f>, 3, 4, 5, 6 and j», is depicted in Fig. 3 and will be identified as P in the sequel. It executes
the same task in two different components: node f> launches threads x and z that work with component ERP and with
component TS. Each thread checks whether the information exists and creates it otherwise. Loops in nodes 4 and 6 represent
iterations of creation attempts in case of failures. Node j, joins back both threads into a single one. A detailed description
of CoordL is provided in Section 3.

Archery [9,3] is an architecture description language that emphasises systems’ behavioural features and the relevant
interaction protocols. The basic specification concept is that of an architectural pattern, which comprises a set of architectural
elements (namely, connectors and components) specified by their behaviours and interfaces (set of ports). An architecture
describes a particular configuration that instances of elements may assume and a set of attachments linking their ports or
as a set of renamings making such ports externally visible. Both patterns and elements act as types for behaviours expected
from instances, which are kept and referenced through typed variables. The language supports hierarchical composition.

The semantics of Archery is given by translation to a process algebra — mCRL2 [10] — supported by a verification
toolset [11]. The language also supports a reconfiguration layer whose semantics is given by bigraphical reactive sys-
tems [12]; that layer, however, falls out of the scope of this paper. Process algebra [13], broadly defined as the study of
the behaviour of parallel or distributed systems by algebraic means [14], provides a suitable conceptual framework not only
to describe software architectures, but also to reason about them either equationally (on top of well studied notions of
behavioural equivalence), or through formulation and verification of behavioural requirements expressed in an associated
modal logic. Moreover, it supports compositional reasoning and abstraction with respect to internal activity. The use of
process algebra as an architectural description language is further explored in reference [15].

The language has an algebraic and a textual notation. While the former allows for the manipulation of models in a
more succinct way, the latter includes common keywords from the software architecture domain, and aims at resulting
more familiar to software engineers. Listing 1 shows an example architectural pattern expressed in the textual notation.
It prescribes configurations arranged by instances of web services and their callers. Archery is described in Section 4.

A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784 767

1 pattern WSPattern()

2 element WService()

3 act rec, snd;

4 proc Do() = rec.snd.Do();

5 interface in xor rec; out xor snd;

6 element WSCaller()

7 act rs, nt, snd, rec;

8 proc Do() = rs.rec.snd.nt.Do();

9 interface in xor rs,rec; out xor nt,snd;

10 end

11 ws : WSPattern = architecture WSPattern()

12 instances

13 cl : WSCaller = WSCaller(); c2 : WSCaller = WSCaller();
14 s : WService = WService();

15 attachments

16 from cl.snd to s.rec; from c2.snd to s.rec;

17 from s.snd to cl.rec; from s.snd to c2.rec;

18 interface

19 cl.rs as rsl; cl.nt as ntl; c2.rs as rs2; c2.nt as nt2;
20 end;

Listing 1: A pattern and an architecture example in Archery.

Equipped with these two tools, the re-engineering process proposed here, and illustrated in detail in Section 6, comprises
the following stages, as shown in Fig. 1:

1. The architect uses CoordPat to extract the coordination model. This, expressed in the form of dependency graphs, allows
the architect to study the network of interactions and to detect coordination patterns. It also provides enough information
to spot problems and improvement opportunities, and to locate the source code associated to them.

2. The architect translates the model into Archery. He obtains a specification closer to the components-and-connectors
view typically found in classical descriptions of software architecture.

3. Archery enables a richer description of the underlying system, and the architect exploits it by adding detail to the
model. In particular, this provides a flexible setting to address problems and improvement opportunities, by inspecting
the associated source code and modifying the model accordingly. The architect modifies the model to address detected
issues, and studies the impact of the changes. He performs this study assisted by tools and records the relationships
holding between the original and the modified models.

4. The architect translates the model back to CoordPat which guides the system re-implementation. Note that CoordPat
can be used again on the re-engineered implementation and the whole process iterated if needed.

3. Architectural reconstruction with CoordPat

CoordPat is a tool for reverse architectural analysis, providing a systematic way to identify coordination patterns in source
code. As explained in the Introduction, it is built on top of Coordinspector [1]. The latter provides mechanisms for building
and slicing over several sorts of program graphs to identify in the source code all threads concerned with inter-component
interaction and coordination. CoordPat adds an engine to define, store, update and identify specific patterns in source code
relevant to the coordination layer of the system under analysis. It uses the CoordL language to specify coordination patterns
and provides utilities for pattern discovery, editing and visual rendering. A pattern repository is integrated in the tool to
support all these features and to be dynamically populated by the users. The next sub-section introduces the notion of a
coordination pattern used in the tool. It underlies the CoordL language which is discussed afterwards.

3.1. Specifying coordination patterns

A coordination pattern is an abstraction over a program dependency graph G [6]. Conceptually, it is a graph defined over
a set N of nodes, which abstracts program statements or activities, and a set of thread identifiers Thr which label the flow
connections between nodes. Edges, on their turn, represent possible paths in the original, underlying graph G.

Nodes are divided into base nodes, and control nodes which are specific to patterns to abstract control of execution
threads. The latter arise from combinators fork and join discussed below. Each base node n is associated to a unique control
thread t(n). Similarly, edges in a pattern, which abstract paths in the underlying graph, are labelled with thread names,
making explicit the control thread to which the path belongs.

Attached to this graph structure is an interface composed of two, not necessarily disjoint sets of nodes. One set represents
input points in the pattern, to where external connections, with origin in other pattern instances, may be plugged in. The
other represents output points, from where new edges may be defined to other pattern instances. This is known in the
literature as a graph with interface [16]. Formally,

768 A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784

Ha) @ @ ta) ¢ ta) Ha) o
;1o 7/’ \7 o, \t;j/

i
%‘ b b /W:) b /f(;) m
g
(fork) (join) (trigger)

Fig. 4. Fork, join and trigger.

Definition 1. A pattern is a tuple

p=<{N,in,out, T)

where N is the set of nodes, subsets in, out & N correspond to the pattern’s input and output interfaces, respectively, and
T < N x Thr x N is a direct graph, often given as a family of binary relations indexed by thread references Thr.

A pattern is subject to an invariant that prevents any edge departing or arriving at a base node to be labelled with
different atomic thread identifiers; the node cannot be part of two different threads. Thus,

nisabasenode = (n%n'vn' %n) = th)=x (1)

This invariant means that if two base nodes m, n are connected then t(m) = t(n). The simplest pattern is the single node

p={{n}. {n}.{n}. &) (2)

Patterns can be aggregated by juxtaposition and connected by drawing new edges from a node in a pattern’s output
interface into a node in the input interface of the another one. Moreover, two input nodes of a pattern can be forced to join
into a new node so as to provide a common entry point to two different paths in the pattern. Alternatively, this operation
can be regarded as the fork of an input thread. Dually, nodes in the output interface can also be joined together, capturing
the join of different threads coming out of the pattern. In the sequel we give a formal definition to each of these operations.

The aggregated pattern p1 ® p», with p; = (N, in;, out;, T;) for i € {1, 2}, is given by

P1® p2 =(Nj u Ny, iny uiny,out; uouty, T1 U Ty). (3)

In the sequel let p = (N, in, out, T). The link operator establishes a connection between two nodes (with the same thread
reference) in a pattern interface. Formally,

i Joviniyoun (). T o (19 i)y < iein, jeout, t(i) = t(j)
(P) {p < otherwise “)

The remaining pattern combinators are intended to glue together two nodes in the input (respectively, output) interface.
The first combinator is fork: two input nodes are made internal and replaced in the input interface by a single node, say f,
which acquires the thread reference from the combinators first (or upper) argument. Because f must be a base node itself,
a control node f is added as depicted in Fig. 4. Formally,

f=8(p) =N LS, FL{fyuin\{a, b}, out, T U {f X9 F, F 1@, q F 10, by (5)

where f is a fresh node identifier. Let x be the thread associated to a and f, and y the thread associated to b. Note that,
at a later stage, a node n can be linked to f to represent the forking of thread x into itself and y.
The combinator dual to fork is join: two output nodes are made internal and replaced in the output interface by a special
node which, again, acquires the thread reference from the combinator (or upper) argument, as depicted in Fig. 4. Formally,
T t(a) - t(b) - % t(a
(P)of = (N U {f, Fy.in. {(f} out\fa.b}. T u {a *@ . p {0, F 7 19, £y (6)
The last pattern combinator is the thread trigger (p)g>><3~. It acts like a join, joining two output nodes a and b and
acquiring its thread reference from the ‘upper’ argument. Unlike join, however, it provides two new nodes, both labelled
with the same thread reference. The ‘upper’ node, f, represents a synchronisation of both threads (after execution of the
statements abstracted in a and b), just as a normal join node. The ‘lower’ node, g, however, represents absence of synchro-
nisation: control goes from a to j without previous synchronisation with b in its thread. Graphically, any connection from
this node is depicted as a dashed line. Formally, the combinator effect on the pattern design is given by
I t(a) - t(b) - % t(a < t(a
(P)§ < § =(NU{f g Fhin {f.g} vout\fa.b}. T U fa @ p {0 F 7 1O, ¢ 7 HD, g1y (7)
Without loss of generality, combinators link, join and thread trigger may have, instead of a single node, a list L of nodes
as possible sources for their incoming connections.

A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784 769

With these combinators the fragment P of the coordination pattern shown in Fig. 3, and described in Section 2, can be
specified as follows:

P1 = F<3((3®4) ity 4 ®5®6) %)) aap=ia (8)

A number of structural properties of these combinators are trivial to prove. For example, for ~ denoting graph isomor-
phism,

Lemma 1.
P1®p2=p2®p1 9)
(p1®p2) ®p3 = p1® (P2 ® p3) (10)
(pb) k= (p k) 1} (11)

Proof. All results are immediate by unfolding the definition of both combinators. The first two come from commutativity
and associativity of set union. For the last one, note that in both cases the input and output interfaces are the same and so

. . L t() . !
is the transition structure (T u {j LU ik LU 1. O
Patterns can also be ordered by the existence of a simulation relating the underlying transition structures. Formally,

Definition 2. Two patterns p; and p, are similar, denoted by p1 < p» iif iny < iny, out; < out, and there is a simulation
of Tq into T, relating each node in in; to the equally named node in iny. A relation R < Ty x T3 is a simulation iff, whenever
{n,my€eR,

nSpon' = ey, -mSr,m A n’,m)eR

A simulation R whose converse is also a simulation is called a bisimulation. Patterns p; and p; are said to be bisimilar,
denoted by pq &~ py iff iny = iny, out; = outy, and there is a bisimulation over T1 and T, relating each node in in; to the
equally named node in inp.

The existence of a bisimulation between two patterns means they have identical interfaces and exhibit the same transi-
tional behaviour. In general, similarity and bisimilarity provide a guide for comparing and classifying patterns.

Lemma 2. Let py =~ p». Then,

P1®p~p2®p (12)
f=5(p1) ~ f<h(p2) (13)
(P)p=f ~ (p2)p=f (14)
(P1)§==<f ~ (p2)§><] (15)

Proof. The proof of (12) is trivial and in all cases equality of interfaces is easy to check. For (13), let R be a bisimulation
witnessing py ~ py. Consider R' = R u {(f, f), (f, f)}. The unique transition from f in the first system, labelled by t(a),
is matched by a unique, equally labelled transition in the second, both to f. Form there in both cases there is a unique
transition to a, labelled by t(a) and to b, labelled by t(b). By assumption pairs (a,a) and (b, b) are already in R, which
makes R’ a bisimulation as well. For (14), let again R be a bisimulation witnessing py ~ py. If {(a,a), (b,b)} € R, R is still
a bisimulation for joined pattern. If not, add pairs (f, f) and (]_‘, f) Transitions from a or b will match in both patterns,
as well as the unique transition from f to f. In both patterns, f is an output node with no further transitions, which
concludes the proof. The prove of (14) follows a similar argument. []

Bisimilarity is not, however, a congruence because it is not preserved by the link operator.
3.2. CoordL - the language

Based on the notion of a coordination pattern, introduced above, the CoordL language admits a textual and graphical
notation as a concrete interface to both the CoordPat tool and the working software architect.

A pattern definition in CoordL follows the template in Listing 2. Note that each pattern has an identifier (pattern_id)
and a set of input/output ports as its interface. The later is declared inside a ()-block, with a bar ‘|’ separating the in ports
and, in the right-hand-side, the out ports. The union of these sets must not be empty, but are not required to be disjoint.

770 A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784

1 pattern_id (pl, p2 \ pl, p3) { [DECLARATIONS] [PATTERN GRAPH] }

Listing 2: Pattern declaration.

1 Pl _pattern(f2 | j2){
2 node 3,4,5,6 = { st=="..." && ct==webservice &&
3 cm==async && cr==consummer };
4 fork f2; Jjoin j2; root £f2;
5 { £2 -(x,z)-> (5, 3) } e[| 5,3]
6 { 5-x->6, 5-x->j2, 6-x->6, 6-x->j2,
7 3-z->4, 3-z->j2, 4-z->4, 4-z->32 } @ [5,3 | 6,41 1}
8 { (6,4) -(x,2z)-> 32 } €[| 6,4]

Listing 3: CoordL code for coordination pattern P.
1 patternl(pl | p2, p3){ ...}
2 pattern2(pl, p2 | p3, p4){ ...}
3 C.
4 patternl instancel(pil | pol, po2) ;
5 pattern2 instance2(pi2, pi3 | po3, po4) ;

Listing 4: Instance declaration.

1 {(pa, pb) -(x,y)-> m, m.sync -x-> pc, m.fail -x-> pd}

Listing 5: Usage of control nodes.

The {}-block has two parts. The first one is reserved for declaring nodes, basically selecting information (such as the
corresponding code fragment, type of interaction or calling discipline) from the underlying dependency graph G. The second
part specifies the pattern graph structure. Before proceeding, the reader may want to inspect, in Listing 3, the CoordL code
corresponding to coordination pattern P (see Fig. 2).

Nodes declaration. As discussed in Subsection 3.1 there are two possible types of nodes in a coordination pattern: base nodes
and control nodes. The former come directly from the underlying dependency graph and are supposed to describe fragments
of coordination code. Each one is declared with four attributes (combined in conjunction (&&) or disjunction (|)).

e Statement (st): reference to the coordination code fragment abstracted in the node. This is typically described by a
regular expression acting as filter over source code during the construction of the dependency graph G (see [6] for
details).

e Type (ct): defines the type of the coordination primitive the code fragment implements. Such types are assigned dur-
ing the construction of G: typical examples are webservice (for a web service call) or rmi (for a remote method
invocation).

e Method (cm): defines the mode in which the request is made. It can be either sync(hronous) or async(hronous).

e Role (cr): describes the role of the component that is requesting the service. It can be either a consumer or a pro-
ducer.

Example node, fork, and join declarations are shown in Listing 3. Control nodes are introduced by the different variants of
fork and join and thread trigger combinators.

Besides basic and control nodes, CoordL introduces a third type of node which abbreviates a pattern instance. This is
created as in the example shown in Listing 4, assuming a previous declaration of the corresponding pattern. The pattern
name is used to identify the type of its instances. Notice that, in creating a pattern instance both node and thread identifiers
can be instantiated to actual values.

This abbreviation allows for the hierarchical construction of patterns. All connections, however, are always made with
explicit reference to the relevant interface nodes, as detailed below.

Edges specification. Links between input and output nodes in a pattern are specified with a direct syntax in which an arrow,
suitably labelled, is explicitly written. This corresponds to a simple way of implementing combinator <7 in Subsection 3.1.
As mentioned there, an edge has a very precise meaning with reference to the underlying dependency graph G. For instance,
connection: pl -x -> p2 means that information flows from node pl to node p2 in a thread identified by x through
an unspecified number of mediating edges in G. Connections to or from control nodes are illustrated, for fork and join in
Listing 3, and for thread trigger in Listing 5. They implement, as expected, combinators <, > and ><. Notice all new node
identifiers, such as £, j or m have to be previously declared.

A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784 771

1 my_patt(pl | p4){ X
2 node pl, p2, p3, pd = { T

3 st == "Invoke(*)" &&

4 ct == webservice &&

5 cr == consumer && A y
6 cm == sync };

7 fork £f;

8 join Jj;

9 root pl; X y
10 {(f -(x,y)-> (p2,p3)}e[p3]|]

11 {pl -> £, p3 -y-> p3ie[|p3] v
12 {(p2,p3) -(x,y)-> 3}
13 {j -x-> p4} X

14 }

1 new_patt(pl | p2, p3){ Q

2 node pl, p2, p3 = { N

3 st == "Get (*)" &&

4 ct == webservice && v

5 cr == consumer && T

6 cm == sync };

7 my_patt inst(pi | po); /A\.
8

11 {po -x-> p3}

X

Fig. 5. A hierarchical pattern description.

x

root pl;
9 {pl -x-> inst(pi | po)}
10 {po -x-> p2}e[|po] .
AN inst:imy_patt

Moreover, symbol ‘@’ followed by a list of nodes separated by symbol ‘|' is used to make both input and output ports of
nodes or patterns alive (i.e., open), once they were used in the previous list of edges definition. This constructor is used to
keep consistent nodes and pattern ports.

Fig. 5 shows two coordination patterns in CoordL, and the corresponding graphical representation. The first pattern,
identified by my_patt, illustrates the composition of base nodes, forks and joins. The second one, identified by new_patt,
introduces the declaration of pattern instances and their (hierarchical) composition. Note that in the graphical rendering of
the second pattern a grey square that represents the inclusion of a pattern instance.

4. Architectural modelling with Archery

Archery [9,3] is a high-level architectural description language. This section describes the language, briefly explains its
behavioural semantics, and the relations used for architectural analysis. The architectural pattern for web services, shown in
Listing 1, is used for illustration purposes.

4.1. Modelling architectural patterns

4.1.1. Patterns and elements

A specification of an Archery model (Spec) comprises one or more patterns P, a main architecture referenced by a
variable Var and global data specifications D. A description of the latter is omitted here because they coincide with mCRL2
data types.

Spec =P(P) x Var x D

P = IdP x Fp* x P(E)

Fp = IdPar x DataType

E = IdE x Fp* x MPrc x P(Prc) x P(Prt)
MPrc = IdPrc x Fp* x Val* x P(Act) x Body

772 A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784

Prc = IdPrc x Fp* x P(Act) x Body
Act = IdAct x Domain™
Prt = IdPrt x Dir x PrtType, with IdPrt < IdAct

where P(X) denotes the powerset of X. An architectural pattern P defines the basic building blocks of a family of archi-
tectures. It includes a unique identifier, an optional list of formal parameters Fp and one or more architectural elements E.
In turn, each Fp has an identifier and a data type. For instance, tuple wsp below corresponds to pattern WSPattern between
lines 1 and 10 in Listing 1.

wsp = (WSPattern, [], {ce, se}) (16)
ce = (WSCaller, [], (Do, [], []. {rs, snd, rec,nt}, “rs.snd.rec.nt.Do”),

{3, {(rs, in, xor), (snd, out, xor), (rec, in, xor), (nt, out, xor) }) (17)
se = (WService, [], (Do, [], [], {rec, snd}, “rec.snd.Do”"),

{}. {(rec, in, xor), (snd, out, xor) }) (18)

An architectural element E models either a component or a connector. It is described by an identifier, an optional list
of formal parameters, a description of its behaviour and an interface. The behaviour consists of a main process MPrc, which
describes the initial behaviour, and a set of processes Prc referenced from it. Tuple MPrc comprises an identifier, a list of
formal parameters, a list of initial expressions, matching in order and type the formal parameters, a set of actions Act, and a
process expression Body specified in a slightly modified subset of mCRL2. An action Act has an identifier and an optional list
of mCRL2 domains. For instance, the main process of element WSCaller is identified by Do, with no arguments, and defines
actions rs, snd, rec, nt that respectively represent the events of receiving a signal, sending a request, receiving a response,
and notifying termination. Its process expression specifies an iteration of the sequence of these four actions.

The interface, on the other hand, contains one or more ports Prt. Each port defines an identifier, which must match the
identifier of an action in any of the element processes, a direction Dir, and a port type PrtType. The direction can be either
in or out and indicates how data along the attached ports flows. Ports are synchronous; however, a suitable process algebra
expression can be used to emulate any other port behaviour. The port type indicates how many participants are necessary
for a communication to take place, and can be either and, xor, or or. While an and port requires all attached participants to
synchronise, a xor port requires exactly one, and an or port at least one.

4.1.2. Pattern and element instances
A variable Var is a placeholder for instances. It has an identifier, a type that must match an element or pattern identifier,

and an instance Inst as a value. Inst is either a distinguished value (inactive process) represented by singleton 1, an element
instance Elnst, or a pattern instance PInst. Instances may not match the variable’s type but they must match the interface
defined by such a type.

Var = IdVar x IdType x Inst with IdType = IdP + IdE

Inst = 1 + EInst + PInst

Einst = IdE x Val*

PInst = IdP x Val* x P(Var) x P(Att) x P(Ren)

Att = PR x PR

Ren = IdPrt x PR

PR = IdVar x IdPrt

For example, variable ws in the tuple wsv contains a configuration of pattern WSPattern. The corresponding textual
notation for this tuple is shown between lines 11 and 20 in Listing 1.

wsv = (ws, WSPattern, (WSPattern, [], { (s, WService, (WService, [])),
(c1, WSCaller, (WSCaller, 1)), (c2, WSCaller, (WSCaller, [])) }, As, Rs))
As = {((c1,snd), (s, rec)), ((c2, snd), (s, rec)), ((s, snd), (c1,rec)), ((s, snd), (c2, rec)) },
Rs = {((c1,rs),rs1), ((c1,nt),nt1), ((c2,rs),rs2), ((c2,nt),nt2)} (19)

An element instance Elnst has an identifier that matches an element name and a list of actual parameters matching in
order and type the formal parameters.

A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784 773

Table 1

Archery’s algebraic notation for patterns.

<—’E:P><E—>P
«—p:P xIdE— P
—p:PxP(E)—>P
«—p: P x P(IdE) - P

*

:E x MPrc - E

@®:E xPrc—E
®:E x IdPrc > E

e O e O

o

D,O:EXIdPr[‘)E
m, o ExIdPrt - E
o, ¢ :Ex P(IdPrt) — E
u, ¢ Ex P(ldPrt) » E

1E x IdPrt — E

adds an element to a pattern

removes an element from a pattern

adds a set of elements to a pattern

removes a set of elements from a pattern
replaces the main process of an element

adds a process to an element

removes a process from an element

adds an And (Or, Xor, resp.) In port to an element
adds an And (Or, Xor, resp.) Out port to an element
adds And (Or, Xor, resp.) In ports to an element
adds And (Or, Xor, resp.) Out ports to an element
removes a port from an element

Pattern construction: Constructors with signature t : idT — T receive an identifier and return a tuple with
default values in each component, where t/T stands for either p/P (pattern), e/E (element), mprc/MPrc (main
process), prc/Prc (process), act/Act (action), or prt/Prt (port).

Table 2

Archery’s algebraic notation for instance construction.

var : IdVar x IdType
einst, pinst : IdType

pr

:IdVar x IdPrt

ren:1dPrt X PR

creates a variable

creates an element (resp. pattern) instance
creates a port reference

creates a renaming

att: PR x PR creates an attachment

[O]: PInst x Var — Plnst adds an instance to a pattern instance

[: PInst x IdVar — Plnst removes an instance from a pattern instance

[@]: PInst x P (Var) — Plnst adds instances to a pattern instance

[0): Plnst x P (IdVar) — Plnst removes instances from a pattern instance

E]: PInst x Att — PInst adds an attachment to a pattern instance

B : PInst x Att — PInst removes an attachment from a pattern instance
& : Plnst x P (Att) — Plnst adds attachments to a pattern instance

B : PInst x P (Att) — Plnst removes attachments from a pattern instance

[2]: PInst x Ren — PInst adds a port renaming to a pattern instance

[2]: PInst x IdPrt — Plnst removes a port renaming from a pattern instance
[a]: PInst x P (Ren) — Plnst adds a set of port renamings to a pattern instance
[a]: PInst x P (IdPrt) — Plnst removes port renamings from a pattern instance
[e]: Var x Inst — Var sets the value of a variable

[©lq : Var x Inst — Var
: PInst x PInst — PInst
:Var x Var — Var

sets the value of a variable Id in a pattern inst.
architectural product
architectural product of the variable’s values

An architecture, or pattern instance PInst, defines a set of variables and describes the configuration adopted by their
instances. It contains a token that must match a pattern name; an optional list of actual arguments; a set of variables;
an optional set of attachments; and an interface. The actual arguments must match in type and order those of the pattern
acting as its type. The type of each variable in the set must be an element defined in the pattern of which the architecture
is an instance.

An attachment Att includes a port reference to an out port and another one to an in port. Each port reference PR is an
ordered pair of identifiers corresponding to the variable and its instance, respectively. Thus it specifies which out port
communicates with which in port — see lines 16 and 17 in Listing 1.

The architecture interface is a set of port renamings Ren. Each port renaming contains a port reference and a token with
the external name of the port. Ports not included in this set are not visible from the outside. Note that ncluding the same
port in an attachment and the interface is incorrect.

4.2. Combinators

Architectural patterns and their instances’ (re)configurations are described by combinators, which include tuple construc-
tors, update operations, script application and an architectural product. Tables 1 and 2 provide an (informal) overview of
the language combinators. See [17] for the formal definitions.

Each tuple has an associated set of constructors with identical name, but written in lowercase letters. There is always a
default constructor restricted to the mandatory components. For instance, the constructors for an architectural pattern (P),
directed by the corresponding signature, are as follows

p:ldP— P p:1dP x Fp* — P
p:1dP x P(E) - P p:1dP x Fp* x P(E) — P.

774 A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784

Update operations are available for each component of each tuple. They all receive the original tuple and the component
to modify, returning the updated tuple. The sort of updates available depend on the component’s type. Three variations are
provided according to the modified tuple component. If it is a set or a list, add and remove operations are considered in
which the second argument contains, respectively, the element to add, or the identifier of the element to remove. If, on the
contrary, the component is of a non-collection type, only a replace operation is available. The basic combinators required for
the case study discussed in this paper, are described below. Unless explicitly stated, all operators are infix, and their type
and effect is assumed to fall in one of the aforementioned variations according to the component type.

Combinators related to patterns include addition («<—g) and removal (<) of an element. A distributed (and overloaded)
version for these operators upon a set P(E), and iteratively calls the original operation for each element in it.

Combinators for elements modify both their behaviour and interface. The former group includes the replacement of the
main process () and the addition (®) and removal (®) of processes. For the latter, different symbols are used to distinguish
combinators for adding ports according to type and direction: o, e, o, =, ¢, «, where circles, squares, and diamonds corre-
spond to and, to or and to xor types, and filled (respectively, hollow) symbols indicate the out (respectively, in) direction.
The port removal combinator is indicated with symbol o. Distributed versions of these operators are also defined.

Using these combinators pattern WSPattern, described as a tuple in expression (16), and textually in Listing 1, is written

wsp = p(WSPattern)—{ce, se} (20)
ce = e(WSCaller) » {snd, nt} o {rec, rs} = mprc(Do, {rs, snd, rec, nt}, “rs.snd.rec.nt.Do") (21)
se = (WService) o rec + snd = mprc(Do, {rec, snd}, “rec.snd.Do”) (22)

Pattern instances are updated by adding ([@]) or removing ([]) instances, both admitting distributed (and overloaded)
versions. And, similarly, to add (&) and remove (=) attachments and renamings ([2] and [2]). There is also an operation to
replace ([c]) the value in a variable. When the first argument is a pattern instance, this can also be used with an identifier id
(as in [0Jig) that indicates the value of the inner variable id to be replaced. For example, the expression below describes a
WSPattern configuration in which a web service is connected to two callers. Notice that, in variable tuples a component is
missing; 1 is the assumed value, as in (s, WService) = var(s, WService) = (s, WService, 1).

wsv = var(ws, WSPattern) [o] pinst(WSPattern) Gl {si, ci1, ci } B atts[a] s

si = (s, WService) [o] einst(WService)

ciy = (c1, WSCaller) [o] einst(WSCaller)

cip = (c2, WSCaller) [o] einst(WSCaller)

atts = {((c1,snd), (s, rec)), ((c2, snd), (s, rec)), ((s, snd), (c1,rec)), ((s, snd), (c2, rec)) }

rs={((c1,rs),rs1), ((c1,nt),nt1), ((c2,rs),rs2), ((c2,nt),nt2)} (23)

Architectural product, : PInst x PInst — PInst, combines two architectures of the same type into a single one, putting
them side by side. For convenience, an operator ([x]: Var x Var — Var) that returns and takes variables as arguments is
defined. The types and values of the variables must coincide. Argument variables are discarded: the identifier of the returned
one derives from the argument variables.

Scripts take a list of arguments and can be applied to a specific configuration. Expression (24) defines a script node that
takes an argument n and can be applied to architecture x. It creates an instance of pattern WSPattern in variable vpld,,
creates variable id, and assigns an instance of WSCaller to it. It also renames its ports and makes them externally visible,
according to R. This allows the resulting architecture to initiate action, notify termination, send a request, and receive a
response, respectively. Script application is denoted by =. Then, applying script node to an empty architecture is written as
node(n) =1, or simply as node(n).

node(n)(x) = var(vpld,, WSPattern) [o] pinst(WSPattern) [a] v, [2] R
vp = (idp, WSCaller) [o] einst(WSCaller)
R = {((idn, rs), 15n), ((idn, nt), nt), ((idn, snd), sndy), ((idn, rec), recy) } (24)

4.3. Behavioural semantics

The behavioural semantics of Archery is given through a translation 7 into an mCRL2 specification (see [9] for details).
Let us illustrate this with our running example. Each element instance is translated to (at least) two processes, one calling
the other, defined by unique identifiers. For example, the translation of the web service instance, referenced by variable
s in our example (see expression (19), or expression (23), or line 14 in Listing 1), results in the two processes specified
between lines 1 and 3 of Listing 6 (for brevity, action declarations are omitted). If the instance as an initial value given
by an expression, the caller uses it as an actual parameter. Other processes defined within the element are recursively
translated.

A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784 775

1 proc WService_s_init = Do_s;

2 proc Do_s = (rec_s_snd_cl + rec_s_snd_c2).cal_s.

3 (snd_s_rec_cl + snd_s_rec_c2).Do_s;

4 proc WSCaller_cl_init = Do_cl;

5 proc Do_cl = rs_cl.rec_cl_snd_s.snd_cl_rec_s.nt_cl.Do_cl;
6 proc WSCaller_c2_init = Do_c2;

7 proc Do_c2 = rs_c2.rec_c2_snd_s.snd_c2_rec_s.nt_c2.Do_c2;
8 init

9 hide ({cal_s,synch_snd cl_rec_s,synch_snd _c2_rec_s,

10 synch_snd_s_rec_cl,synch_snd_s_rec_c2},

11 rename ({nt_c2->nt2_ws,rs_c2->rs2_ws,

12 nt_cl->ntl_ws,rs_cl->rsl_ws},

13 allow ({nt_cl,nt_c2,rs_cl,rs_c2,

14 synch_snd_cl_rec_s,synch_snd_c2_rec_s,

15 synch_snd_s_rec_cl,synch_snd_s_rec_c2},

16 comm ({snd_c2_rec_s|rec_s_snd_c2—>synch_snd_c2_rec_s,
17 sndﬁclirecfs|recfsisndicl—>synchfsnd7c17recis,

18 snd_s_rec_c2|rec_c2_snd_s->synch_snd_s_rec_c2,

19 snd_s_rec_cl|rec_cl_snd_s—>synch_snd_s_rec_cl}

20 WSCaller_c2_init| |WSCaller_cl_init| |WService_s_init

21))));

Listing 6: Translation of example WSPattern configuration to mCRL2.

1 recisisndicl|recisfsndic2
2 rec_s_snd_cl+rec_s_snd_c2+rec_s_snd_cl|rec_s_snd_c2
3 rec_s_snd _cl+rec_s_snd_c2

Listing 7: Example process expressions for ports.

A process expression may include sequence composition, alternative choice, conditionals, actions, process calls and ports.
The translation of the first three results in the same operation applied to the translated operands. Each action and process
is given a unique identifier by combining its name with the variable’s one, e.g., process Do becomes Do_s (see line 1 of
Listing 6).

The translation of a port depends on its type and the attachments to which it belongs. For each attachment, an action
is defined using the variable and port identifiers of the original port reference. For instance, the two attachments of port
rec give rise to actions rec_s_snd_c1 and rec_s_snd_c2. The generated actions are combined into a process expression that
represents the expected behaviour according to the port’s type. This can be illustrated varying the type of rec to be and,
or and xor. The resulting expressions are shown in lines 1, 2 and 3 of Listing 7. The direction of the port influences the
resulting process expression when the ports involved have parameters and there is a flow of data.

The translation of a pattern instance is summarised in expression (25) which represents the parallel composition of the
processes resulting from translating instances referenced by the pattern inner variables vars. Listing 6 shows the parallel
composition in line 20. The communication among such processes is established by an operator I" (comm) according to a
set C of communication rules calculated from the attachments. Each communication rule references two actions of processes
that synchronise, and a third one resulting from the synchronisation. The corresponding rules for our example are shown
between lines 16 and 19. Then, operator V (allow) allows a set A of synchronisations and actions (not ports) and blocks
all the others, preventing in this way the individual activation of a port (see lines 13 and 15 in our example translation).
Operator p (rename) renames actions according to a set R calculated from the renamings of the pattern instance (see
lines 11 to 12). The last operator, T (hide), turns actions in set H invisible (between lines 9-10). Finally, set H is calculated
from the actions that occur in the processes conforming the pattern instance, excluding port interactions.

ol 1, 7)

4.4. Architectural analysis

Architectural models in Archery can be compared through the behavioural equivalences and preorders defined in mCRL2.
Actually, rooted branching bisimilarity, ~gp, provides a basis for establishing architectural interchangeability with respect
to the interface behaviour. Branching bisimilarity [13] relates behaviours differing in the amount of internal activity but
exhibiting similar branching structure. Rooted branching bisimilarity adds a rootedness condition: initial internal transitions
are never inert. Formally, architectural equivalence and refinement are defined as follows

a=b < T(a)~prpT() and achb <« T(a)rpT(h) (26)

Coarser relations are sometimes necessary to compare Archery models. Weak trace equivalence and refinement, which
abstract from the internal branching structure, can also be used to define coarser architectural relations.

776 A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784

5. Translating CoordL to Archery and back
5.1. From CoordL to Archery

CoordL models can be represented in Archery as instances of specific elements of a pattern. For this let us define a
translation .A(-) to represent a CoordL model as an Archery specification. The result is an instance of pattern WSPattern, first
defined in Section 2 (see Listing 1), extended with elements standing for each of CoordL main combinators. To illustrate the
translation process we concentrate on coordination pattern Py, given in expression 8 and depicted in Fig. 3, to illustrate the
translation.

5.1.1. Base node

Base nodes represent interactions. In this work we focus on synchronous web service calls. Then, a base node (2) is rep-
resented in Archery as an instance of element WSCaller, which stands for a web service synchronous caller (see alternatively
(17) or (21)). Translation A(-) for a node n is defined in (27) in terms of script node, previously specified in (24). As an
example, the translation of the first base node in Pq is .A(3) = node(3).

A(n) = node(n) =1 = node(n) (27)

5.1.2. Juxtaposition

The juxtaposition of two CoordL patterns, formally defined in (3), is the architectural product of the translation of each
of them. In the example, translating the juxtaposition of the two first base nodes yields expression .4(3 ® 4) = node(3)
node(4).

Alp®q) = A(p) K.A(q) (28)

5.1.3. Link
The representation of a CoordL link (4) in Archery depends of whether it is a loop or not. The latter case resorts attach-
ments, but for the former, a different behaviour for the instance that represents the web service caller must be specified.
Element RLink stands for such a reflexive link, that includes the possibility of a calling loop.
R =e(RLink) o {rs, rec} « {se, snd}
= mprc(Do, {rs, nt}, “rs.Loop.nt.Do”)
@ pre(Loop, {rec, snd}, “snd.rec.(t + T.Loop)")

A link between nodes i and j in pattern p is translated as the application of reconfiguration link(i, j) to the translation
of p. Then, the specific reconfiguration depends on whether the link is a self-reference or not (30). In the former case, the
value of variable id; is replaced by an instance of element RLink. In the latter the corresponding attachment is made.

A((p) <i}) = link(i, j) = A(p) (29)
S . | X[ig; einst(RLink) ifi=j
lmk(l’J)(X):{xE((icl,',nt),(idj,rs)) ifij

The translation of a link among a list of nodes L and node j is the successive application of link to the translation of p
as follows.

(30)

A((p) 1) = link(L. j) = A(p) = link(i. j) = A(p) (31)
1
The first two links of our example are then translated as follows.
A(B®4) 3 4y) = link({3,4},4) = AB®4)

5.14. Fork

The representation of fork nodes (5) requires an element Fork in the pattern WSPattern. Such an element defines instances
with an in port rs for receiving start notifications, and two out ports (ssa and ssh) to send start notifications to the two
instances.

F = e(Fork) o {rs} « {ssa, ssb} = mprc(Do, {rs, ssa, ssb}, “rs.(ssa.ssb + ssb.ssa).Do")

We translate a fork node f that starts threads in nodes a and b as an instance of element Fork. The corresponding
external visible ports of a and b are removed. Subsequently the out port of f is attached to the respective rs ports in
nodes a and b.

A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784 777

A(f=<5(p)) =fork(f.a,b) = A(p) (32)
fork(f,a,b)(x) = x[@ ((idy, Fork) [s] einst(Fork))
@ {rsa, rsp} & ((ids,15),15§)

B {((idy. ssa), (ida, 75)). ((idy. 55p), (idp. T5)) } (33)

The fork in the example CoordL pattern is translated as A(f,<2Q) = fork(f2,3,5) =.A(Q) where Q stands for the rest

of the expression.

5.1.5. Join
In a similar way the instances of element Join of pattern WSPattern represent join nodes (6). Instances of such an element
have two in ports to receive termination notifications from either node a or node b and an out port to notify its termination.
J =e(Join) o {rta, rtb} « {nt} = mprc(Do, {rs, rta, rtb}, “(rta.rtb + rtb.rta).nt.Do”)

Then, a join between nodes a and b to node j in pattern p is translated as the application of reconfiguration join(a, b, j)
to the architecture resulting from translating p. The script includes an instance of element join into the architecture, re-
moves renamings of ports which notify termination of instances representing a and b, and reconnect such ports to the
corresponding ones in the join instance.

A((p)p>=1J) =join(j, a,b) = A(p) (34)
join(j,a, b)(x) = x([@ ((id}, Join) [] einst (Join))

[{ntq, ntp} & ((idj, nt), nt ;)

B {((idq, nt), (id;, rta)), ((idp, nt), (id;, rtb))} (35)

The translation of a join node among lists A and B requires iterating the sets to remove external ports and to create
appropriate attachments.

A((p)5>3) =join(j, A, B) = A(p) (36)
join(j, A, B)(x) = x[@ ((id}, Join) [] einst(Join)) [] ((id}, nt), nt ;)
@ nt; EA((ida,nt), (idj, rta)) bE ((idp, nt), (id;, rtb)) (37)
i€eAUB ae €B

We are now ready to completely translate the coordination pattern fragment P used as an example. Thus,

A(Pq) = fork(f2,3, 5) =join(j2, {3, 4}, {5, 6})
o (link({3, 4}, 4) = node(3) x| node(4))
(link({5. 6}, 6) =node(5) & node(6)) (38)
5.1.6. Thread trigger

CoordL thread trigger (7) nodes are represented by instances of TTrigger shown below. It provides in ports rta and rtb to
receive notifications of termination from nodes a and b and out ports ssc and ssd to send start signals to nodes ¢ and d.

T = e(TTrigger) o {rta, rtb} » {ssc, ssd}
mprc(Do, {rta, rtb, ssc, ssd},
“(rta.rtb + rtb.rta).ssc.Do + rta.ssd.Do + rtb.ssd.Do”)

A thread trigger on p connecting nodes a, b, ¢ and d is translated by applying reconfiguration ttrigger(a, b, c,d) to
the architecture resulting from translating p. The script creates an instance of TTrigger and adds it into the architecture.
Subsequently removes renamings of ports which notify termination of instances representing a and b, and ports receiving
start signals of instances representing ¢ and d. Then, it connects the corresponding ports to the ones in the TTrigger instance.

A((p)§>=<) = ttrigger(a, b, ¢, d) = A(p) (39)
ttrigger(a, b, c,d)(x) = (x node(c) node(d)) [l {ntq, ntp, rSc, S4}

@ ((id;, TTrigger) [c] einst(TTrigger))

& {((idg, nt), (id¢, rta)), ((idp, nt), (ide, rtb)),

((idy, ssc), (idc, 1s)), ((ide, ssd), (idg, 1))} (40)

778 A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784

In the case that lists A and B of nodes are given as arguments to the thread trigger node, the reconfiguration requires
iterating on such lists to remove renamings and create attachments accordingly.

A((p) §==§) = ttrigger(A, B, c,d) = A(p) (41)
ttrigger(A, B, ¢, d)(x) = (x[xnode(c) X node(d))

@ ((id;, TTrigger) [2] einst(TTrigger))

[a] ntq [& nty & {rsc, rSq}

acA beB
EA ((idg, nt), (id, rta)) bEB ((idp, nt), (id¢, rth))
B {((idy, ssc), (idc, rs)), ((id, ssd), (idg, rs)) } (42)

5.2. From Archery to CoordL

An Archery specification representing a coordination pattern can be translated back to CoordL. The model is assumed
to be an instance of the architectural pattern WSPattern and to be structured in terms of architectural products and the
application of the following scripts: node (24), link (30), fork (33), join (35), and ttrigger (40). Translation C(-) receives such
a specification S and returns a CoordL model. It is defined inductively as follows,

C(node(a)) = {{a}, {a}, {a}, &)
C(S1S2) =C(S1) ®C(S2)
C(link(a,b) =) = C(S) «ib
C(fork(f,a,b)=S) = f<5C(S)
C(join(j,a,b) =S) = C(S)p>j
C(ttrigger(a,b, c,d) =S) = (C(S)) < §
The translation for scripts with set or list arguments, namely for variants of link, join and ttrigger, becomes
C(link(L,b) =) = C(S) <12
C(join(j, A, B) =S) = C(S) i
C(ttrigger(a,b,c,d) =S) = (C(S)) ;< §

Applying the translation to the result of expression (38), i.e., C(A(P1)), yields a CoordL model which is equivalent,
modulo commutativity/associativity and thread renaming, to P.

6. Architectural re-engineering at work

The re-engineering process starts by inspecting the code of the legacy system under consideration, using CoordPat to
extract the original system coordination layer. As discussed in Section 2, the coordination pattern shown in Fig. 2 describes
the coordination logic of the module responsible for updating user profiles in components CRM, ERP and TS. Two undesired
behaviours and an improvement opportunity were detected upon an informal analysis:

e Duplicate user creation - The service issues a user existence check and, in case of a negative answer, calls repeatedly
the user creation operation until it answers. This loop copes with the possibility of a creation failure, but does not
distinguish this from the case in which although the user is effectively created, the response to the corresponding
service fails. If this happens, duplicated users are inserted into the system. The problem can be avoided by inserting
user-existence checks before every call to the creation operation.

e Parallel user updates - Upon checking and creating users, the service updates them by sequentially calling the corre-
sponding operations in the CRM, ERP and TS components. Since there is no dependence among these operations and
the call order is arbitrary, it is possible to call them in parallel.

e Deadlocks - If one of the create or update operations is off-line the service will loop indefinitely. Also this can be easily
fixed by suitably limiting the number of retries to a natural number.

Once the coordination model of the original system is extracted, the next phase translates it to Archery. This produces
a sequence of models: at each step the new model is compared with the previous one to detect whether they are (be-
haviourally) equivalent, or one is a refinement of the other. Such relationships can be automatically established in Archery
using the underlying mCRL2 tools. Note, however, that as one might have expected, along a process aiming at improving

A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784 779

the functionality of an architecture most design steps lead to non-bisimilar models. The situation is completely different
from a specification refinement process. Finally, once a satisfactory model has been obtained, it is translated back to CoordL
to guide a re-implementation phase.

The rest of this section is organised as follows: Subsection 6.1 provides a translation of our example CoordL model to an
Archery specification. Such model is then modified by identified common patterns (Subsection 6.2), to include user-existence
checks (Subsection 6.3), to replace sequential calls to updatings by parallel ones (Subsection 6.4), and, finally, to avoid
deadlocks (Subsection 6.5). The reverse translation from Archery to CoordL is shown in Subsection 6.6.

6.1. From CoordL to Archery

The translation from CoordL to Archery is a direct application of A(-) (introduced in Section 5.1). Note that the frag-
ment P of the example was already translated (see expression (38)). Therefore, we end up with

A(P) = Ao = link(j2,7) = (fork(f1, f2, 1) =join(j1, {j2}, {1, 2})
o (link({1, 2}, 2) =node(1) x]node(2))
& (fork({ f2}.3,5) = join(j2. {3, 4}, {5, 6})
o (link({3, 4}, 4) = node(3) xInode(4))
] (link({5, 6}, 6) =node(5) X node(6))))
(] (link(7,7) = link({7, 8}, 8) = link({8, 9}, 9)
= node(7) (x| node(8) x] node(9))

6.2. Detecting patterns

The re-engineering process starts once an Archery specification is obtained. In the case study discussed in this paper, the
architect’s attention was first driven towards detecting common, repeating patterns. Let us describe in some detail the steps
taken in this phase.

First of all a behavioural pattern was detected in the interaction of three pair of instances, and each pair was factored
out into a single one. Specifically, it was observed that the configuration among instances generated by nodes 1 and 2, 3
and 4, and 5 and 6, can be generalised taking the pair of nodes a and b as parameters into a reconfiguration link({a, b}, b) =
node(a) [x] node(b). Moreover, such configuration can be replaced by an instance of a new element, ReadLoopCreate, shown
in expression (43). Then, the reconfiguration script in expression (44) is defined to instantiate it. Note that ric(a,b) >1=
link({a, b}, b) = node(a) xI node(b) =1, i.e., they are interchangeable. This equivalence holds provided that roots activate
configurations only once. Node identifier c(a, b) allows us to trace original node identifiers, and thus to recover the CoordL
model.

RLC = e(ReadLoopCreate) ¢ {rs, recr, recc} ¢ {nt, snd;, snd.}
x mprc (Do, {rs, sndr, rec;, nt},
“rs.sndy.rec.(t + 7.Loop).nt”)
@ prc(Loop, {recc, sndc}, “sndc.recc.(T + T.Loop)”) (43)
rlc(a, b)(x) = x (@ ((idc(q, b)> ReadLoopCreate) [¢] einst(ReadLoopCreate))
@ { ((idc(a,b)+ TS): TSc(a,p))» ((ide(a,py t), Nte(a,p))
((ide(q,b- sndy), sndq), ((ide(q,p). TeCr), recq),
((idc(q,p)~ sndc), sndp), ((

The nodes that invoke update operations, namely 7, 8 and 9, follow a specific pattern as well. In this case, it is enough
to define a script that captures such a pattern as it is done in (45). Then, the example configuration is reformulated as in
(46). It can be shown that Ag = A;.

idc(q,p)- TECC), recy) } (44)

upd(a)(x) = link(a, a) = node(a) (45)
Ay = link(j2, 7) = (fork(f1, f2, 1) =join(j1. {j2}, c(1,2))rlc(1,2)

(fork(f2,c(3,4),¢(5,6))

= join(j2, ¢(3,4),¢(5,6)) =rlc(3,4) K rlc(5, 6)))

(link(7, 8) = link(8, 9) = upd(7) X upd(8) X upd(9)) (46)

780 A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784

6.3. Introducing user-existence checks

Duplicated users may be created by .A;. According to the available information in the original CoordL pattern (see
Fig. 2), nodes 1, 3, and 5 are read operations performed on each subsystem to ensure that the user does not exist, before
the respective nodes 2, 4, and 6 that actually create it. Note that if a create operation succeeds, but the response does not
arrive to the coordinator service, a duplicated user is shown. In .A; this is isolated in element ReadLoopCreate. We address
it by defining element ReadCreateLoop as indicated in (47) which forces the loop to include the user-existence check on
every call. The reconfiguration script rcl(a, b) that creates instances of this element is very similar to rlc(a, b), but for the
instantiated element. As expected, the two configurations are not equivalent, i.e., rcl(a, b) =1 #£ric(a, b) = 1. However, there
is an equivalence rcl(a, b) =1 = link(a, b) = link(b, a) = node(a) XI node(b), which indicates how to express the new element
in terms of reconfiguration scripts used by .A(-), which helps in translating the resulting specification back to CoordL.
We obtain a configuration A, (by replacing script rlc with rcl) in which every call to a create is preceded by a call to a
read, and such that A; # A,.

RCL = e(ReadCreateLoop) o {rs, recy, rec.} ¢ {nt, snd;, snd.}
s« mprc(Do, {rs, nt}, “rs.Loop.nt.Do”)

@prc(Loop, {rec;, snd;, recc, snd.},

“sndy.recy.(tT + t.sndc.recc + sndc.recc.Loop)") (47)
6.4. Putting user-update operations in parallel

The subsequent re-engineering step modifies the coordinator by placing user-updates, i.e., instances representing nodes 7,
8, 9, in parallel. For this, we define in (48) a new configuration .43, that differs from .A; in a number of forks and joins
allowing the concurrent execution of these instances. As expected A # As.
Asz =link(j1, f3) = (fork(f1, f2,1) = join(j1, j2,¢(1,2)) =rcl(1,2)
(fork(f2,c(3,4),c(5,6)) = join(jo.c(3,4),c(5.6))
=rcl(3,4) K rcl(5,6)))
(fork(f3, 7, fa) = join(j3, 7, ja) =upd(7)
(fork(fa,8,9) = join(ja,8,9) =upd(8) X upd(9))) (48)

6.5. Avoiding deadlocks

At this stage, a potential for deadlock still remains. Actually, when an update or create operation does not respond, the
call is repeated until a response is obtained. As a consequence, if one of the operations is off-line, the integrated user-update
neither fails nor succeeds. The problem is solved by adding elements that have a counter and an iteration limit, and replac-
ing in a new configuration A4 the corresponding instances. Element ReadCreateFiniteLoop in (49) replaces ReadCreateLoop
and element UpdateFiniteLoop in (50) is used instead of RLink for updates. We need to define new configuration scripts for
these elements. Script rcfl in (51) replaces rcl, only differing in the creation of the variable and the instance, which now
receives an integer N as a parameter. The set R of renamings remains unaltered. In a similar way, script ufl in (52) replaces
upd, which has a constructor that receives an integer as parameter as well. We observe that the configurations obtained by
the respective scripts are not equivalent, i.e., r¢fl(a, b) =1 rcl(a, b) and ufl(a) =1 # upd(a) = 1. Note that the new elements
just introduced convey information that cannot be translated to CoordL.

RCFL = e (ReadCreateFiniteLoop, [{max, Int)|)
o {rs, recy, rec:} & {nt, sndy, snd.}
x mprc(Do, [¢n, Int, max)], {rs, nt},
“rs.Loop(0, n).nt.Do(n)")
@ prc(Loop, [(i, Int), (n, Int)], {rec;, sndy, recc, sndc},
“sndy.rec;.(T + T.sndc.recc

+ T.sndc.rece.(i < n) — Loop(i + 1,n) <> 1)”) (49)

A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784 781

(1 - CallWS(CRMReadUser,2)

2 - CallWS(CRMCreateUser,2)
3 - CallWS(ErpReadUser,2)

4 - CallWS(ErpCreateUser,2)

5 - CallWS(TSReadUser,2)

¢ 6 - CallWS(TSCreateUser,2)

7 - CallWS(CRMUpdateUser,2)
8 - CallWS(ERPUpdateUser,2)
\9 - CallWS(TSUpdateUser,2)

Fig. 6. Coordination pattern for the re-engineered integrated update.

UFL = e(UpdateFiniteLoop, [(max, Int)|)
o {rs, rec} » {se, snd}
= mprc(Do, [(n, Int, max)], {rs, nt},
“rs.Loop(0, n).nt.Do(n)")
@ pre(Loop, [i, Int), {n, Int)], {rec, snd},
“snd.rec.(t + 7.(i <n) — Loop(i + 1,n) <> 1)") (50)
rcfl(a, b)(x) = x[@ ((idc(a‘b), ReadCreateFiniteLoop)
[3] einst (ReadCreateFiniteLoop, [N])) 2] R (51)
ufl(a)(x) = x[@ ((idq, UpdateFiniteLoop)
[lig, einst (UpdateFiniteLoop, [N])) (52)

6.6. Translating back to CoordL

Upon obtaining a satisfactory specification, translation C(-) is applied to obtain the corresponding CoordL model.

Given that the model in Subsection 6.5 cannot be expressed in CoordL, we translate A3 instead, the one obtained in
Subsection 6.4, shown in (48). Before applying the translation, we need to replace scripts rcl and upd by their equivalent
forms expressed in terms of scripts link and node. Translation C(-) applied to the resulting model yields (53), which is
graphically depicted in Fig. 6.

((fiz{1@2 47
®(2=3506) il ®(B®4) <)o) 1H=it)

® (f5=<17,7 0 ® (fa<58 9§ ®9) §=ja)] =i3)) < (53)

782 A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784

7. Related work and conclusions

This paper introduced an approach to the architectural re-engineering of legacy software systems, ranging from the re-
construction of coordination pattens from source code to the specification, analysis and modification of the corresponding
architectural model at a higher level of abstraction, as well as its mapping back to the implementation layer. Conceptually,
it focuses on the architecture’s structure of interactions which is often strongly weaved with the application at the source
code level. Methodologically, the approach combines an extraction and analysis stage with an iterative re-engineering pro-
cess at a higher level of abstraction. Both stages are tool-supported, by CoordPat and Archery, respectively. The former is an
extension to CoordInspector [1] to which adds a notion of coordination pattern, a language and a calculus of such patterns,
and a facility for pattern search and identification over a program dependency graph. The latter is a high level architectural
description language which resorts to mCRL2 for behaviour simulation and analysis.

7.1. Related work

There is a number of tools and methodologies targeting the identification of architectural elements from source code or
intermediate code representations based on programs analysis techniques (see, e.g. [18] for an early reference). CoordPat
shares a number of intuitions discussed in [19-21]. CoordPat search, however, is driven by coordination patterns, paramet-
ric on the communication primitives used in the source programming platform (the glue primitives), embodying complex
interaction and architectural models. To the best of our knowledge, this has not been made before. The CoorL language,
however, was initially inspired by operational notations for the description of REo circuits [22], namely in [23] and [24].

Archery is an architectural description language (ADL). ADLs model software architectures in terms of components and
connectors arranged according to their interfaces in configurations. The interaction points of components and connectors
are called ports and roles, respectively. Ref. [25], identifies these abstractions as essential for an ADL, and stresses the
importance of providing tool-support to the development and evolution of architectural models. Notations that do not
provide first-class constructors for these abstractions, such as UML [26], cannot be considered as architectural languages.
Actually, UML was conceived to provide a unique syntax and modelling framework for object oriented software development.
Although it can be used to model software architectures, as is shown in [27], a proper ADL-like extension of object oriented
constructors to represent architectural abstractions is required [25].

ACME [28], ADR [29], Darwin [30-32], and Wright [33,34] are among the languages that provide the essential abstrac-
tions. While ACME is focused in the structural dimension of architectural specifications, the others address, in different
ways, the representation and analysis of architectures able to reconfigure themselves at run-time [30,34,27]. All of them
provide constructors to define types of architectural elements (components and connectors), with associated interfaces de-
fined in terms of a broad notion of interaction points. However, two main approaches can be distinguished. In one of them
different constructors are used to deal with component and connector abstractions separately [28,33,34]. In the other there
is a single constructor to manage them uniformly [29,35,32]. The Archery language follows the latter approach providing a
single constructor to define architectural element types. All of these languages provide a constructor to build configurations
out of instances of architectural element types previously defined.

Tool supported development and analysis of architectural models, and their evolution, entail the need for a formal,
underlying semantics. Ref. [36] provides an extensive discussion of this issue and proposes a classification of ADLs based on
the style of semantics adopted. Two groups emerge as particularly important: process algebra and graph-based approaches.
While Darwin [30] and Wright [34] are examples of the former, ADR [29] combines both approaches. Ref. [37], in particular,
presents a way of interpreting process algebra descriptions as graphs, as well as an algebra of (ADR-like) graphs and a sound
and complete axiomatization of graph isomorphism. Similarly to Darwin and Wright, Archery [3] models the behavioural
dimension in software architectures with process algebras. It also exploits the higher order, equational data types provided
by mCRL2 by allowing the specification of data-typed interactions and data-state of architectural element instances.

Although the formal semantics of ACME is debatable (ACME places itself at a meta-level for interchanging different types
of architectural abstractions), the language gained recognition as the least common denominator for architectural design [28,
27]. Actually, it adds to the essential abstractions a representation to model hierarchical composition and representation maps
which map internal interaction points of a configuration to its external interface. Archery represents these abstractions with
a constructor that indicates that an architectural element instance has an internal architecture whose interaction points are
mapped to the externally visible ones.

ADLs that support the concept of architectural pattern [38] or style [39] facilitate the development of specifications
because they are able to abstract recurring forms. Ref. [40] gives a general characterisation as a description of element and
configuration types, and a set of constraints their use. Unfortunately, the notion is often used without a proper formalisation.

Patterns can be enriched by the specification of architectural constraints in a suitable logic. The latter can be enforced
either by construction, or either by restriction [41]. ADR [29] uses the former mechanism leaving constraints implicit. The
latter approach requires the explicit specification of constraints that forbid generic (re)configuration operations leading to
incorrect configurations. Darwin [31] enforces constraints by restriction with a translation of the structural dimension of
architectures to Alloy [42]. Archery follows a similar approach. A language extension for the specification of architectural
constraints in modal logics is under development. How those can be mapped back to constraints at the level of coordination
patterns as the ones specified in CoordL, remains a topic for future research.

A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784 783

7.2. Contributions and future work

The main contribution of this paper was the re-engineering approach itself, and a systematic translation scheme from
code-level models (as generated by CoordPat) to conceptual models (as represented in Archery) and back. The CoordPat tool
and a formal semantic model for its pattern description language (CoordL) was also introduced here.

The combined use of these two methodologies/tools provides the working software architect with an interesting, yet
simple, framework for architectural re-engineering. Further case studies are being made to provide extra empirical evidence
of its usefulness and identify possible improvements.

But, of course, a number of questions remain to be answered. A main topic concerns the automatisation of the whole
bi-directional translation process from CoordL to Archery and back, and the integration of the whole approach in the Eclipse
platform for easier deployment. Another one concerns the enrichment of both CoordL coordination patterns and Archery
architectural patterns with quantitative annotations, for example to measure communication throughput or, in general, QoS
levels associated to architectures, and to propagate such information along composition. More and more a system behaviours
of interest are broader than the traditional Boolean “correct” or “incorrect” judgement. Quantitative aspects include, among
others, timing (discrete, continuous or hybrid), probability of success or failure including cost and reward, and quantified
information flows in a software architecture. Addressing such aspects along the lines of the approach discussed in this paper
constitutes a main challenge to our current work.

Acknowledgements

This work is funded by the ERDF through the Programme COMPETE and by FCT, the Portuguese Foundation for Science
and Technology, under contract FCOMP-01-0124-FEDER-028923.

References

[1] N.E. Rodrigues, L.S. Barbosa, CoordInspector: a tool for extracting coordination data from legacy code, in: Eighth IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2008, September 28-29, IEEE Computer Society, Beijing, China, 2008, pp. 265-266.

[2] N.E. Rodrigues, N. Oliveira, L.S. Barbosa, The role of coordination in software integration projects, in: R. Meersman, T. Dillon, P. Herrero (Eds.), OTM
2011 Workshops, in: Lecture Notes in Computer Science, vol. 7046, Springer-Verlag, 2011, pp. 83-92.

[3] A. Sanchez, LS. Barbosa, D. Riesco, Bigraphical modelling of architectural patterns, in: F. Arbab, P.C. Olveczky (Eds.), Formal Aspects of Component
Software - 8th International Symposium, FACS 2011, Oslo, Norway, September 14-16, 2011, in: Lecture Notes in Computer Science, vol. 7253, Springer,
2011, pp. 313-330, revised selected papers.

[4] LS. Barbosa, PR. Henriques, A. Sanchez, Towards rigorous analysis of open source software, in: M. Kyas, S. Meng, V. Stolz (Eds.), Proceedings of TTSS'11,
5th Inter. Workshop on Harnessing Theories for Tool Support in Software, Sep. 2011, University of Oslo, RR-409, 2011, pp. 77-89.

[5] LS. Barbosa, A. Cerone, A.K. Petrenko, S.A. Shaikh, Certification of open-source software: a role for formal methods?, Int. J. Comput. Syst. Sci. Eng.
(2010) 273-281.

[6] N.F. Rodrigues, L.S. Barbosa, Slicing for architectural analysis, Sci. Comput. Program. 75 (2010) 828-847.

[7] D. Gelernter, N. Carrier, Coordination languages and their significance, Commun. ACM 2 (1992) 97-107.

[8] S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing using dependence graphs, in: Proceedings of the ACM SIGPLAN 1988 Conf. on Programming
Usage, Design and Implementation, PLDI'88, ACM Press, 1988, pp. 35-46.

[9] A. Sanchez, L.S. Barbosa, D. Riesco, A language for behavioural modelling of architectural patterns, in: Proceedings of the Third Workshop on Be-
havioural Modelling, BM-FA’11, ACM, New York, NY, USA, 2011, pp. 17-24.

[10] J.F. Groote, A. Mathijssen, M.A. Reniers, Y.S. Usenko, M. van Weerdenburg, The formal specification language mCRL2, in: E. Brinksma, D. Harel, A. Mader,
P. Stevens, R. Wieringa (Eds.), Methods for Modelling Software Systems, MMOSS, in: Dagstuhl Seminar Proceedings, vol. 06351, Internationales Begeg-
nungs und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[11] S. Cranen,].F. Groote, JJ.A. Keiren, EP.M. Stappers, E.P. de Vink, W. Wesselink, T.A.C. Willemse, An overview of the mCRL2 toolset and its recent
advances, in: Tools and Algorithms for the Construction and Analysis of Systems — 19th International Conference, TACAS 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2013, March 16-24, 2013, Rome, Italy, in: Lecture Notes in Computer Science,
vol. 7795, Springer, 2013, pp. 199-213.

[12] R. Milner, Bigraphical reactive systems, in: K.G. Larsen, M. Nielsen (Eds.), CONCUR, in: Lecture Notes in Computer Science, vol. 2154, Springer, 2001,
pp. 16-35.

[13] J.C.M. Baeten, T. Basten, M.A. Reniers, Process Algebra: Equational Theories of Communicating Processes, Cambridge University Press, 2010.

[14]]. Baeten, A brief history of process algebra, Theor. Comput. Sci. 335 (2005) 131-146.

[15] A. Aldini, M. Bernardo, F. Corradini, A Process Algebraic Approach to Software Architecture Design, vol. 54, Springer London, London, 2010.

[16] R. Bruni, A. Lluch-Lafuente, U. Montanari, Style-based architectural reconfigurations, Bull. Eur. Assoc. Theor. Comput. Sci. 94 (2008) 161-180.

[17] A. Sanchez, A calculus of architectural patterns, PhD thesis, Universidad de San Luis, Argentina, 2014.

[18] K. Ottenstein, L.M. Ottenstein, The program dependence graph in a software development environment, in: Proc. of the First ACM SIGSOFT/SIGPLAN
Software Engineering Posium on Practical Software Development Environments, ACM Press, 1984, pp. 177-184.

[19] V.P. Ranganath,]. Hatcliff, Slicing concurrent Java programs using Indus and Kaveri, Int.]. Softw. Tools Technol. Transf. 9 (2007) 489-504.

[20] V.P. Ranganath, T. Amtoft, A. Banerjee,]J. Hatcliff, M.B. Dwyer, A new foundation for control dependence and slicing for modern program structures,
ACM Trans. Program. Lang. Syst. 29 (2007).

[21] M.G. Nanda, S. Ramesh, Interprocedural slicing of multithreaded programs with applications to Java, ACM Trans. Program. Lang. Syst. 28 (2006)
1088-1144.

[22] E. Arbab, Reo: a channel-based coordination model for component composition, Math. Struct. Comput. Sci. 14 (2004) 329-366.

[23] C. Krause, Z. Maraikar, A. Lazovik, F. Arbab, Modeling dynamic reconfigurations in Reo using high-level replacement systems, Sci. Comput. Program. 76
(2011) 23-36.

[24] N. Oliveira, L.S. Barbosa, Reconfiguration mechanisms for service coordination, in: M.H. ter Beek, N. Lohmann (Eds.), Web Services and Formal Methods
- 9th International Workshop, WS-FM 2012, Tallinn, Estonia, September 6-7, 2012, in: Lecture Notes in Computer Science, Springer, 2012, pp. 134-149,
revised selected papers.

http://refhub.elsevier.com/S0167-6423(14)00093-8/bib726F64726967756573303862s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib726F64726967756573303862s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib524F423131s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib524F423131s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib534252313162s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib534252313162s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib534252313162s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4248533131s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4248533131s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib424350533039s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib424350533039s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib52423130s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib47433932s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib48423838s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib48423838s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib534252313161s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib534252313161s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib6D43524C32s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib6D43524C32s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib6D43524C32s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib6D43524C32546F6F6Cs1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib6D43524C32546F6F6Cs1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib6D43524C32546F6F6Cs1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib6D43524C32546F6F6Cs1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4D696C6E65723031s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4D696C6E65723031s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4242523130s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4261653035s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib416C64696E6932303130s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4272756E694C4D3038s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib53616E6368657A3134s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4F4F3834s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4F4F3834s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib52483037s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib52414248443037s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib52414248443037s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4E523036s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4E523036s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4172623034s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4B72617573654D4C413131s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4B72617573654D4C413131s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4F6C697665697261423132s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4F6C697665697261423132s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4F6C697665697261423132s1

784 A. Sanchez et al. / Science of Computer Programming 98 (2015) 764-784

[25] N. Medvidovic, R. Taylor, A classification and comparison framework for software architecture description languages, IEEE Trans. Softw. Eng. 26 (2000)
70-93.

[26]]J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual, second edition, Addison-Wesley, Boston, MA, 2005.

[27] N. Medvidovic, D.S. Rosenblum, D.F. Redmiles, J.E. Robbins, Modeling software architectures in the unified modeling language, ACM Trans. Softw. Eng.
Methodol. 11 (2002) 2-57.

[28] D. Garlan, R. Monroe, D. Wile, ACME: An architecture description interchange language, in: Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research, CASCON'97, IBM Press, 1997, pp. 169-183.

[29] R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto, Style based architectural reconfigurations, Bull. Eur. Assoc. Theor. Comput. Sci. 94 (2008) 161-180.

[30] J. Magee, J. Kramer, Dynamic structure in software architectures, in: Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software
Engineering, SIGSOFT'96, ACM, New York, NY, USA, 1996, pp. 3-14.

[31] L. Georgiadis,]. Magee,]. Kramer, Self-organising software architectures for distributed systems, in: Proceedings of the First Workshop on Self-healing
Systems, WOSS’02, ACM, New York, NY, USA, 2002, pp. 33-38.

[32] J. Kramer, J. Magee, S. Uchitel, Software architecture modeling & analysis: a rigorous approach, in: M. Bernardo, P. Inverardi (Eds.), Formal Methods for
Software Architectures, in: Lecture Notes in Computer Science, vol. 2804, Springer, Berlin, Heidelberg, 2003, pp. 44-51.

[33] R. Allen, D. Garlan, A formal basis for architectural connection, ACM Trans. Softw. Eng. Methodol. 6 (1997) 213-249.

[34] R. Allen, R. Douence, D. Garlan, Specifying and analyzing dynamic software architectures, in: E. Astesiano (Ed.), Fundamental Approaches to Software
Engineering, in: Lecture Notes in Computer Science, vol. 1382, Springer, Berlin, Heidelberg, 1998, pp. 21-37.

[35] J. Magee, N. Dulay, S. Eisenbach, J. Kramer, Specifying distributed software architectures, in: W. Schafer, P. Botella (Eds.), Software Engineering, ESEC'95,
in: Lecture Notes in Computer Science, vol. 989, Springer, Berlin, Heidelberg, 1995, pp. 137-153.

[36] J.S. Bradbury, J.R. Cordy, J. Dingel, M. Wermelinger, A survey of self-management in dynamic software architecture specifications, in: Proceedings of the
1st ACM SIGSOFT Workshop on Self-managed Systems, WOSS'04, ACM, New York, NY, USA, 2004, pp. 28-33.

[37] R. Bruni, F. Gadducci, A. Lluch-Lafuente, An algebra of hierarchical graphs and its application to structural encoding, Sci. Ann. Comput. Sci. 20 (2010)
53-96.

[38] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software Architecture, vol. 1: A System of Patterns, Wiley, 1996.

[39] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall, 1996.

[40] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second edition, Addison-Wesley, Longman Publishing Co., Inc., 2003.

[41] R. Bruni, A. Bucchiarone, S. Gnesi, D. Hirsch, A. Lluch Lafuente, Graph-based design and analysis of dynamic software architectures, in: P. Degano,
R. Nicola, J. Meseguer (Eds.), Concurrency, Graphs and Models, in: Lecture Notes in Computer Science, vol. 5065, Springer, Berlin, Heidelberg, 2008,
pp. 37-56.

[42] D. Jackson, Alloy: a lightweight object modelling notation, ACM Trans. Softw. Eng. Methodol. 11 (2002) 256-290.

http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4D65647669646F7669633030s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4D65647669646F7669633030s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib554D4C3035s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4D65647669646F7669633032s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4D65647669646F7669633032s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4761726C616E3937s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4761726C616E3937s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4272756E69303861s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4D616765653936s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4D616765653936s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib47656F726769616469732B3032s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib47656F726769616469732B3032s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4B72616D65722B3033s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4B72616D65722B3033s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib416C6C656E3937s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib416C6C656E2B3938s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib416C6C656E2B3938s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4D616765653935s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4D616765653935s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib42726164627572792B3034s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib42726164627572792B3034s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4272756E69474C3130s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4272756E69474C3130s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib42757363686D616E6E3936s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib5368617731393936s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib426173733033s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4272756E692B303862s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4272756E692B303862s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4272756E692B303862s1
http://refhub.elsevier.com/S0167-6423(14)00093-8/bib4A61636B736F6E3032s1

	A perspective on architectural re-engineering
	1 Introduction
	2 An approach to architectural re-engineering
	3 Architectural reconstruction with CoordPat
	3.1 Specifying coordination patterns
	3.2 CoordL - the language

	4 Architectural modelling with Archery
	4.1 Modelling architectural patterns
	4.1.1 Patterns and elements
	4.1.2 Pattern and element instances

	4.2 Combinators
	4.3 Behavioural semantics
	4.4 Architectural analysis

	5 Translating CoordL to Archery and back
	5.1 From CoordL to Archery
	5.1.1 Base node
	5.1.2 Juxtaposition
	5.1.3 Link
	5.1.4 Fork
	5.1.5 Join
	5.1.6 Thread trigger

	5.2 From Archery to CoordL

	6 Architectural re-engineering at work
	6.1 From CoordL to Archery
	6.2 Detecting patterns
	6.3 Introducing user-existence checks
	6.4 Putting user-update operations in parallel
	6.5 Avoiding deadlocks
	6.6 Translating back to CoordL

	7 Related work and conclusions
	7.1 Related work
	7.2 Contributions and future work

	Acknowledgements
	References

