
Fernando Silva Inês Dutra
Vítor Santos Costa (Eds.)

 123

20th International Conference
Porto, Portugal, August 25–29, 2014
Proceedings

Euro-Par 2014
Parallel ProcessingLN

CS
 8

63
2

AR
Co

SS

Euro - Par
2014

Lecture Notes in Computer Science 8632
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Fernando Silva Inês Dutra
Vítor Santos Costa (Eds.)

Euro-Par 2014
Parallel Processing

20th International Conference
Porto, Portugal, August 25-29, 2014
Proceedings

13

Volume Editors

Fernando Silva
Inês Dutra
Vítor Santos Costa
Universidade do Porto
CRACS/INESC-TEC and FCUP
Rua do Campo Alegre, 1021
4169-007 Porto, Portugal
E-mail: {fds, ines, vsc}@dcc.fc.up.pt

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-09872-2 e-ISBN 978-3-319-09873-9
DOI 10.1007/978-3-319-09873-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945461

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Euro-Par is an annual series of international conferences dedicated to the pro-
motion and advancement of all aspects of parallel and distributed computing. It
covers a wide spectrum of topics from algorithms and theory to software technol-
ogy and hardware-related issues, with application areas ranging from scientific
to mobile and cloud computing. Euro-Par provides a forum for the introduc-
tion, presentation, and discussion of the latest scientific and technical advances,
extending the frontier of both the state of the art and the state of the practice.

The main audience of Euro-Par are the researchers in academic institutions,
government laboratories, and industrial organizations. Euro-Par’s objective is to
be the primary choice of such professionals for the presentation of new results in
their specific areas. As a wide-spectrum conference, Euro-Par fosters the synergy
of different topics in parallel and distributed computing. Of special interest are
applications that demonstrate the effectiveness of the main Euro-Par topics.

In addition, Euro-Par conferences provide a platform for a number of accom-
panying technical workshops. Thus, smaller and emerging communities can meet
and develop more focused topics or as yet less established topics.

Euro-Par 2014 was the 20th conference in the Euro-Par series, and was orga-
nized in Porto, Portugal, by the University of Porto, Faculty of Sciences, Com-
puter Science Department and the Center for Research in Advanced Computing
of INESC-TEC. Previous Euro-Par conferences took place in Stockholm, Lyon,
Passau, Southampton, Toulouse, Munich, Manchester, Paderborn, Klagenfurt,
Pisa, Lisbon, Dresden, Rennes, Las Palmas, Delft, Ischia, Bordeaux, Rhodes,
and Aachen. Next year, the conference will be held in Vienna, Austria. More
information on the Euro-Par conference series and organization is available on
the website at http://www.europar.org.

Euro-Par 2014 covered 15 topics. The paper review process for each topic was
managed and supervised by a committee of at least four people: a global chair,
a local chair, and two members. Topics with a high number of submissions were
managed by larger committees. The final decisions on the acceptance or rejection
of the submitted papers were made at a meeting of the conference co-chairs and
local chairs of the topics.

The call for papers attracted 267 full-paper submissions, representing 45
countries. A total of 1,070 review reports were collected, giving an average of
4.0 review reports per paper. The Program Committee members hailed from
22 different countries. We selected 68 papers to be presented at the conference
and included in the conference proceedings, representing 29 countries from all
continents, and resulting in an acceptance rate of 25.5%.

VI Preface

Euro-Par 2014 was very pleased to present three invited speakers of high
international reputation, who discussed important developments in very inter-
esting areas of parallel and distributed computing:

1. Pawl Watson (Newcastle University, UK)
2. Henri Bal (Vrije Universiteit, The Netherlands)
3. Ricardo Bianchini (Rutgers University and Microsoft, USA)

As part of Euro-Par 2014, two tutorials and 18 workshops were held prior to
the main conference. The two tutorials were:

1. Heterogeneous Memory Models, by Benedict R. Gaster (Qualcomm, Inc.)
2. High-Performance Parallel Graph Analytics, by Keshav Pingali (UT Austin)

and Manoj Kumar (IBM)

The 18 workshops were:

1. 12th International Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Platforms (HeteroPar)

2. 5th Workshop on High Performance Bioinformatics and Biomedicine (HiBB)
3. SecondWorkshop on Parallel and Distributed Agent-Based Simulations (PAD-

ABS)
4. Second Workshop on Runtime and Operating Systems for the Many Core

Era (ROME)
5. 7th Workshop on Unconventional High-Performance Computing (UCHPC)
6. 9th Workshop on Virtualization in High-Performance Cloud Computing

(VHPC)
7. First Workshop on Applications of Parallel Computation in Industry and

Engineering (APCIE)
8. Third Workshop on Big Data Management in Clouds (BigDataCloud)
9. Workshop on Software for Exascale Computing - Project Workshop

(SPPEXA)
10. Second Workshop on Dependability and Interoperability in Heterogeneous

Clouds (DIHC)
11. Second Workshop on Federative and Interoperable Cloud Infrastructures

(FedICI)
12. Third Workshop on On-Chip Memory Hierarchies and Interconnects: Orga-

nization, Management and Implementation (OMHI)
13. SecondWorkshop on Large-Scale Distributed Virtual Environments on Clouds

and P2P (LSDVE)
14. 7th Workshop on Resiliency in High-Performance Computing with Clouds,

Grids, and Clusters (Resilience)
15. First InternationalWorkshop on Reproducibility in Parallel Computing (REP-

PAR)
16. First Workshop on Techniques and Applications for Sustainable Ultrascale

Computing Systems (TASUS)
17. 7th International Workshop on Multi-/Manycore Computing Systems

(MuCoCoS)

Preface VII

18. 7th Workshop on Productivity and Performance – Tools for HPC Application
Development (PROPER)

Workshop papers will be published in a separate proceedings volume.

The 20th Euro-Par conference in Porto would not have been possible without
the support of many individuals and organizations. We owe special thanks to the
authors of all the submitted papers, the members of the topic committees, and
the reviewers in all topics for their contributions to the success of the conference.
A special word of thanks should go to the global and local chairs, who were
always available and did excellent work in managing the reviewing process with
a tight deadline. We would also like to express our gratitude to the members of
the Organizing Committee. Moreover, we are indebted to the members of the
Euro-Par Steering Committee for their trust, guidance, and support. Finally, a
number of institutional and industrial sponsors contributed to the organization
of the conference. Their names and logos appear on the Euro-Par 2014 website
http://europar2014.dcc.fc.up.pt.

It was a pleasure and an honor to organize and host Euro-Par 2014 in Porto.
We hope that all participants enjoyed the technical program and the social events
organized during the conference, as well as the city of Porto.

August 2014 Fernando Silva
Inês Dutra

Vı́tor Santos Costa

Organization

Euro-Par Steering Committee

Chair

Christian Lengauer University of Passau, Germany

Vice-Chair

Luc Bougé ENS Rennes, France

European Representatives

Marco Danelutto University of Pisa, Italy
Emmanuel Jeannot LaBRI-Inria, Bordeaux, France
Christos Kaklamanis Computer Technology Institute, Greece
Paul Kelly Imperial College, UK
Thomas Ludwig University of Hamburg, Germany
Emilio Luque Autonomous University of Barcelona, Spain
Tomàs Margalef Autonomous University of Barcelona, Spain
Wolfgang Nagel Dresden University of Technology, Germany
Rizos Sakellariou University of Manchester, UK
Henk Sips Delft University of Technology,

The Netherlands
Domenico Talia University of Calabria, Italy
Felix Wolf GRS and RWTH Aachen University, Germany

Honorary Members

Ron Perrott Oxford e-Research Centre, UK
Karl Dieter Reinartz University of Erlangen-Nuremberg, Germany

Observers

Fernando Silva University of Porto, Portugal
Jesper Larsson Träff Vienna University of Technology, Austria

Euro-Par 2013 Organization

Conference Co-chairs

Fernando Silva University of Porto, Portugal
Inês Dutra University of Porto, Portugal
Vı́tor Santos Costa University of Porto, Portugal

X Organization

Local Organizing Committee

Joana Dumas University of Porto, Portugal
Alexandra Ferreira University of Porto, Portugal
Lúıs Lopes University of Porto, Portugal
Pedro Ribeiro University of Porto, Portugal
Ricardo Rocha University of Porto, Portugal

Program Committee

Topic 1: Support Tools and Environments

Chair

Thilo Kielmann Vrije Universiteit Amsterdam, The Netherlands

Local Chair

José C. Cunha New University of Lisbon, Portugal

Members

Anthony Danalis University of Tennessee at Knoxville, USA
Bernd Freisleben University of Marburg, Germany
Tomàs Margalef Universitat Autonoma de Barcelona, Spain

Topic 2: Performance Prediction and Evaluation

Chair

Alexey Lastovetsky University College Dublin, Ireland

Local Chair

Francisco F. Rivera University of Santiago de Compostela, Spain

Members

David E. Singh University Carlos III of Madrid, Spain
Dimitrios S. Nikolopoulos Queen’s University of Belfast, UK
Leonel Sousa IST-University of Lisbon, Portugal
Petr Tuma Charles University, Czech Republic
Wolfgang Nagel Dresden University of Technology, Germany

Topic 3: Scheduling and Load Balancing

Chair

Helen Karatza Aristotle University of Thessaloniki, Greece

Organization XI

Local Chair

Jorge Barbosa University of Porto, Portugal

Members

Alexandru Iosup Delft University of Technology,
The Netherlands

Andrzej Goscinski Deakin University, Australia
Cevdet Aykanat Bilkent University, Ankara, Turkey
Frédéric Suter IN2P3 Computing Center, CNRS, France
Nick Bessis The University of Derby, UK
Ramin Yahyapour Göttingen University, Germany

Topic 4: High-Performance Architectures and Compilers

Chair

Sally A. McKee Chalmers University of Technology, Sweden

Local Chair

João Paiva Cardoso University of Porto, Portugal

Members

Changhee Jung Virginia Tech, USA
Magnus Själander Florida State University, USA
Rui Hou Institute of Computing Technology, China
Soner Onder Michigan Technological University, USA

Topic 5: Parallel and Distributed Data Management

Chair

Josep L. Larriba-Pey Polytechnic University of Catalonia, Spain

Local Chair

Paolo Romano IST-University of Lisbon, Portugal

Members

David Dominguez-Sal Sparsity Technologies, Spain
Kai-Uwe Sattler Technical University of Ilmenau, Germany
Patrick Martin Queen’s University, Kingston, Canada
Yang-Sae Moon Kangwon National University, Korea

XII Organization

Topic 6: Grid, Cluster and Cloud Computing

Chair

Uwe Schwiegelshohn Universität Dortmund, Germany

Local Chair

Hervé Paulino New University of Lisbon, Portugal

Members

Domenico Talia University of Calabria, Italy
Maŕıa S. Pérez-Hernández Universidad Politécnica de Madrid, Spain
Olivier Beaumont Inria, France
Rizos Sakellariou University of Manchester, UK
Satoshi Matsuoka Tokyo Institute of Technology, Japan
Vijay Saraswat IBM, USA

Topic 7: Green High-Performance Computing

Chair

Martin Schulz Lawrence Livermoore National Laboratory,
USA

Local Chair

Lúıs Lopes University of Porto, Portugal

Members

Enrique S. Quintana Orti Universidad Jaime I, Castellon, Spain
Koji Inoue Kyushu Institute of Technology, Japan

Topic 8: Distributed Systems and Algorithms

Chair

Pascal Felber Université de Neuchâtel, Switzerland

Local Chair

Lúıs Veiga IST-University of Lisbon, Portugal

Members

Corentin Travers ENSEIRB-MATMECA, France
Fabio Kon University of São Paulo, Brazil
Paul Grace University of Southampton, UK
Vincent Gramoli University of Sydney, Australia

Organization XIII

Topic 9: Parallel and Distributed Programming

Chair

Henri Bal Vrije Universiteit Amsterdam, The Netherlands

Local Chair

João Lúıs Sobral University of Minho, Portugal

Members

Ana Varbanescu University of Amesterdam, The Netherlands
Christian Perez Inria, ENS-Lyon, France
Fabrice Huet University of Nice Sophia Antipolis, France
Marco Danelutto University of Pisa, Italy
Peter Kilpatrick Queen’s University Belfast, UK

Topic 10: Parallel Numerical Algorithms

Chair

Laura Grigori Inria Paris, France

Local Chair

Rui Ralha University of Minho, Portugal

Members

Daniel Kressner EPFL, Switzerland
Rob Bisseling Utrecht University, The Netherlands

Topic 11: Multicore and Manycore Programming

Chair

Raymond Namyst University of Bordeaux 1, France

Local Chair

Ricardo Rocha University of Porto, Portugal

Members

Christoph Kessler University of Linköp̂ıng, Sweden
Elisabeth Larsson Uppsala University, Sweden
Frank Mueller North Carolina State University, USA
Jean-François Méhaut Grenoble University, France
Jesper Träff Vienna University of Technology, Austria
Marco Aldinucci University of Turin, Italy
Mitsuhisa Sato University of Tsukuba, Japan

XIV Organization

Topic 12: Theory and Algorithms for Parallel Computation

Chair

Andrea Pietracaprina University of Padova, Italy

Local Chair

Pedro Ribeiro University of Porto, Portugal

Members

Kieran Herley University College Cork, Ireland
Sergei Vassilvitskii Google, USA

Topic 13: High-Performance Networks and Communication

Chair

José Flich Universidad Politécnica de Valencia, Spain

Local Chair

Filipe Araújo University of Coimbra, Portugal

Members

Cyriel Minkenberg IBM Research - Zurich, Switzerland
Maurizio Palesi Kore University, Italy
Tor Skeie University of Oslo and Simula Research

Laboratory, Norway

Topic 14: High-Performance and Scientific Applications

Chair

Francisco Brasileiro Universidade Federal de Campina Grande,
Brazil

Local Chair

Pedro Medeiros New University of Lisbon, Portugal

Members

Adélia Sequeira IST-University of Lisbon, Portugal
Gilles Fedak University of Lyon, France
Walfredo Cirne Google, USA

Organization XV

Topic 15: GPU and Accelerator Computing

Chair

Paul Kelly Imperial College London, UK

Local Chair

João Lourenço New University of Lisbon, Portugal

Members

Alexander Heinecke Technische Universität München, Germany
Anton Lokhmotov ARM, UK
Christian Plessl University of Paderborn, Germany
Didem Unat Lawrence Berkeley Lab, USA
Dora Blanco Heras University of Santiago de Compostela, Spain
Lee Howes Qualcomm, USA
Naoya Maruyama Tokyo Institute of Technology, Japan
Pedro Gonnet Durham University, UK

Euro-Par 2014 Reviewers

Euro-Par is very grateful to all reviewers for their kind cooperation and effort to
achieve an average of four reviews per paper, producing a total of 1,070 reviews.

Abdou Guermouche
Abdullah Gharaibeh
Adélia Sequeira
Afshin Zafari
Agostino Forestiero
Aidan Chalk
Akihiro Nomura
Albert-Jan Yzelman
Alberto Lluch Lafuente
Alberto Sanchez
Alejandro Rico
Aleksandar Ilic
Alex Ramirez
Alexander Fölling
Alexander Heinecke
Alexandra Carpen-Amarie
Alexandre Denis
Alexandru Costan
Alexandru Iosup
Alexey Lastovetsky
Aline Paes

Altino Sampaio
Alvaro Aguilera
Alysson Bessani
Amina Guermouche
Ana Lucia Varbanescu
Ana-Maria Oprescu
Anastassios Nanos
Andra Hugo
Andrea Pietracaprina
Andreas Agne
Andrew Stephen McGough
Andrzej Goscinski
Angelo Furfaro
Angelos Papatriantafyllou
Anita Sobe
Anna Sikora
Anthony Danalis
Anton Lokhmotov
Antonin Steinhauser
Antonio Espinosa
Antonio Garćıa-Loureiro

XVI Organization

Arash Rezaei
Arlindo Conceição
Armanda Rodrigues
Arnau Prat
Ata Turk
Ayal Zaks
B. Barla Cambazoglu
Barry Rountree
Basilio B. Fraguela
Benjamin Herta
Bernd Freisleben
Bing Tang
Bo Li
Bo Wu
Bogdan Nicolae
Bogdan Prisacari
Bora Ucar
Brice Goglin
Brice Videau
Bruno Ciciani
Bruno Medeiros
Bunjamin Memishi
Carlee Joe-Wong
Carlo Mastroianni
Carmela Comito
Cećılia Gomes
Ceriel Jacobs
Cevdet Aykanat
Changhee Jung
Chao Li
Christian Perez
Christian Plessl
Christiane Pousa
Christoph Kessler
Christos Kartsaklis
Claudia Misale
Clemens Grelck
Corentin Travers
Cosmin Dumitru
Cyriel Minkenberg
César De Rose
Daniel Cordeiro
Daniel Franco
Daniel Kressner
Darko Petrovic

David Dominguez-Sal
David E. Singh
David Fiala
Davide Frey
Denis Barthou
Didem Unat
Diego Didona
Diego Rodŕıguez Mart́ınez
Diego Rughetti
Diego Souza
Dimitar Lukarski
Dimitrios S. Nikolopoulos
Diogo Telmo Neves
Domenico Talia
Dominik Goeddeke
Donald E. Porter
Dong Li
Dora Blanco Heras
Eduardo Cesar
Edwin Yaqub
Elisabeth Brunet
Elisabeth Larsson
Elizeu Santos-Neto
Emilio Francesquini
Emilio Padrón
Emilio Tuosto
Emmanuel Jeannot
Enrique S. Quintana-Orti
Eoghan O’Neill
Eric Aubanel
Erwan Le Merrer
Eugenio Cesario
Fabio Kon
Fabio Luporini
Fabio Tordini
Fabrice Dupros
Fabrice Huet
Fabricio Silva
Fabrizio Marozzo
Farhad Mehdipour
Farhana Zulkernine
Felix Garcia Carballeira
Ferdinando Fioretto
Fernando Birra
Fernando Ramos

Organization XVII

Feroz Zahid
Filipe Araújo
Flavien Quesnel
Florian Rathgeber
Flávio Cruz
Francesco Versaci
Francis Russell
Francisco Argüello
Francisco Brasileiro
Francisco D. Igual
Francisco F. Rivera
Francisco Gaspar
Frank Mueller
François Broquedis
François Gindraud
François Trahay
Françoise Baude
Frédéric Suter
Gabriel Marin
Gavin Vaz
Ge Song
George Rokos
George Terzopoulos
George Tzenakis
German Rodriguez
Gheorghe-Teodor Bercea
Gilles Fedak
Giorgis Georgakoudis
Giuliano Mega
Gokcen Kestor
Gorkem Asilioglu
Guangyu Sun
Guilherme Peretti Pezzi
Haipeng Jia
Haiwu He
Hans Vandierendonck
Hartwig Anzt
Heike McCraw
Heinrich Riebler
Heithem Abbes
Helen Karatza
Henri Bal
Henrique Domingos
Hervé Paulino
Hinde Bouziane

Hitoshi Sato
Holger Brunst
Holger Mickler
Hubertus Franke
H̊akan Sundell
Idafen Santana-Pérez
Ilia Pietri
Ioannis A. Moschakis
Ismail El Helw
Ivan Tanasic
Ivanilton Polato
Ivor Spence
Jairo Panetta
Jan Westerholm
Javier Celaya
Javier Garcia Blas
Jean-François Méhaut
Jean-Marc Pierson
Jens Doleschal
Jens Domke
Jens Gustedt
Jesper Träff
Jesús Montes
Jiayuan Meng
Jie Shen
Jing Liu
Jizeng Wei
Joan Sorribes
Joana Côrte-Real
John Earnest
John Shalf
Jonathan Rouzaud-Cornabas
Jorge Barbosa
Jose E. Roman
Josep Jorba
Josep L. Larriba-Pey
Joseph Hellerstein
Joseph Schuchart
José C. Cunha
José Carlos Cabaleiro
José Flich
José Germano
José Luis Gonzalez Garcia
José Salavert Torres
José Simão

XVIII Organization

João A. Silva
João Barreto
João Leitão
João Lourenço
João Lúıs Sobral
João P. Vilela
João Paiva
João Paiva Cardoso
João Santos
João Silva
Juan Angel Lorenzo del Castillo
Juan C. Pichel
Juan Carlos Moure
Julien Bigot
Julien Forget
Julio Anjos
Julita Corbalan
Jun Wang
Justine Rochas
Jörg Keller
Kadir Akbudak
Kai-Uwe Sattler
Kamer Kaya
Karthikeyan P. Saravanan
Kaveh Razavi
Kees Verstoep
Keiichiro Fukazawa
Kenneth O’Brien
Kento Sato
Kien Le
Kieran Herley
Kiril Dichev
Kirk Cameron
Kiyokuni Kawachiya
Koichi Shirahata
Koji Inoue
Konstantina Mitropoulou
Kuan Lu
Landry Chetsa
Lars Schaefers
Laura Grigori
Laure Gonnord
Lauro Beltrão Costa
Leandro Fontoura-Cupertino
Leandro Marinho

Lee Howes
Leonel Sousa
Lidia Kuan
Lilia Ziane Khodja
Lionel Eyraud-Dubois
Lubomı́r Bulej
Luigi Nardi
Lukáš Marek
Lúıs Assunção
Lúıs Lopes
Lúıs Veiga
Madhukar Korupolu
Magnus Grandin
Magnus Själander
Maik Srba
Manuel F. Dolz
Marcelo Pasin
Marco Aldinucci
Marco Danelutto
Marco Lackovic
Marcus Carvalho
Marcus Hilbrich
Maria Barreda
Maria Clicia Castro
Maria Couceiro
Martin Děcký
Martin Kreichgauer
Martin Schulz
Martin Tillenius
Maŕıa S. Pérez-Hernández
Massimo Torquati
Mastoureh Hassannezhad
Mats Brorsson
Matthias Hofmann
Matthieu Dorier
Mauricio Hanzich
Maurizio Drocco
Maurizio Palesi
Merijn Verstraaten
Michael Haidl
Michael Kluge
Michael Wagner
Miguel Areias
Mihai Capota
Mike Rainey

Organization XIX

Miquel Àngel Senar
Mircea Moca
Mitsuhisa Sato
Mohammed Tohid
Muhammad Aboelfotoh
Murray Cole
Márcio Castro
Naghmeh Ivaki
Naoya Maruyama
Narayan Desai
Neha Gholkar
Nick Bessis
Nicolai Stawinoga
Nicolas Loriant
Nicolás Guil Mata
Nikola Rajovic
Nishanth Balasubramanian
Nuno Diegues
Nuno Neves
Nuno Oliveira
Nuno Preguiça
Nuno Sebastião
Oleg Lodygensky
Oleksandra Kulankhina
Oliver Schmitt
Olivier Aumage
Olivier Beaumont
Onkar Patil
Ozcan Ozturk
Pablo Quesada Barriuso
Pak Markthub
Paolo Romano
Paolo Trunfio
Pascal Felber
Patrick Carribault
Patrick Martin
Paul Grace
Paul Kelly
Paul Renaud-Goud
Paul Watson
Paulo Ferreira
Paulo Lopes
Paulo Sérgio
Pavol Bauer
Pedro Alonso

Pedro Gonnet
Pedro Medeiros
Pedro Miguens
Pedro Ribeiro
Peter Chronz
Peter Kilpatrick
Peter Libič
Petr Tuma
Philip Church
Pierre Fortin
Pierre Sutra
Pieter Hijma
Porfidio Hernández
Radu Prodan
Rafael Mayo Gual
Rahul Gayatri
Ramin Yahyapour
Ramon Bertran
Ramon Nou
Raphael De Camargo
Raphael Poss
Raquel Lopes
Raul Barbosa
Raymond Namyst
Renan Fischer e Silva
Renato Ferreira
Ricardo Bianchini
Ricardo Dias
Ricardo Rocha
Richard Grunzke
Rio Yokota
Rizos Sakellariou
Rob Bisseling
Robert Dew
Robert Schoene
Roberto Gioiosa
Roberto Palmieri
Roy Bakker
Rui Camacho
Rui Gonçalves
Rui Hou
Rui Ralha
Rui Ramalho
Rui Silva
Rutger Hofman

XX Organization

Saadeldin Moustafa
Sai Narasimhamurthy
Sally A. McKee
Salvatore Venticinque
Samuel Thibault
Sandro Fiore
Sascha Hunold
Satoshi Matsuoka
Scott Beamer
Sebastiano Peluso
Seher Acer
Sergei Gorlatch
Sergei Vassilvitskii
Sergio Bernales
Shadi Ibrahim
Shady Khalifa
Shava Smallen
Shinichi Miura
Shrinivas Anand Panchamukhi
Siamak Azodolmolky
Sima Soltani
Soner Onder
Souley Madougou
Srinath Krishna Ananthakrishnan
Stefan Vijzelaar
Stefania Costache
Stephan Baumann
Stephan Schlagkamp
Stephen Olivier
Stoyan Garbatov
Stylianos Zikos
Subramanian Ramachandran
Sunpyo Hong
Sven van Haastregt
Svetislav Momcilovic
Sérgio Duarte
Sérgio Esteves
Takayuki Aoki
Tamito Kajiyama
Theofrastos Mantadelis

Thilo Kielmann
Thomas Hérault
Thomas Ropars
Tobias Beisel
Tobias Graf
Tobias Hilbrich
Tobias Kenter
Tomàs Margalef
Tomás F. Pena
Toni Cortes
Tor Skeie
Tugrul Dayar
Uwe Schwiegelshohn
Valerio Schiavoni
Vania Marangozova-Martin
Victor Garcia
Victor Goulart
Victor Muntés-Mulero
Vijay Saraswat
Vincent Gramoli
Vincent Weaver
Vitor Duarte
Vladimir Rychkov
Vojtěch Horký
Wagner Meira Jr.
Walfredo Cirne
Wang Yu
Wei Wu
Wesley Bland
Wolfgang Nagel
Xavier Emery
Xiaojun Ruan
Xing Pan
Yang-Sae Moon
Yao Zhang
Yasutaka Wada
Yehia Elshater
Yong Guo
Zafeirios Papazachos
Ziming Zhong

Euro-Par 2014 Invited Talks

Cloud Computing for Healthcare

Paul Watson, Newcastle University, UK

Cloud Computing has the potential to revolutionise healthcare. The expansion
of wireless internet, coupled with a massive growth in cheap, mobile sensors
offers opportunities to deliver personalised, high-quality healthcare cheaply to
people in their own homes. Clouds have an important role to play in realising
this potential, as it requires the ability to store and analyse the vast amounts of
data that these sensors collect. This presents both problems and opportunities:
new scalable, parallel algorithms and platforms are needed to analyse the sensor
data, while there are important advantages to be gained by combining the data
from a population of users in order to better understand medical conditions and
how best to treat them.

The talk will be illustrated with examples from our projects in this area,
including the use of sensors to understand older people’s activity in order to
provide personalised treatment; and also on the analysis of gaming data to help
people recover from strokes.

Going Dutch: How to Share a Dedicated Distributed
Infrastructure for Computer Science Research

Henri E. Bal, Vrije Universiteit, The Netherlands

The Distributed ASCI Supercomputer (DAS) is a dedicated distributed infras-
tructure for Dutch Computer Science research. During its 17 year history, DAS
witnessed and supported many waves in distributed computing, including wide-
area computing (DAS-1), grids and peer-to-peer (DAS-2), e-Science and optical
grids (DAS-3), and heterogeneous computing (DAS-4). Unlike many other test
beds, the different clusters of DAS are set up by a single organization (the ASCI
research school) with one clear vision for each system generation. DAS is designed
specifically for Computer Science research, especially for interactive distributed
experiments in areas like programming systems, resource management, and net-
works. With the advent of the fifth generation system, DAS-5, in 2015, DAS has
literary become mature and indispensable for Dutch Computer Science.

This presentation first looks back at the impact DAS has had. Despite its
relatively modest size and cost, DAS has been used for over 100 PhD theses and
for numerous award winning experiments. It enabled large amounts of research
funding and it played a key role in huge projects like VL-e and (currently)
COMMIT. It also served as a stepping stone for applications like astronomy,

XXII Euro-Par 2014 Invited Talks

multimedia analysis, web-scale reasoning, and climate modelling, each of which
won competitions with DAS. Next, the presentation will discuss several ongoing
projects in more detail, including programming environments for heterogeneous
accelerator-based systems and for big data applications. Here, DAS allows unique
and controlled experiments on a variety of hardware. Finally, the presentation
tries to draw general conclusions for Computer Science.

Greening Datacenters: Past, Present, and Future

Ricardo Bianchini, Rutgers University and Microsoft, USA

Datacenters host the server infrastructure that powers organizations of many
sizes, from universities and enterprises to large Internet services. Collectively,
datacenters consume a massive amount of power, representing a financial bur-
den for datacenter operators, an infrastructure burden on power utilities, and
an environmental burden on society. However, this problem could be worse if it
were not for several advances made over the last decade, especially in the design
of large-scale datacenters. In this talk, I will overview the architecture of these
datacenters, discuss the main advances made to date, and suggest research di-
rections for the future. Interestingly, some of these directions can benefit directly
from the expertise in the parallel computing community.

Euro-Par 2014 Topics Overview

Topic 1: Support Tools and Environments

T. Kielmann, J.C. Cunha, A. Danalis, B. Freisleben, T. Margalef

This topic aims to bring together designers, developers, and users to share their
concerns, ideas, and solutions towards more effective tools and environments
for parallel and distributed computing. Current challenges are concerned with
improved solutions for ease of use, programmability, correctness, reliability, scal-
ability, portability, performance and energy efficiency for current and emerging
parallel and distributed computing systems.

This year, a diversity of papers was submitted to this topic, proposing inter-
esting and valuable research contributions. As a result of the reviewing process,
4 papers were accepted for publication. Globally, the accepted papers discuss
foundations, design and implementation issues concerning tool development, and
present reports of their practical evaluation via concrete applications and bench-
marks.

The paper by Aguilar, Furlinger, and Laure, proposes the use of event flow
graphs for monitoring MPI applications, as a compromise to balance the lower
overhead of profiling tools with the more complete information available from
tracers. The paper by Ananthakrishnan and Mueller, presents the ScalaJack
tool, by combining customized instrumentation and in-situ data analysis, relying
on aspect-orientation techniques for easing code instrumentation, analysis, and
code refactoring. The paper by Jiang, Philippen, Knobloch and Mohr, describes
extensions to a toolset for instrumenting, measuring and analyzing the perfor-
mance of parallel programs based on Transactional Memory and Speculative
Execution (TM/SE) directives for the IBM BlueGene/Q. The paper by Sofok-
leous, Loulloudes, Trihinas, Pallis, and Dikaiakos, presents a tool for integrated
development of cloud applications, by addressing critical issues of open cloud
standard specification, application migration across different cloud providers,
and application elasticity.

We would like to thank all the authors who submitted papers to this topic,
and the external reviewers, for their contribution to the success of the conference.
We also thank the overall coordination and valuable support that was provided
by the conference chairs.

XXIV Euro-Par 2014 Topics Overview

Topic 2: Performance Prediction and Evaluation

A. Lastovetsky, F.F. Rivera, D.E. Singh, D.S. Nikolopoulos, L. Sousa,
P. Tuma, W. Nagel

In recent years many novel methodologies and tools have been developed for
evaluation, design, and model reduction of both existing and emerging parallel
and distributed systems. At the same time, the scope of performance
evaluation has constantly broadened to include the evaluation of reliability, ro-
bustness, energy consumption, and scalability in addition to traditional system
functionalities. The aim of this topic, Performance Prediction and Evaluation, is
to bring together system designers and researchers involved with the qualitative
and quantitative evaluation and modelling of large-scale parallel and distributed
applications and systems (e.g., Grids, Cloud computing environments, multi-core
and hybrid architectures, and extreme-scale platforms). Authors were invited to
submit novel research in all areas of performance prediction and evaluation, and
to help bring together current theory and practice.

Heterogeneity, complexity and scale of the new generation of parallel systems,
such as hybrid multicore/multi-accelerator nodes, large-scale heterogeneous clus-
ters, Clouds, etc., coupled with the complexity and scale of applications make this
topic particularly timely and challenging. This year, twenty three papers were
submitted to the topic. Each paper was reviewed by four reviewers and seven
papers were selected for presentation. In general, the quality of the submitted
papers was high, and many new ideas, methods, and evaluations were presented.
The accepted papers cover a wide range of hot topics and altogether give a good
view on the challenges currently addressed by the research community.

The paper “DReAM: Per-Task DRAM Energy Metering in Multicore Sys-
tems” by Qixiao et al., introduces a new model to capture memory energy-
consumption per task in a scenario where multiple tasks, possibly for different
applications/users, are running on the multicore platform. They present a novel
approach for measuring memory energy consumption on a per-task basis.

In the paper “Characterizing the Performance-EnergyTradeoff of Small ARM
Cores in HPC Computation” by Michael A. Laurenzano et. al., an evaluation
of energy and performance for HPC codes running on ARM vs. Intel cores is
presented. They present an energy estimation model based on the instruction
mix and memory operations obtained through static binary analysis. The pa-
per is a measurement report on the performance and power consumption, in
which different workloads from different computational kernels compared ARM
processors (Cortex A9 and A15) to an Intel Sandy Bridge CPU.

The paper “ParaShares: Finding the Important Basic Blocks in Multithreaded
Programs” by Melanie Kambadur and others presents ParaShare, a tool that
identifies the basic blocks representing the most time-consuming part of the par-
allel program. A new metric to score and rank all basic blocks in the program
based on their share of parallel execution is introduced. This work also illustrates
how the tool can help to identify code whose optimization can bring significant
execution time improvement.

Euro-Par 2014 Topics Overview XXV

The paper “Modeling the Impact of Reduced Memory Bandwidth on HPC
Applications” by Ananta Tiwari and others presents a methodology for predict-
ing the performance degradation of the code when the main memory bandwidth
is reduced. Machine learning strategies are used to obtain the models. An instru-
mentation tool developed by the authors is used to obtain data. The accuracy
of the method was measured on a number of large scale HPC applications.

Philipp Gschwandtner and others in their paper “Multi-Objective Auto-
Tuning with Insieme: Optimization and Trade-O Analysis for Time, Energy and
Resource Usage” present a multi-objective autotuner, which tries to optimize
three conflicting criteria - execution time, resources, and energy consumption.
Detailed analysis and several hints to improve the design of multi-objective au-
totuners and code optimization are provided.

The paper “Modeling and Simulation of a Dynamic Task-Based Runtime
System for Heterogeneous Multi-Core Architectures” by Luka Stanisic et al.,
presents a simulator of a dynamic runtime system (StarPU) for heterogeneous
multi-core architectures on top of a simulation toolkit such as SimGrid. It is used
to simulate different linear-algebra applications on hybrid computing systems.
This proposal is an example of how to predict the performance of applications
on hybrid CPU+GPU systems in a short simulation time.

Finally, the paper “Performance Prediction and Evaluation of Parallel Ap-
plications in KVM, Xen, and Vmware” by Choel-Ho Hong and others, presents
and evaluates a performance model of parallel applications on three virtualized
platforms: VMware, Xen, and KVM. This model predicts the duration of the
compute and synchronization phases considering the specific scheduling policies
of each hypervisor. Using this, it predicts the application overall execution time.
The model is based on the assumption that the parallel application consists of
computation and synchronization phases.

We would like to take this opportunity to thank all the authors that submitted
their work to this topic and the reviewers for their detailed and constructive
reports. We are also grateful to the Euro-Par Organizing Committee for their
guidance and help.

Topic 3: Scheduling and Load Balancing

H. Karatza, J. Barbosa, R. Yahyapour, N. Bessis, F. Suter, A. Goscinski,
A. Iosup, C. Aykanat

The scheduling and load balancing topic targets in general the optimization of
computing resources in several aspect of computation. From the mapping prob-
lem of assigning tasks to resources in order to minimize execution time, new
approaches concerning energy efficiency become more predominant in today’s
scheduling research. With the wide range of platforms from high-end infrastruc-
tures, with multi-core machines and accelerators, to the highly dynamic cloud
infrastructures, new challenges are imposed on resources management.

In “On Interactions Among Scheduling Policies: Finding Efficient Queue
Setup Using High-Resolution Simulations”, the authors address the issue of

XXVI Euro-Par 2014 Topics Overview

effectively designing and implementing a scheduling system in a real produc-
tion supercomputer center, and they show that choosing the right scheduling
algorithm is a key aspect when designing and implementing a scheduling sys-
tem.

In “ProPS: A Progressively Pessimistic Scheduler for Software Transactional
Memory”, the authors propose a fine-grain scheduler that monitors concurrency
levels between pairs of atomic operations and that dynamically reduces the num-
ber of transactions that may start concurrently.

In “A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks Schedul-
ing on Clouds” the authors present a method that minimizes the execution cost
while meeting the makespan for data-intensive applications when data is stored
outside the cloud so that task’s running time is not known a priori.

In “Energy-Aware Multi-Organization Scheduling Problem”, the authors
model the multi-organization problem as an energy-aware scheduling approach
and provide efficient heuristics for a static scenario where all jobs are ready at
time zero.

In “Energy Efficient Scheduling of MapReduce Jobs”, the authors present
a linear programming relaxation technique that guarantees a polynomial time
constant-factor approximation to the problem of power-awaremap-reduce schedul-
ing in the context of CPU speed scaling. In “SPAGHETtI: Scheduling/Placement
Approach for task-Graphs on HETerogeneous architecture”, the authors propose
a static scheduling algorithm for heterogeneous HPC systems whose complexity
is a function of the type of architectures rather than the number of processors.

Finally, we would like to thank all the contributing authors for their work,
as well as the reviewers that helped in the selection process.

Topic 4: High Performance Architectures and Compilers

S.A. McKee, J.M.P. Cardoso, C. Jung, M. Själander, R. Hou, S. Onder

The topic High Performance Architectures and Compilers deals with architecture
design and compilation for high performance systems. The areas of interest range
from microprocessors to large-scale parallel machines (including multi-/many-
core, possibly heterogeneous, architectures); from general-purpose to specialized
hardware platforms (e.g., graphic coprocessors, low-power embedded systems);
and from hardware design to compiler technology. On the compilation side, topics
of interest include programmer productivity issues, concurrent and/or sequential
language aspects, program analysis, program transformation, automatic discov-
ery and/or management of parallelism at all levels, and the interaction between
the compiler and the rest of the system. On the architecture side, the scope
spans system architectures, processor micro-architecture, memory hierarchy, and
multi-threading, and the impact of emerging trends.

In the 2014 Euro-Par edition of this topic, the selected papers are mainly
focused on optimizations to dynamically adapt to computational contexts, tech-
niques to transform GPU specific OpenCL programs to Many Core CPUs, and

Euro-Par 2014 Topics Overview XXVII

OpenMP extensions to specify thread-level speculation and their integration in
GCC.

Topic 5. Parallel and distributed Data Management

J.L. Larriba-Pey, P. Romano, D. Dominguez-Sal, K.U. Sattler, P. Martin, Y.S.
Moon

Parallel and distributed management of data are fuelled by the need to develop
complex services based on the analysis of ever growing volumes of data. In those
cases, there are many situations where a complex hierarchy of requirements imply
new approaches and techniques to perform locally parallel or geographically
distributed operations to explore those data efficiently.

The scientific committee of Topic 5 has selected 5 papers for their high quality
and interesting proposals they made. The proposals they make are varied and
deal from the management of distributed relational and key-value stores, to
reducing the I/O activity by either balancing the load or dinamically compressing
the files of the storage system, to mining the top-k most frequent data items.
In all, the papers accepted are varied and provide very good insights of the
important issues in present management of data.

In particular, paper “Robust and Efficient Large-Large Table Outer Joins
on Distributed Infrastructures” proposes a new algorithm to compute the outer
join of datasets with large skew in a distributed relational environment. Paper
“Ultra-fast Load Balancing of Distributed Key-Value Stores through Network-
assisted Lookups” presents a load balancing technique based on hashing for key-
value stores that exploits the flexible IP infrastructures of nowadays computers.
Paper “Improving Read Performance with Online Access Pattern Analysis and
Prefetching” proposes a novel on-line and real-time analyser that allows to reduce
the patterns of the read I/O activity, reducing the overhead and storage capacity
needs. Paper “Applying selectively parallel I/O compression to parallel storage
systems” presents a new dynamic mechanism to decide whether to compress
the size of the files in a storage system, reducing their I/O time. Finally, paper
“Top-k Item Identification on Dynamic and Distributed Datasets” proposes a
gossip protocol to select the top-k most frequent items in a distributed system
with single copy of the data.

The chairs of Topic 5 want to thank the members of the committee for their
valuable contributions to the review process and the work they did in managing
the whole process in a timely fashion and ensuring very high quality.

Topic 6: Grid, Cluster and Cloud Computing

U. Schwiegelshohn, H. Paulino, O. Beaumont, S. Matsuoka, R. Sakellariou,
D. Talia, M.S. Pérez-Hernández, and V. Saraswat

Since the operating costs of computing systems are steadily increasing and large
computer systems have the potential to increase efficiency in comparison to

XXVIII Euro-Par 2014 Topics Overview

smaller local installations users are increasingly interested in remotely executing
their parallel applications on such systems. In particularly, the use of virtualiza-
tion has led to a substantial increase of flexibility for these systems. But there
are still many open questions that must be addressed by research. For instance,
the separation of users and systems due to virtualization produces a new form
of market economy requiring business models and service guarantees. Therefore,
we need new tools that support monitoring of these guarantees and provide
accounting. Also user friendly environments are expected to support users in
porting existing applications on these systems and help them to develop appli-
cations that efficiently exploit the vast amount of parallelism offered by these
systems.

Due to the increasing importance of energy expenses, users and systems ad-
ministrators are interested in methods to improve system and application man-
agement without significantly affecting the quality of service. With respect to
this management challenge, it is important to develop methods that allow bridg-
ing the above mentioned separation of user and system. Therefore, Topic 6 is
devoted to the use and the management of large computer systems. It is the
objective of our topic to propose and evaluate new approaches that allow the
efficient execution of parallel computing tasks on these systems and therefore to
help developers of parallel programs to exploit the vast computing power of these
resources without compromising efficiency. In EuroPar 2014, Topic 6 particularly
covers workflow management for complex applications, resource management is-
sues, communication in large computer systems, and cooperation between dif-
ferent installations to increase efficiency.

All submitted papers were reviewed by at least 4 reviewers, with 4 papers
being selected for inclusion in the program. We are convinced that the contri-
butions of these papers will help us further advance the use of these computer
systems for a wide variety of applications.

We would especially like to thank our colleagues, who being experts in the
field helped in the reviewing process.

Topic 7: Green High Performance Computing

M. Schulz, L. Lopes, E.S. Quintana Orti, K. Inou

Optimizing power and energy consumption has been identified as one of the most
critical issues on our way to exascale. Computations will have to be orders of
magnitude more energy efficient than in today’s architectures; applications will
have to work with fixed total system power caps put in place to not exceed the
limited power available; and systems will have to mitigate the impact of power
swings during changing workloads. To achieve efficient execution of applications
under these constraints, we require new approaches in all aspects of power-aware
computing.

Given the importance of the topic, it was introduced for the first time in
the program of the conference with the goal of providing a forum to bring to-
gether researchers in this developing field. The contributions received focused

Euro-Par 2014 Topics Overview XXIX

on subjects such as: the analysis of the energy efficiency of specific CPU/GPU,
cache and memory architectures; the impact of power-saving strategies on per-
formance, and; tools to profile energy usage in HPC systems. The two papers
selected for publication describe relevant research on energy efficient cache hi-
erarchy configurations for general purpose GPU computing, and on the impact
of data movement between nodes in the power consumption of a system, as a
function of the way the inter-process communication layer is designed.

Topic 8: Distributed Systems and Algorithms

P. Felber, L. Veiga, P. Grace, V. Gramoli, F. Kon, C. Travers

Parallel computing is increasingly exposed to the development and challenges of
distributed systems, such as the lack of load balancing, asynchrony, long laten-
cies, network partitions, failures, malicious and selfish behavior, disconnected
operations, well-suited computing models and data structures, heterogeneity.
Furthermore, distributed systems are becoming larger, more diverse and more
dynamic (changing topology, highly dynamic number of participants).

This topic provides a forum for research and practice, of interest to both
academia and industry, about distributed systems, distributed computing, dis-
tributed algorithms, and parallel processing on distributed systems.

All submitted papers received at least four reviews, resulting in three papers
being accepted for the conference.

The paper Spanning Tree or Gossip for Aggregation: a Comparative Study
by Lehel Nyers and Mark Jelasity proposes a study assessing the two com-
peting paradigms typically used for distributed aggregation queries: tree-based
and gossip-based algorithms. It addresses common stereotypes, e.g. about the
fragility of trees and slowness of gossip, and encourages researchers to consider
more carefully the best topologies for each particular problem or situation.

The paper Shades: Expediting Kademlia’s Lookup Process by Gil Einziger
and Roy Friedman addresses how to further the Kademlia DHT. It proposes
a new caching and augmented routing mechanism, designed to improve lookup
performance and better load balance. This is achieved by combining a local
cache keeping the most frequently requested items and an additional routing
mechanism based on partitioning nodes and items into colors.

Finally, the paper Analysis and Comparison of Truly Distributed Solvers for
Linear Least Squares Problems on Wireless Sensor Networks by Karl E. Prikopa,
Hana Straková and Wilfried N. Gansterer proposes a new such solver, adapted
from a matrix factorization method, that requires fewer messages per node to
reach high accuracy, with an analytical and experimental comparison of the
communication cost of various solvers

We would like to take the opportunity of thanking the authors who submitted
a contribution, as well as the Euro-Par Organizing Committee and the external
referees who provided highly useful comments. Their efforts have made this
conference and this topic possible.

XXX Euro-Par 2014 Topics Overview

Topic 9: Parallel and Distributed Programming

H. Bal, J.L. Sobral, A. Varbanescu, C. Perez, F. Huet, M. Danelutto,
P. Kilpatrick

Developing parallel or distributed applications is a difficult task and it requires
adequate programming abstractions and models, efficient design tools, high per-
formance languages and libraries, and experimental validation. This topic pro-
vides a forum for presentation of new results and practical experience in this
domain. It emphasizes research that facilitates the design and development of
high-performance, correct, portable, and scalable parallel programs.

All papers of this topic received 4 reviews that were further discussed among
all 7 PC members in a tele-conference meeting. As a result, six strong papers
were accepted for the conference, covering important topics such us software
and hardware transactional memory, graph analytics, mesh-based simulations,
algebraic computations, and random number generation.

Topic 10: Parallel Numerical Algorithms

R.H. Bisseling, L. Grigori, D. Kressner, R.M.S. Ralha

Getting progress in many society-relevant issues relies on the usage of numerical
simulations. These numerical simulations very often use sophisticated numeri-
cal algorithms and massively parallel computers. Thus the design of robust and
scalable parallel algorithms is an important research topic, and this track is com-
posed of four papers that consider several such important numerical algorithms.
They include solving linear systems of equations, computing the echelon form of
a matrix as used for example in algebraic cryptanalysis, time-domain BEM for
the wave equation, or exploiting structure to design efficient computational ker-
nels. Both academic and industrial applications can benefit from the algorithms
described in these papers.

The paperA distributed CPU-GPU sparse direct solver by Piyush Sao, Richard
Vuduc, and Xiaoye Sherry Li, presents a hybrid implementation of the sparse LU
factorization which can be used to solve very large sparse linear systems of equa-
tions. The hybrid implementation is based on MPI, OpenMP, and Cuda, and it is
performed in the context of SuperLU DIST, a widely used solver implementing
the sparse LU factorization for distributed memory computers. SuperLU DIST
is based on static pivoting and right looking sparse LU factorization. In this con-
text, the paper shows that aggregation of data and pipeline execution to overlap
computation with communication are important ingredients for obtaining an
overall efficient hybrid implementation of the sparse LU factorization.

The paper Parallel Computation of Echelon Forms by Jean-Guillaume
Dumas, Thierry Gautier, Clement Pernet, and Ziad Sultan, presents parallel
algorithms for computing echelon forms over a finite field on shared memory ar-
chitectures. This problem is relevant in a variety of applications, including alge-
braic cryptanalysisy. Several algorithms are discussed in this paper, which exploit

Euro-Par 2014 Topics Overview XXXI

different partitionings of the matrix, one-dimensional or two-dimensional, block
algorithms or recursive algorithms, as well as the usage of fast matrix multi-
plication Strassen-Winograd algorithm. Several strategies are also developed to
balance tiling with delaying modular reductions. Well designed performance ex-
periments compare these different algorithms and outline the role of the different
optimizations for obtaining a very efficient parallel implementation.

In the paper Structured Orthogonal Inversion of Block p-cyclic Matrices on
Multicores with GPU Accelerators, Sergiy Gogolenko, Zhaojun Bai, and Richard
Scalettar consider the problem of computing the inverse of block p-cyclic ma-
trices on multicores and GPUs. Such an operation arises in quantum Monte
Carlo algorithms. Given that in this case Gaussian elimination with partial piv-
oting encounters numerical instability, the authors present an algorithm based
on a block structured orthogonal factorization, with a judicious distribution of
the work between CPUs and GPGPUs using a quantitative performance model.
Performance results show that the method is very efficient on hybrid architec-
tures.

In the paper Time-domain BEM for Wave Equation: Optimization and Hy-
brid Parallelization, Berenger Bramas, Olivier Coulaud, and Guillaume Sylvand
focus on efficient implementation of an existing time-domain boundary element
method to simulate wave propagation. The code developed is part of an indus-
trial computational work-flow at the Airbus Group Innovation and intends to
replace an older code. The most intensive computational kernel of the algorithm
is, for each time step, the sum of a number of sparse matrix-vector products. Un-
like previous works, that consider the parallelization of individual sparse-matrix
products, the central idea here is to exploit the particular sparsity pattern of the
matrices to compute several of such products simultaneously. The experimental
results are promising.

Topic 11: Multicore and Manycore Programming

R. Namyst, R. Rocha, C. Kessler, E. Larsson, F. Mueller, J.F. Méhaut, J. Träff,
M. Aldinucci, M. Sato

Modern homogeneous and heterogeneous multicore and manycore architectures
are now part of the high-end and mainstream computing scene. The complexity
of these new architectures created several programming challenges and achiev-
ing performance on these systems is a difficult task. This topic seeks to explore
productive programming of multicore, many integrated cores, and hybrid sys-
tems with accelerators. It focuses on novel research and solutions in the form of
programming models, languages, compilers, libraries, runtime systems and anal-
ysis tools to increase the programmability of multicore, manycore, and hybrid
systems, in the context of general-purpose parallel computing and HPC.

The quality of submissions was very high. Papers have been selected based
on the recommendations of at least four reviewers. The six accepted papers
address a representative set of issues related to the multicore and manycore
programming.

XXXII Euro-Par 2014 Topics Overview

The paper High-Throughput Maps on Message-Passing Manycore Architec-
tures: Partitioning versus Replication’ by Omid Shahmirzadi, Thomas Ropars
and Andre Schiper discusses the challenges in implementing scalable data struc-
tures for message-passing manycores.

The paper A Fast Sparse Block Circulant Matrix Vector Product by Eloy
Romero, Andrés Tomás, Antonio Soriano and Ignacio Blanquer exploits the
problem of calculating a sparse matrix vector product where the sparse matrix
is block circulant.

The paper Scheduling data flow program in XKaapi: A new affinity-based
algorithm for heterogeneous architectures by Raphaël Bleuse, Thierry Gautier,
João V. F. Lima, Gregory Mounie and Denis Trystram proposes a generic mech-
anism to automatically optimize the scheduling between CPUs and GPUs on
modern multicore GPU-based architectures.

The paper Delegation Locking Libraries for Improved Performance of Multi-
threaded Programs by David Klaftenegger, Konstantinos Sagonas and Kjell Win-
blad proposes libraries for C and C++ that provide an interface for delegation
locks as an alternative to traditional locking.

The paper A Generic Strategi for Multi-Stage Stencil Applications by Mauro
Bianco and Benjamin Cumming introduces a buffering technique which takes
into account intermediate results in the multi-stage procedure to improve mem-
ory hierarchy utilization in stencil applications.

The paper Evaluation of OpenMP Task Scheduling Algorithms for Large
NUMA Architectures by Jerome Clet-Ortega, Patrick Carribault and Marc Per-
ache presents a configurable OpenMP task scheduler for studying and analyzing
work-stealing scheduling algorithms for large NUMA architectures.

We are grateful to the authors of all submitted papers for their contribution
and interest in this topic and to the program committee members and sub-
reviewers for their dedicated time and knowledge in evaluating and ranking so
many submissions.

Topic 12: Theory and Algorithms for Parallel Computation

A. Pietracaprina, P. Ribeiro, K. Herley, S. Vassilvitskii

Parallelism permeates all types of current computing systems, from single CPU
machines, to large server farms, supercomputers, clouds, and even Internet-based
volunteer computing infrastructures. The effective use of parallelism depends
crucially on the availability of faithful, yet tractable, computational models for
algorithm design and analysis, and of efficient algorithmic strategies for solv-
ing key computational problems on prominent classes of platforms. This topic
presents novel contributions that explore foundational issues, models, and algo-
rithms relevant for both traditional and emerging parallel computing scenarios.

All submitted papers were reviewed by the four members of the topic’s
committee, and two excellent papers were accepted for presentation at the con-
ference. One paper, “Power-Aware Replica Placement in Tree Networks with
Multiple Servers per Client” by Guillaume Aupy, Anne Benoit, Matthieu Jour-

Euro-Par 2014 Topics Overview XXXIII

nault and Yves Robert, studies some variants of the replica placement problem
on trees, whose objective is to minimize power consumption. The other pa-
per, “On Constructing DAG-Schedules with Large AREAs” by Scott T. Roche,
Arnold L. Rosenberg and Rajmohan Rajaraman, explores the construction of
schedules for computational DAGs which maximize the AREA metric, that is,
the rate at which the schedules make nodes eligible for execution. In both papers,
the authors prove the NP-completeness of the decision versions of the problems
under consideration, and provide polynomial-time heuristics, whose efficiency is
tested experimentally.

Topic 13: High Performance Networks and Communication

J. Flich, F. Araujo, C. Minkenberg, M. Palesi, T. Skeie

The topic on High-performance networks and communications is devoted to
communication issues in scalable compute and storage systems, such as tightly
coupled parallel computers, clusters, and networks of workstations, including hi-
erarchical and hybrid designs featuring several levels of possibly different inter-
connects. All aspects of communication in modern compute and storage systems
are of interest, including advances in the design, implementation, and evalua-
tion of interconnection networks, network interfaces, system and storage area
networks, on-chip interconnects, communication protocols and interfaces, rout-
ing and communication algorithms, and communication aspects of parallel and
distributed algorithms.

In this edition, all received papers went through a rigorous selection process
with at least four reviews. Two papers were selected for final inclusion in the
program. One of the papers deals with programmable networking devices to
accelerate the implementation of collective operations, by offloading function-
ality to the underlying network, while the other one deals with RDMA-based
MapReduce, when used over the popular parallel file system “Lustre”.

Topic 14: High Performance and Scientific Applications

F. Brasileiro, Pedro Medeiros, A. Sequeira, G. Fedak, W. Cirne

The availability of an abundance of computing resources worldwide has sub-
stantially impacted the way that research is nowadays conducted both in the
industry and in the academy. The new ways of doing science, rooted on the un-
precedented processing, communication and storage infrastructure that became
available to researchers encompass activities such as computational modelling
and simulation, processing of large amounts of data, often geographically spread,
and the visualisation of complex datasets. The constant technological advances
that make computers faster and storage more plentiful are not enough to cope
with the increased demand generated by more accurate and complex modelling,
and an ever increasing quantity of data being generated. There is thus a growing

XXXIV Euro-Par 2014 Topics Overview

need for a range of high performance applications which can use parallel compute
systems effectively, and which have efficient data I/O strategies.

In this track, six papers were selected for presentation at the conference.
These papers made valuable contributions for the advance of the state of the
art in developing scalable applications for parallel and distributed systems in a
variety of domains, including optics, astrophysics, genotyping, and flood fore-
cast, as well as algorithms that can be used in different applications, such as
random fields generation, and set intersection. One common characteristic of al-
most all these works is the use of GPGPU for increasing performance. In the pa-
per “High-Performance Pseudo-analytical Simulation of Multi-object Adaptive
Optics over Multi-GPU Systems”, Zou et al. developed a novel hybrid pseudo-
analytical simulation scheme that allows the accurate and detailed simulation
of the tomographic problem. González-Domı́nguez et al., in “Hybrid CPU/GPU
Acceleration of Detection of 2-SNP Epistatic Interactions in GWAS” present
EpistSearch, a parallelized tool that uses a novel filter to determine the in-
teractions between all Single Nucleotide Polymorphism pairs of an individual.
Lange and Fortin, in “Parallel dual tree transversal on multi-core and many-
core architectures for astrophysical N-body simulations” present a parallel dual
tree traversal algorithm targeting multi-core CPUs and many-core architectures.
The paper “IFM: A Scalable High Resolution Flood Modelling Framework”,
by Singhal el al. presents a highly scalable, integrated flood forecasting system
called IFM, that includes a weather model, a soil model, and an overland wa-
ter routing model. In the paper “Random Fields Generation on the GPU with
the Spectral Turning Bands Method”, Hunger et al. introduce a random field
generation algorithm based on the turning band method that is optimized for
massively parallel hardware such as GPUs. The paper “Fast Set Intersection
through Run-Time Bitmap Construction over PForDelta-compressed Indexes”
by Klasky and Samatova proposed, implemented and evaluated a fast set in-
tersection approach that couples the storage light-weight PForDelta indexing
format with computationally-efficient bitmaps, through a specialized on-the-fly
conversion.

Of course the program that we were able to assemble was only possible be-
cause of the many high quality contributions that were submitted to the topic.
We take this opportunity to thank all the authors for their submissions. We are
also indebted to our fellow members of the technical program committee, and
the external reviewers, for their judicious assessment of the submissions. Finally,
we would also like to acknowledge the invaluable support that has been provided
by the conference chairs and the steering committee.

Topic 15: GPU and Accelerator Computing

P. Kelly, J. Lourenço, A. Heinecke, A. Lokhmotov, C. Plessl, D. Unat,
D. Blanco Heras, L. Howes, N. Maruyama, P. Gonnet

This topic provides a forum for the presentation of the latest research results and
practical experience in GPU and Accelerator Computing. Accelerators of various

Euro-Par 2014 Topics Overview XXXV

kinds offer massive performance and power advantages for suitable applications,
at every scale from embedded and mobile to supercomputers and datacenters.
Examples include graphics processors (GPUs), “manycore” devices, such as In-
tel’s Xeon Phi and other platforms with large numbers of simple cores, as well as
more custom devices, customizable FPGA-based systems and streaming dataflow
architectures.

The research challenge for this topic is to explore new technologies for realis-
ing this potential. We encouraged submissions in all areas related to accelerators:
architecture, languages, compilers, libraries, runtime, debugging and profiling
tools, algorithms. Papers demonstrating deep engagement with applications and
algorithms were particularly welcome, aiming to identify broader insights on the
problems of optimization (for performance and power), programmability, per-
formance portability, support for and integration with legacy code.

We thank the many helpful referees, who provided at least four reports on
each of the submitted papers. After vigorous, good-natured and pleasurable de-
bate among the program committee members, eight were accepted. So: thank
you to the PC members, and to everyone who helped with the refereeing.

The quality of submissions was uniformly high, and without exception, the
papers we were unable to accept this time represent sound work which we would
encourage the authors to submit next year in more mature form. Thus, thank
you also to the authors!

Euro-Par’s tight page limit makes it a forum for work which is focussed on
interesting new ideas, rather than extensive experimental evaluation of more
established material. We believe this makes for a lively programme of presen-
tations, and we are confident there will be plenty of interesting questions and
discussion.

Table of Contents

Support Tools Environments

MPI Trace Compression Using Event Flow Graphs 1
Xavier Aguilar, Karl Fürlinger, and Erwin Laure

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 13
Srinath Krishna Ananthakrishnan and Frank Mueller

Performance Measurement and Analysis of Transactional Memory and
Speculative Execution on IBM Blue Gene/Q . 26

Jie Jiang, Peter Philippen, Michael Knobloch, and Bernd Mohr

c-Eclipse: An Open-Source Management Framework for Cloud
Applications . 38

Chrystalla Sofokleous, Nicholas Loulloudes, Demetris Trihinas,
George Pallis, and Marios D. Dikaiakos

Modeling and Simulation of a Dynamic Task-Based Runtime System
for Heterogeneous Multi-core Architectures . 50

Luka Stanisic, Samuel Thibault, Arnaud Legrand, Brice Videau, and
Jean-François Méhaut

Performance Prediction and Evaluation

Modeling the Impact of Reduced Memory Bandwidth on HPC
Applications . 63

Ananta Tiwari, Anthony Gamst, Michael A. Laurenzano,
Martin Schulz, and Laura Carrington

ParaShares: Finding the Important Basic Blocks in Multithreaded
Programs . 75

Melanie Kambadur, Kui Tang, and Martha A. Kim

Multi-Objective Auto-Tuning with Insieme: Optimization and
Trade-Off Analysis for Time, Energy and Resource Usage 87

Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer

Performance Prediction and Evaluation of Parallel Applications in
KVM, Xen, and VMware . 99

Cheol-Ho Hong, Beom-Joon Kim, Young-Pil Kim,
Hyunchan Park, and Chuck Yoo

XXXVIII Table of Contents

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 111
Qixiao Liu, Miquel Moreto, Jaume Abella,
Francisco J. Cazorla, and Mateo Valero

Characterizing the Performance-Energy Tradeoff of Small ARM Cores
in HPC Computation . 124

Michael A. Laurenzano, Ananta Tiwari, Adam Jundt,
Joshua Peraza, William A. Ward Jr., Roy Campbell, and
Laura Carrington

Scheduling and Load Balancing

On Interactions among Scheduling Policies: Finding Efficient Queue
Setup Using High-Resolution Simulations . 138

Dalibor Klusáček and Šimon Tóth

ProPS: A Progressively Pessimistic Scheduler for Software Transactional
Memory . 150

Hugo Rito and João Cachopo

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks
Scheduling on Clouds . 162

Cosmin Dumitru, Ana-Maria Oprescu, Miroslav Živković,
Rob van der Mei, Paola Grosso, and Cees de Laat

SPAGHETtI: Scheduling/Placement Approach for Task-Graphs on
HETerogeneous archItecture . 174

Denis Barthou and Emmanuel Jeannot

Energy-Aware Multi-Organization Scheduling Problem 186
Johanne Cohen, Daniel Cordeiro, and Pedro Luis F. Raphael

Energy Efficient Scheduling of MapReduce Jobs . 198
Evripidis Bampis, Vincent Chau, Dimitrios Letsios,
Giorgio Lucarelli, Ioannis Milis, and Georgios Zois

High Performance Architectures and Compilers

Automated Transformation of GPU-Specific OpenCL Kernels Targeting
Performance Portability on Multi-Core/Many-Core CPUs 210

Dafei Huang, Mei Wen, Changqing Xun, Dong Chen, Xing Cai,
Yuran Qiao, Nan Wu, and Chunyuan Zhang

Switchable Scheduling for Runtime Adaptation of Optimization 222
Lénäıc Bagnères and Cédric Bastoul

Table of Contents XXXIX

A New GCC Plugin-Based Compiler Pass to Add Support for
Thread-Level Speculation into OpenMP . 234

Sergio Aldea, Alvaro Estebanez, Diego R. Llanos, and
Arturo Gonzalez-Escribano

Parallel and Distributed Data Management

Improving Read Performance with Online Access Pattern Analysis and
Prefetching . 246

Houjun Tang, Xiaocheng Zou, John Jenkins,
David A. Boyuka II, Stephen Ranshous, Dries Kimpe,
Scott Klasky, and Nagiza F. Samatova

Robust and Efficient Large-Large Table Outer Joins on Distributed
Infrastructures . 258

Long Cheng, Spyros Kotoulas, Tomas E. Ward, and
Georgios Theodoropoulos

Top-k Item Identification on Dynamic and Distributed Datasets 270
Alessio Guerrieri, Alberto Montresor, and Yannis Velegrakis

Applying Selectively Parallel I/O Compression to Parallel Storage
Systems . 282

Rosa Filgueira, Malcolm Atkinson, Yusuke Tanimura, and
Isao Kojima

Ultra-Fast Load Balancing of Distributed Key-Value Stores through
Network-Assisted Lookups . 294

Davide De Cesaris, Kostas Katrinis, Spyros Kotoulas, and
Antonio Corradi

Grid, Cluster and Cloud Computing

Virtual Machine Consolidation in Cloud Data Centers Using ACO
Metaheuristic . 306

Md Hasanul Ferdaus, Manzur Murshed, Rodrigo N. Calheiros, and
Rajkumar Buyya

Workflow Scheduling on Federated Clouds . 318
Juan J. Durillo and Radu Prodan

Locality-Aware Cooperation for VM Scheduling in Distributed
Clouds . 330

Jonathan Pastor, Marin Bertier, Frédéric Desprez, Adrien Lebre,
Flavien Quesnel, and Cédric Tedeschi

XL Table of Contents

Can Inter-VM Shmem Benefit MPI Applications on SR-IOV Based
Virtualized Infiniband Clusters? . 342

Jie Zhang, Xiaoyi Lu, Jithin Jose, Rong Shi, and
Dhabaleswar K. (DK) Panda

Green High Performance Computing

Power-Aware L1 and L2 Caches for GPGPUs . 354
Ehsan Atoofian and Ali Manzak

Power Consumption Due to Data Movement in Distributed
Programming Models . 366

Siddhartha Jana, Oscar Hernandez, Stephen Poole, and
Barbara Chapman

Distributed Systems and Algorithms

Spanning Tree or Gossip for Aggregation: A Comparative Study 379
Lehel Nyers and Márk Jelasity

Shades: Expediting Kademlia’s Lookup Process . 391
Gil Einziger, Roy Friedman, and Yoav Kantor

Analysis and Comparison of Truly Distributed Solvers for Linear Least
Squares Problems on Wireless Sensor Networks . 403

Karl E. Prikopa, Hana Straková, and Wilfried N. Gansterer

Parallel and Distributed Programming

High-Performance Computer Algebra: A Hecke Algebra Case Study 415
Patrick Maier, Daria Livesey, Hans-Wolfgang Loidl, and
Phil Trinder

Generic Deterministic Random Number Generation in
Dynamic-Multithreaded Platforms . 427

Stefano Mor, Jean-Louis Roch, and Nicolas Maillard

Implementation and Performance Analysis of SkelGIS for Network
Mesh-Based Simulations . 439

Hélène Coullon and Sébastien Limet

GoFFish: A Sub-graph Centric Framework for Large-Scale Graph
Analytics . 451

Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi,
Soonil Nagarkar, Santosh Ravi, Cauligi Raghavendra, and
Viktor Prasanna

Table of Contents XLI

Resolving Semantic Conflicts in Word Based Software Transactional
Memory . 463

Craig Sharp, William Blewitt, and Graham Morgan

Automatic Tuning of the Parallelism Degree in Hardware Transactional
Memory . 475

Diego Rughetti, Paolo Romano, Francesco Quaglia, and
Bruno Ciciani

Parallel Numerical Algorithms

A Distributed CPU-GPU Sparse Direct Solver . 487
Piyush Sao, Richard Vuduc, and Xiaoye Sherry Li

Parallel Computation of Echelon Forms . 499
Jean-Guillaume Dumas, Thierry Gautier, Clément Pernet, and
Ziad Sultan

Time-Domain BEM for the Wave Equation: Optimization and Hybrid
Parallelization . 511

Berenger Bramas, Olivier Coulaud, and Guillaume Sylvand

Structured Orthogonal Inversion of Block p-Cyclic Matrices on
Multicores with GPU Accelerators . 524

Sergiy Gogolenko, Zhaojun Bai, and Richard Scalettar

Multicore and Manycore Programming

High-Throughput Maps on Message-Passing Manycore Architectures:
Partitioning versus Replication . 536

Omid Shahmirzadi, Thomas Ropars, and André Schiper

A Fast Sparse Block Circulant Matrix Vector Product 548
Eloy Romero, Andrés Tomás, Antonio Soriano, and
Ignacio Blanquer

Scheduling Data Flow Program in XKaapi: A New Affinity Based
Algorithm for Heterogeneous Architectures . 560

Raphaël Bleuse, Thierry Gautier, João V.F. Lima,
Grégory Mounié, and Denis Trystram

Delegation Locking Libraries for Improved Performance of
Multithreaded Programs . 572

David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad

A Generic Strategy for Multi-stage Stencils . 584
Mauro Bianco and Benjamin Cumming

XLII Table of Contents

Evaluation of OpenMP Task Scheduling Algorithms for Large NUMA
Architectures . 596

Jérôme Clet-Ortega, Patrick Carribault, and Marc Pérache

Theory and Algorithms for Parallel Computation

Power-Aware Replica Placement in Tree Networks with Multiple
Servers per Client . 608

Guillaume Aupy, Anne Benoit, Matthieu Journault, and Yves Robert

On Constructing DAG-Schedules with Large AREAs 620
Scott T. Roche, Arnold L. Rosenberg, and Rajmohan Rajaraman

High Performance Networks and Communication

Software Defined Multicasting for MPI Collective Operation Offloading
with the NetFPGA . 632

Omer Arap, Geoffrey Brown, Bryce Himebaugh, and Martin Swany

MapReduce over Lustre: Can RDMA-Based Approach Benefit? 644
Md. Wasi-ur-Rahman, Xiaoyi Lu, Nusrat Sharmin Islam,
Raghunath Rajachandrasekar, and Dhabaleswar K. (DK) Panda

High-Performance and Scientic Applications

Random Fields Generation on the GPU with the Spectral Turning
Bands Method . 656

Lars Hunger, Biagio Cosenza, Stefan Kimeswenger, and
Thomas Fahringer

Fast Set Intersection through Run-Time Bitmap Construction over
PForDelta-Compressed Indexes . 668

Xiaocheng Zou, Sriram Lakshminarasimhan,
David A. Boyuka II, Stephen Ranshous, Houjun Tang,
Scott Klasky, and Nagiza F. Samatova

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic
Interactions in GWAS . 680

Jorge González-Domı́nguez, Bertil Schmidt,
Jan Christian Kässens, and Lars Wienbrandt

IFM: A Scalable High Resolution Flood Modeling Framework 692
Swati Singhal, Sandhya Aneja, Frank Liu, Lucas Villa Real, and
Thomas George

Table of Contents XLIII

High Performance Pseudo-analytical Simulation of Multi-Object
Adaptive Optics over Multi-GPU Systems . 704

Ahmad Abdelfattah, Eric Gendron, Damien Gratadour,
David Keyes, Hatem Ltaief, Arnaud Sevin, and Fabrice Vidal

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures
for Astrophysical N-body Simulations . 716

Benoit Lange and Pierre Fortin

GPU and Accelerator Computing

Customizing Driving Directions with GPUs . 728
Daniel Delling, Moritz Kobitzsch, and Renato F. Werneck

GPU Accelerated Range Trees with Applications . 740
Manoj Kumar Maramreddy and Kishore Kothapalli

Scalable On-Board Multi-GPU Simulation of Long-Range Molecular
Dynamics . 752

Marcos Novalbos, Jaime González, Miguel A. Otaduy,
Roberto Martinez-Benito, and Alberto Sanchez

Resolution of Linear Algebra for the Discrete Logarithm Problem Using
GPU and Multi-core Architectures . 764

Hamza Jeljeli

Toward OpenCL Automatic Multi-Device Support 776
Sylvain Henry, Alexandre Denis, Denis Barthou,
Marie-Christine Counilh, and Raymond Namyst

Concurrent Kernel Execution on Xeon Phi within Parallel
Heterogeneous Workloads . 788

Florian Wende, Thomas Steinke, and Frank Cordes

Writing Self-adaptive Codes for Heterogeneous Systems 800
Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and
Ramón Doallo

A Pattern-Based Comparison of OpenACC and OpenMP for
Accelerator Computing . 812

Sandra Wienke, Christian Terboven, James C. Beyer, and
Matthias S. Müller

Author Index . 825

MPI Trace Compression

Using Event Flow Graphs

Xavier Aguilar1, Karl Fürlinger2, and Erwin Laure1

1 KTH Royal Institute of Technology,
High Performance Computing and Visualization Department (HPCViz)

and Swedish e-Science Research Center (SeRC),
Lindstedvägen 5, 10044 Stockholm, Sweden

2 Ludwig-Maximilians-Universität (LMU) Munich,
Computer Science Department, MNM Team,
Oettingenstr. 67, 80538 Munich, Germany

Abstract. Understanding how parallel applications behave is crucial for
using high-performance computing (HPC) resources efficiently. However,
the task of performance analysis is becoming increasingly difficult due
to the growing complexity of scientific codes and the size of machines.
Even though many tools have been developed over the past years to
help in this task, current approaches either only offer an overview of the
application discarding temporal information, or they generate huge trace
files that are often difficult to handle.

In this paper we propose the use of event flow graphs for monitoring
MPI applications, a new and different approach that balances the low
overhead of profiling tools with the abundance of information available
from tracers. Event flow graphs are captured with very low overhead,
require orders of magnitude less storage than standard trace files, and
can still recover the full sequence of events in the application. We test this
new approach with the NERSC-8/Trinity Benchmark suite and achieve
compression ratios up to 119x.

Keywords: MPI event flow graphs, trace compression, trace reconstruc-
tion, performance monitoring.

1 Introduction

Current petascale systems provide massive computing power to run scientific
simulations in many disciplines ranging, for example, from weather modeling to
protein structure analysis. However, their efficient use requires optimized ap-
plications with several levels of parallelism, efficient inter-process communica-
tion for complex network topologies and optimized memory access through deep
memory hierarchies. Therefore, tools to characterize and better understand the
performance behavior of applications are an essential part of the HPC landscape.

Performance tools for HPC systems have been widely studied and developed
over the last years. These tools can be divided into two families: profilers and

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

2 X. Aguilar, K. Fürlinger, and E. Laure

tracers. Profilers generate reports with execution statistics, whereas tracers pro-
duce time-stamped event log files. Profilers are less intrusive and more scalable
than tracers but profilers do not maintain a record of the structure and sequence
of events. In contrast, tracers give the whole picture of what happened during the
run time of an application, but are limited in scalability due to the huge amount
of data they generate. Current tracing methodologies can produce trace files in
the order of gigabytes for only a few minutes of application execution [1]. The
size of the trace files also grows drastically as the number of cores used by an ap-
plication increases. Thus, new scalable methods for performance data collection
maintaining sequence and temporal order of the information are needed.

In this paper, we propose a novel approach for application characterization
using event flow graphs which is designed to combine the advantages of profiling
and tracing. This method has the scalability of profiling without discarding the
temporal ordering of events performed by the application. We have implemented
our solution in the Integrated Performance Monitoring tool (IPM) [2,3], a light-
weight and scalable profiling tool for parallel applications. It uses a hash table in
memory to store performance data and provides rich metrics about MPI-related
events such as MPI timings, communication volume and the communication
topology. IPM is open-source and is available freely from http://www.ipm2.org

under the LGPL license.
The rest of this paper is structured as follows: In Sect. 2 we define and de-

scribe our approach for generating MPI event flow graphs. Section 3 shows some
experimental results using the NERSC-8/Trinity Benchmark Suite. In Sect. 4
we review some of the related work in trace compression. The paper ends with
future work and conclusions in Sect. 5 and Sect. 6, respectively.

2 MPI Event Flow Graphs

In this work, we use and extend the definitions of Fürlinger et al. [4] for a formal
treatment of performance monitoring events. We start with an MPI application
with n processes (identified by their ranks [0..n − 1]), where each process i is
characterized by a set of events Ei ⊆ E where E represents all the events that
happened during the run time of the application. An event can be any action
performed by the application, but in this work we restrict ourselves to MPI
operations. In other words, an event is an MPI primitive call.

Each event e has a signature δ(e) that captures the aspects of the events
we are interested in. We can think of the signature as a k-tuple of components
δ(e) = (δ1(e), δ2(e), ..., δk(e)) which represent relevant metrics, such as the type
of MPI call, communication partner rank, data transfer size, callsite (source
code position), or program region. The mapping from event to signature is not
necessarily injective and therefore statistics are recorded for each different signa-
ture value. Hence, we can conceptually represent the performance behavior of an
MPI process as a table where each row is an event indexed by its signature and
each column is a different statistic (number of occurrences, minimal duration,
maximal duration, etc.).

http://www.ipm2.org

MPI Trace Compression Using Event Flow Graphs 3

In practical terms, the performance behavior is recorded in a hash table in
memory which is implemented in IPM with the event signatures δ(e) being used
as the hash keys. The values in this hash table are performance metrics such as
the number of occurrences and different timings (minimum, maximum and total
duration) of each event. This lets us store performance data in the hash keys as
well as in the table entries, thereby reducing the monitoring overhead. Notice
that if we include the event timestamp as a component of the signature, we have
a model for tracing. If the timestamp is omitted, we lose the temporal dimension
of the data and instead have a model for profiling since we cannot know the order
in which the events happened during the application’s run time. However, as we
show in this paper, the temporal ordering of events can nevertheless be fully
recovered by keeping track of a (very short) history of the event signatures.

Consider again an MPI application with n processes and a set of events Ei =
{e0, e1, ..., em} belonging to process with rank i. Let δ(e) : Ei �→ Si be the
signature function at rank i and s0i ∈ Si an initial signature value. Then δ′(e)
with

δ′(e0) = (s0i , δ(e0))

δ′(ei) = (δ(ei−1), δ(ei)) if i > 0

represents the signature history for δ. Then, the directed weighted graph G =
(Ni, Li, wi, s

0
i) with the event signatures forming the set of nodes Ni and the

signature history the set of edges Li

Ni = {δ(ei)} ei ∈ Ei

Li = {δ′(ei)} ei ∈ Ei

wi : Li �→ N wi(l) = |{ei : δ′(ei) = l}| l ∈ Li

is the event flow graph for the MPI rank i with s0i as the initial node of the
graph. In other words, in the event flow graph the nodes correspond to the MPI
calls performed by the application and the edges correspond to the transitions
between them. The edge weight (wi) or edge count is the number of transitions
between nodes. Figure 1 depicts a simple MPI application and the corresponding
event flow graph for one of its MPI processes, where MPI Init is the initial node
of the graph. Notice that the application has as many graphs as MPI processes.

2.1 Reconstructing Traces from Event Flow Graphs

For the simple example in Fig. 1 we see that the event flow graph completely
captures the behavior of an MPI process. It contains all the events performed
by the process (nodes of the graph) and the transitions between them (edges
between nodes). Therefore, the path Ni = {s0i , s1i ...sni } from the initial node s0i
to the final node sni of the graph corresponds to the event trace for process with
rank i. The total number of events (length of the path) in the trace is∑

wi(l) + 1 ∀l ∈ Li

4 X. Aguilar, K. Fürlinger, and E. Laure

void main(int argc, char *argv[]) {
MPI_Init(...);
MPI_Comm_size(...);
MPI_Comm_rank(..., &myrank);

for(i = 0; i < 10; i++) {
if (myrank is even)

MPI_Send(...);
else

MPI_Recv(...);

MPI_Reduce(...);
}
MPI_Finalize();

}

MPI_Comm_size

MPI_Comm_rank

 1

MPI_Send

 1

MPI_Reduce

10 9

MPI_Finalize

 1

MPI_Init

 1

Fig. 1. A simple MPI program and the event flow graph generated for an MPI process
with an even rank number

and the number of times that each event ei appears, also known as node cardi-
nality for the node δ(ei), is ∑

wi(in edges(δ(ei)))

In other words, the number of events in the trace is the sum of all edge weights
of the graph plus one and each event appears as many times as the total weight
of its incoming edges.

In this paper we are only concerned with reconstructing the sequence of events
in a trace (time stamps and intervals between events are topics for future work).
It is clear that the trace can be easily reconstructed for simple cases such as linear
graphs and graphs with a single loop such as the one in Fig. 1. However, there
are cases that cannot be reconstructed using flow graphs in this manner. This
occurs for applications with conditional branches within a loop, for example, the
code snippet in Fig. 2. When reconstructing the trace, we cannot know the order
of the calls after the MPI Barrier across loop iterations.

Thus, we extended our model to cover such cases. Firstly, we added a sequence
number to the exit edges of the branch nodes (that is, nodes with more than
one exit edge). This new weight is defined as a 2-tuple < N,N > where the first
element is the sequence number for that edge and the second element is the
edge count as defined above. With this extra data, we always know which edge
was taken in a branch node when traversing the graph. Figure 3 shows this new
extended model.

Secondly, we changed our directed graphs to multidigraphs, that is, directed
graphs with more than one edge between the same two nodes. This new graph

MPI Trace Compression Using Event Flow Graphs 5

for(i = 0; i < 10; i++) {
MPI_Barrier(...);
if (i < 5)

MPI_Bcast(...);
else

MPI_Gather(...);

MPI_Reduce(...);
}

MPI_Barrier

MPI_Bcast

5

MPI_Gather5 MPI_Reduce

5

5

9

Fig. 2. Example of a conditional branch within a loop and its corresponding event flow
graph

model can represent applications in which the conditional branches within a loop
vary across loop iterations as depicted in Fig. 3.

1: MPI_Comm_rank
2: MPI_Barrier
3: MPI_Send
4: MPI_Barrier
5: MPI_Recv
6: MPI_Barrier
7: MPI_Send
8: MPI_Finalize

MPI_Comm_rank MPI_Barrier
1

MPI_Send

1,1

3,1

MPI_Recv

2,1

1,1

MPI_Finalize
2,1

1

Fig. 3. A sequence of MPI operations and the corresponding multidigraph

2.2 Compressing Edges in Branch Nodes

As shown in the previous section, our new event flow graphs are multidigraphs
with sequence numbers in edges that have the same source node. Thereby, we can
always reconstruct the event trace associated with an application without any
loss of temporal order information by traversing the graph edges in ascending
order of their sequence number.

However, creating multiple edges between nodes to record the sequence order
can lead to huge graphs. In fact, our experiments showed that this situation
is quite common among real applications which sometimes have flow graphs
with thousands of edges going out from one node. Nevertheless, those graphs
usually exhibit repetitive patterns in terms of the multiple edges between nodes
as shown in Fig. 4. In that case, the application calls MPI Barrier followed by
MPI Recv 10 times, then it calls MPI Barrier followed by MPI Send 10 times,
afterwards it again calls MPI Barrier followed by MPI Recv 10 times, and so on,
until MPI Recv and MPI Send have each been called 30 times.

As we can see in the figure, the sequence numbers for those edges in the
event flow graph follow different arithmetic progressions, that is, the difference
between two consecutive numbers in the sequence is constant. In such cases, the

6 X. Aguilar, K. Fürlinger, and E. Laure

MPI_Barrier

MPI_Recv

1,10

3,10

5,10

MPI_Send

2,10

4,10

6,10

(a) Nodes with uncompressed
edges.

MPI_Barrier

MPI_Recv1,5,2,10

MPI_Send

2,6,2,10

(b) Nodes with compressed
edges.

Fig. 4. Branch compression of multiple edges between nodes

set of edges can be compressed into a single one as long as their edge count is
the same. Using this approach, the new weight for the compressed edges is a 4-
tuple < N,N,N,N > where the first element is the first number of the sequence,
the second element is the last number of the sequence, the third element is the
stride and the last element of the tuple is the edge count. For instance, the set
of edges [1, 10], [3, 10], [5, 10] in Fig. 4 from the MPI Barrier to the MPI Send
node can be compressed into a single edge with weight < 1, 5, 2, 10 >. Hereby,
we increase the readability of the graphs and reduce the space needed to store
them. For irregular patterns without a clear stride no compression is possible
and individual edges need to be stored.

2.3 Implementation in IPM

We have extended IPM to generate MPI event flow graphs as described in the
previous section. IPM maintains event statistics such as the total duration, the
minimum and maximum time and the number of occurrences for all MPI calls.
These statistics are stored in a hash table using the event signatures described
in Sect. 2 as the hash key for each event.

To record the transitions between events, we introduced a second hash table
that contains pairs of event signatures. This “history” hash table keeps infor-
mation on transition pairs of event signatures (δ(ei−1), δ(ei)). IPM keeps track
of the last event signature by storing it in a variable and updating it each time
there is a new insertion into the transition hash table. Moreover, IPM also keeps
track of branches within loops by checking if there are two pairs in the transi-
tion hash table (< δ(ei), δ(ej) >,< δ(ei), δ(ek) >) where δ(ej) �= δ(ek). If that is
so, each element is given a sequence number indicating their arrival order. IPM
also joins elements in the transition hash table to compress the number of edges
between nodes as described in Sect. 2.2. It keeps track of the old branches for
each node. When a branch finishes, IPM checks if the sequence number of the
branch follows an arithmetic progression in relation to any of the older branches
of that particular node. If that is the case and if both branches have the same

MPI Trace Compression Using Event Flow Graphs 7

edge count, the two branches are compressed into a single branch. Upon pro-
gram termination, IPM constructs the event flow graph for each MPI process by
matching pairs of event edges.

3 Experiments

In order to test our approach for trace reconstruction from MPI event flow
graphs, we used the following mini-applications from the NERSC-8/Trinity
Benchmarks suite [5]: AMG, an algebraic multigrid solver for linear systems on
unstructured grids; GTC, a 3D Particle-in-cell code (PIC) with a non-spectral
Poisson solver used for gyrokinetic particle simulation of turbulent transport
in burning plasma; MILC, a code for simulating four dimensional SU(3) lat-
tice gauge theory to study quantum chromodynamics (QCD); SNAP, a proxy
application that models the performance of a modern discrete ordinates neu-
tral particle transport application, PARTISN [6]; MiniDFT, a plane-wave DFT
mini-kernel that computes self-consistent solutions for the Kohn-Sham equations;
MiniFE, a mini-application that implements different kernels representative of
implicit finite-element applications; MiniGhost, a mini-application that imple-
ments a difference stencil across a homogenous three dimensional domain.

The experiments were performed on a Cray XE6 with 2 twelve-core AMD
MagnyCours at 2.1 GHz per node. The nodes are interconnected through a
Cray Gemini Network, each of them having a total of 32 GB DDR3 memory.
The benchmarks were compiled with Intel 12.1.5 and run using the small test
case that is provided for each one of them.

3.1 Overhead

Figure 5 shows for each benchmark the percentage of overhead introduced by
IPM over their total running time (writing the graph files to disk is also included
in the percentage). These experiments were run using strong scaling except for
SNAP, MILC and GTC. As depicted in the figure, the overhead introduced to
generate the event flow graphs is almost negligible, being always below 2%.

3.2 Compression Ratios

Table 1 shows the compression ratio for each benchmark in terms of file size
between our flow graph file and a standard trace file for that application gener-
ated by IPM, in other words, it shows how many times smaller the event flow
graph file is compared to the standard trace file. It is important to be aware
that both files contain exactly the same amount of information for each MPI
call: call name, bytes sent or received, communication partner and callsite. As
our current implementation generates one flow graph per MPI process, the table
shows statistics for the minimum, maximum and average compression ratios for
all processes within each application. The results in the table demonstrate that
the compression depends on the nature of the benchmark. For instance, we have

8 X. Aguilar, K. Fürlinger, and E. Laure

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800

O
ve

rh
ea

d
%

MPI Processes

Minighost
MiniFE

MiniDFT
AMG
SNAP
MILC

GTC

Fig. 5. Percentage of overhead over total running time introduced in the NERSC-
8/Trinity benchmarks when generating their event flow graphs

applications such as SNAP with flow graph files 119 times smaller than the stan-
dard linear trace whereas in other applications such as AMG the compression
ratio is 1.76. In terms of file size, the amount of disk space required to store the
traces for a run with 96 cores of SNAP is 1.1 GB whereas the space required for
the event flow graphs is only 10 MB.

In order to explain this variance in the compression we need to look into some
graph metrics. Table 2 gives statistics for the number of nodes, the number of
links and the average cardinality of nodes in the graphs. Remember that the node
cardinality is the number of instances an event δ(ei) happened during the run
time of the application as explained in Sect. 2.1. The figures in the tables show
that low compression ratios are related to graphs with a large number of nodes
with low cardinality such as AMG or MiniDFT. In contrast, graphs consisting
of a few nodes with high node cardinality exhibit very good compression ratios.

As explained in Sect. 3, each event is identified uniquely using a signature
defined by several metrics. Furthermore, each one of these events is eventually
converted into a node in the event flow graph. Therefore, the metrics used as
signature elements have an important role in the cardinality of the graph. In
our experiments, the event signature was composed of the MPI call name, the
MPI rank, the number of bytes associated with the call and the call site. Thus,
it is not surprising that applications with huge graphs (such as AMG) have a
large number of different call sites and message sizes - this was confirmed by our
experiments. The variability in the number of call sites and the sizes of messages
leads to a greater number of signatures, and consequently more nodes in the
resulting graph.

Finally, we performed another set of experiments with some of the NERSC-8
benchmarks and a five-point stencil code computing a wave 2D equation [7] to
measure the increase ratio in file size as we increase the number of simulation
time steps. Figure 6 shows that standard trace files increase linearly with the
number of simulation steps whereas the event flow graph (EFG) files do not.
For most of the benchmarks, the small increment in the graph file size is caused

MPI Trace Compression Using Event Flow Graphs 9

by the addition of new edges to the graphs due to the execution of different
call paths as the number of simulation steps increases. (For GTC the number
of nodes also increases due to a variation in the size of messages.) However,
applications that execute the same loop over time such as the 5-stencil code
have constant event flow graph size irrespective of the number of simulation
steps. For applications like that, the only difference between graphs from runs
with different simulation times is their node cardinality.

Table 1. File compression ratios

Benchmark Ranks Min Max Avg

AMG 96 1.70 1.85 1.76

GTC 64 37.95 47.65 46.60

MILC 96 38.67 39.44 39.03

SNAP 96 75.37 210.88 119.23

MiniDFT 40 3.14 8.39 4.33

MiniFE 144 15.23 22.25 19.93

Minighost 96 3.84 5.72 4.85
 1

 1.5

 2

 2.5

 3

 3.5

 4

x1 x2 x3 x4

Si
ze

 r
at

io

Increase ratio in Simulation Steps

MiniGhost EFGs
MiniGhost Trace Files

5D-Stencil EFGs
5D-Stencil Trace Files

SNAP EFGs
SNAP Trace Files

GTC EFGs
GTC Trace Files

Fig. 6. Increase in file size when increasing
simulation steps

Table 2. Number of nodes, edges and cardinality of nodes in the event flow graphs

Num. of nodes Num. of edges Node Cardinality

Benchmark Ranks Min Max Avg Min Max Avg Min Max Avg

AMG 96 4973 15115 9,348.94 5652 17287 10,586.47 4.44 4.83 4.59

GTC 64 114 130 114.50 120 151 121.20 96.52 109.53 109.10

MILC 96 6330 6347 6330.18 97426 97443 97426.18 1653.01 1657.31 1657.27

SNAP 96 22 28 24.77 340 1729 1,120.26 7,007.50 17,805.91 14,149.22

MiniDFT 40 512 1087 690.30 873 5851 1,980.38 12.39 63.01 27.29

MiniFE 144 73 280 161.08 75 282 163.08 33.86 50.35 45.10

Minighost 96 89 95 92.33 91 135 111.04 12.13 13.89 13.13

4 Related Work

Performance tools for HPC systems have been studied and developed for years.
Extrae and Paraver [8,9], and also ScoreP with Vampir [10,11], are tracing
toolsets used to visualize the behavior of MPI applications over time. They
provide lossless traces that include all the events that happened while the ap-
plication was running. However, these traces are huge and their size increases
linearly with the number of MPI processes. Therefore, the use of such toolsets is
limited by scalability constraints. In contrast, our current work with event flow

10 X. Aguilar, K. Fürlinger, and E. Laure

graphs shows that we can capture the events and their temporal order as tracers
do while storing it in files that are a few orders of magnitude smaller. However,
our approach is still in an early stage and more work is needed to reach the same
level of usability and information granularity as that provided by current tracing
tools, for example, including continuous data such as timestamps or hardware
performance counters in the trace.

Our work is also related to lightweight profiling tools such as mpiP [12] or
Gprof [13]. These tools generate profiles of aggregated information with very low
overhead. Although these tools can provide a good overview of the performance
problems for a particular application, they lack the temporal order of data needed
for in-depth performance analysis. In contrast, IPM can provide temporal order
in the performance data using event flow graphs. Additionally, IPM also provides
standard reports with aggregated statistics.

Scalatrace [14] is a tracing framework that provides on-the-fly lossless trace
compression of MPI communication traces. It implements intra-node compres-
sion describing single loops with RSDs [15] and using techniques such as callpath
compression. Scalatrace also implements inter-node compression at the end of
the run when each process trace is merged into a single one for the whole appli-
cation. Scalatrace comes with a replay mechanism for a later analysis of those
traces. Our work differs from Scalatrace in the sense that we do not compress
series of events, but instead record the behavior of an application using graphs.
We believe this approach has better compression ratios and much less overhead
as discussed in Sect. 3. Furthermore, our approach also makes it possible to
replay traces later for the purposes of performance analysis. Nevertheless, our
current implementation still lacks inter-node compression, generating one file per
process. This is subject to future work though.

Krishnamoorthy et al. use SEQUITUR to compress traces creating context-
free grammars from the sequence of MPI calls [16]. In order to achieve better
compression, the trace is not compressed at an event level, but instead every call
argument is compressed in a different stream. This loses any program structure
in the resulting trace and makes it unreadable. In contrast, our approach keeps
the program structure, thus allowing us to easily visualize the traces.

Knüpfer et al. use Complete Call Graphs (CCGs) to compress post-mortem
traces according to the call stack [17]. This approach builds a call graph and re-
places similar repeated sub-trees with a reference to a single instance. Therefore,
CCGs can be very useful for trace analysis tools, reducing their memory footprint
and allowing them to deal with bigger traces. However, this method does not elim-
inate the burden of generating large traces while the application runs.

Flow graphs have been widely used in other areas of computer science such as
code generation and analysis. In those contexts, compilers generate flow graphs
from their intermediate representation (IR) where nodes are code blocks and
edges are branches that a program may take. Our work differs in the sense that
the nodes in our graphs are communication events instead of code blocks. In
addition, the edges of our event flow graphs are not possible branches but rather
transitions that actually happened during the execution.

MPI Trace Compression Using Event Flow Graphs 11

5 Future Work

Using event flow graphs in the analysis of MPI parallel applications opens up
many possibilities such as developing new tools to visualize, navigate and interact
with graphs. Possible visualization features could be graph coloring depending
on different metrics or highlighting differences among graphs to detect load im-
balance among processes. The graph approach also allows the use of different
algorithms and techniques for automatic graph analysis, for instance, detecting
loops in the graph and time spent in those loops. Furthermore, these new per-
formance tools could provide trace reconstruction features for just some sections
of the graph or a couple of iterations of a graph cycle.

Our current implementation of the event flow graphs in IPM does not keep
any time information on call duration in the graph. Thus, trace reconstruction
with timestamps is not possible yet. Therefore, we are looking into methods
for trace reconstruction that include time information. Furthermore, we want to
apply those methods for the reconstruction of any continuous data in the trace,
for example, hardware performance counters.

Finally, another aspect we want to explore in the future is inter-node trace
compression across ranks. Our current version always generates one flow graph
per process. However, it is usual in parallel application that a set of processes
has similar or identical behavior. In such cases, the graphs generated by those
processes will be similar as well, and thus, they can be compressed into a single
graph that could be used to describe that whole set of processes with similar
execution.

6 Conclusion

Performance analysis through tracing is the best method to understand the be-
havior of applications. However, tracing techniques have scalability limitations
due to the amount of information that is generated. In this paper we have pre-
sented a disruptive approach for performance tracing of MPI parallel applica-
tions using event flow graphs. This new method combines the scalability and
low overhead of profiling methods with the lossless information capabilities of
tracing tools. We evaluated our implementation using several mini-applications
from the NERSC-8/Trinity Benchmark Suite. The experiments showed promis-
ing results, achieving file compression ratios up to 119 with overheads below 2%.
Furthermore, the use of applications with longer simulations would allow even
better compression ratios because the same paths in the application are executed
more times. Although our work is still at an early stage, we believe it has strong
potential to be a way towards developing performance analysis tools that are
effective at an exascale level.

References

1. Labarta, J., Gimenez, J., Martinez, E., González, P., Servat, H., Llort, G., Aguilar,
X.: Scalability of visualization and tracing tools. In: Proc. 11th Parallel Computing
Conf. (ParCo 2005), pp. 869–876 (2005)

12 X. Aguilar, K. Fürlinger, and E. Laure

2. Fuerlinger, K., Wright, N.J., Skinner, D.: Effective performance measurement at
petascale using ipm. In: 2010 IEEE 16th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 373–380. IEEE (2010)

3. Aguilar, X., Fürlinger, K., Laure, E.: Online performance data introspection with
ipm. In: The 15th IEEE International Conference on High Performance Computing
and Communications (2013) (to be published)

4. Fürlinger, K., Skinner, D.: Capturing and visualizing event flow graphs of mpi
applications. In: Lin, H.-X., Alexander, M., Forsell, M., Knüpfer, A., Prodan, R.,
Sousa, L., Streit, A. (eds.) Euro-Par 2009 Workshops 2009. LNCS, vol. 6043, pp.
218–227. Springer, Heidelberg (2010)

5. NERSC-8 / Trinity Benchmarks WWW site, http://www.nersc.gov/systems/

trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/

6. Alcouffe, R.E., Baker, R.S., Dahl, J.A., Turner, S.A., Ward, R.: Partisn: A time-
dependent, parallel neutral particle transport code system. Los Alamos National
Laboratory, LA-UR-05-3925 (May 2005)

7. MPICH wiki, http://wiki.mpich.org/mpich/images/1/17/Wave2d.cpp.txt
8. Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and

analyze parallel code. In: Proceedings of WoTUG-18: Transputer and Occam De-
velopments, vol. 44, pp. 17–31 (1995)

9. Servat, H., Llort, G., Huck, K., Giménez, J., Labarta, J.: Framework for a produc-
tive performance optimization. Parallel Computing 39(8), 336–353 (2013)

10. Knüpfer, A., Rössel, C., Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D.,
Geimer, M., Gerndt, M., Lorenz, D., Malony, A., et al.: Score-p: A joint perfor-
mance measurement run-time infrastructure for periscope, scalasca, tau, and vam-
pir. In: Tools for High Performance Computing 2011, pp. 79–91. Springer (2012)

11. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The vampir performance analysis tool-set. In: Tools for High
Performance Computing, pp. 139–155. Springer (2008)

12. Vetter, J.S., McCracken, M.O.: Statistical scalability analysis of communication
operations in distributed applications. In: ACM SIGPLAN Notices, vol. 36, pp.
123–132. ACM (2001)

13. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution pro-
filer. ACM Sigplan Notices 17(6), 120–126 (1982)

14. Noeth, M., Ratn, P., Mueller, F., Schulz, M., de Supinski, B.R.: Scalatrace: Scalable
compression and replay of communication traces for high-performance computing.
Journal of Parallel and Distributed Computing 69(8), 696–710 (2009)

15. Havlak, P., Kennedy, K.: An implementation of interprocedural bounded regular
section analysis. IEEE Transactions on Parallel and Distributed Systems 2(3), 350–
360 (1991)

16. Krishnamoorthy, S., Agarwal, K.: Scalable communication trace compression. In:
Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, pp. 408–417. IEEE Computer Society (2010)

17. Knupfer, A., Nagel, W.E.: Construction and compression of complete call graphs
for post-mortem program trace analysis. In: International Conference on Parallel
Processing, ICPP 2005, pp. 165–172. IEEE (2005)

http://www.nersc.gov/systems/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://www.nersc.gov/systems/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://wiki.mpich.org/mpich/images/1/17/Wave2d.cpp.txt

ScalaJack: Customized Scalable Tracing

with In-situ Data Analysis�

Srinath Krishna Ananthakrishnan and Frank Mueller

North Carolina State University, USA
mueller@cs.ncsu.edu

Abstract. Root cause diagnosis of large-scale HPC applications often
fails because tools, specifically trace-based ones, can no longer record
all metrics they measure. We address this problems by combining cus-
tomized tracing and providing support for in-situ data analysis via Scala-
Jack, a framework with customizable instrumentation and pluggable
extension capabilities for problem directed instrumentation and in-situ
data analysis. We further eliminate cross cutting concerns by code refac-
toring for aspect orientation and evaluate these capabilities in case stud-
ies within and beyond the scope of tracing.

1 Introduction

Experience suggests that HPC codes suffer scalability issues each time the con-
currency level increases by an order of magnitude. Analyzing the causes requires
knowledge of an application’s global and local behavior. Frequently, tracing is
used for root cause analysis. Specific application events are identified and traced
during execution. Tracing differs from profiling in that it tries to preserve more
data, including the chronology of events, while profiling is inherently lossy and
focuses on aggregate metrics of loops and nodes. But trace-based tools struggle
to isolate problems since instrumentation costs can be prohibitive with exhaus-
tive collection of metrics at events and results in perturbations that can mask the
true problem. Traditional approaches employ periodic probing [6] instead of full
instrumentation and may employ reduction in data volume through compres-
sion. However, this merely postpones the problem of analyzing the data, which
requires decompression again. In-situ analysis is an alternative as it reduces data
volume inherently and facilities realtime/online root cause analysis. Leveraging
user knowledge for instrumentation, problem-specific tracing and analysis capa-
bilities can thus be realized.

Contributions:We have developed ScalaJack to support active analysis trac-
ing, i.e., problem-specific extraction and on-the-fly reduction of data through
analysis. ScalaJack supports user-customizable instrumentation and user call-
backs as pluggable extensions for instrumenting interfaces and a means for in-
situ data analysis at specific execution points. This supports rapid generation of
problem-specific analysis tools. Instrumentation via ScalaJack is aspect-oriented

� This work was supported in part by NSF grants 1217748, 0958311, and 0937908.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 13–25, 2014.
c© Springer International Publishing Switzerland 2014

14 S.K. Ananthakrishnan and F. Mueller

to reduce cross-cutting concerns in source code to improve code readability,
reuse, portability and maintainability, which aids in designing large and multi-
scalar HPC codes. In experiments, ScalaJack shows scalable trace file sizes with
increasing number of tasks and minimal overhead. Aspect-oriented analysis sug-
gests significantly decreased scattering of cross-module code references.

2 Background

ScalaJack is a redesign of ScalaTrace to support customizable instrumentation,
user callbacks and aspect-oriented program design. ScalaTrace [17] is a state-
of-the-art scalable parallel communication tracing library for message-passing
MPI programs. MPI events are traced through the PMPI profiling layer. Scala-
Trace combines on-the-fly intra-node compression of MPI calls within loops with
inter-node compression of events across nodes (in MPI Finalize). ScalaTrace
employs RSDs and PRSDs ([Power] Regular Section Descriptors [14]) struc-
tures to represent events in a loop as constant size logs. An RSD is a tuple
< length, event1...eventn > in one loop and a PRSD represents multiple RSDs
in nested loops. E.g., two nested for loops with a barrier in the outer and a send
in the inner loops correspond to PRSD < 10, RSD1,MPI Barrier > where
RSD1 is < 10,MPI Send > for 10 iterations per loop level.

ScalaTrace represents events and parameters through an elastic data repre-
sentation [24] that morphs scalars, vectors and histograms. Resulting trace files
are scalable yet completely lossless, except for delta times between MPI events
recorded as lossy histograms. A replay engine allows events to be replayed with-
out original program code, even for non-deterministic histogram data.

Aspect-oriented programming [11] is a software engineering technique to
reduce scattering of cross-cutting concerns in source code. An aspect is is a piece
of code that cannot be factored out into procedural isolation due to cross-cutting
concerns (e.g., logging, timing, performance monitoring, load balancing) located
at pointcuts in the code, where concerns are the set of all aspects and a pointcut
separates two regions of disjoint concerns.

Aspect-specific code is moved from the original application’s component to an
aspects specification, i.e., advice, which is executed at the original pointcut in
the code (as a pre- or post-wrapper), often realized via run-time or compile-time
support for aspects [12,3].

3 Design and Implementation

ScalaJack reuses compression techniques of ScalaTrace but augments and ex-
tends them by introducing an API to define custom events specific to a program
and to register callbacks for in-situ analysis of live data. ScalaJack relies on
aspects through run-time interpositioning of MPI calls via PMPI and dynamic
pre-loading / tagging of event prologues / epilogues.

Figure 1 illustrates how ScalaJack composes generic instrumentation libraries
with the application. Custom events are tagged by either augmenting the appli-
cation with instrumented calls or by enumerating such events in a specification

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 15

User
application

UserStat
implementation

Spec for
events

Preloader

ScalaJack
library

User app
library

UserStat
library

App binary

compile

link

Fig. 1. Instrumentation Composition
with ScalaJack

Fig. 2. ScalaJack’s High-level Design

file. The user may provide an instrumentation class (UserStat, derived from
the Stat class) that implements the methods to start/stop/merge specific trace
events, which is compiled separately and linked into the application.

ScalaJack’s high-level design is depicted in Figure 2 with novel compo-
nents (circled) and redesigned existing components (non-circled). Each event
is wrapped by ScalaJack with a prologue and epilogue to support tracing and
invocation of aspect-specific callbacks. Event/user trace data within a task are
compressed on-the-fly by exploiting the program’s loop constructs while a second
phase of compression is performed via inter-node compression over all tasks. This
highly compressed single file trace is thus scalable with the number of processes.

Fig. 3. Typical Application workflow with ScalaJack

16 S.K. Ananthakrishnan and F. Mueller

A typical application workflow (Figure 3) consists of a parallel code with
customized instrumentation to trace and instrument MPI routines or arbitrary
functions augmented by in-situ reduction (through analysis) of instrumentation-
derived data. Reduced data is co-located with the appropriate event blocks and
stored as RSDs and PRSDs in a scalable fashion, preserving the structure of
program/trace. Correlating data to the events provides insight into root causes
to identify, e.g., performance anomalies. Other tertiary tasks due to cross-cutting
concerns integrate readily, e.g., visualization, yielding better code modularity.

Custom Events can bee registered to extend ScalaTrace’s scalable com-
pression algorithms for interposing arbitrary events in programs. This level of
tracing reduces default instrumentation to MPI Init/F inalize events or, op-
tionally, user-defined equivalents in the code, which would require user-provided
alternatives for rank/size/barrier (of MPI) for internal ScalaJack functionalities,
e.g., inter-node data reduction (not covered in this paper). A custom event API
supports (a) event registration and (b) specification of pre-/post-wrappers.

Registration of custom events via the API returns an event code (orthogonal to
MPI events) for further ScalaJack calls and internally establishes a control block
for optional flags for events. Flags may suppress stack signature generation
(normally used to identify functions during compression). Signature omission
may facilitate joint compression of event sets grouped together by a data-specific
criterion or for aggregation.

Custom events invoke user-supplied arbitrary functions when triggered. Reg-
istered wrappers for pro- and epilogues resemble functions for custom events
and are synonymous to those for MPI events instrumented via the PMPI in-
terpositioning techniques. An auto-generated prelinker provides skeleton code
that wraps the original function call. Custom wrappers may coexist with MPI
wrappers per event, and both of their data resides in the same, single trace file.
Flag-controlled tracing of just Init/Finalize facilitates inter-node compression for
MPI-associated user events, while the mix of both event streams may hamper
ScalaJack’s default MPI compression.

Nested custom events, i.e., trace events inside pre-/post-wrappers, can cause
incorrect ordering, e.g., before the epilogue of event 1, the prologue of event 2 is
encountered. Instead of using stack-bloating data structures, pre-/post-wrappers
are represented as two different events sequences.

User callbacks provide hooks at any communication point and selected call
graph nodes, e.g., for in-situ data analysis on event or program data. They
also support aspect orientation to separate cross-cutting concerns from main
algorithms. Prologues of MPI events cause ScalaJack to create control blocks
while epilogues consists of routines that append the events into the trace and
engage in intra-node compression of trace data. User callbacks as pre-/post-
wrappers serve as pointcuts and may augment the trace with user-collected data.
User callbacks further support data analysis, optional on-the-fly compression,
and, in contrast to MPI wrappers, even early reduction across nodes. A Stat
(Statistics) class provides overloading capabilities by the user through object
orientation with two instantiations for (a) the computation phase before the

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 17

event and (b) the communication phase of the event. Callbacks are established
by overriding Stat’s start/end methods or by a ScalaJack API call resulting
in internal Stat instantiation and method overriding. Thus, callbacks before
and after each compute/communicate phase are invoked out of the respective
pre-/post-wrappers. An optional flag supports suppression of entries into the
trace file to let users override Stat’s callback method, which is invoked just once
(without compute/communicate distinction).

User-directed compression: Data from in-situ analysis in callbacks enters
the trace as a compressed histogram by default. Users can overload the V alueSet
class and support their own set of compression routines as callbacks invoked
by our reduction framework with data marshaling. This supports pointcuts in
programs while providing scalability even for customized user data types.

Most aspect-oriented frameworks map aspects to specific events. In contrast,
ScalaJack aspects are universal across events but event-specific aspects are re-
alized by light-weight filters. Users can access event objects of pointcuts to ex-
ecute aspects for specific events/conditions, e.g., to access the send count of
MPI events. Users can also access event trace queues in their structurally com-
pressed form (PRSDs). This facilitates analysis on the entire trace, e.g., for trace
similarity via k-means clustering to group traces based on a distance metric.

4 Evaluation

We assess the scalability of ScalaJack via traces generated by its custom event
framework. In addition, the overhead incurred in using ScalaJack over a näıve
implementation is studied. We evaluate ScalaJack by refactoring several case
studies of typical HPC applications to utilize our aspect-oriented callback frame-
work. Tasks that are tangential to the program are refactored as part of these
callbacks. As a result, cross-cutting concerns are removed from the main com-
ponent of the program, thus improving readability and maintainability.

All experiments were conducted on our ARC cluster with two AMD Opteron
6128 processors with 8 cores each (16 cores) per node and a QDR InfiniBand
interconnect. Execution times and trace file sizes were averaged over 10 runs.

Since ScalaJack helps remove cross-cutting concerns in the code, the amount
of code related to a concern that is scattered is reduced. To quantify the im-
provement of using ScalaJack over a näıve implementation with respect to the
code footprint, we utilize the degree of scattering (DOS) and degree of focus
(DOF) metrics from [8,7]. Concentration (CONC) measures how many of the
source lines related of a concern s are contained within a component t (e.g., file,
class, method intending to a specific task), i.e.,

CONC(s, t) =
SLOCt,s

SLOCs

where SLOCt,s is the number of source lines of code (SLOC) in component t
related to concern s, and SLOCs is the SLOC in all of concern s. It should be
noted that SLOC excludes comments, blank lines and annotations for concern
assignment. The drawback of CONC is that it does not reflect the amount of
scattering of a concern’s code and does not allow for different concerns to be
compared. This is covered by the degree of scattering (DOS) metric defined by

18 S.K. Ananthakrishnan and F. Mueller

DOS(s) = 1− |T |
∑T

t (CONC(s,t)− 1
|T |)

2

|T |−1

where T is the set of components for |T | > 1 [7]. DOS is a normalized factor be-
tween 0 (completely localized) and 1 (completely delocalized). Thus, a reduction
in DOS is an indication of less scattering of code across components.

Degree of Focus (DOF) is a dual to theDOS metric and captures how focused
a component is. Dedication (DEDI) is defined as

DEDI(t, s) =
SLOCt,s

SLOCt

where SLOCt,s is the number of source lines of code (SLOC) in component t
related to concern s, and SLOCt is the SLOC in all of component t. Again, a
better metric would be the normalized degree of focus (DOF)

DOF (s) =
|S|

∑S
s (DEDI(t,s)− 1

|S|)
2

|S|−1

where S is the set of concerns for |S| > 1. DOF is a normalized factor between 0
(completely unfocused) and 1 (completely focused). Thus, an increase in DOF
is desired as it is indicative of reduction in scattering and increase in focus.

Performance analysis: One of the most frequently identified aspects in
any program is performance analysis. Developers typically want to identify the
performance characteristics of specific regions of their code. In most HPC appli-
cations, distinct regions of computation and communication can be identified,
and it is often desired to collect performance metrics related to the phases. We
evaluate ScalaJack’s viability with the IS benchmark of the NAS Parallel Bench-
mark suite. IS sorts integers through a parallel implementation of bucket sort.
As part of the benchmark, each task generates a random number sequence from
a seed based on the rank.

We illustrate ScalaJack’s capabilities to support performance analysis aspects
by choosing PAPI [15] to instrument the L1 data cache misses during the ran-
dom sequence generation in addition to performing trace analysis on every MPI
event in the program. We compare an implementation of the IS benchmark that
uses ScalaJack with a näıve implementation with tracing concerns around all
MPI functions and performance analysis concerns around the random sequence
generation step. We utilize the tracing level of ScalaJack, where all MPI events
are traced with custom events and both intra-node and inter-node compression
are performed. The näıve version of IS initializes the PAPI library, followed by
an instrumentation of the random sequence generation routine of IS with the
PAPI API. The return value of this instrumentation routine is then added to
the trace. To indicate the changes to perform tracing, a sample MPI routine,
MPI Reduce, is called to add data to the trace. The ScalaJack version differs
from the näıve implementation by utilizing PMPI wrappers to trace events (and
compress them) while the PAPI API calls are invoked as part of a StatPAPI
callback. These callbacks are invoked as part of the prologue and epilogue of the
custom event associated with random number generation. This allows for separa-
tion of concerns and reusability of the PAPI statistics collection Stat framework.

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 19

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64 128 256

R
el

at
iv

e
tr

ac
e

fil
e

si
ze

s

Number of Tasks

ScalaJack naive

(a) Trace file sizes

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128 256

E
xe

cu
tio

n
T

im
e

[s
ec

s]

Number of Tasks

naive ScalaJack

(b) Execution times

 0

 0.02

 0.04

 0.06

 0.08

 0.1

4 8 16 32 64 128 256

%
 T

im
e

O
ve

rh
ea

d

Number of Tasks

(c) ScalaJack % overhead

Fig. 4. IS Results

Figure 4(a) compares the trace files generated with ScalaJack and that of the
näıve implementation. The trace file sizes shown are relative (normalized) to
the ones generated with n = 4 tasks for the näıve and the ScalaJack versions,
respectively. As can be seen from the graph, traces generated with ScalaJack are
highly scalable with an increasing number of processors compared to the traces
generated by the näıve implementation. This is owing to the fact that ScalaJack
employs intra-node (to compress loops) and inter-node compression to generate
a single trace file, while the näıve implementation performs no compression and
generates traces for each of the tasks. We compare relative trace file sizes because,
on an absolute scale, trace files generated with ScalaJack are larger for lower
values of n due to timestamp data of few hundred bytes per event added to the
trace. ScalaJack internally times every communication and computation phase
of the program and stores them as histograms. This is utilized later by the
replay engine and other tools like benchmark generators to create instances of
the original program [17,25].

To highlight the overhead incurred in using ScalaJack, we compare the run-
ning times of the two implementations of the IS benchmark. As shown in Fig-
ure 4(b), ScalaJack introduces very little overhead to the näıve implementation’s
execution. To put it in a different perspective, Figure 4(c) shows the percent-
age overhead times of ScalaJack over the näıve implementation. As it can be
seen, ScalaJack introduces the highest performance overhead for n = 32, i.e., for
the best performance of IS under strong scaling, which is when instrumentation
overhead (constant across n) contributes the most — but still amounts to just
0.07% overhead for n = 32. There is substantial variability in the overhead of
ScalaJack over the näıve implementation since each task of the näıve implemen-
tation performs I/O to the parallel file system at MPI Finalize to write n trace
files for n nodes back to disk, each of which may be rather large (in the order of
GBs depending on the number loop iterations). This results in I/O contention.
In contrast, only rank 0 performs I/O to the file system with ScalaJack after
aggregating the traces from all its peers, i.e., a single file of rather moderate size
(in the MBs) suffices.

Table 1 (left columns) shows the improvement of using ScalaJack for separa-
tion of concerns over the näıve implementation. For IS, the identifiable compo-
nents are main and PAPI, where the main component implements the benchmark

20 S.K. Ananthakrishnan and F. Mueller

Table 1. Aspect metrics

IS CLAMR TFIDF
näıve ScalaJack näıve ScalaJack näıve ScalaJack

PAPI main PAPI main aux main aux main aux main aux main
CONC(perf,t) 1 0.4777 1 0.0444 1 0.0739 1 0.0118 1 0.3665 1 0.0683
DOS(perf) 0.4992 0.0850 0.1369 0.0234 0.4643 0.1273

perf sort perf sort main fd main fd main aux main aux
DEDI(main,s) 0.0588 0.9411 0.0057 0.9942 0.2708 0.7293 0.0540 0.9459 0.4155 0.5945 0.1134 0.8666
DOF(main) 0.7782 0.9770 0.2102 0.7955 0.0286 0.5978

while the PAPI component implements the performance metrics collection rou-
tines. The concerns here are identified as perf and sort, where perf is the actual
performance metrics collection API invoked at the pointcuts and sort is the rest
of the main component that performs the sorting. The goal is to reduce the
tangling of code between the two concerns and ScalaJack achieves this. This is
reflected by the lower (better) DOS score and a correspondingly higher (better)
DOF score for ScalaJack compared to the näıve implementation.

Visualization and Load balancing: We next evaluate the effectiveness
of ScalaJack for aspect-oriented application scenarios beyond tracing for per-
formance analysis. We first consider CLAMR [13], an adaptive mesh refinement
solver developed at Los Alamos National Laboratory. CLAMR implements a cell-
based shallow water code by computing the finite difference on AMR using MPI.
CLAMR periodically refines the mesh and also performs load balancing across
the nodes to redistribute the meshes. In addition, CLAMR performs OpenGL
or MPE-based visualization to display the mesh’s current state.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

4 8 16 32 64 128 256

E
xe

cu
tio

n
T

im
e

[s
ec

s]

Number of Tasks

naive ScalaJack

(a) Execution times

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

4 8 16 32 64 128 256

%
 O

ve
rh

ea
d

Number of Tasks

(b) ScalaJack % Overhead

Fig. 5. CLAMR Results

Application codes like CLAMR have numerous conflicting concerns that can
be effectively addressed using ScalaJack. In the näıve version of CLAMR, tasks
like visualization, mesh refinement, load balancing and printing of statistics are
not part of the main concern at hand, i.e., computing the finite difference. In
CLAMR’s ScalaJack version, the various concerns that are tangential to the main
concern at hand are refactored into the appropriate prologue/epilogue.CLAMR
was evaluated with the custom level of tracing, i.e., only custom events are traced

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 21

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

4 8 16 32 64 128 256

E
xe

cu
tio

n
T

im
e

[s
ec

s]

Number of Tasks

naive ScalaJack

(a) Execution times-IDF

 0

 0.05

 0.1

 0.15

 0.2

4 8 16 32 64 128 256

%
 T

im
e

O
ve

rh
ea

d

Number of Tasks

(b) ScalaJack % Overhead

Fig. 6. TF-IDF Results

and no MPI events except for MPI Init/F inalize. Custom events are config-
ured to be created without the stack signature so as to reduce the trace footprint.
Since no data is to be written as part of the callbacks, we register user callbacks
with the callback mode flag. Since the goal with CLAMR is not tracing but
rather refactoring tangential concerns into callbacks, we refrain from comparing
trace sizes between näıve and ScalaJack. Instead, to assess the scalability, we
compare the execution times of both versions.

Figure 5(a) compares the overhead of ScalaJack through the differences in
execution time between the näıve and the ScalaJack versions of CLAMR. Fig-
ure 5(b) shows that ScalaJack introduces an overhead of a maximum of 0.03%
overhead. This is lower than that of IS because we utilize custom level tracing
for CLAMR, which does not trace any MPI events.

Table 1 (middle columns) summarizes the improvements of using ScalaJack
to eliminate concerns from CLAMR. With CLAMR, the main component is
the code that performs the finite difference, while all cross-cutting concerns are
grouped as an auxiliary concern. With ScalaJack, all cross-cutting concerns are
performed at the callbacks as part of registered custom events. With CLAMR,
the majority of the cross-cutting concern code was that of visualization because
the rank 0 task aggregates all mesh values from the other tasks for visualization.
Since a major portion of the code is eliminated from the main component, we
observe a better (higher) DOF score and thus a better (lower) DOS score.

Data analysis in-situ with trace analysis: As the final case study, we an-
alyze ScalaJack’s effectiveness with a MapReduce style application that can take
advantage of the reduction capabilities of ScalaJack. TF-IDF is a data analysis
metric used to assess the importance of a given term with respect to a docu-
ment in a dictionary [20]. The two metrics involved are term frequency tf(t, d),
defined as the frequency of occurrence of a term t in a given document, and
inverse document frequency idf(t,D) in a set of documents D, defined as the
inverse of the frequency of documents that contain a term t within a given dic-
tionary of terms. The TF-IDF metric is then defined by

tfidf(t, d,D) = tf(t, d)× idf(t,D)

22 S.K. Ananthakrishnan and F. Mueller

TF-IDF is a MapReduce style problem wherein a set of documents are ini-
tially mapped across a number of tasks and each task computes the tf and
idf metrics separately followed by a reduction, which aggregates idf metrics.
With such analysis problems, efficient reduction strategies that are scalable are
required because a näıve implementation might lead to bottlenecks and lower
performance. Data analysis problems, such as TF-IDF, can exploit the internal
reduction logic of ScalaJack otherwise utilized by inter-node compression. This
is supported via the definition of a custom V alueSet instead of the Histogram,
thus performing data analysis as part of a defined user callback. Such a solution
allows for increased reusability of code as developers do not have to explicitly
implement communication strategies themselves.

The näıve TF-IDF initially computes the tf and node-local idf and then con-
structs a communication tree to perform a reduction. The ScalaJack version
defines the reduction as a V alueSet of the StatTFIDF object associated with
the idf computation event. As part of the event’s epilogue, the idf table is added
to the Stat object. When inter-node compression is performed at the prologue
of MPI Finalize, the idf tables are compressed as well. With the ScalaJack
version, users do not have to be concerned with implementing a communication
tree and use ScalaJack’s internal reduction tree to perform scalable compression.
In our tests, we compare the näıve implementation with the ScalaJack imple-
mentation with support for inter-node compression. As with CLAMR, tracing
is not the goal here. Hence, we assess the scalability through the overhead of
ScalaJack over the näıve implementation.

Figure 6(a) shows the overhead of ScalaJack in comparison to the näıve ver-
sion. ScalaJack introduces minimal overhead of about 0.16% as reflected in Fig-
ure 6(b), thus proving to be light weight. Table 1 (right columns) shows the
aspect-related metrics for the TF-IDF case study. With ScalaJack, concerns re-
lating to the communication tree for final idf aggregation are eliminated and are
made through an extension of the V alueSet class. This reduces the tangling of
code, thus leading to better (higher) DOF and better (lower) DOS scores.

5 Related Work

Our implementation of customizable instrumentation with in-situ data analysis
through ScalaJack is closely related to tools that support tracing or profiling
of MPI programs. Paraver [19] is a tracing and visualization tool that supports
tracing of both shared memory and message passing programs. For MPI pro-
grams, Paraver includes a tracing library for intercepting MPI calls and saving
them as individual trace files during execution. These trace files are merged of-
fline and then visualized. Paraver and other tracing tools [22,16,9,18] allow users
to store user-defined values in a trace but they lack ScalaJack’s compression of
trace files on-the-fly and the ability to directly affect compression of native trace
values (as opposed to user-defined trace values).

VAMPIR [16] is another tracing tool for MPI/OpenMP/CUDA events with
support for visualization that stores traces as flat files, which are compressed

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 23

later through zlib compression. Even though such tools generate trace files with
limited scalability, they do not take advantage of the underlying structure of the
trace file. Thus, such trace files cannot be efficiently used for replay [24] or code
generation [25] supported by ScalaTrace. Recent versions of VAMPIR provide
support for marking regions in the trace with specific marker events for identi-
fying potential hotspots in the trace files [4]. These markups can then be used
by automated performance analysis tools like Scalasca [9]. With ScalaJack, this
can easily be achieved by writing instrumentation data with additional markups
directly to the trace file and using plugins for domain-specific compression.

Several tools [22,16,9,18,6,5] support tracing of arbitrary user events through
automatic instrumentation via compiler abstractions, dynamic preloading or
manual instrumentation of code, both statically and dynamically via binary
rewriting. ScalaJack also supports built-in preloading and manual instrumenta-
tion but emphasizes separation of cross-cutting concerns via aspect orientation,
which simplifies reuse for other programs. In addition, programs not only lever-
age ScalaJack’s compression tree framework to perform reduction of their own
data structures efficiently but also improve on intra-node compression and inter-
node reduction of default communication tracing data, which is unprecedented.

Arnold et al. [2] identified task behavior equivalence classes using stack signa-
ture similarity. They utilized MRNet, a software overlay network that provides
efficient multicast and reduction communications [21]. MRNet provides a gen-
eral framework with generic plugins, each requiring an explicit implementation of
compression and reduction. In contrast, ScalaTrace natively supports compres-
sion and reduction, i.e., trace-specific plugins directly complement this process
or even manipulate internal data structures affecting the trace file format.

Our work is also related to light-weight profiling tools like mpiP [23], gprof [10],
and HPCToolkit [1]. While these tools provide simple and high-level information
to support a high-level understanding of performance problems, ScalaJack pro-
vides facilities to the user for profiling of arbitrary interfaces in their programs
in addition to supporting light-weight tracing. Since the instrumentation data
is stored along with the trace files, users can correlate events to the data thus
helping them to diagnose subtle anomalies dependent on event orders.

6 Conclusion

We have implemented ScalaJack, a framework for customizable instrumentation
with in-situ data analysis. ScalaJack provides APIs for users to tag sections of
the code that need to be instrumented. This allows users to perform instrumen-
tation at interfaces that are pertinent to the problem at hand instead of having
to instrument exhaustively, thereby often compromising scalability. ScalaJack
provides direct access to intra-node and inter-node compression algorithms and
data structures to preserve the execution structure of a program in a lossless
fashion in addition to maintaining scalability.

ScalaJack facilitates in-situ analysis provides by allowing users to perform re-
duction of data by registering callbacks. In addition to providing native support

24 S.K. Ananthakrishnan and F. Mueller

to compress numeric data into histograms, ScalaJack provides APIs for users
to define their own data elements depending on the application. Since the call-
backs are synonymous to aspects, users can leverage them to write better code,
thus enhancing readability and maintainability. An evaluation of ScalaJack with
several case studies has shown that it is very light-weight, posing an overhead
of under 0.2% and capable of producing lossless and near-constant trace sizes
for event parameters, while resulting in efficient, maintainable source codes with
about 75% reduction in the degree of scattering. Overall, this demonstrates the
fidelity of ScalaJack in facilitating trace generation and analysis for users.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent, N.: HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency & Comp. Practice and Experience 22(6), 685–701 (2010)

2. Arnold, D.C., Ahn, D.H., de Supinski, B.R., Lee, G.L., Miller, B.P., Schulz, M.:
Stack trace analysis for large scale debugging. In: International Parallel and Dis-
tributed Processing Symposium (2007)

3. Aspect, C.: AspectC: AOP for C. (2004)
4. Brunst, H., Hackenberg, D., Juckeland, G., Rohling, H.: Comprehensive perfor-

mance tracking with Vampir 7. In: Tools for HPC 2009, pp. 17–29 (2010)
5. Buck, B., Hollingsworth, J.: An API for runtime code patching. International Jour-

nal of High Performance Computing Applications 14(4), 317–329 (2000)
6. De Rose, L., Hollingsworth, J., Hoover, T.: The dynamic probe class library – an

infrastructure for developing instrumentation for performance tools. In: Interna-
tional Parallel and Distributed Processing Symposium (April 2001)

7. Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy, G., Nagappan, N.,
Aho, A.: Do crosscutting concerns cause defects? IEEE Transactions on Software
Engineering 34(4), 497–515 (2008)

8. Eaddy, M., Aho, A., Murphy, G.C.: Identifying, assigning, and quantifying cross-
cutting concerns. In: Workshop on Assessment of Contemporary Modularization
Techniques, pp. 2–2 (2007)

9. Geimer, M., Wolf, F., Wylie, B.J.N., Abraham, E., Becker, D., Mohr, B.: The
scalasca performance toolset architecture. In: International Workshop on Scalable
Tools for High-End Computing (June 2008)

10. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution pro-
filer. ACM Sigplan Notices 17(6), 120–126 (1982)

11. Kiczales, G., Hilsdale, E.: Aspect-oriented programming. In: ACM SIGSOFT Soft-
ware Engineering Notes, vol. 26, p. 313 (2001)

12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 327–354. Springer, Heidelberg (2001)

13. Laboratory, L.A.N.: Cell-based adaptive mesh refinement using MPI and OpenCL
GPU code, https://github.com/losalamos/CLAMR

14. Marathe, J., Mueller, F., Mohan, T., de Supinski, B.R., McKee, S.A., Yoo, A.:
METRIC: Tracking down inefficiencies in the memory hierarchy via binary rewrit-
ing. In: Int’l Symp. on Code Generation and Optimization, pp. 289–300 (March
2003)

https://github.com/losalamos/CLAMR

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 25

15. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: A portable interface to hardware
performance counters. In: HPCMP Users Group Conference (1999)

16. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR:
Visualization and analysis of MPI resources. Supercomputer 12(1), 69–80 (1996)

17. Noeth, M., Ratn, P., Mueller, F., Schulz, M., de Supinski, B.R.: ScalaTrace: Scal-
able compression and replay of communication traces for high-performance com-
puting. Journal of Parallel Distributed Computing 69(8), 696–710 (2009)

18. of Dresden, T.U.: Score-p: Application instrumentation,
https://silc.zih.tu-dresden.de/scorep-current/html

19. Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: A tool to visu-
alise and analyze parallel code. In: WoTUG-18: Transputer and occam Develop-
ments.Transputer and Occam Engineering, vol. 44, pp. 17–31 (April 1995)

20. Rajaraman, A., Ullman, J.: Mining of Massive Datasets. Cambridge Press (2011)
21. Roth, P., Arnold, D., Miller, B.: MRNet: A software-based multicast/reduction

network for scalable tools. Supercomputing, 21–36 (2003)
22. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High

Perform. Comput. Appl. 20(2), 287–311 (2006)
23. Vetter, J., Chambreau, C.: mpiP: Lightweight, scalable MPI profiling. CASC/mpip

(2005), http://mpip.sourceforge.net/
24. Wu, X., Mueller, F.: Elastic and scalable tracing and accurate replay of non-

deterministic events. In: Int’l Conference on Supercomputing, pp. 59–68 (June
2013)

25. Wu, X., Deshpande, V., Mueller, F.: ScalaBenchGen: Auto-generation of commu-
nication benchmarks traces. In: International Parallel and Distributed Processing
Symposium, pp. 1250–1260 (2012)

https://silc.zih.tu-dresden.de/scorep-current/html
http://mpip.sourceforge.net/

Performance Measurement and Analysis

of Transactional Memory and Speculative
Execution on IBM Blue Gene/Q�

Jie Jiang1,2, Peter Philippen1, Michael Knobloch1, and Bernd Mohr1

1 Forschungszentrum Jülich GmbH,
Institute for Advanced Simulation,
Jülich Supercomputing Centre,

52425 Jülich, Germany
{j.jiang,p.philippen,m.knobloch,b.mohr}@fz-juelich.de

2 National University of Defense Technology,
School of Computer Science,

Changsha, Hunan Province, 410073, China
jiangjie@nudt.edu.cn

Abstract. The core count of modern processors is steadily increasing,
forcing programmers to use more concurrent threads or tasks to effec-
tively use the available hardware. This in turn makes it increasingly
challenging to achieve correct and efficient thread synchronization. To
support the programmer in this task, IBM introduced hardware trans-
actional memory (TM) and speculative execution (SE) in their Blue
Gene/Q system with its 16-core processor, which permits to run 64
simultaneous hardware threads in SMT mode. TM and SE allow for
parallelization when race conditions may happen, however upon their
detection the respective parts of the execution are rolled back and re-
executed serially. This incurs some overhead and therefore usage must
be well justified. In this paper, we describe extensions to the community
instrumentation and measurement infrastructure Score-P, allowing devel-
opers to instrument, measure, and analyze applications. To our knowl-
edge, this is the first integrated performance tool framework allowing
to analyze TM/SE programs. We demonstrate its usefulness and effec-
tiveness by describing experiments with benchmarks and a real-world
application.

Keywords: Parallel Programming, Performance Analysis, Trans-
actional Memory, Speculative Execution, Blue Gene/Q.

1 Introduction

The number of cores available in modern processors as well as the number of
processors inside cache-coherent shared-memory nodes is steadily increasing,

� This work is partially supported by the National Basic Research 973 Program of
China under Grant No.61312701001, the National High Technology Research and
Development Program of China under Grant No.2012AA01A309.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 26–37, 2014.
c© Springer International Publishing Switzerland 2014

Performance Analysis of TM and SE on IBM Blue Gene/Q 27

especially in high-end servers and HPC cluster systems. This forces parallel pro-
gram developers to use more concurrent threads or tasks to effectively use the
available hardware, in turn making it increasingly challenging to achieve correct
and efficient thread synchronization.

IBM’s latest HPC architecture, the Blue Gene/Q, is based on a 16-core Pow-
erPC A2 processor, running up to 64 simultaneous hardware threads in symmet-
ric multi-threading (SMT) mode [1]. To alleviate the implementation of correct
and efficient thread synchronization, IBM introduced hardware transactional
memory (TM) and speculative execution (SE). The interface to the TM and SE
hardware features of the Blue Gene/Q memory subsystem is based on C/C++
pragmas and Fortran directives1 similar to the ones in the OpenMP specification.
The TM programming model is based on an abstraction called a transaction. It
is a single-entry and single-exit code block enclosed by a “tm atomic” directive.
It can be used for atomic or critical regions in the code where data access race
conditions are expected to be rare and thus the locking overhead in the race-free
instances of the region can be avoided. For SE, the corresponding directive has
similar semantics as an OpenMP loop work-sharing construct. For example, the
“speculative for” directive mimics an “omp parallel for” directive with
the additional guarantee to maintain sequential semantics of the code, i.e., the
result corresponds to the result of an execution by a single thread. So, TM and
SE both allow for parallelization even when race conditions may happen, however
upon their detection the respective parts of the execution are rolled back and
re-executed serially. However, the benefit of the parallel execution must outweigh
the extra management overhead. To help application developers to evaluate the
effectiveness of using TM and SE constructs in their codes, the IBM compiler
runtime provides a TM/SE monitoring API which allows to collect executions
statistics for TM and SE constructs.

In this paper, we describe extensions to the parallel program performance
analysis framework Score-P [2], which allows developers to instrument, mea-
sure, and analyze MPI, OpenMP, or hybrid MPI/OpenMP parallel applications
which also use TM and SE constructs. This integration allows the user to an-
alyze all aspects of parallel performance in one tool environment and to study
dependencies and relationships between parallel constructs from the different
programming paradigms. For the instrumentation of directive-based parallel pro-
gramming paradigms, Score-P uses the Open Pragma And Region Instrumenter
(OPARI2) tool, which was enhanced to handle IBM TM and SE directives.
Measurement results are stored as summary profiles which can be analyzed and
viewed by the Cube [3] performance report viewer.

The main contributions of the work described in this paper are:

– A generic extensible tool for automatic instrumentation of directive-based
parallel programming paradigms including OpenMP and IBM TM/SE.

– An integrated performance tool framework allowing to analyze MPI,
OpenMP, or hybrid MPI/OpenMP parallel programs using TM and SE con-
structs. To our knowledge, this is the only tool set providing this capability.

1 As in the OpenMP specification, in this paper we will use the term directive for both

28 J. Jiang et al.

The rest of the paper is organized as follows: Section 2 gives a brief overview
on related work. Section 3 introduces the performance tool components which
were used, adapted, and enhanced, including the IBM TM/SE monitoring API,
OPARI, Score-P and Cube. The experiments to evaluate the usefulness and
effectiveness of the introduced extensions to our tool infrastructure are described
in Section 4. Finally, conclusions and a description of future work close the paper.

2 Related Work

Research on Transactional Memory (TM) has a long history, being first intro-
duced by Herlihy and Moss [4] in 1993 as a theoretical extension to micropro-
cessors. Subsequent research shifted towards Software Transactional Memory
(STM) [5], i.e. software ensures the atomicity of the transactions and organizes
the rollbacks. Today, STM implementations are available for many program-
ming languages, either as language feature (e.g. Closure) or as a library (e.g. for
C/C++, C#, Java).

Several research groups proposed analysis techniques for software transac-
tional memory using different methods. Ansari et al. [6] extended an STM frame-
work to obtain profiling data while Zyulkyarov et al. [7] track data structures
that conflict in transactions and determine their influence on the performance of
the application. Tracing of transactional memory applications was introduced by
Lourencco et al. [8], using a similar approach like the group of Ansari. However,
due to the relatively high overhead of STM, this approach is of minor relevance
to real-world applications in the field of high-performance computing [9].

IBM presented the first commercially available hardware transactional mem-
ory (HTM) system in the Blue Gene/Q (BG/Q) supercomputer [1]. Wang et
al. [10] and Schindewolf et al. [11] evaluated the HTM implementation on BG/Q
using various benchmarks to determine which applications may benefit from TM.
Scientific application developers begin to embrace HTM; performance studies
have been performed by Kunaseth et al. [12] for molecular dynamics applica-
tions and by Schindewolf et al. [13] for the conjugate gradients method.

On the other hand, the Speculative Execution (SE) functionality of BG/Q
has not yet been so well investigated. To the best of our knowledge, no extensive
performance study for SE has been performed.

Bihari et al. [14] made a case for adding directives for transactional memory
to the OpenMP specification. The importance of a standard way to express TM
constructs became visible with the work of Yoo et al. [15], who evaluated the per-
formance of the recently introduced Transactional Synchronization Extensions
of Intel’s Core architecture processors.

3 Tool Implementation

To gain insight into the behavior and especially into the impact on performance
of the new transactional memory and speculative execution features on IBM’s

Performance Analysis of TM and SE on IBM Blue Gene/Q 29

Table 1. Structure used by reporting functions for TM counters

TM record SE record

typedef struct TmReport s { typedef struct SeReport s {
unsigned long hwThreadId; unsigned long totalNONSpecCommitted;

unsigned long totalTransactions; unsigned long totalSpecCommitted;

unsigned long totalRollbacks; unsigned long totalRollbacks;

unsigned long totalSerializedJMV; unsigned long totalSerializedJMV;

unsigned long totalSerializedMAXRB; unsigned long totalSerializedMAXRB;

unsigned long totalSerializedOTHER; unsigned long totalSerializedOTHER;

} TmReport t; } SeReport t;

BlueGene/Q architecture, we added support into OPARI2 and to the perfor-
mance measurement framework Score-P. Source-to-source translation is used to
insert probe functions into the application code to instrument the regions of the
code that make use of TM and SE. These probe functions are implemented in
one of the measurement libraries of Score-P, the so-called TM/SE adapter, and
process the data provided by IBM’s TM/SE monitoring API to make it usable
by the measurement system. The data is recorded and stored in profiles which
can be examined with Cube.

This section introduces the IBM TM/SE monitoring API and presents the
extensions to OPARI2 that were necessary to perform the instrumentation of
the TM/SE directives. Next, the measurement system Score-P and the newly
implemented adapter for TM/SE are briefly described. Finally, this section con-
cludes with a detailed description of the newly developed analysis possibilities
for transactional memory and speculative execution.

3.1 IBM TM/SE Monitoring API

The SMPRT runtime system on IBM BlueGene/Q provides several intrinsics for
application programmers and tool developers to collect accumulative statistic
for TM/SE regions.

tm get stats(TmReport t * stats) collects the relevant accumulative statis-
tics for all TM regions that a particular hardware thread has executed up to
the point of the call, and stores it in a record of type TmReport t as shown in
Table 1, left. The main fields of this record include the hardware thread ID,
the total number of transactions, the total number of rollbacks, and the total
number of serialized executions (instead of successful speculative executions),
caused either by JMV2 conflicts, the maximum number of rollbacks reached, or
other reasons. This function can be called both at the beginning and the end of a
transaction, the difference reflecting the contribution of the enclosed region. To
get thread-specific values, it should be used inside parallel regions (like OpenMP
parallel regions).

2 Jail Mode Violations occur in case of irrevocable actions, e.g. I/O.

30 J. Jiang et al.

tm get all stats(TmReport t * stats) behaves similarly, but it provides the
accumulative statistics of all the TM regions that all hardware threads have
executed up to the point of the call. This function should be used outside of
parallel regions.

se get all stats(SeReport t * stats) updates the provided record (see Ta-
ble 1, right) with the sum of the statistics of all the SE regions that all hardware
threads have executed up to the call. The statistic counters for speculative execu-
tion include the total number of chunks committed by none speculative threads,
the total number of chunks committed by speculative threads, the total number
of rollbacks for speculative threads, the total numbers of serializations (caused
by JMV conflicts, due to reaching the maximum number of rollbacks, and due
to other reasons like buffer overflows, hardware races, etc.).

3.2 Instrumenting TM/SE Programs

We use the TM/SE monitoring API described above for collecting runtime ac-
cumulative statistics about the execution of TM/SE regions in the application.
The necessary instrumentation can be done in various ways; we use source-code
based instrumentation to be able to attribute performance data to user-level
constructs easily and in a portable way.

The Open Pragma And Region Instrumenter (OPARI2) is a source-to-
source instrumentation tool that inserts probe functions and code segments into
an application’s source code. OPARI2 is developed based on OPARI from the
Scalasca performance analysis tool set [16]. The original version was designed
to detect and instrument OpenMP directives in C/C++ and Fortran programs.
It reads the source file line by line, detects OpenMP directives and runtime
functions ignoring strings and comments, and instruments OpenMP constructs
by inserting functions as defined by the POMP2 interface [17].

All directives that are to be instrumented are stored in an internal table.
While parsing the source code, OPARI2 checks the table whenever a directive
is detected. If the directive is to be instrumented, this is done at the beginning
and at the end of the source-code region associated with the directive.

Support for TM/SE program instrumentation was integrated into OPARI2
under the precondition of enhancing OPARI2 to have a more modular archi-
tecture. The goal was to support different directive-based parallel programming
paradigms, starting with OpenMP and IBM’s TM/SE, but also keeping Ope-
nACC and Intel MIC LEO (language extensions for offload) in mind. OPARI2
now maintains an internal table of all supported paradigms and directives. Each
entry of the table includes the paradigm type, directive name, a flag indicating
whether this specific directive should be instrumented, as well as two pointers to
functions which perform the necessary instrumentation at the beginning and at
the end of the associated source-code region. These directive-specific definitions
form the basis of the modularized OPARI2, which makes it straightforward to
support new paradigms and directives in the future.

Performance Analysis of TM and SE on IBM Blue Gene/Q 31

Table 2. Exemplary instrumentation of TM and SE directives for C/C++

Original code Instrumented code

PTLS_Speculativefor_enter(int* id,

const char context_info[]);

#pragma speculative for #pragma speculative for

{ {

... ...

} }

PTLS_Speculativefor_exit(int* id);

PTLS_Speculativesections_enter(

int* id, const char context_info[]);

#pragma speculative sections #pragma speculative sections

{ {

#pragma speculative section #pragma speculative section

{ {

PTLS_Speculativesection_begin(

int* id, const char context_info[]);

... ...

PTLS_Speculativesection_end(int* id);

} }

... ...

PTLS_Speculativesections_exit(int* id);

} }

PTLS_Tm_atomic_enter(int* id,

const char context_info[]);

#pragma tm_atomic #pragma tm_atomic

{ {

... ...

} }

PTLS_Tm_atomic_exit(int* id);

The instrumentation of IBM’s transactional memory and speculative execu-
tion directives was enabled by defining and adding definitions for all TM/SE
directives. That is, new table entries have been created for the tm atomic,
speculative for, speculative do, speculative sections and speculative

section directives. The instrumentation is carried out according to the trans-
formation rules as shown in Table 2.

3.3 Measuring TM and SE Programs

To actually measure programs employing the TM/SE techniques the instru-
mented executable needs to be linked to a measurement library which
implements the inserted probe functions. Therefore, we extended the Score-P
measurement framework accordingly.

The Score-P Instrumentation and Measurement Infrastructure is
a community-driven software framework for recording profiles and traces of

32 J. Jiang et al.

parallel program execution [2]. The application under investigation is automati-
cally instrumented, by means of a number of different techniques, and linked to
a set of libraries that implement the respective probe functions. Each invocation
of a probe function is translated into measurement events such as enter/exit of
code regions, or acquire/release of locks. Different metrics like number of vis-
its, time spent in a region, bytes transferred over a network are associated with
these events. Furthermore hardware counters providing information about cache
misses or floating point operations can be recorded.

There are two main modes of recording and storing data in Score-P: profiling
and tracing. In a profile, summarized data is recorded for each callpath executed
by the program. Times and number of visits are aggregated; minimum, maxi-
mum and average values are stored. The values of performance counters are also
recorded. In contrast, in a trace every single instance of an event is recorded.
This yields a very detailed view of the program run but comes at the cost of
high memory demands during measurement and for storing the trace file itself.

Different methods for performing the instrumentation of an application are
available. Many compilers allow for automatic instrumentation of user functions.
Here, the compiler inserts probe functions at entries and exits of functions and
supplies source-code information. To instrument directive-based parallel pro-
gramming paradigms, we use OPARI2 as described in Section 3.2. To record
MPI-specific events and metrics, PMPI interposition wrappers are used. For an-
alyzing programs that run on GPUs, the CUDA Profiling and Tools Interface
(CUPTI) is supported as well.

Each of the aforementioned instrumentation techniques inserts different types
of probe functions which provide different types of information to the actual
measurement system. To provide the measurement core that records profiles
or traces with consistent data, Score-P contains a number of adapters, each
taking care of implementing the probe or wrapper functions for a specific kind
of instrumentation.

A TM/SE adapter was added in Score-P to enable the measurement of code
regions making use of the transactional memory and speculative execution func-
tionality provided by the IBM compilers. These regions, which are instrumented
with OPARI2, are first registered with the measurement system. During regis-
tration, the type of TM/SE directive is stored together with source code infor-
mation, consisting of file name and line numbers. Furthermore, the measurement
system provides a unique numerical id, which is passed as parameter to the probe
function calls surrounding the corresponding TM/SE regions (see Table 2). This
allows quick access to the respective region information.

When a region is entered, interface functions provided by the TM/SE runtime
are used to obtain data about the number of transactions and rollbacks as well as
information about how much of the execution needed to be serialized due to JMV
conflicts, too many rollbacks, and other causes, such as buffer overflows, race
conditions and concurrent TM/SE regions. These values are passed as custom
metrics to the measurement system. The measurement core takes care of keeping
count of the number of visits to each region as well as the time spent inside.

Performance Analysis of TM and SE on IBM Blue Gene/Q 33

4 Experimental Evaluation

In this section, we evaluate our approach with two examples. The first is a
quasi-random field update kernel that occurs in similar form in many scien-
tific applications. The second is MP2C, a molecular dynamics application that
scales up to the whole JUQUEEN, a 28-rack Blue Gene/Q system at the Jülich
Supercomputing Centre.

4.1 Update Kernel

A kernel found in many scientific applications, especially in the area of plasma
physics, is an update of charge and power densities of large arrays of particles,
in total 6 entries per volume cell. First the values are interpolated and then a
reduction on the arrays is performed. Here, multiple threads may concurrently
access the same location.

!$OMP PARALLEL DO pr i v a t e (xa , i , j1 , j2 , f1 , f2 , c i)
do i =1 ,5000000

xa = x (i)∗ oodx
j1 = a in t (xa)
j2 = j1+1
f2 = xa−j 1
f1 = 1.0− f 2
c i = charge (i)
!TM$ TMATOMIC SAFEMODE
rho (j1 , c i) = rho (j1 , c i) + re ∗ f 1
rho (j2 , c i) = rho (j2 , c i) + re ∗ f 2
!TM$ END TMATOMIC

end do
!$OMP END PARALLEL DO

Listing 1. Update Kernel – TM version

Listing 1 shows an example of such a kernel, although in a very simplified
form. In each iteration, it performs a quasi-random update of two entries of an
array of about 19 MB, which gives a conflict probability of ∼8e-7, so it seems a
good candidate for TM.

Figure 1 shows a Cube screenshot of an execution of this kernel on one node
of BG/Q with one process and eight threads. Cube’s main window consists of
three coupled tree-browsers. These show, from left to right, the metric tree, call
tree and system tree. A selection of an item in one tree shows the distribution of
the value associated with this item in the tree(s) to the right. In this example,
the total number of transactions is selected in the metric tree, and we see the
expected five million transactions. The call tree in the middle pane shows that
they all originate from one TM region. The right pane, the system tree, shows
that each thread completed 625,000 transactions.

34 J. Jiang et al.

Fig. 1. Cube screenshot of the TM implementation of the update kernel showing five
million total transactions distributed homogeneously among the threads

While this seems to be a perfect kernel for TM, with hardly any rollbacks (6 in
this example), it has to be noted that the uninstrumented TM implementation
is 2 times slower than an implementation with OpenMP atomics and 3 times
slower than an implementation with OpenMP reduction. This can also be easily
investigated with our toolset. This shows that the tool gives correct informa-
tion, but a baseline comparison to evaluate TM/SE benefits is still necessary. A
detailed performance analysis of this kernel can be found in [18], where tuning
opportunities are also shown which are not reflected in our measurements.

4.2 MP2C

MP2C [19] - Massively Parallel Multi-Particle Collision Dynamics - implements
a hybrid representation of solvated particles in a fluid. Solutes are simulated
atomistically by classical molecular dynamics (MD) which is coupled to the sol-
vent, described by the Multi-Particle-Collision-Dynamics method (MPC). In this
work we focus on the MPC part, which can be used as stand-alone implementa-
tion for particle-based hydrodynamics. The application is written in Fortran 90
and parallelized with MPI and OpenMP, which are used throughout the code.
We investigated the cell collision kernel containing an OpenMP loop counting
the particles in a cell and updating a list. In the initial version, this update is
guarded with an OpenMP critical directive. We investigated alternative imple-
mentations with both TM and SE for this critical section. In the TM case, the
OpenMP critical was replaced by an TM atomic, in the SE case the whole loop
was executed speculatively.

Figure 2 shows a Cube screenshot of the TM version of the code. We see that
800 million transactions were issued and 560 million rollbacks occurred, i.e. a
rollback ratio of 70%. And even worse, more than 3.5 million iterations were
serialized because the maximum number of rollbacks was reached. So TM is not
a good choice to replace the OpenMP critical in this case.

A much better result was achieved with SE as shown in Figure 3. Here the
rollback ratio is only 7% and no serializations occurred. In the system pane this
screenshot shows a boxplot of the distribution of rollbacks among the processes,

Performance Analysis of TM and SE on IBM Blue Gene/Q 35

Fig. 2. Cube screenshot of the TM implementation of MP2C. It shows a high variation
of serializations due to max. rollbacks among the threads.

Fig. 3. Cube screenshot of the SE implementation of MP2C, showing the distribution
of rollbacks among the processes as a boxplot

with a lower quartile of 3110, an upper quartile of 4410 and a median of 3660,
which seems a reasonable distribution.

This example shows that our enhanced tool set easily allows to investigate
TM/SE-related performance issues in parallel applications. Furthermore it also
allows to compare these results with other implementations like plain OpenMP
within the same environment.

5 Conclusion and Future Work

In this paper we presented a unique integrated performance tools framework to
measure and analyze applications using IBM TM/SE directives. To this end, we

36 J. Jiang et al.

modularized the OPARI2 source-to-source instrumenter to be easily extendable
to directive-based programming paradigms other than OpenMP. A respective
adapter was added to the measurement infrastructure Score-P. This adapter
uses the existing TM/SE monitoring API to query information about the exe-
cution of single TM/SE regions. The resulting profile reports can be visualized
and analyzed with the Cube performance report viewer. With two examples we
proved the applicability of the tool and showed the added value to performance
analysis of parallel applications.

One disadvantage of our approach is that TM instrumentation may add sig-
nificant overhead, especially for regions with small workload, as tm get stats()

gets called twice per region. We will investigate methods to reduce that overhead,
e.g. by minimizing the number of calls to the IBM monitoring API. However,
this needs to be carefully balanced against the more limited information avail-
able for analysis. Our tool set will be continuously adapted to changes in the
existing directive-based programming paradigms, in particular possible TM/SE
support in the OpenMP specification. We further plan to integrate other mod-
els like OpenACC and Intel LEO. Adding support for tracing of TM/SE events
– to be able to visualize these with Vampir [20] – will lead to deeper insights
on specific instances of TM/SE regions. In addition, we will work on more so-
phisticated analysis for TM/SE, both for profiling and tracing. For example, it
could be possible to color conflicting transactions in Vampir to see directly where
rollbacks originate.

References

1. Ohmacht, M., Wang, A., Gooding, T., Nathanson, B., Nair, I., Janssen, G., Schaal,
M., Steinmacher-Burow, B.: IBM Blue Gene/Q memory subsystem with specula-
tive execution and transactional memory. IBM Journal of Research and Develop-
ment 57(1/2), 1–7 (2013)

2. Knüpfer, A., et al.: Score-P – A Joint Performance Measurement Run-Time Infras-
tructure for Periscope, Scalasca, TAU, and Vampir. In: Proc. of 5th Parallel Tools
Workshop, 2011, Dresden, Germany, pp. 79–91. Springer (September 2012)

3. Geimer, M., Kuhlmann, B., Pulatova, F., Wolf, F., Wylie, B.J.N.: Scalable Col-
lation and Presentation of Call-Path Profile Data with CUBE. In: Proc. of the
Conference on Parallel Computing (ParCo), Aachen/Jülich, Germany, pp. 645–652
(September 2007), Minisymposium Scalability and Usability of HPC Programming
Tools

4. Herlihy, M., Moss, J.E.B.: Transactional Memory: Architectural Support for Lock-
free Data Structures. In: Proc. of the 20th Annual Intl. Symposium on Computer
Architecture, ISCA 1993, pp. 289–300. ACM, New York (1993)

5. Shavit, N., Touitou, D.: Software transactional memory. Distributed Comput-
ing 10(2), 99–116 (1997)

6. Ansari, M., Jarvis, K., Kotselidis, C., Luján, M., Kirkham, C., Watson, I.: Profiling
transactional memory applications. In: 2009 17th Euromicro International Con-
ference on Parallel, Distributed and Network-based Processing, pp. 11–20. IEEE
(2009)

7. Zyulkyarov, F., Stipic, S., Harris, T., Unsal, O.S., Cristal, A., Hur, I., Valero,
M.: Profiling and Optimizing Transactional Memory Applications. Intl. Journal of
Parallel Programming 40(1), 25–56 (2012)

Performance Analysis of TM and SE on IBM Blue Gene/Q 37

8. Lourenço, J., Dias, R., Lúıs, J., Rebelo, M., Pessanha, V.: Understanding the be-
havior of transactional memory applications. In: Proc. 7th Workshop on Parallel
and Distributed Systems: Testing, Analysis, and Debugging, p. 3. ACM (2009)

9. Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu, P., Chiras, S., Chatterjee,
S.: Software Transactional Memory: Why Is It Only a Research Toy? Queue 6(5),
40:46–40:58 (2008)

10. Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera,
R., Michael, M.: Evaluation of Blue Gene/Q hardware support for transactional
memories. In: Proc. of the 21st International Conference on Parallel Architectures
and Compilation Techniques, pp. 127–136. ACM (2012)

11. Schindewolf, M., Biliari, B., Gyllenhaal, J., Schulz, M., Wang, A., Karl, W.: What
scientific applications can benefit from hardware transactional memory? In: 2012
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1–11. IEEE (2012)

12. Kunaseth, M., Kalia, R.K., Nakano, A., Vashishta, P., Richards, D.F., Glosli, J.N.:
Performance Characteristics of Hardware Transactional Memory for Molecular Dy-
namics Application on BlueGene/Q: Toward Efficient Multithreading Strategies
for Large-Scale Scientific Applications. In: Proc. of Intl. Workshop on Parallel and
Distributed Scientific and Engineering Computing (2013)

13. Schindewolf, M., Rocker, B., Karl, W., Heuveline, V.: Evaluation of Two Formu-
lations of the Conjugate Gradients Method with Transactional Memory. In: Wolf,
F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 508–520.
Springer, Heidelberg (2013)

14. Bihari, B.L., Wong, M., Wang, A., de Supinski, B.R., Chen, W.: A case for including
transactions in openmp ii: Hardware transactional memory. In: Chapman, B.M.,
Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp.
44–58. Springer, Heidelberg (2012)

15. Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance evaluation of Intel R©
transactional synchronization extensions for high-performance computing. In:
Proc. of SC13: Intl. Conference for High Performance Computing, Networking,
Storage and Analysis, p. 19. ACM (2013)

16. http://www.scalasca.org

17. Mohr, B., Malony, A.D., Hoppe, H.C., Schlimbach, F., Haab, G., Hoeflinger, J.,
Shah, S.: A Performance Monitoring Interface for OpenMP. In: Proc. of Fourth
European Workshop on OpenMP (EWOMP), Rome, Italy (September 2002)

18. Maurer, T.: BG/Q Application Tuning – memory hierarchy, transactional memory,
speculative execution,
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/

juqueenpt13/juqueenpt13-applicationtuning1.pdf

19. Sutmann, G., Westphal, L., Bolten, M.: Particle based simulations of complex sys-
tems with mp2c: hydrodynamics and electrostatics. In: ICNAAM 2010: Interna-
tional Conference of Numerical Analysis and Applied Mathematics 2010, vol. 1281,
pp. 1768–1772. AIP Publishing (2010)

20. Brunst, H., Mohr, B.: Performance Analysis of Large-Scale OpenMP and Hy-
brid MPI/OpenMP Applications with Vampir NG. In: Mueller, M.S., Chapman,
B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005/2006. LNCS,
vol. 4315, pp. 5–14. Springer, Heidelberg (2008)

http://www.scalasca.org
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/juqueenpt13/juqueenpt13-applicationtuning1.pdf
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/juqueenpt13/juqueenpt13-applicationtuning1.pdf

c-Eclipse: An Open-Source Management Framework
for Cloud Applications

Chrystalla Sofokleous, Nicholas Loulloudes, Demetris Trihinas,
George Pallis, and Marios D. Dikaiakos

Department of Computer Science, University of Cyprus, Nicosia, CY1678, Cyprus
{stalosof,loulloudes.n,trihinas,gpallis,mdd}@cs.ucy.ac.cy

Abstract. Cloud application portability and optimal resource allocation are of
great importance in the realm of Cloud infrastructure provisioning. c-Eclipse is
an open-source Cloud Application Management Framework through which users
are able to define the description, deployment and management phases of their
Cloud applications in a clean and intuitive graphical manner. It is built on top of
the well-established Eclipse platform and it adheres to two highly desirable fea-
tures of Cloud applications: portability and elasticity. In particular, c-Eclipse im-
plements the open, non-proprietary OASIS TOSCA specification for describing
the provision, deployment and re-contextualization of applications across differ-
ent Cloud infrastructures, thereby ensuring application portability. Furthermore,
c-Eclipse enables Cloud users to specify elasticity policies that describe how the
deployed virtualized resources must be elastically adapted at runtime to match
the needs of a dynamic application-workload. In this paper, we introduce the ar-
chitecture and implementation of c-Eclipse, and describe its key characteristics
via a use-case scenario that involves a user creating a description of a 3-tier Cloud
application, enriching it with appropriate elasticity policies, submitting it for de-
ployment to two different Cloud providers and, finally, monitoring its execution.

1 Introduction

Application deployment and management in Infrastructure as a Service (IaaS) Clouds
can be a complex and time consuming endeavor, typically requiring manual effort on
the users’ behalf and relying on vendor-specific, proprietary tools. Existing IaaS tools
do not provide users with vendor-neutral mechanisms for describing application con-
figuration, deployment, runtime application-scaling preferences, and elasticity policies.
Consequently, the migration of applications between different IaaS providers requires
significant re-configuration and re-deployment effort and time, leading to vendor lock-
in. With the growing number of IaaS-provider service offerings and the increasing
complexity of applications deployed on Clouds, the selection of the most appropri-
ate provider to host an application becomes challenging. While seeking to identify the
deployments that suit best their needs, IaaS clients need to overcome vendor lock-in in
order to test and/or deploy their applications on multiple IaaS providers. Therefore, it
becomes evident that there is a need for application management tools that facilitate
the description of applications in a vendor neutral manner, enabling easy application
deployment, management, and migration across different providers, preventing vendor
lock-in.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 38–49, 2014.
c© Springer International Publishing Switzerland 2014

c-Eclipse: An Open-Source Management Framework for Cloud Applications 39

This article presents c-Eclipse, a generic Application Management Framework that:

– is open-source and has been implemented on top of the reliable Eclipse platform1;
– offers graphical tools to facilitate the description of an application’s structure and

its lifecycle management operations;
– adopts the TOSCA [1] open specification for blueprinting Cloud applications and

consequently packaging them in portable archives that can be processed by any
compliant IaaS-provider;

– adopts a language that enables the description of elasticity policies for such Cloud
applications;

– provides tools for elasticity policy specification at different levels of an applica-
tion’s structure.

To this end, c-Eclipse can be promoted by Cloud vendors as an enabling tool for
configuring, deploying and managing Cloudified applications on their infrastructure.
This is beneficial both for vendors and users; The former can integrate c-Eclipse to
their Cloud architectures to attract a wider customer base to use their services via its
GUI; the latter are able to describe - the often complex - deployment and management
lifecycle of their applications with minimal effort and in a portable way, thus avoiding
vendor lock-in.

The rest of the paper is structured as follows: Section 2 presents the related work
in Cloud Application Managements platforms. Section 3 gives an overview of the c-
Eclipse framework, its architecture, the application description language used and the
UI. The c-Eclipse approach for describing elasticity policies for applications is dis-
cussed in Section 4. Finally, Section 5 presents a use-case scenario with a 3-tier appli-
cation described via c-Eclipse and deployed on two separate Cloud infrastructures.

2 Related Work

Many application management frameworks have been developed lately to support Cloud
Computing. Some of these frameworks are proprietary, locking their users to specific
providers, while others are generic enough allowing management of applications on
different infrastructures.

Proprietary: Amazon CloudFormation enables the creation and provisioning of EC2
infrastructure deployments. It uses JSON template files to describe the collection of
EC2 resources that compose a deployment. Furthermore, by leveraging Amazon Auto
Scaling it enables the specification of policies for automatically scaling the number of
EC2 instances in a deployment. Oracle Virtual Assembly Builder (OVAB) [2] simpli-
fies the provisioning of multi-tier applications by capturing the application components
into self-contained VM appliances. OVAB can instantiate the appliances on Oracle’s
Exalogic Elastic Cloud Infrastructure and scale the deployed applications horizontally
after a scale command is sent via the command line interface. VMware vCloud Ap-
plication Director [3] is a provisioning solution that provides the necessary tooling for
simplifying the process of designing, customizing and deploying applications on any

1 https://www.eclipse.org/

https://www.eclipse.org/

40 C. Sofokleous et al.

VMware based Cloud infrastructure. From the well established aforementioned tools,
only CloudFormation enables the specification of elasticity policies for automatic scal-
ing, while all of them lock their users to specific IaaS providers.

Generic: Juju [4] is a tool for designing, configuring and deploying applications on a
limited number of Cloud platforms. It makes use of shareable and reusable charms that
encapsulate the configuration, deployment, connectivity and scaling information for an
application. Charms are usually Linux oriented, thus limiting the portability of Juju appli-
cations. Also, Juju does not allow the specification of elasticity policies. The Agility Plat-
form by ServiceMesh [5] enables the automatic deployment of applications on any Cloud
provider, and the dynamic management of their lifecycle by defining auto-scaling rules
for adding/removing VMs. Although ServiceMesh allows deployment of applications
on different Cloud environments, it comes with a significant financial cost. Wrangler [6]
provides a system for automatic deployment and monitoring of distributed applications
with complex dependencies on different Cloud infrastructures, through a dedicated XML
language. Users can describe a deployment; characteristics of the virtual resources, VM
images, authentication credentials; and send it to a coordinating web service.

None of the aforementioned platforms adopts open Cloud standards for describing
applications. In an effort to promote Cloud application portability, Winery [7] supports
modeling of TOSCA applications via an HTML5-based environment. TOSCA elements
are created via the Web-based GUI, which also allows users with prior knowledge of the
TOSCA standard to define new types for the TOSCA elements, or configure the existing
ones. Furthermore, Winery does not provide a straightforward way of specifying elas-
ticity policies for applications. c-Eclipse on the other hand provides an intuitive GUI
that hides all the complex details of the TOSCA standard, enabling thus users to exploit
the full potential of the tool. In addition, c-Eclipse enriches the TOSCA specification
with Policy Types for elasticity, and allows its users to specify the desired elasticity
policies for their applications. Finally, Winery relies on BPEL to model applications’
management plans, while c-Eclipse makes use of the TOSCA Lifecycle Interface. An-
other platform that uses TOSCA to automate the deployment and scaling of applications
over any Cloud technology, is Cloudify [8]. It supports the creation of TOSCA applica-
tion blueprints via an open-source CLI, however requiring users to master YAML and
Python languages. This procedure gets easier when using the full-featured web inter-
face, available only in a payware edition.

3 c-Eclipse Overview

This section presents the c-Eclipse framework focusing on the features that make it
attractive to Cloud application developers. Furthermore, it provides a brief overview of
the open Cloud application description specification adopted by c-Eclipse. It continues
with the description of its architecture together with the necessary requirements when
it comes to integration with Cloud vendors. Finally, the c-Eclipse UI is introduced.

3.1 c-Eclipse Features

The c-Eclipse Cloud application management framework incorporates the following
characteristics:

c-Eclipse: An Open-Source Management Framework for Cloud Applications 41

– Ease of Use: It provides an intuitive and user-friendly GUI that minimizes any
complexity regarding the process of Cloud application management, therefore serv-
ing as a low-entry barrier to Cloud technologies for new end-users. Not neglecting
experienced users, GUI-driven operations can be manually fine-tuned, effectively
allowing full workflow control when needed.

– Elasticity Policies Specification: It enables the specification of applications’ elas-
ticity policies, so that applications can benefit from the dynamic nature of Cloud
environments.

– Monitoring Interface:It provides interfaces for integration with existing monitor-
ing systems, so that its users can monitor the performance of their deployed appli-
cations and their resources thereof.

– Cloud Vendor Neutral: Through the adoption of the TOSCA open specification,
allows its users to describe applications in a very generic way, so that they can be
deployed across different Cloud infrastructures.

– Platform Independence: It runs on any OS supported by Eclipse.

3.2 TOSCA Specification for Cloud Applications

TOSCA provides a language to describe the structure of applications, together with
their management operations. The structure of an application defines the components
an application consists of and the relationships between them. Application components
are described in TOSCA by means of Nodes (i.e. an application component can be a
Tomcat application server in a 3-tier environment). Each Node can have certain seman-
tics that are defined by the properties of the corresponding Node Type. Such semantics
include the Requirements a Node has against its hosting environment, the Capabilities
it offers and the Policies that govern its execution, such as security or elasticity policies.
Similarly, TOSCA Relationships are used to represent the relations in an application’s
structure, and have their own semantics defined by their Relationship Type. The man-
agement aspects of an application are described in TOSCA either by means of lifecycle
operations (via the Lifecycle Interface) or by more complex Management Plans. The
Lifecycle Interface defines five operations (install, configure, start, stop, uninstall) for
describing the management of applications’ lifecycle. On the other hand, there is no
TOSCA specific way to describe Management Plans. Instead, plans can be specified
in any existing process modeling language, such as BPMN, and referenced through
TOSCA. Both Lifecycle Operations and Managements Plans require some content to
be realized, such as virtual machine images, configuration files etc. These contents are
collectively referred to as Artifacts.

TOSCA application descriptions can be processed in an imperative or declarative
manner. In case of imperative processing [9] the management behaviour of the de-
scribed application has to be explicitly defined by the user by means of Management
Plans. In declarative processing, the management behaviour of the application can be
inferred by the semantics of Nodes’ and Relationships’ Types (i.e. operations speci-
fied in the Lifecycle Interface of a Type). The latter imposes extra overhead to TOSCA
type architects who need to precisely define the semantics of each type, and for the im-
plementers of the TOSCA processing environments who must correctly interpreter the

42 C. Sofokleous et al.

Fig. 1. c-Eclipse Architecture

types’ semantics to infer an application’s management plans. Consequently, declara-
tive processing makes modeling of Cloud applications easier from the user perspective,
since they don’t have the extra overhead of defining Management Plans. For this reason,
c-Eclipse adheres to the declarative processing approach.

3.3 c-Eclipse Framework Architecture

c-Eclipse is built on top of the Eclipse Platform and follows its OSGi plug-in based
software architecture. Its main component is the Application Modeling Tool, which
facilitates the creation of TOSCA application descriptions. The elements specified in
TOSCA and the c-Eclipse specific type definitions for Nodes and Relationships, are
stored in the c-Eclipse file system (TOSCA Elements and Type Definitions), so that
they can be accessed by the Modeling Tool. The Application Modeling Tool associates
the TOSCA elements and the defined Node and Relationship Types with visual elements
that can be used to graphically model an application. The graphical description is trans-
lated on the fly into TOSCA, using the semantics of each element in the description.
In order to provide such functionalities, c-Eclipse utilizes Graphiti2, an Eclipse-based
graphics framework that enables rapid development of state-of-the-art diagram editors
for domain models. Graphiti is based on the Eclipse Modeling Framework (EMF) and
offers graphical representations and editing possibilities for EMF objects. To this ex-
tend, the Application Modeling Tool transforms TOSCA elements into EMF objects
and uses the Graphiti infrastructure to build the graphical editor through which users
can schematically describe their applications The TOSCA description along with any
artifacts for materializing and managing the described application are packaged into a
single archive file (CSAR) by the CSAR Exporter. Fig. 1 depicts the high level archi-
tecture and the major components of c-Eclipse.

The exported CSAR is passed from c-Eclipse to a TOSCA processing environment
operated by a Cloud provider. This environment, referred to as a TOSCA Container,

2 https://www.eclipse.org/graphiti/

https://www.eclipse.org/graphiti/

c-Eclipse: An Open-Source Management Framework for Cloud Applications 43

must be able to process CSAR files and understand the semantics of the contained ap-
plication description, so that it can deploy and manage the application throughout its
lifecycle. Each application modeling tool can define its own types, for various TOSCA
elements, with different properties and interfaces. Thus, in order for the TOSCA Con-
tainer to process a TOSCA description in a declarative manner, which implies deriving
based on the type definition of each element the order in which the specified manage-
ment operations must be executed, the type definitions utilized in a description must
also be known to the TOSCA Container. Consequently, a CSAR archive file must con-
tain the following so as to be portable and processable by any TOSCA Container: (1)
The XML file specifying the TOSCA-based application description, (2) The definitions
of the Node, Relationship and other elements’ types that are used in the TOSCA de-
scription, and (3) the artifacts that realize an application’s management operations and
that are referenced in the TOSCA description.

A TOSCA Container might include various components that can be used to pro-
cess CSARs. Each vendor can decide what components to support and how to provide
them within his Cloud architecture. A Container that supports declarative processing of
CSARs must implement at least two components: CSAR Processor and Model Inter-
preter (Fig. 1). The CSAR Processor receives the CSAR from the TOSCA Container
and is responsible for the extraction and deployment of the artifacts. Once the artifacts
are ready to be used by the TOSCA Container, the Model Interpreter navigates the
application’s structure and distinguishes the artifacts realizing the management oper-
ations of each Node, such as installing/uninstalling instances. Other components that
can be implemented by the container, are a Definition Manager component in charge
of storing the type definitions and making them available to the Model Interpreter and
an Artifact Manager component for storing the artifacts in appropriate stores.

According to the specification, Cloud providers that wish to become TOSCA-
compliant should provide a Container as part of their Cloud architecture. The Container
must communicate with an IaaS Orchestrator to invoke the necessary IaaS-specific
API calls that satisfy the respective TOSCA description. An alternative way of integrat-
ing TOSCA modeling tools, such as c-Eclipse, with Cloud providers is to implement
a TOSCA Container at the tools’ side, with interfaces to multiple Cloud infrastruc-
tures. To this extend, Cloud providers should offer the required APIs, so that they can
be accessed by the Containers. However, this endeavour entails in-depth knowledge
of several complex APIs (sometimes lacking sufficient documentation) and extensive
development skills to produce a fully working Container at the tools’ side. This was ob-
served and confirmed at first hand, while working towards the evaluation of c-Eclipse
in a real scenario (see Section 5), where we implemented simple yet functional TOSCA
Containers for two Cloud vendors. Among other, developing a TOSCA Container for a
particular IaaS requires to provision for the exchange of authentication tokens, perform
validity checks for CSARs, correct deployment/configuration of virtualized instances
given defined Node Types, as well as, user requirements and constraints.

Finally, c-Eclipse provides the necessary interfaces so as to be integrated with exist-
ing monitoring systems, enabling thus its users to acquire and record the performance
of their deployed applications from a single working environment. Currently, it is fully
integrated with the JCatascopia [10] monitoring system.

44 C. Sofokleous et al.

Fig. 2. c-Eclipse UI - (Left) Cloud Project View, (Center) Canvas, (Right) Palette, (Below) Au-
thentication View

3.4 c-Eclipse User Interface

Like any other Eclipse project, c-Eclipse organizes all the files related to an application
in a structured hierarchy, as depicted in Fig. 2. A Cloud project, in the Cloud Project
View, acts as a placeholder for a single Cloud application and consists of four folders: (i)
the Application Descriptions folder containing TOSCA descriptions of applications, (ii)
the Application Submissions folder containing details about application deployments
(i.e. Cloud provider, deployment status, total cost etc.), (iii) the Artifacts folder with the
actual files for the artifacts referenced in the application description, and finally (iv) the
Monitoring folder including any monitoring data collected by the integrated monitoring
system during application’s deployments.

Application developers can use the Modeling Tool to describe a Cloud application
graphically. The most important part of the tool is the Palette, which includes most
of the elements required for creating application descriptions. These are the applica-
tion components (one component element in the Palette for each distinct Node Type),
Relationships (one relationship/connection element in the Palette for each distinct Re-
lationship type), artifacts and monitoring metrics. By simply dragging and dropping
pictorial elements from the Palette onto the Canvas of the tool, developers can create a
graphical representation of an application. Throughout the application description pro-
cess, the Modeling tool translates on-the-fly the graphical description into TOSCA and
error-proofs the generated TOSCA to assure adherence to the specification, prompting
warnings if necessary.

Apart from the default semantics that each Palette element has, additional informa-
tion can be provided for each element contained in the description, by using the Proper-
ties View of the tool. For example, the view can be used for uploading custom images for
application components, specifying elasticity policies for the whole application and/or
for components separately, writing deployment scripts etc. Fig.3 presents a tab in the
properties view for specifying elasticity constraints and strategies for a specific appli-
cation component.

c-Eclipse: An Open-Source Management Framework for Cloud Applications 45

Fig. 3. c-Eclipse Properties View (Elasticity constraints and strategies tab)

Users with expertise in writing XML and with deep knowledge of the TOSCA spec-
ification, can manually create or edit an application’s TOSCA XML description. Any
changes in the XML will be automatically reflected to the corresponding graphical de-
scription. This way c-Eclipse attracts broader audience, from entry level to more ad-
vanced users.

4 Elasticity Specification in c-Eclipse

Apart from enabling portable automated application deployment and management,
c-Eclipse facilitates the specification of applications’ elasticity policies so that they can
scale at runtime based on user defined policies. Since the TOSCA language does not
directly specify how to define elasticity policies for Cloud applications, c-Eclipse ex-
ploits the TOSCA Policy element to achieve elasticity specification without interfering
with applications’ portability. TOSCA defines policies as the means by which we can
express non-functional behaviour or quality-of-services for an application.

We use two types of elasticity-oriented TOSCA policies in accordance with the
SYBL [11] language for elasticity requirements specification: Elasticity Constraint and
Elasticity Strategy. The Elasticity Constraint type is used to express the constraints of
an application, related to cost, performance and other application-quality metrics. Here
the application user does not specify the exact actions to be enforced when a constraint
is violated. Instead, the appropriate actions are determined by the underlying intelli-
gent elastic Resource Provisioning System [12]. The Elasticity Strategy type, is used to
express specific strategies that should be enforced by the execution environment when
specific constraints are violated.

The purpose of defining two distinct TOSCA Policy Types of elasticity is twofold.
Cloud users can:

– Specify elasticity constraints and strategies for their applications at different levels
of detail, based on their expertise.

– Fully exploit the capabilities of the underlying Resource Provisioning System. In
case the underlying system is smart enough to take scaling decisions on its own,
the user specifies only the elasticity constraints and relies on the system to decide
how to fullfil them.

46 C. Sofokleous et al.

The purpose of specifying elasticity policies in c-Eclipse is to give its users more
control over their deployments. Elasticity policies are translated into SYBL, and in-
jected into the TOSCA description. If the IaaS resource provisioning system supports
dynamic scaling of applications, then the specified elasticity policies are translated, (by
the TOSCA Container) to provider specific elasticity rules. Otherwise, the defined elas-
ticity policies will be ignored.

5 Use-Case

This section aims at demonstrating the portability and elasticity support capabilities of
the c-Eclipse Cloud Application Management Framework. To do so, we present the
description, deployment and management phases of an exemplary Cloud application
on two environments: (i) Amazon’s EC2 infrastructure and (ii) Nephelae3, our own
OpenStack-compliant Cloud research infrastructure.

Before starting the demonstration we needed to implement our TOSCA Containers,
as described in Section 3.3, and deploy them on a single virtual instance both on Ama-
zon EC2 and Nephelae. Our simple container for AWS is composed by ≈ 450 lines of
Code (LOC), implementing 24 needed functions. Similarly, the OpenStack container
needed ≈ 600 LOC and same number of functions. In order to instrument the ap-
plication’s deployment we also needed a monitoring system to be deployed on both
infrastructures. In contrast to EC24, Nephelae does not include a native resource and
application monitoring solution. Therefore, we instantiate the JCatascopia system for
providing the monitoring metrics that will be utilized during the specification of elas-
ticity policies. Finally, we assume each tier instance runs on a Linux-based OS.

Use-Case Scenario: We consider a 3-tier Web application that provides video stream-
ing services to online users. The tiers comprising the application are as follows: (i)
a Load Balancer which serves as an entry point and distributes incoming user requests
across multiple application servers, (ii) the Application Server itself, which is mate-
rialized through an Apache Tomcat server with the necessary video streaming Web
application deployed, and (iii) a Cassandra5 NoSQL distributed data storage back-end
from where the necessary video content is retrieved.

Application Description Phase: In this first step, the application developer initiates the
description process by creating a Cloud project, which will be unique for the above Web
application. The necessary folder structure (see Section 3.4) is automatically created,
establishing placeholders for individual components required throughout the applica-
tion management lifecycle. At the same time, the developer is prompted to enter service
endpoints and authentication credentials6 for one or more candidate Cloud provider(s),
where the application might eventually be submitted for deployment. The Authentica-
tion Token View gives an overview of credential details (Fig. 2).

3 http://linc.ucy.ac.cy/Nephelae/
4 AWS provide the CloudWatch solution for monitoring applications and Cloud resources.
5 http://cassandra.apache.org/
6 Credentials are managed in a secure manner using the native Eclipse password manager.

http://linc.ucy.ac.cy/Nephelae/
http://cassandra.apache.org/

c-Eclipse: An Open-Source Management Framework for Cloud Applications 47

The next step involves creating the application description itself through a guided
wizard and subsequently invoking the Modeling Tool, where the respective application
structure will be defined. During this phase, the user designs a coarse-grained blueprint
of the application structure, avoiding reference to vendor-specific details. This way, the
description is portable across different providers. Consequently, at this stage the Palette
contains only those generic components that will later-on act as containers for vendor-
specific information. Such structural parts include: the application components and the
relationships.

For the use-case scenario at hand, the coarse-grained application blueprint is com-
prised of 3 different application components (Fig. 4). The Load Balancer component is
populated with an HA Proxy7 tarball (orange color box) and a Bash script (white color
box) for the respective configuration. Similarly, the Application Server component is
populated with the Web application ARchive (WAR) that provides the video stream-
ing functionality and a Bash script for minimal Tomcat configurations. The NoSQL
database component is populated with a Bash script for contextualization purposes,
such as seed node IP address, listening ports, etc. Additionally, each Component is
enriched with a common RSA keypair8 for shell-access purposes (yellow color box).
Finally, the necessary inter-dependencies in the application’s structure are specified via
the two Relationships shown in Fig. 4. Generic application descriptions are stored in the
Application Descriptions folder, and can be used later as customizable templates which
can be enriched with vendor-specific information at the deployment phase.

Application Deployment Phase: Once the application developer completes the generic
design, it is time to engage in a more fine-grained topology description by providing
vendor-specific information. To do so, the user has to invoke the application deploy-
ment phase through a context menu action on the description file. This phase is again a
wizard driven process requiring the user to select the target Cloud provider where the
application deployment will eventually take place. The Palette and Properties Views
are now populated with vendor-specific information retrieved by interrogating the IaaS
API. In addition to the standard information advertised by the provider such as com-
pute resources availability, volumes and networking configurations, the Palette provides
monitoring metrics available by the monitoring systems on EC2 and Nephelae.

To minimize the information displayed and swiftly identify any required component,
the Palette includes standard searching and filtering mechanisms. Given that each tier
instance of the video streaming service will run on a Linux-based OS, the developer
sets the necessary filters to expose available base images that include a 64-bit Ubuntu
12.04 server. For the Application and Database components, the filters are adjusted to
search for available Ubuntu-based images that include Apache Tomcat and Cassandra
NoSQL, respectively. When suitable images are returned, a simple drag-n-drop oper-
ation of their pictorial representations from the Palette to the respective application
components (green color box), results to their inclusion within the generated TOSCA
description. In the case that matching images are not retrieved, c-Eclipse provides the
necessary fields through which the developer can pass specific scripts (or artifact file-
names) that will be executed upon contextualization.

7 http://haproxy.1wt.eu/
8 Only the public key material of the RSA keypair is included within the TOSCA description.

http://haproxy.1wt.eu/

48 C. Sofokleous et al.

Fig. 4. Application Deployment on Amazon EC2 and Nephelae

What remains to do before inhibiting the actual application deployment process, is
for the developer to specify the elasticity-oriented policies. This includes selecting one
or more available monitoring metrics from the Palette and assigning them to the compo-
nents whose resources need to be elastically adapted on runtime. For the video service,
it was decided to scale-up only the Application and Database components by adding a
new virtualized instance when the CPU utilization threshold exceeded 80% (see Fig. 3).
To achieve this, each component was assigned to a CPU probe that reports utilization
to the underlying IaaS orchestrator in frequent time intervals.

The customized description, is stored under the Application Submissions folder at-
tributed with the name of the Cloud provider. Upon the completion of the fine-grained
description, the application can be submitted to the target Cloud infrastructure for de-
ployment. With a context-menu action, the CSAR Exporter creates the CSAR con-
taining the description with the artifacts, and hands it to the TOSCA Container at the
selected IaaS provider.

Application Management Phase: Finally, through, the c-Eclipse Deployment View,
the application developer can instantly obtain the deployment status without leaving
the Eclipse environment. As depicted in the lower part of Fig. 4, a snapshot of the
deployments on EC2 and Nephelae is provided, along with provider-specific properties
such as component IP addresses, instance IDs, running times etc. A background polling
mechanisms refreshes the view and provides the latest information from each IaaS.

6 Conclusion and Future Work

In this paper we present c-Eclipse; an open-source, vendor neutral, Cloud Applica-
tion Management Framework built on top of Eclipse. c-Eclipse aims at facilitating the

c-Eclipse: An Open-Source Management Framework for Cloud Applications 49

deployment and management of Cloud applications, promoting portability of appli-
cations across infrastructures, and supporting application elasticity. It adopts an open
Cloud standard, and provides a unified environment for describing the structure, de-
ployment and management operations of applications. It then exports the applications’
descriptions into portable archives that can be processed by different providers. The
functionality of c-Eclipse is presented via a use-case scenario with a 3-tier applica-
tion being described and deployed on private and public Cloud infrastructures. Though
still a prototype, c-Eclipse is currently used in the CELAR Project to deploy elastic
Cloud applications. As future work, we will extend c-Eclipse to support existing ap-
plication configuration management tools, such as Chef (http://getchef.com),
to automatically provision and configure applications on new node instances, without
requiring the user to write custom deployment scripts. c-Eclipse is available on GitHub
at http://github.com/CELAR.

Acknowledgments. This work was partially supported by the European Commission
in terms of the CELAR 317790 FP7 project (FP7-ICT-2011-8) and by the European Re-
gional Development Fund and the Republic of Cyprus through the Research Promotion
Foundation (“Infrastructure Upgrade /0609/09” project). The authors thank Andreas
Papadopoulos, Georgiana Copil and Demetris Antoniades for their fruitful insights.

References

1. OASIS: TOSCA Version 1.0, http://goo.gl/ApNP3C
2. Oracle Virtual Assebly Builder, http://goo.gl/Eetq0V
3. VMware vCloud Application Director, http://goo.gl/j7LyU7
4. Ubuntu Juju, https://juju.ubuntu.com/
5. ServiceMesh Agility Platform, http://www.servicemesh.com
6. Juve, G., Deelman, E.: Automating Application Deployment in Infrastructure Clouds. In:

Proceedings of the 2011 IEEE 3rd International Conference on Cloud Computing Technol-
ogy and Science, pp. 658–665. IEEE Computer Society (2011)

7. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery: A Modeling Tool for TOSCA-
Based Cloud Applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013)

8. GigaSpaces Cloudify, http://goo.gl/rYGceK
9. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.: Open-

TOSCA - A Runtime for TOSCA-Based Cloud Applications. In: Basu, S., Pautasso, C.,
Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 692–695. Springer, Heidelberg
(2013)

10. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia: Monitoring Elastically Adaptive Ap-
plications in the Cloud. In: 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (2014)

11. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: An Extensible Language for
Controlling Elasticity in Cloud Applications. In: 13th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pp. 112–119 (2013)

12. CELAR EU FP7 Project, http://celarcloud.eu/

http://getchef.com
http://github.com/CELAR
http://goo.gl/ApNP3C
http://goo.gl/Eetq0V
http://goo.gl/j7LyU7
https://juju.ubuntu.com/
http://www.servicemesh.com
http://goo.gl/rYGceK
http://celarcloud.eu/

Modeling and Simulation of a Dynamic
Task-Based Runtime System for Heterogeneous

Multi-core Architectures

Luka Stanisic1, Samuel Thibault2, Arnaud Legrand1,
Brice Videau1, and Jean-François Méhaut1

1 CNRS, Inria, University of Grenoble, France
firstname.lastname@imag.fr

2 University of Bordeaux, Inria, France
samuel.thibault@labri.fr

Abstract. Multi-core architectures comprising several GPUs have be-
come mainstream in the field of High-Performance Computing. However,
obtaining the maximum performance of such heterogeneous machines is
challenging as it requires to carefully offload computations and manage
data movements between the different processing units. The most promis-
ing and successful approaches so far rely on task-based runtimes that
abstract the machine and rely on opportunistic scheduling algorithms.
As a consequence, the problem gets shifted to choosing the task gran-
ularity, task graph structure, and optimizing the scheduling strategies.
Trying different combinations of these different alternatives is also itself
a challenge. Indeed, getting accurate measurements requires reserving
the target system for the whole duration of experiments. Furthermore,
observations are limited to the few available systems at hand and may be
difficult to generalize. In this article, we show how we crafted a coarse-
grain hybrid simulation/emulation of StarPU, a dynamic runtime for
hybrid architectures, over SimGrid, a versatile simulator for distributed
systems. This approach allows to obtain performance predictions accu-
rate within a few percents on classical dense linear algebra kernels in a
matter of seconds, which allows both runtime and application designers
to quickly decide which optimization to enable or whether it is worth
investing in higher-end GPUs or not.

1 Introduction

High-Performance Computing architectures now widely include both multi-core
CPUs and GPUs. Exploiting the tremendous computation power offered by such
systems is however a real challenge. Programming them efficiently is a first con-
cern, but managing the combination of computation execution and data transfers
can also become extremely complex, particularly when dealing with multiple
GPUs. In the past few years, it has become very common to deal with that
through the use of an additional software layer, a runtime system, based on the
task programming paradigm [3,4,7]. Applications are expressed as a task graph

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 50–62, 2014.
c© Springer International Publishing Switzerland 2014

Modeling and Simulation of a Dynamic Task-Based Runtime System 51

with data dependencies, i.e., a Directed Acyclic Graph (DAG), and provide both
CPU and GPU implementations for the tasks. The runtime can then schedule
the tasks over all available computation units, and automatically initiate the
entailed data transfers. Scheduling heuristics such as HEFT or work stealing are
used to automatically optimize that execution [3]. Application programmers are
thus relieved from scheduling concerns and technical details.

As a result, the concern becomes choosing the right task granularity, task
graph structure, and scheduling strategies optimizations. Task granularity is of
a particular concern on hybrid platforms, since a tradeoff must be found between
large tasks which are efficient on GPUs but expose little task parallelism, and
a lot of small tasks for CPUs but are less efficient on GPUs. The task graph
structure itself can have an influence on execution time, by requiring more or
less communication compared to computation, which can be an issue depending
on the available bandwidth on the target system. Last but not least, optimizing
scheduling strategies has been a concern for decades, and the introduction of
hybrid architectures only makes it even more challenging.

Getting accurate measurement results for all combinations is not trivial and
it requires reserving the target system for a long period, which can become pro-
hibitive. Moreover, experimenting over a wide range of different platforms is also
necessary to make sure that the resulting strategy choices are generic, and not
only suited to the few target systems which were available to developers. Finally,
since execution time on real machine exhibit variability, dynamic schedulers tend
to make varying scheduling decisions, and the obtained performance is thus far
from deterministic. This makes performance comparisons more questionable and
debugging of non-deterministic deadlocks inside such runtimes even harder.

Simulation is a technique that has proven extremely useful to study complex
systems and which would be a very powerful way to address these issues. Per-
formance models can be collected for a wide range of target architectures, and
then used for simulating different executions, running on a single commodity
platform. Since the execution can be made deterministic, experiments become
completely reproducible, also making debugging a lot easier. Additionally, it is
possible to try to extrapolate target architectures, for instance by trying to in-
crease the available PCI bandwidth, the number of GPU devices, etc. and thus
even estimate performance which would be obtained on hypothetical platforms.
Cycle-accurate simulation of GPUs has hence received a lot of attention recently.
However, the current solutions are extremely costly and not precise enough for
helping runtime and application designers (see Section 2). Instead, we claim that
a top-down modeling approach should be used.

In this article, we show how we crafted a coarse-grain hybrid simula-
tion/emulation of StarPU [3] (see Section 3), a dynamic runtime system for
heterogeneous multi-core architectures, on top of SimGrid, a simulation toolkit
specifically designed for distributed system simulation. Although our work is
based on the StarPU runtime system, it could be applied to other runtimes. Our
contribution are the following:

52 L. Stanisic et al.

– we present in details models that are essential for good performances and
quantify their impact on overall prediction (Sections 5, 6, and 7);

– we validate our models by systematically comparing traces acquired in sim-
ulation with those from native executions in a wide variety of settings;

– we show that our approach allows to obtain predictions accurate within
a few percents for both Cholesky and LU factorizations on four different
generations of GPUs, within a few seconds on a commodity laptop, and we
illustrate how it allows to conduct preliminary exploratory studies easily
(Section 8).

2 Related Work

In most other scientific fields, simulation is used to evaluate complex phenomena
and to address all the difficulties raised by the conduction of real experiments
such as cost, reproducibility, and extrapolation capability. As a result, many
detailed micro-architecture level simulators of GPUs have been developed in
the last years. For example GPGPU-Sim [5], one of the most commonly used
cycle-accurate GPU simulator, runs directly NVIDIA’s parallel thread execution
(PTX) virtual instruction set and simulates every detail of the GPU. It is thus
very useful for obtaining insights into architectural design problems for GPUs.
However, no comparison to an actual GPU is provided in [5] and although the
trends predicted by GPGPU-Sim are certainly interesting, it is not clear that it
can be used to perform accurate performance prediction of a real hardware. A
few other GPU-specific simulators have therefore been developed (e.g., Barra [9]
for the NVIDIA G80 or Multi2Sim [11] for the AMD Evergreen GPU). Such
specialization allow Multi2sim to report predictions within 5 to 30% of native
execution for several OpenCL benchmarks. While this prediction is quite impres-
sive, it comes at the price of a very long simulation time as every detail of the
GPU is simulated. The average slowdown of simulations versus native execution
is reported to be 44, 000× while the one of GPGPU-Sim on a similar scenario is
about 90, 000×[11].

In the context of tuning HPC runtimes, expectations in term of simulation
accuracy are extremely high. It is thus difficult to rely on a simulator that may
provide the right trends but with a 50% over/under estimation. Choosing the
right level of granularity or the correct scheduling heuristic can not be done with-
out precise and quantitative predictions. Such errors come from an inadequate
level of details and can be avoided. Therefore, we propose to use a top-down
modeling approach such as promoted by the SimGrid project [8], which provides
a versatile simulation toolkit to study the behavior of large-scale distributed sys-
tems like grids, clouds, or peer-to-peer systems. SimGrid builds on fluid network
models that have been proven as a reasonable alternative to both simple ana-
lytic models and expensive, difficult-to-instantiate packet-level simulations [12]
and have recently been extended to simulate accurately MPI applications on
Ethernet networks [6]. In a fluid model, communications, represented by flows,
are simulated as single entities rather than as sets of individual packets and the

Modeling and Simulation of a Dynamic Task-Based Runtime System 53

bandwidth allocated to flows is constrained by the network resource capacity.
While such models ignore all transient phases between two steady-state operation
points, they are very flexible and allow to easily account for network topology
and heterogeneity as well as many non-trivial phenomena (e.g., RTT-unfairness
of TCP or cross-traffic interferences) [12] at a very low simulation cost. In the
next sections, we explain how StarPU has been ported on top of SimGrid and
how multi-GPU architectures have been modeled within SimGrid.

3 Porting StarPU over SimGrid

StarPU relies on a task-based abstraction with a clear semantic, which eases
the modeling. A StarPU execution consists in scheduling a graph of tasks with
data dependencies (i.e., a Directed Acyclic Graph) on the different computing
resources, while taking care about data localization. Hence, from the model-
ing perspective, there are three main components to take into account: StarPU
scheduling, computation on the different computing resources, and communica-
tion between the computing resources.

Since StarPU scheduling is generally dynamic and opportunistic, the decisions
taken when simulating should be as close as possible to the ones taken in a native
execution. The most natural approach is thus to execute the StarPU code related
to scheduling decisions and to replace actual task execution with SimGrid calls.
Yet, to make sure that simulation is carried out in a reproducible and controlled
way, SimGrid exports a specific thread API (similar to the POSIX one) that
allows the SimGrid kernel to control the scheduling of all application threads. In
simulation, such threads run in mutual exclusion and are scheduled upon com-
pletion of simulated data transfers and simulated computations. Therefore, any
direct regular call to the POSIX threads had to be abstracted as well. Likewise,
in simulation mode, any memory allocation on CPUs or GPUs has to be faked
as no actual data processing is done and no actual GPU is necessarily available
on simulation machines. Last, since schedulers may use runtime statistics to take
scheduling decisions, time had to be abstracted as well to make sure that simu-
lation time (instead of current time) is used in a consistent way. When running
on top of SimGrid, StarPU applications and runtime are thus emulated since
the actual code is executed, but any operation related to thread synchroniza-
tion, actual computations of CPU-intensive kernels, or data transfer is in fact
simulated. More precisely, the control part of StarPU is executed to dynamically
inject computation and communication tasks in the simulator.

For simplicity reasons, each CPU and GPU is represented as a SimGrid host
with specific characteristics and it comprises one or several threads which man-
age synchronization and signaling to StarPU, whenever transfer or computation
kernels end. The characteristics of the GPUs and of the communication intercon-
nect are measured beforehand on the target machine and expressed in term of
processing power, bandwidth, and latency. As a result, such approach is very dif-
ferent from the classical ones described in Section 2 where architecture is modeled
in detail and coarse-grain performances are derived from fine-grain simulation
of GPU internals.

54 L. Stanisic et al.

Table 1. Machines used for the experiments

Name Processor Number of Cores Frequency Memory GPUs
hannibal Intel Xeon X5550 2× 4 2.67GHz 2× 24GB 3×QuadroFX5800
attila Intel Xeon X5650 2× 6 2.67GHz 2× 24GB 3×TeslaC2050
conan Intel Xeon E5-2650 2× 8 2.0GHz 2× 32GB 3×TeslaM2075
frogkepler Intel Xeon E5-2670 2× 8 2.6GHz 32GB 2×K20

In such a modeling, the overhead of the runtime (e.g., the time needed to
take scheduling decisions, to manage synchronizations or to manage internal
queues) is not accounted for in the simulation and only the parts related to the
application execution are simulated. As we will see in the rest of the article,
such a naive emulation coupled with a simple modeling of computation and
communications may be enough for some applications on some platforms but
can lead to gross inaccuracies in others. Showing merely a few examples where
simulation and native execution match would hence not be a validation. Instead,
we tried to (in)validate our model by conducting as much experiments as possible
in a large variety of settings until we find a situation where our simulation fails
producing a good prediction. These critical experiments were generally very
instructive as they allowed us to understand how to improve our modeling.

In the rest of the article, we present the different sources of errors we identified
and the kind of prediction that can be done once they are fixed.

4 Experimental Setting

We conducted series of experiments to (in)validate our modeling approach. All
conclusions were drawn from analyzing and comparing GFlop/s rate, makespans
and traces of StarPU on one hand (called Native in the following), and StarPU
on top of Simgrid (called SimGrid in the following) on the other.

Before running applications, StarPU needs to obtain a calibration of the plat-
form, which consists in measuring bandwidths and latencies for communication
between each processing unit, together with evaluating timings of computation
kernels [2]. Such information is used to guide StarPU schedulers’ decisions when
delegating tasks to available workers. StarPU has thus been extended to gener-
ate at the same time a (XML) SimGrid description of the platform, which can
later be used for simulation purposes. It is important to understand that only
the calibration, which is meant to be run once and for all on the target system
before conducting any performance investigation, is used in the SimGrid simula-
tion and that it is not linked to the application being studied. The only condition
is that the application can use only computation kernels that have been mea-
sured, of course. Such a clear separation allowed all the simulations presented
in this paper to be performed on personal commodity laptops. This separation
also allows to simulate machines we don’t have access to, knowing merely their
characteristics (i.e., computation kernel runtimes and memory bandwidth).

To study the validity of our models, we used the systems described in Ta-
ble 1. These NVIDIA GPUs have distinct characteristics and belong to different

Modeling and Simulation of a Dynamic Task-Based Runtime System 55

Table 2. Typical duration of runtime operations

Transfer queue GPU memory GPU memory Pinned RAM
Operation management allocation deallocation allocation

(cudaMalloc) (cudaFree) (cudaHostAlloc)
Time 10μs 175μs 125μs 650μs/MB

generations, which intends to demonstrate the validity of our approach on a
range of diverse machines. Regarding applications, we decided to focus on two
common dense linear algebra kernels: cholesky and LU factorization. Regard-
ing task granularity, we fixed a relatively large block size (960 × 960) as it is
representative of what is typically used to achieve good performances. In our ex-
periments, CPUs were only controlling the execution and scheduling of the tasks
while GPUs had the roles of workers, meaning that whole computation was done
entirely on multiple GPUs. We focused on this kind of scenario as GPUs have
stable performance and provide a significant fraction of computational power in
dense linear algebra. We also investigated situations involving both CPUs and
GPUs a the same time. Although the initial results were excellent, we could not
include them in this article due to lack of room and decided to instead present
in detail the specifics of GPU modeling.

This whole work was done in the spirit of open science and reproducible re-
search. Both StarPU and Simgrid software are free software available online. All
experiment results presented in this paper are publicly available on figshare [13].
Supplementary data, which is not presented in this paper due to space limita-
tion, are also available at the same location along with all the scripts, raw data
files and traces which allow to regenerate this document.

Finally, assessing the impact of our various modeling attempts is quite diffi-
cult. Some of them are specifically linked to the modeling of the StarPU runtime,
while others are more linked to the modeling of communications or to the com-
putation variability. Obtaining a good predictive power is the combination of
a series of improvements. Hence, comparing different runtime modeling options
with a native execution while having a poor modeling of communications and
computations would not be very meaningful. So instead, we evaluate our differ-
ent runtime modeling options while using the best options for communication
and computation modeling. Likewise, when we evaluate various communication
modeling options, we always use the best modeling option of runtime and com-
putations, which allows us to evaluate how much accuracy we may lose by over-
looking this particular aspect.

5 Modeling Runtime System

Since StarPU is dynamic, inaccurate emulation of the control part would pro-
duce different scheduling decisions and would damage prediction of the overall
execution time. We show how, in some cases and if not treated correctly, this
can produce misleading results, and present how these issues were eliminated.

56 L. Stanisic et al.

Conan Cholesky Attila LU

0

500

1000

1500

20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s

Experimental
Condition

SimGrid (naive
runtime modeling)
SimGrid (smart)

Native

Fig. 1. Illustrating the influence of modeling runtime. Careless modeling of runtime
may be perfectly harmless in some cases, it turns out to be misleading in others.

As we already mentioned, process synchronizations, memory allocations of
CPU or GPU, submission of data transfer requests are all faked in simulation
mode, whereas such operations in native execution do take time and have an im-
pact on the overall performance. Several delays were included in the simulation
to account for their overhead (Table 2 depicts typical duration of such opera-
tions). Another (probably the most) influential parameter for accurate modeling
of runtime proved to be the size of GPU memory. Such hardware limits force the
scheduler to swap data back and forth between the CPUs and GPUs. These data
movements saturate the PCI bus, producing a tremendous impact on overall per-
formance. It is thus critical to keep track of the amount of memory allocated
by StarPU during the simulation to make sure the scheduler will behave in the
same way for both real native executions and simulations.

Figure 1 illustrates the importance of taking into account the runtime pa-
rameters described above. Each curve depicts GFlop/s rate of experiments rep-
resenting 90 different matrix dimensions (matrix dimension 80,000 corresponds
to ≈25GB). Solid line Native shows the execution of StarPU on the native ma-
chine, while the other two are the results of the simulation: naive for execution
without any runtime adjustments and smart with all of them included. The left
plot depicts a situation where all these optimizations have very little influence
as both naive and smart lines are almost overlapping with the native line. On
the other hand, for some other machines and applications (plot on the right),
having a precise modeling of runtime is critical as otherwise, simulation may
highly overestimate the performance for the larger matrix size. Nonetheless, we
remind that the excellent predictions achieved in these examples are also the
result of the careful modeling of communications and computations, which we
will present in the next Sections.

6 Modeling Communication in Hybrid Systems

Due to the relatively low bandwidth of the PCI bus, applications running on
hybrid platforms often spend a significant fraction of the total time transferring
data back and forth between the main RAM and the GPUs. Modeling com-
munication between computing resources is thus of primary importance. As a

Modeling and Simulation of a Dynamic Task-Based Runtime System 57

CPU

GPU2

GPU1

GPU0

(a) Crude modeling

CPU

GPU2

GPU1

GPU0

(b) More elaborated modeling

Fig. 2. Communication and topology modeling alternatives. In the crude modeling, a
single link is used and communications do not interfere with each others. The more
elaborated modeling allows to account for both the heterogeneity of communications
and the global bandwidth limitation imposed by the PCI bus.

first approximation (see Figure 2(a)), the transfer time between resources could
be modeled as a single link with a latency and a transfer rate corresponding
to typical characteristics of the PCI bus. However, such modeling does not ac-
count for many architectural aspects. First, the bandwidth between CPU and
GPU is asymmetrical. Second, communication characteristics are not uniform
among all pairs of CPUs and GPUs, as it depends on the chipset architecture.
We decided to account for it by using a dedicated uplink and a downlink with
different characteristics for each pair of resources (see Figure 2(b)). Furthermore,
any communication between two resources has to go through a common shared
link (in bold), which represent the maximum capacity of the PCI bus. Modeling
contention in such a way is however insufficient as depending on resources in-
volved in a communication, data transfers may be serialized or not. For example,
although most CUDA transfers are serialized whenever they involve the same
resource, on some systems it is possible to transfer both from GPU0 to GPU1

and from GPU1 to GPU0 at the same time.

QuadroFX5800 TeslaC2050

TeslaM2075 K20
0

1000

2000

3000

0

1000

2000

3000

0 100 200 0 100 200
LD(pitch) parameter [KB]

T
im

e
[m

s]

0

250

500

750

20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s

Experimental
Condition

SimGrid (naive
network modeling)
SimGrid (heterogeneous
network but no pitch)
SimGrid (smart)

Native

Fig. 3. Transfer time of 3,600 KB using
cudaMemcpy2D depending on the pitch
of the matrix

Fig. 4. Performance of the LU application
on hannibal (QuadroFX5800 GPUs) using
different modeling assumptions

58 L. Stanisic et al.

Additionally, to move chunks of matrices between resources, StarPU relies on
the cudaMemcpy2D function. First, the performance of this function is not exactly
the same as the one of cudaMemcpy, which was used in the original calibration
process. Even more importantly, it turns out that the pitch (i.e., the stride of the
original matrices) can have a significant impact on transfer time on some GPUs
(see Figure 3) whereas it can be relatively safely ignored on others. Therefore,
communication time is modeled as a piece-wise linear function of data payload
and whose slope and intercept depend on the pitch of the matrix.

Again, for a given application and a given target architecture, it may not
be necessary to take care of all such details to obtain a good prediction. For
example, as illustrated on Figure 4, a naive network modeling such as the one
on Figure 2(a) proved excellent predictions when matrix dimension is smaller
than 40,000. Beyond such size, a more precise modeling of the network (as in
Figure 2(b)) is necessary. Beyond 66,240, the behavior of cudaMemcpy2D changes
drastically and has to be correctly modeled to obtain a good prediction of the
performances.

7 Modeling Computation

When running simulation, the actual result of the application is of no interest.
Hence the execution of each kernel is replaced by a virtual delay accounting
for its duration. In our initial approach, we used the mean duration of each
computation kernel, which was benchmarked by StarPU during the calibration
phase. Although this was producing satisfactory results, using a fixed value leads
to a deterministic schedule in simulation. This may bias the simulation and
does not allow to verify the ability of the scheduling algorithms to handle the
variability of the resources.

Therefore, we modified StarPU to capture the timing of every computation
during a Native execution. Such collection of data can then be used to analyze
the computation time distribution which can be approximated using irregular
histograms [10], as regular ones (with uniform bin-width) revealed very inefficient
at representing details of distributions where a small but non-negligible fraction

hannibal: 3 QuadroFX5800 attila: 3 TeslaC2050 conan: 3 TeslaM2075 frogkepler: 2 K20

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C
holesky

LU

20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s Experimental
Condition

SimGrid

Native

Checking predictive capability of the simulation

Fig. 5. Checking predictive capability of our simulator in a wide range of settings

Modeling and Simulation of a Dynamic Task-Based Runtime System 59

of values are an order of magnitude larger than the vast majority of measure-
ments. Such approximation can then be used in the simulation by generating
pseudo-random variables from the histograms.

Although this technique allows to obtain different simulated schedules by
changing the seed of the simulation, no significant gain in term of accuracy could
be observed for the applications and machines we used so far. The makespan is
always very similar in both cases (mean duration vs. random duration following
an approximation of the original distribution). Nonetheless, we strongly believe
that in some more complex use cases, e.g., sparse linear algebra algorithms, using
fine models like histograms may provide more precise predictions.

8 Prediction Accuracy in a Wide Range of Settings

As we explained in the previous section, a careless modeling of any aspect of
runtime, communications or computations, can lead to gross inaccuracies for
particular combinations of machines and applications. We show in this section
that we managed to cover the most important issues, which enables us to ob-
tain excellent prediction of performances. Figure 5 depicts the performance as a
function of the size of the matrix for the two applications LU and Cholesky and
for the four different hybrid systems we described in Table 1. For most combi-
nations, the prediction obtained with SimGrid is very accurate. The only two
scenarios where the error is larger than a few percents is for the LU kernel on
conan and frogkepler when our prediction slightly overestimates the (bad) per-
formances for large matrices. The trend is however perfectly predicted as well as
the size beyond which performance drops.

A closer look at traces (see Figure 6) allows to see that this approach does not
only provide a good estimation of the total runtime but also offers an accurate
simulation of the scheduling details. Since even with the same parameters, native
traces differ from an execution to another, a point-to-point comparison with a

Fig. 6. Comparing execution traces (native execution on top vs. simulated execution at
the bottom) of the Cholesky application with a 72, 000× 72, 000 matrix on the Conan
machine. Traces are not perfectly identical since the execution is not deterministic but
the behavior of the simulation is representative of the real execution.

60 L. Stanisic et al.

DMDA DMDAR DMDAS

0

500

1000

1500

20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s Experimental
Condition

SimGrid

Native

Fig. 7. Cholesky on Attila: studying the impact of different schedulers

simulation trace would not make sense. However, we can check that both traces
are indeed extremely close, which allows to study and understand the potential
weaknesses of a scheduler.

For example, the reason for the performance drop observed on Figure 5 and
which is more and more critical with newer GPUs can be explained by the
need to move data back and forth between the GPUs and the main memory
whenever matrix size exceeds the memory size of the GPUs. The scheduler we
used in Figure 5 is the DMDA (Deque Model Data Aware) scheduler. Although
it schedules tasks where their termination time (including data transfer time)
will be minimal, it does not take care of the number of available data buffers on
each GPU. Such greedy strategy may be harmful as GPU may be overloaded
with work and forced to evict some data, as it cannot handle the whole matrix.
Two other strategies DMDAR and DMDAS were designed to tend to execute
tasks whose data is already on the GPU, before tasks whose data is not yet
available. Therefore, we decided to check whether these two other schedulers
could stabilize performances at the peak or not. To this end, we first ran the
corresponding simulations and obtained a positive answer (Figure 7). Later,
when the target system became accessible again, we confirmed these results by
running the same experiments and as can be seen on Figure 7, our simulations
were again perfectly accurate.

It is important to mention that the time to run each simulation typically takes
few seconds compared to sometimes several minutes for a real experiment. Com-
pared to architecture-level simulators (see Section 2) whose average slowdown
of simulations versus native execution is of the order of magnitude of several
dozens of thousands, our coarse-grain simulation allows to obtain a speedup of
ten to a hundred depending on the workload and on the speed of the machine.
Furthermore, since the target system is not required anymore, it is easy to run
series of simulations in parallel.

9 Conclusion and Future Work

In this article, we have explained how to model and simulate using SimGrid
a task-based runtime system on a hybrid multi-core architecture comprising

Modeling and Simulation of a Dynamic Task-Based Runtime System 61

several GPUs. Unlike fine-grain GPU simulators that have been proposed in
the past and which focus on architectural details of GPUs, our coarse-grain
approach allows to accurately predict the actual running time and to perform
extremely quickly extensive simulation campaigns to study various alternatives.
We demonstrated the precision of our simulations using the critical method, i.e.,
by testing our models and by conducting as much experiments as possible in
a large variety of settings (two standard dense linear algebra applications, four
different generations of GPUs, several scheduling algorithms) until we found a
situation where our simulation failed at producing a good prediction, in which
case we fixed our modeling. Such a tool is extremely interesting for both StarPU
developers and users as it allows (i) to easily and accurately evaluate the im-
pact of various parameters or scheduling alternatives (ii) to tune and debug
applications on a commodity laptop (instead of requiring a dedicated access to
a high-end machine) in a reproducible way (iii) to obtain reliable comparison
of performance estimations that may allow to detect problems with some real
experiments(perturbation, configuration issue, etc.).

Now that we have proven the efficiency of this approach on dense linear alge-
bra kernels, we intend to continue with this work in three directions. First, we
plan to explore using both CPUs and GPUs as computation units. While initial
investigation on classical hybrid multi-core computers showed perfect results, we
expect that dealing with large NUMA machines comprising hundreds of cores
will be much harder. Second, StarPU was recently extended to exploit clusters
of hybrid machines by relying on MPI [1]. Since SimGrid’s ability to accurately
simulate MPI applications has already been demonstrated [6], combining both
works should allow to obtain good performances predictions of complex applica-
tions on large-scale high-end HPC infrastructures. Third, many numerical appli-
cations have been recently ported on top of StarPU, including dense (MAGMA
and PLASMA) and sparse linear algebra (QR-MUMPS), and FMM methods.
Such applications are less regular and are thus likely to be more challenging
to model. However, a reliable performance evaluation methodology would bring
considerable insights to the developers.

Acknowledgments. This work is partially supported by the SONGS ANR
project (11-ANR-INFRA-13). We warmly thank Paul Renaud-Goud for his help
with the initial investigation of validity and Emmanuel Agullo for motivating
this study and providing insights on its usefulness.

References

1. Augonnet, C., Aumage, O., Furmento, N., Namyst, R., Thibault, S.: StarPU-MPI:
Task Programming over Clusters of Machines Enhanced with Accelerators. In:
Träff, J.L., Benkner, S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490, pp.
298–299. Springer, Heidelberg (2012)

2. Augonnet, C., Thibault, S., Namyst, R.: Automatic Calibration of Performance
Models on Heterogeneous Multicore Architectures. In: Lin, H.-X., Alexander, M.,
Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009
Workshops. LNCS, vol. 6043, pp. 56–65. Springer, Heidelberg (2010)

62 L. Stanisic et al.

3. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency
and Computation: Practice and Experience 23, 187–198 (2011)

4. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ortí, E.S.:
An Extension of the StarSs Programming Model for Platforms with Multiple GPUs.
In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 851–
862. Springer, Heidelberg (2009)

5. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing
CUDA workloads using a detailed GPU simulator. In: ISPASS, pp. 163–174 (2009)

6. Bedaride, P., Degomme, A., Genaud, S., Legrand, A., Markomanolis, G., Quinson,
M., Stillwell, L.M., Suter, F., Videau, B.: Toward better simulation of mpi appli-
cations on ethernet/tcp networks. In: 4th International Workshop on Performance
Modeling, Benchmarking and Simulation of HPC Systems (PMBS) (November
2013)

7. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
DAGuE: A Generic Distributed DAG Engine for High Performance Computing.
In: IEEE International Symposium on Parallel and Distributed Processing, pp.
1151–1158. IEEE Computer Society (2011)

8. Casanova, H., Legrand, A., Quinson, M.: SimGrid: A Generic Framework for Large-
Scale Distributed Experiments. In: Proceedings of the 10th IEEE International
Conference on Computer Modeling and Simulation (UKSim) (April 2008)

9. Collange, S., Daumas, M., Defour, D., Parello, D.: Barra: A Parallel Functional
Simulator for GPGPU. In: IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication, pp. 351–360 (2010)

10. Denby, L., Mallows, C.: Variations on the histogram. Journal of Computational
and Graphical Statistics 18(1), 21–31 (2009)

11. Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D.: Multi2Sim: A Simulation
Framework for CPU-GPU Computing. In: Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, PACT 2012,
pp. 335–344. ACM, New York (2012)

12. Velho, P., Schnorr, L., Casanova, H., Legrand, A.: On the validity of flow-level TCP
network models for grid and cloud simulations. ACM Transactions on Modeling
and Computer Simulation 23(3) (October 2013)

13. Companion of the StarPU+SimGrid article. Hosted on Figshare (2014),
http://dx.doi.org/10.6084/m9.figshare.928095, online version of this article
with access to the experimental data and scripts (in the org source)

http://dx.doi.org/10.6084/m9.figshare.928095

Modeling the Impact of Reduced Memory

Bandwidth on HPC Applications�

Ananta Tiwari1, Anthony Gamst2, Michael A. Laurenzano3, Martin Schulz4,
and Laura Carrington1

1 Performance Modeling and Characterization Lab,
San Diego Supercomputer Center, USA

{tiwari,lcarring}@sdsc.edu
2 Computational and Applied Statistics Lab, San Diego Supercomputer Center, USA

acgamst@math.ucsd.edu
3 Department of Computer Science and Engineering, University of Michigan, USA

mlaurenz@eecs.umich.edu
4 Lawrence Livermore National Laboratory (LLNL), USA

schulzm@llnl.gov

Abstract. To deliver the energy efficiency and raw compute throughput
necessary to realize exascale systems, projected designs call for massive
numbers of (simple) cores per processor. An unfortunate consequence
of such designs is that the memory bandwidth per core will be signifi-
cantly reduced, which can significantly degrade the performance of many
memory-intensive HPC workloads. To identify the code regions that are
most impacted and to guide them in developing mitigating solutions, sys-
tem designers and application developers alike would benefit immensely
from a systematic framework that allowed them to identify the types of
computations that are sensitive to reduced memory bandwidth and to
precisely identify those regions in their code that exhibit sensitivity. This
paper introduces a framework for identifying the properties in computa-
tions that are associated with memory bandwidth sensitivity, extracting
those same properties from HPC applications, and for associating band-
width sensitivity to specific structures in the application source code.
We apply our framework to a number of large scale HPC applications,
observing that the bandwidth sensitivity model shows an absolute mean
error that averages less than 5%.

1 Introduction

The trend towards multi-core systems has accelerated over the last decade and
has had a profound impact on HPC systems. Multi-core designs allow for greater
energy efficiency by increasing the compute performance of the processors through
replicating simple and more energy conserving cores on a processor chip, poten-
tially at lower voltages, without requiring complex and power hungry single core
enhancements. With energy and power often being cited as the most critical
issues on the road to practical exascale systems, it is foreseeable that this trend

� The rights of this work are transferred to the extent transferable according to Title
17 §105 U.S.C.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 63–74, 2014.
c© Springer International Publishing Switzerland 2014 (outside the US)

64 A. Tiwari et al.

will continue. Some studies already project hundreds to thousands of cores per
processor [7]. While multi-core systems certainly offer advantages in terms of
energy efficiency, they also pose new challenges. As the number of cores per pro-
cessor is scaled up, the memory bandwidth feeding the cores, in particular the
off-chip bandwidth which is limited by pin constraints and slowly rising memory
speeds, will result in performance challenges that can seriously undermine the
performance achievable by multi-core processors.

Different HPC computations will suffer different degrees of performance degra-
dation when faced with reduced per core memory bandwidth, i.e., performance
degradation is not a simple linear function of bandwidth vs. performance, but
rather a complex function that also involves the characteristics of the workload
(e.g., arithmetic intensity, memory access patterns and work distribution among
cores). We therefore need a systematic methodology to understand and predict
how sensitive a given computation or algorithm is to reduced per core memory
bandwidth. This paper presents a modeling framework that allows such a char-
acterization and can be used to predict how different computations within an
application, computational phase or even basic block will behave under a given
reduced memory bandwidth. Our methodology uses fine-grained application and
hardware characterization to build predictive models through machine learning
based models. In particular, we make the following contributions:

– We introduce predictive models for memory bandwidth sensitivity that are
effective across a range of code granularities. We detail the machine learning
algorithm used to construct the models and how to train them using empirical
measurements that capture both data flow and computational properties of
applications.

– We evaluate our models using a diverse set of real scientific workloads. We
show that the framework accurately pinpoints regions within these codes
where reduced bandwidth of current and future generation multi-core sys-
tems could pose significant performance challenges.

– We apply our framework to HYPRE [14], a library for solving large sparse linear
systems of equations, and show how it can accurately predict bandwidth
sensitivity scores for different solver implementations and thereby help select
implementations that are less sensitive to reduced memory bandwidth.

2 Predicting Performance Sensitivity

The amount of available memory bandwidth can have a crucial performance
impact on the different computational phases of a large scale application. Un-
derstanding the level of this impact, where in the execution it is occurring, and
algorithmic choices that might minimize this impact are critical for application
developers as the core count on current and future multi-core systems grows.
Performance prediction via fine grain models of an application can address these
questions. Developing such detailed performance models requires a test system
for model validation (Section 2.1), a modeling technique amenable to the com-
plex and diverse space of HPC computations (Section 2.2), and techniques to
capture the details or characterization of computations (Section 2.3).

Modeling the Impact of Reduced Memory Bandwidth on HPC Applications 65

2.1 Model Validation System

To validate that the models accurately predict an application’s sensitivity to
reduced per core memory bandwidth, we need a test system where we can change
the per core memory bandwidth. To design such a system, we first focus on
the parameters involved in determining theoretical memory bandwidth (TBW),
which can be calculated as follows:

TBW = mem freq × L×W × I (1)

TBW is the product of memory bus frequency (mem freq), the number of lines of
data transferred per clock cycle (L), the bus width (W) and the number of mem-
ory channels (I). The test system that we use in our study consists of DDR-N
(Double Data Rate) DRAM modules on a motherboard that supports dual chan-
nel memory; therefore, L and I parameters are fixed at 2. Bus width W is 64 bits
for our test-bed. Thus, to approximate systems with lesser memory bandwidth,
we rely on changing the mem freq parameter, the frequency of the memory bus.

While it is not possible, on current systems, to change the memory bus fre-
quency from the OS-level, modern systems allow choosing between different bus
frequencies at boot time (through the BIOS setup). Our test system consists of a
single node from the Gordon Supercomputer [25]. The dual-socket node contains
two 8-core 2.6 GHz Intel Xeon E5-2670 (SandyBridge) processors and 64 GB of
DDR3 memory. The default frequency rating of the DDR3 modules is 1333 MHz.
The BIOS setup allows two additional frequencies – 1067 MHz and 800 MHz.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

0.
00

81
92

0.
01

63
84

0.
03

27
68

0.
06

55
36

0.
13

10
72

0.
26

21
44

0.
52

42
88

1.
05

2.
10

4.
19

8.
39

16
.7

8

M
B

/s
ec

working set size (MB)

Read Bandwidth as measured by lmbench

1333 MHz
1067 MHz

800 MHz
 0.6
 0.8

 1
 1.2
 1.4
 1.6

4.
19

8.
39

16
.7

8

R
at

io

Main Memory BW

1333 MHz
1067 MHz
1067 MHz

Fig. 1. lmbench results for different bus frequencies

To demonstrate that low-
ering the memory bus fre-
quency in the BIOS results
in a test bed with reduced
per core memory bandwidth,
we present a study that uti-
lizes the memory read band-
width test in lmbench [24]
for the three available mem-
ory bus speeds on our sys-
tem. The results in Figure 1
show four plateaus indicat-
ing the L1 cache, L2 cache,
L3 cache, and main memory
bandwidths for the test-bed
at the three memory bus fre-
quencies. As expected, the L1, L2, and L3 cache plateaus do not show any change
across different memory bus frequencies. The fourth plateau, for working set
sizes above 4.19 MB, indicates the main memory bandwidth and shows changes.
These changes are replotted in the histogram sub-graph within Figure 1. In this
subfigure the bandwidths for 1067 MHz and 800 MHz are normalized to the
bandwidths at 1333 MHz. Memory read bandwidth is reduced by roughly 17.5%
when we decrease the memory bus frequency by 20% from 1333 MHz to 1067

66 A. Tiwari et al.

MHz. This reduction is roughly 37.7% when going from 1333 MHz to 800 MHz
(or by 40%). These results demonstrate that changing the memory bus frequency
allows us to approximate the behavior we are looking to study – reduced per
core memory bandwidth and its effect on the performance of compute phases
within HPC applications.

2.2 Model Methodology

To model the performance sensitivity we utilize machine learning techniques
produce estimates F̂ (x) of that function F (x) which is the optimal predictor of
the output variable y from the input variables x = {x1, ..., xn} in the class of
functions F , in the sense that

F (x) = argmin
f∈F

EL (f(x), y)

where L is a non-negative loss function, for example, L(s, t) = (s − t)2/2, and
Eh(x, y) =

∫
h(x, y)dP (x, y) is the expectation operator corresponding to the

joint distribution P of x and y. The function F is an approximation to the
optimal predictor G of y, which may involve input variables other than x and
may be in a different class of functions from F ; that is, G may have a different
functional form or be more or less smooth than functions in F . Any particular
technique and specific, finite set of training data {(xi, yi)}ni=1, will produce a

specific estimate F̂ (x) of F (x). Different data sets and different techniques will
generally produce different estimates.

There are numerous approaches to this problem, each with various tradeoffs
in terms of efficiency, stability, convergence and interpretability. In this work, we
take a generic approach to the machine learning problem, using the Gradient-
Boost, Multiple Additive Regression Tree (MART) approach of Friedman [15],
with 10-fold cross validation for model selection. Cross-validation is used to pro-
duce honest (i.e. approximately unbiased) estimates of the error of fitted models.

Friedman’s GradientBoost procedure uses additive (ANOVA-type) expansions
of F (x), which consist of main effects and second-, third-, and higher-order
interaction terms

F (x) =
∑
j

fj(xj) +
∑
j,k

fjk(xj , xk) +
∑
j,k,l

fjkl(xj , xk, xl) + (2)

While the interaction terms may include two-way, three-way, or even higher-
order interactions, care must be taken when fitting the model to (finite) training
sets to avoid over-fitting, which has a negative effect on the ability of the predic-
tor to generalize; that is, to produce reasonable predictions from input variables
not already in the training set. The GradientBoost procedure uses two regular-
ization techniques to limit the risk of over-fitting. The first is to limit the number
of terms M included in the additive expansion (2), and the second (essentially)
multiplies the predicted values associated with each of the fitted terms by a
learning rate parameter, which slows the optimization process through incre-
mental shrinkage, reduces the risk of converging to (sub-optimal) local minima,

Modeling the Impact of Reduced Memory Bandwidth on HPC Applications 67

and (essentially) determines the effective number of (unique) trees K in the final
predictor. There is an inverse relationship between these two control parameters,
such that solutions with a larger number of additive components are more likely
to converge successfully when a smaller learning rate is used, and vice versa [15].
Naturally, there is still a risk of over-fitting and approximately optimal values of
K and M must be selected from the range of candidate values. We use 10-fold
cross validation for this purpose. In k-fold cross validation (in our case, k=10),
the training dataset is randomly partitioned into k subsets of approximately
equal size. k different models are then constructed, each using (k − 1) of the k
partitions as training input so that 1 of the k sets can be set aside for model
validation. Each of the k models are then validated against the validation set
and the model that yields the minimum error is selected.

MART was selected in part because the regression trees, upon which the tech-
nique is based, are computationally efficient, relatively robust to missing data
and monotone transformations of the input variables, and allow us to make very
minimal smoothness assumptions (see [8,9]). We describe the training set, error
estimates and the predictive accuracy of our fitted models on real application
hotspots in Section 3.

2.3 Computational Characterization

In order to develop models that capture a computation’s sensitivity to per core
bandwidth we need to first capture low-level details of how an application inter-
acts with and exercises the underlying hardware subcomponents or application
characterizations. We develop these detailed characterizations by gathering what
we will refer to as an application signature. These signatures are collected by
a set of static and dynamic binary analysis tools and include per basic-block,
per loop and per function information. This information consists of the opera-
tions required by the application in the form of instruction mix and counts, data
locality properties, metrics that capture the application’s interaction with the
memory subsystem such as cache hit rates, load and store operations, etc.

At the center of the characterization and analysis tool-suite is our x86 binary
instrumentation toolkit, PEBIL [21]. PEBIL works directly on the binary and
there is no re-compilation or re-linking required – steps we wish to avoid because
they can interfere with the original behavior of the application. The fact that
PEBIL works on the binary directly also makes the use of the tools easy to use
on large-scale applications.

Static Analysis : The static analysis tool written on top of PEBIL produces infor-
mation about the approximate structure of the program and the operations that
occur within those structures (e.g., functions and loops). The tool also records
type and size of classes of operations (e.g., memory and floating operations) that
are within those control structures. The static analysis tool records the average
size of memory operands in each block and measures the number of instructions
between register or memory definitions and their usage (i.e., data dependencies).

Dynamic Analysis : To gather detailed information about data movement within
an application, the memory characterization tool written on top of PEBIL

68 A. Tiwari et al.

instruments every memory access in the application and pipes the address stream
to be processed on-the-fly by a series of different tools (e.g. reuse distance cal-
culation, working set size analysis and a cache simulator for system of interest).
The cache simulator tool, for example, produces the cache hit rates for a set of
target systems of interest for each of the application’s loops. Another dynamic
analysis tool keeps visit count information for the application’s control units
(e.g., basic block visit counts). Visit count information when combined with the
static instruction mix information gives detailed information on the instruction
make-up of the application.

The characterization data is managed using an SQL relational database. All
the static and dynamic data for an application is collected into the database,
which can be queried for computational characterization information that form
the application signature. The signature includes an entry for each of the control
structure units of a given application (such as basic blocks) and consists of
information about instruction mix, cache behavior, data dependencies, etc.

3 Results

We utilized the test system and the modeling methodology to investigate the
performance sensitivity of HPC applications to the reduced per core memory
bandwidth. The test system (described in Section 2.1) was used to both train
and validate the models (see Section 3.1). We then evaluated our models on a
set of real applications and the results are presented in Sections 3.2 and 3.3.

3.1 Model Training

To create a model that captures how the performance of various types of com-
putations are affected by reduced per core memory bandwidth, we use a set
of benchmarks along with source code transformation frameworks to generate
a diverse set of small computations to train the model. The benchmarks come
from pcubed benchmarking framework [22], which can be configured to yield
computations with specific computational, memory, and data flow properties.
We supplement these pcubed loops with kernels derived from different compu-
tational domains – dense linear algebra (e.g. matrix-matrix multiplication and
matrix-vector multiplication), stencil computations, etc. In addition, for some
of the kernels, we generate variants using two source-to-source compiler trans-
formation tools – Orio [26] and CHiLL [11]. Some of the optimizations that we
used to generate these variants include loop unrolling, cache/register tiling and
scalar replacement. Each of these variants is configured to run with multiple
working set sizes. Together with pcubed, kernels and kernel variants, we had
a total of 2900 computations that formed our training set. All of the training
computations were timed using the three memory bus frequency settings on the
test system. We take six measurements for each; we discard the min and max
measurements and average the remaining four. Also, for each test we generate a
characterization signature using the tools described in Section 2.3.

Modeling the Impact of Reduced Memory Bandwidth on HPC Applications 69

Predictive models are constructed using the machine learning problem pre-
sented in Equation 3. The predictors listed in right hand side of the equation
show the entries that make up a loop signature. mem freq is the memory bus
frequency and d1m, d2m, d3m are the number of memory accesses per instruction
that hit on L1, L2 and L3 caches respectively. dmm is the number of accesses per
instruction that miss on L3. loads, stores, int ops and branch ops are the
number of load, store, integer and branch operations per instruction. fprat is
the the ratio of the number of floating point operations to the number of memory
operations. fops ins is the number of floating point operations per instruction.
int dud and fp dud are integer and floating point def-use distances respectively.
The outcome (degradation) is log-transformed to stabilize the residual variance.

log(degradation) = F (mem freq, d1m, d2m, d3m, dmm, loads, stores, int ops

branch ops, fprat, fops ins, int dud, fp dud)
(3)

We use 10-fold cross validation for model selection, optimizing both the number
of trees and the interaction depth empirically via a parameter sweep. The model
reported here is based on K̂ = 800 trees, each with an interaction depth of
at most M̂ = 5, where both K̂ and M̂ were selected by cross validation, as
described in Section 2.2. Squared error loss is used to fit the multiple additive
regression tree model. The model selected via the 10-fold cross-validation is then
used to make predictions for all the points in the training set. The predictions
are highly accurate with just 2% absolute mean error.

3.2 Model Evaluation on Real Applications

We evaluated the predictive capability of the model on real applications at a
fine grain level by looking at the individual computational phases or loops of
the applications. Our evaluation application suite consisted of the following ap-
plications: 1) four benchmarks (CG, MG, LU and FT) from the NAS parallel
benchmarks [4], 2) miniFE and miniGhost from the Mantevo benchmarks [1],
3) AMG2006 [29], which is parallel algebraic multigrid solver for linear systems
arising from problems on unstructured grids, and 4) SMG2000 [10], which is a
parallel semicoarsening multigrid solver for the linear systems arising discretiza-
tions of the diffusion equation. miniFE is a finite-element mini-application that
implements kernels representative of unstructured, implicit finite-element appli-
cations. miniGhost is a Finite Difference mini-application which implements a
difference stencil across a homogenous 3D domain.

We started by generating the characterization signatures for the applications
using our analysis tool-suite. We identified a total of 42 computational phases or
hotspots in these applications. Using a loop timer tool built on top of PEBIL, we
instrumented the binaries to collect timing information for each of these loops
to verify the models. We then executed the applications using the three bus
frequency configurations.

To evaluate the models, we fed the characterization signatures for the ap-
plication’s hotspots to our model to predict the performance degradation when

70 A. Tiwari et al.

Histogram −− Prediction Accuracy on Real Application Phases

Absolute Mean Error (%)

C
ou

nt
 (

or
 n

um
be

r
of

 p
ha

se
s)

0 5 10 15

0
10

20
30

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 800 900 1000 1100 1200 1300 1400T
im

e
w

rt
 to

 th
e

hi
gh

es
t (

13
33

 M
H

z)
 F

re
qu

en
cy

Memory Bus Frequency (MHz)

Mantevo Miniapps (MiniGhost and MiniFE), 16 Cores
 Performance Sensitivity of dominant phases (256 x 256 x 256)

measured miniGhost (P1)
modeled miniGhost (P1)

measured miniFE (P1)
modeled miniFE (P1)

(a) (b)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 800 900 1000 1100 1200 1300 1400T
im

e
w

rt
 to

 th
e

hi
gh

es
t (

13
33

 M
H

z)
 F

re
qu

en
cy

Memory Bus Frequency (MHz)

AMG, 16 Cores
 Performance Sensitivity of 4 dominant phases (256 x 256 x 256)

measured (P1)
modeled (P1)

measured (P2)
modeled (P2)

measured (P3)
modeled (P3)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 800 900 1000 1100 1200 1300 1400T
im

e
w

rt
 to

 th
e

hi
gh

es
t (

13
33

 M
H

z)
 F

re
qu

en
cy

Memory Bus Frequency (MHz)

SMG2000, 16 Cores
 1 Phase, 2 input sizes (64x64x64 and 128x128x128)

measured (P1-64)
modeled (P1-64)

measured (P1-128)
modeled (P1-128)

(c) (d)

Fig. 2. (a) Overall prediction accuracy for application phases. (b), (c) and (d) demon-
strate the accuracy of models on different application behaviors.

running at the two lower frequencies. Overall prediction results (histogram) are
shown in Figure 2(a). Note that the error calculation reported here are ‘out of
sample’, i.e., the characterization signatures for the application hotspots are not
seen during the model training process and thereby demonstrates the predictive
accuracy of our models. Overall the models predict the outcome well – average
absolute mean error is 4%. For more than 91% of the application hotspots, the
prediction error is less than 10%. Some of the outlying hotspots with higher
error rates have at least one characteristics in common – the per visit time on
these loops is very small. So, it is possible that the method we use to measure
time does not accurately capture the time spent on these loops.

After validating the models, we used the models to investigate the behav-
ior of the different computational phases within the applications. Figure 2(b)
shows that different applications of the same benchmark suite (e.g. mantevo)
can exhibit different reduced memory bandwidth sensitivity and that our model
accurately predicts those sensitivities. In particular, miniFE’s key hotspot con-
sists of an sparse matrix product, with the matrix stored in compressed sparse
row format. Indirect addressing and random memory access patterns thus make
this hotspot highly sensitive to the memory bandwidth.

We also looked at the diversity of computational phases within a single ap-
plication. Figure 2(c) shows the results for the three most dominant loops in

Modeling the Impact of Reduced Memory Bandwidth on HPC Applications 71

AMG2006. These three phases have different sensitivity to reduced bandwidth
and our models accurately capture this behavior. The figure also shows that
applications are comprised of phases that exhibit different sensitivities and that
only fine-grained models can capture the complex behavior in these applications.

Finally, the working set size can also impact how individual phases react to
reductions in memory bandwidth. In Figure 2(d) we investigate a single phase of
the SMG2000 application to analyze how its sensitivity changes as the problem
size is changed. The figure illustrates how the model is able to accurately capture
the change in the phase’s sensitivity as the application’s input size is changed.

3.3 Algorithm Selection

We applied our framework to HYPRE [14], a library for solving large sparse lin-
ear systems of equations. With this set of experiments, we want to demonstrate
how our models can accurately predict bandwidth sensitivity scores for different
solver implementations and thereby help developers select and/or design algo-
rithmic implementations that are less sensitive to reduced memory bandwidth
for future multi-core systems.

We focused on the linear algebraic System (IJ) interface, which provides access
to general sparse matrix solvers. We selected three best-performing solvers –
Algebraic Multigrid (AMG), Parasails and hybrid-AMG. Solver choice can be
made at run-time and to isolate just the phases related to different algorithms, we
first profiled the three runs using different algorithms to eliminate the common
phases or loops (only those that have the same computational properties). We
then timed these phases at the highest frequency and used our model to predict
how reduced per core memory bandwidth affects the unique phases in each of the
solver instantiations. Results for the analyzed phases are presented in Table 1.
The predictions that our model makes are, at worst, off by 3.6%. Parasails is the
best solver for our test system and beats the second best choice (hybrid-AMG)
by 1.28x. It is, however, also the most sensitive to the reduced bandwidth –
slowing down by 1.37x when run at 800MHz bus frequency. hybrid-AMG, on
the other hand, is the least sensitive. The speedup advantage Parasails has on
hybrid-AMG diminishes to 1.09x at 800MHz. If we were to make a reasonable
assumption that on future many-core systems the per core memory bandwidth
will be below the range that we could simulate using our test system, then
hybrid-AMG solver will deliver better performance for those systems.

Table 1. Exploring the choices of solver algorithms – all times in seconds and the
(slowdown) is wrt to time @1333MHz

Algo Measured Measured Predicted % Error Measured Predicted % Error
Time@1333 Time@1067 Time@1067 @1067 Time@800 Time@800 @800

(slowdown) (slowdown) (slowdown) (slowdown)

AMG 2.96 3.14 (1.06) 3.18 (1.07) 1.08 3.46 (1.17) 3.59 (1.21) 3.76
Parasails 2.06 2.29 (1.11) 2.30 (1.11) 0.40 2.84 (1.37) 2.87 (1.39) 1.06

hybrid-AMG 2.85 2.99 (1.05) 3.04 (1.07) 1.65 3.28 (1.15) 3.40 (1.19) 3.58

72 A. Tiwari et al.

4 Related Work

Many researchers have investigated the idea of utilizing different power states of
memory modules for greater energy efficiency [13, 23, 27]. These efforts exploit
memory stalls to drive their optimization for energy usage. Our work is distinct
in that we take a model-based approach to predict performance degradation at
different bus frequencies; these models should enable fine-grain optimizations.
Deng et al. [12] use DVFS techniques to limit main memory energy consumption
on single- and multi-core systems. They utilize modeling to determine optimal
DVFS settings for the applications. Our work is distinct from theirs in that they
use a simulator rather than a real system. Thus, they are restricted to small ex-
ecutions (e.g. <100M instructions), whereas our work models large applications
for the full execution and validates the models on a real system.

Performance models for HPC applications have been utilized to improve sys-
tem designs, inform procurements, and guide application tuning [3,17,19]. Ker-
byson et al. [20] utilize application-specific knowledge to construct performance
models. These models are highly accurate, however, the mostly manual model-
ing exercise has to be largely repeated when the structure of the code or the
algorithmic implementation changes. Vetter et al. [2] combine analytical and
empirical modeling approaches to incrementally construct realistic and accurate
performance models. Code modification must be made in the form of adding
annotations or “modeling assertions” around key application constructs. Oth-
ers [5, 16, 28] have also used application-specific approaches to generate perfor-
mance and power models, however, they are difficult to automate and generalize
because they require guidance from domain experts. Our models do not assume
any domain- or application-specific knowledge and strictly base their predictions
on what they learn about the computational properties of the application.

There has also been work done on using model-based methodology to pre-
dict the scalability of HPC applications. Barnes et al. [6] use regression-based
approaches on training data consisting of execution observations with different
input sets on a small subset of the processors and use the models to predict
performance on a larger number of processors. Others [18] have used machine
learning to model input parameter sensitivity of HPC applications. These mod-
eling techniques are application-specific and the training points for regression
and machine learning are drawn from the application’s input parameter space.

5 Conclusion

This paper presented a model-based framework that can be used to identify
computational phases within large-scale applications that are sensitive to re-
duced per-core memory bandwidth – a phenomenon which we anticipate will
be further exacerbated as systems scale up the number of cores on a processor.
Our framework assumes no domain-specific knowledge about the application and
strictly makes predictions about the memory bandwidth sensitivity of the appli-
cation’s phases based on characterization information that we can collect using
our binary analysis tools. We evaluated the framework using various scientific

Modeling the Impact of Reduced Memory Bandwidth on HPC Applications 73

workloads and showed that the framework accurately predicts (<5% absolute
mean error in prediction) how sensitive the diverse phases and algorithms within
these workloads are to the reduced per core memory bandwidth.

Acknowledgements. This work was supported in part by the DOE Office of
Science, Advanced Scientific Computing Research, under award number 62855
“Beyond the Standard Model – Towards an Integrated Modeling Methodology
for the Performance and Power”; PNNL lead institution; Program Manager So-
nia Sachs. The authors acknowledge partial support from LLNL under subcon-
tract B600667. This work was also supported in part by the DoD and used
elements at the Extreme Scale Systems Center, located at ORNL and funded by
the DoD. Partial support also came from the DOE Office of Science through the
SciDAC award titled SUPER (Institute for Sustained Performance, Energy and
Resilience). Part of this work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 (LLNL-CONF-655084).

References

1. Mantevo Project, http://mantevo.org/
2. Alam, S., Vetter, J.: A framework to develop symbolic performance models of

parallel applications. In: 20th International Parallel and Distributed Processing
Symposium, IPDPS 2006, p. 8 (April 2006)

3. Bailey, D.H., Snavely, A.: Performance modeling: Understanding the past and pre-
dicting the future. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS,
vol. 3648, pp. 185–195. Springer, Heidelberg (2005)

4. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The nas parallel benchmarks–summary
and preliminary results. In: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, Supercomputing 1991. ACM, New York (1991)

5. Barker, K., Davis, K., Kerbyson, D.: Performance modeling in action: Performance
prediction of a cray xt4 system during upgrade. In: IEEE International Symposium
on Parallel Distributed Processing, IPDPS (2009)

6. Barnes, B.J., Rountree, B., Lowenthal, D.K., Reeves, J., de Supinski, B., Schulz,
M.: A regression-based approach to scalability prediction. In: Proceedings of the
22nd Annual International Conference on Supercomputing, ICS 2008 (2008)

7. Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,
Franzon, P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R.,
Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R.S.,
Yelick, K.: Exascale computing study: Technology challenges in achieving exascale
systems (2008), http://www.cse.nd.edu/Reports/2008TR-2008-13.pdf

8. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
9. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression

Trees. Chapman & Hall, CRC (1984)
10. Brown, P.N., Falgout, R.D., Jones, J.E.: Semicoarsening Multigrid on Distributed

Memory Machines. SIAM J. Sci. Comput. 21(5), 1823–1834 (2000)
11. Chen, C., Chame, J., Hall, M.W.: CHiLL: A framework for composing high-level

loop transformations. TR 08-897, Univ. of Southern California (June 2008)

http://mantevo.org/
http://www.cse.nd.edu/Reports/2008TR-2008-13.pdf

74 A. Tiwari et al.

12. Deng, Q., Meisner, D., Bhattacharjee, A., Wenisch, T.F., Bianchini, R.: Coscale:
Coordinating cpu and memory system dvfs in server systems. In: 45th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO (2012)

13. Diniz, B., Guedes, D., Meira Jr., W., Bianchini, R.: Limiting the power consump-
tion of main memory. In: ACM SIGARCH Computer Architecture News, vol. 35,
pp. 290–301. ACM (2007)

14. Falgout, R.D., Meier Yang, U.: hypre: A library of high performance precondition-
ers. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J. J., Hoekstra, A.G. (eds.) ICCS
200. Part III. LNCS, vol. 2331, pp. 632–641. Springer, Heidelberg (2002)

15. Friedman, J.: Greedy function approximation: A gradient boosting machine. An-
nals of Statistics 29(5), 1189–1232 (2001)

16. Hoefler, T.: Bridging performance analysis tools and analytic performance model-
ing for HPC. In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop 2010. LNCS,
vol. 6586, pp. 483–491. Springer, Heidelberg (2011)

17. Hoisie, A., Kerbyson, D.J., Mendes, C.L., Reed, D.A., Snavely, A.: Special section:
Large-scale system performance modeling and analysis. Future Generation Comp.
Syst. 22(3), 291–292 (2006)

18. Ipek, E., de Supinski, B.R., Schulz, M., McKee, S.A.: An approach to performance
prediction for parallel applications. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par
2005. LNCS, vol. 3648, pp. 196–205. Springer, Heidelberg (2005)

19. Kerbyson, D., Vishnu, A., Barker, K., Hoisie, A.: Codesign challenges for exascale
systems: Performance, power, and reliability. Computer 44(11), 37–43 (2011)

20. Kerbyson, D.J., Jones, P.W.: A performance model of the parallel ocean program.
Int. J. High Perform. Comput. Appl. 19(3), 261–276 (2005)

21. Laurenzano, M., Tikir, M., Carrington, L., Snavely, A.: Pebil: Efficient static binary
instrumentation for linux. In: 2010 IEEE International Symposium on Performance
Analysis of Systems Software (ISPASS), pp. 175–183 (March 2010)

22. Laurenzano, M.A., Meswani, M., Carrington, L., Snavely, A., Tikir, M.M., Poole,
S.: Reducing energy usage with memory and computation-aware dynamic fre-
quency scaling. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011,
Part I. LNCS, vol. 6852, pp. 79–90. Springer, Heidelberg (2011)

23. Lebeck, A.R., Fan, X., Zeng, H., Ellis, C.: Power aware page allocation. ACM
SIGPLAN Notices 35(11), 105–116 (2000)

24. McVoy, L., Staelin, C.: lmbench: Portable tools for performance analysis. In: Pro-
ceedings of the 1996 Annual Conference on USENIX Annual Technical Conference,
ATEC 1996, Berkeley, CA, USA, pp. 23–23. USENIX Association (1996)

25. Norman, M., Snavely, A.: Accelerating data-intensive science with Gordon and
Dash. In: 2010 TeraGrid Conference (2010)

26. Norris, B., Hartono, A., Gropp, W.: Annotations for productivity and performance
portability. In: Petascale Computing: Algorithms and Applications, Computational
Science, pp. 443–462. Chapman & Hall / CRC Press (2007)

27. Pandey, V., Jiang, W., Zhou, Y., Bianchini, R.: Dma-aware memory energy man-
agement. In: HPCA, vol. 6, pp. 133–144 (2006)

28. Tiwari, A., Laurenzano, M., Carrington, L., Snavely, A.: Modeling power and
energy usage of hpc kernels. In: Proceedings of the Eighth Workshop on High-
Performance, Power-Aware Computing, HPPAC 2012 (2012)

29. Yang, U.: Parallel algebraic multigrid methods in high performance precondition-
ers. In: Garbow, B.S., Dongarra, J., Boyle, J.M., Moler, C.B. (eds.) Numerical
Solution of Partial Differential Equations on Parallel Computers. LNCS, vol. 51,
pp. 209–236. Springer, Heidelberg (1977)

ParaShares: Finding the Important Basic Blocks

in Multithreaded Programs

Melanie Kambadur, Kui Tang, and Martha A. Kim

Columbia University, New York, NY
{melanie,martha}@cs.columbia.edu, kt2384@columbia.edu

Abstract. Understanding and optimizing multithreaded execution is a
significant challenge. Numerous research and industrial tools debug par-
allel performance by combing through program source or thread traces
for pathologies including communication overheads, data dependencies,
and load imbalances. This work takes a new approach: it ignores any
underlying pathologies, and focuses instead on pinpointing the exact lo-
cations in source code that consume the largest share of execution. Our
new metric, ParaShares, scores and ranks all basic blocks in a program
based on their share of parallel execution. For the eight benchmarks ex-
amined in this paper, ParaShare rankings point to just a few important
blocks per application. The paper demonstrates two uses of this infor-
mation, exploring how the important blocks vary across thread counts
and input sizes, and making modest source code changes (fewer than 10
lines of code) that result in 14-92% savings in parallel program runtime.

1 Introduction

With massive-scale data to analyze, explosive growth in server and mobile core
counts, and multithreading making its way into mainstream language specifi-
cations such as C++ [22], parallel software is officially ubiquitous. All parallel
applications share the same fundamental goal of making the best use of resources:
time, power, money, or some combination of these. To honor this goal, programs
must be performant, bug-free, scalable, and not overly difficult to write or de-
bug. Parallel program optimization poses particular challenges, as developers
must uncover and address a nearly unbounded catalog of potential inefficiencies
arising at any level of the stack, from relatively high level algorithmic and design
choices, to program inputs, to source language implementation, to thread library
selection, to operating system configurations, and the target hardware platform.
Correcting performance inefficiencies requires programmers to have knowledge
of, and potentially, take action at, multiple levels of the stack.

Many research and industrial tools have been introduced over the years to
help programmers correct parallel performance inefficiencies. Generally these
tools employ one of two broad strategies. The first is to look for specific kinds of
errors, sometimes within targeted program regions such as a program’s critical
path. For example, tools may identify load imbalances [4], long waits [16,8], lock
contention [23,6], I/O blocking [18], or unnecessary I/O [5]. One issue with this

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 75–86, 2014.
c© Springer International Publishing Switzerland 2014

76 M. Kambadur, K. Tang, and M.A. Kim

approach is that each type of inefficiency may need its own tool or search proce-
dure. The second general strategy is to troll for multiple or broader types of prob-
lems by tracking hardware and system events. Some tools track thread traces and
program runtimes to predict which threads will scale poorly in future runs [9,12].
Other tools take a hardware perspective, monitoring instruction counts, CPU
utilization, thread preemption rates, and cache latencies [14,7,26,15,21,1]. Un-
fortunately, linking hardware events back to software can pose a number of
challenges. For example, event data may need to be aggregated across parallel
threads. Additionally, it is often difficult to connect certain events precisely to
software, meaning that areas of code identified as problematic may be large.

This paper utilizes a third strategy for performance debugging. ParaShares
identify very tiny regions of code that take up the majority of multithreaded
execution, agnostic to the type or cause of underlying performance pathologies.
Their only goal is to precisely point programmers to the lines in their program
that would benefit most from optimizations. A ParaShare is a rankable score
that measures each basic block’s share of a total parallel program’s execution.
The rankings are similar to hot block analyses that report the most frequently
executed basic blocks and their CPU use. However, ParaShares factor in the
degree of program parallelism at each block execution, providing a more accurate
reflection of a block’s contribution to wall-clock execution time. The weighting
scheme downgrades the importance of blocks that execute during highly parallel
program phases. As a result, it ranks blocks that mostly run during serial phases
relatively higher in importance as they tend to consume a greater fraction of
runtime.

Per block parallelism weights are enabled by parallel block vector (PBV) pro-
filing [17], a recent technique which was introduced for the purpose of improving
micro-architectural design. In the next section, we explain this new application
of PBVs in more detail, comparing ParaShares to existing analyses and moti-
vating the use of such a precise and fine-grained performance debugging tool
(Sect. 2). We then present a step by step procedure for collecting and analyzing
ParaShares (Sect. 3). Finally, using ParaShares for eight benchmark applications,
we examine how the key optimization points move as input size and parallelism
vary (Sect. 4.1), and make small, ParaShare-targeted source code changes that,
although only a few lines apiece, speed the benchmarks 14–92%(Sect. 4.2).

2 ParaShares

ParaShares are a new way to rank the basic blocks in a parallel program accord-
ing to their relative multithreaded runtime contributions. This section defines
ParaShares, describes how they differ from traditional hot block analyses, gives
readers a first look at experimentally collected ParaShares, and makes a case for
analyses that focus on fine-grained regions of code.

ParaShares: Finding the Important Basic Blocks in Multithreaded Programs 77

Fig. 1. ParaShares rank basic blocks to identify those with the greatest
impact on parallel execution, weighting blocks by the runtime parallelism exhibited
by the application each time the block was executed

2.1 The Basic Concept

Basic blocks are small program fragments, constrained to be a linear sequence
of instructions with a single entry point and a single exit point. As the program
executes, some blocks will be executed very frequently, while others may execute
rarely or not at all. The frequently executed blocks are called “hot” and are im-
portant optimization targets as they constitute a large share of an application’s
dynamic work. Hot block analysis has traditionally been used for a variety of
purposes, including JIT translation [24], garbage collection optimizations [13],
simulation points analysis [19], code cache management [20], and parallel per-
formance debugging, for example, in Intel’s VTune Amplifier [15].

ParaShares makes a subtle but important twist on traditional hot block anal-
yses, weighting each basic block by the degree of parallelism exhibited by the
program when the block was executed. Figure 1 illustrates the significance of this
change. On the left is a program trace that highlights the execution patterns of
two blocks of interest, A (gray) and B (black). For simplicity, we assume that
both blocks have the same number of instructions and equal execution times,
though in actual ParaShare computations this unlikely assumption is amended
(Sect. 3.1). Simple counting reveals that B executes 9 times whereas A executes
only 4, giving B a higher rank of importance. However, A may consume more of
the program’s execution time because its executions occur during serial phases
of the program. To account for this nuance, ParaShares divides the executions
by the degree of parallelism at execution time, in this example dividing B’s 9
executions by the 4 threads that ran while B executed, and dividing A’s 4 blocks
by 1 for the single running thread. As a rule, parallelism is counted at the start
of a basic block’s execution to resolve any overlaps in block executions between
threads. The resulting scores capture parallel execution shares more effectively,
and in this case rank A and B in the opposite order of importance versus tradi-
tional execution counts.

2.2 A First Look at Real Applications

Figure 2 gives a first look at ParaShare block rankings for real applications,
eight programs from the Parsec Version 3.0 [3] and Splash-2 [25] benchmark

78 M. Kambadur, K. Tang, and M.A. Kim

0%

10%

20%

30%

40%

 0 15 30 45 60

P
ar

aS
ha

re
 %

Basic Blocks

blackscholes

0%

10%

20%

30%

40%

 0 100 200 300

P
ar

aS
ha

re
 %

Basic Blocks

streamcluster

 0 150 300 450 600

Basic Blocks

canneal

 0 250 500 750 1000

Basic Blocks

radiosity

 0 250 500 750 1000

Basic Blocks

raytrace

 0 50 100 150

Basic Blocks

swaptions

 0 150 300 450 600

Basic Blocks

volrend

 0 100 200 300

Basic Blocks

water_nsquared

Fig. 2. ParaShare rankings identify important blocks to target for multi-
threaded performance optimizations. These graphs show the ParaShare percent-
ages (ordered from greatest to least share) of all the basic blocks in eight benchmark
applications.

suites, namely blackscholes, canneal, radiosity, raytrace, streamcluster,
swaptions, volrend, and water nsquared. The Splash2x variant of Splash that
is packaged with Parsec was used for its provision of multiple input sets. All
of the applications are written in C and C++ and parallelized using pthreads
with a variety of design patterns, including a mix of data and task parallelism.
Each program was run alone using 24 threads and native input set sizes on a Dell
PowerEdge R420 server. The server is dual socket with Intel Sandybridge E5-243
chips, each with six cores and two-way hyper-threading for a total of 24 effective
cores. The system has 24GB of DRAM and runs Ubuntu 12.04.2 with the 3.9.11
version of the Linux kernel. The graphs show that just a few basic blocks (on
the x-axis) per program dominate the ParaShare rankings (on the y-axis). The
small number of important blocks is no surprise. However, ParaShare’s ability
to highlight blocks that are important in terms of wall-clock time instead of
processor execution times combined across threads makes it possible to massively
improve program performance with just minor code changes, as demonstrated
later in Sect. 4.2.

2.3 Benefits of Fine Granularity

The well known 90-10 rule of thumb says that 90% of program execution time
resides in just 10% of code. For our benchmarks, the rule holds: functions that
consume roughly 90% of the execution represent 2.3-17.3% of the lines in the
overall programs, or an average of 7.7%. Table 1 shows the exact line counts
per benchmark, as well as line counts for the functions consuming 90% of the
execution based on ParaShare computations.

The table also shows the number of lines of code contained in the basic blocks
that are responsible for 90% of the ParaShare execution. Using block-granularity

ParaShares: Finding the Important Basic Blocks in Multithreaded Programs 79

Table 1. A case for fine-grained identification of performance inefficiencies.
To examine the functions that take up 90% of the parallel execution, a programmer
must examine an average of 338.5 lines per program. To examine the basic blocks that
consumed the same amount, they would need to look at an average of 50 lines per
program.

Benchmark Total 90% Exec By 90% Exec By 50% Exec By
Application Lines Func Lines Block Lines Block Lines

blackscholes 564 68 34 21
canneal 1362 204 70 6
radiosity 11836 276 42 4
raytrace 10963 431 51 8
streamcluster 2539 439 12 5
swaptions 1550 359 28 10
volrend 4227 585 133 89
water nsquared 2079 338 29 18

hotspots rather than function hotspots saves programmers from looking at an
average of 289 lines per benchmark. In fact, basic block hotspots save enough that
we could coin a new 90-2 rule of thumb, because 90% of the parallel execution
is taken up by just 2.4% of the program source lines according to our precise
ParaShares analysis. The top 50% of program execution could be covered by
searching an even more targeted set of code; programmers would need to look
at only 20 source lines per application, or 1% of the overall program. The block
versus function savings is particularly important in unfamiliar applications with
lengthy functions and lots of loops — a feature common to some of the scientific
benchmarks used in this study. For example, volrend has one function with
three sets of doubly nested loops, and we found more than a few instances where
a single function contained four or more loops.

3 Collecting and Analyzing ParaShares

This section describes the framework for translating source code to ParaShare
rankings, examines the robustness of ParaShare rankings across trials, and ex-
perimentally demonstrates that ParaShare weighting can significantly change
top blocks’ relative importance versus traditional profiling.

3.1 The Collection Framework

From a user’s perspective, ParaShares are straightforward to collect. They re-
quire recompilation, a single program run with the usual inputs and usual out-
puts, and the execution of a post-processing script. Under the covers, ParaShares
are more complex, as depicted in the framework in Figure 3. The first two steps
come from previous work, while the remaining steps are new to this work.

Step 1. Compile the source program with Harmony. ParaShares use
parallel block vectors, or PBVs [17], to count how many times each basic block

80 M. Kambadur, K. Tang, and M.A. Kim

Fig. 3. The Collection Framework. To collect ParaShares, programmers re-compile
their program with a specialized compiler, then execute it once with normal inputs.
Profiling files produced at compile and execution time are analyzed in post-processing
to give the programmer a list of ParaShares and corresponding source code locations.

executes at each thread count exhibited over the course of a program’s execution.
PBVs are collected via compiler instrumentation, requiring source programs to
be compiled with Harmony [11], an extended version of LLVM. Compilation
with Harmony produces two outputs: an annotated assembly code file and an
instrumented executable file.

Step 2. Execute the program once to collect a PBV. After compilation
with Harmony, a single program run with normal inputs produces a PBV profile
as well as the usual program outputs.

Step 3. (Optional) Tune machine specific parameters. Optionally,
ParaShares can incorporate machine specific instruction weights to account for
differences in opcode processing or memory access times. If used, these weights
should be stored in a dictionary mapping instruction types to latency factors.
Opcode dependent latency factors are often already available online; for exam-
ple, latency factors for our machine are available in [10]. These latency factors
suggest multiplying conditional operations by two, add instructions by one, and
divide instructions by 30, as well as multiplicative factors for other types of in-
structions. Due to the overwhelming significance of total instruction count, our
applications’ ParaShare rankings showed minimal sensitivity to these latency
factors. However, latency factors could have more of an effect for other applica-
tions and architectures.

Step 4. Calculate per block static instruction counts. Next, the total
(possibly weighted) instruction count per basic block is calculated. The instruc-
tion contents of each block are available in the annotated assembly file produced
earlier by Harmony. With weighting, a sum of the weights of each instruction in
the block produces a total block weight (Weightb). As an unweighted alternative,
a simple count of the instructions per block suffices.

ParaShares: Finding the Important Basic Blocks in Multithreaded Programs 81

Step 5. Calculate ParaShare rankings. The ParaShare for each block b is
computed using the block’s static instruction weight and dynamic thread weight.
Specifically, the sum of each block’s executions at thread count t (Execsb,t) are
divided by t. This formula is loosely related to the runtime calculation used
in Quartz [2], but we apply it here at a smaller granularity and for a different
purpose. The ParaShare of block b is the product of this dynamic thread weight
and the static block weight, where max is the maximum number of threads that
ever executes concurrently in the program:

ParaShareb =

max∑
t=1

Execsb,t
t

×Weightb

As necessary for further analysis, the absolute ParaShare for each basic block
can be normalized to the program’s total ParaShare (the sum of ParaShares
across blocks).

Step 6. Use the ParaShare rankings for performance optimizations
or other analyses. Finally, ParaShares can be mapped back to the source code
via compiler debug information in the assembly code.

0%

10%

20%

30%

40%

50%

60%

blackscholes

canneal

radiosity

raytrace

stream
cluster

swaptions

volrend

water_nsq

S
td

ev
 /

M
ax

 T
ria

l

Benchmark

Between Trials
Between Threads
Between Inputs

Fig. 4. Robustness of the metrics. Runtimes and basic block execution counts can
change across program trials, but the differences are small relative to the differences in
ParaShares collected across varying thread counts or input set sizes.

3.2 ParaShare Robustness

A program’s parallel behavior may be inconsistent across runs, changing block
execution counts or overall program runtime. Despite these variations, a single
profiling run can produce representative ParaShares, particularly if the pur-
pose of collection is to examine and optimize the hottest blocks with the high-
est ParaShares. Figure 4 plots the standard deviations of a program’s total
ParaShares as a fraction of the maximum program total ParaShare across ten
trials. Across runs with the same thread count and input, this division was never
more than 7% and averaged only 3.2%. The variation is small when compared
with variations between trials given different maximum thread counts (31% on
average) or different input sizes (48%). In addition to the magnitude of the

82 M. Kambadur, K. Tang, and M.A. Kim

overall program ParaShare staying consistent between trials, the ranking of in-
dividual basic blocks varies minimally, and changes only in lower ranked blocks
with ParaShares of 2% or less. This is not the case across thread counts and
input sizes as explored in Sect. 4.1.

-100

-50

 0

 50

 100

 150

blackscholes

canneal

radiosity

raytrace

stream
cluster

swaptions

volrend

water_nsq

P
ar

aS
ha

re
 R

an
k

ve
rs

us

 D
yn

am
ic

 In
st

ru
ct

io
n

R
an

k

Benchmark

Max Increase (Top 90%)
Max Decrease (Top 90%)
Max Incr. (Top 100 blocks)
Max Decr. (Top 100 blocks)

Fig. 5. ParaShares versus unweighted rankings for the blocks representing 90%
of ParaShare execution and for the larger set of the top 100 blocks per application.
ParaShares often significantly impact the relative importance of a block versus dynamic
instruction count rankings not weighted by parallelism.

3.3 Impact of ParaShare Weights

ParaShare’s utility is not just to locate small regions of significant source code,
but to locate significant code that other tools may not highlight. Figure 5 shows
differences in the top block rankings according to ParaShares versus according to
dynamic instruction counting that is unweighted by parallelism. The graph shows
the minimum and maximum differences between two sets of ‘top’ ParaShare
blocks: first, those blocks representing 90% of the execution of 24-thread count
runs (as previously depicted in Fig. 2, this block count varies by application),
and second, the top 100 ParaShare blocks per program. From the first set of
differences, we see significant changes in four of the eight applications. One
block in radiosity is ranked 55 spots higher by ParaShares than by dynamic
instruction counts, and another is ranked 36 spots lower by ParaShares. In the
second, larger set of 100 block differences, rankings change significantly amongst
almost all of the applications. Individual blocks (in raytrace) jump as many as
135 spots in the ParaShare rankings, and fall as many as 72 spots (in canneal).

4 ParaShares in Real Applications

This section uses ParaShares to explore real applications in more detail, exam-
ining how important blocks differ across inputs and thread counts and using
ParaShares for targeted micro-optimizations.

ParaShares: Finding the Important Basic Blocks in Multithreaded Programs 83

 0

 10

 20

 30

 40

 50

 60

 70

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

N
um

be
r

of
 B

lo
ck

s
in

 T
op

 9
0%

Top Blocks Shared with 1 Thread
Remaining Top Blocks

water_nsqvolrendswaptionsstreamclusterraytraceradiositycannealblackscholes

 0

 20

 40

 60

 80

 100

 120

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

N
um

be
r

of
 B

lo
ck

s
in

 T
op

 9
0%

Top Blocks Shared with native
Remaining Top Blocks

water_nsqvolrendswaptionsstreamclusterraytraceradiositycannealblackscholes

Fig. 6. Top ParaShare blocks vary across thread counts and input sizes.
These differences suggest that optimizations may need to be targeted to the level of
expected parallelism and to input size for maximum effect.

4.1 How Top Blocks Differ

A small handful of basic blocks dominates the ParaShare ranks and overall ex-
ecution. These top blocks can vary significantly across thread counts and input
sizes, suggesting that as environmental circumstances change, optimizations may
need to be re-applied or re-targeted for maximum effect. The top of Fig. 6 plots
the number of blocks that make up the top 90% of each application when run
with 1, 8, and 24 threads. The number of hot blocks can change significantly. For
example, when run with 1 thread, 71 blocks comprise the top 90% of radiosity,
but this number shrinks to 39 when the application runs with 24 threads. The
black part of each bar indicates how many of the top 90% were also in the top
90% of a serial run. Thus, the 39 key blocks in 24-threaded radiosity include
11 blocks that were not important to single-threaded radiosity. While it is
not evident in the plot, the ranking of blocks within the top 90% changes as
well: the block with the highest ParaShare in single-threaded radiosity falls
to 26th place in 24-threaded radiosity. The highest ranking block in single-
threaded streamcluster remains atop the list in 24-threaded streamcluster,
but the second place block falls off of the list entirely, dropping from 19% of the
ParaShare to 0.3%, and the third ranked block falls to the ninth spot.

84 M. Kambadur, K. Tang, and M.A. Kim

Hotspots shift even more with program input variations. Black portions of
the bars in the bottom of Fig. 6 show the overlap of other input sizes with
the largest, native input size. Raytrace shows the biggest sensitivity to input,
with the number of top blocks exploding from 22 to 113 between the native and
simsmall inputs. The first two top blocks stay the same across inputs, but their
combined ParaShare drops from 40.9% to 28.3%, while the third block drops
even more sharply from 10.2% to 2.6%. In swaptions, none of the top native
blocks appear amongst the top simsmall blocks. These variations indicate the
surprising degree to which the internal dynamics of a parallel application can
shift depending on simple parameters such as thread count and input size.

0%

20%

40%

60%

80%

100%

1 2 4 8 16 24

M
ea

su
re

d
T

im
e

R
el

at
iv

e
to

 S
er

ia
l U

no
pt

im
iz

ed

Maximum Threads

blackscholes

1 2 4 8 16 24

Maximum Threads

streamcluster

1 2 4 8 16 24

Maximum Threads

swaptions

Unoptimized Optimized

Fig. 7. ParaShares pinpoint inefficiencies that lead to significant opportuni-
ties for optimization. With the extremely targeted profiling provided by ParaShares,
we were able to improve benchmark performance by up to 92% through source code
changes less than 10 lines long.

4.2 Performance Tuning

Using ParaShares to target particularly important lines of source code, we made
extremely simple and short source code changes to reduce application run-
times 14-92%. Figure 7 shows the effect of optimizations to blackscholes,
streamcluster, and swaptions. Both optimized and unoptimized versions were
compiled with LLVM’s -O3 optimization set. Our manual optimizations improve
computation time, but do not make any algorithmic or parallelization changes.
As a result, the savings shrink as thread counts increase, but they remain sig-
nificant (up to 82%) even at large thread counts.

In blackscholes, the top two blocks consume nearly 60% of the overall run-
time given 24 threads and native input sizes. These blocks are found in the kernel
function which calculates financial option values. By collapsing the original 20
temporary variables in the function to 3, we alleviated register pressure resulting
in a 44.6% performance improvement at one thread and 22% at 24 threads. For
streamcluster, the top blocks are found in the dist() function, which com-
putes the squared Euclidean distance between two Points, each of which is a

ParaShares: Finding the Important Basic Blocks in Multithreaded Programs 85

struct with pointers to arrays of float coordinates. Inspecting the line of code in
question (the body of a nested for loop), we guessed that the compiler missed an
opportunity for common subexpression elimination, then modified the code to
force it to do so. This change halved the loop body’s original four array lookups
and two subtractions and reduced register pressure, saving 92% of the serial run-
time, and 64% of the 24 thread runtime. Finally, the top blocks in swaptions cor-
respond to a few nested loops within the HJM SimPath Forward Blocking.cpp

file. We experimentally unrolled these loops one to four times to find the op-
timum unrolling level for each. In addition to the inability of the compiler to
dynamically test a variety of unrolling levels, these opportunities may have been
missed because the loops involve nested accesses to custom data structures. In
total, our loop optimizations resulted in a 15% savings for a single threaded
swaptions execution, and a 19.7% savings for a 24-thread execution.

Given the simplicity of our optimizations, the performance savings are dispro-
portionately large. Across a datacenter or many nodes in a distributed system,
the savings could be even more important, and potentially financially significant
as well. Best of all, we were able to make the optimizations quickly, because
ParaShares allowed us to focus our efforts on just a few lines of code rather than
thousands.

5 Conclusions

ParaShares provides a new lens through which to analyze multithreaded ap-
plication performance. In contrast to most parallel performance optimization
techniques, ParaShares do not target a specific type of inefficiency or level of
the system stack. Instead, ParaShares track parallelism from the code’s point of
view, weighting each basic block execution by the whole program’s parallelism at
the time of the execution. This fine-grained scoring makes it simple to localize
important lines of code, even in large or unknown programs. Once important
code is localized, more extensive analysis and optimizations can be precisely
targeted, leading to small code changes with big performance effects.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent, N.R.: HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation 22(6) (April 2010)

2. Anderson, T.E., Lazowska, E.D.: Quartz: A tool for tuning parallel program per-
formance. SIGMETRICS 18, 115–125 (1990)

3. Bienia, C.: Benchmarking Modern Multiprocessors. PhD thesis. Princeton Univer-
sity (2011)

4. Bohme, D., Wolf, F., de Supinski, B.R., Schulz, M., Geimer, M.: Scalable critical-
path based performance analysis. In: IPDPS (2012)

5. Chabbi, M., Mellor-Crummey, J.: Deadspy: A tool to pinpoint program inefficien-
cies. In: CGO (2012)

86 M. Kambadur, K. Tang, and M.A. Kim

6. Chen, G., Stenstrom, P.: Critical lock analysis: Diagnosing critical section bottle-
necks in multithreaded applications. In: SC (2012)

7. Chen, K.-Y., Chang, J., Hou, T.-W.: Multithreading in Java: Performance and
scalability on multicore systems. Transactions on Computers 60(11) (November
2011)

8. Du Bois, K., Eyerman, S., Sartor, J.B., Eeckhout, L.: Criticality stacks: Identify-
ing critical threads in parallel programs using synchronization behavior. In: ISCA
(2013)

9. Du Bois, K., Sartor, J.B., Eyerman, S., Eeckhout, L.: Bottle graphs: Visualizing
scalability bottlenecks in multi-threaded applications. In: OOPSLA (2013)

10. Granlund, T.: Instruction latencies and throughput for AMD and Intel x86 pro-
cessors (February 2012), http://gmplib.org/~tege/x86-timing.pdf

11. Harmony Parallel Block Vector Collection Tool,
http://arcade.cs.columbia.edu/harmony

12. He, Y., Leiserson, C.E., Leiserson, W.M.: The Cilkview scalability analyzer. In:
SPAA, pp. 145–156 (2010)

13. Huang, X., Blackburn, S.M., McKinley, K.S., Moss, J.E.B., Wang, Z., Cheng, P.:
The garbage collection advantage: Improving program locality. In: OOPSLA (Oc-
tober 2004)

14. Huang, Y., Cui, Z., Chen, L., Zhang, W., Bao, Y., Chen, M.: HaLock: Hardware-
assisted lock contention detection in multithreaded applications. In: PACT (2012)

15. IntelR© Corporation. IntelR© Parallel Amplifier (2011),
http://software.intel.com/en-us/articles/intel-parallel-amplifier/

16. Joao, J.A., Suleman, M.A., Mutlu, O., Patt, Y.N.: Bottleneck identification and
scheduling in multithreaded applications. In: ASPLOS (2012)

17. Kambadur, M., Tang, K., Kim, M.A.: Harmony: Collection and analysis of parallel
block vectors. In: ISCA (June 2012)

18. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Bruce, R.,
Karen, I., Karavanic, L., Kunchithapadam, K., Newhall, T.: The Paradyn parallel
performance measurement tools. IEEE Computer (1995)

19. Perelman, E., Hamerly, G., Van Biesbrouck, M., Sherwood, T., Calder, B.: Using
simpoint for accurate and efficient simulation. In: SIGMETRICS, vol. 31. ACM
(2003)

20. Shi, H., Wang, Y., Guan, H., Liang, A.: An intermediate language level optimiza-
tion framework for dynamic binary translation. SIGPLAN Notices 42(5) (May
2007)

21. STMicroelectronics, Inc. PGProf: Parallel profiling for scientists and engineers
(2011), http://www.pgroup.com/products/pgprof.htm

22. Stroustrup, B.: C++11 the new ISO C++ standard (2013),
http://www.stroustrup.com/C++11FAQ.html

23. Tallent, N.R., Mellor-Crummey, J.M., Porterfield, A.: Analyzing lock contention
in multithreaded applications. In: PPoPP (2010)

24. Topham, N., Jones, D.: High speed CPU simulation using JIT binary translation.
In: MOBS, vol. 7 (2007)

25. Woo, S., Ohara, M., Torrie, E., Singh, J., Gupta, A.: The SPLASH-2 programs:
Characterization and methodological considerations. In: ISCA (1995)

26. Yoo, W., Larson, K., Baugh, L., Kim, S., Campbell, R.H.: ADP: Automated diag-
nosis of performance pathologies using hardware events. In: SIGMETRICS (2012)

http://gmplib.org/~tege/x86-timing.pdf
http://arcade.cs.columbia.edu/harmony
http://software.intel.com/en-us/articles/intel-parallel-amplifier/
http://www.pgroup.com/products/pgprof.htm
http://www.stroustrup.com/C++11FAQ.html

Multi-Objective Auto-Tuning with Insieme:

Optimization and Trade-Off Analysis for Time,
Energy and Resource Usage

Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer

University of Innsbruck, Institute of Computer Science, Austria
{philipp,juan,tf}@dps.uibk.ac.at

Abstract. The increasing complexity of modern multi- and many-core
hardware design makes performance tuning of parallel applications a
difficult task. In the past, auto-tuners have been successfully applied to
minimize execution time. However, besides execution time, additional
optimization goals have recently arisen, such as energy consumption or
computing costs. Therefore, more sophisticated methods capable of ex-
ploiting and identifying the trade-offs among these goals are required.
In this work we present and discuss results of applying a multi-objective
search-based auto-tuner to optimize for three conflicting criteria: exe-
cution time, energy consumption, and resource usage. We examine a
method, called RS-GDE3, to tune HPC codes using the Insieme paral-
lelizing and optimizing compiler. Our results demonstrate that RS-GDE3
offers solutions of superior quality than those provided by a hierarchical
and a random search at a fraction of the required time (5%) or en-
ergy (8%). A comparison to a state-of-the-art multi-objective optimizer
(NSGA-II) shows that RS-GDE3 computes solutions of higher quality.
Finally, based on the trade-off solutions found by RS-GDE3, we provide
a detailed analysis and several hints on how to improve the design of
multi-objective auto-tuners and code optimization.

1 Introduction

The performance of a software application crucially depends on the quality of its
source code. The increasing complexity and multi/many-core nature of hardware
design have transformed code generation, whether done manually or by a com-
piler, into a complex, time-consuming, and error-prone task which additionally
suffers from a lack of performance portability. To mitigate these issues, a new re-
search field, known as auto-tuning, has gained increasing attention. Auto-tuners
are an effective approach to generate high-quality portable code. They are able
to produce highly efficient code versions of libraries or applications by generating
many code variants which are evaluated on the target platform, often delivering
high performance code configurations which are unusual or not intuitive.

Whilst earlier auto-tuning approaches were mainly targeted at execution time
[1], other optimization criteria such as energy consumption or computing costs
are gaining interest nowadays. In this new scenario, a code configuration that

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 87–98, 2014.
c© Springer International Publishing Switzerland 2014

88 P. Gschwandtner, J.J. Durillo, and T. Fahringer

is found to be optimal for low execution time might not be optimal for an-
other criterion. Therefore, there is no single solution to this problem that can
be considered optimal, but a set, namely the Pareto set, of solutions (i.e. code
configurations) representing the optimal trade-off among the different optimiza-
tion criteria. Solutions within this set are said to be non-dominated: any solution
within it is not better than the others for all the considered criteria.

This multi-criteria scenario requires a further development of auto-tuners,
which must be able to capture these trade-offs and offer the user either the
whole Pareto set or a solution within it. Although there is a growing amount of
related work considering the optimization of several criteria [2, 3, 4, 5, 6], most
of them consider two criteria simultaneously at most, and many fail in capturing
the trade-off among the objectives.

In this paper we investigate the auto-tuning of parallel codes using the Insieme
compiler to optimize three different criteria: execution time, resource usage and
energy consumption. For tuning the codes, we consider as optimization knobs: dy-
namic concurrency throttling (DCT, later on referred to as used cores), loop tiling,
and frequency and voltage scaling (DVFS). We examine the obtained results in
detail to analyze and illustrate the complex interactions between optimized soft-
ware and hardware.To the best of our knowledge, this is the first work exploring an
auto-tuner to optimize parallel programs for more than two objectives and analyz-
ing trade-offs among these objectives. Our main findings of this work demonstrate
that: (1) RS-GDE3 can be successfully applied to a three-objective optimization
problem without any modifications or restrictions and (2) the trade-off between
execution time and energy consumption, dependent on efficient parallelization,
can be explained by investigating resource usage. Furthermore, we compare RS-
GDE3 with a state-of-the-art multi-objective optimizer (NSGA-II) that has been
adjusted to deal with three objectives. The results show that RS-GDE3 derives
solutions with better quality than an NSGA-II-based solution.

The paper is structured as follows: Section 2 describes the auto-tuning infras-
tructure used for this work. The experiment design, the objectives of interest, the
target codes and hardware platform are outlined in Section 3. Section 4 presents
our results and their detailed analysis. Finally relevant related work is listed in
Section 5 and Section 6 concludes.

2 Insieme Compiler

2.1 Auto-Tuning Infrastructure

Our work is based on the Insieme compiler, a multi-objective auto-tuning opti-
mizing compiler and runtime system for parallel codes [7].

Figure 1 illustrates the overall architecture of Insieme. An input code is loaded
by the compiler (1), analyzed and prepared (2) to be tuned prior to execution.
During this process, a set of tunable parameters are identified, encompassing loop
tile sizes, number of cores involved in the computation as well as the frequency
setting of the CPUs. Afterwards, the optimizer conducts auto-tuning (hence we
use the terms auto-tuner and optimizer interchangeably) by iteratively selecting
sets of configurations for each code to be evaluated (executed) on the target

Multi-Objective Auto-Tuning with Insieme 89

Fig. 1. Overview of the Insieme compiler, adapted from [7]

system (3). At the end, the optimizer derives a Pareto set consisting of the best
configurations found. These are passed to the backend (4) and compiled into
multi-versioned code (5). The runtime system can then dynamically select the
preferred code version to be executed (6).

2.2 Optimizers

The main search engine of Insieme, described in previous work of the authors [7],
is called RS-GDE3 and aims at computing the Pareto set of code configurations.
RS-GDE3 combines an approximation technique from the class of Differential
Evolution (DE) and a search space reduction mechanism based on Rough Set
theory. The goal of this latter technique is to reduce the search to a small area
where RS-GDE3 assumes the location of the optimal configurations. This method
was successfully applied to an optimization problem with two conflicting objec-
tives in [7], whereas we apply it for the first time to three objectives in this
work. However, RS-GDE3 is a true multi-objective optimizer that can handle an
arbitrary number of objectives within the scope of Pareto optimality.

In addition to RS-GDE3, the Insieme compiler includes two other search en-
gines, which are used in this paper to compare with, based on a hierarchical and
a random search. The hierarchical search evaluates points on an equidistant grid
defined over each tunable parameter. Random search generates a set of code
configurations by randomly setting the values of each tunable parameter.

3 Experiment Design

3.1 Objectives

In this work we try to optimize parallel programs for three objectives and in-
vestigate the trade-offs between them: execution time, resource usage, and
energy consumption.

Execution time is inherently an objective of interest, as providing results
within the shortest possible time is desirable for most programs.

We furthermore include resource usage, denoted by r(x) = x · tp(x) with x
being the number of cores involved in executing the program and tp(x) denoting

90 P. Gschwandtner, J.J. Durillo, and T. Fahringer

Table 1. Code Characteristics

Code
Problem

Size
Compu-
tation

Memory Tile Sizes
No. of
Cores

CPU Freq.
(Ghz)

Total No. of
Configurations

mm 12002 O(N3) O(N2) (1–600)3

1–32
1.2–2.7
+ Turbo
Boost

1.11 · 1011
dsyrk 12002 O(N3) O(N2) (1–600)3 1.11 · 1011

jacobi-2d 100002 O(N2) O(N2) (1–5000)2 1.28 · 1010
3d-stencil 6003 O(N3) O(N3) (1–300)2 4.61 · 107

n-body 500000 O(N2) O(N)
1–1000,

2.56 · 1011
1–500000

the parallel execution time, as an objective to reflect computing costs. Most eco-
nomic cost models that focus on computational resources, such as the ones used
by cloud providers, are based on CPU hours [8]. Similarly, many academic com-
puting centers base their accounting on CPU hours even if users are not charged.
Hence, we believe that resource usage (reflecting computing costs – economic or
otherwise) is an important optimization goal for parallel applications.

As a third objective of interest we consider energy consumption. Reducing it is
of interest to both HPC center operators and users (as future cost models might
include energy consumption due to its increasing workload dependence). To op-
timize also for energy, we require information about the energy consumption of
parallel programs. The CPU is the largest contributor of the overall energy con-
sumption of a non-accelerated HPC node that can also be influenced the most
by the workload executed. Hence, we focus our energy optimization efforts on
this component and rely on the Intel RAPL interface. It offers estimations with
a resolution of 15.3 microjoules at a rate of 1 KHz for the entire CPU package.
Recent related work showed RAPL to be accurate enough for purposes such as
ours [9]. It should be noted that we use RAPL due to its wide availability, how-
ever the Insieme compiler can use any energy measurement/modeling system
that meets the necessary accuracy and resolution requirements.

Let Ei be the energy consumption of a code executed on any number of cores
of CPU socket i ∈ P where P denotes the set of all sockets that have cores
participating in the execution of a parallel program. Then Etotal =

∑
i∈P Ei

denotes the overall energy consumption of the code. For brevity, we refer to
execution time only as time and to energy consumption as energy throughout
the rest of the paper.

3.2 Benchmarks and Target Platform

Our benchmarks consist of a matrix multiplication kernel (mm, using an ijk loop
order), a BLAS-3 linear algebra kernel (dsyrk, computing B = A ∗AT +B), two
stencil codes (jacobi-2d and a generic 3x3x3 3d-stencil) and an implementation
of an n-body simulation. Except for the mm and dsyrk codes, all of them exhibit
distinct computation and memory complexities as listed in Table 1 and hence
considerably different memory reuse and access patterns. Furthermore, although
identically categorized in terms of complexity, the memory access patterns ofmm
and dsyrk are very different since the (on-the-fly) transposition of A eliminates
the unaligned matrix access conducted within the mm code. Table 1 also lists
the tunable parameters and their ranges for each code.

Multi-Objective Auto-Tuning with Insieme 91

Table 2. Parameter Settings of the Optimizer

Algorithm Parameters
RS-GDE3 |C| = 30, CR = 0.5, F = 0.5

Hierarchical Search

21 values per tiling parameter (2D tiling problems)
8 values per tiling parameter (3D tiling problems)

6 different numbers of cores
6 different frequencies

The target platform is a quad-socket shared-memory system equipped with
Intel Xeon E5-4650 Sandy Bridge EP processors, each offering 8 cores clocked
at 1.2–2.7 GHz (up to 3.3 GHz with Turbo Boost). Each core features private
L1 and L2 caches of 64 and 256 KB each in addition to the CPU-wide shared
L3 cache of 20 MB. The system provides 128 GB of main memory, uses a Linux
operating system with a 3.5.0 kernel and our backend compiler is GCC 4.6.3.
Hyper-Threading was not used in any of our experiments.

3.3 Configuration of the Optimizers

We have run the three optimizers available within the Insieme framework: RS-
GDE3, hierarchical search, and random search. The parameters for RS-GDE3
and hierarchical search are described in the following and summarized in Ta-
ble 2. In the case of RS-GDE3, we need to set the size of set C of code configu-
rations (processed by RS-GDE3), the parameters CR and F required by the DE
method, and the termination condition of the algorithm. These values have been
determined during a preceding tuning phase , have an impact on the optimiza-
tion results and may differ for different architectures. As termination condition,
RS-GDE3 stops when it does not generate a better code configuration for m
consecutive iterations (to be set by the user, 5 in our case).

For the hierarchical search only the sampling grid needs to be defined. It
depends on the number of tunable parameters and defines the total number
of configurations to be evaluated. We have configured the hierarchical search
with a grid such that at least 15000 different configurations are examined. For
generating the grid we only need to specify how many equidistant values we
consider for every tunable parameter (note that for the number of cores, we only
select powers of 2).

Finally, for the random search, we need to specify the number of configurations
to be examined (also 15000 for this work) and the probability distribution to be
used (uniform probability distribution).

3.4 Comparison Criteria

To systematically compare different search-based optimization strategies we use
two different metrics: (1) the efficiency of each strategy, and (2) the quality of
the configuration set obtained.

Efficiency. N denotes the total number of configurations evaluated and re-
flects the effort of the auto-tuner. Furthermore, time-to-solution and energy-to-
solution respectively refer to the amount of time and energy spent by a search
method to arrive at a final configuration set S.

92 P. Gschwandtner, J.J. Durillo, and T. Fahringer

Table 3. Performance Comparison of the Different Evaluated Algorithms

Hierarchical Search Random RS-GDE3

Code N |S| |S|′ V (S) N |S| |S|′ V (S) N |S| |S|′ V (S)
mm 18432 18 2% 0.00 15000 4.4 0% 0.33 956.2 23.4 98% 0.48
dsyrk 18432 21 5% 0.00 15000 2.2 11% 0.17 1149.6 24.8 98% 0.31

jacobi-2d 15876 31 78% 0.69 15000 17.2 5% 0.55 1243.6 29.8 75% 0.76
3d-stencil 15876 30 22% 0.75 15000 24.8 60% 0.61 981.4 28.2 77% 0.76
n-body 15876 26 0% 0.50 15000 30 17% 0.70 1801.4 29.6 87% 0.77

Quality. Assessing the quality of a configuration which optimizes only one ob-
jective can be achieved by simply analyzing its value in that objective. However,
comparing configurations of a multi-objective optimization problem is more com-
plex since it requires comparing sets –the computed trade-offs– instead of single
values. The hypervolume V (S) of a set of non-dominated configurations S is a
metric proposed in [10] that solves this problem. It consists of the normalized
volume –an area in case of a dual-objective problem– containing configurations
that are worse than those contained in S. In other words, for any configuration
enclosed by that volume there is a configuration in S with better values for all
the considered objectives. Obviously, the larger the hypervolume the better the
quality of the configurations in S. The largest hypervolume value (V (S) = 1)
belongs to the utopia point (unattainable optimal configuration), i.e. the point
consisting of the optimum value for each criterion.

We also propose another metric to evaluate the quality of S: the freedom in
selection. The metric aims to quantify how many different high quality configu-
rations a technique exposes to the user. Simply using |S| to measure this does
not completely address the problem: e.g. a configuration set obtained by strategy
A could contain a lot of points dominated by the single point computed with
strategy B. For this reason, we also employ |S|′, denoting the relative amount of
configurations which are not dominated by the configurations computed by any
other of the auto-tuners used. Hence, the higher the percentage, the higher the
quality of the configurations contained within S.

Since random search and RS-GDE3 are stochastic algorithms, results of a
single run are not sufficient for a meaningful comparison. In our evaluation we
use the arithmetic means N , |S|, |S|′ and V (S), derived over five runs, as directly
comparable substitutes.

4 Experimental Results

4.1 RS-GDE3 Evaluation

Table 3 gives an overview of the performance of RS-GDE3 compared to hierar-
chical and random search with respect to the three considered metrics. It shows
that RS-GDE3 needs only 5–12% of the number of evaluations compared to the
hierarchical and random search strategies to provide configurations that domi-
nate between 77% and 100% of the configurations offered by the other two. In
addition, the configuration sets offered by RS-GDE3 span larger hypervolumes
than the configuration sets provided by hierarchical and random search.

Multi-Objective Auto-Tuning with Insieme 93

Beyond the already low number of evaluations compared to hierarchical and
random search, RS-GDE3 requires even less time and energy for finding the
final configuration set since it quickly converges on good solutions during the
search. Hence, only 0.7–7.2% of the time and 1.2–8% of the energy are required
by RS-GDE3 compared to hierarchical and random search. It should be noted
that the optimization problem cannot be simplified by sequentially optimizing
parameters (e.g. finding an optimal tile size first and then tuning the number of
cores), as the optimal choices for these settings are inter-dependent [7].

4.2 Energy-Time Trade-Off as a Function of Resource Usage

Related work has already shown the existence of a trade-off between time and
power consumption [5]. It is easily explained by different levels of CPU usage:
faster configurations commonly use a higher number of cores, naturally demand-
ing a higher power budget. Trade-offs between time and energy have been less
studied in literature and are more difficult to obtain/explain since energy also
depends on time. Thus, any optimization providing a trade-off between time and
energy must in-/decrease power consumption disproportionally high compared
to the de-/increase in time. Our experiments show that the trade-off between
time and energy varies with the resource usage and can expose different be-
haviors. In the rest of this section, we analyze these results and describe which
parameters/situations are responsible for such trade-offs.

For the sake of clarity, we summarize our results using a graphical representa-
tion as the one presented by Figure 2a. It shows the time, energy, and resource
usage behavior of the set of code configurations computed by RS-GDE3 for dif-
ferent benchmark codes (in this case mm). These configurations (described in
Table 4) are first ranked according to the number of sockets used; configurations
using the same number of sockets are further sorted by increasing resource usage.

In all our evaluated problems (see Figure 2) we can observe two different parts:
a part where time and energy are highly positively correlated, and a second one
indicating a trade-off between the two. In all the cases, the first part always
corresponds to configurations using a single CPU socket. As a consequence, we
structure our discussion in two blocks: the single-socket and the multi-socket
case. It should be noted that RS-GDE3 computed configurations that use up to
four sockets for all problems except for jacobi-2d. This is explained by an average
scaling behavior of the jacobi-2d code, which reaches its minimal execution time
by using 10 cores instead of the maximum of 32. The remaining four codes scale
well on our target hardware.

The Single-Socket Case. The results show that the configurations using only
one socket can be further divided into a subset where reducing time also reduces
the energy, and a subset where reducing time increases the energy. Without loss
of generality we focus our discussion on the example of matrix multiplication
(Figure 2a). When taking resource usage into consideration, we observe that
time and energy are highly correlated when resource usage is low; however, this
only holds until the resource usage reaches a critical point (configuration no. 5

94 P. Gschwandtner, J.J. Durillo, and T. Fahringer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1 1 socket (s) 2 s 3 s 4 s

configurations

time
energy

resource usage

(a) mm

0

0.2

0.4

0.6

0.8

1

(b) 3d-stencil
0

0.2

0.4

0.6

0.8

1

(c) n-body

0

0.2

0.4

0.6

0.8

1

(d) dsyrk
0

0.2

0.4

0.6

0.8

1

(e) jacobi-2d

Fig. 2. RS-GDE3 computed trade-offs among time, energy and resource usage

in Figure 2a), when both, energy and time, become conflicting objectives (i.e.
energy can be further reduced from that point onwards while time increases).

A detailed analysis of the computed configurations (listed in Table 4) reveals
that they use almost identical tile sizes. These values correspond to an optimal (lo-
cal or global) tile size configuration found by the auto-tuner. Thus, once this opti-
mal tile size configuration has been found, there are only two tunable parameters
influencing the behavior of a code: the number of cores and the clock frequency.

Due to our sorting, the left-most configuration in Figure 2a is the one with the
lowest resource usage (only one core in use, at the highest frequency). From this
point, increasing the number of used cores reduces the time, and at the same time
also the energy. The reason for this behavior can be explained with the power
consumption breakdown of the CPU: using a single core requires most off-core
entities of a socket to be active, such as the last level cache or the memory con-
troller. Generally, increasing the number of used cores does not require providing
additional power to activate those entities. Hence, doubling the number of used
cores for example does not usually require double the power. Thus, as both time
and power per used core decrease, the overall energy is also reduced. In fact,
our experiments show that configurations no. 1–5 in Figure 2a, where time and

Multi-Objective Auto-Tuning with Insieme 95

Table 4. Details of all mm configurations depicted in Figure 2a

Conf. No. 1 2 3 4 5 6 7 8 9 10 11 12 13
Tile Size A 37 30 24 31 30 30 30 30 30 30 30 30 21
Tile Size B 248 248 248 248 236 248 248 248 248 248 248 248 248
Tile Size C 6 6 6 6 6 6 6 6 6 6 6 6 6
No. of Cores 1 2 3 6 8 8 8 8 8 8 8 8 12

CPU Freq. (GHz) 2.7 2.7 2.7 2.7 2.7 2.7 2.5 2.3 2.2 2.0 1.9 1.6 2.7

Conf. No. 14 15 16 17 18 19 20 21 22 23 24 25 26
Tile Size A 18 30 18 30 32 31 25 21 30 15 24 21 24
Tile Size B 248 248 248 248 248 248 248 248 248 248 248 248 248
Tile Size C 6 6 6 6 6 6 6 6 6 6 6 5 6
No. of Cores 16 16 16 16 16 19 20 23 23 24 24 32 32

CPU Freq. (GHz) 2.7 2.6 2.3 2.2 1.7 2.7 2.6 2.7 2.3 2.7 2.3 2.7 2.7

energy do not conflict, only differ in the number of used cores. Note that this
holds only for scalable codes such as the ones used in our experiments. If a code
does not scale sufficiently, parallelization may lead to a disproportionally low
decrease in time compared to the increase in power, and the overall energy will
increase as well. Since we target HPC codes, we assume scalability for the rest
of the analysis. Our first observation can then be stated as follows: 1. Assuming
scalable codes, parallelism is a way of reducing both time and energy when using
a single socket computing system if the other parameters are kept invariable.

The second way of modifying the behavior with regard to the left-most con-
figuration is via frequency tuning. Lowering the frequency – despite possibly
decreasing the energy – increases time. The results of RS-GDE3 show that fre-
quency tuning leads to dominated configurations if it is applied before fully
exploiting parallelism. The reason explaining this is very simple. For every other
configuration, the optimizer finds a configuration with increased parallelism re-
ducing the time and obtaining a higher energy reduction than by using lower
frequencies. Our second observation can be stated then as: 2. In a single-socket
scenario, parallelism allows for higher rates of energy reduction than frequency
tuning and, in addition, reduces time.

Once the maximum number of cores has been reached, the auto-tuner ex-
ploits frequency tuning. These configurations correspond to the second part of
the graph, where energy and time are conflicting objectives. As follows from our
previous discussion, decreasing the time is no longer possible since parallelism
has been already exploited and all cores are working at their maximum frequen-
cies. Decreasing the frequency will naturally increase the execution time but
energy reductions can be achieved, caused by the cube root rule [11]: the power
consumption of a CPU scales cubically as long as its voltage changes with the fre-
quency in a correlated fashion; however, the performance of a code usually scales
at most linearly with the CPU clock frequency. Hence, a trade-off between time
and energy is formed and continues up to the energy-optimal frequency setting.
This energy-optimal setting is workload-dependent and was found to be around
1.5 GHz on our target platform by our auto-tuner, as lower frequencies show an
increase in energy (because the CPU voltage cannot be scaled down accordingly
by the hardware). Thus, as lower frequencies would worsen all three objectives,
such configurations are rejected by the optimizer. Our third observation in this

96 P. Gschwandtner, J.J. Durillo, and T. Fahringer

case is: 3. When parallelism has been already exploited, energy can still be further
reduced by the sake of slightly increasing time, via applying frequency tuning.

The Multi-socket Case. Again, without loss of generality we focus on the
results depicted by Figure 2a. According to the results illustrated in that graph,
moving to a configuration using an increased number of sockets has been suc-
cessfully exploited by the auto-tuner. In such situations, RS-GDE3 has always
found a configuration which reduces the time compared to configurations using a
lower number of cores (see for example the first configurations using two, three,
or four sockets in Figure 2a). However, this jump to a higher number of sock-
ets always comes with an increase in energy. Thus, our observation (1) in the
previous section does not hold in the case of using multiple sockets due to the
required energy to operate additional sockets. This fact allows us to state our
fourth observation: 4. Multiple sockets can be exploited to decrease the execution
time of an application but not to further reduce its energy.

Our experiments also reveal that, when using more than one socket, the num-
ber of cores leading to optimal trade-off configurations does not gradually in-
crease as in the single socket case, but almost instantly reaches the maximum
number. This results in our fifth observation: 5. Optimal trade-off configurations
using more than one socket span over the maximum number of available cores.

We also observe that the energy can be reduced by the sake of increasing
the time. This situation corresponds to observation (3), where the auto-tuner
reduced the frequency for energy savings. Therefore, that observation also applies
to the case of configurations involving several sockets at a full utilization level.

In addition to the results presented so far, we investigated whether Turbo
Boost might have any effect on our observations. Our experiments showed that,
while Turbo Boost allows RS-GDE3 to generate additional solutions (with lower
execution time and higher energy compared to not using Turbo Boost, therefore
extending the solution set in one direction), all our observations are valid whether
Turbo Boost is enabled or disabled.

4.3 Comparison of RS-GDE3 with NSGA-II

We have shown the potential of our RS-GDE3 method for three-objective auto-
tuning compared to a hierarchical and a random search. The aim of this section
is to empirically evaluate RS-GDE3 when compared to other multi-objective
optimizers that have been adjusted to deal with three objectives. Neverthe-
less, it should be noted that without such modification, none of them can be
used for auto-tuning with three conflicting objectives. To that end, we chose
NSGA-II [12], the most popular algorithm for multi-objective optimization. For
a fair comparison, we configured NSGA-II to evaluate the same number of con-
figurations as RS-GDE3. Table 5 lists the results of this comparison for each of
our benchmark codes. It shows that the Pareto sets obtained by RS-GDE3 span
larger hypervolumes than the ones achieved by NSGA-II, hence providing better
solutions. Furthermore, RS-GDE3 offers at least the same number of solutions
as NSGA-II. Thus, overall, RS-GDE3 outperforms NSGA-II.

Multi-Objective Auto-Tuning with Insieme 97

Table 5. Performance Comparison of RS-GDE3 with NSGA-II

RS-GDE3 NSGA-II
Code |S| V (S) |S| V (S)
mm 17 0.65 17 0.64
dsyrk 20 0.93 8 0.78

jacobi-2d 30 0.83 30 0.74
3d-stencil 25 0.93 20 0.87
n-body 30 0.88 30 0.82

5 Related Work

There is a wide range of related work in the field of auto-tuning. One possible
approach is machine learning (ML), however it has never been used in a truly
multi-objective fashion. Search-based methods as used in Active Harmony [1]
pose an alternative to ML. They have been successfully applied for computing
the whole set of Pareto efficient solutions for up to two criteria, (e.g. execution
time and efficiency [7] or execution time and compilation time [4]).

The recent concern for power and energy consumption is reflected in the
growing amount work applying auto-tuning to optimize them. Whether they
consider power or energy, in addition to execution time, most of them fail to
capture the full trade-off and only compute a single solution. Some works use
models for power/energy and execution time and apply dynamic programming
for optimization [2], while others obtain real power measurements [3]. Similar
efforts include exploiting slack time for example in OpenMP [6]. However, hardly
any of these approaches compute the full Pareto set of solutions. Reducing this
trade-off to a predefined number of solutions may limit the freedom of selecting
a solution and render detailed trade-off analyses impossible. To the best of our
knowledge, [13, 14] are two of the few works investigating that trade-off.

To the best of our knowledge, this is the first application of an auto-tuner
to optimize three objectives. We also provide a detailed analysis of the identi-
fied trade-offs. While present in several related works, they do not directly deal
with optimization or auto-tuning. They rather analyze trade-offs for changing
hardware or software configurations. Predominantly using manually preselected
solutions, instead of automatically obtained ones, many investigate DVFS or
DCT [15], while some evaluate application model changes [16].

6 Conclusion

In this work, we have shown the application of a multi-objective auto-tuner which
optimizes for three conflicting criteria: execution time, resource usage and energy
consumption. We compared RS-GDE3 with a hierarchical and a random search
and showed that it requires at least 93% less time and 92% less energy to obtain
solutions of equal or higher quality in a benchmark composed of five represen-
tative codes. A comparison to a modified state-of-the-art optimizer, NSGA-II,
shows that RS-GDE3 offers solutions of higher quality. We identified the com-
plex relationships between the three objectives and the effect of our tunable
parameters on them. Our results have been outlined with clear observations to
be used to guide the development of auto-tuners and code optimization.

98 P. Gschwandtner, J.J. Durillo, and T. Fahringer

Acknowledgements. This research has been partially funded by the Austrian
Research Promotion Agency under contract 834307 (AutoCore) and by the FWF
Austrian Science Fund under contracts I01079 (GEMSCLAIM) and W 1227-N16
(DK-plus CIM).

References

[1] Tapus, C., Chung, I., Hollingsworth, J.: Active harmony: Towards automated per-
formance tuning. In: IEEE 2002 Conference on Supercomputing (2002)

[2] Li, D., de Supinski, B.R., Schulz, M., et al.: Strategies for energy-efficient resource
management of hybrid programming models. IEEE Transactions on Parallel and
Distributed Systems 24(1), 144–157 (2013)

[3] Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Auto-tuning for energy
usage in scientific applications. In: Alexander, M., et al. (eds.) Euro-Par 2011
Workshops. Part II. LNCS, vol. 7156, pp. 178–187. Springer, Heidelberg (2012)

[4] Hoste, K., Eeckhout, L.: Cole: Compiler optimization level exploration. In: Proc.
of the 6th Intl. Symposium on Code Generation and Optimization. ACM (2008)

[5] Rahman, S., Guo, J., Bhat, A., et al.: Studying the impact of application-level
optimizations on the power consumption of multi-core architectures. In: Proc. of
the 9th Conference on Computing Frontiers. ACM (2012)

[6] Dong, Y., Chen, J., Yang, X.: et al.: Energy-oriented openmp parallel loop schedul-
ing. In: International Symposium on Parallel and Distributed Processing with
Applications, ISPA 2008. IEEE (2008)

[7] Jordan, H., Thoman, P., Durillo, J., et al.: A multi-objective auto-tuning frame-
work for parallel codes. In: IEEE 2012 Conference on Supercomputing (2012)

[8] Fox, A., Griffith, R.: Joseph, et al.: Above the clouds: A berkeley view of cloud
computing. Dept. Electrical Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS 28 (2009)

[9] Hähnel, M., Döbel, B., Völp, M., et al.: Measuring energy consumption for short
code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3) (January 2012)

[10] Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Com-
putation 3(4) (1999)

[11] Flynn, M., Hung, P., Rudd, K.: Deep submicron microprocessor design issues.
IEEE Micro, 19(4) (1999)

[12] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

[13] Freeh, V., Lowenthal, D.: Using multiple energy gears in mpi programs on a power-
scalable cluster. In: Proc. of the 10th ACM SIGPLAN PPoPP. ACM (2005)

[14] Balaprakash, P., Tiwari, A., Wild, S.: Multi-objective optimization of hpc kernels
for performance, power, and energy. In: 4th International Workshop on Perfor-
mance Modeling, Benchmarking, and Simulation of HPC Systems, PMBS 2012
(2013)

[15] Freeh, V., Lowenthal, D., Pan, F., et al.: Analyzing the energy-time trade-off
in high-performance computing applications. IEEE Transactions on Parallel and
Distributed Systems, 18(6) (2007)

[16] Lively: C., Wu, X., Taylor, V., et al.: Energy and performance characteristics of
different parallel implementations of scientific applications on multicore systems.
International Journal of High Performance Computing Applications 25(3) (2011)

Performance Prediction and Evaluation

of Parallel Applications in KVM, Xen,
and VMware

Cheol-Ho Hong1, Beom-Joon Kim2, Young-Pil Kim1,
Hyunchan Park1, and Chuck Yoo1

1 Korea University, Seoul, South Korea
2 LG Electronics, Seoul, South Korea

Abstract. Cloud computing platforms are considerably attractive for
parallel applications that perform large-scale, computationally intensive
tasks. These platforms can provide elastic computing resources to the
parallel software owing to system virtualization technology. Almost ev-
ery cloud service provider operates on a pay-per-use basis, and therefore,
it is important to estimate the performance of parallel applications before
deploying them. However, a comprehensive study that can predict the
performance of parallel applications remains unexplored and is still a re-
search topic. In this paper, we provide a theoretical performance model
that can predict the performance of parallel applications in different
virtual machine scheduling policies and evaluate the model in repre-
sentative hypervisors including KVM, Xen, and VMware. Through this
analysis and evaluation, we show that our performance prediction model
is accurate and reliable.

1 Introduction

Cloud computing is an attractive approach to enable research scientists to utilize
nearly limitless computation resources in a reliable and flexible manner. By us-
ing cloud services, research scientists can deploy parallel applications to perform
large-scale, computationally intensive tasks reliably without worrying about the
configuration or the arrangement of the hardware platforms for the deployment
[17]. Moreover, owing to the elastic characteristic of cloud computing, they can
flexibly adjust the capacity of the computing resources according to the require-
ments of each parallel application. As a result, the use of cloud computing for
parallel applications is currently increasing at a fast rate [3].

Virtualization is the main technology of cloud computing. Whether cloud
vendors provide IaaS (Infrastructure as a Service), PaaS (Platform as a Service),
or SaaS (Service as a Service) for their customers, every stack of those services
has a virtualization layer on top of the lower physical layers. Virtualization
offers elastic and flexible virtual computing environments that are essential for
cloud computing by providing each user the illusion of possessing an OS on
a real hardware platform. In virtualization software, a hypervisor virtualizes all

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 99–110, 2014.
c© Springer International Publishing Switzerland 2014

100 C.-H. Hong et al.

hardware resources such as the CPU, memory, and I/O devices of a real physical
machine, providing each of the virtualized resources to a virtual machine (VM).
Recent popular hypervisor titles for cloud computing include KVM [8], Xen [2],
and VMware ESXi [6].

Because almost every cloud service provider operates on a pay-per-use basis,
the question of whether a hypervisor can run parallel applications with accept-
able performance at lower cost has become an important issue. In virtualization,
the main factor that decides the performance of parallel applications is the CPU
scheduler of each hypervisor [16][11]. The scheduler multiplexes all virtual CPUs
(VCPUs) in a system according to its particular policy. Because of this additional
scheduling layer, it is difficult to estimate the performance of parallel applica-
tions in virtualization before deploying them, even though performance in the
native environment is already known.

In this paper, we provide a comprehensive performance model that can pre-
dict the performance of parallel applications in different scheduling policies and
evaluate the model in the representative hypervisors. The main contributions of
this paper related to previous studies are as follows:

• We provide theoretical performance modeling and prediction for parallel ap-
plications in virtualization. Previous research studies [17][12][13] only address
virtualization overheads based on experiments. To the best of our knowledge,
no other research studies have suggested practical performance models yet.

• We present the evaluation results of the performance model on the repre-
sentative hypervisors. Throughout the evaluation, we show that our per-
formance prediction model is accurate and reliable to such an extent as to
predict the performance of parallel applications in virtualization before di-
rectly deploying them.

The remainder of this paper is structured as follows: In Section 2, we explain
the background of VM scheduling policies. In Section 3, we provide the perfor-
mance prediction model. Section 4 shows the performance evaluation results.
Section 5 explains related work. Finally, we present our conclusions in Section 6.

2 Background

2.1 Scheduling Policy

One of the main tasks of a VM scheduler is to choose which virtual CPU should
be assigned to a physical core. A VM scheduler schedules all VCPUs in a sys-
tem according to its policy that has purposes such as improving responsiveness,
throughput, and utilization.

KVM. The Completely Fair Scheduler (CFS) [8] was introduced as the Linux
CPU scheduler from the Linux kernel 2.6.23. The goal of the CFS is to give each
VCPU a fair amount of CPU time by maintaining a balance between them. For
this purpose, the CFS scheduler tracks the virtual runtime that is the amount

Performance Prediction and Evaluation of Parallel Applications 101

of CPU time given to each VCPU at a certain point. In scheduling VCPUs, the
CFS selects VCPUs with smaller virtual runtimes-that means some VCPUs have
not received sufficient CPU time compared to other VCPUs-thus maintaining
the balance. In addition to this basic policy, it considers I/O-intensive VCPUs
by giving them a comparable share of CPU time when they request the CPU.

Xen. In recent versions of Xen, the credit scheduler [2], which is a proportional
fair-share CPU scheduler, is used by default. The credit scheduler schedules do-
mains fairly based on the credit amount that is determined by the weight each
domain receives. Credit refers to CPU time or CPU bandwidth for which each
domain can run. Three VCPU priorities are defined in the current Xen imple-
mentation: UNDER (value of -1), OVER (-2), and BOOST (0). The priority of
the VCPU is determined by the remaining credit amount of the VCPU when the
global account thread is running. If the credit amount of the VCPU is positive,
the priority of the VCPU is UNDER. Conversely, if the credit amount is nega-
tive, the priority of the VCPU becomes OVER. BOOST priority is introduced to
improve I/O performance of domains in terms of both bandwidth and latency.

VMware. The relaxed coscheduler [15] in VMware is based on the proportional-
share-based algorithm in which each VM has resource specifications such as
shares, reservation, and limit. The scheduler maintains the consumed CPU re-
source of each VM, and makes scheduling decisions based on the recorded data.
If a VM consumes less CPU than allowed, the VM is temporarily assigned a
higher priority than other VMs, and it is chosen to run next. When a VM is
selected to run, the ESXi scheduler uses a co-scheduling policy, also known as
gang scheduling, which executes all VCPUs of a single VM at the same time.
This scheduling policy is beneficial to parallel applications because threads that
frequently attempt to synchronize with each other can decrease their waiting
time by running the VCPUs concurrently.

3 Performance Prediction

In this section, we theoretically show how the execution time of a parallel pro-
gram is determined in the virtualization environments. For simplicity, we make
some assumptions needed to build our VM scheduling model and policy. First,
we assume that the number of threads in a parallel application does not exceed
the number of VCPUs in the VM. This assumption is rational because CPU-
intensive applications commonly run using a number of threads equal to or less
than the number of cores [10]. Second, each thread is fixed to a VCPU to avoid
the cost of thread migration in a guest OS. Third, each parallel thread is as-
sumed to be blocked rather than spin when the thread has to wait for other
threads during synchronization. In virtualization, this wait policy is generally
configured in order to prevent superfluous CPU spinning.

102 C.-H. Hong et al.

3.1 VM Scheduling Model and Policy

To predict the performance of parallel programs in virtualization, we formalize
the VM scheduling model and policy. P = {P1, P2, ..., P|P |} represents phys-
ical CPUs, where |P | is the number of physical CPUs in the system. V =
{V1, V2, ..., V|V |} indicates VMs running on the physical CPUs, where |V | is
the number of VMs in the system. The weight of VM Vi is represented by
ω(Vi), which is a relative proportion of CPU consumption. Therefore, we have
|V |∑
i=1

ω(Vi) = 1. C(Vi) = {vi1, vi2, ..., vi|C(Vi)|} indicates VCPUs running on VM

Vi, and the number of VCPUs is |C(Vi)|.
We need to define the fair amount of received CPU by VCPU vij from time 0 to

t, which we call F (t, i, j). F (t, i, j) is determined by the number of processors, the
weight proportion of the VM, and the number of VCPUs in the VM. Reflecting
these factors, we define F (t, i, j) as

F (t, i, j) = |P |×ω(Vi)
|C(Vi)| × t (1)

Then, we define the amount of CPU time that a VCPU actually uses in the
scheduling interval [t1, t2) as R(t1, i, j). Then, we can derive the next scheduling
time t2 as follows. To guarantee fairness in sharing CPU time, the hypervisor
scheduler should meet the following condition: F (t2, i, j) = F (t1, i, j)+R(t1, i, j).

Therefore, using Equation (1), we have |P |×ω(Vi)
|C(Vi)| ×t2 = |P |×ω(Vi)

|C(Vi)| ×t1+R(t1, i, j).

Then, we obtain the following equation.

t2 = t1 +
R(t1,i,j)×|C(Vi)|

|P |×ω(Vi)
(2)

3.2 Execution Time of a Single Phase

A parallel application distributes the total work into several parallel threads.
Each thread then consists of multiple phases, each of which has one compu-
tation part and one subsequent synchronization part. Through the latter part,
all computations in the same phase must be finished before the next phase
begins. To obtain the execution time of a single phase in virtualization, we de-
fine the execution time of the computation part of VCPU vij during the mth
phase as compT (m, vij) and the synchronization part as syncT (m, vij). Then,
the execution time of the mth phase, execP (m), is as follows: execP (m) =
compT (m, vij) + syncT (m, vij).

compT . The value of the computation part itself may be longer than a time
slot of the hypervisor. We define the length of the computation part of VCPU
vij during the mth phase as C(m, vij). Then, we have C(m, vij) = Mm × S +
Frac(m, vij), where Mm ≥ 0, S is the length of a time slot, and Frac(m, vij)
is the remainder of the time. This computation part is executed using (Mm +
1) time slots. Let us assume that this computation part starts at t1 and the

Performance Prediction and Evaluation of Parallel Applications 103

remaining part starts at tp. According to Equation (2), the second time slot of

this computation part has to start at the following point: t2 = t1 +
S×|C(Vi)|
|P |×ω(Vi)

.

Similarly, t3 = t2+
S×|C(Vi)|
|P |×ω(Vi)

= t1+(2×S×|C(Vi)|
|P |×ω(Vi)

). The (Mm+1)th time slot starts

at tp. Then, it should have the following value: tp = t1+(Mm× S×|C(Vi)|
|P |×ω(Vi)

). Then,

the execution time of the computation part of the mth phase, compT (m, vij), is
as follows: compT (m, vij) = tp+Frac(m, vij)−t1. Then, we obtain the following
equation:

compT (m, vij) = (Mm × S×|C(Vi)|
|P |×ω(Vi)

) + Frac(m, vij) (3)

syncT . The synchronization part follows the computation part, and the main
purpose of this part is to wait for other threads to finish their computation
parts while being blocked. Let us assume that the former computation part
starts at t1, and the next computation part starts at t2. To guarantee fairness
in sharing CPU time, the hypervisor should then execute the next part at the

following point according to Equation (2): t2 = t1 +
Frac(m,vij)×|C(Vi)|

|P |×ω(Vi)
, where

Frac(m, vij) is the remainder of C(m, vij) (see subsection compT). Then, the
execution time of the synchronization part of the mth phase, sync preT (m, vij),
is as follows: sync preT (m, vij) = t2 − t1 − Frac(m, vij). Then, we obtain the

following equation: sync preT (m, vij) =
Frac(m,vij)×|C(Vi)|

|P |×ω(Vi)
− Frac(m, vij).

This value is derived on the assumption that the hypervisor ideally maintains
fairness between VMs. However, in our previous research [7], we showed that
this value can be significantly larger in real hypervisors. The credit scheduler
and the CFS adopt an asynchronous scheduling policy; therefore, they are not
synchronization-aware. The problem, then, is that those VCPUs required to
participate in each synchronization phase are not guaranteed to be scheduled
within the t2 value. Consequently, the execution time of the synchronization part
is increased, and this situation degrades the performance of parallel applications.
Conversely, when a coscheduling policy is selected, it makes all VCPUs in a VM
run on physical CPUs simultaneously. Therefore, this scheduling method can
make a synchronization environment similar to that of a non-virtualized OS,
therefore mitigating the increase in synchronization time.

To reflect the characteristic of each scheduling policy, we introduce a propor-
tional constant, H . The H value can be obtained by conducting experiments in
each virtualization environment. We repeatedly run our micro benchmark pro-
grams with a medium computation size (the details are provided in Section 4.1)
and measure the average synchronization time. Then, we compare the measured
value of each program with the calculated sync preT (m, vij) value to produce
the H value. We could check that the different programs produce similar H val-
ues in the same hypervisor. We determined that the values are 1.7 in KVM, 1.15
in Xen, and 0.7 in VMware. We multiply H by the intermediate value of the
synchronization part. Then, we obtain the following equation:

syncT (m, vij) = H × Frac(m, vij)× (|C(Vi)|
|P |×ω(Vi)

− 1) (4)

104 C.-H. Hong et al.

execP . Because we have execP (m) = compT (m, vij)+syncT (m, vij), we obtain
the following equation by adding Equations (3) and (4).

execP (m) = Mm × S×|C(Vi)|
|P |×ω(Vi)

+ Frac(m, vij)× (1 +H × (|C(Vi)|
|P |×ω(Vi)

− 1)) (5)

3.3 Execution Time of a Parallel Program

Because a parallel application consists of multiple phases, the completion time
of a parallel application is the sum of the execution times of each phase in the
software. When the parallel application has |J | phases, the total completion time,
completionT , is obtained using Equation (5) as follows.

completionT =
|J|∑

m=1
execP (m)

=
|J|∑

m=1
{Mm × S×|C(Vi)|

|P |×ω(Vi)
+ Frac(m, vij)× (1 +H × (|C(Vi)|

|P |×ω(Vi)
− 1))}

(6)

|C(Vi)|, |P |, ω(Vi), S, and H are predetermined in the virtualization environ-
ment. The value of Mm and Frac(m, vij) can be obtained from C(m, vij), which
is the length of the computation part of VCPU vij during the mth phase, be-
cause C(m, vij) = Mm ×S+Frac(m, vij). The C(m, vij) value can be obtained
in the non-virtualized environment manually by calculating the total number of
instruction cycles or automatically by using profiling tools that utilize Profiler
for OpenMP (POMP) and Opari [9]. Therefore, we can predict the performance
of parallel applications in virtualization without directly deploying them.

4 Performance Evaluation

4.1 Experimental Setup and Method

For all experiments in this paper, we used an Intel Xeon E5-2620 hexa-core
platform that has six cores running at 2.0 GHz with 15 MB of L3 cache and 16
GB of main memory. To realize exact one-to-one mapping between physical cores
and VCPUs, the hyper-threading technology is turned off. The system is hosted
by KVM 1.4.2, Xen 4.1.3, and VMware ESXi 5.0 on separate hard disk drives.
We use all guest OSs as Linux with the kernel version 2.6.32. In the experiments,
with regard to Xen, we did not use domain0, which is an administrator VM and
is responsible for processing I/O requests, leaving it mainly in the idle state. We
let the number of VCPUs of all VMs equal to the number of physical CPUs (six)
in order to make each group of VCPUs exploit the underlying physical CPUs
efficiently and thoroughly.

Performance Prediction and Evaluation of Parallel Applications 105

In all Linux VMs, we use GCC 4.7.1, which supports the version 3.1 of the
OpenMP specification, and we set the waiting policy of OpenMP as PASSIVE
that blocks VCPUs when the synchronization condition is not met in order to
prevent superfluous CPU spinning at the user-level. To prevent kernel-level lock-
holder preemption (LHP) [14], we applied a Linux patch for paravirtualization
VMs [4] in Xen, and activated Intel Pause Loop Exiting (PLE), which is a
hardware-based feature, in KVM and VMware.

To evaluate the execution time prediction of a single phase as provided in
Equation (5), we develop a new micro benchmark program that is intended to
measure the overhead of a single phase that is composed of one computation
part and one subsequent synchronization part. The program can receive the
computation size of a thread as an input parameter so that we can make par-
allel programs of any size. We create 4 individual child benchmark programs
with computation sizes of a single phase as approximately 3,500 (small), 15,000
(medium), 35,000 (large), and 150,000 (very large) kilo-cycles per thread (in the
latest x86 architecture).

To evaluate the execution time prediction of a parallel program, provided in
Equation (6), we use NAS Parallel Benchmarks (NPB) [1] that are programs
used to evaluate the performance of parallel supercomputers. In this research,
we use NPB version 3.2.1 for the OpenMP programming model and set the
problem size to A. The benchmark programs consist of CG, EP, FT, IS, MG,
BT, LU, LU-HP, and SP.

4.2 Prediction for a Single Phase

In this section, we show whether the performance prediction model provided in
Section 3.2 is accurate and reliable. For the experiment, a target VM executing
each child benchmark program was individually run on each hypervisor. The tar-
get VM had 6 VCPUs with 6 threads per our benchmark program that was based
on the assumption explained in Section 3. To adjust the target VM weight, we
deployed multiple CPU-bound VMs running our single-threaded CPU-intensive
program that simulates background workloads. Because we configured the num-
ber of VCPUs in all VMs as 6, we can set the weight of the target VM to 100%,
50%, 33%, 25%, 20%, and 17% by launching each background VM one by one.
For example, to set the weight of the target VM to 20%, we deploy the target
VM and 4 background VMs. For accuracy, we run our micro benchmark program
repeatedly more than 20,000 times in each hypervisor and then calculate the av-
erage execution time of the computation and synchronization part separately
during the run of a single VCPU.

To predict the performance of each program, we run each benchmark program
in the native Linux environment, and produce values of C(m, vij) which is the
length of the computation part of VCPU vij . Then, the Mm and Frac(m, vij)
values can be obtained as shown in Table 1, given that the time slice of KVM

106 C.-H. Hong et al.

Table 1. Parameters required to predict the performance of a single phase. The unit
of time is ms.

Hypervisor Benchmark C(m,vij) Mm S Frac(m,vij) H |C(Vi)| |P|
KVM 3,500K 1.67 0 6 1.70 1.7 6 6

15,000K 8.36 1 6 2.40 1.7 6 6
35,000K 16.72 2 6 4.70 1.7 6 6
150,000K 83.59 13 6 5.60 1.7 6 6

Xen 3,500K 1.67 0 30 1.70 1.15 6 6
15,000K 8.36 0 30 8.40 1.15 6 6
35,000K 16.72 0 30 16.70 1.15 6 6
150,000K 83.59 2 30 23.60 1.15 6 6

VMware 3,500K 1.67 0 30 1.70 0.7 6 6
15,000K 8.36 0 30 8.40 0.7 6 6
35,000K 16.72 0 30 16.70 0.7 6 6
150,000K 83.59 2 30 23.60 0.7 6 6

is 6 ms, that of Xen is 30 ms, and that of VMware is 30 ms. Other values such
as H , |C(Vi)|, and |P | are also provided in the table. The H value is obtained
by the experiments as explained in Section 3.2. Then we use Equation (5) to
predict the time of each program.

The execution times of a single phase for KVM, Xen, and VMware, for which
the weight was changed from 100% to 17%, are shown in Figure 1. We also
provide the measured synchronization (SyncT) and computation (CompT) time
which comprise the execution time, in order to help the analysis of the execution
overhead. The ratio of the difference between the measured and predicted time
to the measured time, defined as predicted time−measured time

measured time , follows each graph.
As the graphs show, our prediction model can estimate the execution time of a
single phase quite accurately in Xen and VMware, and approximately in KVM.
In most cases, the value of the ratio is within 19% in KVM (19% in average),
15% (9% in average) in Xen, and 6% (4% in average) in VMware.

The KVM result shows that the scheduler imposes an additional overhead
when the weight is 50% in all benchmark programs. It seems that the CFS
cannot properly deal with the situation in which the workloads are apparently
asymmetric. The result also shows that our prediction model is not accurate for
the small program (3,500 K). This is because the actual synchronization time
was shorter than the prediction, and we are investigating the exact reason for
this. In Xen, our prediction model underestimates the execution time of the small
program because the actual synchronization time was longer than expected. This
situation seems to be related to the minimum preemption time of Xen (2 ms).
The small programmust be repeatedly blocked and unblocked during a relatively
short time. However, Xen prevents VCPUs from preemption during the first 2
ms in order to prohibit starvation. When the small program cannot preempt the
current VCPU, this seems to cause extra synchronization overhead. The VMware
result shows that the scheduler can solidly process parallel applications without
fluctuation as it adopts the coscheduling policy for synchronization.

Performance Prediction and Evaluation of Parallel Applications 107

100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17%
3,500K 15,000K 35,000K 150,000K

SyncT 0.5 7.8 5.7 6.9 7.1 7.6 1.4 23.0 15.5 20.6 26.1 31.2 1.6 25.6 21.6 27.2 34.6 40.8 5.9 42.2 37.5 46.7 58.5 68.8
CompT 1.7 1.9 1.8 1.8 1.8 1.9 8.7 17.3 18.5 21.5 22.8 25.7 17.4 40.2 45.1 53.0 62.6 72.5 87.4 200.7 265.2 346.4 430.4 514.4
Measured time 2.2 9.7 7.5 8.7 8.9 9.5 10.0 40.3 34.0 42.2 48.9 56.9 18.9 65.8 66.7 80.2 97.2 113.3 93.4 242.9 302.7 393.1 488.9 583.2
Predicted time 1.7 4.6 7.6 10.4 13.3 15.8 8.4 18.5 28.9 38.6 48.7 57.6 16.7 36.7 57.3 76.7 96.7 114.3 83.6 171.1 261.3 346.2 433.7 510.9

0.0

100.0

200.0

300.0

400.0

500.0

600.0

Ex
ec

ut
io

n
tim

e
(m

s)
KVM

-100%
-50%
0%
50%
100%

100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17%
3,500K 15,000K 35,000K 150,000K

Ratio of the difference between the measured and predicted time to the measured time�

100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17%
3,500K 15,000K 35,000K 150,000K

SyncT 0.1 2.0 3.7 7.8 12.0 16.1 0.2 8.6 16.9 26.4 36.2 46.0 0.3 17.8 29.7 44.7 59.7 73.0 1.0 42.3 67.9 93.8 120.1 146.1
CompT 1.7 1.7 1.7 1.7 1.8 1.9 8.4 8.5 8.6 9.2 9.7 10.5 16.8 17.1 17.6 19.1 20.3 22.3 84.2 120.7 178.2 245.9 316.9 383.6
Measured time 1.8 3.7 5.4 9.5 13.8 18.0 8.6 17.1 25.5 35.6 45.9 56.5 17.1 34.9 47.4 63.7 80.0 95.3 85.1 163.0 246.2 339.7 437.0 529.7
Predicted time 1.7 3.7 5.7 7.6 9.5 11.2 8.4 18.1 28.0 37.4 47.0 55.6 16.7 35.9 55.7 74.3 93.5 110.5 83.6 170.7 260.5 345.0 432.2 509.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

Ex
ec

ut
io

n
tim

e
(m

s)

Xen

-100%
-50%
0%
50%
100%

100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17%
3,500K 15,000K 35,000K 150,000K

Ratio of the difference between the measured and predicted time to the measured time�

100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17%
3,500K 15,000K 35,000K 150,000K

SyncT 0.1 1.3 2.4 3.6 4.8 6.2 0.1 5.8 10.7 14.6 19.6 24.9 0.2 11.0 18.8 28.8 39.8 49.7 0.3 44.6 90.3 126.4 137.9 145.4
CompT 1.7 1.7 1.7 1.7 1.7 1.7 8.4 8.5 9.1 9.8 11.2 12.1 16.9 17.5 18.5 20.3 21.6 22.0 84.4 94.1 109.6 144.8 219.6 291.1
Measured time 1.8 3.0 4.1 5.3 6.5 7.9 8.6 14.3 19.8 24.5 30.8 36.9 17.0 28.4 37.3 49.1 61.5 71.8 84.8 138.7 199.9 271.2 357.6 436.5
Predicted time 1.7 2.9 4.1 5.3 6.5 7.5 8.4 14.3 20.3 26.0 31.9 37.1 16.7 28.4 40.4 51.8 63.5 73.8 83.6 160.1 239.0 313.2 389.7 457.2

0.0

100.0

200.0

300.0

400.0

500.0

600.0

Ex
ec

ut
io

n
tim

e
(m

s)

VMware

-100%
-50%
0%
50%
100%

100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17%
3,500K 15,000K 35,000K 150,000K

Ratio of the difference between the measured and predicted time to the measured time�

Fig. 1. Execution time of a single phase for KVM, Xen, and VMware, for which the
weight was changed from 100% to 17%, and the ratio of the difference between the
measured and predicted time to the measured time

108 C.-H. Hong et al.

0.0

0.2

0.4

0.6

0.8

1.0
10

0% 50
%

33
%

25
%

20
%

17
%

10
0% 50

%
33

%
25

%
20

%
17

%
10

0% 50
%

33
%

25
%

20
%

17
%

KVM Xen VMware

Ex
ec

ut
ion

 ti
me

 (s
)

IS

Measured time Predicted time

0

5

10

15

20

25

30

10
0% 50

%
33

%
25

%
20

%
17

%
10

0% 50
%

33
%

25
%

20
%

17
%

10
0% 50

%
33

%
25

%
20

%
17

%

KVM Xen VMware

Ex
ec

ut
ion

 ti
me

 (s
)

EP

Measured time Predicted time

0
20
40
60
80

100
120
140

10
0% 50

%
33

%
25

%
20

%
17

%
10

0% 50
%

33
%

25
%

20
%

17
%

10
0% 50

%
33

%
25

%
20

%
17

%

KVM Xen VMware

Ex
ec

ut
ion

 ti
me

 (s
)

BT

Measured time Predicted time

0
50

100
150
200
250
300
350
400

10
0% 50

%
33

%
25

%
20

%
17

%
10

0% 50
%

33
%

25
%

20
%

17
%

10
0% 50

%
33

%
25

%
20

%
17

%

KVM Xen VMware

Ex
ec

ut
ion

 ti
me

 (s
)

LU-HP

Measured time Predicted time

Fig. 2. Measured and predicted time values of the NPB benchmarks for KVM, Xen,
and VMware, for which the weight was changed from 100% to 17%

4.3 Prediction for a Parallel Program

In this section, we show whether the performance prediction model for a parallel
program, provided in Section 3.3, is precise. For the experiment, we used IS,
EP, BT, and LU-HP in the NPB program. IS and EP are kernel programs that
have short execution times whereas BT and LU-HP are pseudo applications that
have long completion times. We repeatedly ran each benchmark program for ten
rounds in each weight configuration and produced the average execution time.
In addition, to predict the performance, we deployed each benchmark program
in the native Linux environment, with ompP [5], a profiling tool for OpenMP
applications, and obtained the C(m, vij) value of each phase.

The measured and predicted time values of the NPB benchmarks for KVM,
Xen, and VMware, for which the weight was changed from 100% to 17%, are
shown in Figure 2. For IS, EP, and BT, our prediction model could estimate
the execution times of the programs quite accurately in all hypervisors. In most
cases, the ratio of the difference between the measured and predicted time to
the measured time is within 5% for IS, 8% for EP, and 13% for BT. However,
our model suffered in the case of LU-HP. LU-HP is the hyperplane version of
LU, and is composed of lots of small size computation parts (in our experiment,
1,108,416 × 0.5ms). Therefore, the program seemed to cause severe synchro-
nization overheads across all hypervisors as explained in Section 4.2. When we
changed the H value for the small size computation part to 6 in KVM, 4 in

Performance Prediction and Evaluation of Parallel Applications 109

Xen, and 2.9 in VMware, we could predict the execution times more correctly
as depicted in Figure 2.

5 Related Work

There are several studies to resolve the synchronization problem of virtualiza-
tion. Relaxed coscheduling [15] of VMware ESXi is a representative coscheduling
algorithm for synchronization. Instead of forcing all VCPUs of a VM to be simul-
taneously scheduled, the scheduler enables the VCPUs to be scheduled within
the skew value. As another coscheduling approach, Weng et al. [16] proposed hy-
brid scheduling in the Xen hypervisor. For only concurrent VMs, the scheduler
determines to coschedule VCPUs; other VCPUs are scheduled asynchronously.
The researchers also provided simple modeling for the performance of parallel
applications. However, because the proposed model assumes that the size of the
computation part is equal to a single time slice, it is inadequate for the real
hypervisors.

There are several studies to explain the virtualization overhead of Xen. Xu et
al. [17] revealed that the performance of Xen VMs could reach the performance
in the native environment only when few synchronization operations are used,
and the number of VCPUs in the VM does not exceed the number of physical
CPUs. Tao et al. [12][13] quantified the performance deficit of OpenMP appli-
cations in Xen VMs . They showed that the inefficiency of the kernel blocking
operation decreases the performance of some parallel applications in the virtual
environment. However, these studies only show preliminary results, and there-
fore, they are insufficient to predict the performance of parallel applications in
virtualization.

6 Conclusion

In this paper, we proposed a performance model that can predict the perfor-
mance of parallel applications in various scheduling policies. First, we provided
theoretical performance modeling and prediction for parallel applications in vir-
tualization, Second, we showed the evaluation results of the performance model
on the representative hypervisors. We hope that our research will contribute to-
ward further studies on parallel computing performed in a virtual environment.

Acknowledgements. This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government(MEST) (No.2010-
0029180) with KREONET.

References

1. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Frederickson, P., Lasinski, T., Schreiber, R., et al.: The nas parallel bench-
marks summary and preliminary results. In: Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing 1991, pp. 158–165. IEEE (1991)

110 C.-H. Hong et al.

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: ACM SIGOPS
Operating Systems Review, vol. 37, pp. 164–177. ACM (2003)

3. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the
5th utility. Future Generation Computer Cystems 25(6), 599–616 (2009)

4. Friebel, T., Biemueller, S.: How to deal with lock holder preemption. Presentation
at Xen Summit North America (2008)

5. Fürlinger, K., Gerndt, M.: ompp: A profiling tool for openmp. In: Mueller,
M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
2005/2006. LNCS, vol. 4315, pp. 15–23. Springer, Heidelberg (2008)

6. Haletky, E.: Vmware esx and esxi in the enterprise (2011)
7. Hong, C., Yoo, C.: Synchronization-aware virtual machine scheduling for parallel

applications in xen. IEICE Transactions on Information and Systems 96(12), 2720–
2723 (2013)

8. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: The linux virtual
machine monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225–230
(2007)

9. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Towards a performance tool inter-
face for OpenMP: An approach based on directive rewriting. Forschungszentrum,
Zentralinst. für Angewandte Mathematik (2001)

10. Nishitani, Y., Negishi, K., Ohta, H., Nunohiro, E.: Implementation and evaluation
of openmp for hitachi sr8000. In: Valero, M., Joe, K., Kitsuregawa, M., Tanaka, H.
(eds.) ISHPC 2000. LNCS, vol. 1940, pp. 391–402. Springer, Heidelberg (2000)

11. Sukwong, O., Kim, H.: Is co-scheduling too expensive for smp vms? In. In: Pro-
ceedings of the Sixth Conference on Computer Systems, pp. 257–272. ACM (2011)

12. Tao, J., Fürlinger, K., Marten, H.: Performance evaluation of openmp applications
on virtualized multicore machines. In: Chapman, B.M., Gropp, W.D., Kumaran,
K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665, pp. 138–150. Springer,
Heidelberg (2011)

13. Tao, J., Fürlinger, K., Wang, L., Marten, H.: A performance study of virtual ma-
chines on multicore architectures. In: PDP, pp. 89–96 (2012)

14. Uhlig, V., LeVasseur, J., Skoglund, E., Dannowski, U.: Towards scalable multipro-
cessor virtual machines. In: Proceedings of the 3rd Virtual Machine Research and
Technology Symposium, pp. 43–56 (2004)

15. VMWare. The cpu scheduler in vmware vsphere 5.1.,
https://www.vmware.com/files/pdf/techpaper/VMware-vSphere-CPU-

Sched-Perf.pdf

16. Weng, C., Wang, Z., Li, M., Lu, X.: The hybrid scheduling framework for virtual
machine systems. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, pp. 111–120. ACM (2009)

17. Xu, C., Bai, Y., Luo, C.: Performance evaluation of parallel programming in virtual
machine environment. In: Sixth IFIP International Conference on Network and
Parallel Computing, NPC 2009, pp. 140–147. IEEE (2009)

https://www.vmware.com/files/pdf/techpaper/VMware-vSphere-CPU-Sched-Perf.pdf
https://www.vmware.com/files/pdf/techpaper/VMware-vSphere-CPU-Sched-Perf.pdf

DReAM: Per-Task DRAM Energy Metering

in Multicore Systems

Qixiao Liu1,2, Miquel Moreto1,2, Jaume Abella1,
Francisco J. Cazorla1,2,3, and Mateo Valero1,2

1 Barcelona Supercomputing Center, Barcelona, Spain
2 Universitat Politecnica de Catalunya, Barcelona, Spain

3 Spanish National Research Council (IIIA-CSIC), Barcelona, Spain

Abstract. Interaction across applications in DRAM memory impacts
its energy consumption. This paper makes the case for accurate per-
task DRAM energy metering in multicores, which opens new paths to
energy/performance optimizations, such as per-task energy-aware task
scheduling and energy-aware billing in datacenters. In particular, the
contributions of this paper are (i) an ideal per-task energy metering
model for DRAM memories; (ii) DReAM, an accurate, yet low cost, imple-
mentation of the ideal model (less than 5% accuracy error when 16 tasks
share memory); and (iii) a comparison with standard methods (even dis-
tribution and access-count based) proving that DReAM is more accurate
than these other methods.

1 Introduction

Energy demand and cost of computing systems have grown during the last years,
and the trend is expected to hold in the coming future [1]. Conversely, computing
hardware-related costs (e.g., servers) have remained roughly constant or even de-
creased in datacenters, desktops and laptops. This leads to scenarios where energy
costs are as significant as hardware-related costs. For instance, energy already ac-
counts for 20% of the total cost of ownership in a large-scale computing facility [2].
This cost virtually doubles if we also include the cost of the cooling infrastructure
needed to dissipate the temperature induced by such a high energy consumption.
Similarly, laptops and desktops may use in the order of 50-200Watts depending on
the computingpower andperipherals attached.Assuminga cost of 0.11e/kWhand
3 years of non-stop operation (so 26,280 hours), a computer dissipating 120Watts
sustainedlywouldreachanenergycostof350e.Thiscost is inthesameorderofmag-
nitude as the computer itself and it is expected to grow since energy cost is expected
to grow [1]. Therefore,managing energy consumption is of paramount importance.

As processor design moves towards multi-threaded and many-core processors,
in which an increasing number of different applications run simultaneously in
the same processor, providing per-task energy metering becomes critical. Me-
tering the energy consumed by each task accurately would provide the follow-
ing benefits. First, the amount of hardware resources allocated to a given task
(e.g., cores, memory space) impact both its execution time and energy consump-
tion. If per-task energy can be accurately estimated, one may optimize, not only

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 111–123, 2014.
c© Springer International Publishing Switzerland 2014

112 Q. Liu et al.

Fig. 1. Average memory power of a set
of SPEC CPU 2006 benchmarks running
alone on an Intel Sandy Bridge server,
with 8 cores and a 64GB DDR3 memory
running at 1.6GHz. Memory power is ob-
tained using the Running Average Power
Limit (RAPL) interfaces [6] and total sys-
tem power with a FitPC external multi-
meter. We correlate total power data with
the data collected from the hardware en-
ergy counters using time stamps. Repre-
sentative benchmarks were selected based
on previous characterization studies [7].

each task’s performance, but its energy consumption or a combined energy-delay
metric.Second, per-task energy metering can be used by the operating system
(OS) to schedule tasks better so that energy consumption is minimized while
still completing tasks when needed. And third, traditionally, datacenters charge
users based on the resources they are allocated. The increasing fraction of energy-
related costs in datacenters and the need for more accurate billing pushes for
new billing approaches based on the actual energy consumption of each task
rather than on the nominal resources allocated or on simply distributing energy
evenly among running applications [3].

In that respect, despite memory power keeps increasing, reaching 30-50W in
high-performance computers [4], there is a lack of understanding of per-task
energy consumption in memory. To elaborate on the need of accurate per-task
memory energy metering, we measured the power dissipation of different SPEC
CPU 2006 benchmarks on an Intel Sandy Bridge server, see Figure 1. In this
experiment memory represents between 25% and 34% of the total system power
and it is comparable to the entire processor socket power. Further, different tasks
incur different power consumption: e.g., 25.7W (482.sphinx3) versus 40.4W
(462.libquantum). However, while per-task energy metering solutions exist for
processors [5], to the best of our knowledge, no mechanism exists to accurately
measure the per-task memory energy consumption in multicore systems.

We propose, for the first time, an ideal method and an efficient implementation
of such method to fairly measure the energy consumed in DRAM memories when
concurrently running several tasks. Our approach relies on tracking both the
activity incurred by running tasks and the memory state they induce.

Overall, the contributions of this work are as follows:
– An ideal per-task energy metering model for DRAM memories, as needed for
performance/energy optimization, task scheduling and billing in multicore
systems. This is the reference model against which per-task energy metering
mechanisms in DRAM memories can be compared to.

– DReAM, an accurate, yet low cost, implementation of the ideal model. DReAM
is within 5% average error with respect to the ideal model at the expense of
less than 0.1% power and area overhead in the processor.

– A comparison of DReAM with other energy metering approaches proving that
DReAM is far more accurate than those other approaches.

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 113

2 Background and Related Work

In recentyears, therehasbeenan increasing interest for energymetering indifferent
environments from datacenters [3] to smartphones [8,9]. Previous proposals, how-
ever, focus on providing accurate energy metering for single-core architectures or
multicore architectures in which a single (multi-threaded) application is executed.
These scenarios are relatively easy tohandle since,whenanapplication is scheduled
on theCPU, it is accounted thewhole energy consumption of the system (e.g., using
a simplemeter). Other proposals [4,10] make use of performance-monitoring coun-
ters (PMCs) or system events, such as OS system calls, to breakdown the energy
consumption of the system across its components (e.g., memory, processor, etc.).
In many cases, the results of the power model are compared against approaches
using circuit-based mechanisms such as current sense resistors. Some Intel servers
model DRAM power per channel, but they are unaware of per-task interactions in
each channel as well as DRAM bank state interactions across requests [11].

Recently, Shen et al. [12] proposed a request-level OS mechanism to attribute
power consumption to each server request based on PMCs [13]. Similarly, Kestor
et al. [14] derive the energy of moving data along the memory hierarchy by
designing a set of micro-benchmarks. However, both approaches cannot take
into account the impact of inter-task interferences unless appropriate solutions
provide accurate per-task energy metering in multicores. Our work in [5] provides
Per-Task Energy Metering (PTEM) for on-chip resources (cores, caches, etc.).
Our proposal in this paper, DReAM, provides such support for DRAM memories.

DRAM memory energy consumption can be split into dynamic, refresh and
background. Dynamic energy corresponds to the energy spent to perform those
useful activities triggered by the programs running. For instance, the energy
spent to retrieve data from memory on a read operation or the termination power
due to terminating signals of other ranks on the same channel. Refresh energy
corresponds to the energy consumed to refresh periodically all memory contents.
Background energy includes the energy consumed due to useless activity not
triggered by the program(s) being run as well as the energy wasted due to
imperfections of the technology used to implement the circuit.

3 Metering Per-Task Energy Consumption

In this section we present an idealized model for per-task energy metering with-
out considering hardware cost. The result of this model is later used as the
reference for DReAM model to meter per-task energy with a low-cost implemen-
tation. We assume a multicore architecture where an on-chip memory controller
serves as the bridge to the off-chip memory. Next we describe the memory model
considered in this paper, how energy is consumed in the different memory blocks,
and our models to split energy among different tasks.

3.1 Memory Model

We focus on DDRx SDRAM as it is one of the most common memory technolo-
gies. A DDRx SDRAM memory system is composed by a memory controller and

114 Q. Liu et al.

Table 1. Memory commands, timing, power states and background power breakdown
for a read operation in close-page mode

Command
T0 − ACT READ PRE −
T1 −

Timing T0 − tXP tRCD tRTP tRP −

State

Bank0

PD S

A

S PD
Bank1

SBank2

Bank3

Rank PPD PS PA PS PPD

Power T0
PPD

2 PS − PPD
2 PA − PPD

2 PS − PPD
2

PPD
2

T1
PPD

2

one or more DRAM devices. The memory controller controls the off-chip memory
system acting as the interface between the processor and DRAM devices.

A memory rank consists of multiple devices, which in turn consist of multi-
ple banks that can be accessed independently. Each bank comprises rows and
columns of DRAM cells (organized in arrays) and a row-buffer to cache the most
recently accessed rows in the bank. Rows are loaded into the row-buffer using a
row activate command (ACT). Such command opens the row, by moving the data
from the DRAM cells to the row-buffer sense amplifiers. Once a bank is open,
any read/write operation (R/W) can be issued. Finally, a precharge command
(PRE) closes the row-buffer, storing the data back into the row. The memory
controller can use two different policies to manage the row-buffer: close-page that
precharges the rows immediately after every access, and open-page that leaves
the rows in the row-buffer open for potential future accesses to the same rows.

Different models can be adopted to access memory. Those models determine
which ranks, devices, banks and arrays are accessed on each operation. We adopt
the same model as DRAMsim2, which in turn models Micron DDR2/3 memo-
ries [15]. In this model, all devices in a rank are accessed upon every access. In
each device, only one bank is accessed, in which all arrays are accessed. Each
array provides the specified row to the sense amplifier on every access, where
a number of contiguous columns are accessed over successive cycles to serve an
incoming access. In our model, we use a single rank, 8 devices per rank, 8 banks
per device and 8 arrays per bank configuration. In one cycle, one bank per de-
vice is accessed, thus providing 64 bits in total for the rank. A burst of 8 cycles
provides 64 bytes on every access to memory, therefore matching the cache line
size for the last level cache (LLC) in the processor.

Under this configuration, all devices are always in the same power state, which
is equivalent to consider the power state at rank level. In each device, banks can
be in different states. Note, however, that our approach can be easily adapted
to other models. This is not detailed in this paper due to lack of space.

3.2 Memory Energy Consumption

The energy model for the main memory is based on the current profiles pro-
vided by Micron [16] and it splits energy consumption into dynamic, refresh and

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 115

background energy. This is analogous to the methodology used in [17], where the
same data from Micron is used as input. Micron energy model determines the
background electric current level, and so the background power dissipation of
each rank. Devices can be in three different states: Power Down (PD), Standby
(S), and Active (A). In each state, power dissipation is PPD, PS and PA respec-
tively. PD state is the one with the lowest power dissipation.

Table 1 shows the effect on memory of a read command. We observe that the
device is in PD state when the memory controller is not processing any request.
Note that in our configuration all devices in the rank are in the same state and
therefore, rank and device states match. When the memory controller receives a
memory access request from task 0 (T0), it sends a clock enable (CKE) signal to
transition the rank from PD to S state. The device stays in S state as long as all
banks are powered up and idle. This includes the time the device is waiting for the
memory controller to send those commands corresponding to the requests in the
memory controller’s queues. During the S state, background power is higher than
in PD state (PS > PPD). S state lasts tXP , as depicted in Table 1. Eventually,
some banks are activated so that the device as well as some banks transition to A
state. The device and the accessed banks (Bank0 in the example) are in A state
during part of the activation period (tRCD) and while the read/write command
is served (tRTP in the example for a read command). While in A state, the
device incurs the highest power dissipation, PA, with PA > PS . Once the only
command being processed is the PRE command, the device and accessed banks
transition to S state. When no command is executed and no memory access
request exists in the memory controller buffer, the memory controller sends the
clock disable signal returning the device to PD state.

As stated before, modern memory controllers may implement either open-page
or close-page policies. The close-page policy is the focus in this paper, although
we have observed similar trends for open-page policy.

3.3 Per-Task Energy Metering for Close-Page Policy

Our idealized model relies on the fact that background power dissipation of a
device depends solely on its current state, which can be induced by different,
concurrent accesses. Therefore, our model attributes background energy to each
task based on the state it imposes on memory. Memory occupancy is discarded
as input for the model since background energy does not depend on it.

1) During PD only background power is consumed, which cannot be at-
tributed to any task since during PD no task has any memory activity. Hence,
we divide background power evenly across all tasks running in the processor. 2)
Whenever a device transitions from PD to S state, the extra background power
incurred due to S state, i.e. PS − PPD is distributed uniformly across all tasks
with inflight commands that force the memory devices to stay in S state. 3)
When a device is in A state (active), the extra power incurred (i.e. PA − PS) is
distributed evenly across all tasks enforcing A state. For instance, Table 1 shows
the case where one task, T0, issues a read command (first row) and the other
task T1 issues no command. Assuming that those are the only tasks using the

116 Q. Liu et al.

Table 2. Memory commands, timing, power states and background power breakdown
for several operations in close-page mode.

Command
T0 − ACT READ PRE −
T1 − ACT READ PRE −

Timing
T0 − tXP tRCD tRTP tRP −
T1 − tRRD tRCD tRTP tRP . . .

State

Bank0

PD S

A S

S PD
Bank1

S

A

Bank2 S
Bank3

Rank PPD PS PA PS PPD

Power T0
PPD

2
PS − PPD

2
PA− PS

2
PA
2

PS
2

PPD
2

T1
PPD

2
PS
2

PA
2

PA− PS
2

PS
2

PS− PPD
2

PPD
2

memory system, during the whole period T1 is responsible only for half of the
PPD power (last row). T0 is responsible for half of the PPD and all PS and PA

extra power (penultimate row).
When multiple commands are processed in parallel, we follow the same prin-

ciple of attributing power to those tasks that impose the memory to be on a
given state. In the example in Table 2, we show a particular case where both
T0 and T1 issue commands in parallel. First, the device is in PD state. Even-
tually, T0 makes the device transition to S, so T0 is responsible for the extra
background power. Then, devices transition to A state and T1 starts its activate
command. Both tasks are equally responsible for PPD and PS power, but only
T0 is responsible for PA power. Later, T1 also enforces memory to be in A state
so that the total power must be uniformly distributed across both tasks. Finally,
as commands finish, tasks T0 and T1 stop enforcing high-power states and power
dissipation is attributed only to those tasks imposing each particular state.

3.4 Ideal Per-Task Energy Metering Model

We generalize the memory energy consumed by each task as follows.
1) The background (bg) energy attributed to a task can be generalized as

follows for both open- and close-page policies:

Emem
bg, total(Tki) = PPD ×ExecT ime(Tki)/#Tk +

ExecTime(Tki)∑

j=0

(

(PS − PPD)× δSi,j
#TkS,j

)

+
ExecTime(Tki)∑

j=0

(

(PA − PS)× δAi,j
#TkA,j

)

(1)

In the first addend each running task is metered an even part of PPD, where
ExecT ime(Tki) stands for the execution time of task i in cycles and #Tk for
the number of tasks running in the processor – not necessarily the maximum
number of tasks allowed in the processor–. The second and third addends meter
PS − PPD and PA − PS for tasks enforcing those states. #TkS,j and #TkA,j

correspond to the number of tasks imposing S and A states respectively in cycle
j; and δSi,j and δAi,j indicate if the task i makes memory be in S and A state

respectively, in cycle j. In other words, δAi,j is 1 if task i is executing a read, write

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 117

or activate (last tRCD cycles) command in cycle j, and 0 otherwise; and δSi,j is
1 if task i is executing a precharge or activate (first tXP cycles) command or if
it has pending commands in the memory controller while all banks are idle in
cycle j, and 0 otherwise. Note that, as stated before, memory occupancy is not
considered for metering energy to tasks since the memory regions not used by
the task under consideration cannot be turned off when idle. Hence, background
power remains the same regardless of the memory space used.

2) Dynamic energy for a task depends on the number of operations it performs,
as shown in the following equations:

Emem
dyn, total(Tki) = Emem

read ×#RD(Tki) + Emem
write ×#WR(Tki)

+ Emem
ACT ×#ACT (Tki) + Emem

PRE ×#PRE(Tki)
(2)

where Emem
read , E

mem
write, E

mem
ACT and Emem

PRE stand for the energy of each command,
and #RD(Tki), #WR(Tki), #ACT (Tki) and #PRE(Tki) stand for the num-
ber of memory internal commands executed by task i.

3) Refresh operations may have some side effects such as delaying some com-
mands issued by running tasks. However, this fact does not alter the energy
model. Also, refresh commands consume some energy to access the correspond-
ing rows. Since refresh operations are distributed evenly over time at a fixed rate
and they are not originated by any particular task, their energy is split evenly
across all running tasks. Thus, refresh energy per task is as follows:

Emem
refr, total(Tki) = Emem

refr ×#Ref × ExecT ime(Tki)/#Tk (3)

Emem
refr corresponds to the dynamic energy of a refresh command. #Ref cor-

responds to the average number of refresh operations performed per cycle.

4 DReAM, A Practical Approach to Per-Task Energy
Metering

Implementing the exact computation of the idealized energy model is expensive
— if at all feasible — due to the large number of events to be tracked, the
frequency at which they must be tracked, and the lack of information that the
processor has about the memory state. On the other end, metering memory
energy evenly among running tasks or proportionally to the number of accesses
that they perform requires minor changes to current architectures. However,
these approaches exhibit low estimation accuracy as shown later in Section 5.2.
Therefore, we propose DReAM, our per-task energy metering approach that trades
off energy metering accuracy and implementation complexity.

In DReAM memory model, dynamic and refresh energy can be easily tracked as
in the idealized model. This requires the memory vendor to provide the dynamic
energy per access type, namely Emem

read , E
mem
write, E

mem
ACT and Emem

PRE for tracking
dynamic energy and Emem

refr for tracking refresh energy, as well as the average
number of refresh operations per cycle (#Ref). These parameters are already
provided by chip vendors like Micron for DDR2/3 memories [16], so our model
imposes no change to current DDR2/3 memories. In the memory controller,

118 Q. Liu et al.

Table 3. DReAM hardware requirements

Block Memory Vendor Extra Logic

Memory Emem
read , Emem

write, #RD, #WR, #ACT , #PRE, #RD(Tki),
Emem

ACT , Emem
PRE , #WR(Tki), #ACT (Tki), #PRE(Tki),

Emem
PD , Emem

refr , #Ref IntMem cycle counter

we only require per-task activity counters, namely #RD(Tki), #WR(Tki),
#ACT (Tki) and #PRE(Tki). Total background energy, Emem

bg,total can be ob-
tained by metering memory energy consumption [10] and subtracting dynamic
and refresh energy. The PD background power is constant and hence easy to
track. Meanwhile, the remaining background energy, Emem

rem , is due to active and
standby periods (i.e. Emem

bg,total = Emem
PD + Emem

rem).
Our model distributes Emem

PD uniformly across all tasks, while Emem
rem is dis-

tributed based on access frequencies per task. To that end, we divide the execu-
tion into intervals of IntMem processor cycles and track the number of memory
accesses sent to the memory controller (in a per-task basis) in the current inter-
val. Thus, background energy is obtained as follows:

Emem
bg, total(Tki) =

Pmem
PD ×ExecT ime(Tki)

#Tk
+

ExecTime(Tki)
IntMem∑

j=0

#accessesTki
j × Emem

rem (j)

#TOTaccessesj

(4)

where Pmem
PD is the PD background power, #accessesTki

j tracks the number of
memory accesses of task i during interval j, and #TOTaccessesj tracks the
total number of memory accesses in interval j. Emem

rem (j) is the non-power-down
background energy in interval j, obtained by subtracting all other sources of
energy consumption from the total energy measured in the interval. Sensitivity
to the sampling interval (IntMem) is studied in the evaluation section.

Putting All Together

The DReAM approach requires little hardware overhead. DReAM mostly requires
setting up some counters similar to the PMCs currently available in most high-
performance processors. DReAM support does not interfere the execution of pro-
grams since it is not in any critical path. Table 3 summarizes those parameters
required from the memory vendor and the extra logic (i.e. counters) that must
be set up. Counters with the “(Tki)” suffix must be replicated for each task.

Regarding the interface with the software, the OS is responsible for keeping
track of the energy consumed by every task running in the system. DReAM exports
a special register, called Memory Energy Metering Register (MEMR), that acts
as the interface between DReAM and the OS. The OS can access that register to
collect the energy estimates made by DReAM. This typically will happen when a
context switch takes place. At that moment, the OS reads the MEMR using the
hardware-thread index (or CPU index) for the task that is being scheduled out
(Tout). Then, the OS aggregates the energy consumption value read in the task
struct for Tout. Right after the new task (Tin) is scheduled in, the memory state

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 119

Table 4. System Configuration

Main memory

Frequency and size 1000MHz, 8GB
Technology and supply voltage 65nm, 1.2V
Row-buffer management policy close-page
Address mapping scheme Shared Bank

Chip details

Core count 1, 4, 16 cores, single-threaded
Fetch, decode, issue, 2 instructions/cycle
commit bandwidth
Instruction & Data L1 32KB, 4-way, 32B/line (2 cycles hit)
Instruction & Data TLB 256 entries fully-associative (1 cycle hit)
LLC Size 256KB/core, 16-way, 64B/line (3 cycles hit + 12 cycles

L1 miss penalty and bus round trip)
256KB (1 core), 1MB (4 cores), 4MB (16 cores)

may remain at a particular state due to an access triggered by the task that has
been scheduled out. Although, DReAM attributes background energy consumption
to Tin, this occurs during few cycles (in the order of tens or hundreds of cycles).
Under a processor frequency of 2GHz, 500 cycles are equivalent to 0.25μs, while
context switches occur at much higher granularity, every 10-100ms.

As in [5], the time the OS spends working on behalf of a given task is attributed
to the calling task. The remaining energy consumed by the OS can be evenly
attributed to all running tasks. In any case, DReAM provides the hardware support
needed to attribute OS energy to tasks as required.

5 Evaluation

5.1 Experimental Setup

We use DRAMsim2 [15] to model off-chip main memory, a cycle-accurate mem-
ory system simulator for DDR2/3 memories including a memory controller and
DRAM memory. The processor is modeled with MPsim [18]. DRAMsim2 has
been connected to MPsim so that LLC misses are propagated to the memory
controller, which manages those memory requests. A power model based on Mi-
cron memories has been implemented in DRAMsim2.

We consider three Chip Multi-Processor (CMP) configurations with 1, 4 and
16 single-threaded cores. The second level cache (L2) is partitioned with 256KB
16-way per core. Therefore, L2 size is 256KB, 1MB and 4MB for 1, 4 and 16
cores respectively. These configurations have been chosen to discount the effect
of on-chip inter-task interferences due to shared resources (e.g., shared L2 cache),
thus allowing to consider memory effects only. Details about the configuration
can be found in Table 4. Other parameters are analogous to those in [5].

For the DRAM memory we model a 8GB memory since it is enough to support
the workloads used in this paper. DRAM memory is single-rank with 8 devices
per rank, 8 banks per device and 8 arrays per bank. DRAM memory row-buffer
management policy is close-page across all the evaluation section.

120 Q. Liu et al.

Benchmarks. We use traces collected from the whole SPEC CPU 2006 bench-
mark suite using the reference input set. Each trace contains 100 million in-
structions, selected using the SimPoint methodology [19]. Running all N-task
combinations is infeasible as the number of combinations is too high. Hence,
we classify benchmarks into two groups depending on their memory access fre-
quency. Benchmarks in the high-frequency group (denoted H) are those pre-
senting a memory access frequency higher than 5 accesses per 1,000 cycles when
running in isolation, that is: mcf, milc, lbm, libquantum, soplex, gcc, bwaves,
leslie3d, astar, bzip2, zeusmp, sphinx3 and omnetpp. The rest of the benchmarks
access with low frequency (denoted L). From these two groups, we generate
3 workload types denoted L, H and X depending on whether all benchmarks
belong to group L, H or a combination of both.

We generate 8 workloads per group and processor setup randomly, except for
the 1-core setup where all benchmarks run in isolation. In the case of X , half of
the benchmarks belong to L and the other half to H .

Metrics. In order to evaluate the accuracy of DReAM, we use as the reference
the ideal model. In each experiment, we measure the off estimation or prediction
error of each model with respect to the idealized model, which is computed as
follows, where N is the number of tasks in a workload.

WldPredError =

∑N
i=0 |Energyideali − Energymodeli |

Energymeasured
(5)

We then take the average WldPredError across all benchmarks in each work-
load analyzed in each processor setup.

5.2 DReAM Energy Estimation

In this section we show the accuracy of DReAM with respect to the ideal model
presented in Section 3. We also include the ES model that uniformly splits
energy across all running tasks regardless of their activity and memory behavior,
together with a simple Proportionally To memory Accesses model (PTA) that
splits energy across tasks proportionally to their memory accesses.

DReAM Sampling Interval (IntMem). The memory energy consumption pre-
diction of DReAM varies with different sample period (interval) lengths. When
choosing the interval length, we seek for a reasonable tradeoff between accuracy
and hardware cost, by regulating the interval period from 128 to half million pro-
cessor cycles. As expected, higher sampling frequency increases accuracy. How-
ever, discrepancy between short and long sampling periods is not huge (from
4.6% to 7.4% average WldPredError). Some meaningful average WldPredEr-
ror increase is observed when moving from a 512-cycles sampling interval to a
1024-cycles interval. Further increasing the interval size until reaching half mil-
lion cycles has little impact on accuracy since deviation from the ideal model
quickly flattens. Thus, we have chosen two different interval sizes with different
accuracy/cost tradeoff: 512 and 50K cycles sampling intervals.

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 121

Fig. 2. Per-task DRAM energy prediction error for 4-core workloads

DRAM Energy Consumption Prediction. Next we evaluate the off esti-
mation for 4-core and 16-core processor setups with respect to the ideal model.
The left half of Figure 2 shows the result for the 24 workloads (8 of each type)
under the 4-core setup. We observe that, in general, the ES model is highly in-
accurate averaging over 45% prediction error across all workloads, and ranging
from 26% to 69% for all workload types. Prediction is more accurate for L and
H workloads than for X ones. This is expected since benchmarks in L and H
workloads are more homogeneous, so their individual power consumption is also
more homogeneous than in X workloads. PTA model improves the estimation
accuracy, with an average prediction error around 24%. PTA accuracy is high
for H workloads since the large number of accesses of H benchmarks makes
energy cost more proportional to the number of accesses (dynamic energy be-
comes dominant). However, benchmarks in L group seldom access memory, so
their memory energy is mainly background energy, which PTA fails to predict
accurately.

Our DReAMmodel improves prediction accuracy significantly over both ES and
PTA. When the sample period granularity is 512 cycles, the prediction error is
always below 10%, and 3.9% on average. If the sampling period increases to 50K
cycles, the prediction error may reach 14.0% at most for one particular workload,
and 6.1% on average. The right half of Figure 2 shows results under the 16-core
setup. First, we observe that ES and DReAM accuracy remains similar to that of
the 4-core setup. In contrast, PTA accuracy slightly improves. The average predic-
tion error across all workloads for the ES model rises to 53%. The error increment
mainly comes from L workloads. A similar effect occurs for DReAM, thus making L
workloads to exhibit the lowest prediction accuracy. Trends for PTA are similar
to those for the 4-core setup, thus exhibiting higher accuracy forH workloads, al-
though accuracy for the 16-core setup is higher. This is due to the fact that, with
4 cores, a large deviation for one benchmark has significant impact in average re-
sults, but such average impact becomes lower across 16 tasks. However, maximum
error for individual benchmarks in each workload still remains high. Nevertheless,

122 Q. Liu et al.

PTA has an average prediction error above 10%, and around 23% for a particu-
lar workload. Opposably, DReAM error is below 5% on average (512-cycles interval)
and always below 8% across all workloads. Note that the gap between 512 and 50K
cycles sampling intervals for DReAM is still around 2%, as in the 4-core case. Our
results prove that DReAM is far more accurate than ES and PTA models across all
workload types, and average prediction error remains nearly the same for 4 and
16 cores, thus proving that DReAM scales well.

Using the same evaluation methodology, we have also validated the prediction
accuracy of DReAM under open-policy. However, results obtained did not offer any
further insight. Since many current DRAM chips implement low-power mode,
and so is DRAMsim2, the open banks under open-page policy transition quickly
to power down state when there is no incoming request. This fact makes open-
page policy perform similarly to close-page in multicore systems. Results are not
shown due to space constraints.

DReAM Energy Overhead. DReAM requires some hardware support in the form
of counters to track memory activity. Those counters are placed in the memory
controller, which in general is on-chip, so the memory devices remain unchanged.

As shown in Table 3, DReAM needs few counters (5 shared counters and 4 extra
counters per thread). 32-bit counters suffice to track the corresponding events.
Further, few of those counters are accessed on each memory access and at the
end of a sampling interval. We have considered the energy consumption for two
different sampling intervals: 512 and 50K cycles. Area and power overheads have
been derived with power models analogous to those of Wattch [20]. Wattch-like
power models are built on top of CACTI 6.5 simulation tool [21]. Results for
4-core and 16-core configurations show that the total energy and area overhead
for DReAM is largely below 0.1% of the memory system.

Furthermore, relative overheads do not change noticeably if the core count is
increased, which proves that DReAM scales well. Energy overheads for 512 cycles
sampling intervals are higher than for 50K intervals, but still under 0.1% for the
whole chip.

6 Conclusions

Different programs show highly different energy profiles in different components.
However, per-task memory energy metering has not been considered so far. In
this paper, we propose, for the first time, an ideal model to measure per-task
DRAM memory energy and devise DReAM, an efficient and accurate implementa-
tion of such ideal model. We show how DReAM achieves a prediction error between
3.9% and 4.7% w.r.t. the ideal model with negligible overhead for 4 and 16 core
setups respectively. The error is largely below the error introduced by approaches
such as even distribution and proportional-to-accesses distribution.

Acknowledgements. This work has been partially supported by the Spanish
Ministry of Science and Innovation under grant TIN2012-34557, the HiPEAC

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 123

Network of Excellence, by the European Research Council under the European
Union’s 7th FP, ERC Grant Agreement n. 321253, and by a joint study agree-
ment between IBM and BSC (number W1361154). Qixiao Liu has also been
funded by the Chinese Scholarship Council under grant 2010608015.

References

1. Barroso, L.: The Price of Performance. Queue 3(7) (2005)
2. Hamilton, J.: Internet-Scale Service Infrastructure Efficiency. In: ISCA (2009)
3. Jimenez, V., Gioiosa, R., Cazorla, F., Valero, M., Kursun, E., Isci, C., Buyukto-

sunoglu, A., Bose, P.: Energy-aware accounting and billing in large-scale computing
facilities. IEEE Micro 31(3), 60–71 (2011)

4. Bircher, W.L., John, L.K.: Complete system power estimation: A trickle-down
approach based on performance events. In: ISPASS (April 2007)

5. Liu, Q., Moreto, M., Jimenez, V., Abella, J., Cazorla, F.J., Valero, M.: Hardware
support for accurate per-task energy metering in multicore systems. ACM Trans.
Archit. Code Optim. 10(4) (December 2013)

6. Intel Corp.: Intel 64 and ia-32 architectures software developer’s manual (2012)
7. Phansalkar, A., Joshi, A., John, L.K.: Analysis of redundancy and application

balance in the SPEC CPU2006 benchmark suite. In: ISCA, pp. 412–423 (2007)
8. Pathak, A., Hu, C., Zhang, M., Bahl, P., Wang, W.M.: Fine-grained power mod-

eling for smartphones using system call tracing. In: EuroSys. (2011)
9. Chung, Y.F., Lin, C.Y., King, C.T.: ANEPROF: Energy profiling for android java

virtual machine and applications. In: ICPADS (2011)
10. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL: Memory

power estimation and capping. In: ISLPED (2010)
11. Intel Corp.: Intel xeon processor E5-2600 product family uncore performance mon-

itoring guide (March 2012)
12. Shen, K., Shriraman, A., Dwarkadas, S., Zhang, X., Chen, Z.: Power containers:

an os facility for fine-grained power and energy management on multicore servers.
In: ASPLOS (2013)

13. Bellosa, F.: The benefits of event-driven energy accounting in power-sensitive sys-
tems. In: ACM SIGOPS European Workshop, pp. 37–42 (2000)

14. Kestor, G., Gioiosa, R., Kerbyson, D., Hoisie, A.: Quantifying the energy cost of
data movement in scientific applications. In: IISWC, pp. 56–65 (September 2013)

15. Rosenfeld, P., Cooper-Balis, E., Jacob, B.: DRAMSim2: A cycle accurate memory
system simulator. IEEE Comput. Archit. Lett. (2011)

16. Micron: Calculating memory system power for DDR3. Micron Technical Notes
(2007)

17. Deng, Q., Meisner, D., Ramos, L., Wenisch, T., Bianchini, R.: Memscale: Active
low-power modes for main memory. In: ASPLOS (2011)

18. Acosta, C., Cazorla, F., Ramirez, A., Valero, M.: The MPsim simulation tool.
Technical Report UPC-DAC-RR-CAP-2009-15, UPC (2009)

19. Sherwood, T., Perelman, E., Calder, B.: Basic block distribution analysis to find
periodic behavior and simulation points in applications. In: PACT (2001)

20. Brooks, D.M., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-
level power analysis and optimizations. In: ISCA (2000)

21. Muralimanohar, N., Balasubramonian, R., Jouppi, N.: CACTI 6.0: A tool to un-
derstand large caches. HP Tech Report HPL-2009-85 (2009)

Characterizing the Performance-Energy Tradeoff

of Small ARM Cores in HPC Computation

Michael A. Laurenzano1,2, Ananta Tiwari1,3, Adam Jundt1, Joshua Peraza1,
William A. Ward, Jr.4, Roy Campbell4, and Laura Carrington1,3

1 EP Analytics
2 Dept. of Computer Science and Engineering, University of Michigan, USA

3 Performance Modeling and Characterization Lab.,
San Diego Supercomputer Center, USA

4 High Performance Computing Modernization Program, U.S. Dept. of Defense, USA
{michaell,ananta.tiwari,adam.jundt,joshua.peraza,

laura.carrington}@epanalytics.com,
{william.ward,roy.campbell}@hpc.mil

Abstract. Deploying large numbers of small, low-power cores has been
gaining traction recently as a system design strategy in high performance
computing (HPC). The ARM platform that dominates the embedded and
mobile computing segments is now being considered as an alternative
to high-end x86 processors that largely dominate HPC because peak
performance per watt may be substantially improved using off-the-shelf
commodity processors.

In this work we methodically characterize the performance and en-
ergy of HPC computations drawn from a number of problem domains
on current ARM and x86 processors. Unsurprisingly, we find that the
performance, energy and energy-delay product of applications running
on these platforms varies significantly across problem types and inputs.
Using static program analysis we further show that this variation can
be explained largely in terms of the capabilities of two processor sub-
systems: single instruction multiple data (SIMD)/floating point and the
cache/memory hierarchy; and that static analysis of this kind is suffi-
cient to predict which platform is best for a particular application/input
pair. In the context of these findings, we evaluate how some of the key
architectural changes being made for upcoming 64-bit ARM platforms
may impact HPC application performance.

1 Introduction

As large-scale high performance computing (HPC) systems have grown in size
and the scope of problems being solved, reducing their power consumption has
become a first-class problem. Indeed, many argue that power consumption is one
of the primary constraints on the size of upcoming HPC systems [4][5][20][27][30].
We see this impacting industry, academia, and government, where substantial
effort and resources are being marshaled to improve energy efficiency in HPC
centers. On the other hand, the problems being solved on HPC systems, ranging

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 124–137, 2014.
c© Springer International Publishing Switzerland 2014

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 125

from basic research to solving day-to-day problems in defense and industry, have
HPC users demanding more and more performance out of their systems.

In response to these forces, HPC system architects have sought out designs
that deliver higher performance with lower power budgets. One of the design
alternatives that has gathered much attention along these lines is to use a large
number of small, low-power cores in place of a smaller number of large, power-
hungry cores. In particular, ARM processors, the dominant platform in the em-
bedded and mobile computing domains, are being considered. The argument
for using a large number of ARM cores is twofold. First, low-power cores are
often more energy efficient than high-end cores [17]. Second, having come from
domains which have always been power constrained, ARM designs in particular
have been engineered to be frugal with power; careful attention having been
given to include only those features that are worth the extra power they con-
sume [7]. However, the question remains: are those features well-suited to HPC
applications?

Current 32-bit ARM platforms such as ARMv7 have limitations that preclude
their immediate use in modern HPC systems: only 4GB of memory are supported
per process [15], and the ISA and hardware support for vector math is limited [8].
Ameliorating these limitations is one of the purposes of ARMv8, a 64-bit version
of the ARM architecture, which is set to be released in early to mid 2014. Among
other improvements, ARMv8 includes the ability to natively address significantly
more than 4GB of memory, along with support for IEEE754 double-precision
(DP) math and vectorized DP operations [14]. Still, it remains unclear whether
these improvements will impact the ability of ARMv8 to deliver satisfactory
performance to broad classes of HPC applications, and to what extent they will
improve upon existing ARMv7 processors.

In this work, we characterize the performance and energy of ARM and x86
platforms by drawing compute kernels and applications from a number of HPC
problem domains. These benchmarks are methodically characterized in terms
of their performance and power on several ARMv7 (32-bit) and x86 processors.
We examine performance, energy and energy-delay product (EDP), finding that
these metrics vary by least an order-of-magnitude on a given implementation,
and that they depend on the specific features of the application being run. We
employ static program analysis on the benchmark kernels to characterize their
behavior in terms of memory and floating point operations. From these char-
acteristics, we develop simple regression models for performance, energy, and
EDP disparities across applications, finding that these are largely explainable
as functions of the memory and floating point characteristics of the compiled
application. Building upon this insight, we present a model for estimating how
performance is likely to change with improvements in the CPU and memory of
upcoming 64-bit ARMv8 systems, finding that both have significant impacts on
the performance of a broad class of applications.

The rest of this paper is structured as follows. Section 2 discusses work in the
literature related to this paper. Section 3 explains the experimental methodology
used in this work to assess the performance and power characteristics of HPC

126 M.A. Laurenzano et al.

applications. Section 4 presents a methodical evaluation of two ARM platforms
on a number of compute kernels and application benchmarks, followed by a
discussion of the factors underlying the performance and energy characteristics
of the applications and how these characteristics are likely to be impacted by
the introduction of 64-bit ARM platforms. Finally, Section 5 concludes.

2 Related Work

This section describes the related literature in two areas that intersect with our
work: using ARM cores in HPC and HPC Performance Modeling.

2.1 ARM in High Performance Computing

Rajovic et al. [26] evaluate the performance and energy efficiency of the Tegra
2, Tegra 3, and Quadro 1000M on a set of HPC microkernels. The Tegra 2
and 3 contain two and four core ARM Cortex-A9 processors respectively, and
the Quadro 1000M is a discrete mobile GPU. Padoin et al. [24] compare the
scalability and energy efficiency of a PandaBoard, Snowball, and Tegra 2 when
running High Performance Linpack. Ou et al. [23] compare energy and cost ef-
ficiency of a PandaBoard containing an ARM Cortex-A9 with an Intel Core2
Q9400 on three applications: web server throughput, an in-memory database,
and video transcoding. They find that the PandaBoard achieved the greatest
energy efficiency gains in less computationally intensive applications (the in-
memory database in their study). Fürlinger et al. build a cluster of second-
generation Apple TV devices which utilize an ARM Cortex-A8 [13]. They eval-
uate CPU and memory performance compared to a BeagleBoard and system
performance per watt running High Performance Linpack compared to systems
on the Green500 list.

Blem et al. [7] focus on the specific microarchitectural implementations of
ARM and x86 processors, comparing an ARM Cortex-A8, ARM Cortex-A9, In-
tel Sandybridge, and an Intel Atom. By showing that the Atom could achieve
similar energy consumption to the Cortex-A9 when controlling for microarchi-
tectural features, they conclude that ISA is not major determinant of energy
efficiency, instead finding that ARM and x86 implementations are simply differ-
ent engineering design points.

Our work complements this existing body of literature. Our contribution is
to document the performance and energy impact ARM cores have on a wide
range of HPC computational benchmarks, as well as to show that the variability
in performance and energy can largely be attributed to FP/SIMD computation
and interactions with the memory subsystem.

2.2 HPC Application Performance Modeling

Kerbyson et al. propose some of the seminal ideas in predictive application
performance and scalability modeling, showing that it is possible to accurately

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 127

model the performance for a single application and that the model depends on
specifics of the implementation of that application [18][19]. Several other works
show how to use an application-independent approach to modeling performance,
using a variety of application characteristics collected as traces of the running
application, then mixing those with the results of measurement microkernels that
are deployed on the system to predict performance for the application/system
pair [10][28]. Snavely et al. [29] show that while a cycle accurate simulator could
be very accurate, it was infeasible for a full-scale HPC application. Instead, they
show that it is possible to tractably predict performance using a few important
features.

Carrington et al. [9] show that simple combinations of metrics are infeasible
to use for precisely predicting HPC application performance. In this work we
show that even simple, static features of HPC applications can be employed to
provide useful insights into the direction and magnitude of their performance
and energy characteristics, even while precise performance prediction with those
features may not be feasible.

3 Analysis and Measurement Methodology

The aim of this work is to characterize an extensive set of HPC application bench-
marks in terms of their performance, energy and energy-delay product (EDP) on
a several ARM processor configurations. This section discusses the methodolog-
ical considerations made to develop these characterizations. We begin by dis-
cussing the performance measurement methodology, followed by a discussion of
a methodology for attributing the wall-level power draw to the workload running
on a system. Last, we describe a set of program analysis tools and methodologies
that are deployed in the evaluation to develop energy models.

3.1 Performance Measurement

This work evaluates a number of HPC application kernels and benchmarks for
performance and power. Our approach to measuring performance on application
kernels is to manually insert timing instrumentation around the key computa-
tional loops, avoiding measurement of initialization and finalization code such as
parsing arguments, reading files, allocating/freeing memory and output valida-
tion. The performance of these activities is important, yet in benchmark kernels
they tend to be greatly over represented as a fraction of runtime relative to their
runtime in full application codes. Many HPC benchmarking packages such as
the NAS Parallel Benchmarks [6], pcubed [21] and polybench [25] adopt a sim-
ilar rationale, providing (sometimes multiple) timers around important phases
of computational work.

3.2 Attributing Power to a Workload

The goal of our power measurement methodology is to isolate the power draw
consumed only by the CPUs running the application. To isolate the power draw

128 M.A. Laurenzano et al.

in this fashion we measure system-wide power draw during long-running com-
putational kernels at several core counts, with the purpose of deriving the power
contribution only of the cores actively involved in the computation. We begin
with the formulation of system-wide power shown in Equation 1.

W i
system = i ∗Wactive + (N − i) ∗Widle +Wother (1)

The elements of Equation 1 are i, the number of active cores, W i
system, the

measured power using i active cores andN , the total number of available cores on
the system. The goal of producing an equation in this form is to derive Wactive,
the power draw of a single active core, Widle, the power draw of a single idle core
and Wother , the power draw of all other system components. Because there are
three unknowns (Wactive, Widle and Wother), measurements at three core counts
(i = c1, c2, c3) is sufficient to produce system of equations, shown in Equation 2,
to which we can apply any of a number of numerical techniques to approximate
the unknowns. In this work we use Gaussian elimination.⎡⎣W c1

system

W c2
system

W c3
system

⎤⎦ = Wactive

⎡⎣c1c2
c3

⎤⎦+Widle

⎡⎣N − c1
N − c2
N − c3

⎤⎦+Wother

⎡⎣11
1

⎤⎦ (2)

This framing of the problem makes several assumptions. First, it assumes
that Wactive, Widle and Wother do not depend on the number of cores that are
active. For this assumption to hold, the workload must be carefully selected so
that each additional running instance of the kernel produces a similar additional
power draw increase. This means ensuring that running instances do not compete
with one another for processor resources like cache and interconnect, which would
introduce execution stalls and reduce circuit-level switching activity. Second, this
formulation resolves Wactive, Widle and Wother only for a particular benchmark.
Empirically, however, we found that Widle and Wother for a particular system
are stable across a range of computational kernels, indicating that these values
are relatively independent of the workload running on the system. Therefore,
we utilize this methodology for only a few kernels on each system to estimate
Widle and Wother for the system, allowing us to isolate the power per active
core for any workload by plugging the full system power measurement for that
workload W i

system, along with Widle and Wother, into Equation 1.

3.3 Program Static Analysis Tools

In this work we employ two binary analysis tools to analyze application codes.
In particular, we use the EPAX toolkit [12] to analyze the static properties of
ARM binaries and the PEBIL toolkit [22] on x86 binaries. Static binary analysis
is the act of examining a compiled binary program to extract information about
the properties of the code and data that reside within that program. EPAX
and PEBIL accomplish this by reading the executable from disk, parsing and
disassembling its contents, then writing out a file containing a number of details
about the machine-level instructions in the program as well the relationship

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 129

between those instructions such as their membership in high-level structures
such as basic blocks, loops, and functions. In this work, we use EPAX on ARM
binaries and PEBIL on x86 binaries to extract a number of features we expect
to be salient to HPC applications, including counts of floating point and vector
(SIMD) operations, along with the counts and properties of memory operations.
When possible to gather at compile-time, we augment the information gathered
by EPAX and PEBIL with information about the sizes of key data structures
within the important computational loops. As we show in Section 4.3, this array
of static properties is enough to make informative predictions about the direction
and magnitude of the relative amount of energy consumed when running the
application on ARM and x86 systems.

Table 1. Platform configurations

Intel Sandy Bridge ARM Cortex-A9 ARM Cortex-A15

Name Dell Poweredge T620 Dell Copper nCore BrownDwarf Y-class

Platform x86 64 64-bit ARMv7 32-bit ARMv7 32-bit

Processor 8-core 2.6GHz Xeon E5-2670 4-core 1.6GHz Marvell MV78460 4-core 1.4GHz TI 66AK2E05

D-Cache Shared 20MB L3, Priv. Shared 2MB L2, Priv. 32KB L1 Shared 4MB L2, Priv.

256KB L2, Priv. 32KB L1 32KB L1

Memory 32GB 1333MHz DDR3 4GB 1333MHz DDR3 2GB 1600MHz DDR3

FP/SIMD SSE, AVX VFPv3-D32, no SIMD VFPv4, NEON

Notes Turbo and HT disabled - c66x DSP cores disabled

Table 2. Benchmarks and applications

Type Programs Summary

Compute

Kernels

PolyBench[25] adi, atax, bicg, cholesky, doitgen,

dynprog, fdtd-2d, fdtd-ampl, gemver,

gesummv, grammschmidt, jacobi-2d,

mvt, seidel, symm, trisolv, trmm

Other covcol, dct, dsyr2k, dsyrk,

matmulinit, mm, stencil-3d, strmm,

strsm, swim, tce

linear algebra, data mining,

stencils

Application

Benchmarks

Mantevo[16] miniMD, CoMD, miniGhost

CORAL[1] AMGmk, MILCmk

Trinity[11] miniFE, GTC

molecular dynamics, finite

element, finite difference,

quantum chromodynamics,

plasma physics

4 Evaluation

4.1 Experimental Setup

We utilize three distinct platforms throughout this evaluation, summarized in
Table 1. These test platforms consist of a high-end Intel Sandy Bridge E5-2670,
a popular configuration among the largest modern supercomputers [2]. We also

130 M.A. Laurenzano et al.

use two energy-efficient ARM server platforms: a Cortex-A9 based Dell Cop-
per server and a Cortex-A15 based nCore BrownDwarf Y-class supercomputer.
For power measurement, we use a Yokogawa WT310 digital power meter [3]
to measure AC power draw of the entire system at the wall. Power measure-
ments for each benchmark run are then isolated using the approach described in
Section 3.2.

On our test platforms we deploy 28 compute kernels and 7 application bench-
marks, summarized in Table 2. Many of the compute kernels are drawn directly
from the Polyhedral Benchmark Suite [25], while others are augmented versions
thereof or hand-written compute kernels of our devising. For each compute ker-
nel we generate a total of eight configurations, consisting of the cross product
of double- and single-precision (DP and SP) versions of the benchmarks and
data set sizes that are large enough that they fit into each of the four levels of
the memory hierarchy on all systems (L1 , L2 and L3 Cache1 as well as main
memory). This yields a total of 224 compute kernels. The sizes of the four data
sets were chosen carefully so that both the DP and SP versions fit into the same
level of the memory hierarchy on all systems (SP data types generally consume
half the memory of their DP counterpart). For our particular test platforms,
we use 10-15KB of SP data for L1, 80-100KB of SP data for L2, 700-900KB
of SP data for L3 and 50-70MB of SP data for main memory. The seven ap-
plication benchmarks are also described in Table 2, which are drawn from the
Mantevo [16], CORAL [1] and NERSC-8 Trinity [11] benchmark suites and rep-
resent applications from among a number of unique computational domains. For
most applications we use both DP and SP versions. The exception to this is min-
iMD, for which we were unable to compile the DP version on either of the ARM
platforms. Benchmarks and applications are compiled with gcc, using optimiza-
tion level -O3 and vectorization support flags: -funsafe-math-optimizations
-mavx on the Sandy Bridge and -funsafe-math-optimizations -mfpu=neon2

on both ARM systems. We pin threads to cores to ensure that no thread migra-
tion occurs during any experimental runs. All performance, power, energy and
EDP numbers presented are the average of three runs.

4.2 Performance and Energy Characterization

We begin the evaluation by presenting performance and energy characteriza-
tions of the compute kernels and benchmark applications on all systems. Fig-
ure 1 shows distributions of the performance 1(a)-1(b), energy 1(c)-1(d) and
EDP 1(e)-1(f) for the compute kernels, grouped according to floating point pre-
cision (SP/DP) and which memory level the kernel exercises (L1/L2/L3/MM)
and normalized to the Intel Sandy Bridge system, where values greater than

1 Neither the Cortex-A9 nor the Cortex-A15 have L3 cache, and thus they have two
sizes that fit into main memory.

2 Without -funsafe-math-optimizations, SIMD NEON instructions will fail to ma-
terialize on the ARM systems because those instructions do not adhere to the
IEEE754 standard.

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 131

L
1

L
2

L
3

1

M
M L
1

L
2

L
3

1

M
M

0.5

1.0

2.0

5.0

10.0

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

(a) Cortex−A15 measured runtime

DP SP

L
1

L
2

L
3

1

M
M L
1

L
2

L
3

1

M
M

0.5

1.0

2.0

5.0

10.0

20.0

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

(b) Cortex−A9 measured runtime

DP SP

L
1

L
2

L
3

1

M
M L
1

L
2

L
3

1

M
M

0.05

0.10

0.20

0.50

1.00

N
o

rm
al

iz
ed

 E
n

er
g

y

(c) Cortex−A15 measured energy

DP SP

L
1

L
2

L
3

1

M
M L
1

L
2

L
3

1

M
M

0.05

0.10

0.20

0.50

1.00

2.00

5.00

10.00

N
o

rm
al

iz
ed

 E
n

er
g

y

(d) Cortex−A9 measured energy

DP SP

L
1

L
2

L
3

1

M
M L
1

L
2

L
3

1

M
M

0.02

0.05
0.10
0.20

0.50
1.00
2.00

5.00
10.00

N
o

rm
al

iz
ed

 E
D

P

(e) Cortex−A15 measured EDP

DP SP

L
1

L
2

L
3

1

M
M L
1

L
2

L
3

1

M
M

0.1

0.5
1.0

5.0
10.0

50.0
100.0

N
o

rm
al

iz
ed

 E
D

P

(f) Cortex−A9 measured EDP

DP SP

Fig. 1. Distributions of the runtime (a)-(b), energy (c)-(d) and energy-delay product
(e)-(f) for single-core compute kernels on ARM Cortex-A15 and Cortex-A9, relative
to Intel Sandy Bridge. Distributions are shown as box plots, which highlight the the
maximum (upper tail), 75th percentile (box upper-bound), median (line within box),
25th percentile (box lower-bound) and minimum (lower tail). Interested readers can
find more detailed charts at http://epanalytics.com/data/euro-par2014/.

one for runtime indicate ARM performance suffers relative to the Sandy Bridge
system, and values less than one for energy and EDP identify benchmarks that
are more energy efficient when executed on the ARM systems. Three interesting
trends can be observed. First, in almost all cases the SP versions of the kernels
show better characteristics on the ARM systems over their DP counterparts,
an issue that should be resolved on future 64-bit ARM systems. Second, there
is substantial variation in runtime even within a particular grouping of ker-
nels, suggesting that performance, energy and EDP have a substantial software

http://epanalytics.com/data/euro-par2014/

132 M.A. Laurenzano et al.

component, rather than being a simple property of the hardware. Third, the
larger the working set, the worse the efficiency is on the ARM systems. For
example, the Cortex-A15 energy results show that median L1-Cache energy im-
provement is more than double that of main memory energy improvement. This
suggests that there is room to improve the efficiency of HPC applications by im-
proving the cache and memory architecture of the ARM platforms. We refer the
interested reader to http://epanalytics.com/data/euro-par2014/ to find a
more detailed treatment of these charts.

In Figure 2, we present similar findings on the performance 2(a), the energy
2(b) and the energy-delay product 2(c) for the application benchmarks.

0

5

10

15

20

25

30

N
o
rm

a
li

z
e
d

 R
u

n
ti

m
e (a) Runtime

Cortex-A15 Cortex-A9

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N
o
rm

a
li

z
e
d

 E
n

e
rg

y (b) Energy

Cortex-A15 Cortex-A9

m
in

iM
D

-S
P

m
in

iF
E

-S
P

m
in

iF
E

-D
P

A
M

G
m

k
-S

P

A
M

G
m

k
-D

P

G
T

C
-S

P

G
T

C
-D

P

M
IL

C
m

k
-S

P

M
IL

C
m

k
-D

P

C
o
M

D
.e

o
m

-S
P

C
o
M

D
.e

o
m

-D
P

C
o
M

D
.l

j-
S

P

C
o
M

D
.l

j-
D

P

m
in

iG
h

o
s
t.

lr
g

-S
P

m
in

iG
h

o
s
t.

lr
g

-D
P

m
in

iG
h

o
s
t.

s
m

l-
S

P

m
in

iG
h

o
s
t.

s
m

l-
D

P

M
E

A
N

-S
P

M
E

A
N

-D
P

M
E

A
N

10
0

10
1

10
2

N
o
rm

a
li

z
e
d

 E
D

P

(c) Energy-delay product

Cortex-A15 Cortex-A9

Fig. 2. Runtime (a), energy (b) and energy-delay product (c) for quad-core application
benchmarks on an ARM Cortex-A15 and Cortex-A9, relative to an Intel Sandy Bridge.
Note that (c) is plotted on a log scale.

4.3 Attributing Energy Characteristics to Static Program Features

In Section 3.3, we described two static binary analysis tools, PEBIL for x86
and EPAX for ARM, which were employed to collect information about the the

http://epanalytics.com/data/euro-par2014/

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 133

0.0

0.2

0.4

0.6

0.8

1.0

1.2

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●
●●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●

●●●●●●●
●●●●

●●
●●●

●●
●

●●

●

(a) Cortex−A15 DP energy
N

o
rm

al
iz

ed
 E

n
er

g
y

Kernel (ordered by measured energy)

● Measured

Modeled

0.0

0.2

0.4

0.6

0.8

1.0

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●●●
●●●

●●●●
●
●

●●

(b) Cortex−A15 SP energy

N
o

rm
al

iz
ed

 E
n

er
g

y

Kernel (ordered by measured energy)

● Measured

Modeled

0.0

0.5

1.0

1.5

2.0

●●
●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●
●●●●

●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●

●●●●
●●
●
●●●●

●●
●●
●
●

(c) Cortex−A9 DP energy

N
o

rm
al

iz
ed

 E
n

er
g

y

Kernel (ordered by measured energy)

● Measured

Modeled

0

1

2

3

4

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●

●●●●●●●●
●●●●●●●●

●●●●●
●●●●●

●●
●●●●

●●
●●●

●●●
●●
●●

●●

●

(d) Cortex−A9 SP energy

N
o

rm
al

iz
ed

 E
n

er
g

y

Kernel (ordered by measured energy)

● Measured

Modeled

Fig. 3. Measured and modeled energy for Cortex-A15 (a)-(b) and Cortex-A9 (c)-(d).
A statistical measure of the variation in kernel energy that is explained by the models
(adjusted R-squared) is (a) 90%, (b) 64%, (c) 80% and (d) 76%.

memory/cache and floating point/SIMD operations that reside within the key
loops of the compute kernels. Specifically, we collect the counts of instructions,
memory operations, floating point operations, the number of bytes moved per
memory operation, and the size of the key data structure(s) in the loop. We then
use multivariate linear regression to build models of the energy consumption
(normalized to Sandy Bridge) of the compute kernels as a function only of these
terms and some of their simple variants (e.g., floating point ops per instruction),
along with 10-fold cross validation on the models. Figure 3 shows the measured
and modeled energy consumption for the Cortex-A15 3(a)-3(b) and the Cortex-
A9 3(c)-3(d), again normalized to the Intel Sandy Bridge.

Two interesting features are apparent from Figure 3. First, we observe that
the models capture a significant fraction of the variation in energy across the
compute kernels. Visually, this can be seen where the shape of the modeled
energy points follows the shape of the measured energy points. A statistical
measure of this property is given by the adjusted R-squared of the model [31].
Adjusted R-squared is the percentage of variation captured by the model, where
a perfect model would capture 100%. The models shown in Figures 3(a), 3(b),
3(c) and 3(d) have adjusted R-squared measures of 90%, 64%, 80% and 76%
respectively. Qualitatively, the models account for the majority of the energy
variation across benchmarks. Second, the models are able to correctly predict
which system uses the least energy to run a particular compute kernel in 210 of
the 224 kernels. We take care to note that these models are imprecise, lacking

134 M.A. Laurenzano et al.

exactness in the energy prediction of any particular compute kernel. Neverthe-
less, they are surprisingly useful for estimating the direction and magnitude of
the energy difference between the ARM and x86 systems.

1.0

1.2

1.4

1.6

1.8

2.0

(a) Compute kernels

S
p
ee

d
u
p

●

●

●

●

●
●

●

●

●
●

●

●●
●●●

●

●

●

●

●●
●

●

●
●

●

●

●

●●
●

●

●
●●
●●
●

●

●
●

●
●
●●
●●●●
●●●

●
●●●●●●

●●●●●
●●●●●●●●●●●●●●

●

●●
●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●
●●●
●

●
●●
●
●●●
●
●
●●●●●
●
●

●

●

SP/DP Kernels (ordered by speedup)

●

Fast CPU + Fast Memory

Fast CPU m
in

iM
D

-S
P

m
in

iF
E

-S
P

m
in

iF
E

-D
P

A
M

G
m

k
-S

P
M

IL
C

m
k
-S

P
M

IL
C

m
k
-D

P
C

o
M

D
.e

o
m

-S
P

C
o
M

D
.e

o
m

-D
P

C
o
M

D
.l

j-
S

P
C

o
M

D
.l

j-
D

P
m

in
iG

h
o
s
t.

lr
g

-S
P

m
in

iG
h

o
s
t.

lr
g

-D
P

m
in

iG
h

o
s
t.

s
m

l-
S

P
m

in
iG

h
o
s
t.

s
m

l-
D

P
M

E
A

N
-S

P
M

E
A

N
-D

P
M

E
A

N

1.0

1.2

1.4

1.6

1.8

2.0

S
p

e
e
d

u
p

(b) Application benchmarks

Fast CPU + Fast Memory

Fast CPU

Fig. 4. Estimated speedup conferred by CPU and memory speed improvements in 64-
bit ARM systems for (a) compute kernels (b) and application benchmarks. The thick
red line shows the theoretical speedup that would be achieved if scaling by the CPU
clock rate increase (2.6/1.6 = 1.625).

4.4 Implications for 64-Bit ARM

Implementations of 64-bit ARM platforms are expected to arrive in early to mid
2014. It is widely anticipated that 64-bit ARM will improve upon the current 32-
bit implementations by offering higher clock rates, improvements in the memory
architecture, and more complete vector math support, for example by supporting
2-wide DP SIMD operations and fully adhering to the IEEE754 standard. We es-
timate the impact of these factors on performance by examining the relationship
those factors have to performance on the Sandy Bridge system. In particular,
we dial down the memory and processor clock frequencies on the Sandy Bridge
system to 800MHz and 1.6GHz respectively to measure the speedup between the
low and high clock rate runs, which represents how much benefit is conferred to
the application by running on hardware which has faster compute and memory
resources. Similarly, we estimate the impact of faster CPU only by dialing down
only the memory. The estimated speedups produced by this approach are pre-
sented in Figure 4, showing in 4(a) that increasing a slow clock rate by a factor
of 1.625 confers a speedup of at least 1.625x for a majority (81%) of compute
kernels. This suggests that clock rate increases in 64-bit ARM systems are likely
to show substantial improvements for the performance of many HPC applica-
tions. In 4(b), we present the application benchmarks speedups when speeding
up only the CPU clock rate (blue/dark), and both the CPU and memory clock
rates (orange/light). From these results and the results in 4(a), we can infer

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 135

that increases in the speed of the cores, as opposed to the memory, account for
the largest share of the speedups in the applications. We conclude from these
insights that improvements in the clock rates of 64-bit ARM implementations
are likely to have a substantial benefit to HPC applications, while memory speed
plays a significant but quantitatively less important role.

5 Conclusion

Using a large number of small, low-power cores has been gaining ground as
a design strategy to improve the energy efficiency of upcoming HPC systems.
As ARM is the dominant platform in the mobile and embedded computing
segments, many believe that ARM is a viable competitor to the high-end x86
systems that make up a substantial fraction of large-scale HPC systems today.
In this work, we methodically documented the performance and energy charac-
teristics of a number of HPC computations on several current ARM platforms.
We found that performance and energy efficiency of the ARM systems varies by
up to an order-of-magnitude and depends on the computational and memory
characteristics of the application. Moreover, we showed that this variability can
be described as a function of two important processor subsystems: the floating
point/SIMD unit and the cache/memory hierarchy. Finally, we investigated the
performance implications that 64-bit ARM systems will have, finding that HPC
applications stand to benefit substantially from changes in the CPU and memory
subsystems.

Acknowledgments. This work was supported in part by the U.S. Department
of Defense HPCMP PETTT program (Contract No: GS04T09DBC0017 though
DRC) and by the U.S. Air Force Office of Scientific Research under AFOSR
Award No. FA9550-12-1-0476. We also wish to thank Mr. Tim Carroll and Dr.
Mark Fernandez of Dell for providing early access to the Cortex-A9 based Dell
Copper ARM server.

References

1. CORAL Benchmark Codes (2013), https://asc.llnl.gov/CORAL-benchmarks/
2. The Top 500 list (November 2013), http://www.top500.org
3. Yokogawa: WT300 Series Digital Power Meters, http://tmi.yokogawa.com/

us/products/digital-power-analyzers/digital-power-analyzers/wt300-

series-digital-power-meters/

4. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., et al.: The landscape of
parallel computing research: A view from berkeley. Technical report, Technical Re-
port UCB/EECS-2006-183, EECS Department, University of California, Berkeley
(2006)

5. Attig, N., Gibbon, P., Lippert, T.: Trends in supercomputing: The european path
to exascale. Computer Physics Communications 182(9), 2041–2046 (2011)

https://asc.llnl.gov/CORAL-benchmarks/
http://www.top500.org
http://tmi.yokogawa.com/us/products/digital-power-analyzers/digital-power-analyzers/wt300-series-digital-power-meters/
http://tmi.yokogawa.com/us/products/digital-power-analyzers/digital-power-analyzers/wt300-series-digital-power-meters/
http://tmi.yokogawa.com/us/products/digital-power-analyzers/digital-power-analyzers/wt300-series-digital-power-meters/

136 M.A. Laurenzano et al.

6. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The nas
parallel benchmarks summary and preliminary results. In: Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, 1991, pp. 158–165. IEEE (1991)

7. Blem, E.R., Menon, J., Sankaralingam, K.: Power struggles: Revisiting the risc
vs. cisc debate on contemporary arm and x86 architectures. In: HPCA, pp. 1–12
(2013)

8. Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., Kurzak, J.: Mixed
precision iterative refinement techniques for the solution of dense linear systems.
International Journal of High Performance Computing Applications 21(4), 457–466
(2007)

9. Carrington, L., Laurenzano, M., Snavely, A., Campbell, R.L., Davis, L.P.: How well
can simple metrics represent the performance of hpc applications? In: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, SC 2005, p. 48. IEEE
Computer Society, Washington, DC (2005)

10. Carrington, L., Snavely, A., Gao, X., Wolter, N.: A performance prediction frame-
work for scientific applications. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V.,
Gorbachev, Y.E., Dongarra, J. J., Zomaya, A.Y. (eds.) ICCS 2003, Part III. LNCS,
vol. 2659, pp. 926–935. Springer, Heidelberg (2003)

11. Cordery, M., Austin, B., Wassermann, H., Daley, C., Wright, N., Hammond, S.,
Doerfler, D.: Analysis of cray xc30 performance using trinity-nersc-8 benchmarks
and comparison with cray xe6 and ibm bg/q (2013)

12. Analytics, E.P.: EPAX Toolkit: Binary Analysis for ARM (2014),
http://epaxtoolkit.com/

13. Fürlinger, K., Klausecker, C., Kranzlmüller, D.: Towards energy efficient parallel
computing on consumer electronic devices. In: Kranzlmüller, D., Toja, A.M. (eds.)
ICT-GLOW 2011. LNCS, vol. 6868, pp. 1–9. Springer, Heidelberg (2011)

14. Goodacre, J.: Technology preview: The armv8 architecture. White Paper (Novem-
ber 2011)

15. Goodacre, J., Cambridge, A.: The evolution of the arm architecture towards big
data and the data-centre. In: Proceedings of the 8th Workshop on Virtualization
in High-Performance Cloud Computing, p. 4. ACM (2013)

16. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Sandia National Laboratories, Tech. Rep.
(2009)

17. Hölzle, U.: Brawny cores still beat wimpy cores, most of the time. IEEEMicro 30(4)
(2010)

18. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings, M.:
Predictive performance and scalability modeling of a large-scale application. In:
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (CDROM),
Supercomputing 2001, pp. 37–37. ACM, New York (2001)

19. Kerbyson, D.J., Jones, P.W.: A performance model of the parallel ocean program.
Int. J. High Perform. Comput. Appl. 19(3), 261–276 (2005)

20. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carson, W., Dally, W., Denneau,
M., Franzon, P., Harrod, W., Hill, K., et al.: Exascale computing study: Technology
challenges in achieving exascale systems (2008)

21. Laurenzano, M.A., Meswani, M., Carrington, L., Snavely, A., Tikir, M.M., Poole,
S.: Reducing energy usage with memory and computation-aware dynamic fre-
quency scaling. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011,
Part I. LNCS, vol. 6852, pp. 79–90. Springer, Heidelberg (2011)

http://epaxtoolkit.com/

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 137

22. Laurenzano, M.A., Tikir, M.M., Carrington, L., Snavely, A.: Pebil: Efficient static
binary instrumentation for linux. In: 2010 IEEE International Symposium on Per-
formance Analysis of Systems & Software, ISPASS 2010, pp. 175–183. IEEE (2010)

23. Ou, Z., Pang, B., Deng, Y., Nurminen, J.K., Yla-Jaaski, A., Hui, P.: Energy- and
cost-efficiency analysis of arm-based clusters. In: Symposium on Cluster, Cloud
and Grid Computing, CCGRID (2012)

24. Padoin, E.L., de Oliveira, D.A., Velho, P., Navaux, P.O., Videau, B., Degomme,
A., Mehaut, J.-F.: Scalability and energy efficiency of hpc cluster with arm mpsoc

25. Pouchet, L.-N.: PolyBench: The Polyhedral Benchmark suite (2012),
http://www.cse.ohio-state.edu/~pouchet/software/polybench/

26. Rajovic, N., Rico, A., Vipond, J., Gelado, I., Puzovik, N., Ramirez, A.: Experiences
with mobile processors for energy efficient hpc. In: Design, Automation and Test
in Europe Conference and Exhibition, DATE (2013)

27. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010.
LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011)

28. Sharkawi, S., DeSota, D., Panda, R., Stevens, S., Taylor, V., Wu, X.: Swapp: A
framework for performance projections of hpc applications using benchmarks. In:
Proceedings of the 2012 IEEE 26th International Parallel and Distributed Process-
ing Symposium Workshops & PhD Forum, IPDPSW 2012, pp. 1722–1731. IEEE
Computer Society, Washington, DC (2012)

29. Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., Purkayastha, A.:
A framework for performance modeling and prediction. In: Proceedings of the
2002 ACM/IEEE Conference on Supercomputing, Supercomputing 2002, pp. 1–
17. IEEE Computer Society Press, Los Alamitos (2002)

30. Snir, M., Gropp, W., Kogge, P.: Exascale research: Preparing for the post–moore
era (2011)

31. Vogt, W.P., Johnson, R.B.: Dictionary of statistics & methodology: A nontechnical
guide for the social sciences. Sage (2011)

http://www.cse.ohio-state.edu/~pouchet/software/polybench/

On Interactions among Scheduling Policies:

Finding Efficient Queue Setup Using
High-Resolution Simulations

Dalibor Klusáček1,2 and Šimon Tóth1,2

1 CESNET a.l.e., Zikova 4, Prague, Czech Republic
2 Faculty of Informatics, Masaryk University

Botanická 68a, Brno, Czech Republic
{xklusac,toth}@fi.muni.cz

Abstract. Many studies in the past two decades focused on the prob-
lem of efficient job scheduling in HPC and Grid-like systems. While many
new scheduling algorithms have been proposed for systems with specific
requirements, mainstream resource management systems and schedulers
are still only using a limited set of scheduling policies. Production sys-
tems need to balance various policies that are set in place to satisfy both
the resource providers and users (or virtual organizations) in the system.
While many works address these separate policies, e.g., fairshare for fair
resource allocation, only few works try to address the interactions be-
tween these separate solutions. In this paper we describe how to approach
these interactions when developing site-specific policies. Notably, we de-
scribe how (priority) queues interact with scheduling algorithms, fair-
share and with anti-starvation mechanisms. Moreover, we present a case
study describing how an advanced simulation tool was used to find new
configuration for an actual resource manager deployed in the Czech Na-
tional Grid, significantly increasing its performance.

Keywords: Scheduling, Queues, Fairshare, Simulation.

1 Introduction

For many years, researchers have been searching for a perfect job scheduling
algorithm that would improve the performance of HPC and Grid-like systems.
Still, there are few algorithms that are being used in practice [18] as can be seen in
many production schedulers applied in nowadays general resource management
systems. For example, the core of the system is generally based on the trivial first
come first served (FCFS) approach and backfilling is typically the most advanced
option available [2,1,17,18]. Since backfilling has been proposed in 1995 [13], it
is obvious that there is some misunderstanding between the research community
and system administrators concerning “what is really important”.

In this paper we show that the problem of operating a production scheduler
is far more complex than just choosing a proper scheduling algorithm. Using
our experience from Czech National Grid Infrastructure MetaCentrum [14] we

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 138–149, 2014.
c© Springer International Publishing Switzerland 2014

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 139

explain several additional challenges that appear when searching for a functional
solution. These problems are related to the fact that real systems must meet far
more complicated requirements than those that are typically considered in classi-
cal research papers. For example, real life systems have to focus on maintaining
fairness among users of the system [9,19], rather than just trying to optimize
simple criteria like the average slowdown or makespan. In practice, it quickly
turns out that those widely used “theoretical” models and optimization goals
are mostly impractical in real life [5,18].

The contribution of this paper is based on our ability to provide detailed in-
sight into a real, complex job scheduling system. In detail, we explain several
important features that current resource managers offer to the system admin-
istrator in order to establish robust, efficient and fair computing infrastructure
(Section 2). In Sections 3 and 4, we provide a real life example from MetaCen-
trum, describing how the actual resource manager has been reconfigured in order
to increase the overall performance and fairness. Furthermore, Section 5 demon-
strates how advanced simulation and evaluation tools can be used to evaluate
new possible setups of complex scheduling systems prior actual deployment. We
conclude the paper in Section 6.

2 Main Components of a Resource Management System

Resourcemanagements systems are rather conservative in their choices of schedul-
ing policies and mostly rely on well established and robust approaches [18]. The
desired overall behavior is then achieved through the interactions of a chosen set
of policies and additional mechanisms. This section describes these commonly
employed components of resource management systems and their impacts.

2.1 Ordering Policy

Ordering policies determine the order of jobs in which they are then processed
by a scheduling policy. Resource management systems usually provide a set of
static ordering policies (ordering between two jobs does not change once estab-
lished) as well as dynamic policies. Jobs can be either kept in the order of their
arrival (static ordering), or can be ordered dynamically according to their length
(Shortest Job First, Longest Job First), according to their resource requirements
(Largest CPU/Memory Requirements First,. . .) or their (user configured) pri-
ority. Combinations of ordering policies are also possible [1,7].

Fairshare is a dynamic priority ordering policy designed to provide user-to-
user fairness. Job ordering is usually based on users previous resource consump-
tion [7,12]. Typically, the more resources a user consumes the lower her priority
becomes. Fairshare self-balances itself around an equilibrium where all users have
consumed the same amount of resources. Practical implementations of fairshare
also reflect aging [7] by periodically decreasing all recorded consumption using
so called decay factor [1]. This is suitable for systems with faster job turnaround
times that put higher emphasis on more recent resource consumption.

140 D. Klusáček and Š. Tóth

2.2 Scheduling Policy

Commonly used scheduling policies range from trivial FCFS, aggressive back-
filling (no reservations), to EASY [13] or Conservative backfilling [7], each with
it’s own shortcomings. FCFS guarantees the execution of jobs in the order of
arrival by considering the first job only (provided by the ordering policy). FCFS
will wait until the first job can be executed and only then continues processing
the rest of the jobs. EASY backfilling [13] builds on top of FCFS but instead
of strictly following the job order as mandated by the ordering policy it only
guarantees the earliest possible start for the first job. Other jobs are allowed to
start, as long as they do not interfere with the first job’s reservation. Conserva-
tive backfilling extends EASY by providing reservation for every job that cannot
start immediately. Remaining jobs are allowed to start as long as they do not
interfere with any previously established reservation. The notions of “first job”
and the order of jobs are mandated by the ordering policy as was described in
Section 2.1.

Job starvation is an undesirable process where a particular job (or a user)
is subject to excessive wait time due to the presently configured policies. The
notion of excessive is of course subject to interpretation. For example, fairshare
ordering priority will deliberately cause starvation of users with recent high re-
source consumption, which is however considered desirable. FCFS and Conser-
vative backfilling algorithms provide anti-starvation mechanisms, guaranteeing
that jobs are not undesirably delayed. More aggressive forms of backfilling like
EASY or aggressive backfilling need to be combined with other mechanisms
in order to prevent starvation, as they can delay the execution of certain jobs
without any bounds [15].

2.3 Queue Configuration

Previously presented policies provided by resource management systems are rela-
tively simple. At the same time, a single policy cannot cover the usually complex
requirements used in production systems. To deal with more complex require-
ments, resource management systems provide the notion of queues which can be
configured separately. Then, it is the interaction between queue-specific policies
and the global system policies that dictates the overall behavior of the system.

Queues can handle different policies, that are mostly represented by a set
of various limits [1,2,17]. These limits then apply on jobs that are executed
from that queue. The limits usually cover per-user, per-group and per-queue
limitations concerning the maximum number of running jobs and/or amount
of particular resource type (e.g., CPU cores). Queues can also be configured to
have access to only a subset of available resources, e.g., limiting a queue to a
particular cluster of machines. Such policy establishes pools of resources, where
several queues can compete for a limited set of resources, thus preventing a
(potentially dangerous) saturation of the entire system.

While such configuration can increase resource fragmentation [7], it is neces-
sary when dealing with different classes of users accessing the system. We need to

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 141

be very careful when saturating the system with jobs from a single user, or even
when saturating the system with a single class of jobs. For example, saturating
the system with long running jobs (i.e., jobs with expected runtime of several
weeks) will naturally lead to great deterioration in performance characteristics
of the system (e.g., huge wait times for shorter jobs).

Such situations are approached in different manners. For example, in Zeus
cluster in PL-Grid, all long jobs as well as jobs that require whole node(s) are
planned ahead using reservations which enables the forward detection of poten-
tial problems [4]. In Ohio Supercomputer Center several combined approaches
are used together. For example, long serial jobs are only allowed if a user is able
to reasonably explain why he or she needs to run such a long experiment [16].
Moreover, parallel jobs have in general smaller maximal runtime limit compared
to sequential jobs. Also, per-user and per-group limits are used together with
fairshare accounting [16].

Surprisingly, we are not aware of any work that would describe how to deter-
mine suitable combinations of global policies and queue configurations. Clearly,
a more in-depth analysis must be performed to better understand these issues.
We provide such a case study in the following text.

3 Configuration of MetaCentrum Resource Manager

So far, we have provided an overview of several techniques that are available in
current resource management systems. In the remaining text we demonstrate
how these techniques interact together. We also describe how existing setup
can be significantly improved by proper reconfiguration, using a real-life based
example from MetaCentrum (Sections 4 and 5).

Before we start, we would like to stress out that there is no widely accepted and
universal definition describing “the one and only suitable setup of the system”. In
fact, different people and/or organizations may have different notion of “what is
efficient” when it comes to job scheduling. In this paper, we use examples coming
from the Czech NGI MetaCentrum. The approaches and solutions presented in
the following sections are presented in the context of this system. Still, we believe
that they are applicable to a wide range of systems.

3.1 Historical Setup

Historically, MetaCentrum used three major queues (long, normal, short) that
had different maximum walltime limits per job (30 days, 24 hours, 2 hours),
different priorities (70, 50, 60) and different limits on maximum running con-
current jobs of one user (70, 300, 250). Together with the user limits, long and
short queues were also limited to a subset of machines. Using the combination of
priorities, user limits and limited resource pools the system originally provided
balanced performance for each of the three job classes (under 2 hours, 2-24 hours,
up to 30 days). There was also a low priority (20) queue called backfill that
only accepted single node jobs (max limit per user is 1000) that run up to 24

142 D. Klusáček and Š. Tóth

hours. Beside these, there were several other queues for special purposes, e.g.,
administrator’s testing queue. Still, majority of jobs used those 4 main queues.
A scheme of the historical setup is shown in Fig. 1.

Fig. 1. Historical queues setup as applied in MetaCentrum

Jobs were dynamically ordered within queues using priorities based on fair-
share [7]. A backfill-like algorithm was used to scan the queues, starting with
the highest priority queue. It immediately started every job that could execute.
Those jobs that could not start immediately received reservations using an anti-
starvation mechanism (see Section 2). A reservation blocked every node that
was potentially suitable to execute a job, that is any node that is capable of
providing the requested amounts of resources and properties. This approach has
been applied as classical reservations computed according to estimated comple-
tion times of jobs were very imprecise. This was caused by the fact that users
of the system often did not provide detailed runtime estimates, instead simply
choosing one of the job classes available (under 2 hours, 2-24 hours, up to 30
days). By reserving all suitable nodes the scheduler was able to guarantee the
earliest possible start time, at the cost of decreasing opportunities for backfilling.

3.2 Problems with Historic Setup

The major problem with the historic setup was that it only used one queue for
jobs longer than 1 day. Therefore, this queue had to be used by every job that was
expected to last longer than 24 hours. At the same time, it was also used by very
long jobs that are “dangerous” as we have explained in Section 2.3. Therefore, the
queue had quite strict limits concerning number of available CPUs (1440), while
short, backfill and normal had significantly larger pools of CPUs (2300, 2000
and 2400, respectively). While such a restriction was necessary, it was obvious
that it limits efficient usage of resources.

For example, our historic workload logs indicated that majority of utilized
CPU time was based on jobs from long queue. An example of job arrivals and

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 143

Fig. 2. Job arrivals (top) and used CPU time (bottom) per week and queue

CPU time distribution with respect to queues is shown in Fig. 2. Clearly, long
queue, having the least CPUs was at the same time responsible for the most of
the overall utilization (see Fig. 2 (bottom)).

4 Proposed Modifications of the Scheduling Scheme

After performing detailed analysis of historic workloads, MetaCentrum manage-
ment decided that a new setup of the whole scheduling system must be devel-
oped. We now present main features of the two new setups that were proposed
and evaluated (Section 5), in order to remove aforementioned inefficiencies.

4.1 Conservative Extension

The first considered modification was rather conservative. The main goal was to
increase the pool of available CPUs for longer jobs. In the first step, long queue
has been refined into 5 queues. The one with the longest maximum job walltime
limit is called q 2w plus (up to 30 days) and has the maximum priority. Next,
there are q 2w, q 1w, q 4d, q 2d with decreasing priorities and walltime limits (2
weeks, 1 week, 4 days and 2 days, respectively). Normal and short queues are
now called q 1d and q 2h while q 4h is a new queue with walltime limit being 4
hours. The scheme of the system with newly refined queues is shown in Fig. 3.

Once the long queue has been replaced with several new queues it is now pos-
sible (and safe) to increase the number of CPUs for selected newly created queues
as is shown in Fig. 3. Importantly, we have significantly increased the number of
CPUs for jobs lasting at most 2 weeks, while very long jobs (q 2w plus) obtain
at most 1024 CPUs1. No other modifications were considered in this scheme.
1 Different queues may share some CPUs, i.e., in general, CPUs available for a given
queue are not exclusively reserved for such a queue.

144 D. Klusáček and Š. Tóth

Fig. 3. The scheme of queues with refined walltime limits

4.2 Complex Extension

While the conservative modification described in the previous section was rather
simple and straightforward, we also tried to develop a more complex modifica-
tion that would also address overall fairness and efficiency of the anti-starvation
mechanism.

Concerning fairshare, we have replaced the original single-resource aware
mechanism that only reflected CPU consumption with a new multi-resource
aware solution that also reflects RAM consumption. As discussed in the litera-
ture, single-resource based fairshare is highly unfair for heterogeneous systems
and workloads [6,8,12]. Beside the fairshare metric itself, we have also started
to consider the effect of newly added queues on fairness. For example, if a job
has low priority (due to the fairshare) but ends up in a high priority queue (due
to its walltime) it will often start much earlier than a high priority job resid-
ing in a low priority queue, which is highly unfair. Therefore, we have proposed
more complex modification of the scheduling scheme, which extends the previ-
ous conservative, multi-queue setup. In this case, the queues are only used to
(1) setup CPU limits and (2) provide information on job’s maximum walltime
(if not specified directly by a user). All (major) queues have the same priority,
i.e., the ordering in which a job is being selected for execution is now only based
on a given user’s fairshare. Therefore, those queues are now only “virtual” and
the actual scheduling process is performed over one single queue that contains
all jobs from those “virtual” queues, as depicted in Fig. 4.

In the second step, we have proposed a modification of the anti-starvation
mechanism. So far, all suitable nodes were reserved for starving job (see Sec-
tion 3.1), which often led to resource wasting. Since the queues are now more
fine-grained with respect to maximum job runtime, we can compute estimated
job completion times far more precisely and only reserve those CPUs that are
expected to be the soonest available. The calculation of reservations uses runtime

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 145

Fig. 4. “Virtual queues” with only 1 main scheduling queue managed by fairshare

estimates (or refined queue walltime limits) of currently running jobs. Reserva-
tions are updated in every scheduling cycle with respect to dynamic changes like
early completing jobs or changes in fairshare-based priorities.

5 Experimental Evaluation

The two possible modifications of the scheduling scheme described in Section 4
were experimentally evaluated through detailed simulations. It must be said
that according to MetaCentrum management, the conservative extension was
the prime candidate to become the new production setup in MetaCentrum. The
intuition within the management was that it is a simple and safe evolution of
the historical setup. On the other hand, we believed that the complex exten-
sion was more suitable for our purposes, as it introduces new and important
features including multi-resource fairshare and optimized anti-starvation mech-
anism. Therefore, it was necessary to perform detailed simulations, analyzing
pros and cons of these two candidates.

5.1 Simulation Environment

The simulations were performed using our GridSim-based job scheduling simu-
lator Alea [10]. Alea provides advanced capabilities that allow for very detailed
and complex simulations. These capabilities include support of several schedul-
ing algorithms, complex job specifications (based on standard qsub syntax used
in real systems), multi-resource aware fairshare policies, multi-queue setups in-
cluding related limits, etc. Alea is regularly used in MetaCentrum to test new
setups prior their deployment in the production service.

5.2 Simulation Results

The simulations used a historic workload from MetaCentrum, covering 5 months
of execution in 2013. This workload contains 376,722 jobs coming from 302

146 D. Klusáček and Š. Tóth

different users and is publicly available at: www.fi.muni.cz/~xklusac/workload.
Due to the space limitations, we only present the most important findings related
to performance and fairness.

The initial comparison considered all 3 scenarios (historic, conservative and
complex). The avg. weighted wait/response time (AWWT/AWRT) [3] and the
avg. weighted slowdown (AWSD) [3] were used to measure the general perfor-
mance. These metrics are weighted by jobs CPU consumption to prevent that
smaller jobs have a relatively larger impact on a metric than jobs with a higher
resource consumption [3]. Concerning fairness, we have used a per-user metric
called normalized user wait time (NUWT) [11]2. Then we have measured the avg.
of all NUWT values (ANUWT) and their standard deviation (NUWT-dev). The
lower the average value and/or the standard deviation are, the more efficient and
fair are the results, respectively [11].

The results for these metrics are shown in Table 1 with the best results being
highlighted by bold font. Clearly, the complex extension is highly improving,
delivering (nearly) best results in all criteria. In fact, the slightly worse NUWT-
dev is acceptable as the ANUWT has decreased significantly compared to the
historic scenario. Surprisingly, the conservative approach has worse results than
both considered setups, which was not anticipated. In fact, all criteria have shown
large deterioration compared to historic and complex scenarios. Importantly, the
large standard deviation of normalized user wait times (NUWT-dev) suggested
that the deteriorating results are likely related to insufficient fairness.

Table 1. General results concerning performance and fairness

AWWT AWRT AWSD ANUWT NUWT-dev

historic 33795 629448 2.32 0.11 0.50
conservative 56207 647769 4.37 1.07 13.52
complex 18346 609909 1.66 0.08 0.56

The initial experiment was a surprise, indicating that conservative extension
is not a good solution due to a significant deterioration in both performance and
fairness related metrics. To better understand the situation, we have measured
how the two new setups influence the wait times of users in the system. For
this purpose, we have measured the percentage of users/jobs having their wait
time (WT) improved or deteriorated compared to the original (historic) setup.
Also, we have measured the average improvement/deterioration of wait times
for these jobs. The overall results are presented in Table 2. For most criteria, the
complex setup behaves similar to the conservative. A closer inspection reveals
that the actual problem is the huge difference in the avg. wait time for delayed
jobs. Complex increases the avg. job wait time by 2.1 hours while conservative

2 In NUWT, the total user wait time is normalized by the amount of user-consumed
CPU time. It uses the same idea as classical max-min fairshare [6], i.e., users with
high CPU consumption may wait longer than (so far) less active users.

www.fi.muni.cz/~xklusac/workload

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 147

Table 2. Detailed results showing impact on users wait times

users with
impr.

WT(%)

jobs with
impr.

WT(%)

avg. WT
impr.
(hours)

users with
deter.
WT(%)

jobs with
deter.
WT(%)

avg. WT
deter.
(hours)

conserv. 26.5 13.9 6.7 19.2 2.7 55.7
complex 31.1 13.4 7.2 13.9 3.2 2.1

increases it by 55.7 hours on average! Such a huge increase corresponds with the
overall unsatisfactory results seen in Table 1.

Still, further analysis was required to exactly identify the source of the prob-
lem. So far, the data indicated that this a fairness-related problem caused by huge
wait times of particular jobs. Therefore, we have decided to construct heatmaps
showing the avg. wait time of jobs (shown by color intensity) with respect to
time (x-axis) and queues (y-axis) for both considered extensions. Fig. 5 shows
the results for conservative (top) and complex (bottom) approaches. Using this
“high resolution” tool, we can better understand why the conservative approach
performs much worse compared to the complex extension.

Fig. 5. Heatmap of avg. wait time (in minutes) wrt. queues and time for conservative
(top) and complex (bottom) extensions

As was mentioned in Section 4, the conservative approach uses fixed ordering
of queues which is potentially dangerous as low priority queues may be “blocked
out” by higher priority queues, which is unfair with respect to global fairshare.
This “blocking effect” is a result of the applied (historic) “greedy” anti-starvation
mechanism. Fig. 5 (top) shows such situations on several occasions where the
low priority q 1d and q 4h queues exhibit significant delays compared to higher
priority queues. As can be seen, this situation does not appear for complex
approach (see Fig. 5 bottom) as (1) all queues are only virtual and all jobs are
strictly ordered using fairshare and (2) an optimized anti-starvation mechanism
is used.

148 D. Klusáček and Š. Tóth

To sum up, the experiments surprisingly demonstrated that a simple conser-
vative extension of known setup is not a good solution. They revealed previously
unexpected results such that it is not sufficient to simply increase the pool of
available CPUs for longer jobs, without also improving fairness-related features
and the anti-starvation mechanism. For example, it turned out that as soon as
longer jobs can use more CPUs it means that also the (original) anti-starvation
mechanism can occupy more CPUs which blocks all other waiting jobs. More-
over, it was shown that a multi-queue based solution with fixed queue ordering
is dangerous as it ignores global fairshare. From this point of view, the complex
extension increases fairness as now a user with high fairshare-based penalty can-
not cheat by sending his or hers jobs into a higher priority queue, such as q 2w,
or so. Similarly, shorter jobs having high priorities are not unfairly overtaken by
longer jobs (from high priority queues). Also, thanks to the new multi-resource
aware fairshare mechanism [12] we are now able to properly establish fairness
priorities subject to (highly) heterogeneous resources and jobs.

6 Conclusion and Future Work

We have shown that an efficient job scheduling is a very complex problem when
realistic scenarios are considered. Unlike many prior works that only consider
scheduling algorithms, we have provided a detailed insight into the complexity of
the problem, using several real-life based examples. Especially, we have stressed
out how several particular components of the system interact together and influ-
ence the resulting performance. Using a real-life based example, we have shown
that detailed simulations can be very useful when looking for a better setup of a
given system. The proposed complex extension is currently applied in production
use within MetaCentrum’s TORQUE resource manager.

Still, this work has some limitations, e.g., several decisions used in this pa-
per are based on an empirical knowledge, an expert assessment or hand-tuned
parameters. In the future we would like to develop more rigorous methods that
would allow to (semi)automatically identify proper and efficient setups of par-
ticular policies. For starters, it would be very helpful to have some method for
an efficient dynamic adaptation of various queue limits.

Acknowledgments. We highly appreciate the support of the Grant Agency of
the Czech Republic under the grant No. P202/12/0306 and the support provided
by the programme LM2010005 funded by the Ministry of Education, Youth, and
Sports of the Czech Republic is highly appreciated. The access to the MetaCen-
trum computing facilities and workloads is kindly acknowledged.

References

1. Adaptive Computing Enterprises, Inc. Maui Scheduler Administrator’s Guide, ver-
sion 3.2 (January 2014), http://docs.adaptivecomputing.com

http://docs.adaptivecomputing.com

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 149

2. Adaptive Computing Enterprises, Inc. Moab workload manager administrator’s
guide, version 7.2.6 (January 2014), http://docs.adaptivecomputing.com

3. Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of global Grid computing for
job scheduling. In: GRID 2004: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pp. 374–379. IEEE (2004)

4. Flis, L., Lason, P., Magrys, M., Ozieblo, A., Twardy, M.: Effective utilization of
mixed computing resources on zeus cluster. In: Cracow Grid Workshop, pp. 105–
106. ACC Cyfronet AGH (2012)

5. Frachtenberg, E., Feitelson, D.G.: Pitfalls in parallel job scheduling evaluation.
In: Feitelson, D., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2005. LNCS, vol. 3834, pp. 257–282. Springer, Heidelberg (2005)

6. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: Fair allocation of multiple resource types. In: 8th USENIX
Symposium on Networked Systems Design and Implementation (2011)

7. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001)

8. Joe-Wong, C., Sen, S., Lan, T., Chiang, M.: Multi-resource allocation: Fairness-
efficiency tradeoffs in a unifying framework. In: 31st Annual International Confer-
ence on Computer Communications (IEEE INFOCOM), pp. 1206–1214 (2012)

9. Kleban, S.D., Clearwater, S.H.: Fair share on high performance computing sys-
tems: What does fair really mean? In. In: Third IEEE International Symposium
on Cluster Computing and the Grid, pp. 146–153. IEEE Computer Society (2003)

10. Klusáček, D., Rudová, H.: Alea 2 – job scheduling simulator. In: 3rd International
ICST Conference on Simulation Tools and Technique, ICST (2010)

11. Klusáček, D., Rudová, H.: Performance and fairness for users in parallel job
scheduling. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2012. LNCS, vol. 7698, pp. 235–252. Springer, Heidelberg (2013)

12. Klusáček, D., Rudová, H.: Multi-resource aware fairsharing for heterogeneous sys-
tems. In: Job Scheduling Strategies for Parallel Processing (2014)

13. Lifka, D.A.: The ANL/IBM SP Scheduling System. In: Feitelson, D.G., Rudolph,
L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer,
Heidelberg (1995)

14. MetaCentrum (January 2014), http://www.metacentrum.cz/
15. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions
on Parallel and Distributed Systems 12(6), 529–543 (2001)

16. Ohio Supercomputer Center. Batch Processing at OSC (February 2014),
https://www.osc.edu/supercomputing/batch-processing-at-osc

17. PBS Works, PBS Professional 12.1, Administrator’s Guide (January 2014),
http://www.pbsworks.com

18. Schwiegelshohn, U.: How to design a job scheduling algorithm. In: Job Scheduling
Strategies for Parallel Processing (2014)

19. Wierman, A., Harchol-Balter, M.: Classifying scheduling policies with respect to
unfairness in an M/GI/1. In: 2003 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pp. 238–249. ACM (2003)

http://docs.adaptivecomputing.com
http://www.metacentrum.cz/
https://www.osc.edu/supercomputing/batch-processing-at-osc
http://www.pbsworks.com

ProPS: A Progressively Pessimistic Scheduler
for Software Transactional Memory�

Hugo Rito and João Cachopo

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
{hugo.rito,joao.cachopo}@ist.utl.pt

Abstract. Software Transactional Memory (STM) is one promising ab-
straction to simplify the task of writing highly parallel applications.
Nonetheless, in workloads lacking enough parallelism, STM’s optimistic
approach to concurrency control can adversely degrade performance as
transactions abort and restart often.

In this paper, we describe a new scheduling-based solution to improve
STM’s performance in high-contention scenarios. Our Progressively Pes-
simistic Scheduler (ProPS) uses a fine-grained scheduling mechanism
that controls the amount of concurrency in the system gradually as trans-
actions abort and commit with success.

Experimental results with the STMBench7 benchmark and the
STAMP benchmark suite showed that current coarse-grained, conser-
vative transaction schedulers are not suitable for workloads with long
transactions, whereas ProPS is up to 40% faster than all other schedul-
ing alternatives.

Keywords: Performance, Software Transactional Memory, Transaction
Conflict, Transaction Scheduling.

1 Introduction

Software Transactional Memory (STM) [11] turned into one of the most promis-
ing abstractions to bridge the gap between mainstream programmers and parallel
programming. Unfortunately, the performance of STM-based applications may
vary greatly, depending on the application’s workload: Even though STMs ex-
hibit very good performance for read-dominated workloads, the same cannot be
said about highly contended workloads in which frequent transaction reexecu-
tions place a significant stress on the system, hindering its performance [1,3,7].

Transactions reexecute whenever they conflict, which happens when the STM
runtime speculatively executes two or more concurrent transactions that cannot
both commit due to conflicting memory accesses.

A transaction scheduler [12,2,4] is an STM component that uses runtime in-
formation to predict conflicts and, thus, prevent transactions that are likely to

� This work was supported by national funds through FCT – Fundação para a Ciência
e a Tecnologia, under project PEst-OE/EEI/LA0021/2013.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 150–161, 2014.
c© Springer International Publishing Switzerland 2014

ProPS: A Progressively Pessimistic Scheduler 151

conflict from running concurrently. The assumption is that in workloads lack-
ing inherent parallelism, executing a large number of transactions concurrently
can degrade performance as transactions restart often. So, to limit the amount
of restarts and the amount of wasted work, a transaction scheduler serializes
conflicting transactions either at transaction begin or at transaction restart.

Unfortunately, most scheduling policies are too conservative as they over-
serialize transactions—that is, two non-conflicting transactions are scheduled to
execute one after the other when they could safely overlap.

In the next section, we discuss how STMs may benefit from transaction
scheduling in high-contention workloads and we explain why coarse-grained and
conservative scheduling policies, as those used by existing transaction schedulers,
are unable to extract the latent parallelism of STM-based applications.

In this paper, we tackle the problem of efficient transaction scheduling and
we make the following contributions:

– A new fine-grained progressively pessimistic scheduling policy (ProPS) for
STM that collects information regarding the maximum concurrency level
between pairs of atomic operations and, then, uses that information to grad-
ually reduce concurrency as contention increases (Section 3).

– An overview of ProPS’s implementation in the FlashbackSTM [10]. This fully
decentralized implementation of our novel fine-grained scheduling policy has
zero runtime overhead for read-only transactions (Section 4).

– A thorough evaluation of ProPS with both the STMBench7 benchmark [6]
and the STAMP benchmark suite [8]. Results show that ProPS is up to 40%
faster than ATS [12], CAR [2], and Shrink [4] (Section 5).

2 Why We Need Better Transaction Scheduling

The key observation behind transaction scheduling is that conflicts are dynamic,
meaning that the order in which transactions execute influences the number of
conflicts that occur. Moreover, in many STM-based programs, transactions exe-
cute independently of each other in a nondeterministic order. Hence, by changing
the order in which transactions execute, a transaction scheduler may reduce the
amount of wasted work in high-contention workloads and increase throughput.

In practice, transaction schedulers use serialization to order transactions with
expected conflicts one after another, trading off concurrency between threads
for less wasted work. To exemplify, consider the execution scenario 1 depicted
at the top half of Figure 1. In this scenario, thread T1 makes two calls to atomic
operation OP1 while thread T2 tries to execute atomic operation OP2 once.

Without a transaction scheduler, the concurrent execution of OP1 and OP2
has an adverse effect on performance because both atomic operations conflict
and, thus, only Tx1 (first) and Tx3 (later) commit with success without con-
flicting. Transaction Tx2, on the other hand, aborts and reexecutes twice before
committing with success, which happens only when executing solo in the system.

With a transaction scheduler, after detecting the conflict between Tx1 and
Tx2 (and to prevent Tx2 from restarting again) the scheduler may force new

152 H. Rito and J. Cachopo

Without scheduler With scheduler

T2
OP2 OP2 OP2

Tx2

T2
OP2 OP2

Tx2

Transaction executing Transaction commit Transaction abortTransaction waiting

T1
OP1

Tx1

OP1

Tx3

T1
OP1

Tx1 Tx3

OP1

T3
OP3

Tx4

T3

Tx4

OP3

Fig. 1. Execution of operations OP1, OP2, and OP3 without a transaction scheduler
and with a naive transaction scheduler by two concurrent threads (scenario 1) and three
concurrent threads (scenario 2). Only OP1/OP2 conflict when executed concurrently.

transactions to serialize after Tx2—that is, the scheduler delays Tx3’s start to
after the successful commit of transaction Tx2. With this decision, the sched-
uler reduces to half the number of transaction restarts, therefore reducing the
execution time.

Ideally, the transaction scheduler is accurate enough to execute concurrently
only transactions that will not conflict. Though possible in some particular cases,
in general this is very hard to accomplish due to the dynamic nature of transac-
tions and, thus, schedulers serialize transactions based on previous observations.
Current scheduling solutions, however, are still too coarse-grained, too conser-
vative, and, for those reasons, may serialize non-conflicting transactions.

Coarse-grained scheduling solutions [12] monitor the number of aborts to de-
tect periods of high-contention, in which case they serialize all transactions. Such
schedulers assume that, when contention is high, a transaction that aborts and
restarts immediately has high probability to conflict again, leading to another
transaction abort. Thus, to prevent conflict-prone transactions from conflicting
again, the scheduler serializes all transactions that abort.

Despite their low overhead, these all-or-nothing approaches to scheduling have
limited applicability because transactions are serialized not due to the transac-
tion’s expected behavior but because of the behavior of the system as a whole.
To exemplify, consider scenario 2 of Figure 1 that extends scenario 1 with a third
thread (T3) executing a single atomic operation OP3.

With the transaction scheduler, the reexecution of transaction Tx2 forces all
subsequent transactions (Tx3 and Tx4, in this case) to serialize. Yet, as the
execution without the scheduler shows, this coarse-grained scheduling policy is
over-serializing transactions. Only Tx2 and Tx3 need to execute one after the
other because only the pair OP1/OP2 conflict when executed concurrently. The
pairs OP1/OP3 and OP2/OP3 do not conflict and may execute concurrently
with performance benefits as we observe in the scenario without scheduling.

Our naive scheduling policy is an over-simplification of Yoo and Lee [12]’s
Adaptive Transaction Scheduler (ATS). In ATS, each thread maintains a con-
tention intensity (CI) value, which is decreased after each successful commit and
increased after each abort, and threads serialize in a central queue whenever their
CI value is above a predetermined threshold. ATS’s scheduling policy is very

ProPS: A Progressively Pessimistic Scheduler 153

simple and has nearly no overhead, but is too coarse-grained and unnecessarily
reduces concurrency in high contention scenarios, as described before.

Conservative scheduling solutions [2], on the other hand, serialize transac-
tions based on the fact that the atomic operations they execute conflicted with
each other, at least once, in the past. By using per-transaction information,
the scheduler attempts to predict more accurately how a particular transaction
configuration will behave when executed again concurrently. Going back to the
previous example, a conservative scheduler may learn that operations OP1 and
OP2 conflict, in which case it will serialize all their future executions.

CAR-STM [2] is a conservative scheduling policy that maintains a per-core
transaction queue and, when a transaction restarts, the dispatcher serializes the
restarting transaction in the per-core queue containing the transactions with
maximum probability of conflicting with it. Even though less conservative than
ATS, with a large number of concurrent threads or under high contention, CAR-
STM’s per-core queues may constitute a performance bottleneck.

The problem with both scheduling policies is that they ignore the fact that
transactions are dynamic—that is, a transaction’s behavior may change as the
state of the application also changes. This means that, for instance, operations
OP1 and OP2 in our example may be able to execute concurrently in the future,
if they access disjoint memory locations.

Recognizing this runtime property of transactions, the Shrink [4] scheduler
uses the memory locations recently accessed by a thread to predict the read-
set of future transactions executed by that thread. At transaction start, Shrink
verifies whether any of the memory locations in the transaction’s predicted read-
set is being written by other concurrently executing transactions and, if that is
the case, the starting transaction serializes by acquiring a global shared lock.
However, it is unclear how the read-set of a transaction may help predict the
read-set of a different transaction executing a distinct atomic operation, even
considering the fact that both transactions are executed in succession by the
same thread. Also, Shrink intercepts all read accesses to memory, adding a non-
negligible overhead to the most common STM operation: the transactional read.

In summary, transaction schedulers’ pessimistic approach to concurrency may
reduce the number of conflicts between transactions but at the cost of reducing
too much the parallelism in the application. The decision to serialize transactions
that would execute without conflicting greatly hinders the throughput of the
system and constitutes a fundamental obstacle to the effectiveness of scheduling.
The challenge, then, is to develop a fine-grained, more optimistic transaction
scheduler that is able to increase parallelism between transactions.

3 A Progressively Pessimistic Scheduling Policy

Although system-wide information may help describe the runtime behavior of
the system as a whole, the transaction scheduler acts upon individual transac-
tions and, for that reason, the scheduler needs fresh transaction-specific infor-
mation to perform fine-grained scheduling decisions that minimize the number
of transactions that are unnecessarily serialized.

154 H. Rito and J. Cachopo

To allow such fine-grained scheduling our new Progressively Pessimistic Sched-
uler (ProPS) maintains a concurrency level matrix (CL) between pairs of atomic
operations—that is, for each atomic operation of type i and each atomic oper-
ation of type j, the value of CLij describes how many transactions executing
atomic operations of type i may execute concurrently with one transaction exe-
cuting atomic operation of type j.

In the beginning, all CLij values are equal to MAX THREADS, which corresponds
to the maximum number of concurrent threads in the systems (typically the
number of processors in the machine), and ProPS uses CL values to adapt the
amount of concurrency in the system: At transaction begin of atomic operation i,
the scheduler calculates the minimum CLij value between the starting transac-
tion and all other in-flight transactions. Atomic operations with a minimum CL
value of MAX THREADS proceed normally. Yet, as an operation’s minimum CL value
decreases, ProPS reduces the number of transactions executing that operation.

When a transaction of type i aborts due to a conflict with another transaction
of type j, ProPS reduces the concurrency level between atomic operations of type
j and i using equation 1 below, where k is a value in [0, 1].

CLji = CLji × k (1)

By limiting the number of transactions of type j that may start concurrently
with transactions of type i only, our new scheduling policy reduces the STM’s
level of optimism in a fine-grained way. Future transactions for different atomic
operations are unaffected by this reduction and, thus, may proceed normally at
transaction begin if their minimum CL value is equal to MAX THREADS.

When a transaction of type i finally commits with success, for each operation
of type j ProPS updates operation’s i CLij values using equation 2 below, where
α is a value in [0, 1], and numRestarts ≥ 0 corresponds to the number of times
that the committing transaction restarted before this successful commit.

CLij = min(MAX THREADS, CLij + MAX THREADS× α÷ (1 + numRestarts)) (2)

Note that, by design, ProPS exponentially reduces concurrency as transactions
conflict but increases concurrency only linearly at transaction commit. This de-
sign decision allows the scheduler to react very fast to periods of high contention,
while, at the same time, to steadily revise its predictions as transactions start
committing with success. Furthermore, at transaction commit, our scheduling
policy uses the number of times the transaction aborted before committing with
success to control how fast the scheduler restores concurrency, benefiting trans-
actions that seldom conflict.

4 The ProPS Implementation

We implemented ProPS in the FlashbackSTM [10], a word-base, multi-version
STM implemented as a pure Java library that extends the lock-free version of the
JVSTM [5] with the concept of memo-transactions [9]. In the FlashbackSTM,

ProPS: A Progressively Pessimistic Scheduler 155

1 static double[][] CL; static TxInfo[] txs; TxInfo myInfo
2

3 upon tx.begin:
4 myInfo.id = tx.id; myInfo.numRestarts = 0
5 do
6 cl = MAX_THREADS; enemies = 1; worstEnemy = nil
7 for each inFlightTx in txs do
8 if (CL[tx.id][inFlightTx.id] < cl)
9 cl = CL[tx.id][inFlightTx.id]; enemies = 1; worstEnemy = inFlightTx

10 else if (inFlightTx == worstEnemy)
11 ++enemies
12 while (cl ÷ enemies < 1)
13 limitConcurrency(cl ÷ enemies)
14

15 upon tx.abort caused by enemyTx:
16 myInfo.numRestarts++
17 CL[enemyTx.id][myInfo.id] = CL[enemyTx.id][myInfo.id] * k
18

19 upon tx.commit:
20 txs[myInfo.pos] = nil
21 for each opId in atomicOperations do
22 CL[myInfo.id][opId] = min(MAX_THREADS,
23 CL[myInfo.id][opId] + MAX_THREADS × α ÷ (1 + myInfo.numRestarts))

Listing 1.1. The ProPS implementation. The scheduler is fully decentralized as each
thread decides whether to wait or to begin immediately by itself.

reads are very fast, always consistent, and read-only transactions never conflict
with other transactions. Read-write transactions, on the other hand, may conflict
but only with other already committed read-write transactions.

To control the execution and the order in which read-write transactions com-
mit, we changed the FlashbackSTM in two ways. First, we changed read-write
transactions so that they report to the scheduler at transaction begin time, com-
mit time, and abort time. Second, we changed the bytecode manipulator so that
it assigns a unique identifier (ID) to each atomic operation.

Note that our modifications to the FlashbackSTM have zero runtime overhead
for read-only transactions: Given that read-only transactions never conflict in
the FlashbackSTM, they do not need to be scheduled and, thus, never report
to the transaction scheduler as read-write transactions do. In Listing 1.1 we show
the pseudocode of ProPS, which works in a fully decentralized way because each
thread decides whether to wait or to begin immediately by itself.

ProPS stores per-thread information in a TxInfo object and system-wide in-
formation in a global CLmatrix and in a global txs array. The thread-local TxInfo
instance gathers information about the transaction currently in execution by the
thread, such as the ID of the atomic operation, and the number of transaction
restarts. On the other hand, the global CL matrix stores the concurrency level
between pairs of atomic operations, as described in the previous section, whereas
the global txs array contains all in-flight transaction currently in the system.

156 H. Rito and J. Cachopo

At begin time, the scheduler updates the thread’s TxInfo instance with infor-
mation regarding the new transaction (line 4) and uses the CL matrix to calculate
the transaction’s minimum cl value, depending on the operation’s ID and the
current system configuration (lines 5–12).

The limitConcurrency function (line 13) may delay the execution of a trans-
action because it forces the starting transaction to acquire a position in the
txs array with a compare-and-swap (CAS) operation. When a transaction suc-
cessfully acquires a given position in the txs array, it may begin its execution
(otherwise, it will have to keep trying until it succeeds); when the transaction
finishes, it releases its position in the txs array, as shown in line 20.

The size of the array corresponds to the maximum number of read-write trans-
actions that the scheduler will allow to execute concurrently—in our current
implementation, the size of the array corresponds to the number of cores in the
machine—and the scheduler uses the minimum cl value of each starting trans-
action to control the number of positions in the array that may be used. With a
cl value equal to MAX THREADS, the scheduler behaves similarly to an optimistic
scheduler. Lower cl values make ProPS progressively more pessimistic.

At transaction abort, the scheduler increments the number of restarts (line 16)
and reduces the concurrency level (line 17). At commit time, a committing trans-
action increments its concurrency level with all atomic operations (lines 21–23).

It is worth mentioning that we made our implementation as lightweight as
possible. For instance, accesses to the CL matrix are not explicitly synchronized
and, thus, threads may read stale data. We argue, however, that adding random
imprecisions to the scheduler is preferable than to pay the high cost of synchro-
nization because, in this particular context, suboptimal scheduling decisions do
not change the semantics of the programs, only their performance.

5 Experimental Results

To evaluate our approach, we used the STMBench7 benchmark [6] and the
STAMP benchmark suite [8]. We ran these benchmarks using the Flashback-
STM either with no scheduler (shown as Default) or with one of the following
schedulers: ProPS, ATS [12], CAR [2], and Shrink [4].

We configured ProPS with a k-value of 0.5, an α-value of 0.05. We tested
with several values for these parameters and used the values that produced the
best results. Due to space constraints, we do not show in this paper a sensitivity
analysis for these parameters, but the results do not vary too much within a
reasonable range for these values.

Neither one of the pessimistic schedulers used in our tests had an implementa-
tion for the FlashbackSTM, so we provided our own optimized implementation of
each scheduling policy. To collect fair and comparable results, all four schedulers
share the same FlashbackSTM code base and the same scheduling interface.

We ran our tests on a machine with four AMD Opteron 6168 processors, each
with 12 cores, for a total number of 48 cores. All processors shared a Supermicro
H8QG6 motherboard with 128Gb of RAM. The machine was running CentOS

ProPS: A Progressively Pessimistic Scheduler 157

0

5

10

15

20

25

1 4 8 12 16 20 24 28 32 36 40 44 48

Sp
ee

du
p

(S
in

gl
e-

th
re

ad
 n

o-
ST

M
)

Threads

Read-write (40% writes)

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

1 4 8 12 16 20 24 28 32 36 40 44 48

Sp
ee

du
p

(S
in

gl
e-

th
re

ad
 n

o-
ST

M
)

Threads

Write-dominated (90% writes)

Medium Shrink
CAR

ATS
ProPSDefaultCoarse

Fig. 2. Speedup of the STMBench7 benchmark with all long read-write traversals and
all structural modifications disabled, for each of the two workloads

release 6.4 and Java SE version 1.7.0 21. We made 20 runs of each benchmark
with 1 up to 48 threads in increments of 4 threads per test, and we removed the
top 5 best and worst results, presenting only the average of the ten remaining
values. The speedup results use as baseline the execution time of the benchmark
running single-threaded without any STM instrumentation.

5.1 STMBench7 Benchmark: Short Transactions

The STMBench7 benchmark was designed to test STMs under high-contention
scenarios, making it appropriate to understand how non-negligible concurrency
among transactions that often results in reexecutions affects performance.

We measured the time it took for the benchmark to complete a fixed number
of operations with all long read-write traversals and all structural modifications
disabled in a read-write workload (40% writes out of 130000 total operations)
and in a write-dominated workload (90% writes out of 60000 total operations).

In Figure 2, we present speedup results for the STMBench7 benchmark us-
ing both the FlashbackSTM with the various schedulers and two lock-based
approaches: coarse-grained locks and medium-grained locks.

Although STM’s indirect memory accesses add overhead, on both workloads
with one thread the STM version of the benchmark is faster than the non-
instrumented version of the benchmark. This happens because some operations
execute repeated method calls. These methods, when executed inside Flashback-
STM’s memo-transactions, populate a per-transaction memo-cache with infor-
mation about their runtime behavior. The STM then uses this information to
identify repeated work that may be skipped, thus improving performance.

Comparing the results obtained with the various schedulers, we see that, re-
gardless of the workload, ProPS outperforms all other approaches. The results
for the read-write workload with the STM are specially good when compared to
locks, because this workload benefits both from our less pessimistic approach to

158 H. Rito and J. Cachopo

Table 1. Percentage of aborts of the STMBench7 benchmark with all long read-write
traversals and all structural modifications disabled, for both workloads with 48 threads

Transaction scheduler

Workload Default ATS CAR ProPS Shrink

Read-write 59.41 9.34 8.71 15.96 30.49

Write-dominated 65.06 7.93 6.92 16.50 28.96

scheduling and from FlashbackSTM’s read-only operations that have very low
overhead and never conflict.

Overall we can conclude that, as the number of concurrent threads increases,
conflicts become more frequent and, therefore, the benchmark starts to benefit
from scheduling. The influence that conflicts have on performance is more evident
on the write-dominated workload where the FlashbackSTM without scheduling
achieves its peak speedup with 4 threads and then performance abruptly plunges
to the point that, with 48 threads, the benchmark executes as fast as with 1
thread. With scheduling, on the other hand, the benchmark is able to maintain
the performance stable as the number of threads increases.

Despite the drastic reduction in the abort rate (Table 1), none of the pes-
simistic schedulers’ peak performance surpasses the peak performance of the
Default scheduler. As the results with ATS and CAR clearly show, even on
write-dominated, conflict-prone workloads a lower abort rate may not translate
into better performance if the scheduler is too pessimistic and serializes trans-
actions that could otherwise execute concurrently without conflicts.

Instead of serializing all transactions when contention is high as traditional
pessimistic schedulers do, ProPS’s progressively pessimistic scheduling policy
gradually reduces concurrency when transactions start conflicting. Thus, even
though the abort rate goes up to 16.50%, ProPS outperforms all other alter-
natives, showing that there is latent parallelism in the benchmark that is not
explored by the pessimistic schedulers.

5.2 STMBench7 Benchmark: Mixed Transactional Workload

The previous results were obtained with two workloads that execute short trans-
actions predominantly. Now, we explore how the various schedulers behave for
a workload with very long transactions: For that, we use again the STMBench7
benchmark, but now with all long read-write traversals enabled.

For these tests, we changed the number of operations executed on each work-
load to 4000 operations on the read-write workload and to 2000 operations on the
write-dominated workload. This change was necessary to maintain an average
execution time of roughly 30 seconds with 48 threads. We present the speedup
results in Figure 3.

As we can see, all pessimistic schedulers perform worse than the FlashbackSTM
with no scheduler, a result somewhat surprising because the use of a scheduler

ProPS: A Progressively Pessimistic Scheduler 159

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1 4 8 12 16 20 24 28 32 36 40 44 48

Sp
ee

du
p

(S
in

gl
e-

th
re

ad
 n

o-
ST

M
)

Threads

Read-write (40% writes)

0.6

0.7

0.8

0.9

1

1.1

1.2

1 4 8 12 16 20 24 28 32 36 40 44 48

Sp
ee

du
p

(S
in

gl
e-

th
re

ad
 n

o-
ST

M
)

Threads

Write-dominated (90% writes)

Medium Shrink
CAR

ATS
ProPSDefaultCoarse

Fig. 3. Speedup results relative to a sequential execution of the STMBench7 benchmark
with all structural modifications disabled, for each of the two workloads

should reduce the amount of wasted computation due to conflicting transactions,
and STMBench7 is known for having a highly conflicting workload. Yet, despite its
high abort rate, the Default approach extracts more parallelism from the bench-
mark with its optimistic approach, and, thus, it has better performance.

These results show that the performance issues caused by over-serialization
are specially bad in applications that execute large numbers of threads in a
mixed transactional workload where the size of transactions may vary greatly.

Furthermore, our results strongly indicate that the assumption behind most
pessimistic scheduling policies—that in high contention workloads transactions
that conflicted at least once in the past will always conflict with each other again
in the future—is usually wrong and, for that reason, schedulers need to take into
consideration the dynamic nature of transactions when deciding.

ProPS’s more optimistic approach to concurrency, coupled with fine-grained
information about the conflict probability between atomic operations, is able to
make better scheduling decisions, extract more parallelism from the benchmark,
and improve performance up to 35% in these two highly contented workloads.

Finally, despite the additional overhead imposed by the STM, the Flashback-
STM with ProPS outperforms locks and scales better on both workloads. Even
on the worst case scenario where 90% of transactions are read-write and may
read up to 1 million memory locations, ProPS is able to extract the benchmark’s
latent parallelism and scale up to 40 threads. In this very demanding workload,
medium-grained locks are only 10% faster with 48 threads than with 1 thread,
whereas ProPS with 48 threads executes 70% faster than with 1 thread and
surpasses the performance of medium-grained locks for 16 or more threads.

5.3 STAMP Benchmark Suite

STAMP has eight different applications but we limited our study to Genome
and Vacation as these applications represent two important execution scenarios:

160 H. Rito and J. Cachopo

0.5

1

1.5

2

2.5

3

3.5

4

1 4 8 12 16 20 24 28 32 36 40 44 48

Sp
ee

du
p

(S
in

gl
e-

th
re

ad
 n

o-
ST

M
)

Threads

Genome

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 4 8 12 16 20 24 28 32 36 40 44 48

Sp
ee

du
p

(S
in

gl
e-

th
re

ad
 n

o-
ST

M
)

Threads

Vacation

ShrinkATS CAR ProPSDefault

Fig. 4. Speedup results for the Genome and the Vacation applications

Genome executes millions of short transactions (98% of read-write transactions
read less than 3 memory locations), whereas Vacation predominantly executes
long transactions that perform up to 7226 transactional reads. Each applica-
tion executed with the following parameters: For Genome, “-g 32768 -s 64 -n
66777216”, and for Vacation, “-n 1800 -q 90 -u 90 -r 16384 -t 300000”.

Figure 4 shows the speedup results for the various schedulers. Once again,
ProPS consistently outperforms all other transaction schedulers.

Genome’s results highlight the usefulness of our scheduler in an application
that executes millions of micro transactions. ProPS is always as good or better
than all other schedulers, improving performance up to 40%. Yet, ProPS does
not scale past 24 threads and we believe that the cost of creating and terminating
a high number of short lived transactions justifies this performance plateau.

The Vacation benchmark reinforces the idea that current pessimistic sched-
ulers are not suitable for workloads with long transactions: Again, all pessimistic
schedulers perform significantly worse than Default. Most transactions in this
benchmark are long and, therefore, the decision to serialize any transaction that
would be able to execute without conflicting greatly hinders the performance of
the system. ATS, CAR, and Shrink use coarse-grained, conservative heuristics
that fail to predict the behavior of each individual transaction and end up se-
rializing almost all threads. ProPS, on the other hand, is the first transaction
scheduler to perform well on these types of workloads.

6 Conclusions

In this paper we proposed ProPS, a new transaction scheduler for STM systems
that gradually adapts the amount of concurrency in the application as trans-
actions abort and commit. When compared to other scheduling policies, our
new scheduling policy is fine-grained, because ProPS calculates CLij values for
each pair of atomic operations i and j, and is progressively pessimistic, because

ProPS: A Progressively Pessimistic Scheduler 161

rather than serializing all transactions when contention is high, ProPS gradually
reduces concurrency as CL values decreases.

Experimental evaluation with the STMBench7 benchmark and the STAMP
benchmark suite demonstrated the usefulness of our novel scheduling policy as
ProPS was able to outperform and scale better than all other scheduling alter-
natives in a variety of workloads and applications. Unlike conservative solutions,
our less pessimistic approach to scheduling performs well in workloads with long
transactions and with a lot of latent parallelism.

References

1. Cascaval, C., Blundell, C., Michael, M., Cain, H., Wu, P., Chiras, S., Chatterjee,
S.: Software transactional memory: Why is it only a research toy? Queue 6, 46–58
(2008)

2. Dolev, S., Hendler, D., Suissa, A.: CAR-STM: Scheduling-based collision avoidance
and resolution for software transactional memory. In: Proceedings of the 27th ACM
Symposium on Principles of Distributed Computing, PODC 2008, pp. 125–134
(2008)

3. Dragojević, A., Felber, P., Gramoli, V., Guerraoui, R.: Why STM can be more
than a research toy. Commun. ACM 54, 70–77 (2011)

4. Dragojević, A., Guerraoui, R., Singh, A., Singh, V.: Preventing versus curing:
Avoiding conflicts in transactional memories. In: Proceedings of the 28th ACM
Symposium on Principles of Distributed Computing, PODC 2009, pp. 7–16 (2009)

5. Fernandes, S., Cachopo, J.: Lock-free and scalable multi-version software transac-
tional memory. In: Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, PPoPP 2011, pp. 179–188. ACM (2011)

6. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: A benchmark for software
transactional memory. SIGOPS Oper. Syst. Rev. 41, 315–324 (2007)

7. McKenney, P., Michael, M., Triplett, J., Walpole, J.: Why the grass not be greener
on the other side: A comparison of locking vs. transactional memory. SIGOPS
Oper. Syst. Rev. 44, 93–101 (2010)

8. Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional
applications for multi-processing. In: IEEE International Symposium on Workload
Characterization, IISWC 2008, pp. 35–46. IEEE (2008)

9. Rito, H., Cachopo, J.: Memoization of methods using software transactional mem-
ory to track internal state dependencies. In: Proceedings of the 8th Interna-
tional Conference on the Principles and Practice of Programming in Java, PPPJ
2010(2010)

10. Rito, H., Cachopo, J.: FlashbackSTM: Improving STM performance by remember-
ing the past. In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS, vol. 7760,
pp. 266–267. Springer, Heidelberg (2013)

11. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing, PODC
1995, pp. 204–213. ACM (1995)

12. Yoo, R., Lee, H.: Adaptive transaction scheduling for transactional memory sys-
tems. In: Proceedings of the 20th Annual Symposium on Parallelism in Algorithms
and Architectures, SPAA 2008, pp. 169–178. ACM (2008)

A Queueing Theory Approach to Pareto

Optimal Bags-of-Tasks Scheduling on Clouds

Cosmin Dumitru1, Ana-Maria Oprescu1, Miroslav Živković1,
Rob van der Mei2, Paola Grosso1, and Cees de Laat1

1 System and Network Engineering Group,
University of Amsterdam (UvA),
Amsterdam, The Netherlands

C.Dumitru@uva.nl
2 Department of Stochastics,

Centre for Mathematics and Informatics (CWI),
Amsterdam, The Netherlands
R.D.van.der.Mei@cwi.nl

Abstract. Cloud hosting services offer computing resources which can
scale along with the needs of users. When access to data is limited by
the network capacity this scalability also becomes limited. To investigate
the impact of this limitation we focus on bags–of–tasks where task data
is stored outside the cloud and has to be transferred across the network
before task execution can commence. The existing bags–of–tasks esti-
mation tools are not able to provide accurate estimates in such a case.
We introduce a queuing–network inspired model which successfully mod-
els the limited network resources. Based on the Mean–Value Analysis of
this model we derive an efficient procedure that results in an estimate
of the makespan and the executions costs for a given configuration of
cloud virtual machines. We compare the calculated Pareto set with mea-
surements performed in a number of experiments for real–world bags–of–
tasks and validate the proposed model and the accuracy of the estimated
configurations.

1 Introduction

Bag–of–tasks (BoT) applications are common in science and engineering and
are composed of multiple independent tasks, which can be executed without any
ordering requirements. Therefore, the execution of a typical BoT application
can be parallelized. As the number of tasks within a particular BoT application
may be large, the application may also be computationally (i.e. resource) de-
manding. The execution parallelism and resource demanding properties of BoT
applications make them suitable for deployment and execution within the cloud
environment. Since the cloud environment has large (theoretically unlimited)
resources, the widely–adopted pay–as–you–use model implies the assignment of
budgets and/or execution deadlines. Characteristics of tasks, such as the running
time, are not given a priori, and therefore need to be estimated [12]. Taking into

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 162–173, 2014.
c© Springer International Publishing Switzerland 2014

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 163

account the lack of prior knowledge of the tasks’ running times, this presents
the challenges for the resource management system with the conflicting goals of
minimizing the execution cost while meeting the total execution time deadlines.
In general, there are two types of BoT applications, namely compute–intensive
and data–intensive applications. We focus in this paper on data–intensive BoT
applications where each task requires the large–sized data to be available at the
location where data processing takes place before actual processing. In a typical
scenario involving such BoT applications, the Master (owned by the cloud user)
has a BoT, and each task is to be executed by one of the K Virtual Machines
(VMs), VM1, VM2, . . . , VMK . As the VMs are instantiated in the cloud and
become ready, they connect to the Master. When a VM connects (1) , the Master
randomly selects a task from a BoT, and assigns (2) it to the VM. In order to ac-
complish the assigned task, the VM has to retrieve the data of a–priori unknown
large size via Internet from a remote server (3), and during the retrieval process,
this VM may compete for the network and remote server resources with other
VMs. Naturally, the more VMs that compete for network and remote server re-
sources, the longer the retrieval time, and consequently, the larger the makespan.
Similarly, the larger the data to be retrieved, the longer the retrieval time and
the makespan. However, predicting by how much these factors will impact the
makespan remains a considerable challenge.

In this paper we analyze the significance of the data transfer performance
uncertainty to the makespan. This uncertainty further affects the accuracy of
the schedules presented to the user as (nearly) optimal. This is a consequence of
the approach in which state–of–the–art schedulers cannot identify the network
contention induced by a large number of VMs participating in an execution, or
large data transfers (or both). This leads to incomplete executions, or dramati-
cally violated makespan constraints. We derive a queueing–theory based model
that allows efficient investigation of the impact of data transfer to the makespan.
Based on the model and performed analysis, we derive the procedure that allows
efficient numerical derivation of the makespan, which further allows to calculate
the Pareto optimal solutions for execution costs and makespan.

– We derive and discuss a queueing–theory based model of the cloud system
used for the BoT applications. This model takes into account the data trans-
fer, and requires only the average size of the data set within the BoT. The
average size of the data may be estimated using well–known procedure for
estimating bags stochastic properties [12].

– We analyze the model using Mean–Value Analysis (MVA) [8] and develop
the simplified, yet efficient procedure that allows us to determine the data
retrieval time, and to estimate the makespan.

– We validate the proposed model against the traces of two different types of
real–world BoT applications executions on real–world clouds. In addition,
we use the MVA method to derive Pareto optimal configurations.

The paper is organized as follows: in Section 2 we describe the related work.
In Section 3 we describe the system model which accounts for the large data

164 C. Dumitru et al.

transfers. Further we analyse the proposed model using an MVA approach. Sec-
tion 4 discusses the results of the model validation, and illustrates the Pareto
front of the makespan in case of data–intensive BoT applications using the large
data sets. We present our conclusions in Section 5.

2 Related Work

This work is closely related to a number of topics: resource selection and schedul-
ing in clouds,performance prediction, and data-aware scheduling. In this section
we provide a short overview of related work.

Efficient resource scheduling with regard to minimizing makespan or other
objectives has been explored within the context of cluster, grid and cloud tech-
nologies. A common approach assumes full capacity information of available
resources and by employing various heuristics optimal schedules are obtained.
The majority of approaches just ignore the data access/transfer requirements
and expect that the network behaves as an infinite resource.

In [14] the authors consider network resources in the cloud resource selec-
tion phase, but they are performance constant, regardless of the workload. The
assumption made here is that input data is replicated across the available re-
sources. A genetic algorithm is used to obtain the Pareto frontier of combination
of resources that would lead to optimal schedules for a given workload.

The Budget Aware Task Scheduler (BaTS) [12] uses a stochastic approach to
determine the workload’s properties and uses the collected information to gener-
ate an approximated Pareto set of schedules suitable for the workload, along with
a predicted makespan [16]. While this system is efficient in predicting the behav-
ior of compute-intensive workloads, the potential impact of the limited network
resources on the makespan is ignored. The scheduler presented in [10] is able to
predict the execution time of more complex workloads, like DAG workflows and
it is data-aware, but it expects full information on tasks runtime including the
data transfer time. Moreover, this data transfer time does not change over time
with the addition of new, possibly different resources (scaling up).

When network resources are involved and data access becomes a bottleneck,
two popular approaches are taken. One optimizes based on data locality, that
is, jobs are scheduled on resources that are close to the data sources [7], [6]. An
orthogonal approach replicates data [11], such that the same data is stored at
multiple locations and compute jobs which require the same data can be spread
across the best available resources, thus lowering the chances of contention. Sys-
tems like Gfarm [15] and Hadoop [17] ensure that data is replicated system-wide
in order to avoid data access bottlenecks. The replication strategy and the num-
ber of replicas influences the performance of the system.

However, both approaches require either compute resources located conve-
niently close to the data or extra steps (and costs) to replicate the data before
the application starts. None of the approaches described above take into account
the changing data transfer time when predicting performance. Besides, to the
best of our knowledge, the queue–network models and Mean Value Analysis were
not used for the makespan calculation of data–intensive bags–of–tasks.

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 165

3 System Model

In this section we introduce our model of the data–intensive BoT system previ-
ously described. First we describe the details of the observed system; then we
explain the queueing–theory based model of the system, and we end this section
by describing Mean Value Analysis of the given model.

One of the major assumptions for BoT systems is that all tasks from given
BoT are independent from one another, i.e. the tasks could be executed without
any ordering requirements. The assignment of a single task Ti from a total of
N BoT tasks to virtual machines is random, and we neglect the communication
overhead (for this assignment) between a particular virtual machine and the
master. There are in total K virtual machines, and once the task Ti is assigned
to VMk, k = 1, 2, . . . ,K, the virtual machine downloads the data from the data
storage. We note the random variable representing the download time of task Ti

as Td, and the expected value of task download time is noted by TD = E[Td].
Once the data corresponding to Ti has been downloaded by VMk, this virtual

machine immediately starts execution of the assigned task. When processing of
task Ti is completed, VMk requests new task assignment from the master. We
neglect the time that VM needs to store (i.e. upload) task’s output data to a
remote destination. As each VM in the system either downloads data or processes
the task, the number of tasks (jobs) allowed in the system is constant and equals
K. We note the compute rate of VMk by μk, and therefore the average time E[Sk]

a task has been served by VMk is given as E[Sk] =
1

μk
, k = 1, 2, . . . ,K.

Due to the fact that we neglect the upload data process as well as the com-
munication between master and VMs, our system can be modeled as the closed
queueing network. The VMs represent a queueing system where every new task
arrival experiences immediate service and does not wait – this system is modeled
as the one with infinite number of servers, of which at most K are used.

As single data storage is used for the data download, the download happens
over shared network resources. Therefore it could be modeled as single–server
Processor Sharing (PS) queue, in which the server download rate is μS . The PS
queue that models download process in our case could be either the Discrimi-
natory Processor Sharing (DPS) or Egalitarian Processor Sharing (EPS) queue.
This is due to the fact that download rate experienced by a VMk is limited by
the maximum download rate, μD

k , and these download rates may be different for
different VMs. When the number of download sessions is small, i.e. when the sum
of all the service demands at the server is below μS , we have DPS. Otherwise,
when the number of download sessions is large, the download process is modeled
as EPS. In the EPS model, each of the download tasks present in the system
obtain a fair share of the capacity. In such a case the download rate experienced
by VMk is μS

#dtasks . The data download rate for task Ti experienced by VMk is
given as the following:

μD
k if

#dtasks∑
l=1

μD
l ≤ μS and

μS

#dtasks
if

#dtasks∑
l=1

μD
l > μS (1)

166 C. Dumitru et al.

The model we presented can be considered as a closed BCMP queuing net-
work [4], i.e. there are multiple classes of the tasks as their processing rates
depend on the class of the task. This is due to the fact that a task is already
mapped to a VM of a certain type before it reaches the server. Next to it, the
download rates may differ, as given by equation 1. In order to calculate the
makespan, we need the expected time, E[T] a task spends in the system. As
the data requests are generated only when the task assigned to VMk is com-
pleted, the expected time E[Tk] that tasks assigned to VMk spend in the sys-
tem, equals to the sum of the expected download time E[TD

k], and the expected
service time i.e.:

E[Tk] = E[TD
k] + E[Sk] = E[TD

k] +
1

μk
k = 1, . . . ,K. (2)

The average download times E[TD
k] are dependent on the number of download

tasks, and using equation 1 we have

E[TD
k] =

⎧⎪⎪⎨⎪⎪⎩
1

μD
k

if
#dtasks∑

l=1

μD
l ≤ μS

E[#dtasks]
μS

if
#dtasks∑

l=1

μD
l > μS

(3)

In order to evaluate the expected number of download tasks E[#dtasks] from
equation 3 we would need the equilibrium state probabilities of our system.
While methods to obtain a product form for the equilibrium state probabilities
exist [5], they require computing all the states of the network and their complex-
ity increases with the number of nodes in the network. The computing of states
may take time, which impact the time required for the makespan calculation.
Besides, in order to calculate E[TD

k] we need information about each task size. In
order to solve these two issues we derived an aggregated model, based on Mean
Value Analysis.

3.1 A Mean Value Analysis Approach

The first step in our approach is to transform the given model into the model in
which all virtual machines would have the same compute rate (μ̄k = μ̄) as well
as download rate (μ̄D

k = μ̄D). The second step is to analyse such model for tasks
of average size. This is the essence of the Mean Value Analysis (MVA) approach.

We model the VMs as the queueing system with the infinite number of servers,
of which at most K are used. The aggregated compute rate (μagg) of this system
remains the same,

μagg =

K∑
k=1

wkμk where wk =
μk∑K
k=1 μk

(4)

where wk represents the probability that some arbitrary task will be executed
on machine k in the non–aggregated system. The service rate of VMk is

μ̄ =
μagg

K
. (5)

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 167

μ̄

μ̄

· · ·

μS

μ̄
n1 jobs

n2 jobs

μ̄D

μ̄D

μ̄D

Fig. 1. The aggregated model of the considered system

The similar reasoning holds for the aggregated download rate μD
agg , i.e.

μD
agg =

K∑
k=1

wkμ
D
k where wk =

μD
k∑K

k=1 μ
D
k

. (6)

The maximum download rate of VMk in this system is therefore

μ̄D =
μD
agg

K
. (7)

As in the original model, the actual data download rate is dependent on the
number of tasks that simultaneously access the data storage. The data download
rate is now equal for all virtual machines VMk, and let μS(j) be the service rate
of the data storage server when the number of download tasks #dtasks = j.
Using equation 7 we obtain the following expression for μS(j)

μS(j) =

{
μ̄D if j

K · μD
agg ≤ μS

μS

j if j
K · μD

agg > μS

(8)

Due to the aggregation process we can now calculate the stationary proba-
bilities of the system states. The system state is described as (n1, n2) where n1

represents the number of the tasks that are downloaded while n2 represents the
number of the tasks that are processed by (n2) VMs. It holds that n1+n2 = K,
and n1, n2 ≥ 0. Let π1(j|K) be the conditional probability that the number of
download tasks is j under condition that the total number of tasks in the net-
work isK. We define π2(j|K) accordingly. The mean service time experienced by
an arriving job at the data storage node (the average download time) is derived
using MVA for the single chain product form closed networks [8]. The MVA
analysis is based on two important results from the queuing theory: the arrival
theorem [13,8] and Little’s Law [9].

From the arrival theorem we obtain the expected download rate when there
are K tasks in the network as the following

E[TD(K)] =
K∑
j=1

π1(j − 1|K − 1)
j

μS(j)
(9)

168 C. Dumitru et al.

As VMs have the same compute rate, the expected service time is constant, i.e.

E[S] =
1

μagg
. (10)

The visit rate is defined as the mean number of visits made by a task at the
download server (vD) or aggregated virtual machines (vS). In our case, vD =
vS = 1

2 as the number of arrivals at the download server and the aggregated
virtual machines are the same. From Little’s Law we obtain the total system
arrival rate, i.e. throughput of the system with K jobs:

λ(K) =
K

vDE[TD(K)] + vSE[S]
=

K
1
2E[T

D(K)] + 1
2E[S]

. (11)

The queue length distribution at the download server is derived from

π1(j|K) =
v1 · λ(K)

μS(j)
π1(j − 1|K − 1), j = 1, . . .K. (12)

The probability of an empty queue is derived from

π1(0|K) = 1−
K∑
j=1

π1(j|K). (13)

Using recurrence formulae 9–13 we can derive E[TD(K)]. For a total of N tasks
within the BoT, the total makespan obtained using the MVA is

M =
N
K

E[TD(K)]+E[S]

. (14)

The computation complexity of the MVA-based estimation algorithm is O
(
K2
)

where K is the number of VMs. As in practice K is relatively small, the MVA
approach is well–suited to estimate the Pareto frontier of optimal configurations
for a given workload.

4 Evaluation and Discussion

We evaluate the accuracy of our MVA-based prediction procedure for data-
intensive bags–of–tasks using an experimental setup consisting of two real-world
applications and multiple cloud instance types. We also investigate the efficiency
of our MVA-based procedure when employed towards constructing Pareto fronts.

All experiments were performed using the Amazon EC2 [1] cloud region Ire-
land. The characteristics of the Amazon EC2 instance types used in our ex-
periments are presented in Table 1. The compute performance of each instance
consists of the number of virtual CPUs (vcpus) and their allocated shares, ECU
(EC2 Compute Unit), the equivalent of a 2007 AMD Opteron CPU. We chose
to focus on these three types because they exhibit different computation-to-
network-to-price ratios and therefore allow us to analyze the behavior of the
MVA-based procedure in different real-world scenarios. The storage server host-
ing the input data was located in the Netherlands. For instance reservation and
task execution we used the Budget- and Time-constrained Scheduler[12].

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 169

Table 1. Amazon EC2 Instance Details

Type CPUs (ECU) Memory(GB) Network Cost($/h)
m1.s 1(1) 1.7 Low 0.047
m1.m 1(2) 3.75 Moderate 0.095
m1.l 2(4) 7.5 Moderate 0.190

Applications. We considered two image processing applications, each display-
ing a different compute-to-data ratio:OpenJpeg a JPEG2000 software encoder [3]
and a ImageMagick suite component, which compresses images to the JPEG for-
mat [2] and applies a sharpening filter. The input data used for our experiments
consisted in a subset of 7500 TIFF image frames in 4K resolution of the open
source movie Sintel. The average file size was 24.3 MB. For both applications, we
estimated the expected performance of each EC2 instance type (see Table 1) us-
ing BaTS’ sampling module. During the sampling procedure, we also performed
network bandwidth measurements to assess the storage server’s capacity. We
remark that, according to our sampling results, for the same input data, the
OpenJpeg application has a higher average execution time since the compression
algorithm used is more computationally-intensive.

Experiments. To evaluate the accuracy of our MVA-based prediction proce-
dure, we compare it against the data-oblivious prediction mechanism of BaTS,
referred to as ‘simple’, and against real executions (”exec”) of several scenarios
having the same input data (bag), but different cloud instance configurations:

1-1-1 consists in one instance of each type: m1.s, m1.m, m1.l
5-5-5 consists in five instances of each type: m1.s, m1.m, m1.l

10-10-10 consists in ten instances of each type: m1.s, m1.m, m1.l

Since real executions are subject to external noise (such as network traffic or
cloud instance performance variability), we repeat the execution of each scenario
three times and derive corresponding error bars to obtain the ‘exec’ makespans.

All results for both types of applications are collected in Figure 2. For each
configuration, we present the MVA-based makespan estimate, the ‘simple’
makespan estimate and the ‘exec’ makespan (with error bars). Each configu-
ration is labeled using the types and respective number of instances, in the
following format: type:no instances[+type:no instances[...]]. All execu-
tions were performed three times and the makespans averaged. The variance
of each execution was relatively low(0.10-0.20), especially for the ‘larger’ con-
figurations. In the case of ‘small’ (3 machines) configurations the variance is
slightly higher(0.20-0.25). We assume that this is due to both varying network
conditions and to the slight variability in performance of the instances. The
cloud provider is not able to provide a perfectly identical instance in terms of

170 C. Dumitru et al.

performance due to the shared environment. Also small configurations are more
sensitive to varying Internet conditions.

We selected these three configurations as they offer a good insight with re-
gard to the behavior of the MVA prediction method in the presence of varying
numbers and types of instances. The ‘1-1-1’ configuration has a low number of
instances and thus can be used to benchmark the behavior of both the MVA
and simple prediction methods. The ‘5-5-5’ configuration starts to encounter
contention at the storage server, especially in the case of the ImageMagick ap-
plication, which as previously mentioned, exhibits a lower compute-to-data ratio.
We already see here that the ‘simple’ estimation is no longer accurate enough.
The ‘10-10-10’ configuration manages to saturate the storage server in the case
of both applications. The MVA method is able to include the fact that the data
storage server has become the bottleneck. In all cases the MVA value is close to
the measured execution time. This shows that the simplification we have made
in our model, where all the different types of instances are aggregated and then
homogenized does not considerably affect the accuracy of the MVA method.

Fig. 2. Measured (exec), MVA Predicted and simple predicted makespans for three
configurations

We can now use this result to apply the MVA method to a real scenario in
which the user is faced with the task of selecting from a list of configurations,
which exhibit different performance and cost. We obtained the Pareto fronts
(PFs) of each application, using both the MVA-based and ‘simple’ estimates, as
shown in Figure 3. Each point in the graph represents an unique configuration
with its corresponding cost and makespan. The PFs were obtained by exhaus-
tively computing the makespan and budget estimates of all possible configura-
tions, considering a maximum of 10 instances per type, and then selecting the
non-dominated set of configuration, i.e. for a configuration from the Pareto Set
is . As the maximum number of instances and instance types increases, this ap-
proach becomes extremely slow (the total number of configurations grows expo-
nentially). However, here we focus on the efficiency of employing our MVA-based
method when constructing PFs and further usage of approximations algorithms
is beyond the scope of this paper. In the case of the PF of the ImageMagick ap-
plication we observe a ‘tipping point’, i.e. a point in the objective space where the

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 171

speedup obtained by selecting a more expensive configurations starts decreas-
ing considerably. This is less visible in the case of the OpenJpeg application, as
the saturation point is not fully achieved not even in the case of the most ex-
pensive configuration. This is related, as previously mentioned, to the different
compute-to-data ratio of the application.

The ‘simple’ PF offers a set of configurations which, as empirically shown in
the first set of experiments does not represent the ‘true’ Pareto Front, due to the
naive method’s inaccuracy in the presence of network bottlenecks. By selecting
a configuration from this set, the user could potentially make inefficient use of
his budget.

Fig. 3. Pareto fronts for two application types: OpenJpeg and ImageMagick

To empirically evaluate the accuracy of each MVA-based Pareto front, we se-
lected for real execution four configurations: the global cheapest, the cheapest
from the group of very fast schedules, i.e. the ones at the right of the ‘tipping
point’, and two other configurations such that they equally divide the price in-
terval between the first two selected configurations. Figure 4 shows the execution
makespan (exec), the ‘simple’ makespan estimate and the MVA-based makespan
estimate for each configurations and for each application considered. Each con-
figuration was executed three times and Figure 4 presents the average over the
three executions together with the error. Again, we remark that the variance is
small, similar to that observed for the first presented experiments.

For all the configurations, the execution times, and both the MVA and simple
estimates are close to each other. This is due to the special properties held by
the schedules located on the Pareto front. These configurations make best use
of the available resources and inherently avoid contention; when contention is
reached, the configuration is less efficient with respect to cost and makespan
and therefore would not be present in the non-dominated set of configurations
(Pareto front).

172 C. Dumitru et al.

Fig. 4.Measured (exec), MVA-based and ‘simple’ predicted makespans for Pareto front
selected configurations

5 Conclusions and Future work

In this paper we have presented the theoretical model of a system which executes
data–intensive bags–of–tasks in a cloud computing environment with data access
bottlenecks. The empirical evaluation of the model shows promising results with
respect to makespan estimation for various combinations of cloud instances in
the presence of limited network resources. We showed how this method (MVA)
can be successfully applied to an existing scheduler to obtain Pareto fronts for
data–intensive bags–of–tasks workloads. The MVA procedure requires informa-
tion about the mean behavior of the system’s components and thus no other
statistical properties can be derived, besides means. While this can be seen as a
limitation of the prediction ability of our model, it makes it on the other hand
very robust and computationally efficient. As future work we plan to model the
system as a more complex queueing network, which would allow us to obtain
more properties of the system, such as service time distributions.

Funding has been provided by the Dutch national research program
COMMIT.

References

1. Amazon ec2 - amazon elastic compute cloud, https://aws.amazon.com/ec2/ (ac-
cessed: January 27, 2014)

2. Imagemagick: Convert, edit, or compose bitmap images,
http://www.imagemagick.org/ (accessed: Januray 27, 2014)

3. Openjpeg - jpeg2000 codec, http://www.openjpeg.org/ (accessed: January 27,
2014)

4. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed
networks of queues with different classes of customers. J. ACM 22(2), 248–260
(1975)

https://aws.amazon.com/ec2/
http://www.imagemagick.org/
http://www.openjpeg.org/

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 173

5. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions. Wiley-Interscience, New York (1998)

6. Cirne, W., Paranhos, D., Costa, L., Santos-Neto, E., Brasileiro, F., Sauve, J., Silva,
F.A.B., Barros, C., Silveira, C.: Running bag-of-tasks applications on computa-
tional grids: The mygrid approach. In: Proceedings of the 2003 International Con-
ference on Parallel Processing, 2003, pp. 407–416 (2003)

7. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-g: A compu-
tation management agent for multi-institutional grids. Cluster Computing 5(3),
237–246 (2002)

8. Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press,
Inc., Orlando (1983)

9. Little, J.D.C.: A proof for the queuing formula: L = λ w. Operations Research 9(3),
383–387 (1961)

10. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application dead-
lines in cloud workflows. In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage andAnalysis, SC 2011, p. 49:1–49:12.
ACM, New York (2011)

11. McClatchey, R., Anjum, A., Stockinger, H., Ali, A., Willers, I., Thomas, M.: Data
intensive and network aware (diana) grid scheduling. Journal of Grid Comput-
ing 5(1), 43–64 (2007)

12. Oprescu, A.-M., Kielmann, T., Leahu, H.: Budget estimation and control for bag-
of-tasks scheduling in clouds. Parallel Processing Letters 21(02), 219–243 (2011)

13. Reiser, M., Lavenberg, S.S.: Mean-value analysis of closed multichain queuing net-
works. J. ACM 27(2), 313–322 (1980)

14. Taheri, J., Zomaya, A.Y., Siegel, H.J., Tari, Z.: Pareto frontier for job execution
and data transfer time in hybrid clouds. Future Generation Computer Systems
(2013)

15. Takefusa, A., Tatebe, O., Matsuoka, S., Morita, Y.: Performance analysis of
scheduling and replication algorithms on grid datafarm architecture for high-energy
physics applications. In: HPDC, vol. 3, p. 34 (2003)

16. Vintila, A., Oprescu, A.-M., Kielmann, T.: Fast (re-)configuration of mixed on-
demand and spot instance pools for high-throughput computing. In: Proceedings of
the First ACM Workshop on Optimization Techniques for Resources Management
in Clouds, ORMaCloud 2013, pp. 25–32. ACM, New York (2013)

17. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Inc. (2009)

SPAGHETtI: Scheduling/Placement Approach

for Task-Graphs on HETerogeneous archItecture

Denis Barthou1,2 and Emmanuel Jeannot2

1 Bordeaux Institute of Technology, France
2 Inria, LaBRI, France

Abstract. We propose a new algorithm, called SPAGHETtI, for static
scheduling tasks on an unbounded heterogeneous resources where re-
sources belongs to different architecture (e.g. CPU or GPU). We show
that this algorithm is optimal in complexity O(|E||A|2 + |V ||A|), where
|E| is the number of edges, |V | the number of vertices of the scheduled
DAG and |A| the number of architectures – usually a small value – and
that it is able to compute the optimal makespan. Moreover, the number
of resources to be used for executing the schedule is given by a linear
time algorithm. When the resources are bounded we provide a method to
reduce the number of necessary resources up to the bound providing a set
of compromises between the makespan and the size of the infrastructure.

1 Introduction

Directed acyclic graphs (DAGs) have been used to model [7,8,15], execute [2,5,12]
and predict [14] the performance of parallel applications. There exists many
scheduling algorithms for mapping tasks of a DAG onto the resources of parallel
machines [13,17,20]. A lot of work have been proposed to schedule task graphs
on heterogeneous resources when execution and communication time depend on
the machine that executes a task [3,16,17]. However, recent advances in High-
Performance Computing (HPC) have led to two important considerations:

– HPC systems feature a relatively low heterogeneity. Contrary to proposed
solutions of the literature where each individual machine can perform dif-
ferently, one often face a fix number of architectures (e.g. CPU, GPU, MIC,
etc.) where performance is homogeneous.

– HPC systems and their applications are of very large-scale. Top end HPC
systems can have as many as hundreds of thousands of processors. The tiled
version of the dense Cholesky factorization for instance has more than 10
million tasks (matrix of order 204800 and tiles size of 512). Therefore, the
complexity to schedule the DAGs is crucial in this setting.

In this paper, we propose a new static scheduling algorithm designed for this
kind of systems. Instead of considering each individual processor independently
it considers the architectures of the target machine. Within each architecture
the communication and execution time is considered homogeneous. Thanks to

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 174–185, 2014.
c© Springer International Publishing Switzerland 2014

SPAGHETtI: Scheduling/Placement Approach for Task-Graphs 175

that feature, for an unbounded number of resources, it is able to schedule the
input graph optimally in terms of makespan, with an optimal complexity of
O(|E||A|2+ |V ||A|) where |E| is the number of edges, |V | of vertices of the DAG
and |A| the number of architectures and potentially resorting to task duplication.

The remaining of the paper is organized as follows. In Section 2, we discuss the
related work. The models are described in Section 3. The algorithm is detailed
in Section 4. How to go from an unbounded number of resources to a bounded
number is discussed in Section 5. Experimental results are provided in Section 6.

2 Related Work

Static scheduling task graphs on homogeneous resources is NP-hard even for
two machines (reduction from 2-partition [9]). However, for unbounded resources
and no communication cost it is clearly in P as it requires to use new resources
(resource augmentation) to have a schedule of the length of the critical path.
In the case of communication cost, optimal scheduling can be found for some
special input graph only (without [19] or with [1] duplication).

There exists a lot of static scheduling heuristics for heterogeneous scheduling
(see [6] for some examples. If duplication is not allowed, HEFT [17] provides a
good schedule in a reasonable complexity O(|V |2p), with p the number of pro-
cessing units. In [6], it has been experimentally shown that HEFT is one of the
best heuristics (in terms of makespan) for random graphs among 20 different
heuristics. In case duplication is allowed, TANH [3] is a heuristic of interest for
our study as it provides a low complexity (O(|V |(p log p) + |V |2)) and is opti-
mal under some hypothesis. The authors show that TANH provides an optimal
schedule (in terms of makespan) if a “A fork node i that is not a join node is as-
sumed to have the same execution time on all processors.”. Such hypothesis does
not hold in many cases. For instance in the Cholesky task graph, the POTRF
task is a fork task that is not a join task and its runtime is very different if you
execute it on a CPU or on a GPU.

In conclusion static scheduling heuristics have a complexity that depends on
the number of processors and are not able in the general case, due to NP-
completeness, to provide an optimal schedule.

3 Models and Definitions

We consider an application modeled by a directed acyclic task graph (DAG) G =
(V,E) where V is the set of tasks to be executed and E represents precedence
constraints between tasks. The execution model of the DAG is close to the macro-
dataflow model where a task can be executed only after all its predecessors have
terminated and when communications from its predecessors and this task have
been performed. However, it differs in the way costs are modeled.

We want to model a large platform where we have different architectures.
Think for instance of a node with a set of multicore processors (a NUMA ma-
chine with several hundreds of cores) with some accelerators (e.g. GPU cards

176 D. Barthou and E. Jeannot

having each several hundreds of CUDA cores or Xeons Phi each featuring 60
cores with 4 threads each). In this case, we assume that the communication
cost between two architectures is the same whatever the actual instances that
are sending and receiving the data. Moreover, the communication costs are con-
sidered constant when data move within one architecture (whether this task is
executed on the same instance as its predecessor or not). This later assumption is
different from the standard DAG scheduling model where a distinction is made if
the communication is occuring within the same instance (has no cost) or between
different instances (has a non zero cost). This is justified as follows. First, in our
model, this constant cost can be zero in order to neglect intra-architecture com-
munications compared to inter-architecture communications. Second, we want
to produce a schedule where high-level decisions are taken such has: ”On which
architecture should I schedule this task ?” We think the impact of locality on a
multi-architecture machine is more important than locality inside one given ho-
mogeneous architecture. Third, the assumption of constant communication time
within an architecture makes all the difference theoretically speaking: it is this
assumption that allows us to find an optimal solution. Finally, the experiment
section will show that it leads to predictable execution time and is therefore
reasonable in real settings.

Formally, let ω be the communication time function, defined for each edge
of the graph, and τ is the execution time function, defined for each vertex. We
consider a set of different architectures, A. The communication time for a given
edge depends on the architecture executing the vertices of this edge. Hence, the
function ω is defined over E×A2 → R: For each edge, we have a communication
matrix of order |A| ∗ |A| that provides the communication times of this edge
depending on the source and destination architecture. Similarly the execution
time function is defined as V ×A → R: for each task we have a vector of execution
time of order |A| (see an example in Fig. 1).

Definition 1 (Start time). For a task graph G and an architecture set A, the
start time is a function:

θ : V ×A → N

i, j → t

that associates to task i and architecture j a time t for i to start on j. We denote
the starting time of task i on architecture j: θi[j].

The start time is a total function, defined for all vertices and architectures. It
does not imply that tasks are systematically duplicated on all architectures,
but only represents possible starting times according to architectures. The ear-
liest completion time is defined as the minimal time to start a task, added to
the time to execute the task, considering all possible architectures: Cearliest

i =
minj∈A θi[j] + τi[j] The makespan is then simply deducted: Cmax =
maxi∈V Cearliest

i . The makespan usually involves the latest completion time,
when tasks are duplicated. The earliest completion time is equal to the latest

SPAGHETtI: Scheduling/Placement Approach for Task-Graphs 177

completion time for non-duplicated tasks. This is not a limitation, since it is al-
ways possible to define an additional sink task, having as predecessors the tasks
initially with no successors. Besides, our mapping algorithm will ensure that the
tasks with an earliest completion time equal to the makespan are not duplicated.

The mapping function defines more precisely the resource executing task i:

Definition 2 (Mapping). A mapping of a task graph G is a function

μ : V ×A → N ∪ {⊥}
i, j → r

that associates to each task i and architecture j the resource number r that ex-
ecutes i. When i is not executed on architecture j, r corresponds to the special
value ⊥. When the same task is mapped to different architectures, there is du-
plication. We denote the resource executing task i on architecture j: μi[j].

Definition 3 (Constraints). Given a graph G, a set of architectures A and
a vector of resources r = (rk)k∈A, the functions μ and θ define resp. a valid
mapping and schedule if and only if the following constraints are checked:

1. Resource constraint. One task is executed at a time on the same resource.

∀i, j ∈ V, k ∈ A, i �= j, μi[k] = μj [k] �= ⊥ ⇒ (θi[k] + τi[k] ≤ θj [k])

∨ (θj [k] + τj [k] ≤ θi[k]) (1)

2. Architecture constraint. Resources are bounded by r:

∀i ∈ V, k ∈ A, μi[k] ≤ rk (2)

3. Dependence constraints. The start time follows the precedence constraint and
communication costs:

∀(i, j) ∈ E, ∀k, ∃h, θj [k] ≥ θi[h] + τi[h] + ωij [h, k] (3)

4 The SPAGHETtI Algorithm

We consider here the computation of the minimum makespan when there is no
resource constraint (1) and no architecture constraint (2). Within this formula-
tion, it is possible to define a schedule and a mapping function giving for each
task the architecture(s) where it executes.

4.1 Minimizing Makespan

Consider first the case where there is only one architecture available, i.e. |A| = 1.
Then ω and τ are only functions of tasks. The optimal makespan can be evaluated
by computing the earliest start time of each task. According to the dependence
constraint (3), this start time fulfills the following property:

θearliestj = max
(i,j)∈E

(θearliesti + τi + ωij)

178 D. Barthou and E. Jeannot

We can arbitrarily define the earliest start time for tasks with no predecessor
in G as 0. This formulation then corresponds to a longest path problem on the
DAG G (critical path). This can be solved in O(|V |+|E|) time with a topological
sort and then the evaluation in topological order of the function θearliest.

Now, consider the case where |A| ≥ 1. The dependence constraint defines the
value of the earliest start time as:

θearliestj [k] = max
(i,j)∈E

min
h∈A

(θearliesti [h] + τi[h] + ωij [h, k]).

Using (min,+) notation algebra, where the addition corresponds to a min and
multiplication to +, the min term can be rewritten into:

∑
h∈A(θ

earliest
i [h] ∗

τi[h] ∗ ωij [h, k]. This corresponds to a matrix vector product with θi and τi
vectors indexed by A and ωi,j a square matrix of rank |A|. The vector definition
of θearliestj is therefore:

θearliestj = max
(i,j)∈E

θearliesti ∗ diag(τi) ∗ ωi,j (4)

with max the component-wise maximum and diag(τi) the diagonal matrix ob-
tained from the vector. This recursive definition of θearliestj is similar to the case
where |A| = 1, and leads to the definition of the SPAGHETtI algorithm.

Algorithm 1. Compute the earliest starting time for each vertex in G
Input: G = (V,E) // The input DAG
Input: τ // Function defining the duration time vector
Input: ω // Function defining the communication time vector

1 forall the i ∈ G do // Assign a time vector, for all architectures
2 θi ← 0

3 Cmax ← 0
4 S ← Topological sort(G)
5 forall the i ∈ S do // Visit G in topological order, starting with source
6 for every vertex j predecessor of i in G do
7 θi = max(θi, θj ∗ diag(τj) ∗ ωj,i)// Element-wise maximum on vectors

8 Cmax ← max(Cmax,maxk∈A θi[k] + τi[k])

Figure 1 shows an example of the schedule and makespan computed by
SPAGHETtI on a graph, for two architectures, CPU and GPU. CPU values
are put in the first row/column of vectors and matrices, GPU in the second.
For instance, CPU→CPU communication between a and e takes 1, CPU→GPU
takes 3. The earliest starting time for task a is 0 for both architectures. The
starting time for task b, when started on CPU, is at least the time to complete a
on CPU and then communicate with b, or complete a on GPU and communicate
accross architectures. This leads to a starting time of 2. This is the same case for
GPU, and for task c. Task e on CPU cannot complete before either task a has
completed on CPU and CPU→CPU communication has finished (duration 1),
or task a has completed on GPU and GPU→CPU communication has finished
(duration 4): the earliest starting time for e on CPU is therefore 2. We let the
reader continue the reasoning and check the values of the table on the right.

SPAGHETtI: Scheduling/Placement Approach for Task-Graphs 179

Task θearliestCPU θearliestGPU Mapping

a 0 0 CPU

b 2 2 GPU

c 2 2 CPU

d 7 7 CPU

e 2 3 CPU

f 8 9 CPU

Fig. 1. On the left, the task graph with the values of τ for each task and ω for each
edge. On the right, the earliest starting time for each task, given when the task starts
on CPU and on GPU. Then the last column corresponds to the architecture where the
task is mapped in order to reach the optimal makespan (9 in this example).

Theorem 1. Algorithm 1 computes the optimal makespan of G with the optimal
complexity O(|A|2 ∗ |E|+ |A| ∗ |V |).

Proof. First, let us show that the SPAGHETtI algorithm computes indeed the
optimal makespan. Assume that Algorithm 1 does not compute the optimal
makespan. There exists a scheduling function θ′ verifying the dependence con-
straint (3) such that for all architectures k, θ′sink[k] ≤ θsink[k] and for at least
one architecture, this inequality is strict. Such relation is denoted θ′sink < θsink.
Consider a task i0, minimal according to the topological order, such that θ′i < θi.
θi0 is defined as:

θi0 = max
(j,i0)∈E

(θj ∗ diag(τj) ∗ ωj,i0).

As θj = θ′j for all the predecessors j of i0 and there exists a k ∈ A such that
θ′i0 [k] < θi0 [k], we have:

θ′i0 [k] < max
(j,i0)∈E

min
h∈A

(θ′j [h] ∗ τj [h] ∗ ωj,i0 [h, k]).

Thus there exists a predecessor j of i0 such that for all architecture h ∈ A:

θ′i0 [k] < θ′j [h] ∗ τj [h] ∗ ωj,i0 [h, k].

This is in contradiction with the dependence constraint (3), and contradicts the
definition of θ′. Hence Algorithm 1 computes the optimal makespan.

Now line 7 corresponds to O(|A|2 ∗ |E|) operations, the |A|2 term coming
from the matrix vector product θj ∗ diag(τj) ∗ ωj,i. Line 8 takes O(|A| ∗ |V |)
operations due to the max operation. The total complexity corresponds to the
size of the inputs. Since the makespan may depend on all of them, this shows
the complexity is optimal. �

4.2 Mapping Tasks to Architectures

Finding a mapping function corresponds to finding one or several architectures
for each task, compatible with earliest starting time constraints. As there is no

180 D. Barthou and E. Jeannot

resource constraints, μ is here an indicator function returning a boolean: a task
i is mapped on an architecture j ∈ A if μi[j] = 1 otherwise μi[j] = 0. A task is
duplicated on two different architectures j, k, j �= k if μi[j] = μi[k] = 1.

For all tasks with no successor in G, the architecture is chosen so that the
earliest completion time can be attained:

∀h ∈ A, h = min{k ∈ A | θi[k] + τi[k] = Cearliest
i } ⇒ μi[h] = 1. (5)

Note that these tasks are not duplicated, since h is uniquely defined. The
makespan corresponds to the earliest completion time of one of these tasks,
hence the mapping here is chosen so that the optimal makespan is reached.

For all the other tasks, the dependence constraint guides the choice of archi-
tecture that can execute them: Consider a task i ∈ G and an edge (i, j) ∈ E.
Assume j is mapped on architecture k ∈ A, then the schedule computed by
the SPAGHETtI algorithm ensures there exists an architecture h ∈ A such that
θi[h] ≤ θj [k]− τi[h]− ωij [h, k]. This defines a value for μi:

∀(i, j) ∈ E, ∀k, l ∈ A,

μj [k] = 1 ∧ l = min{h ∈ A | θi[h] ≤ θj [k]− τi[h]− ωij [h, k]} ⇒ μi[l] = 1. (6)

An alternative definition of μ can prevent useless task duplication, whenever
possible. Instead of Equation (6), the following equation can be used:

Hi = {h | ∀(i, j) ∈ E, ∀k ∈ A, μj [k] = 1 ⇒ θi[h] ≤ θj [k]− τi[h]− ωij [h, k]},
Hi �= ∅ ⇒ μi[minHi] = 1.(7)

When this equation does not define a value for μi, Equation (6) has to be used
and duplication is necessary. Equations (5), (6) and (7) define recursively the
function μ: Starting from tasks with no successor, μ is defined for all tasks in
a reverse topological order. The definition of μ shows that this computation re-
quires O(|A|2|E|) operations when applying definitions (6) or (7) and O(|A||V |)
operations when applying definition (5). This is the optimal complexity since, as
for the schedule, it corresponds to the size of the inputs G, τ and ω. Therefore,
this procedure, combined with the SPAGHETtI algorithms provides a solution
that is optimal in terms of makespan and complexity.

Figure 1 shows the result of the mapping computation on the task graph. As
the task f as a lower completion time 8 + 1 = 9 when executed on CPU, this
is the mapping of this task. Task e and d are indifferently mapped to CPU or
GPU (here CPU, ordered first). For task b, there is only one possible mapping
to ensure that d is scheduled at time 7: b has to be scheduled on GPU.

4.3 Determining the Number of Resources for Each Architecture

The required amount of resources for each architecture is not given by the previ-
ous algorithms. To determine this number of resources we use a greedy algorithm
that allocates task to architecture instances, extending the previous architecture

SPAGHETtI: Scheduling/Placement Approach for Task-Graphs 181

mapping computed in the previous section and computing the actual instance
μi[k] of task i when mapped on architecture k. For each architecture we consider
the tasks by increasing start time and we allocate them to the first resource of
the architecture that can respect the start scheduling constraints. If no resource
is available we proceed with resource augmentation and create a new instance of
this architecture. Therefore, the number of resources used is the minimal num-
ber of resources that respect the schedule (i.e. the task start time). Moreover,
this allocation is optimal in terms of platform dimensioning only if there is no
sufficient slack in the schedule to delay tasks in order to save resources.

5 Exploring Tradeoffs for Heterogeneous Machines

Here, we deal with the case where the number of resources is higher than the
available ones. There exists several ways of reducing the number of resources
used by a schedule. In homogeneous setting an effective way was explored by the
Pyrros project [19] where, after DSC [20] clusters were merged using the work
profiling method of [10]. Another technique, presented in the context of register
allocation, consists in adding some dependence edges in the graph in order to
reduce the number of simultaneously live variables [18].

In heterogeneous environments, merging architectures has no meaning. We
propose here a method similar to the one proposed for register allocation, where
instructions are replaced by tasks and resources are processing units instead of
registers. We reduce the inherent parallelism of the task graph by iteratively
adding edges and then re-computing the schedule, the mapping and the number
of resources until we reach the target number of resources. The procedure is
depicted in Algorithm 2.

Algorithm 2. Adding n edges to the DAG G to reduce its parallelism
Input: G = (V,E) // The input DAG
Input: n // Number of edges to add

1 S ← Topological sort(G)
2 I ← Interference graph(G);
3 forall the n edges to be added do // We will add n edges
4 i ← Highest degree node(I)
5 j ← Highest degree node(neighbor(i))
6 if i ≺S j then // If i is before j in the topological order
7 Add (i, j) in G // Communication cost is set to 0

8 else
9 Add (j, i) in G // Communication cost is set to 0

10 Remove (i, j) in I // and decrease degree of i and j

To add edges to the graph in order to reduce its parallelism, we first sort
nodes in topological order. Then, we build the interference graph I of the DAG.
In the interference graph, vertices are the same as in the original DAG. There
is an edge between two vertices if there is no path between them in the DAG
(they could be scheduled in parallel). In this interference graph we choose the
node i of highest degree and a neighbor of i of highest degree. Then, this edge
is added to the DAG G and the interference graph is updated. We iterate until

182 D. Barthou and E. Jeannot

n edges have been added. Therefore we add a batch of n edges before applying
again the SPAGHETtI algorithm. The rational behind adding several edges at
the same time is to amortize the interference graph construction. The rational
behind choosing the highest degree nodes in the interference graph is that a node
with high degree has a lot of freedom in terms of parallelism and we are therefore
more likely to impact the whole graph parallelism by reducing the parallelism of
this kind of nodes. We avoid adding cycles in the original DAG: the added edge
is directed so that it respects the topological order (line 6).

Moreover, each time we add a set of n edges, we compute the makespan of
the new SPAGHETtI’s schedule. This outputs a new compromise between the
execution time and the number of resources. Hence, with this procedure we
explore a full set of compromises (time vs. resources) until we reach the required
bound. This is helpful for decision makers to correctly dimension their platform.
In the following experiments, n was chosen between 10 and 100.

6 Experimental Results

We have implemented all the algorithms and procedures of the previous section.
They take an input DAG, the communication and computation cost of each task
on each architecture and the target number of resources for each architecture.
In the following experiments intra-architecture communications are always zero.

We have also designed a simple runtime system that executes the static sched-
ule on the given environments. In our experiments we have used nodes featuring
2 6-cores intel Xeons (X5650) at 2.67GHz with 36 Gb of RAM and 3 NVIDIA
Tesla M2070 GPU at 1.15 GHz with 6 Gb of memory.

We have coded the dense tiled Cholesky factorization [11]. It features 4 kernels
(POTRF, TRSM, SYRK and GEMM) that are executed using the Intel MKL
library 12.1.9 for the CPUs and the CUBLAS version 4.2 for the GPUs. The
Cholesky DAG can be seen here [4].

 10

 100

 1000

 10000

 100000

 1 10 100 1000

T
im

e
in

 m
s

Number of kernels

Predicted Scheduled Time
Real Execution Time

(a)

 1

 10

 100

 1000

 4 6 8 10 12 14 16

T
im

e
in

 m
s

Number of tiles

Predicted Scheduled Time
Real Execution Time

(b)

Fig. 2. Model validation experiments on (a) a chain of SYRK kernels alternatively on
CPU and GPU, (b) on a tiled Cholesky factorization with 4096x4096 tile size

SPAGHETtI: Scheduling/Placement Approach for Task-Graphs 183

Model Validation. To validate our model we have executed a real schedule,
measured the execution time of each kernel and compared the predicted schedule
time with the measured values.

In Fig. 2(a), we execute a chain of SYRK kernels that are scheduled alter-
natively between a GPU and CPU. We see that as the chain size increases, the
performance between the predicted time and the actual execution time becomes
closer. This validates our execution and inter-architecture communication model.

In Fig. 2(b), we execute the Cholesky factorization1 using tile size of 4096 and
the decomposition of the matrix varies between 4 and 16 tiles (hence, the order
of the matrix varies between 16384 and 65536). Here, we see that the predicted
execution time is just a little higher than the real execution time. This validates
the kernel execution time and communication time within a GPU as all the
tasks, in this case, are scheduled on the GPUs.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 10 100

M
ak

es
pa

n

number of resources of each architecture

Spaghetti
HEFT

(a)

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

M
ak

es
pa

n

Number of nodes in the triangle graph

HEFT high density of problematic nodes
HEFT low density of problematic nodes

Spaghetti high density of problematic nodes
Spaghetti low density of problematic nodes

(b)

Fig. 3. HEFT and SPAGHETtI comparison (a) for bounded number of resources for
the Cholesky Graph, (b) for unbounded number of resources in case of duplication

Comparison with HEFT. Being a list scheduling algorithm, HEFT is not
able to make a short-term sacrifice to achieve a gain in the long term. This is
exemplified with Fig. 3(a). In this Figure, we schedule a Cholesky DAG of 1540
nodes on two different architectures. Communicating within an architecture is
free but communicating between architecture is very costly. In this case, the first
task to be scheduled is faster on architecture 1 than on architecture 2 and the
other tasks are faster on architecture 2. HEFT will execute the first task on
architecture 1 and stay on this architecture until the end of the execution. On
the other hand, the execution cost of the tasks on architecture 2 can amortize
the communication time: SPAGHETtI pays the cost of executing the first task
on architecture 2 and continues to execute all the tasks on this architecture.
The optimal makespan is 2505 for 191 resources of architecture 2. We output
all the compromises found by our method between 191 and 5 resources. For 191
resources, SPAGHETtI’s makespan is 1.9 faster than the HEFT one. But if we
reduce the number of resources to 5 for both architectures, SPAGHETtI still

1 The factorization was checked correct by post-processing the result.

184 D. Barthou and E. Jeannot

outperforms HEFT by a factor of 2.2. We explain the increase of performance
ratio as follows. For a large number of resources SPAGHETtI does not need to
use duplication but when the number of resources decreases, SPAGHETtI finds
that duplication reduces the makespan even more. Indeed, it starts using this
feature when the number of available resources is lower than 105.

In order to assess the importance of duplication, we have tested the case of
a triangle DAG, where from time to time, two nodes (called problematic nodes)
sharing the same predecessors, have an opposite behavior in terms of execution
time (one is more efficient on one architecture while the other is more efficient
on the other architecture) and in terms of communication time (going from
the architecture they favor to the other architecture is very costly). The other
tasks are homogeneous (they have the same execution time on every architec-
tures). In this case, it is better to duplicate nodes that are predecessors of these
problematic nodes in order to avoid to pay the communication cost while these
nodes are executed on their privileged architecture. This is what is depicted on
Fig 3(b) where we see that, the inability of HEFT to duplicate nodes, adds a big
overhead in the makespan. We also see that for small number of nodes, HEFT
and SPAGHETtI perform identically: this is due to the fact that there is no
problematic nodes for small instances.

7 Conclusion

Being able to schedule a DAGs on a large parallel machine is a challenge. Most
heterogeneous static scheduling heuristics have a complexity that depends on the
number of resources. In this paper we propose to classify the resources by archi-
tecture in order to reduce the complexity of the scheduling process and to cope
with modern HPC environments where the heterogeneity is relatively low. We
also use a model where the communication time depends only on the source and
destination architecture and not on the instances of these architecture. Thanks
to this hypothesis, we are able to provide an optimal mapping strategy with a
very low complexity. We then show that we can find the minimal number of
resources required to respect the schedule start time and we are able to propose
a set of compromises (makespan vs. platform size) in order to help decision mak-
ers to dimension their environment depending on the time-to-solution constraint
they impose. Results show that the proposed model is verified in some real set-
tings and that we are able to amortize the execution of some task on suboptimal
resources or to duplicate tasks when necessary.

Future works are directed towards a better optimization of the part where we
switch from unbounded to bounded resources. We plan to do this by exploiting
the slack of the schedule and map tasks on suboptimal resources as long as the
schedule length is not increased.

Acknowledgement. We would like to thank Valentin Fréchaud for his help in
the implementation and test of the SPAGHETtI method.

SPAGHETtI: Scheduling/Placement Approach for Task-Graphs 185

References

1. Ahmad, I., Kwok, Y.K.: On exploiting task duplication in parallel program schedul-
ing. IEEE Transactions on Parallel and Distributed Systems 9(9), 872–892 (1998)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: A unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23(2), 187–198 (2011)

3. Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous envi-
ronment. IEEE Transactions on Parallel and Distributed Systems 15(2), 107–118
(2004)

4. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
Dague: A generic distributed dag engine for high performance computing, innova-
tive computing laboratory technical report. Tech. rep., ICL-UT-10-01 (2010)

5. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
Dague: A generic distributed dag engine for high performance computing. Parallel
Computing 38(1), 37–51 (2012)

6. Canon, L.-C., Jeannot, E., Sakellariou, R., Zheng, W.: Comparative evaluation
of the robustness of dag scheduling heuristics. In: Grid Computing, pp. 73–84.
Springer (2008)

7. Chong, F.T., Sharma, S.D., Brewer, E.A., Saltz, J.: Multiprocessor runtime support
for fine-grained, irregular dags. Parallel Processing Letters 5(04), 671–683 (1995)

8. El-Rewini, H., Lewis, T., Ali, H.: Task Scheduling in Parallel and Distributed
Systems. Prentice Hall (1994)

9. Garey, M., Johnson, D.: A Guide to the Theory of NP-Completeness. W.H. Free-
man and company, New York (1979)

10. George, A., Heath, M.T., Liu, J.: Parallel cholesky factorization on a shared-
memory multiprocessor. Linear Algebra and its applications 77, 165–187 (1986)

11. Gustavson, F.G., Karlsson, L., K̊agström, B.: Distributed sbp cholesky factoriza-
tion algorithms with near-optimal scheduling. ACM Transactions on Mathematical
Software (TOMS) 36(2), 11 (2009)

12. Jeannot, E.: Automatic multithreaded parallel program generation for message
passing multiprocessors using parameterized task graphs. In: International Confer-
ence on Parallel Computing (2001)

13. Leung, J.Y.T. (ed.): Handbook of Scheduling. Chapman & Hall/CCR (2004)
14. Mak, V.W., Lundstrom, S.F.: Predicting performance of parallel computations.

IEEE Transactions on Parallel and Distributed Systems 1(3), 257–270 (1990)
15. Sinnen, O.: Task scheduling for parallel systems, vol. 60. Wiley. com (2007)
16. Tang, X., Li, K., Liao, G., Li, R.: List scheduling with duplication for heterogeneous

computing systems. J. of Parallel and Distributed Computing 70(4), 323–329 (2010)
17. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity

task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260–274 (2002)

18. Touati, S.-A.-A., Eisenbeis, C.: Early control of register pressure for software
pipelined loops. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 17–32. Springer,
Heidelberg (2003)

19. Yang, T., Gerasoulis, A.: Pyrros: Static Task Scheduling and Code Generation for
Message Passing Multiprocessor. In: Supercomputing 1992, pp. 428–437. ACM,
Washington D.C (1992)

20. Yang, T., Gerasoulis, A.: DSC Scheduling Parallel Tasks on an Unbounded Number
of Processors. IEEE Trans. on Parallel and Distributed Systems 5(9) (1994)

Energy-Aware Multi-Organization Scheduling

Problem�

Johanne Cohen1, Daniel Cordeiro2, and Pedro Luis F. Raphael2

1 Laboratoire de Recherche en Informatique (LRI, UMR 8623),
Université Paris-Sud, Bât 650 Ada Lovelace, 91405 Orsay, France

Johanne.Cohen@lri.fr
2 Department of Computer Science,

University of São Paulo, Rua do Matão, 1010; 05508-090 São Paulo/SP, Brazil
{danielc,plfr}@ime.usp.br

Abstract. Scheduling algorithms for shared platforms such as grids and
clouds granted users of different organizations access to powerful re-
sources and may improve machine utilization; however, this can also
increase operational costs of less-loaded organizations.

We consider energy as a resource, where the objective is to optimize
the total energy consumption without increasing the energy spent by a
selfish organization. We model the problem as a energy-aware variant of
the Multi-Organization Scheduling Problem that we callMOSP-energy.

We show that the clairvoyant problem with variable speed processors
and jobs with release dates and deadlines is NP-hard and also that being
selfish can cause solutions at most mα−1 far from the optimal, where m
is the number of machines and α > 1 is a constant. Finally, we present
efficient heuristics for scenarios with all jobs ready from the beginning.

1 Introduction

Cooperative computational platforms such as grid computing or community
clouds are typically organized as a federated system where users and compu-
tational resources, belonging to different organizations — i.e., different adminis-
trative domains — share resources and exchange jobs with each other, in order
to simultaneously maximize the profits of the collectivity and their own inter-
ests. Those platforms create novel research and business possibilities that, in
turn, require ever more computational power. Examples of such organizations
are research laboratories, universities or company departments.

Current distributed systems and their underlying algorithms allow an efficient
redistribution of the jobs over the available resources, improving the overall
utilization of the platform. Specialized algorithms for cooperative computing
are capable of incite the creation of these platforms by guaranteeing that no
organization will worsen its own results (in terms of performance) by sharing its
resources with the others, even when the other behave in a selfish way.

� This work was partially funded by the São Paulo Research Foundation
(FAPESP #2012/03778-0).

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 186–197, 2014.
c© Springer International Publishing Switzerland 2014

Energy-Aware Multi-Organization Scheduling Problem 187

The participation on such communities can have a side-effect that is often
neglected by its users: the unpredictable increase of the operational costs for the
organization. Less loaded organizations could save energy by putting its machines
on stand-by, turning them off, or even decreasing the speed of the processors for
non-priority jobs. The co-existence of these jobs with jobs migrated from other
organizations can make this practice unfeasible.

It is crucial to optimize the allocation of the jobs for the whole platform in
order to achieve good system performances. Moreover, it is important to do that
in such a way that no organization will be harmed by sharing its own resources.
The goal of this work is to study this problem considering energy costs also as
a kind of resource that should be exchanged between the participants.

1.1 Related Work

The evolution of the processors technology has been driven by the demand
of increased performance and reduced sizes. These demands resulted on chips
with high power density and temperatures. On large scale server farms, energy-
efficiency became an important issue because of the energy costs. Furthermore,
part of this energy is converted into heat, which degrades processor’s perfor-
mance and reliability. Technologies as Intel’s “Turbo Boost” or AMD’s “Power-
Now” were developed to offer speed-scaling capabilities, that allow the system
to set the speed of the processors in order to control energy consumption.

The Dynamic Speed Scaling scheduling model was first studied by Yao, Demers
and Shenker [9]. They considered a problem where n jobs with release dates
ri, deadlines di and processing volumes wi, must be scheduled in a variable-
speed processor with the objective of minimizing the energy consumption on
that processor. The energy consumption is given by the integral over time of the
power function P (s(t)) = s(t)α, where s(t) is the speed in which the processor
is running on time t and α > 1 is a constant real number that depends on
the technical characteristics of the processor — usually α ∈ [2, 3]. There are
two assumptions to simplify the model: the processor spectrum of speeds is
continuous and can be any real number between 0 ≤ s ≤ +∞.

They have proposed an optimal greedy algorithm for the problem, known
as the YDS algorithm. It iteractively finds the maximum density interval, that
is, the time interval [t, t′] such that the sum of the processing volumes of the
jobs completely inside that interval, divided by the length of the interval, is
maximum. By the convexity of the power function, this value gives the optimal
speed on that interval (in the sense that no other feasible schedule can use less
power on that interval.) The jobs in the interval are then scheduled using the
Earliest Deadline First policy at this speed, jobs partially in the interval have
their release dates and deadlines adjusted.

Albers et al. [1,2] studied the problem with m variable-speed processors with
and without preemption and job migration. When migration is not allowed, the
problem is NP-Complete; otherwise there is a polynomial algorithm to find the
optimal solution. They also proved that, if the jobs have agreeable deadlines (i.e.,
given two jobs, if r1 ≤ r2 then d1 ≤ d2), the problem can be optimally solved in

188 J. Cohen, D. Cordeiro, and P.L.F. Raphael

polynomial-time by distributing the jobs in a round-robin fashion, prioritizing
jobs with smaller release dates.

Scheduling on cooperative platforms were first studied by Pascual et al. [5,8].
They proposed the Multi-Organization Scheduling Problem (MOSP). In their
model, independent organizations, sharing resources on a grid-like fashion, have
a local performance objective for their jobs besides the global makespan. Their
main contribution is the analysis of a centralized 3-approximation algorithm for
the makespan that always incite these organizations to cooperate.

The concept of selfishness on individualists organizations has been broaden
by Cohen et al. [4]. Studying workloads of bag-of-tasks jobs, they have analyzed
situations where selfish organizations could change the schedule of the jobs as-
signed to its own machines and proposed algorithms that avoid schedules where
the devised global schedule could be changed by re-inserting local jobs earlier.
When all organizations behave selfishly, any approximation algorithm has a ra-
tio greater than or equal to (2−N/2) regarding the optimal makespan with lo-
cal constraints and presented several 2-approximation algorithms for the global
makespan that always respect the selfishness restriction. They have also analyzed
the decentralization of the decision making using Algorithmic Game Theory [3].

1.2 Contributions and Outline of this Paper

Scheduling algorithms for modern cooperative platforms composed of resources
shared between independent participants granted its user access to powerful re-
sources and improved the utilization of machines that were, most of the time,
idle. With the increasing need for more computational power, the energy con-
sumption on these machine also became an issue.

We modeled the problem as a Multi-Organization Scheduling Problem (MOSP)
with respect to the system total energy consumption. We have multiple orga-
nizations, each one with a processor that can operate at variable speed (as in
classic Dynamic Speed Scaling problems), and its own set of jobs. The goal is
to find a global schedule, migrating jobs from one organization to another, that
minimizes the total energy consumption.

Each organization has what is called a selfish restriction, that being a energy
restriction that makes unfeasible any schedule that increase the energy consump-
tion of that organization compared to what would be if the same organization
was alone (even if the global energy consumption decrease with that schedule.)

An interesting aspect of this problem is that the energy consumption is given
by a convex function on the speed of the processor, making its analysis signifi-
cantly different from the original MOSP problem.

On Section 2 we formally define the problem. Section 3 shows that the general
problem is NP-hard and that the ratio between the energetic consumption of
solutions that respect the selfish constraint to the cost of solutions that does not
respect may be unbounded for some instances of the problem. Heuristics for the
problem with several organizations executing jobs that must meet a deadline are
presented in Section 4, and their energy savings are experimentally analyzed in
Section 5. Finally, some conclusion remarks are presented in Section 6.

Energy-Aware Multi-Organization Scheduling Problem 189

2 Problem Description and Notations

The general problem studied in this paper is how to perform energy-aware
scheduling on cooperative platforms formed by a federation of organizations.
Different independent organizations, interconnected in a grid-like fashion, share
resources and exchange jobs, expecting an improvement on their performance
and costs. We are interested in studying how to redistribute the load between
the organizations, decreasing the total energy-cost of the entire platform.

We call this problem the Energy-Aware Multi-Organization Scheduling Prob-
lem (MOSP-energy), after the Multi-Organization Scheduling Problem
(MOSP), that first studied scheduling on grid computing platforms. Formally,
we define our cooperative platform as a federation of N organizations. Each
organization O(k), 1 ≤ k ≤ N , shares a machine that supports continuous dy-
namic speed scaling (i.e., processors can operate at any arbitrary speed s that
can be changed by the scheduler over time) and intend to execute n(k) jobs. A

job J
(k)
i , 1 ≤ i ≤ n(k), is defined by its release date r

(k)
i , its deadline d

(k)
i and its

processing volume w
(k)
i . The job with the biggest deadline of O(k) is defined as

d
(k)
max = maxi d

(k)
i . Job preemption is allowed.

At a given time, if the chose speed is s, the power required to operate the
processor is given by P (s) = sα, where α is a constant real number that depends
on the type and model of the processor, usually with a value between 2 and
3. The energy consumption on one machine is given by the integral of P (s)
over time. The total energy consumption of the system is the sum of the power
consumption of the machines of all organizations.

In order to encourage the creation of these cooperative platforms, we impose
a hard constraint on the feasibility of the schedules: no organization can have its
costs increased by cooperating. We call this the selfish restriction of the organi-
zations. In other words, if an organization O(k) can execute its jobs consuming

a total energy of E
(k)
local only using its own machines, then a feasible schedule S

must ensure that E
(k)
S ≤ E

(k)
local (otherwise the organization could just leave the

platform). The optimization problem to be solved can be stated as:

minimize ES subject to E
(k)
S ≤ E

(k)
local, ∀k

3 Complexity Analysis

3.1 The Cost of Having Selfish Organizations

Respecting MOSP-energy selfish restriction restrains the set of feasible sched-
ules. This limitation have an impact on the quality of the optimal solutions. For
the general (i.e., without the selfish restriction) energy minimization problem
for multiple machines, it is known that:

Lemma 1 (Albers et al. [2]). For any set of jobs, the energy of an optimal
schedule on m processors is at least 1/mα−1 times that of an optimal schedule
on one processor.

190 J. Cohen, D. Cordeiro, and P.L.F. Raphael

The worst case for MOSP-energy is when all but one organizations are idle.
The overloaded organization may not be able to migrate its jobs to the others in
order to respect the selfish restriction. The optimal solution without the selfish
restriction would be able to redistribute the load among all the m machines. So,
the following corollary holds:

Corollary 1. The ratio between the best solution that respects MOSP-energy

selfishness restriction to the best solution that does not respect it is mα−1.

3.2 Computational Complexity

This section studies how hard is to find an optimal solution for the MOSP-

energy problem. We study, without loss of generality, the simpler case with
1 machine per organization. Lets consider the decision version of the MOSP-

energy defined as follows:
Instance: a set of N organizations (for 1 ≤ k ≤ N , organization O(k) has

n(k) jobs and 1 processor with variable speed) and an integer K.
Question: does there exist a schedule S such that the selfish restriction

E
(k)
S ≤ E

(k)
local is respected for all O(k) and such that its total energy consumption

ES is less than or equal to K?
We will show that:

Theorem 1. The MOSP-energy problem is NP-Complete.

Proof. It is straightforward to see that MOSP-energy ∈ NP . Our proof is
based on a reduction from the well-known Partition problem [6]:

Instance: a finite set of positive integers A = {a1, . . . , an}.
Question: is there two disjoint subsets A1 and A2 of A such that

∑
ai∈A1

ai =∑
aj∈A2

aj?
Given an instance of Partition, we construct an instance of MOSP-energy

with N = 2 organizations as follows. Let t and t′ be two integers representing two
different deadlines where t < t′. Let D be an integer representing a processing
volume; we will discuss their values later.

OrganizationO(1) has only one job, J
(1)
1 , with r

(1)
1 = 0, d

(1)
1 = t and w

(1)
1 = D.

Organization O(2) has n+1 jobs: J
(2)
1 , . . . , J

(2)
n+1. The first job of O(2) is identical

to the one from O(1): r
(2)
1 = 0, d

(2)
1 = t, w

(2)
1 = D. The remaining n jobs have

r
(2)
i = 0, d

(2)
i = t′ and w

(2)
i = ai.

Let β =
∑

ai∈A ai. We define an integer K as:

K =
2Dα

tα−1
+

(
β
2

)α
(t′ − t)α−1

+

(
β
2

)α
(t′ − t)α−1

And choose the values of D, t and t′, such that: D
t > D+β

t′ . Choosing D ≥ 5β
and t′ ≥ 3t+ 1 satisfy these conditions.

Energy-Aware Multi-Organization Scheduling Problem 191

Now we can easily build an instance for MOSP-energy from the set A
in polynomial time, as depicted in Fig. 1(a). In this instance, the optimal lo-
cal energy consumption of O(1) (computed by the YDS algorithm) is given by

E
(1)
local =

Dα

tα−1 .
Now, we will compute the cost of the local energy consumption of organization

O(2). This cost can also be computed using the YDS algorithm. Recall from
Section 1.1 that the optimal speed to execute a job is calculated using the concept
of interval of maximum density, i.e., the time interval such that the sum of the
processing volumes of the jobs that start and finish in it, divided by the length
of the interval, is maximum. This density is the speed on which the jobs inside
this interval will be executed in the optimal schedule, hence, the total energy
spent by a job is determined by its speed in an optimal schedule.

D, t and t′ was chosen in such a way that D
t > D+β

t′ . Thus, the interval of
maximum density for both organizations will always be the interval on which the
jobs of processing volume D and deadline t are. This means that in the optimal

local schedule for O(2), job J
(2)
1 must be executed alone from time 0 until time t.

From time t until time t′, all the remaining jobs are executed. The energy spent

by O(2) is then given by E
(2)
local =

Dα

tα−1 + βα

(t′−t)α−1 .

J
(2)
2 J

(2)
3 J

(2)
4 J

(2)
5 J

(2)
6 J

(2)
7

J
(2)
1O(2)

J
(1)
1O(1)

speed

timet t′

(a) Initial instance.

J
(2)
2 J

(2)
3 J

(2)
4

J
(2)
1O(2)

J
(2)
5 J

(2)
6 J

(2)
7

J
(1)
1O(1)

speed

timet t′

(b)
Scheduling after the migration of some
jobs from O(2) to O(1).

Fig. 1. Reduction of the MOSP-energy problem from Partition

Now we must show that this transformation is a reduction. First, suppose that
the set A can be split into two disjoint subsets A1 and A2 such that

∑
ai∈A1

ai =∑
aj∈A2

aj. In order to respect the selfish restriction and avoid an increase on

the local cost of organization O(1), neither the first job from O(1) nor O(2) can
migrate. The only way to decrease the total energy cost is to migrate some of the
other jobs. We will split the last n jobs of O(2) into 2 subsets, J1 and J2 such

that if ai ∈ A1 than the job J
(2)
i+1, with w

(2)
i+1 = ai, belongs to set J1. Otherwise,

it belongs to J2.
We can migrate the jobs of one of the subsets, say J1, to organizationO(1). As

consequence of our assumptions on D, t and t′, the migrations does not change

E
(1)
local. After all migrations, the cost of organization O(2) will be given by:

192 J. Cohen, D. Cordeiro, and P.L.F. Raphael

E
(2)
S =

Dα

tα−1
+

(∑
J

(2)
i ∈J1

w
(2)
i

)α
(t′ − t)α−1

+

(∑
J

(2)
j ∈J2

w
(2)
j

)α
(t′ − t)α−1

Since
∑

J
(2)
i ∈J1

w
(2)
i =

∑
J

(2)
j ∈J2

w
(2)
j = β

2 , the global energy consumption on

this schedule is equal to:

ES = E
(1)
S + E

(2)
S =

2Dα

tα−1
+

2
(

β
2

)α
(t′ − t)α−1

= K

Thus, the local constraints are respected and the total energy spent is K.
Suppose now that there is a valid schedule for this instance such that its total

cost is less than or equal to K. It implies that some jobs from organization O(2)

must have migrated. We can split the jobs from O(2) into two subsets J1 and J2

such that J
(2)
i ∈ J1 if job J

(2)
i was migrated to O(1), otherwise J

(2)
i ∈ J2. Now,

we split the set A in two subsets A1 and A2 in such a way that ai ∈ Ai if and

only if J
(2)
i+1 ∈ J1; otherwise, it belongs to J2. The global energy consumption of

this schedule is given by:

ES =
2Dα

tα−1
+

(∑
J

(2)
i ∈J1

w
(2)
i

)α
(t′ − t)α−1

+

(∑
J

(2)
j ∈J2

w
(2)
j

)α
(t′ − t)α−1

Since ES ≤ K, we deduce from the two previous equations that:

(∑
J
(2)
i

∈J1
w

(2)
i

)α

(t′−t)α−1 +

(∑
Jj∈J2

w
(2)
j

)α

(t′−t)α−1 ≤ 2(β
2)

α

(t′−t)α−1

=⇒
(∑

J
(2)
i ∈J1

w
(2)
i

)α
+
(∑

J
(2)
j ∈J2

w
(2)
j

)α
≤ 2

(
β
2

)α
Since xα + yα is convex and x + y = β, then, by definition of convexity, the

function xα + yα is minimum when x = y and xα + yα ≥ 2(β2)
α. In our case,

this means that:

2

(
β

2

)α

≤

⎛⎜⎝ ∑
J

(2)
i ∈J1

w
(2)
i

⎞⎟⎠
α

+

⎛⎜⎝ ∑
J

(2)
j ∈J2

w
(2)
j

⎞⎟⎠
α

≤ 2

(
β

2

)α

(1)

Now, we split set A into two subsets A1 and A2 such that ai ∈ A1 if J
(2)
i ∈ J1;

otherwise ai ∈ A2. From Eq. 1,
∑

ai∈A1
ai =

∑
J

(2)
i ∈J1

w
(2)
i = β

2 .

In other words, it means that
∑

ai∈A1
ai =

∑
ai∈A2

ai. This proves that set
A can be split into two disjoint subsets A1 and A2 such that

∑
ai∈A1

ai =∑
aj∈A2

aj if and only if there is a valid schedule to this instance such that its
total cost is less than K. This concludes our proof.

Energy-Aware Multi-Organization Scheduling Problem 193

4 Heuristics

We developed heuristics for the MOSP-energy problem for instances of bag-
of-tasks jobs that are available at the beginning of the batch (ri = 0). Without
loss of generality, we assume that all wi = 1 and only deadlines are free to vary.

The main idea of these heuristics is to migrate jobs from a more costly or-
ganization to a less costly one, always respecting the selfish restrictions. This
is achieved by adjusting the release date of the migrated jobs to values higher
then the higher deadline of the host organization. If one migrates a job to an
interval that overlaps with any job from the hosting organization, the processor
may have to increase its speed to be able to respect all the deadlines, resulting in
an increase of the energy cost to execute the jobs of hosting organization. This
may happen if value of the maximum density interval is changed. Avoiding these
migrations ensures that the energy to run the host’s jobs will remain unchanged.
Fig. 2(a) illustrates the idea, showing the result of a possible migration.

We start considering how to redistribute energy as a resource among N = 2
organizations and then present a generic heuristic for N organizations.

time
d
(1)
max d

(2)
max

O(1)

r
(2)
2 d

(2)
2

O(2)

(a)
J
(2)
2 is migrated to O(1) and has its

release date adjusted to d
(1)
max.

timed
(1)′
max d

(2)
max

O(1)

O(2)

O(3)

(b)
d
(1)
max is adjusted and O(3) migrates

jobs to O(2) and O(1).

Fig. 2. Schema of the heuristics migrations

4.1 Heuristics for N = 2 Organizations

Consider an instance of the MOSP-energy problem with only N = 2 organi-

zations. Assume, without loss of generality, that d
(1)
max ≤ d

(2)
max.

Our heuristics — based on the YDS algorithm (see Section 1.1) — iteratively
find the maximum density interval of the more costly organization on each iter-
ation. After performing the migrations, we use the original YDS algorithm on
each organization to compute the minimum processor speed to execute each job.

At each iteration, the heuristics compute the maximum density interval

[r
(2)
Δ , d

(2)
Δ] of the organization with the biggest dmax (in our case, O(2)) and the

list of jobs J
(2)
Δi

∈ J (2)
Δ that lies inside it. We have three cases to consider:

194 J. Cohen, D. Cordeiro, and P.L.F. Raphael

(i) if d
(2)
Δi

≤ d
(1)
max the heuristic cannot migrate J

(2)
Δi

without increasing the
energy spent by the other organization’s local jobs;

(ii) if r
(2)
Δi

≥ d
(1)
max the heuristic can migrate the job “as is” (without changing its

release date and deadline). For N = 2, this case is equivalent to the problem
for m machines and can be optimally solved on polynomial-time [2];

(iii) if r
(2)
Δi

< d
(1)
max and d

(2)
Δi

> d
(1)
max the job can be migrated, but its release

date must be adjusted, has shown in Fig. 2.

Our heuristics differ on how to handle the third case, which we call the border

jobs, since they intersects the border defined by d
(1)
max. We will describe how each

heuristic tackles the border problem in the following sections.
Greedy Heuristic. The first heuristic deals with the border jobs in a greedy

way. At each iteration, we compute the maximum density interval of O(2). If the

jobs on J (2)
Δ does not intersects the border, we solve the problem as explained

before. If the jobs are in the border, we choose the job with biggest deadline. If

the migration of this job (adjusting its release date to d
(1)
max) decreases the total

energy cost of the platform, the job is migrated. Otherwise, the job remains in
its original state on O(2). We repeat this process until there are no more jobs to
consider on O(2).

Probabilistic Heuristic. In this heuristic, the border is handled in a prob-

abilistic way. A job J
(2)
i ∈ J (2)

Δ in the border is migrated with probability

pi =

⎧⎨⎩
d
(2)
i −d(1)

max

d
(2)
Δ −d

(1)
max

if d
(2)
i > d

(1)
max

0 otherwise.

This heuristic has the advantage of being very fast in practice, whereas Greedy
must run the YDS algorithm several times.

Brute-Force Heuristic. The border problem that we are trying to solve is,

essentially, a problem of splitting the set J (2)
Δ into two disjoint subsets, migrating

one to O(1). For small inputs, it is computationally feasible to try all possible
splits. The results from the experiments with this approach gives insight into
the quality of the solutions provided by the other heuristics.

Consider the subset of J (2)
Δ that is in the border. We enumerate all possible

partitions of J (2)
Δ in two disjoint subsets (one set will be migrated and the other

will remain on O(2)) and test which one minimizes the total energy cost. This

heuristic is, of course, exponential in the number of jobs in J (2)
Δ .

4.2 Heuristic for N Organizations

Using the ideas presented on Section 4.1, we have designed a simple polynomial-
time heuristic for the case when we have more than two organizations. The
heuristic is based on the Iterative Load Balancing Algorithm (ILBA [5]).

The basic principle of our heuristic is to redistribute the energy expenditure
of the organizations starting with the two organizations that have the smallest
deadlines and iteratively add the jobs from the most costly organizations. One-
by-one, each organization has its energy decreased.

Energy-Aware Multi-Organization Scheduling Problem 195

The heuristic enumerates the organizations by non-decreasing values of their

dmax, i.e., d
(1)
max ≤ d

(2)
max ≤ · · · ≤ d

(N)
max and considers, one-by-one, each organi-

zation O(k) for k = {2, . . . , N}. The choice of which jobs from O(k) should be
migrated is done based on the concept of the maximum density interval (MDI).
The algorithm computes the MDI of its jobs and migrates the border job with
biggest deadline to the organization among O(1), . . . , O(k−1) that decreases the
most the total energy.

When there is no more job worth migration on the density interval, the value
of dmax of all organizations O(1), . . . , O(k−1) is updated — see Fig. 2(b) — and
the algorithm checks if there is a new MDI on O(k) with jobs worth migration. If
yes, it repeats the migration process. If not, the algorithm will try to redistribute
the jobs of the next organization (O(k+1)).

This process is repeated until all organizations had been considered. Note
that by updating the dmax value after considering each MDI, we never increase
the energy spent to execute the jobs already scheduled. Consequently, MOSP-

energy selfish restrictions are always respected.

5 Experimental Evaluation

We designed a series of experiments to evaluate the heuristics presented on
the previous section. The experiments were evaluated using randomly gener-
ated workloads akin to typical environment found on academic cooperative
platforms [5]. We evaluated the algorithms with instances containing a ran-
dom number of machines, organizations and jobs with different deadlines. Two
different scenarios were considered.

In the first, the number of initial jobs in each organization follows a Zipf
distribution with exponent equal to 1.4267 and the jobs’ deadlines are uniformly
distributed. In the second, the Cmax of these organizations follows the same Zipf

distribution, and d
(k)
i = C

(k)
max, ∀i, k and the jobs are uniformly distributed among

the organizations. The intuition about the scenarios is that the first configuration
best models the distribution of jobs among organizations in shared platforms [7],
where the second models the selfish restriction of the original MOSP problem,
with the deadlines representing the initial makespan of the organizations.

Table 1. Results for N = 2 organizations. For different numbers of jobs per organiza-
tion, we show how each heuristic performs if compared to no cooperation at all.

Jobs/Org % Greedy % Probabilistic % Brute-Force

5 0.69 1.85 2.45

10 0.94 2.12 3.09

15 2.29 1.61 3.21

20 1.79 1.27 4.97

50 0.78 0.67 7.44

100 0.32 0.30 3.08

196 J. Cohen, D. Cordeiro, and P.L.F. Raphael

Table 2. Results for N = 10 and 20 organizations, showing how the iterative algorithm
performs if compared to no cooperation at all

N # Jobs/Org Energy Saved (%)

10 5 11.87

10 10 6.81

10 15 5.47

10 20 4.64

10 30 2.86

N # Jobs/Org Energy Saved (%)

20 5 15.64

20 10 9.81

20 15 6.11

20 20 5.04

20 30 3.24

Table 3. Performance results for N = 2 organizations on the second scenario

Jobs/Org % Greedy % Probabilistic % Brute-Force

5 4.22 5.86 6.72

10 4.12 3.19 5.94

15 2.08 2.96 6.81

Tables 1 and 2 summarizes the results obtained by our heuristics for the
first scenario. Our preliminary tests showed that the maximum dmax does not
affect significantly the results for the first scenario. So, due to the lack of space,
all results for this scenario are presented for dmax = 50. Varying the number
of jobs per organization, we show how much each heuristic can save on the
total energy usage if compared to the total energy usage that could have been
obtained without migrations (applying the YDS algorithm for each organization
individually.) Each result is presented as the average of 200 experiments.

The results shows that for N = 2 organizations, the energy saving is limited
by the selfish restriction of the organizations. The Greedy heuristic is able to
save more energy than Probabilistic when the ratio between the number of jobs
to the number of organizations is higher. The results obtained with Brute-Force
are presented for the sake of comparison. For N = 10 and N = 20, our iterative
algorithm was able to obtain savings up to 11.87% and 15.64%, respectively.
Further investigation is needed for instances with higher number of jobs per
organizations. In this case, the organizations have a higher probability of have
similar dmax. This fact hampers the ability of improving the solutions because
of MOSP-energy selfish restriction.

Tables 3 and 4 summarizes the results obtained by our heuristics for the second
scenario. The results show a significant energy reduction — up to 27.45% — if
the notion of deadline is related only to the initial makespan.

Table 4. Performance results for N = 10 and 20 organizations on the second scenario

N # Jobs/Org Energy Saved (%)

10 5 17.99

10 10 19.10

10 15 19.13

N # Jobs/Org Energy Saved (%)

20 5 20.08

20 10 25.50

20 15 27.45

Energy-Aware Multi-Organization Scheduling Problem 197

6 Concluding Remarks

In this work, we have studied the problem of scheduling on cooperative platforms
considering energy as a communal resource. The objective of the Energy-Aware
Multi-Organization Scheduling Problem (MOSP-energy) is to minimize the
total energy consumption of the entire platform, while assuring that the energy
cost to execute jobs from a particular organization will not increase.

Balancing energy consumption is significantly different from the load balanc-
ing problem because of the convexity of the cost function. We have proved that
the MOSP-energy problem is NP-hard and that the ratio between the best
solution respecting the organizations’ selfish restriction to the solution that min-
imized the total energy is equal to mα−1.

We have designed heuristics to show how one can redistribute the energy
between organizations respecting the selfish restriction. Our experimentals shows
that we can save as much as 27% energy of the total spent by the platform.

This study was a first step on a better understanding of the role of energy
costs on cooperative platforms. Further research will investigate approximation
algorithms for the problem and fairness issues on the distribution of the energy
costs between the organizations even if the jobs from different organizations
belong to the same maximum density interval.

References

1. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with mi-
gration. In: ACM Symposium on Parallelism in Algorithms and Architectures, pp.
279–288 (2011)

2. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: ACM
Symposium on Parallel Algorithms and Architectures, pp. 289–298 (2007)

3. Cohen, J., Cordeiro, D., Trystram, D., Wagner, F.: Coordination mechanisms for
selfish multi-organization scheduling. In: IEEE International Conference on High
Performance Computing, pp. 1–9 (December 2011)

4. Cohen, J., Cordeiro, D., Trystram, D., Wagner, F.: Analysis of multi-organization
scheduling algorithms. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010, Part II. LNCS, vol. 6272, pp. 367–379. Springer, Heidelberg (2010)

5. Dutot, P.F., Pascual, F., Rzadca, K., Trystram, D.: Approximation algorithms for
the multiorganization scheduling problem. IEEE Transactions on Parallel and Dis-
tributed Systems 22(11), 1888–1895 (2011)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (January 1979)

7. Iosup, A., Dumitrescu, C., Epema, D., Li, H., Wolters, L.: How are real grids used?
The analysis of four grid traces and its implications. In: 7th IEEE/ACM Interna-
tional Conference on Grid Computing, pp. 262–269 (September 2006)

8. Pascual, F., Rzadca, K., Trystram, D.: Cooperation in multi-organization schedul-
ing. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS,
vol. 4641, pp. 224–233. Springer, Heidelberg (2007)

9. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Symposium on Foundations of Computer Science, pp. 374–382. IEEE (1995)

Energy Efficient Scheduling of MapReduce Jobs�

Evripidis Bampis1, Vincent Chau2, Dimitrios Letsios1, Giorgio Lucarelli1,
Ioannis Milis3, and Georgios Zois1,3

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, France
{Evripidis.Bampis,Dimitrios.Letsios,Giorgio.Lucarelli,

Georgios.Zois}@lip6.fr
2 IBISC, Université d’Évry, France
vincent.chau@ibisc.univ-evry.fr

3 Dept. of Informatics, AUEB, Athens, Greece
milis@aueb.gr

Abstract. MapReduce has emerged as a prominent programming model
for data-intensive computation. In this work, we study power-aware
MapReduce scheduling in the speed scaling setting first introduced by
Yao et al. [FOCS 1995]. We focus on the minimization of the total
weighted completion time of a set of MapReduce jobs under a given bud-
get of energy. Using a linear programming relaxation of our problem, we
derive a polynomial time constant-factor approximation algorithm. We
also propose a convex programming formulation that we combine with
standard list scheduling policies, and we evaluate their performance using
simulations.

1 Introduction

MapReduce has been established as a standard programming model for paral-
lel computing in data centers or computational grids and it is currently used
for several applications including search indexing, web analytics or data mining.
However, data centers consume an enormous amount of energy and hence, energy
efficiency has emerged as an important issue in the data-processing framework.
Several empirical works have been carried-out in order to study different mech-
anisms for the reduction of the energy consumption in the MapReduce setting
and especially for the Hadoop framework [6–8]. The main mechanisms for en-
ergy saving are the power-down mechanism, where in periods of low-utilization
some servers are switched-off and the speed-scaling mechanism (or DVFS for
Dynamic Voltage Frequency Scaling) where the servers’ speeds may be adjusted
dynamically [18]. Until lately, most work in the MapReduce framework were fo-
cused on the power-down mechanism, but recently, Wirtz and Ge [17] showed

� This work was partially supported by the European Union (European Social Fund
- ESF) and Greek national funds, through the Operational Program ”Education
and Lifelong Learning”, under the programs THALES-ALGONOW (E. Bampis, G.
Lucarelli, I. Milis) and HERACLEITUS II (G. Zois), and the project “Mathemati-
cal Programming and Non-linear Combinatorial Optimization” under the program
PGMO (E. Bampis, V. Chau, G. Lucarelli).

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 198–209, 2014.
c© Springer International Publishing Switzerland 2014

Energy Efficient Scheduling of MapReduce Jobs 199

that for some computation intensive MapReduce applications the use of intel-
ligent speed-scaling may lead to significant energy savings. In this paper, we
study power-aware MapReduce scheduling in the speed scaling setting from a
theoretical point of view.

In a typical MapReduce framework, the execution of a MapReduce job creates
a number of Map and Reduce tasks. Each Map task processes a portion of
the input data and outputs a number of key-value pairs. All key-value pairs
having the same key are then given to a Reduce task which processes the values
associated with a key to generate the final result. This means that each Reduce
task cannot start before the completion of the last Map task of the same job.
In other words, there is a complete bipartite graph implying the precedences
between Map and Reduce tasks of a job. However, the Map tasks of a job can
be executed in parallel and the same holds for its Reduce tasks.

In what follows we consider a set of MapReduce jobs that have to be exe-
cuted on a set of speed-scalable processors, i.e., on processors that can adjust
dynamically their speed [18]. Each job consists of a set of Map tasks and a set
of Reduce tasks, with every task having a positive work volume. Each job is
also associated with a positive weight representing its importance/priority, and
a release date (or arrival time). Like in [4, 5], we consider that the Map and
the Reduce tasks of each job are preassigned to the processors and in this way
we take into account data locality, i.e. the fact that each Map task has to be
executed on the server where its data are located. Given that the preemption of
tasks, i.e. the possibility of interrupting a task and resuming it later, may cause
important overheads we do not allow it. This is also the case often in practice:
Hadoop does not offer the possibility of preemption [12]. The scheduler has to
decide the time interval and the speed over time at which a task is executed,
taking into account the energy consumption. High processor’s speeds are in favor
of performance at the price of high energy consumption. Our goal is to schedule
all the tasks to the processors, so as to minimize the total weighted completion
time of jobs respecting a given budget of energy.
Related Work. Chang et al. [4] consider a set of MapReduce jobs with their Map
and Reduce tasks preassigned to processors and their goal is to minimize the to-
tal weighted completion time of jobs. They proposed approximation algorithms
of ratios 3 and 2 for arbitrary and common release dates, respectively. However,
they do not consider neither distinction nor dependencies between Map and
Reduce tasks of a job. Moreover, their model falls into a well-studied problem
known as concurrent open-shop (or order scheduling) for which the same ap-
proximation results are known (see [10] and the references therein). Extending
on the above-mentioned model, Chen et al. [5], proposed a more realistic one
which takes into account the dependencies among Map and Reduce tasks and
derived an 8-approximation algorithm for the same objective. Moreover, they
managed to model also the transfer of the output of Map tasks to Reduce tasks
and to derive a 58-approximation algorithm for this generalization. In a third
model proposed by Moseley et al. [12], the dependencies between Map and Re-
duce tasks of a job are also taken into account while the assignment of tasks to

200 E. Bampis et al.

processors is not given in advance. The authors studied the preemptive variant
for both the case of identical and unrelated processors. They proposed constant
approximation ratios of 12 and 6, respectively. For the unrelated processors case,
they focused on the special case where each job has a single Map and a single
Reduce task. For the latter case on a single map and a single reduce proces-
sor they also proposed a QPTAS which becomes a PTAS for a fixed number of
processing times of tasks.

In the energy-aware setting, Angel et al. [2] proposed approximation algo-
rithms for the problem of minimizing the total weighted completion time on
unrelated parallel processors, under a model where the processing time and the
energy consumption of the jobs are speed dependent. Moreover, Megow et al.
[11] recently proposed a PTAS for the problem of minimizing the total weighted
completion time on a single speed-scalable processor.
Our Results and Organization of the Paper. We adopt the MapReduce model
of [4] where the tasks are preassigned to processors but extended with dependen-
cies between Map and Reduce tasks as in Chen et al. [5, 12] in the speed scaling
setting [18]. In Section 2, we present formally our problem and we introduce our
notation. In Section 3, we present a constant-factor approximation algorithm.
Using discretization of the possible speed values we give an interval indexed LP
relaxation of our problem and we transform an optimal solution to this LP to a
feasible solution for our problem by list scheduling in the order of tasks’ α-points
(see e.g. [9, 13]). This leads to a O(1)-energy O(1)-approximation algorithm, that
is an algorithm that may use energy augmentation. More specifically, we call a
schedule c-energy ρ-approximate if its objective function is at most ρ times far
from the objective function of an optimal schedule and it exceeds the given en-
ergy budget by a factor of at most c (see e.g. [14]). Our algorithm describes
a tradeoff between the approximation ratio and the energy augmentation as a
function of α. By appropriately choosing α, our result becomes a constant-factor
approximation for our problem. In Section 4, we are interested in natural list
scheduling policies such as First Come First Served (FCFS) and High-

est Density First (HDF). However, in our context we need to determine the
speeds of every task in order to respect the energy budget. For that, we propose a
convex programming relaxation of our problem, for a prespecified order of jobs,
which can be solved in polynomial time by the Ellipsoid algorithm. Then we
combine the solution of this relaxation with FCFS and HDF and we compare
experimentally their effectiveness.

2 Problem Statement and Notation

In the sequel we consider a set J = {1, 2, . . . , n} of n MapReduce jobs to be
executed on a set P = {1, 2, . . . ,m} of m speed-scalable processors. Each job is
associated with a positive weight wj and a release date rj and consists of a set
of Map tasks and a set of Reduce tasks that are preassigned to the m processors.
We denote by T the set of all tasks of all jobs, and by M and R the sets of
all Map and Reduce tasks, respectively. Each task Ti,j ∈ T is associated with a
non-negative work volume vi,j .

Energy Efficient Scheduling of MapReduce Jobs 201

We consider each job having at least one Map and one Reduce task and that
each job has at most one task, either Map or Reduce, assigned to each processor.
Map or Reduce tasks can run simultaneously on different processors, while the
following precedence constraints hold for each job: every Reduce task can start
its execution after the completion of all Map tasks of the same job.

For a given schedule we denote by Cj and Ci,j the completion times of
each job j ∈ J and each task Ti,j ∈ T , respectively. Note that, due to the
precedence constraints of Map and Reduce tasks, Cj = maxTi,j∈R{Ci,j}. By
Cmax = maxj∈J {Cj} we denote the makespan of the schedule, i.e., the com-
pletion time of the job which finishes last. Let also, wmin = minj∈J {wj},
vmin = minTi,j∈T {vi,j : vi,j > 0}, wmax = maxj∈J {wj}, rmax = maxj∈J {rj}
and vmax = maxTi,j∈T {vi,j}.

In this paper, we combine this abstract model for MapReduce scheduling
with the speed scaling mechanism for energy saving [18] (see also [1] for a recent
review). In this setting, the power required by a processor running at time t with
speed s(t) is equal to P (s(t)) = s(t)β , for a constant β > 1 (typically, β ∈ [2, 3])
and its energy consumption is power integrated over time, i.e., E =

∫
P (s(t))dt.

Due to the convexity of the speed-to-power function, a key property of our
problem is that each task runs at a constant speed during its whole execution.
So, if a task Ti,j is executed at a speed si,j , the time needed for its execution
(processing time) is equal to pi,j =

vi,j
si,j

and its energy consumption is Ei,j =
vi,j
si,j

sβi,j = vi,js
β−1
i,j .

Moreover, we are given an energy budget E and the goal is to schedule non-
preemptively all the tasks to the m processors, so as to minimize the total
weighted completion time of the schedule, i.e.,

∑
j∈J wjCj , without exceeding

the energy budget E. We refer to this problem as MapReduce problem.
All omitted proofs can be found in the full version of this work, available at

http://arxiv.org/abs/1402.2810.

3 A Linear Programming Approach

In this section we present an O(1)-energy O(1)-approximation algorithm for
the MapReduce problem. Our algorithm is based on a linear programming
relaxation of the problem and it transforms the solution obtained by the linear
program to a feasible schedule for the MapReduce problem using the technique
of α-points. Note that, by allowing energy augmentation we are able to describe
a tradeoff between energy and performance. Moreover, we can derive a constant-
factor approximation ratio (without energy augmentation) for the MapReduce

problem by appropriately choosing some parameters.

3.1 Linear Programming Relaxation

To give a linear programming formulation of our problem, we first discretize the
possible speed values. In order to do this, we need to compute an upper and a

http://arxiv.org/abs/1402.2810

202 E. Bampis et al.

lower bound on the speed of each task. An upper bound of
(

E
vmin

) 1
β−1

is easily

obtained since the energy consumption of any task can not exceed the energy
budget. A lower bound on the speed values is vmin

C , where C is an upper bound
to the makespan of any optimal schedule; C can be computed by considering
all jobs executed after the maximum release date. Then, by loosing a factor of
(1 + ε) with respect to an optimal solution, we can prove the following.

Lemma 1. There is a feasible (1+ε)-approximate schedule for the MapReduce

problem in which each task Ti,j ∈ T runs at a speed s ∈ V, where V is the set of
all possible discrete speed values and ε ∈ (0, 1).

Next, we discretize the time horizon (0, C] of an optimal schedule by parti-
tioning it into the intervals (0, λ], (λ, λ(1 + δ)], (λ(1 + δ), λ(1 + δ)2], . . . , (λ(1 +
δ)u−1, λ(1+δ)u], where δ > 0 is a small constant, λ > 0 is a constant that we will
define later, and u is the smallest integer such that λ(1 + δ)u−1 ≥ C. Let τ0 = 0
and τt = λ(1+δ)t−1, for 1 ≤ t ≤ u+1. Moreover, let It = (τt, τt+1], for 0 ≤ t ≤ u,
and |It| be the length of the interval It, i.e., |I0| = λ and |It| = λδ(1 + δ)t−1,
1 ≤ t ≤ u. Note that, the number of intervals is polynomial to the size of the
instance and to 1/δ, as u = �log1+δ

C
λ�+ 1.

Let pi,j,s =
vi,j
s be the potential processing time for each task Ti,j ∈ T if it

is executed entirely with speed s ∈ V . For each Ti,j ∈ T , t ∈ {0, 1, . . . , u} and
s ∈ V , we introduce a variable yi,j,s,t that corresponds to the portion of the
interval It during which the task Ti,j is executed with speed s. In other words,
yi,j,s,t|It| is the time that task Ti,j is executed within the interval It at speed s, or

equivalently,
yi,j,s,t|It|

pi,j,s
is the fraction of the task Ti,j that is executed within It at

speed s. Note that the number of yi,j,s,t variables is polynomial to the size of the
instance, to 1/ε and to 1/δ. Furthermore, for each task Ti,j ∈ T , we introduce a
variable Ci,j , which corresponds to the completion time of Ti,j. Finally, let Cj ,
j ∈ J , be the variable that corresponds to the completion time of job j. (LP)
in the next page, is a linear programming relaxation of the problem where each
task Ti,j ∈ T runs at a single speed s ∈ V .

Our objective is to minimize the sum of weighted completion times of all
jobs. For each task Ti,j ∈ T , the corresponding constraint (1) ensures that Ti,j

is entirely executed. Constraints (2) enforce that the total amount of processing
time that is executed within an interval It cannot exceed its length. In [16], the
authors proposed a lower bound for the completion time of a job. This lower
bound can be adapted to our problem and for the completion time of a task
Ti,j ∈ T leads to a corresponding constraint (3). Constraints (4) ensure that the
completion time of each job is the maximum over the completion times of all its
tasks. Constraint (5) ensures that the given energy budget is not exceeded. Note
that the value sβ for each s ∈ V is a fixed number. Constraints (6) imply the
precedence constraints between the Map and the Reduce tasks of the same job,
as they enforce that the fraction of a Map task that is executed up to each time
point should be at least the fraction of a Reduce task of the same job executed
up to the same time point; hence, each Map task completes before all Reduce

Energy Efficient Scheduling of MapReduce Jobs 203

(LP) : minimize
∑
j∈J

wjCj

subject to :∑
s∈V

u∑
t=0

yi,j,s,t|It|
pi,j,s

= 1, ∀Ti,j ∈ T (1)

∑
j:Ti,j∈T

∑
s∈V

yi,j,s,t ≤ 1, ∀i ∈ P , 0 ≤ t ≤ u (2)

Ci,j ≥ 1

2

∑
s∈V

yi,j,s,0|I0|
(

1

pi,j,s
+ 1

)
+

u∑
t=1

∑
s∈V

(
yi,j,s,t|It|
pi,j,s

τt +
1

2
yi,j,s,t|It|

)
, ∀Ti,j ∈ T (3)

Cj ≥ Ci,j , ∀Ti,j ∈ T (4)∑
Ti,j∈T

∑
s∈V

u∑
t=0

yi,j,s,t|It|sβ ≤ E (5)

�∑
t=0

∑
s∈V

yi,j,s,t|It|
pi,j,s

≥
�∑

t=0

∑
s∈V

yi′,j,s,t|It|
pi′,j,s

,

∀Ti,j ∈ M, Ti′,j ∈ R, 0 ≤ � ≤ u (6)

yi,j,s,t = 0, ∀Ti,j ∈ T , s ∈ V, t : τt < rj (7)

yi,j,s,t, Ci,j , Cj ≥ 0, ∀Ti,j ∈ T , s ∈ V, 0 ≤ t ≤ u (8)

tasks of the same job. Constraints (7) do not allow tasks of a job to be executed
before their release date.

In what follows, we denote an optimal solution to (LP) by (ȳi,j,s,t, C̄i,j , C̄j).

3.2 The Algorithm

In this section we use (LP) to derive a feasible schedule for the MapReduce

problem. Our algorithm is based on the idea of list scheduling in order of
α-points [9, 13]. In general, an α-point of a job is the first point in time where
an α-fraction of the job has been completed, where α ∈ (0, 1) is a constant that
depends on the analysis. In this paper, we will define the α-point tαi,j of a task
Ti,j ∈ T as the minimum �, 0 ≤ � ≤ u, such that at least an α-fraction of vi,j is
accomplished up to the interval I
 to (LP), i.e.,

tαi,j = min

{
� :

∑
t=0

∑
s∈S

ȳi,j,s,t|It|
pi,j,s

≥ α

}
.

Thus, once our algorithm has computed an optimal solution (ȳi,j,s,t, C̄i,j , C̄j)
to (LP), it calculates the corresponding α-point, tαi,j , for each task Ti,j ∈ T .
Then we create a feasible schedule as follows: For each processor i ∈ P , we

204 E. Bampis et al.

consider a priority list σi of its tasks such that the tasks with smaller α-point
have higher priority. A crucial point in our analysis is that we consider that a
task Ti,j ∈ T becomes available for the algorithm after the time τtαi,j+1 > rj .
Moreover, if Ti,j ∈ R then we need also all tasks Ti′,j ∈ M to be completed in
order Ti,j to be considered as available. For each task Ti,j ∈ T , we use a constant
speed si,j =

vi,j
pi,j

, where

pi,j = γ

tαi,j∑
t=0

∑
s∈V

ȳi,j,s,t|It|

is the processing time of Ti,j used by our algorithm, and γ > 0 is a constant that
we define later and describes the tradeoff between the energy consumption and
the weighted completion time of jobs. In fact, speed si,j is determined by the
needs of the analysis and it serves as a tool in order to upper bound the energy
augmentation used for the execution of Ti,j and also the completion time of Ti,j

in a schedule produced by the algorithm. At each time point where a processor
i ∈ P is available, our algorithm selects the highest priority available task in
σi which has not been yet executed. Note that our algorithm always create a
feasible solution as we do not insist on selecting the highest priority task if this is
not available. Algorithm MR(α, γ) gives a formal description of our method.

Algorithm MR(α, γ)

1: Compute an optimal solution (ȳi,j,s,t, C̄i,j , C̄j) to (LP).
2: for each task Ti,j ∈ T do
3: Compute the α-point tαi,j , the processing time pi,j and the speed si,j .
4: for each processor i ∈ P do
5: Compute the priority list σi.
6: for each time where a processor i ∈ P becomes available do
7: Select the first available task, let Ti,j , in σi which has not been yet executed.
8: Schedule Ti,j , non-preemptively, with processing time pi,j .

Let Ci,j be the completion time of task Ti,j .
9: for each job j ∈ J do
10: Compute its completion time Cj = maxi∈P Ci,j .

Note that the processing time of a task Ti,j ∈ T to an optimal solution to
(LP) is p̄i,j =

∑u
t=0

∑
s∈V ȳi,j,s,t|It|. Hence, the energy consumption Ēi,j =∑u

t=0

∑
s∈V ȳi,j,s,t|It|sβ for the execution of Ti,j to an optimal solution to (LP)

may be smaller or bigger than the energy consumption Ei,j for the execution
of Ti,j by the algorithm. The next lemma gives a relation between these two
quantities.

Lemma 2. Let Ēi,j and Ei,j be the energy consumption of the task Ti,j ∈ T
in an optimal solution to (LP) and in the solution of Algorithm MR(α, γ),
respectively. It holds that Ei,j ≤ 1

γβ−1αβ Ēi,j .

Energy Efficient Scheduling of MapReduce Jobs 205

We also need to lower bound the completion time C̄i,j of the task Ti,j ∈ T
given by the (LP). This is done by the following lemma.

Lemma 3. If λ < α vmin

smax
, then for each task Ti,j ∈ T it holds that C̄i,j ≥

(1− α) · τtαi,j .

Using Lemmas 2 and 3 as well as Lemma 1 we can prove the following theorem.

Theorem 1. Algorithm MR(α, γ) is a 1
γβ−1αβ -energy

γ2+3γ+1
1−α (1+ε)-approxi-

mation algorithm for the MapReduce problem, where γ > 0 and α, ε ∈ (0, 1).

By choosing γ = 1
α β−1

√
α
, no energy augmentation is used and Algorithm

MR(α, γ) becomes a constant-factor approximation for the MapReduce prob-
lem, and the following theorem holds.

Theorem 2. There is a α β−1
√
α)2+3α β−1

√
α+1

(α β−1
√
α)2(1−α)

(1+ε)-approximation algorithm for

the MapReduce problem, where α, ε ∈ (0, 1).

In Fig.1 we depict the tradeoff between energy augmentation and approxima-
tion ratio for some practical values of β.

For special instances of our problem where there are no precedence constraints
between Map and Reduce tasks or even all jobs have a common release date (as
in [4]) our results are improved as follows.

Corollary 1. There is a α β−1
√
α+1

α β−1
√
α(1−α)

(1 + ε)-approximation algorithm for the

MapReduce problem without precedence constraints between Map and Reduce
tasks, and a 1

α β−1
√
α(1−α)

(1 + ε)-approximation algorithm for the MapReduce

problem without precedence constraints between Map and Reduce tasks and jobs
with common release dates, where α, ε ∈ (0, 1).

Our ratios are optimized by selecting the appropriate value of α for each β.
Table 1 gives the achieved ratios for practical values of β.

15 20 25 30 35
0

20

40

60

80

100

approximation ratio

en
er
g
y
a
u
g
m
en
ta
ti
o
n
(%

)

β = 2
β = 2.5
β = 3

Fig. 1. Tradeoff between energy aug-
mentation and approximation ratio
when β = {2, 2.5, 3}

Table 1. Approximation ratios for
the MapReduce problem for differ-
ent values of β

β general
no prece-
dence

no precedence &
no release dates

2 37.52 9.44 6.75
2.2 34.89 8.84 6.29
2.4 33.01 8.41 5.97
2.6 31.59 8.09 5.72
2.8 30.50 7.84 5.53
3 29.62 7.64 5.38

206 E. Bampis et al.

4 A Convex Programming Approach

We are interested in natural list scheduling policies such as First Come First

Served (FCFS) andHighest Density First (HDF). However, in our context
we need to determine the speeds of every task in order to respect the energy
budget. For that, we propose a convex programming relaxation of our problem
when an order of the jobs is prespecified.

4.1 The Convex Program

Let σ = 〈1, 2, . . . , n〉 be a given order of the jobs. Consider now the restricted
version of the MapReduce problem where, for each processor i ∈ P , the tasks
are forced to be executed according to this order. We shall refer to this problem as
the MapReduce(σ) problem. Note that, the order is the same for all processors.
We write j ≺ j′ if job j ∈ J precedes job j′ ∈ J in σ. We propose a convex
program that considers the order σ as input and returns a solution that is a
lower bound to the optimal solution for the MapReduce(σ) problem.

In order to formulate our problem as a convex program, for each task Ti,j ∈ T ,
let pi,j be a variable that corresponds to its processing time and Ci,j a variable
that determines its completion time. Let also Cj , j ∈ J , be the variable that
corresponds to the completion time of job j. Then, (CP) is a convex programming
relaxation of the MapReduce(σ) problem.

(CP) : minimize
∑
j∈J

wjCj

subject to :∑
Ti,j∈T

vβi,j

pβ−1
i,j

≤ E (9)

rj′ +

j∑
k=j′

pi,k ≤ Ci,j , ∀Ti,j , Ti,j′ ∈ T , j′ ≺ j (10)

Ci′,j + pi,j ≤ Ci,j , ∀Ti,j ∈ R, Ti′,j ∈ M (11)

Ci,j ≤ Cj , ∀Ti,j ∈ T (12)

si,j , Ci,j , Cj ≥ 0, ∀Ti,j ∈ T , j ∈ J

The objective function of (CP) is to minimize the weighted completion time of
all jobs. Constraint (9) guarantees that the energy budget is not exceeded; note
that we have substituted the energy consumption Ei,j of each task Ti,j by its

equivalent Ei,j = pi,js
β
i,j = pi,j(

vi,j
pi,j

)β , where si,j =
vi,j
pi,j

is the speed of task Ti,j .

Constraints (10) and (11) give lower bounds on the completion time of each task
Ti,j ∈ T , based on the release dates and the precedence constraints, respectively.
Note that, if we do not consider precedences between the tasks, then (CP) will
return the optimal value of the objective function, instead of a lower bound on

Energy Efficient Scheduling of MapReduce Jobs 207

it, as constraints (10) describe in a complete way the completion times of the
tasks. However, this is not true for constraints (11) which are responsible for the
precedence constraints. Finally, constraints (12) ensure that the completion time
of each job is the maximum over the completion times among all of its tasks.

As the optimal solution to (CP) does not necessarily describe a feasible sched-
ule, we need to apply an algorithm that uses the processing times found by (CP)
and the order σ so as to create a feasible schedule for the MapReduce(σ) prob-
lem, and hence for the MapReduce problem. It suffices to apply, the lines 6-8
of Algorithm MR(α, γ), by considering the same order for all processors.

4.2 Experimental Evaluation of Scheduling Policies

We propose different orders of jobs and discuss how far is an optimal solution
for the MapReduce(σ) problem using these orders with respect to an optimal
solution for the MapReduce problem. Consider the following standard orders.

First Come First Served (FCFS): for each pair of jobs j, j′ ∈ J , if rj < rj′

then j ≺ j′ in σ.

Highest Density First (HDF): for each pair of jobs j, j′ ∈ J , if
wj∑

Ti,j∈j vi,j
>

wj′∑
T
i,j′ ∈j′ vi,j′

then j ≺ j′ in σ.

The following proposition gives negative results concerning the approximation
ratio that we can achieve if we use the FCFS or the HDF order.

Proposition 1. There are instances for which the optimal solutions to the Map-
Reduce(FCFS) and the MapReduce(HDF) problems are within a factor of
Ω(n) from the optimal solution to the MapReduce problem.

In what follows we compare the FCFS and HDF policies with respect to the
quality of the solution they produce. Our simulations have been performed on a
machine with a CPU Intel Xeon X5650 with 8 cores, running at 2.67GHz. The
operating system of the machine is a Linux Debian 6.0. We used Matlab with
cvx toolbox. The solver used for the convex program is SeDuMi.

The instance of the problem consists of a matrix m × n that corresponds
to the work of the tasks, two vectors of size n that correspond to the weights
and the release dates of jobs, a precedence graph for the tasks of the same job,
the energy budget and the value of β. Similarly with [5], the instance consists
of m = 50 processors and up to n = 25 jobs. Each job has 20 Map and 10
Reduce tasks, which are preassigned at random to a different processor. The
work of each Map task is selected uniformly at random from [1, 10], while the
work of each Reduce task vi,j ∈ R is set equal to a random number in [1, 10]

plus
3
∑

T
i′,j∈M vi′,j

|{Ti′,j∈M}| , taking into account the fact that Reduce tasks have more

work to execute than Map tasks. The weight of each job is selected uniformly at
random from [1, 10] and the release date of a job, is given as a Bernoulli random
variable with probability 1/2 for every interval (t, t+1]. The energy budget that
is used equals E = 1000, while β is set β = 2. We have also set the desired

208 E. Bampis et al.

accuracy of the returned solution of the convex program to be equal to 10−7.
For each number of jobs, we have repeated the experiments with 10 different
matrices. The results we present below, concern the average of these 10 instances.
The benchmark and the code used in our experiments are freely available at
http://www.ibisc.univ-evry.fr/~vchau/research/mapreduce/.

As mentioned before, the (CP) does not lead to a feasible solution for our
problem. In order to get such a solution we apply the following algorithm. At
each time t where a processor becomes available we select to schedule the task
Ti,j of higher priority such that: (i) Ti,j is already released at t, (ii) if Ti,j is
a Reduce task, then all Map tasks of the same job must have been already
completed at t, and (iii) Ti,j has not been yet executed.

5 10 15 20 25
0

50

100

150

200

number of jobs

∑ w
j
C

j

FCFS

HDF

CP(FCFS)

CP(HDF)

Fig. 2. Comparing solutions for FCFS and HDF (scaled down by a factor of 103)

As shown in Fig. 2 the heuristic based on FCFS outperforms the heuristic
based on HDF. In fact, the first heuristic gives up to 16 − 21% better solu-
tions than the second one for different values of n. Surprisingly, the situation
is completely inverse if we consider the corresponding solutions of the convex
programs. More precisely, the convex programming relaxation using HDF leads
to 26%− 43% smaller values of the objective function compared to the convex
programming relaxation using FCFS. Moreover, we can observe that the ratio
between the final solution of each heuristic with respect to the lower bound for
the MapReduce(σ) problem given by the convex program is equal to 1.46 for
FCFS and 2.43 for HDF; the variance is less than 0.1 in both cases.

5 Conclusions

We presented a constant-factor approximation algorithm based on a linear pro-
gramming formulation of the problem of scheduling a set of MapReduce jobs
in order to minimize their total weighted completion time under a given bud-
get of energy. Moreover, in the direction of exploring the efficiency of standard
scheduling policies, we presented counterexamples for them, as well as, we exper-
imentally evaluated their performance, using a convex programming relaxation
of the problem when a prespecified order of jobs is given. It has to be noticed

http://www.ibisc.univ-evry.fr/~vchau/research/mapreduce/

Energy Efficient Scheduling of MapReduce Jobs 209

that our results can be extended also to the case where multiple Map or Reduce
tasks of a job are executed on the same processor. An interesting direction for
future work concerns the online case of the problem. However, it can be proved
that there is no an O(1)-competitive deterministic algorithm (see Theorem 13
in [3]). A possible way to overcome this is to consider resource (energy) augmen-
tation, or to study the closely-related objective of a linear combination of the
sum of weighted completion times of the jobs and of the total consumed energy.

References

1. Albers, S.: Algorithms for dynamic speed scaling. In: STACS, pp. 1–11 (2011)
2. Angel, E., Bampis, E., Kacem, F.: Energy aware scheduling for unrelated parallel

machines. In: Green Computing Conference, pp. 533–540 (2012)
3. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM J. on

Computing 39(4), 1294–1308 (2009)
4. Chang, H., Kodialam, M.S., Kompella, R.R., Lakshman, T.V., Lee, M., Mukherjee,

S.: Scheduling in mapreduce-like systems for fast completion time. In: INFOCOM,
pp. 3074–3082 (2011)

5. Chen, F., Kodialam, M.S., Lakshman, T.V.: Joint scheduling of processing and
shuffle phases in mapreduce systems. In: INFOCOM, pp. 1143–1151 (2012)

6. Feller, E., Ramakrishnan, L., Morin, C.: On the performance and energy efficiency
of Hadoop deployment models. In: BigData Conference, pp. 131–136 (2013)

7. Feng, B., Lu, J., Zhou, Y., Yang, N.: Energy efficiency for MapReduce workloads:
An in-depth study. In: ADC, pp. 61–70 (2012)

8. Goiri, I., Le, K., Nguyen, T.D., Guitart, J., Torres, J., Bianchini, R.: GreenHadoop:
leveraging green energy in data-processing frameworks. In: EuroSys, pp. 57–70
(2012)

9. Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion
time: Off-line and on-line algorithms. In: ACM-SIAM SODA, pp. 142–151 (1996)

10. Mastrolilli, M., Queyranne, M., Schulz, A.S., Svensson, O., Uhan, N.A.: Minimiz-
ing the sum of weighted completion times in a concurrent open shop. Oper. Res.
Letters 38(5), 390–395 (2010)

11. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying
speed. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part I. LNCS, vol. 7965, pp. 745–756. Springer, Heidelberg (2013)

12. Moseley, B., Dasgupta, A., Kumar, R., Sarlós, T.: On scheduling in map-reduce
and flow-shops. In: ACM-SPAA, pp. 289–298 (2011)

13. Phillips, C.A., Stein, C., Wein, J.: Minimizing average completion time in the
presence of release dates. Math. Programming 82(1-2), 199–223 (1998)

14. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theory Comput. Syst. 43, 67–80 (2008)

15. Roemer, T.A.: A note on the complexity of the concurrent open shop problem.
Journal of Scheduling 9, 389–396 (2006)

16. Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding.
SIAM J. Discr. Mathematics 15(4), 450–469 (2002)

17. Wirtz, T., Ge, R.: Improving MapReduce energy efficiency for computation inten-
sive workloads. In: IGCC, pp. 1–8 (2011)

18. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy.
In: IEEE- FOCS, pp. 374–382 (1995)

Automated Transformation of GPU-Specific

OpenCL Kernels Targeting Performance
Portability on Multi-Core/Many-Core CPUs�

Dafei Huang1,2, Mei Wen1,2, Changqing Xun1,2, Dong Chen1,2, Xing Cai3,
Yuran Qiao1,2, Nan Wu2,3, and Chunyuan Zhang1,2

1 Department of Computer, National University of Defense Technology
2 State Key Laboratory of High Performance Computing,

Changsha, China
3 Simula Research Laboratory, Oslo, Norway

hdafei@acm.org

Abstract. When adapting GPU-specific OpenCL kernels to run on
multi-core/many-core CPUs, coarsening the thread granularity is
necessary and thus extensively used. However, locality concerns exposed
in GPU-specific OpenCL code are usually inherited without analysis,
which may give side-effects on the CPU performance. When executing
GPU-specific kernels on CPUs, local-memory arrays no longer match
well with the hardware and the associated synchronizations are costly.
To solve this dilemma, we actively analyze the memory access patterns
by using array-access descriptors derived from GPU-specific kernels,
which can thus be adapted for CPUs by removing all the unwanted
local-memory arrays together with the obsolete barrier statements.
Experiments show that the automated transformation can satisfactorily
improve OpenCL kernel performances on Sandy Bridge CPU and Intel’s
Many-Integrated-Core coprocessor.

Keywords: OpenCL, Performance portability, Multi-core/many-core
CPU, Code transformation and optimization.

1 Introduction

Heterogeneous computing systems, which incorporate two or more types of
compute devices, are nowadays widely available from supercomputers to smart
phones. A typical combination has been CPU plus GPU accelerator, while Intel’s
many-integrated-core (MIC) coprocessor is an increasingly popular choice of
accelerator, such as in the currently No.1 supercomputer of the world: Tianhe-2.
Programming, however, can be a challenge for using the heterogeneous devices
for computations. The common strategy is to program separately for each
type of the compute devices. Such a device-specific approach requires extensive

� Supported by the National Nature Science Foundation of China under No. 61033008,
61272145, and 61103080; 863 Program under No. 2012AA012706.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 210–221, 2014.
c© Springer International Publishing Switzerland 2014

Automated Transformation of GPU-Specific OpenCL Kernels 211

programming effort, thereby difficult with respect to code maintenance and
portability. An ideal scenario is thus to have the same source code base for
multiple architectures, while maintaining a good level of performance portability.

OpenCL was designed with cross-platform code portability in mind. The
advantage of adopting OpenCL programming is thus that a unified source code
can work on different hardware architectures. On the other hand, however,
performance portability does not come for free with OpenCL. The majority of
existing OpenCL programs are GPU-specific, written with a bias or consensus
toward getting good performance through making use of a massive number of
threads, the round-robin instruction scheduling pattern, and the GPU-specific
memory hierarchy [4][14]. These GPU-specific implementations, when executed
directly on CPUs with heavy-weight cores, typically cannot achieve good
performance [10].

Code transformation can provide a GPU-specific OpenCL program with
performance portability to multi-core/many-core CPUs. A common technique
of transformation is to enforce a coarser thread granularity, using the so-called
work-item coalescing or serialization [12,13]. Moreover, work-items within a
work-group are a primary source of vector- and instruction-level parallelism, both
of which are typically exploited by a single CPU thread. However, the prior work
concerning OpenCL code transformation has largely neglected to incorporate
CPU-specific performance properties, such as spatial and temporal data
locality [6], or directly inherit data locality features from a GPU-specific OpenCL
kernel, often resulting in poor performance on CPUs [12,13]. What’s more, when
handling local memory and barriers, the existing code transformations have
mainly concentrated on functionality and semantics but not performance, and
without relevant analysis.

We will propose in this paper a new approach to transforming GPU-specific
OpenCL kernels into a high-performance form that suits multi-core/many-core
CPUs. It is based on a precise analysis of memory accesses, with help of a linear
array-access descriptor. The resulting code transformation can thus remove all
the unnecessary arrays that are allocated in OpenCL’s local memory. In addition,
all the unnecessary thread synchronizations are properly removed, instead of
blindly using the known technique of loop fission. Thereafter, a post optimizer
performs CPU-specific loop-level optimizations. The automatically transformed
OpenCL kernels can be effectively executed on the multi-core/many-core
architecture by using POSIX threads.

2 Related Work

There are many publications that address the challenge of adapting
OpenCL code for the multi-core/many-core architecture targeting performance
portability using code transformation, which directly translates GPU-specific
OpenCL code into another code fit for CPUs.

Previous research activities that implement OpenCL for CPU platforms
vary widely in the chosen approach to coalescing work-items and capturing

212 D. Huang et al.

SIMD parallelism. The Twin Peaks method [6] utilizes setjmp and longjmp to
merge fine-grain work-items into a single OS-thread, and performs vectorization
within a work-item, but does not explore inter work-item parallelism. Region
serialization methods [12,13] coalesce work-items by constructing thread loops
and performing loop fission to reproduce the similar functionality of inter
work-item synchronizations. They rely on an auto-vectorization technology
within loop iterations to exploit parallelism. Intel’s implementation of OpenCL
for x86, being the least explicitly disclosed or studied, directly targets SIMD
instructions and efficiently exploits vector-parallelism within a work-group [7].
None of the above implementations, however, handles data locality well enough,
since they just depend on if the locality exposed on the GPU-specific code is
suitable for the targeting CPU, so they may result in a strided access pattern by
executing one or more work-items as long as possible, instead of interleaving the
accesses of the work-items that can share the elements on one cache line. Stratton
et al. rely on CEAN expression to do a more advanced handling of spatial
locality [14]. Seo et al. adopt another approach from a different viewpoint [11], by
automatically adapting the work-group size for better performance on multi-core
CPU architecture.

No existing work can properly handle the issue of unnecessary use of local
memory and synchronization. The state of the art usually uses arrays in
OpenCL’s global memory (main memory as to CPU) to simulate the ones in
local memory, while ignoring the existence of caches on CPU. As for barriers,
the Twin Peaks method directly uses jump instructions to simulate the function,
which results in excessive overhead and breaks the locality in kernel code. Other
approaches fully depend on the technique of loop fission, which also results in
overhead of loop control instructions and variable extensions.

3 A Linear Descriptor of Array Access

An accurate identification of local and global memory access patterns is the key
to a high-quality transformation from GPU-specific kernels to the CPU-matching
counterparts. However, previously proposed descriptors of array access patterns
have been designed for the scenario of nested loops, or not accurate enough
to extract dependencies between work-items in the context of parallel SPMD
OpenCL kernels [3][5].

We propose a precise linear descriptor of array accesses, based on the
observation that most array accesses in a GPU-specific kernel can be expressed
linearly. For example, the only exception to linear array accesses that can be
found in Nvidia Computing SDK and the SHOC benchmark suite consists of
indirect array accesses.

For each array that is accessed in any loop within a GPU-specific OpenCL
kernel, our new array-access descriptor expresses the array index as a linear
subscript function of only initial variables, that is: the work-item/work-group
IDs, the loop induction variable, and the input arguments to the OpenCL kernel.
In addition, a set of linear constraints, i.e., equalities and inequalities, are derived

Automated Transformation of GPU-Specific OpenCL Kernels 213

Fig. 1. The original GPU-specific kernel of matrix multiplication

from the conditions of branches and loops to accurately pinpoint the range of
the array index. As an illustrating example, Figure 1 shows the OpenCL kernel
implementation of matrix multiplication, C = A×B, available from Nvidia GPU
Computing SDK. (It should be noted that some of the variables are renamed
for clarity, and Lid denotes the local work-item ID, whereas Gid denotes the
global work-group ID.) Within the outer loop of the kernel function there are
six different array accesses: write access to AS and read access to A on line 8,
write access to BS and read access to B on line 9, read access to both AS and BS

on line 12. Descriptors of the array accesses to AS and A (line 8,12) are listed
in Figure 2, where f denotes the linear subscript function, Constraint denotes
the set of linear constraints, and Iterx(x = a, b, k) represent the normalized
loop induction variables. For read access A[a+uiWA*Lid.y+Lid.x], the linear
function is f read

A , derived by replacing a with its corresponding linear expression
without any intermediate variable. The ConstraintsreadA limits the ranges of the
variables in f read

A , by combining loop conditions and intrinsic constraints on
work-group and work-item IDs.

⎧⎪⎨⎪⎩
fread
A = (uiWA×BLOCK SIZE ×Gid.y +BLOCK SIZE × Itera) + uiWA× Lid.y + Lid.x

ConstraintreadA = {Itera ≥ 0 ; Itera < uiWA/BLOCK SIZE; Gid.y ≥ 0; Gid.y < GLOBAL SIZE;

Lid.x ≥ 0; Lid.x < BLOCK SIZE; Lid.y ≥ 0; Lid.y < BLOCK SIZE}{
fwrite
AS = Lid.x+ Lid.y ×BLOCK SIZE

Constraintwrite
AS = {Lid.x ≥ 0; Lid.x < BLOCK SIZE; Lid.y ≥ 0; Lid.y < BLOCK SIZE}{

fread
AS = Iterk + Lid.y ×BLOCK SIZE

ConstraintreadAS = {Iterk ≥ 0; Iterk < BLOCK SIZE; Lid.y ≥ 0; Lid.y < BLOCK SIZE}

Fig. 2. Array access descriptors of accesses to AS and A in matrix multiplication

The derivation of a linear array-access descriptor, such as shown in Figure 2,
is fully automated by taking advantage of the Static Single Assignment in LLVM
infrastructure.

214 D. Huang et al.

4 Transforming GPU-Specific OpenCL Kernels

4.1 Analysis-Based Coalescing

Work-item coalescing (or serialization) aims to merge the work-items of an entire
work-group into a single CPU thread. The standard technique of coalescing is to
construct a nested thread loop, where the loop levels correspond to the dimension
of a work-group, the loop induction variables match the local work-item IDs, and
the loop body is the original GPU-specific kernel code. A complicating factor,
however, arises with thread synchronization. The state of the art is to adopt loop
fission wherever synchronization appears. An example can be found in Figure 3.

(a) Original kernel with barrier (b) Coaleced kernel using thread loop and loop fission

Fig. 3. Work-item coalescing by constructing thread loops

Considering the negative effects of blindly adopting loop fission, our remedy
is to adopt an accurate dependence analysis, based on the linear descriptor of
array accesses from Section 3, so that unnecessary thread synchronizations are
eliminated, thereby avoiding loop fission.

Another performance-critical factor, in connection with work-item coalescing,
is the use of OpenCL’s local memory. Local memory array emulated by a segment
of the slow main memory attached to a CPU may result in performance penalty,
due to unnecessary data copies and additional thread synchronizations. This
performance dilemma has received insufficient attention in the state of the art
of work-item coalescing. Our novel contribution is therefore to eliminate all the
unnecessary local-memory arrays during coalescing. This again will be based on
the precise analysis of memory access patterns.

Eliminating Unnecessary Local-Memory Arrays
The functionality of local memory usage in GPU-specific kernels can be classified
into three types:

1) Buffering: To improve temporal and spatial data locality within the kernel
code, newly accessed data that are to be reused are buffered in OpenCL’s
local memory, so that long-latency global memory accesses are replaced by
faster local memory accesses.

2) Reorganization: Data are loaded from OpenCL’s global memory and stored
in local memory using a different pattern, which allows coalesced memory
accesses and effectively avoids bank conflicts. A representative example is

Automated Transformation of GPU-Specific OpenCL Kernels 215

the transposed matrix multiplication (C = A × AT) kernel [8], where tiles
of matrix A are loaded in rows but stored into columns of a local-memory
array.

3) Enabling communication and reducing computation: Intermediate results
of a work-item are stored in OpenCL’s local memory before another
work-item uses them. This type of usage not only reduces duplicated
computations among different work-items, but also enables inter work-item
communication.

On the multi-core/many-core architecture, functionality No. 3 also has to use
OpenCL’s local memory, thus work-item coalescing should not change this usage
of local memory. For functionality No. 2, although data copy overhead arises due
to the data reorganization, subsequent more efficient accesses to the reorganized
data may still draw overall performance benefits. Regarding functionality No. 1,
however, the usage of OpenCL’s local memory becomes obsolete because the
same effect can be achieved by the cache hierarchy on CPUs. Therefore, such
a usage of local memory should be eliminated during coalescing. This requires
an automated code analysis that can distinguish between the three usage types,
together with automated replacement of local-memory array accesses with the
corresponding global-memory array accesses.

Loads from local-memory arrays can be translated to direct global memory
loads, provided the following two conditions are both satisfied:

(1) For a pair of local array write and read, by examining their array access
descriptors, if some of the variables in the write descriptor are substituted
with the variables of the read descriptor, the two descriptors become identical
including the subscript functions and constraints.

(2) In this local array read-write pair, the write data is from a global memory
read, which can be checked by using a definition-use chain.

After replacing the local array read with its corresponding global array read.
The local array write will become dead code, and can be removed by compiler
afterwards. An example is the following local array read-write pair from Figure 2:⎧⎪⎨

⎪⎩
fwrite
AS = Lid.x+ Lid.y × BLOCK SIZE

Constraintwrite
AS = {Lid.x ≥ 0; Lid.x < BLOCK SIZE;

Lid.y ≥ 0; Lid.y < BLOCK SIZE}
(4.1)

⎧⎪⎨
⎪⎩

fread
AS = Iterk + Lid.y × BLOCK SIZE

Constraintread
AS = {Iterk ≥ 0; Iterk < BLOCK SIZE;

Lid.y ≥ 0; Lid.y < BLOCK SIZE}
(4.2)

If we substitute Lid.x in (4.1) with Iterk from (4.2), the two descriptors become
identical, which satisfies condition (1). Moreover, the write data of (4.1) is read
from global array A according to line 8 in Figure 1, which satisfies condition (2):

fread
A = (uiWA × BLOCK SIZE × Gid.y + BLOCK SIZE

×Itera) + uiWA × Lid.y + Lid.x
(4.3)

216 D. Huang et al.

So a transformation from local memory load to direct global memory load is
legal, by performing the substitution of Lid.x with Iterk in (4.3), and using it
to replace (4.2):

fread
AS = Iterk + Lid.y × BLOCK SIZE ⇒

fread
A = (uiWA × BLOCK SIZE × Gid.y + BLOCK SIZE

×Itera) + uiWA × Lid.y + Iterk

(4.4)

However, for local arrays with the data reorganization functionality, it is legal
but not performance-beneficial. So an intuitive or heuristic condition is induced
here to guarantee that a local array does not have the functionality of data
reorganization:

(3) Looking at the linear subscript functions of a local array write and its
respective global memory read, the variable Lid.x has the same coefficient
in the two functions (or that Lid.x does not exist).

For example, in formulas (4.1) and (4.3), Lid.x has coefficient 1 in both fwrite
AS

and f read
A , and array accesses by (4.1) and (4.2) are the only accesses to local

array AS. By using the condition above, we can conclude that local array AS

does not have the functionality of data reorganization. By removing all the local
arrays that only have the functionality of data buffering, and replacing them
with direct accesses to global arrays, we can thus ensure good performance after
work-item coalescing. Lines 8,9,12 in Figure 5 (line numbers remain the same
as in Figure 1) shows the codes after eliminating the unnecessary local arrays
AS and BS.

Dependence Analysis and Synchronization Elimination
Synchronization elimination happens after the unnecessary local arrays, the main
source of synchronizations, are removed. However, we cannot simply delete all
the barriers, since these may serve other local arrays that are not removed, or
the synchronizations may use global memory. To check whether a barrier can
be safely eliminated, dependence analysis is needed. Here, dependence analysis
is very different from the typical scenario, because it is the dependence between
different work-items that we care about.

When performing dependence analysis for a certain barrier, we first divide
the kernel into basic blocks (barriers are also boundaries of the basic blocks).
Then we examine every pair of array accesses (one of the accesses must be a
write operation and both touch the same local or global array) that are located
separately in two basic blocks before and after the barrier. The process is shown
in Figure 4, where rectangles with dashed edge show the partitioning of basic
blocks with different control structures, and arrows show the basic blocks within
which array access pairs must be examined. The left part emphasizes that the
examinations are for different work-items. For each examination, we combine
the two descriptors of the access pair to form a linear Diophantine Inequation
System. If there is a solution to the inequation system where not all the three
pairs of local IDs are required to be equal, actual dependence exists and the
barrier cannot be removed.

Automated Transformation of GPU-Specific OpenCL Kernels 217

Basic Block...

Barrier()

Basic Block...

...

...

Kernel Code

Basic Block...

Barrier()

Basic Block...

...

...

Work-item A

...Barrier()

Basic Block...

...

...

Work-item B

Basic Block...
Basic Block...

Barrier()

for/while() {

}

Kernel Code
...

...

...Basic Block...

Barrier()

if(...) {

}

Kernel Code
...

...

Basic Block...

Fig. 4. An illustration of dependence analysis

{
f1 =

−−−→
Coe1 · −−→V ar1

T
+ Const

Constraint1

−−→
V ar1 = (..., Lid.z,Lid.y, Lid.x){

f2 =
−−−→
Coe2 · −−→V ar2

T
+ Const

Constraint2

−−→
V ar2 = (..., Lid.z′, Lid.y′, Lid.x′)

⇒

⎧⎪⎨
⎪⎩

f1 = f2

Constraint1

Constraint2

(4.5)

Equation (4.5) shows the construction of an inequation system. The upper
part shows two descriptors to be examined (Coe denotes the vector of coefficients,
V ar denotes the vector of variables, and Const denotes a constant), and the
lower part is the resultant system, generated by forcing the subscript functions
to be equal while the both constraints are satisfied. Note that each local ID is
no longer treated as the same variable in f1 and f2, so we use different names.
A barrier must be reserved if the inequation system has a solution without the
restriction {Lid.x = Lid.x′;Lid.y = Lid.y′;Lid.z = Lid.z′}.

By using the above dependence analysis, we can eliminate all the removable
barriers in a GPU-specific kernel, and then enclose the kernel body by a thread
loop. For non-removable barriers, loop fissions are inserted. Figure 5 shows the
matrix multiplication kernel after coalescing, where both the barriers in the
original kernel are eliminated.

Fig. 5. Code snippet of the matrix multiplication kernel after work-item coalescing

218 D. Huang et al.

4.2 Post Optimizations

After the synchronization elimination described in Section 4.1, there are two
unexploited CPU-specific performance properties of importance. The first is that
inter work-item parallelism is buried, leading to insufficient utilization of the
SIMD capability. The other is that loops in a coalesced code may be fused to
such a degree that gives poor CPU-specific data locality. Figure 6(a) shows
the unoptimized access sequences to arrays A and B, where iterative accesses to
array A go through the whole long row, and accesses to B go through the whole
column, resulting in successive cache misses. Furthermore, no SIMD parallelism
is exploited.

...

A B

... ...

...

...

Loop 16
times... ...

...

...GLOBAL_SIZE=8000

GLO
BAL_SIZE=8000

(a) (b)

Loop 16 times

BLOCK_SIZE=16 BLOCK_SIZE=16

BLO
CK_SIZE=16

BLO
CK_SIZE=16

...

A B

...... ...

Vectorized

Loop 2 times

Loop 16
times

To next block... ...

...

...

...

Broadcasted
... ...

... ...

To next block

...

Loop 2 times

Loop 16
times

Fig. 6. Different access sequences to arrays A and B

We adopt two post optimizations of the coalesced code. They are combinations
of traditional loop-level optimizations, but of vital effects on final performance.

Vectorization: The best loop level for performing vectorization should be that
with induction variable Lid.x. This is because the coalesced memory accesses of
a GPU-specific kernel often result in sequential and short-stride memory accesses
across that loop level. So loop-interchange is firstly performed before ordinary
vectorization so that Lid.x-loop becomes the innermost. The resultant effect as
shown in Figure 6(b) is that, each scalar element of A is expanded into a vector,
and each set of eight adjacent accesses to B is vectorized to produce a new vector.
Then computational operations are fully vectorized so that the works of eight
work-items are accomplished simultaneously.

Data locality re-exploitation: Our process of data locality re-exploitation
has two steps, blocking of long non-thread-loops and loop interchange. As the
result shown in Figure 6(b), the iterative array accesses are restricted in small
blocks, so that the CPU cache can play a very good role.

The code snippet as the final output of the kernel transformation targeting
the Sandy Bridge architecture can be found in Figure 7.

5 Performance Evaluation

We have implemented a fully automated tool chain that performs kernel
transformation based on the Clang compiler front end and the LLVM compiler

Automated Transformation of GPU-Specific OpenCL Kernels 219

Fig. 7. Final code snippet of the transformed matrix multiplication kernel

infrastructure [2]. The tool chain transforms a GPU-specific OpenCL kernel
into a function, whose input arguments include the original ones from the
GPU-specific kernel plus a set of work-group IDs. The vector operations are
enabled by using Intel intrinsics. Each call to this function is equivalent with
executing a corresponding work-group.

To run an entire OpenCL program that has both host and kernel code, the
kernel transformation tool chain is integrated into an open source OpenCL
implementation called FreeOCL [1], where POSIX threads are used to execute
work-groups concurrently.

Experiments are carried out on two hardware platforms: (1) two Intel Xeon
E5-2650 eight-core CPUs that have 16 physical cores together, as a typical
multi-core CPU, (2) an Intel Xeon Phi 5110p coprocessor with 60 physical
cores, as an emerging many-core CPU. The new OpenCL implementation,
including our automated kernel transformation tool chain (denoted by OurOCL),
is compared against the OpenCL implementation from Intel SDK for OpenCL
Applications 2013, which is the official OpenCL runtime provided by Intel
(denoted by IntelOCL).

Six kernels are used as the benchmarks. They cover a wide range of
computational intensities and intrinsic memory localities. The first five kernels
are optimized for running on GPUs so that they are well GPU-specific, where
Stencil2D comes from SHOC and the remaining four kernels are from Nvidia
GPU Computing SDK. The sixth kernel, NaiveMatrixMul, is the baseline
matrix multiplication from [9], which is not so GPU-specific, and can show the
potentiality of our method when few optimization features can be inherited.

IntelOCL is usually the most powerful commercial OpenCL runtime on Intel
platforms, so we compare running the kernels via OurOCL, where kernels will
be auto-transformed before execution, against running the same kernels via
IntelOCL. When running the benchmarks, only the kernel execution times are
recorded. Table 1 shows all the speedups of kernel executions relative to the
CPU+IntelOCL configuration. The table indicates that OurOCL can improve
the performance of GPU-specific kernels on multi-core CPUs by an average factor
of 3.24x, not including the NaiveMatrixMul kernel. The average performance
improvement of MIC+OurOCL over MIC+IntelOCL is 2.06x (3.53x/1.71x).

220 D. Huang et al.

Table 1. Performance comparison with Intel OpenCL implementation and OpenMP

Kernel name Scale
CPU +
IntelOCL

CPU +
OurOCL

CPU +
OMP

MIC +
IntelOCL

MIC +
OurOCL

MIC +
OMP

oclMatrixMul 8000 × 8000 1 3.02 0.37 1.94 3.95 3.74

oclFDTD3d
320×320×320
Radius=16
Timestep=5

1 6.02 2.20 2.22 5.88 4.13

Stencil2D
4096 × 4096
1000 iters

1 2.53 1.16 1.83 2.42 1.95

oclDCT8x8 10240 × 10240 1 3.42 2.27 1.43 4.17 4.52

oclNbody 327680 1 1.20 0.74 1.13 1.24 1.38

∗NaiveMatrixMul 8000 × 8000 1 33.48 4.10 4.55 43.76 41.43

Average (except NaiveMatrixMul) 1 3.24 1.35 1.71 3.53 3.14

IntelOCL is very good at utilizing the inter-work-group and inter-work-item
parallelism by using the multiple cores and SIMD units. But its synchronization
overhead is experimentally found to be somewhere between that of the
region-based methods and the Twin Peaks method [14]. So the performance
boost of OurOCL should be mainly attributed to the elimination of barriers
and local-memory arrays, and partly the locality re-exploitation. The oclNbody
kernel gets the minimum performance improvements on both platforms, because
it is the most compute-intensive. The overheads induced by barriers and
redundant memory copies only account for a small part of the kernel execution
time. As for the two stencil computation kernels: oclFDTD3d and Stencil2D,
improvements on MIC are much lower than those on CPU. This is because only a
small portion of the execution time is used for computation as the two kernels are
highly memory-intensive, so MIC can hardly show its superior parallel capability.
The intensity of memory accesses also results in the slightly lower performances
on MIC than those on CPU. On the other hand, the NaiveMatrixMul kernel
obtains huge performance boosts because of both overhead removal and data
locality improvement.

Performances of corresponding OpenMP implementations are also presented.
The OpenMP implementations are based on the serial host implementations
that can be found in every adopted benchmark, by properly adding OpenMP
directives. (Execution of the OpenMP implementations on MIC uses the native
mode.) We note that multi-core/many-core specific optimizations were already
performed in some of the host implementations such as oclDCT8x8, and the
icc can also automatically carry out various optimizations. Generally, improved
OpenCL performances on both CPU and MIC are comparable with or even
better than the OpenMP implementations. This shows that our automated code
transformation can indeed greatly enhance performance portability.

6 Conclusion

To improve the performance portability of OpenCL programs from GPUs
to CPUs, code transformation is widely accepted. This paper presents a
novel transformation methodology for GPU-specific OpenCL kernels targeting

Automated Transformation of GPU-Specific OpenCL Kernels 221

performance portability on multi-core/many-core CPUs, aiming at solving the
potential problems induced by using local-memory arrays on CPUs, including
redundant data copies and the accompanying costly synchronizations. A new
array-access descriptor that can accurately uncover the array access patterns of
OpenCL work-items lays the foundation of our work.

Experiments are done on Sandy Bridge CPU and Knights Corner MIC,
which show that, for GPU-specific kernels, our new OpenCL implementation
outperforms the powerful Intel OpenCL runtime on both platforms.

References

1. FreeOCL: multi-platform implementation of OpenCL 1.2 targeting CPUs,
https://code.google.com/p/freeocl/

2. The LLVM compiler infrastructure, http://llvm.org/
3. Balasundaram, V., Kennedy, K.: A technique for summarizing data access and its

use in parallelism enhancing transformations. In: SIGPLAN 1989 Conference on
Programming Language Design and Implementation, Portland, USA, pp. 41–53
(1989)

4. Baskaran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev,
A., Sadayappan, P.: A compiler framework for optimization of affine loop nests for
GPGPUs. In: 22nd International Conference on Supercomputing, Island of Kos,
Greece, pp. 225–234 (June 2008)

5. Bastoul, C.: Code generation in the polyhedral model is easier than you think.
In: 13th International Conference on Parallel Architectures and Compilation
Techniques, Antibes Juan-les-Pins, France, pp. 7–16 (September 2004)

6. Gummaraju, J., Morichetti, L., Houston, M., Sander, B., Gaster, B.R.,
Zheng, B.: Twin peaks: A software platform for heterogeneous computing on
general-purpose and graphics processors. In: 19th International Conference on
Parallel Architectures and Compilation Techniques, Vienna, Austria, pp. 205–216
(September 2010)

7. Intel Corporation: Intel SDK for OpenCL Applications XE 2013 Optimization
Guide (2013)

8. Nvidia: OpenCL Best Practices Guide (February 2011)
9. Nvidia: OpenCL Programming Guide for the CUDA Architecture (February 2011)

10. Pennycook, S., Hammond, S., Wright, S., Herdman, J., Miller, I., Jarvis, S.A.: An
investigation of the performance portability of OpenCL. Journal of Parallel and
Distributed Computing 73(11), 1439–1450 (2013)

11. Seo, S., Lee, J., Jo, G., Lee, J.: Automatic OpenCL work-group size selection for
multicore CPUs. In: 22nd International Conference on Parallel Architectures and
Compilation Techniques, Edinburgh, UK (September 2013)

12. Stratton, J.A., Grover, V., Marathe, J., Aarts, B., Murphy, M., Hu, Z., Hwu,
W.M.W.: Efficient compilation of fine-grained SPMD threaded programs for
multicore CPUs. In: 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, Toronto, Canada, pp. 111–119 (April 2010)

13. Stratton, J.A., Stone, S.S., Hwu, W. M.W.: MCUDA: An effective implementation
of CUDA kernels for multi-core CPUs. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 16–30. Springer, Heidelberg (2008)

14. Stratton, J.A., Kim, H.S., Jablin, T.B., Hwu, W.M.W.: Performance portability
in accelerated parallel kernels. Tech. Rep. IMPACT-13-01, University of Illinois at
Urbana-Champaign (May 2013)

https://code.google.com/p/freeocl/
http://llvm.org/

Switchable Scheduling for Runtime Adaptation
of Optimization

Lénaïc Bagnères1 and Cédric Bastoul2

1 University of Paris-Sud and Inria, Orsay, France
lenaic.bagneres@inria.fr

2 University of Strasbourg and Inria, Strasbourg, France
cedric.bastoul@unistra.fr

Abstract. Parallel applications used to be executed alone until their
termination on partitions of supercomputers: a very static environment
for very static applications. The recent shift to multicore architectures
for desktop and embedded systems as well as the emergence of cloud
computing is raising the problem of the impact of the execution context
on performance. The number of criteria to take into account for that pur-
pose is significant: architecture, system, workload, dynamic parameters,
etc. Finding the best optimization for every context at compile time is
clearly out of reach. Dynamic optimization is the natural solution, but it
is often costly in execution time and may offset the optimization it is en-
abling. In this paper, we present a static-dynamic compiler optimization
technique that generates loop-based programs with dynamic auto-tuning
capabilities with very low overhead. Our strategy introduces switchable
scheduling, a family of program transformations that allows to switch
between optimized versions while always processing useful computation.
We present both the technique to generate self-adaptive programs based
on switchable scheduling and experimental evidence of their ability to
sustain high-performance in a dynamic environment.

1 Introduction

Static compilers are facing the challenge of generating efficient codes for increas-
ingly dynamic execution environments. Two decades ago, optimizing compilation
was referred as building "supercompilers for supercomputers" [20]. Compiler
techniques had to optimize aggressively for complex parallel machines but in
a very static context: usually one program with few dynamic parameters, one
well defined architecture/system and one user. Iterative compilation and auto-
tuning approaches have been developed on top of static compilation as efficient
solutions to find the best optimization parameters and to adapt to various (but
fixed) architectures and problem sizes [2,19,12]. The large adoption of multicore
systems and the emergence of cloud computing brings new dynamic factors that
are not captured by iterative compilation or auto-tuning, such as the existence of
competing workloads or the possible migration of the process to another archi-
tecture. This situation raises the need for more dynamic optimization schemes.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 222–233, 2014.
c© Springer International Publishing Switzerland 2014

Switchable Scheduling for Runtime Adaptation of Optimization 223

Just in time compilation is a convenient solution to address dynamic exe-
cution environments. However, it requires very low algorithmic complexity of
the underlying techniques to avoid to offset the optimization it is enabling. Cur-
rent state-of-the-art static automatic optimization and parallelization techniques
rely on an algebraic representation of programs that allows precise analyses as
well as very aggressive program transformations to optimize codes, known as
the polyhedral model [7,3,11]. Unfortunately, most polyhedral-based techniques
show exponential complexity [17]. Hence, they are challenging to include in a
dynamic compilation framework, except when a runtime analysis allows to use
this model while it was not possible at static compile time [9]. Our proposal is
a mixed static-dynamic technique, which benefits from the power of polyhedral
frameworks at static compile time, while being able to change the optimization
decision at runtime during the computation itself.

The potential benefit of such a technique is significant because the dynamic
nature of the execution environment comes from several factors that directly
impact performance. First of all, a compiled program may be run on different
architectures with different features such as various cache memories or number
of cores, which have dramatic impact on the best optimization choice. A decision
at the early stage of the execution is not enough: virtual machines and cloud
computing technology allow the architecture to change during execution. Next,
the application may depend on dynamic parameters such as problem size (e.g.,
array size). Hence the best optimization is likely to be different depending on
those parameters that will be known only at runtime. Finally, the operating
system and the system workload are also paramount because processes may affect
each other, e.g., through cache pollution or by stressing the system scheduler.

Our approach is to design at compile-time programs that can adapt at run-
time to the execution context. The originality of our solution is to rely on switch-
able scheduling, a selected set of program restructuring which allows to swap
between program versions at some meeting points without any rollback. A first
step selects pertinent switchable versions according to their performance behav-
ior on some execution contexts. The second step builds a self-adaptive program
including selected versions. Then at runtime the program keeps choosing the
best version thanks to a low overhead sampling and profiling of the versions,
ensuring during the process that every computation contributes to the final re-
sult. We performed an experimental study on dozens of execution contexts and
demonstrate superior adaptability of our generated codes with respect to state-
of-the-art static optimization technique.

2 Background

The application domain of our technique is loop-based kernels with affine control
and memory accesses, i.e., such that loop bounds, conditions and array subscripts
are affine forms of outer loop counters and constant parameters. This class of
computational kernels is known as SCoPs for Static Control Parts. SCoPs can be
modeled using an algebraic representation called the polyhedral model. Because

224 L. Bagnères and C. Bastoul

of the restriction on the input program form, each dynamic instance of a given
SCoP statement can be modeled as an integer point in a union of polyhedra
called the iteration domain of that statement. For example, let us consider the
input code in Figure 1(a). Figure 1(b) shows the iteration domain of the state-
ment S(i,j). Each loop enclosing the statement in the code corresponds to a
dimension of the domain. Several compilers have the ability to raise SCoPs to a
polyhedral form such as GNU GCC 1 and LLVM 2.

Once a SCoP is raised to the polyhedral model, an optimizer can compute a
scheduling by means of scheduling relations that express logical execution dates
for all statement instances, e.g., to achieve data locality or to expose paral-
lelism while satisfying data dependences. In the following, we will only consider
scheduling that does not alter the original program semantics. Figures 1(c1) and
1(c2) show two different possible scheduling relations. They map original input
dimensions, which express original statement instances, to target output dimen-
sions, which express their new order. Scheduling relations are expressive enough
to encode a complex composition of program transformations (including, e.g.,
loop interchange, fusion, fission, skewing, tiling etc.) [8]. Those in Figures 1(c1)
and 1(c2) correspond respectively to the identity transformation and to the re-
versal of the inner loop. Many efficient scheduling algorithms have been designed,
notably the Pluto algorithm for automatic optimization and parallelization [3]
and the Letsee technique based on iterative optimization [11].

Finally a code generator for scanning polyhedra such as CLooG [1] can pro-
duce a syntactic program that implements the new scheduling from the iteration
domains and the scheduling relations. Figures 1(d1) and 1(d2) present the pro-
grams generated back from the corresponding polyhedral representations after
the code generation step. The complete Figure 1 summarizes the usual workflow
of a polyhedral framework with two different scheduling relations that result in
two versions of the input program. Most previous works aim at finding only one
good version. Our work improves this scheme with dynamic capablities, to be
able to chose the right version for the right execution context.

3 Switchable Scheduling

In a polyhedral compilation framework, a program version is generated from the
input program information and a scheduling. The scheduling is in turn expressed
as a list of scheduling relations, one for each statement. In this work, we focus
on particular sets of scheduling called switchable scheduling. Two scheduling
are switchable if and only if there exist meeting points in the corresponding
generated versions such that it is possible to continue the execution from any
of these versions at those meeting points without affecting the program result.
Translated to the polyhedral model terminology, it means that there must exist
a couple of logical dates called switching dates, one for each scheduling, such that
the sets of instances that have been scheduled prior to these dates in each version
1 http://gcc.gnu.org/wiki/Graphite
2 http://polly.llvm.org

http://gcc.gnu.org/wiki/Graphite
http://polly.llvm.org

Switchable Scheduling for Runtime Adaptation of Optimization 225

for (i = 0; i <= N; i++)
for (j = 0; j <= N; j++)
S(i, j);

(a) Input Code

Raising

DS(N) =

{(
i
j

) ∣∣∣∣0 ≤ i ≤ N
0 ≤ j ≤ N

}
(b) Iteration Domain

Scheduling 1 Scheduling 2

θS(N) =

{(
i
j

)
→

(
t1
t2

) ∣∣∣∣ t1 = i
t2 = j

}
θS(N) =

{(
i
j

)
→

(
t1
t2

) ∣∣∣∣ t1 = i
t2 = −j

}
(c1) Scheduling Relation 1 (c2) Scheduling Relation 2

Code Generation Code Generation

for (t1 = 0; t1 <= N; t1++)
for (t2 = 0; t2 <= N; t2++)
i = t1;
j = t2;
S(i, j);

for (t1 = 0; t1 <= N; t1++)
for (t2 = -N; t2 <= 0; t2++)

i = t1;
j = -t2;
S(i, j);

(d1) Output Code 1 (d2) Output Code 2

Fig. 1. Polyhedral Transformation Workflow For Two Example Versions

is the same, regardless of their respective order. To simplify their computation,
and without loss of generality, we require that switching dates correspond to
existing instance schedules. The set of switching dates for a scheduling θ to a
scheduling θ′ is called its switching domain to θ′.

Property 1. To a given switching date in a scheduling there may exist only a
unique corresponding switching date in another scheduling.

Explanation. Each instance of the original program has a unique image in the
target program. Hence, given a set of already executed instances before a meeting
point in a version, the corresponding meeting point in another version, if it exists,
is the unique instance that will be executed directly after that set. ��

Property 2. If the outermost dimensions of two scheduling are mapping input
dimensions in the same order, then the first instance scheduled at any value of
these outermost dimension belongs to the switching domain of the corresponding
scheduling to the other scheduling.

226 L. Bagnères and C. Bastoul

Explanation. Logical dates are multidimensional like clocks: the first dimension
may correspond to days (most significant) then the next one to hours (less sig-
nificant), then the next one to minutes and so on. To each value of the outermost
scheduling dimensions corresponds a set of scheduled instances. If the execution
order of such sets is the same in any version, then at the beginning of each set it
is possible to switch between versions, regardless of the scheduling order inside
the set, i.e., of less significant scheduling dimensions. ��

From these two properties we derive a practical technique to build a multi-
version code. First for each version we compute a switching domain, as detailed in
Section 3.1. Next we generate the code itself, inserting switching statements for
each integer point of the switching domains, as explained in Section 3.2. Switch-
ing statements themselves rely on a low overhead runtime system described in
Section 3.3.

3.1 Switching Domain Computation

We derive from Property 2 that a (subset of) the switching domain is the set of
output vectors such that:

1. The outermost “common” output dimensions are expressed in the same way
for every scheduling (this ensures that all versions are executing equivalent
subsets of instances in the same order regardless of the order inside those sub-
sets). This condition may be relaxed when information about the scheduling
semantics is available. The most important case we are supporting is strip-
mining and, by extension, tiling, with a restriction on possible tile sizes. Tile
sizes are chosen to be a multiple of the smallest tile size. Hence, we know
statically that, e.g., an iteration at a given dimension in one version corre-
sponds to n iterations of the same dimension in another version. We derive
from this a simple affine constraint on the existence of meeting points.

2. The remaining output dimensions are set to the lexicographic minimum of
the possible values (to ensure the logical date of the switching statement is
at most the same as the first instance scheduled inside the subset). Moreover,
we add another output dimension set to 0 to ensure the switching statement
is executed before the first instance of the subset.

Switching domains are easy to compute from the scheduling using the PIP
tool [6] to compute the lexicographic minimum of the innermost output dimen-
sions. Figures 2(d1) and 2(d2) show the switching domains corresponding to the
scheduling in Figures 1(c1) and 1(c2): the first dimension has the same expres-
sion in both scheduling and has the same range, the second one is set to the
minimum value for each version, and a new one has been added and set to 0.

The code generation step detailed in Section 3.2 uses switching domains to in-
sert “switching statements” in the final code: to each integer point in this domain
will correspond an execution of the switching statement. It is not desirable to
execute the switching statement at each meeting point because of the overhead
it may introduce. Switching domains can be easily restricted to fit the need.

Switchable Scheduling for Runtime Adaptation of Optimization 227

A first solution is to intersect it with a convenient lattice. In this way, switching
statements will be executed at constant intervals along scheduling dimensions.
A second solution with the same effect is to apply a special strip-mine onto some
scheduling dimensions. In this case, selected scheduling dimensions are decoupled
into three dimensions in the switching domains and the scheduling relations. The
outer dimension iterates over strips, the middle one is set to 0 for the switching
domain and to 1 for all the scheduling relations, and the inner one is set to
0 for the switching domain and iterates over integer points inside strips for the
scheduling relations. This does not affect the order of the instances, but it inserts
a switching date before each strip. While the first solution is simpler, the second
one allows to consider switching along parallel dimensions: the dimension over
strips has to be sequential, but the one over points inside strips may be parallel.

3.2 Multi-Version Code Generation

Generating a code that includes multiple versions of the original program with
the ability of switching between them is a three step process. First we extend the
original scheduling with one innermost output dimension set to 1. It ensures that
the switching statement will be executed before any existing instance if they are
scheduled at the same logical date, since that output dimension has been set to
0 for the switching domain3. Figures 2(e1) and 2(e2) show the extended schedul-
ings of Figures 1(c1) and 1(c2). Next, we generate the code from the original
domains and scheduling as in a classical polyhedral framework, with the CLooG
tool [1]. The only difference is that we generate a code for each version and that
we add the corresponding switching domain to each code generation problem.
Each integer point of the switching domain corresponds to an execution of the
switching statement. Finally some glue code is added to support switching: addi-
tional variables are created to communicate current common output coordinates
while switching and labels/gotos are inserted to jump to the end of the code
once one version terminates.

The switching statement itself is made of two parts. First, the switching source
includes calling the runtime to decide about switching or not, communicating of
current common output coordinates and actual switching (through goto state-
ments). Second, the switching sink includes a label to be used as the target of a
switch, receiving the common output coordinates and setting back the remaining
output coordinates to the lexicographic minimum. Figure 2(f) shows the final
code (spanning two columns) for our running example started in Figure 1. The
switching source corresponds to the if part of the switching statement while the
sink corresponds to the else part.

3.3 Runtime

The runtime switching decision system is as simple as possible to minimize the
overhead. It is based only on the execution time and has two modes called
3 If the last output dimension is not a common dimension, another solution without

scheduling extension is to subtract 1 to its expression in the switching domain.

228 L. Bagnères and C. Bastoul

Switching Domain Switching Domain

Dsw(N) =

⎧⎨⎩
⎛⎝ t1

t2
t3

⎞⎠
∣∣∣∣∣∣
0 ≤ t1 ≤ N
t2 = 0
t3 = 0

⎫⎬⎭ D′
sw(N) =

⎧⎨⎩
⎛⎝ t1

t2
t3

⎞⎠
∣∣∣∣∣∣
0 ≤ t1 ≤ N
t2 = −N
t3 = 0

⎫⎬⎭
(d1) Switching Domain 1 (d2) Switching Domain 2

Extended Scheduling Extended Scheduling

θ×S (N) =

⎧⎨⎩
(
i
j

)
→

⎛⎝ t1
t2
t3

⎞⎠∣∣∣∣∣∣
t1 = i
t2 = j
t3 = 1

⎫⎬⎭ θ′×S (N) =

⎧⎨⎩
(
i
j

)
→

⎛⎝ t1
t2
t3

⎞⎠
∣∣∣∣∣∣
t1 = i
t2 = −j
t3 = 1

⎫⎬⎭
(e1) Extended Scheduling Relation 1 (e2) Extended Scheduling Relation 2

Code Generation

int global_t1;

// Version 1
for (t1 = 0; t1 <= N; t1++)
t2 = 0;
t3 = 0;

if (switch_decision())
global_t1 = t1;
goto v2;

else
v1: t1 = global_t1;

t2 = 0;
t3 = 1;

S(t1, t2);
for (t2 = 1;

t2 <= N; t2++)
t3 = 1;

S(t1, t2);

goto end;

// Version 2
for (t1 = 0; t1 <= N; t1++)

t2 = -N;
t3 = 0;

if (switch_decision())
global_t1 = t1;
goto v1;

else
v2: t1 = global_t1;

t2 = -N;
t3 = 1;
S(t1, t2);

for (t2 = -N + 1;
t2 <= 0; t2++)

t3 = 1;
S(t1, -t2);

end: ;

(f) Final Code Including Two Versions That May Switch To Each Other

Fig. 2. (Our Alternative End of Fig. 1) Generation of a Multi-Version Code

watching and sampling. In watching mode, the runtime simply checks that the
performance is stable by measuring the time spent between two calls. Since
switching statements are inserted at constant strides along output dimensions
and SCoP execution time is typically not affected by data values, this measure
is precise enough for our purpose. If it is the first call to the runtime or if the

Switchable Scheduling for Runtime Adaptation of Optimization 229

watching mode detected a performance variation, due to, e.g., changes on the
execution context or on the workload executed between two calls to the runtime,
the sampling mode is enabled. This mode switches quickly between versions to
detect the best performing one. Then a switch is performed to that version while
the runtime is set back to the watching mode. A very important property of this
strategy is that every computation contributes to the final result: no rollback is
necessary if a bad optimization decision has been made.

4 Selecting Pertinent Versions

A key aspect of our optimization strategy is the selection and the ordering of
the switchable versions to be part of the multi-version code. For this purpose
we rely on a dedicated version generation phase and on an extensive empirical
study of the version behavior.

To generate versions, we rely on the polyhedral compiler PoCC4 which uses
both the Pluto algorithm [3] and the Letsee iterative optimization engine [11] to
compute efficient scheduling. Generating switchable versions is done by enforcing
additional constraints discussed in Section 3.1: from a base version, other versions
are generated by calling Letsee or Pluto with different strategies and/or tile sizes,
such that they share common output dimensions. Different scheduling may often
end up to the same executable code (a shifting on an output dimension may be
removed by a loop normalization by the compiler). Such versions are discarded.

Once a set of versions has been generated for a given input code, they are
evaluated separately by running them on pre-defined contexts. Contexts include
various architectures, data sizes and system workloads. One context is a com-
bination of these factors. Only the versions that are the best in at least one
context are considered to be selected. Our results show that they are still too
many. Some of them are performing the same way in several contexts: those
duplicates are detected and discarded (in our study, we accept a performance
loss of 10%). Finally to select a pre-defined maximum number of versions (in our
study, 8), we associate an “efficiency” coefficient to each version on each context
(depending on how far it is from the best version) and we model and solve the
choice as a linear optimization problem to maximize the overall efficiency.

The order in which the selected versions are used during sampling by the
runtime described in Section 3.3 is critical: small loops are likely to be entirely
executed before the sampling is done. For this reason, best performing versions
in most contexts including small problem sizes are used for sampling first.

5 Experimental Results

We evaluate the switchable scheduling approach on a selection of realistic exe-
cution contexts. Experimental results demonstrate the ability of this technique
to generate programs that can adapt themselves to their environment. Overall,
4 http://pocc.sf.net

http://pocc.sf.net

230 L. Bagnères and C. Bastoul

its geomean speedup over a fixed optimization of a state-of-the-art automatic
optimization and parallelization is 1.49 for our test cases.

Our experimental setup is three-dimensional. First, target architectures in-
cludes one ARM and several flavours of Intel x86 architectures: Olimex A20
ARM Cortex-A7 dual-core, Intel Core2 Quad CPU Q9550 2.83GHz, Intel Core2
Quad CPU Q6600 2.40GHz and Intel Core2 Quad CPU Q8200 2.33GHz. This
selection notably spans different number of cores and cache sizes. Next, problem
size ranges are small and medium as they are defined in the target benchmarks.
Lastly, 5 workloads have been investigated: the target process may be running
alone, with low (one process) or high (one process per core) computation inten-
sive workload and with low or high memory access intensive workload.

We consider 12 benchmarks, typical compute-intensive kernels extracted from
the PolyBench suite5. Our selection focuses on kernels including one main loop
since it is the main target of our technique. We report below for all benchmarks
a short description. Column #versions gives the number of different versions that
have been generated using PoCC (duplicates have been removed); #best reports
the number of best versions reported in the 40 contexts; and #nodup removes
from the previous column the versions that behave in the same way as another
one if we accept up to a 10% performance loss. It illustrates that the best version
is indeed dependant on the execution context, but also that a limited number
of versions is enough most of the time, hence with a reasonable impact on the
generated code size.

benchmark description #versions #best #nodup
2mm Linear algebra (BLAS3) 40 9 2
adi Stencil (2D) 67 9 4
choleski Cholesky Decomposition 16 12 4
durbin Toeplitz system solver 23 17 4
fdtd-apml Stencil (3D) 50 10 2
gemm Matrix-multiply and addition 37 18 4
gramschmidt Gram-Schmidt decomposition 59 12 2
jacobi-1d Stencil (1D) 24 11 3
jacobi-2d Stencil (2D) 19 7 4
lu Matrix decomposition 19 8 2
mvt Matrix Vector Product and Transpose 16 8 2
seidel-2d Stencil (2D) 17 7 4

Figure 3 reports normalized mean performance for all execution contexts for
each benchmark, worst corresponds to the worse (context-wise) version, baseline
is the mean of all versions, roughly corresponding to the average performance a
random strategy is likely to provide, best corresponds to the best (context-wise)
solution, pluto is the default static Pluto (version 0.10) solution and switchable is
the switchable scheduling solution. Overall, the difference between baseline and
best with geomean 4.98 is the maximum speedup of the solution, it corresponds
to an iterative compilation strategy, a high potential already demonstrated by
previous work [12]. switchable corresponds to our solution with an overall ge-
omean speedup of 4.36 against a random strategy, including a sensible yet ac-
ceptable overhead of the switching strategy, and of 1.49 over the default Pluto
solution. size growth shows the compiled switchable scheduling kernel size growth
5 http://polybench.sf.net

http://polybench.sf.net

Switchable Scheduling for Runtime Adaptation of Optimization 231

with respect to Pluto’s solution, a limited increase. Sampling on bad versions
may degrade performance significantly (e.g., gemm case). Also in jacobi-1d case,
our strategy has lower performance than Pluto. This corresponds to situations
where Pluto’s solution is good enough while the overhead of switchable schedul-
ing overcomes its benefits. We may complement our technique with a dynamic
test as Pradelle et al. suggested [13] to prevent using switchable scheduling in
such situation.

benchmark worst baseline best pluto switchable size growth
2mm 0.38 1 3.56 1.48 3.14 1.13
adi 0.13 1 4.46 2.98 4.08 1.07
choleski 0.74 1 1.89 1.35 1.52 1.02
durbin 0.25 1 2.14 1.74 1.90 1.04
fdtd-apml 0.08 1 2.77 2.19 2.61 1.07
gemm 0.31 1 8.42 1.39 5.70 1.04
gramschmidt 0.10 1 18.27 17.34 17.36 0.99
jacobi-1d 0.17 1 19.15 16.30 15.71 1.10
jacobi-2d 0.25 1 8.24 4.08 7.87 1.38
lu 0.24 1 4.42 3.02 4.82 1.04
mvt 0.55 1 2.28 1.54 2.12 1.06
seidel-2d 0.26 1 5.37 2.21 4.97 1.11

Fig. 3. Potential and Operational Performance Results (mean of all contexts, the
baseline is the mean performance of all versions in all contexts)

6 Related Work

The root of our work belongs to compiler optimization in the polyhedral model [7]
and loop versioning [4]. The Pluto algorithm is a state-of-the-art compiler tech-
nique relying on the polyhedral model to build complex loop transformations
with excellent parallelism-locality trade-offs using a target independent cost
model [3]. It has been coupled with iterative frameworks to optimize for specific
targets [12]. Those techniques create unspecialized or overspecialized optimiza-
tion which may not be adequate for various execution contexts.

Static compiler techniques have been used to help runtime systems to op-
timize dynamically. The ADAPT framework provides runtime generation and
specialization of code sections [18]. Because of the runtime overhead it fits well
to programs with large execution time while we are using static techniques as
much as possible to minimize runtime costs. Qilin provides adaptive mapping
for parallel programs [10]. Unlike our method, it is not addressing the dynamic
workload dimension of the execution context. Emani et al. proposed an adaptive
mapping technique which primarily targets dynamic workload variations [5]. It
impacts the OpenMP runtime behaviour whereas we target code restructuring.

Aggressive dynamic optimization techniques include thread-level speculation
[14,15]. They generate an optimistically optimized version and in case of mis-
take, they rollback to a conservative version. In comparison, we target a different
program class that can be analyzed precisely at compile time, and in case of a

232 L. Bagnères and C. Bastoul

bad choice, no rolling back is necessary since every computation is useful by
construction. Dynamic optimization involving polyhedral compilation is emerg-
ing. EvolveTile is a framework to perform a dynamic tile size selection [16].
Our approach also supports such optimization but with more restrictions on tile
sizes and shapes because of the switchable scheduling class constraints. However,
our technique supports a wider range of optimizations. Pradelle et al. target the
same program class as our technique and involve versioning as well [13]. Their
approach is to use profiling to build predictive tests according to dynamic fac-
tors to choose the best version of a kernel before executing it. Our approach is
acting at a finer grain as we focus on switching from kernel versions during com-
putation. VMAD is an infrastructure for dynamic profiling with the unique ability
to discover static behavior, which is not visible at static compilation time [9].
VMAD supports dynamic version selection. Some forms of switchable scheduling
are possible within this framework and are under investigation.

7 Conclusion

This paper addresses the problem of taking advantage of the best optimization
while computing in an ever more dynamic environment, focusing on static con-
trol loop nests. Our proposal differs from just-in-time compilation approaches
which have to rely on low-overhead techniques as well as static compilation ap-
proaches that generate a code which can be either too generic or too specialized.
Instead, we propose a mixed static-dynamic scheme which builds on state-of-
the-art static polyhedral compilation techniques with empirical study to select
pertinent optimizations and a low-overhead runtime mechanism to switch to
the best optimization during computation, depending on the current execution
context. Our technique introduces a special class of optimization called switch-
able scheduling and a code generation method to build a program that takes
advantage of multiple such optimizations. Experimental evidence demonstrate
both the potential of this approach and its effectiveness at generating codes that
perform well on various environments.

Ongoing work includes a code generation technique to allow versions to lie
inside their own functions, to benefit from per-version low-level compiler opti-
mization options. More aggressive versioning and switchable-scheduling genera-
tion under time constraint are also under investigation.

References

1. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 2013 IEEE International Conference on Parallel Architecture and Compila-
tion Techniques, Juan-les-Pins, France, pp. 7–16 (September 2004)

2. Bodin, F., Kisuki, T., Knijnenburg, P.M.W., O’Boyle, M.F.P., Rohou, E.: Iterative
compilation in a non-linear optimisation space. In: W. on Profile and Feedback
Directed Compilation, Paris (October 1998)

Switchable Scheduling for Runtime Adaptation of Optimization 233

3. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI 2008 ACM Conf. on
Programming language Design and Implementation, Tucson, USA (June 2008)

4. Byler, M., Davies, J.R.B., Huson, C., Leasure, B., Wolfe, M.: Multiple version
loops. In: International Conference on Parallel Processing (August 1987)

5. Emani, M., Wang, Z., O’Boyle, M.: Smart, adaptive mapping of parallelism in the
presence of external workload. In: 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pp. 1–10 (2013)

6. Feautrier, P.: Parametric integer programming. RAIRO Recherche Opéra-
tionnelle 22(3), 243–268 (1988)

7. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. Int. J. of Parallel Programming 21(6), 389–420 (1992)

8. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam,
O.: Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies. Int. J. of Parallel Programming 34(3), 261–317 (2006)

9. Jimborean, A., Mastrangelo, L., Loechner, V., Clauss, P.: VMAD: An Advanced
Dynamic Program Analysis & Instrumentation Framework. In: O’Boyle, M. (ed.)
CC 2012. LNCS, vol. 7210, pp. 220–239. Springer, Heidelberg (2012)

10. Luk, C.-K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: MICRO-42. 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pp. 45–55 (December 2009)

11. Pouchet, L.-N., Bastoul, C., Cohen, A., Cavazos, J.: Iterative optimization in the
polyhedral model: Part II, multidimensional time. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2008), Tucson, Ari-
zona, pp. 90–100. ACM Press (June 2008)

12. Pouchet, L.-N., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayap-
pan, P.: Combined iterative and model-driven optimization in an automatic paral-
lelization framework. In: SC 2010, New Orleans, USA (November 2010)

13. Pradelle, B., Clauss, P., Loechner, V.: Adaptive Runtime Selection of Parallel
Schedules in the Polytope Model. In: 19th High Performance Computing Sym-
posium - HPC 2011. United States, Boston (2011)

14. Rauchwerger, L., Padua, D.: The LRPD test: speculative run-time parallelization
of loops with privatization and reduction parallelization. In: Proceedings of the
ACM SIGPLAN 1995 Conference on Programming Language Design and Imple-
mentation, PLDI 1995, pp. 218–232. ACM, New York (1995)

15. Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The stampede approach to
thread-level speculation. ACM Trans. Comput. Syst. 23(3), 253–300 (2005)

16. Tavarageri, S., Pouchet, L.-N., Ramanujam, J., Rountev, A., Sadayappan, P.: Dy-
namic selection of tile sizes. In: 18th IEEE Int. Conf. on High Performance Com-
puting (HiPC 2011), Bangalore, India (December 2011)

17. Upadrasta, R., Cohen, A.: Sub-polyhedral scheduling using (unit-)two-variable-
per-inequality polyhedra. In: ACM Symposium on Principles of Programming Lan-
guages, POPL 2013, Rome, Italy, pp. 483–496 (2013)

18. Voss, M., Eigenmann, R.: ADAPT: Automated de-coupled adaptive program trans-
formation. In: Int. Conf. on Parallel Processing, pp. 163–170 (2000)

19. Whaley, C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of soft-
ware and the ATLAS project. Parallel Computing 27(1–2), 3–35 (2000)

20. Wolfe, M.: High performance compilers for parallel computing. Addison-Wesley
Publishing Company (1995)

A New GCC Plugin-Based Compiler Pass
to Add Support for Thread-Level Speculation

into OpenMP

Sergio Aldea, Alvaro Estebanez,
Diego R. Llanos, and Arturo Gonzalez-Escribano

Dpto. Informática, Universidad de Valladolid
Campus Miguel Delibes, 47011 Valladolid, Spain
{sergio,alvaro,diego,arturo}@infor.uva.es

Abstract. In this paper we propose a compile-time system that adds
support for Thread-Level Speculation (TLS) into OpenMP. Our solution
augments the original user code with calls to a TLS library that handles
the speculative parallel execution of a given loop, with the help of a new
OpenMP speculative clause for variable usage classification. To sup-
port it, we have developed a plugin-based compiler pass for GCC that
augments the code of the loop. With this approach, we only need one
additional code line to speculatively parallelize the code, compared with
the tens or hundreds of changes needed (depending on the number of
accesses to speculative variables) to manually apply the required trans-
formations. Moreover, the plugin leads to a faster performance than the
manual parallelization.

Keywords: Thread-Level Speculation, TLS, OpenMP, Source code gen-
eration, GCC plugin.

1 Introduction

The availability of multicore architectures allows users not only to run several ap-
plications at the same time, but also to run parallel code. However, the manual
development of parallel versions of existent, sequential applications is an ex-
tremely difficult task because it needs (a) an in-depth knowledge of the problem
to be solved, (b) understanding of the underlying architecture, and (c) knowl-
edge of the parallel programming model to be used. Many parallel languages
and parallel extensions to sequential languages have been proposed to exploit
the capabilities of modern multicore system. The most successful proposal in
the domain of shared memory system is OpenMP [1], a directive-based parallel
extension to sequential languages as Fortran, C, or C++, that allows the par-
allelization of user-defined code regions. OpenMP does not ensure the correct
execution of the code according to sequential semantics, making the program-
mer responsible for such tasks. Possible dependence violations that may occur
between iterations during execution need to be addressed by the programmers.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 234–245, 2014.
c© Springer International Publishing Switzerland 2014

A New GCC Plugin to Support TLS into OpenMP 235

On the other hand, automatic parallelization offered by compilers only ex-
tracts parallelism from loops when the compiler can assure that there is no risk
of a dependence violation at runtime. Only a small fraction of loops falls into
this category, leaving many potentially parallel loops unexploited. Thread-Level
Speculation (TLS) techniques allow the extraction parallelism from fragments
of code that can not be analyzed at compile time, namely, the compiler can
not ensure that the loop can be safely run in parallel. TLS can deal with those
situations in which dependence violations may occur, leading the parallel loop
to correctly finalize its execution. The main problem of these techniques is that
the code needs to be manually augmented in order to handle the speculative
execution and monitor the possible dependences. Programmers have to modify
those accesses to variables that may lead to a dependence violation, also known
as speculative variables.

In our prior work [2], we proposed the idea of extending OpenMP to allow the
user to mark variables as speculative, and a compile-time system that enables the
automatic transformation of the code to support its execution by a TLS runtime
library. The transformations proposed are transparent to programmers, who do
not need to know anything about the TLS parallel model. These key aspects of
our proposal solve the problems stated above. Programmers only have to classify
variables depending on their accesses, letting our solution perform all the changes
needed in the source code. To do so, we have proposed a new OpenMP clause
(speculative) to handle those variables whose use may lead to any dependence
violation.

In this paper we present the development of a GCC plugin-based compiler pass
to give support to the new clause speculative into GCC OpenMP implementa-
tion. This pass transforms the loop with the corresponding omp parallel for
directive, inserting the runtime TLS calls needed to (a) distribute blocks of itera-
tions among processors, (b) perform speculative loads and stores of speculative
variables (pointed out using the new clause), and (c) perform partial commits of
the correct results calculated so far. The TLS runtime library used [3] is based
on the same design principles as the speculative parallelization library developed
by Cintra and Llanos [4,5].

Our experimental comparison between manual and automatic transformation
of the user code shows that the runtime performance of the code generated by our
compilation system is even faster than the performance returned by a manually-
transformed code. Besides, the number of lines that should be changed by the
programmer to speculatively parallelize a loop is reduced to only one, instead of
the significant amount of lines needed in a manual intervention, which depends
on the number of accesses to speculative variables inside the loop.

2 Thread-Level Speculation in a Nutshell

Speculative parallelization (SP), also called Thread-Level Speculation (TLS) or
Optimistic Parallelization [6] assumes that sequential code can be optimistically
executed in parallel, and relies on a runtime monitor to ensure that no depen-
dence violations are produced. A dependence violation appears when a given

236 S. Aldea et al.

t5

t8

t10

LocalVar1 = SV[x]

SV[x] = LocalVar2

t6
t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

t2

t4

t6

LocalVar1 = SV[x]

SV[x] = LocalVar2

t0

t1

t3 SV[x] = LocalVar2

LocalVar1 = SV[x]

Thread 1 (non spec)
(iteration 1, x = 1) (iteration 2, x = 1)

Thread 2
(iteration 3, x = 2)

Thread 3 Thread 4 (most−spec)
(iteration 4, x = 2)

Reference
copy of

sv[2]

(Time t4: Thread 2 forwards updated value for sv[1] from thread 1)

(Time t3: thread 1 detects no dependence violations)

(Time t6: thread 1 detects no dependence violations)

(Time t8: Thread 3 forwards value of sv[2] from reference copy)

(Time t7: Thread 4 forwards value of sv[2] from reference copy)

(Time t10: Thread 3 detects violation: thread 4 squashed)

(b) Speculative loads with most−recent value forwarding

(a) Speculative stores plus detection of dependence violations

Time

(c) In−order commit of data from successfully−finished threads

Fig. 1. Example of speculative execution of a loop and summary of operations carried
out by a runtime TLS library

thread generates a datum that has already been consumed by a successor in the
original sequential order. In this case, the results calculated so far by the suc-
cessor (called the offending thread) are not valid and should be discarded. Early
proposals [7,8] stop the parallel execution and restart the loop serially. Other
proposals stop the offending thread and all its successors, re-executing them in
parallel [4,9,10,11].

Figure 1 shows an example of thread-level speculation. The figure represents
four threads executing four consecutive iterations, and the sequence of events
when the loop is executed in parallel. The value of x was not known at compile
time, so the compiler was not able to ensure that accesses to the SV structure do
not lead to dependence violations when executing them in parallel. Note that,
at runtime, the actual indexes of SV[x] are known.

Speculative parallelization works as follows. Each thread maintains a version
copy of the entire SV vector, called the speculative data structure. At compile
time, all reads to SV are replaced by a function that performs a speculative load.
This function obtains the most up-to-date value of the element being accessed.
This operation is called forwarding. If a predecessor (that is, a thread executing
an earlier iteration) has already defined or used that element then the value is
forwarded (as Thread 2 does in Fig. 1). If not, then the function obtains the
value from the main copy of the vector (as Thread 3 does in the figure).

Regarding modifications to the shared structure, all write operations should be
replaced at compile time by a speculative store function. This function writes the
datum in the version copy of the current processor, and ensures that no thread
executing a subsequent iteration has already consumed an outdated value for this
structure element, a situation called “dependence violation”. If such a violation
is detected, the offending thread and its successors are stopped and restarted.

If no dependence violation arises for a given thread, it should commit all the
data stored in its version copy to the main copy of the speculative structure.
Note that commits should be done in order, to ensure that the most up-to-date

A New GCC Plugin to Support TLS into OpenMP 237

#pragma omp parallel for default(none) private(i, Q, aux) speculative(a)
for (i = 0; i < MAX; i++) {

Q = i % (MAX) + 1;
aux = a[Q-1];

Q = (4 * aux) % (MAX) + 1;
a[Q-1] = aux;

}

Fig. 2. Example of FOR loop annotated with the speculative clause

values are stored. After performing the commit operation, a thread can receive
a new iteration or block of iterations to continue the parallel work.

Finally, the original loop to be speculatively parallelized should be augmented
with a scheduling method that assigns to each free thread the following chunk
of iterations to be executed. If a thread has successfully finished a chunk, it will
receive a brand new chunk not executed yet. Otherwise, the scheduling method
may assign to that thread the same chunk whose execution had failed, in order
to improve locality and cache reutilization.

In short, at compile time TLS requires that the original code be augmented to
perform speculative loads, speculative stores, and in-order commits. In addition,
it also requires that the loop structure be rearranged in order to follow the re-
execution of squashed operations. Without computational support, this is a task
that programmers have to carry out manually. Our plugin solves this limitation,
automatically performing all these changes required by the TLS runtime library
that gives support. Programmers just need to use the new OpenMP clause we
have proposed to point out which variables may lead to a dependence violation.

3 New OpenMP Clause: speculative

The new OpenMP clause we defined [2] is called speculative, and it needs to
be used as part of a parallel for directive. The new clause is used as follows,
where list contains variables that may lead to any dependence violation:

#pragma omp parallel for speculative (list)
for-loop

With this extension, programmers are able to write OpenMP programs as
usual, but annotating those variables that could lead to a dependence violation
as speculative. With this method, programmers do not have to take care of
handling these violations, being the speculative engine the responsible of such
task. Once a programmer annotates each variable to its type, the plugin aug-
ments the code to add support for the TLS runtime library.

Figure 2 shows an example of the use of the proposed clause. Variable i is
private, since it is the variable that controls the iterations of the FOR loop.
Variables Q and aux are private, because they are always written before being
read in the context of an iteration. Finally, variable a is speculative, because

238 S. Aldea et al.

Fig. 3. GCC Compiler Architecture [12,13] simplified. The main OpenMP related com-
ponents, highlighted in grey, are the C, C++ and Fortran parsers, and the GIMPLE
IR level. The black box represents the location of our plugin pass.

accesses to this variable can lead to dependence violations. Eventually, a partic-
ular iteration will read from a a non-updated value and therefore the execution
will be incorrect. As we have seen in Sect. 2, a speculative scheme would allow
this loop to finish correctly.

4 Parsing the New speculative Clause

Although the plugin mechanism enables us to perform all the changes needed
by the TLS runtime library, plugins do not allow the extension of the parsed
language. Therefore, adding a new OpenMP clause recognized by GCC requires
not only the creation of a plugin, but also modifying the GCC code itself. In
order to parse the new clause speculative, we have extended the GNU OpenMP
(GOMP), an OpenMP implementation for GCC. The main parts of the GCC
architecture related within OpenMP are highlighted in grey in Fig. 3. GOMP has
four main components [14]: parser, intermediate representation, code generation,
and the runtime library called libGOMP. In relation to GOMP, we have focused
on modifying its parsing phase and the intermediate representation (IR). The
generation of new code to support TLS is located in the plugin developed, and
mainly this new code consists of calls to the TLS library functions needed for
the speculative execution.

The parser identifies OpenMP directives and clauses, and emits the corre-
sponding GENERIC representation. We have modified the C parser and the
IR to add support for the new clause speculative. First, we have created the
GENERIC representation of the new clause like other standard clauses. Then,
the compiler has been prepared to recognize and parse the clause as part of the
parallel loop construct. When the new clause has been parsed and the IR is gen-
erated, our plugin detects the clause and starts all the transformations needed
on the code.

5 Plugin-Based Compiler Pass Description

Once the new clause proposed is recognized by GCC, programmers can set the
speculative variables, and the plugin developed can augment the original code.

A New GCC Plugin to Support TLS into OpenMP 239

Fig. 4. Code of Fig. 2 annotated and the resulting, transformed pseudo-code.
initSpecLoop() and endSpecLoop() are macros that expand to more code, hidden
here for legibility reasons.

The use of plugins provides several advantages, such as faster building of proto-
types, easier modifications and contributions, and the use of GCC as a research
compiler. Using plugins programmers can load external shared modules, which
are inserted as new passes into the compiler. We will take advantage of this
feature to develop our plugin and add support to TLS into OpenMP. We have
chosen to modify GCC because it is a mainstream mature compiler, and we ex-
pect that extending GCC functionalities will have a higher impact. Moreover,
as long as GCC supports more than 30 architectures, this increases the compat-
ibility of our proposal.

The new pass is added once the compiler has transformed the code into GIM-
PLE, and just before GCC does the first pass related to OpenMP (omplower).
Therefore, our pass is added before pass_lower_omp in passes.c. In this point,
we have the code in a GIMPLE representation, and the FOR-loop marked with
the omp parallel for directive preserves all the clauses written by the pro-
grammer. Therefore, we have the information about which variables are shared,
private, and speculative, the latter thanks to the new clause proposed. After
this pass, GCC processes speculative variables as shared, while their handling
as speculative will be carried out at runtime by the TLS library.

Figure 4 shows a brief example of the transformations made by the plugin.
The parser detects the new speculative clause, and the new compiler pass au-
tomatically performs all the transformations needed to speculatively parallelize
the loop. If the plugin does not find the speculative clause on the pragma,
the semantic of the loop remains identical to any other standard OpenMP loop.
With the list of variables and data structures that should be speculatively up-
dated, the plugin replaces each read of one of these variables or data element
with a specload() function call. Similarly, all write operations to speculative
variables are replaced with a specstore() function call. Loads or stores in-
volving other variables do not require additional changes in the code, since all
flavors of private and shared variables keep their respective semantics in the
context of a speculative execution. The plugin also adds all the structures and
functions needed to run the TLS system that parallelize the code. This process is

240 S. Aldea et al.

completely transparent to programmers, shielding them from the intricacy of the
underlying speculative parallelizing model. They only have to label the variables
involved in the target loop as private or shared, as with any other OpenMP pro-
gram, and label as speculative those variables that can lead to any dependence
violation.

Once the plugin has transformed the loop, GCC operation continues with the
next passes. When the compilation ends, the resulting binary file is prepared to
run speculatively.

5.1 Interface with the TLS Runtime Library

The plugin-based compiler has to augment the code with the functions and
structures needed for the speculative execution, and defined by the TLS runtime
library. The library used [3] is largely based in Cintra’s and Llanos’ work (see
[4,5] for details). The plugin has to replace accesses over speculative variables
with specstore() or specload() functions. This task requires the plugin to
detect code lines where a write and/or read is applied, to extract the type of
the speculative variable or the particular field of an speculative structure, and to
perform the changes needed, including the addition of new variables to handle
the temporal values required. The plugin is also able to detect reductions applied
on speculative variables, replacing them by the appropriate function calls to the
TLS runtime library that handle them.

The TLS runtime library also requires other functions and structures, some
of them sketched in Fig. 4, that the plugin has to correctly insert into the code.
Regarding the original loop, the plugin replaces the parallelized loop with a
new loop that drives the speculative execution. This new loop iterates over the
threads, and has the same body as the original, although it is augmented with
extra code that ensures the correct distribution of iterations over the threads,
and commits the data stored in the speculative variables. The definition of the
new loop and the code inserted before the body of the original loop is gathered
in the macro initSpecLoop() (Fig. 4) for simplicity. The code lines which are
required to be inserted after the body of the original are gathered in the macro
endSpecLoop().

Besides modifying the target loop and its body, the plugin also adds three
functions before the loop. The first one, specinit(), initializes the TLS run-
time library, and it has to be called once in a program. Therefore, the plu-
gin detects the main function of a program, and adds the call to specinit()
as the first statement. The other two functions required are specstart() and
omp_set_num_threads(), which are always placed before each parallelized loop.
specstart() initializes the execution of the following parallel loop, while omp_-
set_num_threads() set the number of threads for its parallel execution.

5.2 Handling Complex Statements

The plugin is able to handle all definitions and uses of scalar variables, not only
simple assignments. This includes dealing with complex statements, that are

A New GCC Plugin to Support TLS into OpenMP 241

required to maintain the same order in which the multiple speculative loads and
stores are executed. The plugin first resolves the loads, creating new temporal
variables that take part of the expression that assign a value to the speculative
variable. After replacing the loads for the corresponding specload(), the plugin
handles the store into the speculative variable by placing a specstore(). An
example of this situation is a writing into a speculative array with a speculative
variable as index.

Programmers may write other constructs that the plugin can deal with, such
as assignments from one pointer to another, accesses involving directions or the
data pointed by the pointer, assignments between entire data structures or only
fields of those structures, and speculative variables involved in casting operations.

5.3 Using the Plugin to Compile the User Code

From the point of view of programmers, to speculatively parallelize a source
code with our system they only have to add an OpenMP parallel loop directive
and set a few parameters to the compiler. First, programmers should add the
OpenMP directive in the target loop, and classify its variables according to their
usage in private and its variants, shared, speculative.

Second, to compile the program, programmers should indicate the size of the
block of iterations that will be issued for speculative execution, as well as the
number of threads they want to launch. We have developed a wrapper script
that launches the compilation of the plugin plus the speculative engine, and it
is run as follows:

$ atlas –threads T –block B -c example.c

Just by using the speculative clause, a programmer can speculatively paral-
lelize a code, while the rest of transformations needed are transparently per-
formed by the plug-in and the compiler.

6 Validation

In order to check the correctness of our plugin and the code that it generates, we
have developed a battery of regression tests. These regression tests include more
than 50 loops with one or more speculative variables, scalar variables, pointers,
elements from multidimensional arrays, or elements from data structures. They
also cover situations with speculative variables that have different types, and
loops executing a number of iterations that are variable and defined in runtime.
These regression tests are developed with the aim of covering possible situations
that we can find in a source code, allowing us to check the correction of the
plugin before addressing real applications. One of these tests is shown in Fig. 5,
where we check the correct operation of the plugin with speculative accesses
over variables with different sizes, and speculative accesses to data structures,
including assignments between entire structures.

We have also tested the plugin with real-word applications that are not par-
allelizable at compile time due to several data dependencies, requiring runtime

242 S. Aldea et al.

1: int i, j, array[MAX], array2[MAX];
2: struct card{ int field; };
3: struct card p1 = {3}, p2 = {99999}, p3 = {11111};
4: char aux_char = ’a’;
5: double aux_double = 3.435;

...
6: #pragma omp parallel for default (none) private(i,j) shared(array1, p2) \
7: speculative(p1, p3, aux_char, aux_double, array2)
8: for (i = 0 ; i < NITER ; i++) {
9: for (j = 0 ; j < NITER ; j++) {
10: if (i <= 1000) p1.field = array[i % 4] + j;
11: else array2[i % 4] = p1.field;

12: if (i > 2000) aux_char = i %20 + 48 + aux_char % 48;
13: else aux_char = i % 20 + array[i % 4] % 10 + 48;

14: if (i > 1500) aux_double = array[i % 4] / (i+1) + aux_double;
15: else array2[i % 4] = (int) (aux_double / i*j) + (array2[(i+j) % 4] + i*j) % 1234545;

16: if (i*j > 10000) p1 = p2; else p3 = p1;
17: }
18: }

Fig. 5. Example of the kind of situations that the plugin can deal with

speculative parallelization. These applications are the 2-dimensional Convex Hull
problem (2D-Hull) [15], the Delaunay Triangulation using the Jump-and-Walk
strategy [16], the 2-dimensional Minimun Enclosing Circle (2D-MEC) prob-
lem [17], and a C implementation of TREE [18]. The plugin is able to spec-
ulatively parallelize the target loops in these benchmarks correctly.

7 Relative Performance and Programmability

Automatic parallelization moves the workload from the programmer to the com-
piler. This is a great deal if the performance achieved by the automatic approach
is as good as the obtained by the manual one. In Table 1 we summarizes the
relative performance of both automatic and manual approaches. Note that the
numbers are not the speedups obtained, but their relative comparison. The ex-
perimental results show that the automatic transformation leads to a faster code
than the one obtained by manually replacing accesses to speculative variables
with function calls. The reason is that the manual transformation of the source
code may prevent the application of certain compiler optimizations. In contrast,
our automatic transformation system works with the GIMPLE intermediate rep-
resentation, after the first phases of the compiler have been triggered. The per-
formance achieved by the applications parallelized using the speculative clause
is 24% faster than the performance scored by the manual parallelization on geo-
metric average. The maximum speedup achieved in each application is shown in
Table 1. Data have been obtained running each experiment three times, and then
obtaining the average. Experiments were carried out on a 64-processor server.

Regarding programmability, using the proposed clause dramatically reduces
the number of lines required in comparison with the former, manual way of

A New GCC Plugin to Support TLS into OpenMP 243

Table 1. Number of lines required in both automatic and manual approaches, their
relative performance, and the maximum speedup achieved for each application, where
’p’ indicates the number of processors. 2D-Hull and MEC are executed with a 10M-
points dataset, Delaunay with a 1M-points dataset, and TREE with a dataset of 4096
nodes.

of lines Relat. perfor. by # of proc. Maximum
Application Auto Man. 8 16 32 48 64 Speedup

2D-Hull 1 139 1.301 1.288 1.404 1.287 1.205 12.97 (56p)
Delaunay 1 191 1.261 1.255 1.212 1.106 1.122 3.11 (32p)
2D-MEC 1 50 1.335 1.369 1.416 1.285 1.410 2.63 (24p)
TREE 1 42 1.125 1.106 1.077 1.198 1.218 6.47 (40p)

Geom. Mean 1 86 1.253 1.251 1.269 1.217 1.234 5.12

parallelizing a code using the TLS library. Parallelizing a code with the pro-
posed speculative clause only requires one line of code –the modified OpenMP
pragma–, while parallelizing the same code manually requires tens to thousands
new lines, depending on the number of accesses to speculative variables.

Such reduction in the number of required lines is not the only advantage.
Parallelizing the code with the plugin only requires classifying the variables
within the loop according to their usage, whereas the manual alternative is not
only a hard, error-prone task, but also a deep knowledge of the TLS library.

8 Related Work

As far as we know, there are not proposals to extend OpenMP to support
software-based TLS. Instead, in the literature there are some approaches that
extend OpenMP to support Transactional Memory (TM) [19], and hardware
speculation, such as the pragma implemented in the IBM C/C++ compiler for
Blue Gene/Q [20]. Early works propose the use of pragma directives, OpenMP-
based [21] or not [22], to enable speculative parallelism at a hardware level.
However, these proposals do not define any particular new OpenMP directive.

More recently, proposals are focused on TM. Proposals such as [23,24,25]
extend OpenMP to support TM, providing new directives and clauses in order
to mark and wrap critical sections A similar proposal is Soc-TM [26], but focused
on TM programming for embedded systems.

Although some of these proposals implement the code generation required,
as far as we know, there are not any specific work that proposes or implements
OpenMP extensions to support Thread-Level Speculation. This empty hole is
what we aim to fill with this paper, proposing a new OpenMP clause, and a
plugin-based compiler pass that supports the TLS runtime library [3] based on
the technique that Cintra and Llanos’ speculative engine [4,5] implements.

Other research groups have also experimented with the GCC (since version
4.5) plugin mechanism. Among them, some plugins are designed to make the
development of GCC plugins easier than with the standard procedure, such as

244 S. Aldea et al.

GCC Melt [27], MilePost GCC [28], or a GCC Python plugin [29]. We decided
to develop our transformation system as a GCC plugin in order to avoid depen-
dencies to third-party, not-so-mature systems.

9 Conclusions

We present a compile-time system that automatically adds the code needed to
handle the speculatively parallel execution of a loop, and uses a new OpenMP
clause (speculative) to find those variables that may lead to a dependence vio-
lation. We have used the plugin mechanism provided by GCC to support the new
OpenMP clause. Using this clause, programmers can point out the speculative
variables, and they do not need to know anything about the speculative paral-
lelization model. In order to parallelize a code, programmers are only required to
add one line (the OpenMP pragma plus the speculative clause), instead of the
significant amount of lines required by the manual parallelization, which depends
on the number of accesses to speculative variables. Moreover, the performance
of the generated codes is even faster that the manually parallelized codes.

We expect that implementing this new clause in a mainstream compiler, to-
gether with the automation of the whole process of the speculative paralleliza-
tion, will help Thread-Level Speculation to be mature enough for its inclusion
in mainstream compilers.

Acknowledgments. This research is partly supported by the Castilla-Leon
Regional Government (VA172A12-2, PIRTU); Ministerio de Industria, Spain
(CENIT OCEANLIDER); MICINN (Spain) and the European Union FEDER
(MOGECOPP project TIN2011-25639, CAPAP-H3 network TIN2010-12011-E,
CAPAP-H4 network TIN2011-15734-E).

References

1. Chandra, R., Menon, R., et al.: Parallel Programming in OpenMP, 1st edn. Morgan
Kaufmann (October 2000)

2. Aldea, S., Llanos, D.R., González-Escribano, A.: Support for thread-level specu-
lation into OpenMP. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M.
(eds.) IWOMP 2012. LNCS, vol. 7312, pp. 275–278. Springer, Heidelberg (2012)

3. Estebanez, A., Llanos, D.R., Gonzalez-Escribano, A.: New Data Structures to Han-
dle Speculative Parallelization at Runtime. In: Proceedings of HLPP 2014 (2014)

4. Cintra, M., Llanos, D.R.: Toward efficient and robust software speculative paral-
lelization on multiprocessors. In: Proceedings of PPoPP 2003 , pp. 13–24 (June 2003)

5. Cintra, M., Llanos, D.R.: Design space exploration of a software speculative par-
allelization scheme. IEEE Trans. Parallel Distrib. Syst. 16(6), 562–576 (2005)

6. Kulkarni, M., Pingali, K., et al.: Optimistic parallelism requires abstractions. In:
Proceedings of PLDI 2007, pp. 211–222 (2007)

7. Gupta, M., Nim, R.: Techniques for speculative run-time parallelization of loops.
In: Proc. of the 1998 ACM/IEEE Conference on Supercomputing, pp. 1–12 (1998)

A New GCC Plugin to Support TLS into OpenMP 245

8. Rauchwerger, L., Padua, D.: The LRPD test: Speculative run-time parallelization
of loops with privatization and reduction parallelization. In: Proceedings of PLDI
1995, pp. 218–232 (1995)

9. Dang, F.H., Yu, H., Rauchwerger, L.: The R-LRPD test: Speculative parallelization
of partially parallel loops. In: Proceedings of 16th IPDPS, pp. 20–29 (2002)

10. Xekalakis, P., Ioannou, N., Cintra, M.: Combining thread level speculation helper
threads and runahead execution. In: Proceedings of ICS 2009, pp. 410–420 (2009)

11. Gao, L., Li, L., et al.: SEED: A statically greedy and dynamically adaptive approach
for speculative loop execution. IEEE Trans. Comput. 62(5), 1004–1016 (2013)

12. GNU Project: GCC internals (2013), http://gcc.gnu.org/onlinedocs/gccint/
13. Novillo, D.: GCC an architectural overview, current status, and future directions.

In: Proceedings of the Linux Symposium, Tokyo, Japan, pp. 185–200 (September
2006)

14. Novillo, D.: OpenMP and automatic parallelization in GCC. In: Proceedings of the
2006 GCC Developers’ Summit, Ottawa, Canada (2006)

15. Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental
constructions. Comput. Geom. Theory Appl. 3(4), 185–212 (1993)

16. Devroye, L., Mücke, E.P., Zhu, B.: A note on point location in Delaunay triangu-
lations of random points. Algorithmica 22, 477–482 (1998)

17. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.)
New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370.
Springer, Heidelberg (1991)

18. Barnes, J.E.: TREE. Institute for Astronomy. University of Hawaii (1997),
ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode/

19. Larus, J., Kozyrakis, C.: Transactional memory. Commun. ACM 51(7), 80–88 (2008)
20. IBM: Thread-level speculative execution for C/C++. IBM XL C/C++ for Blue

Gene, Tech. report (2012)
21. Packirisamy, V., Barathvajasankar, H.: OpenMP in multicore architectures. Uni-

versity of Minnesota, Tech. Rep (2005)
22. Martínez, J.F., Torrellas, J.: Speculative synchronization: Applying thread-level

speculation to explicitly parallel applications. In: Proceedings of ASPLOS 2002,
pp. 18–29 (2002)

23. Baek, W., Minh, C.C., et al.: The OpenTM transactional application programming
interface. In: Proceedings of 16th ISCA, pp. 376–387. IEEE Computer Society (2007)

24. Milovanović, M., Ferrer, R., Unsal, O.S., Cristal, A., Martorell, X., Ayguadé, E.,
Labarta, J., Valero, M.: Transactional memory and OpenMP. In: Chapman, B.,
Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007.
LNCS, vol. 4935, pp. 37–53. Springer, Heidelberg (2008)

25. Wong, M., Bihari, B.L., de Supinski, B.R., Wu, P., Michael, M., Liu, Y., Chen, W.:
A case for including transactions in OpenMP. In: Sato, M., Hanawa, T., Müller,
M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132,
pp. 149–160. Springer, Heidelberg (2010)

26. Ferri, C., Marongiu, A., et al.: SoC-TM: Integrated HW/SW support for
transactional memory programming on embedded MPSoCs. In: Proceedings of
CODES+ISSS 2011, pp. 39–48. ACM Press (2011)

27. Starynkevitch, B.: MELT: A translated domain specific language embedded in the
GCC compiler. In: Proceedings of IFIP DSL 2011, pp. 118–142 (2011)

28. Fursin, G., Kashnikov, Y., et al.: Milepost GCC: machine learning enabled self-
tuning compiler. Int’l. Journal of Parallel Programming 39(3), 296–327 (2011)

29. Malcolm, D.: GCC python plugin v0.12.(2013),
https://fedorahosted.org/gcc-python-plugin/ (last visit: May 2014)

http://gcc.gnu.org/onlinedocs/gccint/
ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode/
https://fedorahosted.org/gcc-python-plugin/

Improving Read Performance with Online

Access Pattern Analysis and Prefetching

Houjun Tang1,2, Xiaocheng Zou1,2, John Jenkins1,3, David A. Boyuka II1,2,
Stephen Ranshous1,2, Dries Kimpe3, Scott Klasky2,

and Nagiza F. Samatova1,2,�

1 North Carolina State University, Raleigh, NC 27695, USA
2 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

3 Argonne National Laboratory, Argonne, IL 60439, USA
samatova@csc.ncsu.edu

Abstract. Among the major challenges of transitioning to exascale in
HPC is the ubiquitous I/O bottleneck. For analysis and visualization ap-
plications in particular, this bottleneck is exacerbated by the write-once-
read-many property of most scientific datasets combined with typically
complex access patterns. One promising way to alleviate this problem is
to recognize the application’s access patterns and utilize them to prefetch
data, thereby overlapping computation and I/O.However, current research
methods for analyzing access patterns are either offline-only and/or lack
the support for complex access patterns, such as high-dimensional strided
or composition-based unstructured access patterns. Therefore, we propose
an online analyzer capable of detecting both simple and complex access
patterns with low computational and memory overhead and high accu-
racy. By combining our pattern detection with prefetching, we consistently
observe run-time reductions, up to 26%, across 18 configurations of PIO-
Bench and 4 configurations of a micro-benchmark with both structured
and unstructured access patterns.

1 Introduction

Scientists who work with simulations such as S3D combustion [1] and GTS
core plasma fusion [2] spend a significant amount of time analyzing the mas-
sive amount of data generated. With the increasing gap between CPU and I/O,
the performance of scientific analysis and visualization applications are often
I/O-bound [3], thus read performance becomes a key area for optimization. An
essential component of this process is to better understand the application’s I/O
behavior or its access patterns.

An access pattern is a sequence of accesses that exhibits a certain regularity.
Many common access patterns occur as a result of iterative computations [4].
For example, if a matrix is stored in row-major format, reading consecutive
rows of the matrix results in a contiguous pattern, whereas reading one column
induces a simple-strided pattern with the file pointer incremented by the same
amount (row size) between each request. Scientific applications exhibit these

� Corresponding author.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 246–257, 2014.
c© Springer International Publishing Switzerland 2014

Improving Read Performance with Online Access Pattern Analysis 247

patterns and others, including higher dimensional strided access patterns and
composition-based or correlation-based unstructured access patterns.

Recognizing access patterns in an application is a key to potentially reducing
future file read time. Scientific applications often read and analyze data alter-
nately, thus by overlapping the two phases with prefetching can significantly
reduce the overall execution time of the application. Accurate prefetching can
be achieved with access pattern analysis.

In order to achieve high prefetching accuracy, it is necessary to acquire com-
prehensive knowledge of the application’s access patterns. Various methods have
been proposed [5–8], however, these tools are all offline-based and not capable
of detecting complex access patterns (such as composition-based unstructured
access patterns). Offline-based tools assume access history of one or more pre-
vious runs beforehand, which is unrealistic to obtain for scientific applications
nowadays that run for hours or even days. In addition, offline based algorithms
cannot be directly applied to online analysis as 1) they assume the presence
of full access history, which may not fit in the memory; and 2) they detect a
pattern after its full occurrence, which provides no useful information for the
current optimization strategy.

We propose a method for online analysis that requires no prior information
of the application. To the best of our knowledge, our method is the first one
capable of performing online analysis of various complex access patterns. The
contributions of this work are as follows:

Online, Low-Overhead Pattern Analysis with High Accuracy. We adopt
a “pattern growth” approach and efficient pattern detection algorithms to enable
online analysis with overhead less than 5% in all test cases. The overall run-time
reduction is up to 26% via pattern-aware prefetching with accuracy up to 99%;

Support for Various Access Patterns.We develop an analyzer capable of de-
tecting structured access patterns as well as composition-based and correlation-
based unstructured access patterns;

Low Memory Footprint. To retain low memory footprint during run-time, we
merge I/O traces with their corresponding access patterns in a compact format
and keep a limited number of recent trace records in memory.

2 Background

Many I/O access patterns classification approach have been proposed [5, 9, 10].
Compared with them, we additionally support unstructured access pattern. Al-
though the access pattern classification is similar, the algorithms to detect the
patterns are different for offline and online analysis, as explained in Section 3.1.

2.1 Structured Access Pattern

Structured access patterns include contiguous, simple-strided, and kd-strided
patterns. Fig. 1 illustrates the former two kinds. A contiguous pattern occurs
when consecutive read requests are accessing a contiguous region of data in

248 H. Tang et al.

a file. It can be further divided into uniform and variable size patterns. For
strided patterns, a stride is the difference between starting offsets of consecutive
requests, and is fixed within each dimension. Simple-strided pattern is a special
case of kd-strided when k = 1. A kd-strided pattern can be viewed as a series
of k − 1d-strided segments with its k dimensional stride. For example, a 2d-
strided pattern with the following offsets: {1, 3, 5, 11, 13, 15, 21, 23, 25}, is
composed of three simple-strided segments {1,3,5}, {11,13,15}, and {21,23,25},
with the second dimensional stride of 10. Kd-strided pattern is often found when
accessing a sub-volume or sub-plane of multi-dimensional data.

2.2 Unstructured Access Pattern

Unstructured access patterns are accesses that exhibit patterns with less reg-
ularity compared to structured ones. The number of accesses is linear to the
number of parameters representing them, while exponential for structured ones.
There are two particular instances that we found useful for scientific applications,
which are referred as composition-based and correlation-based unstructured ac-
cess patterns. The composition-based patterns capture the repeating intervals
between structured patterns or individual accesses, which is further explained
in Section 3.3. Previous research in [7] exploited block correlations in storage
systems. We include this kind of pattern and referred it as correlation-based
unstructured access patterns. For example, from an offset sequence of {10, 20,
30, 40, 50, 10, 70, 20, 30, 80, 10, 40, 20, 30}, the correlation-based pattern is
{10| 20, 30} and {20| 30}, meaning that the data starting from offset 20, 30 is
frequently accessed after 10, while 30 is often accessed after 20. The threshold
value of frequent accesses is 3, which is the number of times an offset occurs to
be considered in a pattern. The request size is omitted for simplicity.

3 Method

Our online analyzer performs access pattern analysis of applications during their
run-time and utilize the pattern information to guide prefetching for better per-
formance. Fig. 2 illustrates the overview of our framework.

Fig. 1. Each block represents 1 byte of data stored in row-major format, with shaded
blocks being accessed. (a) Contiguous with uniform size: 8 requests (R0 to R7) each
access 4 bytes. (b) Contiguous with variable size: 5 requests with sizes of 4, 8, 4, 8, 8
bytes. (c) Simple-strided: 4 requests each access 4 bytes of data with 8 bytes between
the starting offsets of consecutive requests.

Improving Read Performance with Online Access Pattern Analysis 249

3.1 Online Access Pattern Analysis

We adopt a rule-based model for access pattern detection in our online analyzer,
which is the key component the framework. We maintained a “pattern library”
that contains a collection of rules. These rules provide a concise description of the
access sequences that are recognized as access patterns. The input is a sequence
of accesses and the output is the detected access patterns and corresponding
prefetching instructions.

Each time a read request is traced, the analyzer first performs a lookup in the
pattern history to decide whether to activate a previously detected pattern and
start prefetching or use it for analysis. The pattern analysis procedure includes
the following steps: 1) create a new pattern if current records in the trace buffer
match any detection rules in the pattern library; 2) “grow” the current pattern
if the following accesses belong to it and inform the prefetcher to prefetch data
that are predicted to be accessed next; 3) commit the access pattern to the
pattern history when the new access do not fit in; 4) attempt to coalesce the
current pattern with previous structured ones to form a higher level pattern; 5)
look back in the pattern history and check if there is any pattern that matches
the current one. More details of this procedure are explained in later examples
of structured and unstructured pattern analysis.

Unlike offline analysis with a complete access history, online analysis must
be incremental to detect a pattern during its occurrence. Thus we adopt the
above “pattern growth” approach: as new accesses arrive, they are compared to
the current active pattern before being inserted to the trace buffer. The pat-
tern library consists of detection and coalesce rules for detecting structured and
unstructured access patterns. The difference between them are the objects they
operate on: detection rule operates on offset of accesses while coalesce rule op-
erates on patterns. The analysis is performed periodically instead of upon every
new request to reduce computation overhead. Three threshold values (Tstruct,
Tcorr, and Tcomp) are used to trigger the analysis of structured, correlation-based
unstructured, and composition-based unstructured access patterns.

Fig. 2. An overview of our framework: each time a read request is made, the tracer
extracts the read request’s information while it is being passed to the prefetcher. The
requested data are copied to user buffer if found in the prefetch cache or a normal file
read is issued to the parallel file system, the components added are in shaded shapes.

250 H. Tang et al.

3.2 Structured Access Pattern Analysis

Different detection rules are used for contiguous and simple-strided access pat-
terns. A contiguous pattern is determined by having at least 3 consecutive ac-
cesses with no gap in between. A simple-strided pattern comes with same offset
differences (stride) between at least 3 consecutive accesses with identical request
size. Kd-strided pattern is composed of (k − 1)d-strided segments and is de-
tected by the coalesce rule, which checks the stride and the number of accesses
of two strided patterns with the same dimension. Note that each dimension of a
kd-strided pattern must have at least three (k − 1)d-strided segments.

Take a 2d-strided pattern with the following offsets {1, 3, 5, 11, 13, 15, 21,
23, 25, 31, 33, 35} as an example. The second dimensional stride can not be
determined until 31 is accessed that signals the end of the third simple-strided
segment. With three simple-strided segments detected and committed, they are
coalesced to a 2d-strided one(step 1 to 4 of the pattern analysis procedure).
An earlier detection is possible if a previous 2d-strided pattern with the same
stride and number of accesses of first dimension exists in the pattern history: we
temporarily mark the current simple-strided pattern of {1, 3, 5} as the 2d-strided
one and start prefetching (step 5). Once a mismatch happens, it is restored to
the previously detected pattern and continue the analysis procedure. Only the
most recent pattern that qualifies is used in case multiple candidates exist, as
same pattern tends to occur close in time. The time complexity for detection
rule is O(n × Tstruct), and for the coalesce rule is O(Nspattern), where n is the
number of total accesses, and Nspattern is the number of detected structured
access patterns. Though the time complexity depends on the whole trace and
could be quite large, the frequency of the analysis is expected to be high and as
a result for each analysis procedure the workload is relatively small.

3.3 Unstructured Access Pattern Analysis

Previous analyzers usually deal with access patterns build from individual ac-
cesses. However, when accessing time-series data generated by scientific simula-
tions, a higher level of pattern often exists between the accesses of different time
steps. For example, if a scientist wants to visualize a climate dataset with hourly
recorded data at the times when the daily low/high temperature occurs (usu-
ally 5-6am and 2-3pm) for 30 days. The corresponding visualization application
would read data of time step 5, 6, 14, 15, 29, 30, 38, 39, 53, 54, 62, 63, etc. and
for each time step, structured access patterns could exist if a sub-volume decom-
position is used for parallel processing. State-of-the-art analyzer like IOSIG [5]
is only able to detect the structures ones within each time step, while not rec-
ognizing the higher level of composition-based unstructured pattern with time
step intervals repeating 29 times of {1, 8, 1, 14}.

The detection rule for composition-based pattern detection is to find offset
delta (the difference between any two consecutive offsets) sequences that repeat
at least twice. Two separate delta sequences are created from the offset of ac-
cesses and the starting offset of structured access patterns. To efficiently detect

Improving Read Performance with Online Access Pattern Analysis 251

such patterns, we build suffix trees incrementally that has linear time and space
complexity. The corresponding pattern can be easily obtained from its suffix tree
after each time of analysis.

For correlation-based access patterns, steps 2 and 4 are skipped because a
correlation-based pattern stays the same once generated. In step 5, patterns are
merged into one if a previous pattern with the same “entry” is found. Only
accesses with request size larger than Rsize are considered because the cost
of analyzing those accesses outweighs the cost brought on by prefetching. In
addition, we only focus on frequent accesses (occurs more than Tfreq times)
with their next Nnext accesses. And the time complexity is O(n × Nnext) The
frequent access is referred as the “entry” of a pattern. A candidate set of accesses
that have the potential of becoming frequent, which have a frequency between
Tfreq − ε and Tfreq, is maintained for incremental analysis. The analyzer then
forms the pattern of each frequent access as the entry and a list of its following
frequent accesses. Each time the entry is accessed, this pattern is activated and
the following accesses are prefetched as much as possible.

3.4 Trace Storage with Low Memory Footprint

Our framework requires limited additional memory usage during application’s
run-time. The tracer extracts useful information from read requests and passes
them to the analyzer to determine whether to store them in the trace buffer.
Trace records are compressed to a pattern representation if possible. The memory
used for structured access patterns are significantly reduced due to its regularity.
A 2d-strided pattern with 1024 accesses needs approximately 102KB in memory
while only 134B with a pattern representation. The unstructured access patterns
require more storage than structured but still use much less memory than keep-
ing all its accesses. In addition, since online analysis focuses on current access
patterns, only recent trace records are kept in the trace buffer. The tracer is
implemented in the ADIO layer of MPI-IO, on which MPI optimizations like
data sieving can be captured and utilized, as well as allowing the usage of other
PMPI-based methods, such as Darshan [11].

3.5 Informed Prefetching

The prefetcher prefetches data informed by the analyzer and checks if data in
the prefetch cache can be used for current request. Depending on the accecc
pattern, the size of prefetched data varied, and we only consider relatively large
data size (> 1KB) as smaller request sizes do not benefit from prefetching. It
is also implemented in ADIO layer and prefetches data per MPI process using a
prefetching thread. To avoid extra overhead caused by communication between
processes, both the analysis and prefetching are per-process based. We adopted
a conservative prefetching strategy to minimize the cost of mis-prefetching: the
prefetcher starts to prefetch data when a stable access pattern is detected and
stops immediately when the previously prefetched data is not used, which indi-
cates the detected access pattern is terminated.

252 H. Tang et al.

Fig. 3. Prefetching is fully and partially masked by computation

4 Experimental Results

4.1 Experimental Setup

Our experiments were conducted on Argonne LCRC Fusion cluster. Each node
is equipped with Intel Xeon 8-core (dual quad-core) 2.53 GHz processor, 36 GB
memory, and 250GB local disk. The attached local disk to each node enables
us to set up our own PVFS2 servers and create an isolated environment. We
used 8 server nodes running PVFS2 2.8.2 file system with default strip size of
64KB. These nodes are connected with InfiniBand QDR and Gigabit Ethernet.
Additionally, we implemented our framework based on MPICH 3.0.4.

4.2 Structured Access Pattern Performance

We used the PIO-Bench [12], a widely used synthetic parallel file system bench-
mark suite, and conducted experiments with contiguous, simple-strided, and
2d-strided access patterns to evaluate the performance with structured access
pattern detection.

As mentioned in Section 1, the benefit of prefetching comes from overlapping
I/O and computation. Fig. 3 illustrates four periodic read (R D0 to R D3) that
are fully and partially masked by the computations via informed prefetching
and the total time of T1 and T2 is reduced. To mimic real application’s behavior,
we insert computation time between each file read operation of PIO-Bench. To
determine the computation time, we collected the time of running GNU Scientific
Library functions such as find minimum number, first 100 smallest numbers,
mean, standard deviation, and sorting. The ratio of computation time to read
time for different size of data are shown in Table 1. We found the ratio of 0.5,
1.0, and 2.0 could represent different scenarios of real computation time and thus
are used in our experiments. The results of simple-strided is similar to those of
2d-strided and due to space limitation, we only show the results using ratio of 0.5
and 1.0 that represent I/O intensive and compute intensive scenarios, contiguous
and 2d-strided access pattern, and read request of 128KB and 1MB.

From the results shown in Fig. 4 we can see a reduction in the application’s
total running time in all cases with the percentage of up to 26% and an average of
17% for contiguous access pattern and 16% for 2d-strided. The performance gain
of the informed prefetching with access pattern analysis are more pronounced

Improving Read Performance with Online Access Pattern Analysis 253

Table 1. Ratio of computation time to
read time for a given size of data

Size min min100 mean sd sort
128KB 0.027 0.061 0.183 0.353 1.388
1MB 0.028 0.031 0.221 0.428 1.899
16MB 0.034 0.027 0.244 0.473 2.586

Table 2. Prefetching accuracy of three
structured access patterns

Pattern Type Size Read # Accuracy

Contiguous /
Simple-strided

128KB 1024 99.9%
1MB 512 99.8%
16MB 32 96.5%

2d-strided
128KB 1024 99.8%
1MB 512 99.6%
16MB 32 92.0%

when the computation to read time ratio is 1.0 because read time is fully masked
by computation. For ratio with 2.0, the time reduction percentage is between
that of 1.0 and 0.5, which is expected because the potential of run-time reduction
is less when computation takes most of the time.

4.3 Unstructured Access Pattern Performance

The random strided pattern of PIO-Bench is a composition-based unstructured
access pattern, however, this pattern is too simple compared to real scientific
applications. Thus we developed a micro-benchmark with both structured and
unstructured access patterns. We found the results for correlation-based patterns
are similar to those in [7] and thus it is not included in our micro-benchmark. The
micro-benchmark simulates the file read behavior of an application mentioned
in Section 3.3, which performs 3D visualization of climate datasets with hourly
data at time steps when daily low/high temperature occurs. A sub-volume de-
composition is used to perform parallel I/O for each time step. We experimented
with two types of decompositions: row-wise and column-wise, as shown in Fig. 5.
For each time step, the 3D data is broke into “slices” and each process reads one
slice. The resulting access pattern contains both structured (simple/2d-strided
within each time step) and composition-based unstructured pattern (repeating
kd-strided with time step interval rotates from {1, 8, 1, 14}). Similar to the pre-
vious experiments, we set the computation time to the average time of each file
read. In addition to using plain row-major file layout, we also tested with files
stored with block layout. Scientific applications like ScaLAPACK benefits from
this kind of layout as they use blocks as the unit for communication and compu-
tation. The normal row-major file layout can also be viewed as the block layout
with block size of 8B (the size of double).

The total data size of each time step read by all processes is 1GB and we
vary the decomposition type, file layout type, and the number of processes.
All processes are synchronized before the first read and the maximum elapsed
time is reported. Fig. 6 compares the performance results by row and column
decomposition with different file layout types. The row decomposition of different
block sizes have similar results, and column decomposition with row-major layout
takes much longer time since it has most dis-contiguous accesses, and are omitted
due to space limitation. For all cases, we observe the time reduction ranges from
13% to 26% with prefetching, which proves the effectiveness of the analyzer.

254 H. Tang et al.

-30%

-20%

-10%

0%

10%

20%

0

1

2

3

4

5

2 4 8 16 32 64
-30%

-20%

-10%

0%

10%

20%

30%

0

1

2

3

4

5

2 4 8 16 32 64

-20%

-10%

0%

10%

20%

0

5

10

15

20

25

30

35

40

2 4 8 16 32 64
-20%

-10%

0%

10%

20%

0

5

10

15

20

25

30

35

40

2 4 8 16 32 64

-30%

-20%

-10%

0%

10%

20%

30%

0

1

2

3

4

5

2 4 8 16 32 64
-30%

-20%

-10%

0%

10%

20%

30%

0

1

2

3

4

5

2 4 8 16 32 64

-25%

-15%

-5%

5%

15%

25%

0

5

10

15

20

25

2 4 8 16 32 64
-25%

-15%

-5%

5%

15%

25%

0

5

10

15

20

25

2 4 8 16 32 64

Without Prefetching Time ReductionWith Prefetching

0.5 * read time 1.0 * read time

Contiguous Access Pattern (128KB)

Contiguous Access Pattern (1MB)

R
un

ni
ng

 T
im

e
(s

)

2d-strided Access Pattern (128KB)

Ti
m

e
R

ed
uc

tio
n

w
ith

 p
re

fe
tc

h
(%

)

2d-strided Access Pattern (1MB)

Number of Process

Fig. 4. Performance of contiguous and 2d-strided access patterns

4.4 Overhead of Trace Collection and Access Pattern Analysis

The overhead of our trace collector and analyzer is defined as the time difference
between the two runs with our framework and with original MPICH. To test the
overhead of trace collection and analysis, we run with the previous configurations
by setting the computation time to, the median of 10 different runs is used. Due
to space constraint, we only show results of two different cases in Fig. 7. Similar
overhead is observed in other cases and all are less than 5%.

4.5 Accuracy of Access Pattern Detection

To evaluate the effectiveness of our pattern detection algorithm, we use prefetch-
ing accuracy as a metric. It is calculated by dividing the amount of subsequently

Improving Read Performance with Online Access Pattern Analysis 255

Fig. 5. Two types of domain decomposition used in our evaluation

-30%

-20%

-10%

0%

10%

20%

30%

0

50

100

150

200

250

300

350

400

4 8 16 32 64 128
-30%

-20%

-10%

0%

10%

20%

30%

0

100

200

300

400

500

600

700

800

4 8 16 32 64 128

With Prefetching Time ReductionWithout Prefetching

Colomn decomposition with block layout (512B)

Ti
m

e
R

ed
uc

tio
n

(%
)

Number of Process

R
un

ni
ng

 T
im

e
(s

)

Row decomposition with row-major layout

Fig. 6. Performance of row/column domain decomposition with different block size

-5%

-3%

-1%

1%

3%

5%

0

5

10

15

20

2 4 8 16 32 64
-5%

-3%

-1%

1%

3%

5%

0

30

60

90

120

150

180

4 8 16 32 64 128

2d-strided access pattern
With Prefetching OverheadWithout Prefetching

O
ve

rh
ea

d
(%

)
Number of Process

R
un

ni
ng

 T
im

e
(s

)

Row decomposition with row-major layout

Fig. 7. Overhead of trace collector and analyzer with 2d-strided and unstructured
access pattern

used and prefetched data by the total used data. The high accuracy means the
prediction of analyzer is accurate. Table 2 shows the prefetching accuracy of three
structured access patterns. The high percentage is expected as these patterns
are highly structured and remain stable for a period of time.

5 Related Work

Various methods have been proposed to utilize access patterns for I/O optimiza-
tion. Gong et. al [13] proposed a parallel run-time layout optimization framework
to speed up queries on large complex scientific datasets. In database community,
utilizing access patterns to guide prefetching proves to be effective [14]. Un-
like their methods that deal with file layout organization and database objects,
respectively, our work only involves MPI-IO and is on byte level.

Most of the existing pattern analyzers [5–8] perform analysis in the offline-
based fashion. In [5], a notation called I/O signature that represents access

256 H. Tang et al.

patterns is proposed. However, their pattern analysis only focus on structured
ones. Oly et al. used a Markov model [6] built from access history to predict
future accesses and prefetch data. C-Miner [7] uses a frequent sequence min-
ing algorithm named CloSpan to discover block correlations, and utilizes the
detected information for prefetching and reorganizing data layout. Choi et. al
applied probabilistic latent semantic analysis with deterministic annealing [8] to
discover file or variable access patterns. These methods require prior knowledge
of the application and can not be directly applied to online analysis. We enabled
our trace collection and analysis to be online, which is more desirable for sci-
entific applications nowadays. Our analyzer can also be used in offline manner
that generates same access patterns as offline-based ones.

Prefetching is an effective latency-hiding solution for improving efficiency of
parallel I/O and has been extensively studied and widely used [15–18]. However,
the traditional prefetching strategies such as file-system level approaches are
conservative. Even with advanced parallel file systems such as PVFS [19] and
Lustre [20], high bandwidth is not achieved when only simple patterns such
as contiguous or simple strided are detected. They cannot provide satisfactory
performance for the modern scientific simulations with a large number of complex
access patterns. Patterson et al. proposed informed prefetching [21], but this
requires developers to add I/O hints to the program. Unlike their method, our
framework requires no code modification.

6 Conclusion

We proposed an online access pattern analyzer that supports both structured
and unstructured access patterns with high accuracy and low computation and
memory overhead. With the pattern-aware prefetching, our method results in
up to 26% run-time reductions on top of less than 5% overhead with both kind
of access patterns in 22 benchmark evaluations.

Acknowledgements. We would like to thank the Leadership Computing Fa-
cilities at Argonne National Laboratory and Oak Ridge National Laboratory
for the use of resources. Oak Ridge National Laboratory is managed by UT-
Battelle for the LLC U.S. D.O.E. under Contract DE-AC05-00OR22725. This
work was supported in part by the U.S. Department of Energy, Office of Sci-
ence, Advanced Scientific Computing Research and the U.S. National Science
Foundation (Expeditions in Computing and EAGER programs).

References

1. Chen, J.H., Choudhary, A., De Supinski, B., DeVries, M., Hawkes, E., Klasky, S.,
Liao, W., Ma, K., Mellor-Crummey, J., Podhorszki, N., et al.: Terascale direct
numerical simulations of turbulent combustion using S3D. Computational Science
& Discovery 2(1), 15001 (2009)

Improving Read Performance with Online Access Pattern Analysis 257

2. Wang, W., Lin, Z., Tang, W., Lee, W., Ethier, S., Lewandowski, J., Rewoldt, G.,
Hahm, T., Manickam, J.: Gyro-kinetic simulation of global turbulent transport
properties in tokamak experiments. Physics of Plasmas 13, 092505 (2006)

3. Zhu, Y., Jiang, H., Qin, X., Feng, D., Swanson, D.R.: Improved read performance
in a cost-effective, fault-tolerant parallel virtual file system (ceft-pvfs). In: CCGrid
2003, pp. 730–735. IEEE (2003)

4. Di Biagio, A., Speziale, E., Agosta, G.: Exploiting thread-data affinity in openmp
with data access patterns. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par
2011, Part I. LNCS, vol. 6852, pp. 230–241. Springer, Heidelberg (2011)

5. Byna, S., Chen, Y., Sun, X.H., Thakur, R., Gropp, W.: Parallel I/O prefetching
using MPI file caching and I/O signatures. In: SC 2008, pp. 1–12. IEEE (2008)

6. Oly, J., Reed, D.A.: Markov model prediction of I/O requests for scientific appli-
cations. In: ICS 2002, pp. 147–155. ACM (2002)

7. Li, Z., Chen, Z., Srinivasan, S.M., Zhou, Y.: C-Miner: Mining Block Correlations
in Storage Systems. In: FAST, pp. 173–186 (2004)

8. Choi, J.Y., Abbasi, H., Pugmire, D., Podhorszki, N., Klasky, S., Capdevila, C.,
Parashar, M., Wolf, M., Qiu, J., Fox, G.: Mining hidden mixture context with
adios-p to improve predictive pre-fetcher accuracy. In: 2012 IEEE 8th International
Conference on E-Science (e-Science), pp. 1–8. IEEE (2012)

9. Crandall, P.E., Aydt, R.A., Chien, A.A., Reed, D.A.: Input/output characteris-
tics of scalable parallel applications. In: Proceedings of the IEEE/ACM SC 1995
Conference on Supercomputing, pp. 59–59. IEEE (1995)

10. Madhyastha, T.M., Reed, D.A.: Learning to classify parallel input/output access
patterns. TPDS 13(8), 802–813 (2002)

11. Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., Riley, K.: 24/7 characterization
of petascale I/O workloads. In: Cluster 2010, pp. 1–10 (2010)

12. Shorter, F.: Design and analysis of a performance evaluation standard for parallel
file systems. PhD thesis, Clemson University (2003)

13. Gong, Z., Boyuka, D., Zou, X., Liu, Q., Podhorszki, N., Klasky, S., Ma, X., Sam-
atova, N.F.: Parlo: Parallel run-time layout optimization for scientific data explo-
rations with heterogeneous access patterns. In: CCGrid 2013, pp. 343–351 (2013)

14. Han, W.S., Moon, Y.S., Whang, K.Y.: Prefetchguide: Capturing navigational
access patterns for prefetching in client/server object-oriented/object-relational
dbmss. Information Sciences 152, 47–61 (2003)

15. Baer, J.L., Chen, T.F.: An effective on-chip preloading scheme to reduce data access
penalty. In: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing
1991, pp. 176–186. IEEE (1991)

16. Dahlgren, F., Dubois, M., Stenstrom, P.: Fixed and adaptive sequential prefetching
in shared memory multiprocessors. In: ICPP 1993, vol. 1, pp. 56–63. IEEE (1993)

17. Dahlgren, F., Dubois, M., Stenstrom, P.: Sequential hardware prefetching in
shared-memory multiprocessors. TPDS 6(7), 733–746 (1995)

18. Ding, X., Jiang, S., Chen, F., Davis, K., Zhang, X.: Diskseen: Exploiting disk
layout and access history to enhance I/O prefetch. In: USENIX Annual Technical
Conference, vol. 7, pp. 261–274 (2007)

19. Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: Pvfs: A parallel file system for
linux clusters. In: Proceedings of the 4th Annual Linux Showcase and Conference,
pp. 391–430 (2000)

20. Braam, P.J., Zahir, R.: Lustre: A scalable, high performance file system. Cluster
File Systems, Inc. (2002)

21. Patterson, R.H., Gibson, G.A., Ginting, E., Stodolsky, D., Zelenka, J.: Informed
prefetching and caching, vol. 29. ACM (1995)

Robust and Efficient Large-Large Table Outer Joins
on Distributed Infrastructures

Long Cheng1,2,3, Spyros Kotoulas2, Tomas E. Ward1, and Georgios Theodoropoulos4

1 National University of Ireland Maynooth, Ireland
2 IBM Research, Ireland

3 Technische Universität Dresden, Germany
4 Durham University, UK

long.cheng@tu-dresden.de, spyros.kotoulas@ie.ibm.com
tomas.ward@eeng.nuim.ie, theogeorgios@gmail.com

Abstract. Outer joins are ubiquitous in many workloads but are sensitive to load-
balancing problems. Current approaches mitigate such problems caused by data
skew by using (partial) replication. However, contemporary replication-based
approaches (1) introduce overhead, since they usually result in redundant data
movement, (2) are sensitive to parameter tuning and value of data skew and (3)
typically require that one side is small. In this paper, we propose a novel parallel
algorithm, Redistribution and Efficient Query with Counters (REQC), aimed at
robustness in terms of size of join sides, variation in skew and parameter tuning.
Experimental results demonstrate that our algorithm is faster, more robust and
less demanding in terms of network bandwidth, compared to the state-of-the-art.

1 Introduction

Outer joins are popular in complex queries and frequently used in OLAP [1, 2] and
large-scale data analysis, to name but a few applications. Unlike inner joins, the oper-
ation does not discard tuples from either relation that do not match with tuples in the
other [3]. For example, for a left outer join (��) between two inputs R and S on their
attributes a and b, the following query returns not only the matched tuples in the form
of <x,a,y>, but also <x,a,null>, when values do not match.
select R.x R.a S.y
from R left outer join S on R.a = S.b (Query 1)

Currently, as for inner joins, implementations for distributed outer joins utilise one of
two distributed patterns [4]: redistribution-based and duplication-based outer joins. To
study the core performance characteristics of these approaches, we focus on analyzing
the parallelism within a single outer join operation between two relations R and S on
an n-node system (assuming both R and S are in the form of <key, value> pairs and
|R| < |S| in the following).

For redistribution-based approaches, parallel outer joins contain three phases: par-
tition, redistribution and local outer joins. In the first phase, the relations Ri and Si,
initially arbitrarily partitioned across each computation node i, are partitioned into dis-
tinct sets Rik and Sik (k ∈ [1, n]) respectively, according to the hash values of their
join key attributes. Each of these sets is distributed to a corresponding remote node
k in the second phase. After that, the sequential outer joins of local fragments com-
mence. This scheme can achieve near linear speed-up under ideal balancing conditions

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 258–269, 2014.
c© Springer International Publishing Switzerland 2014

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 259

for distributed systems [5]. However, when the processed data has significant attribute
value skew, the join performance will dramatically decrease due to the emergence of
computational hot spots [6].

Duplication-based distributed outer joins differ significantly from inner joins. There
are two distinct stages involved: (1) An inner join between R and S, composed by a
duplication and local inner join phase in which the former phase duplicates (broadcasts)
Ri at each node to all other nodes, and the latter is the same as that for sequential
inner joins, formulating the intermediate results Ti at each node i; (2) An outer join
between R and T , which is similar to the redistribution-based method described above.
The duplication in this method can efficiently reduce hot spots resulting from attribute
value skew. Nevertheless, this operation is costly and only suitable for small-large table
outer joins. Additionally, such a scheme will still encounter performance bottlenecks
when there exists join product skew [7], because in such scenarios the redistributed T
could be very large (e.g. Cartesian product) or suffer from skew itself.

As data skew occurs naturally in various applications [8], and join performance is
challenged by large scale data in the era of Big Data, it is important for practical data
systems to perform efficiently in such contexts. In this work, we propose a new outer
join algorithm, redistribution and efficient query with counters (REQC), for robustly
and efficiently processing large-large table outer joins on distributed architectures. We
summarize the contributions of this paper as following:

– We apply the join geography of semijoins to parallel outer joins on distributed
systems. We find that this semijoin-like scheme is better suited for skew handling
in massive distributed joins.

– We further develop the semijoin-based scheme into the REQC algorithm, in order
to increase performance and robustness.

– Experimental results on 192 cores and 1 billion tuples indicate that our method is
both efficient and robust. Moreover, we compare our approaches with five different
baselines taken from the literature which we implement on the same platform. Our
findings indicate that our method is faster, more robust and requires less network
communication, across a range of skew and parameter values.

The rest of this paper is organized as follows: In Section 2, we report on related
work. We present our REQC algorithm in Section 3 and its detailed implementation
in Section 4. We evaluate our approach in Section 5 while we conclude the paper and
suggest directions for future work in Section 6.

2 Related Work

2.1 Related Work on Joins

Data skew is a significant problem for multiple communities, such as databases [9], data
management [10], data engineering [11] and web data [8]. Joins with extreme skew can
be found in the semantic web field (e.g. in [8], the most frequent item in a real-world
dataset appeared in 55% of entries).

Research in parallel joins on shared-memory systems [9] and GPUs [12] has already
achieved significant performance speedups through improvements in architecture at the
hardware-level of modern processors. Nevertheless, as applications grow in scale, their
associated scalability is limited by either the number of threads available or the system
memory and I/O.

260 L. Cheng et al.

Various techniques have been proposed for distributed inner joins to handle skew [7,
13–15]. Often, the assumption is that inner join techniques can be simply applied to
outer joins, as identified in [4]. However, applying such techniques for outer joins di-
rectly may lead to poor performance [16].

Current research on outer joins focuses on join reordering, elimination and view
matching [3, 17, 18]. State-of-the-art methods designed specific for outer join imple-
mentation achieve significant performance improvements [4], however, they are based
on the duplication-based method and cannot be applied to large-large table outer joins.

Distributed semijoins have been extensively studied, primarily in two domains: (1)
joins in P2P systems, for reducing network communication based on the high selectiv-
ity of a join [13], such as descrbied in [19]; (2) pre-joins in distributed systems which
seek to avoid sending tuples which will not participate in a join, such as the method de-
scribed in [7], for a common implementation, and [20], for application to the MapRe-
duce framework. In contrast, we apply a semijoin pattern with full parallelism to outer
joins on a distributed architecture directly, and propose our efficient and robust REQC
algorithm on this basis.

2.2 Details on the State-of-the-Art

PRPD. Xu et al. [15] propose a hybrid distributed geography called PRPD (partial
redistribution & partial duplication) for inner joins, by combining the two conventional
patterns described. For a single skew relation S (assume R is uniformly distributed), the
high skew tuples Sloc of S are retained locally and other tuples Sredis are redistributed
based on hashing. For R, the tuples Rdup with keys contained in Sloc are broadcast to all
the nodes, and the rest Rredis are redistributed as normal. The final joins are composed
by Rredis �� Sredis and Rdup �� Sloc at each node.

As the high skew tuples of S are not redistributed at all and, instead, just a small
number of tuples from R are broadcast, the attribute value skew can be highly reduced.
This hybrid scheme has shown to be very efficient in processing inner joins, and could
be applied to outer joins directly. Nevertheless, we have to redistribute the results of
Rdup �� Sloc in an outer join, which could be very costly: since Sloc is highly skewed,
the cardinality of the intermediate results can be very large. This condition will be
demonstrated in our evaluation in Section 5.
DER. Xu et al. [4] also propose another algorithm called DER (duplication and efficient
redistribution), aimed at optimizing outer joins. This method comprises two stages: (1)
Ri at each node i is duplicated to all the nodes to start inner joins. At this stage, not
only are the matched results T kept but also the ids of all non-matched rows in the table
R; (2) Only the recorded ids are redistributed according to their hash values and, then,
the final join results are assembled on that basis.

In fact, this optimization provides for an efficient way to extract non-matched results
of an outer join. Notice that the join in the first stage of the conventional duplication-
based scheme is an inner join instead of an outer join. The reason for this is that the
duplication could bring either redundant or erroneous non-matched outputs. To alleviate
this problem, redistributing the intermediate results is adopted. In comparison, DER
uses a clever way around this: non-matched tuples of R are redistributed and these
tuples are indicated by a row-id from the table R. As such, the redistributed part is
small and network communication and computational workload are greatly reduced.
The experimental results show that the DER algorithm can achieve significant speedups
over competing methods.

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 261

As DER must broadcast R, it is designed to work best for small-large table outer
joins. When associated with the PRPD algorithm, the broadcasted part Rdup is typically
small. As identified by [16], we can integrate DER into PRPD to fix the cardinality
problem as described for Rdup �� Sloc previously. The experiments in [16] have shown
that this hybrid method (referred to PRPD+DER) is efficient on handling skew in large-
large outer joins. Regardless, we will demonstrate that our proposed REQC algorithm
can outperform this optimized technique.

QC. Recently, Cheng et al. [21] introduced a novel parallel join approach called query-
based distributed joins, for handling data skew of inner joins on distributed architec-
tures. An approach on that basis named query with counters (QC) [16] specified for
outer-joins proved to be faster than the state-of-the-art in the presence of highly-skewed
data. Regardless, the method performs bad when processing low-skew data. In compari-
son, the proposed REQC approach further refines that basic algorithm and we will show
that this new method is more robust and also capable of higher performance than [16]
in our evaluation in Section 5.

3 Our Approach

3.1 Semijoin for Outer Joins

The approach of semijoin-based distributed joins is shown in Figure 1(a), where the
two communication patterns (redistribution and retrieve) makes it different from the
conventional join approaches and the commonly-used semijoins. Under such a scheme,
the implementation of the outer join in Query 1 is organized as the following four steps:

1. Tuples in Ri at each node i are redistributed to remote nodes based on the hash
values of their attributes a. This process is shown as 1© in the figure.

2. The unique keys1 πb(Si) of Si at each node i are sent to the corresponding node as
well, according to their hash values. This process is shown as 2© in the figure.

3. All received tuples
⋃n

i=1 Rik at each node k probe all received keys
⋃n

i=1 πb(Sik),
organizing the matched results Tk and output the non-matched results. After that,
each key fragment πb(Sik) probe Tk and send back the matched tuples to node i.
The process of sending these back is shown as 3© in the figure.

4. The returned tuples join with tuples of Si at each node to produce matched results.

The final outer join results are composed from the output of the non-matched part
in Step 3 and the matched part in Step 4. As we only distribute the unique keys of
S, this scheme can be very efficient for handling data skew in distributed outer joins.
More exactly, (1) even when S is high skewed, each node will receive only one key (or
maximum of n keys if these tuples appear on the n nodes); and (2) each transferred key
is treated the same in the following look-up operations. We will exam the performance
of this approach in our later evaluations.

3.2 REQC Algorithm

To distinguish the matched and the non-matched tuples and then send the former back
to the requester, we implement {[

⋃n
i=1 Rik �

⋃n
i=1 πb(Sik)]� πb(Sik)} at each node

1 Here, we use the operator πb for presenting the duplicate-removing projection on the join
attribute b of the relation S.

262 L. Cheng et al.

S1n

R11

R1n

Rk

S11 S1k

Redistribution
Retrieve

R1k Rn1

Rnn

Sn1

Snn

SnkRn1

...
...

(a) Semijoin-based approach

Counters

S'1n

R11

R1n

S'11 S'1kR1k

... ...

h11 h1k

h1n...
...

S'nn

Rn1

Rnn

S'n1 S'nkRnk

... ...

hn1 hnk

hnn...

Rk
Redistribution
QueryS'k

(b) REQC outer join approach

Fig. 1. The semijoin-based outer join approach and our proposed REQC method. The dashed
square refers to the remote computation nodes and objects.

k as described in the third step of the above method. This process is complex and could
be time costly, since there is significant computation involved. In the meantime, when
S has low skew, the two-sided communication of large numbers of transferred keys
and returned tuples can become costly, decreasing the join performance. To remedy
these problems, we propose our REQC algorithm, shown in Figure 1(b), based on three
optimizations:

1. Tuples in each Si are first divided into two parts before the joins: (a) the non- or
low-skewed part S′

i, is hash-redistributed to all the nodes, and (b) the high-skewed
part hi, using the semijoin-based scheme.

2. Each received tuple fragment S′
ik and key fragment πb(hik) probes the received

tuples
⋃n

i=1 Rik at each node k. To identify the non-matched results, a counter is
added to each tuple and it increases by one when this tuple is probed. Then, the
non-matched tuples will be the ones with the counter value still at zero after all
probings.

3. Only the retrieved values are sent back during the probing process of the key frag-
ments, and the value is set to null when a key’s probes have failed. The transferred
keys are kept locally and the returned values follow the same sequence as these
keys. Then, the <key, value> pair can be easily rebuilt based on their sequence
(e.g. the index in an array), to compute the final join with hi at each node i.

With these optimizations, we can efficiently improve the performance of the
semijoin-based approach as follows: (1) even when S shows low skew, all tuples will
be redistributed, avoiding the two-sided communications issue and consequently im-
proving the robustness; (2) a simple probe operation is applied to the retrieval of the
matched results for πb(hik), which is much simpler than the previously mentioned join
operations; (3) only values rather than entire tuples are returned, therefore the inter-
machine communication is reduced. Though we also return the non-matched values as
nulls, bringing additional communication, the number of πb(hi) is always very small,
making this effect negligible.

We refer to our algorithm as redistribution and efficient query with counters because
(1) the process of transferring keys to remote nodes and retrieving the corresponding
values looks like a query; (2) counters are used to distinguish non-matched results;
and (3) only tuples corresponding to keys with high skew are processed by query-
ing. We refer to the algorithm with only the latter two optimizations as QC (query
with counters) [16]. As shown in our later evaluation, QC is always faster than the

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 263

semijoin-based approach, implying that the introduction of counters is itself beneficial
for such operations.

Moreover, compared with the state-of-art techniques PRPD+DER [4,15] described in
Section 2, our approach does not involve any redundancy in join (or lookup) operations,
because our method is totally duplication-free and all nodes only receive the tuples
that they will eventually use. This should make the approach more efficient, and we
will conduct a detailed performance comparison in Section 5. Additionally, the join
framework of our approach is more straightforward and can be applied to other kinds
of joins directly (e.g. the returned null can be applied directly for right outer-joins and
the counters for anti-joins etc).

4 Implementation

In this section, we present a detailed implementation of the proposed REQC approach.
We compare our algorithm with the state-of-art techniques PRPD+DER [4, 15]. Since
[4, 15] do not provide any code-level information, and in the interests of making a
fair comparison, we have implemented all these methods with the parallel language
X10 [22].

4.1 Pre-partitioning of Skew Tuples

We have to measure the local skew so as to partition the relation S at each node for our
algorithm as well as the PRPD+DER method. Efficient skew measurement is beyond
the scope of this work. As we are more interested in a high performance in-memory
implementation we add two pre-processing steps before each test: (1) for each test pa-
rameterized by t, each node pre-reads the keys appearing more than t times into an
ArrayList and considers these the required skew keys; and (2) Tuples in Si at each
node i are divided into S′

i and hi based on an assessment of the skewed keys, and each
of them is kept in an ArrayList as well. These pre-processing steps make our later
performance comparison more fair and meaningful because: (1) the total join perfor-
mance is very sensitive to the chosen skew keys and operations like sampling cannot
guarantee the same set of keys are selected, (2) the extra time cost for skew extraction
is removed, so that the focus is on the analysis of runtime performance only, and (3)
in a real system, there are opportunities to perform these operations as part of other
processing activities.

4.2 Parallel Join Processing

We describe our implementation at each node as the following four steps. As the local
join process is well studied and techniques such as the sort-merge and hash joins are
commonly used, we have selected the hash-join for our implementations.
R Distribution: As shown in Figure 2 lines 1-8, tuples of R at each computation node
are partitioned into n chunks, and each tuple is assigned according to the hash value of
its key by a hash function h(key) = key mod n. After that, all collected tuples in the
chunk R_c(i) is transferred to the remote node i. Note that the term here means the id
of current node.
Push Query Keys: Similar to the previous step, tuples of S′ are also hash-redistributed
to remote nodes. For the high skewed part h, tuples are kept in hashmap and only the

264 L. Cheng et al.

R Distribution:
1: Initialize R_c:array[array[tuple]](n)
2: for tuple ∈ list_of_R do
3: des ← hash(tuple.key)
4: R_c(des).add(tuple)
5: end for
6: for i ← 0..(n − 1) do
7: Push R_c(i) to r_R_c(i)(here) at node i

8: end for

Push Query Keys:
9: Initialize S’_c:array[array[tuple]](n)

h_c:array[hashmap[tuple]](n)
10: for tuple ∈ list_of_S′ do
11: des ← hash(tuple.key)
12: S’_c(des).add(tuple)
13: end for
14: for tuple ∈ list_of_h do
15: des ← hash(tuple.key);
16: h_c(des).put(tuple)
17: end for
18: for i ← 0..(n − 1) do
19: Extract unique keys of h_c(i) to local_key(i)
20: Push local_key(i) to r_key_c(i)(here),

S’_c(i) to r_S’_c(i)(here) at node i
21: end for

Return Queried Values:
22: Initialize T :hashmap, r_value_c:array[value]
23: for i ← 0..(n − 1) do
24: for tuple ∈ r_R_c(here)(i) do
25: Put <tuple.key, (tuple.value, 0)> into T
26: end for
27: end for
28: for i ← 0..(n − 1) do // probing received keys

29: for key ∈ r_key_c(here)(i) do
30: if key ∈ T then
31: r_value_c.add(T .get(key).value)
32: T .get(key).counter++
33: else
34: r_value_c(i).add(null)
35: end if
36: end for
37: end for
38: for i ← 0..(n− 1) do
39: Push r_value_c(i) to value_c(i)(here) at node i

40: end for

Result Lookup:
41: for i ← 0..(n− 1) do // joins of high skew part h
42: for value ∈ value_c(here.id)(i) do
43: if value �= null then
44: Lookup corresponding key over h_c(i)
45: Output matched results
46: end if
47: end for
48: end for
49: for i ← 0..(n− 1) do // joins of low skew part S′

50: for key ∈ r_S’_c(here)(i) do
51: if key ∈ T then
52: Output the matched result
53: T .get(key).counter++
54: end if
55: end for
56: end for
57: for key ∈ T do
58: if T .get(key).counter == 0 then
59: Output non-matched results
60: end if
61: end for

Fig. 2. Implementation of proposed REQC algorithm at each node

unique keys are pushed to remote nodes. Lines 9-21 of Figure 2 present the details of
this process. There, each HashMap in h_c supports the data structure of 1 → n map-
ping, so as to efficiently hold skewed tuples. In addition both the h_c and local_key_c
are kept in memory for computing the final joins, as mentioned in Section 3.2. We syn-
chronize the operation here to guarantee the completion of the data transfer at each node
before the next phase commences.

Return Queried Values: This phase starts after the grouped query keys have been
transferred to the appropriate remote nodes. The implementation at each node is similar
to a sequential hash join. For each received tuple of R, as shown in lines 22-27 of Fig-
ure 2, a <key,(value, 0)> pair is placed in the local hash table T, where the 0 means the
initialized counter = 0 of this tuple. After that, as shown in lines 28-40, the received
keys start to access T sequentially to obtain their values. In this process, if the mapping
of a key already exists, its value is retrieved, otherwise, the value will be considered as
null. In both cases, the value of the query key is placed into an array r_value_c so that
it can be sent back to the requester(s). All these processes take place in parallel at each
node, and we also synchronize the operations here.

Result Lookup: The join results of the high skewed tuples at each node can be looked-
up after all the values of the query keys have been pushed back. Since the query keys

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 265

and their respective values are held in order inside arrays, we can easily look up the
keys in the corresponding hash tables to organize the join results. In the meantime, the
received tuples of S′ probe the hash table T to retrieve the matched results for the low
skewed tuples. After that step, we can easily scan the counter of each tuple in T to
organize the non-matched results. This process is described in lines 41-61 of Figure 2.
The entire join process terminates when all individual nodes terminate.

5 Evaluation

Platform. Our evaluation platform is the High-Performance Systems Research Cluster
located at IBM Research Ireland. Each computation unit of this cluster is an iDataPlex
node with two 6-core Intel Xeon X5679 processors running at 2.93 GHz, resulting in a
total of 12 cores per physical node. Each node has 128GB of RAM and a single 1TB
SATA hard-drive and nodes are connected by Gigabit Ethernet. The operating system
is Linux kernel version 2.6.32-220 and the software stack consists of X10 version 2.3
compiling to C++ and gcc version 4.4.6.

Datasets. Our evaluation is implemented on two relations R and S, which are both
two-column tables. We fix the cardinality of R to 64 million tuples and S to 1 billion
tuples and set both their key and payload to 8-byte integers. We assume that R and S
meet the foreign key relationship, namely every tuple in S is guaranteed to find exactly
one join partner in R [11], and we only add skew to S, following the Zipf distribution.
The skew tuples are evenly distributed on each computing node and the skew factor is
set to 0 for uniform, 1 for the low skew (top ten popular keys appear 14% of the time)
and 1.25 for high skew dataset (top ten popular keys appear 52% of the time). Joins
with such characteristics and workloads are common in data warehouses and column-
oriented architectures as well as being prevalent in recent studies [9–11].

Setup. In all experiments, we only count the number of matches, we do not actually out-
put join results. Moreover, for PRPD, PRPD+DER and our REQC algorithm, in which
skewed tuples need to be pre-extracted, we implemented a test series with different pa-
rameters t (recall that tuples where the key appears more than t times is considered as
skewed) for each dataset, as shown in Figure 4. When presenting results, we always
choose the t with the best runtime achieved.

5.1 Runtime

Performance. We examined the runtime performance of the six algorithms as de-
scribed previously: the conventional redistribution-based algorithm (referred to Hash),
PRPD [15], PRPD+DER [4, 15], semijoin-based outer joins (referred to as Semijoin),
QC [16] and the proposed REQC approaches. We implement our tests using 16 nodes
(192 hardware cores) of the cluster and present the results in Figure 3. It can be seen
that: (1) when S is uniform, the first three methods and REQC perform nearly the
same, much faster than Semijoin and QC; (2) with low skew, PRPD+DER and REQC
outperforms the other four algorithms; and (3) with high skew, the latter four algorithms
perform much better than Hash and PRPD.

We can also observe that the time cost of Hash and PRPD increases sharply with the
increase in data skew. In contrast, for the other four algorithms, it decreases. Moreover,
PRPD always performs the worst, meaning that the approach for inner joins cannot

266 L. Cheng et al.

29
.9 36

.3

89
.4

31
.1 47

.3

11
9.

5

30
.4

18
.5

9.
5

13
5.

9

40
.5

8.
5

12
1.

6

30
.9

7.
6

30
.2

14
.9

7

0

50

100

150

skew = 1.25skew = 1skew = 0

R
un

tim
e

(s
)

Algorithm / Skew

Hash
PRPD
PRPD+DER
Semijoin
QC
REQC

Fig. 3. Runtime comparison of the six algorithms under varying skew (192 cores)

20 22 24 26 28 210 212 214 216
0

20

40

60

80

100

120

T
im

e
(s

)

Threshold

PRPD+DER
REQC

(a) runtime skew=1

20 22 24 26 28 210 212 214 216
0

10

20

30

40

T
im

e
(s

)

Threshold

PRPD+DER
REQC

(b) runtime skew=1.25

20 22 24 26 28 210 212 214 216
2-1

20

21

22

23

24

25

A
vg

.
re

v.
tu

pl
es

pe
r

pl
ac

e
(m

)

Threshold

PRPD+DER skew 1
REQC skew 1
PRPD+DER skew 1.25
REQC skew 1.25

(c) network communication

Fig. 4. Runtime and network communication of PRPD+DER and REQC with increasing thresh-
old t over different skews (192 cores)

be applied to outer joins directly. In the meantime, QC is always faster than Semijoin,
demonstrating that the latter two optimizations described in Section 3.2 do improve
join performance by themselves. Furthermore, runtime performance of PRPD+DER
and REQC changes much more gradually than the other four algorithms with increas-
ing skew, demonstrating their robustness under varying skew. Finally, it is also worth
highlighting that our proposed REQC approach is always faster than the state-of-the-art
PRPD+DER algorithm, about 24%-36% depending on skew value.

REQC vs PRPD+DER. We conduct a more detailed comparison of our REQC and
PRPD+DER, based on a series of tests with different parameters t, corresponding to
what the system considers a popular key. The results are presented in Figure 4(a)
and 4(b). It can be seen that REQC always outperforms PRPD+DER for any given
t. In addition, the runtime difference for different t values are only minor for our REQC
algorithm while those in PRPD+DER change more rapidly, demonstrating that our ap-
proach is more robust with respect to input parameters. In fact, tuning t would require
additional, more complex or costly operations, meaning that the performance difference
between the two approaches would be even greater for applications which include these
steps.

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 267

Table 1. Number of tuples (max/avg) received at each core using 192 cores (millions)

Max. / Avg. Hash PRPD PRPD+DER Semijoin QC REQC

skew=0 5.9 / 5.9 5.9 / 5.9 5.9 / 5.9 8.7 / 8.7 5.9 / 5.9 5.9 / 5.9
skew=1 62.4 / 5.9 62.4 / 5.9 3.5 / 3.5 3.0 / 3.0 2.1 / 2.1 2.3 / 2.3

skew=1.25 239.8 / 5.9 239.8 / 6.0 1.3 / 1.3 0.7 / 0.7 0.6 / 0.6 0.8 / 0.8

5.2 Network Communication and Load Balancing

Network Communication. We count a single key or payload as 1/2 of a tuple, and
record the average number of received tuples at each core for each algorithm as shown
in Table 1. We can see that Semijoin results in the highest number of tuples while the
other five algorithms receive the same number of tuples when the dataset is uniform.
This is expected, since (1) tuples in the first three algorithms and REQC are just simply
redistributed; (2) the number of transferred keys and the payload of QC is equal to the
number of tuples; and (3) Semijoin not only moves all the keys, but also all the retrieved
tuples. With an increase in skew, the average received tuples in the Hash and PRPD
methods generally does not change. The reason is that all tuples are still redistributed
in Hash and PRPD needs to redistribute the large number of intermediate results. In
contrast, the other four show a significant decrease, as they do not move high skew
tuples. In addition, our REQC algorithm transfers less data than PRPD+DER.

We also track the detailed number of received tuples for different threshold t val-
ues for REQC and PRPD+DER and present the results in Figure 4(c). It can be seen
that in PRPD+DER that number first decreases and then increases, showing a trade-off
between the number of duplicated and redistributed tuples. For REQC, the number of
received tuples is always increasing, however, it is less than PRPD for any given t. In
our tests, the best performance achieved in REQC is always better than PRPD+DER.
For example, t = 4 for REQC and t = 64 for PRPD+DER in the condition skew = 1.
That is why REQC transfers less data than PRPD+DER in Table 1, notably 34%-38%
less, under skew.

Load Balancing. We analyze the load balancing properties of each algorithm based
on the maximum number of received tuples at each core. We can see that the first two
algorithms encounter serious load-balancing problems when the data exhibits skew. In
contrast, the latter four algorithms achieve perfect load balancing under varying skew.

5.3 Scalability

We finally test the scalability of our REQC algorithm. We implement our test on a
distributed architecture with 2 nodes (24 cores), 8 nodes, 12 nodes and 16 nodes (192
cores) on all three datasets. The detailed time-cost is shown in Figure 5, where each
step there is consistent with the implementation explained in Section 4.2.

We can see that our algorithm generally scales well with the number of cores under
varying skew. More specifically when data is uniformly distributed, the second and
fourth step scale well and dominate the runtime. In addition, the time cost of the third
step is nearly 0, the reason is that there are no query keys for remote nodes. With low
skew, all four steps decrease with increase in the number of cores, and the second step
becomes the most expensive part of the execution. Moreover, for high skew, the second

268 L. Cheng et al.

0

20

40

60

80

100

1929624 48

skew = 1.25

skew = 1

skew = 0
R

un
tim

e
(s

)

Number of Cores

step 1
step 2
step 3
step 4

1929624 48 1929624 48

Fig. 5. The detailed time cost of the REQC algorithm with increasing the number of cores

step is always the dominating factor in performance. All of this demonstrates that the
query processing of the third step in our algorithm is very lightweight, and the process
in the second step (namely tuple hash-partitioning, local hash table building for high
skew tuples and data transfers) has a high impact on the join performance.

6 Conclusions

In this paper, we have introduced a new algorithm, redistribution and efficient query
with counters, for robustly and efficiently computing large-large table outer joins on
distributed architectures. We have presented a detailed implementation of our approach
and the experimental results demonstrate that our implementation is robust, efficient and
scalable. Furthermore, compared to state-of-the-art techniques [4, 15], our algorithm
always performs better with less network communication under skew conditions.

Data duplication is widely used in data engineering to reduce data movement and
load imbalance. As our algorithm is duplication-free, we anticipate that our proposed
method will not only be a supplement to existing schemes on parallel joins to minimize
runtime but also for other domains. We intend to apply our approach in the semantic
web domain, where workloads present very high skew [8].

Acknowledgments. This work is supported by the Irish Research Council and IBM
Research Ireland.

References

1. Galindo-Legaria, C., Rosenthal, A.: Outerjoin simplification and reordering for query opti-
mization. ACM Transactions on Database Systems (TODS) 22(1), 43–74 (1997)

2. Rao, J., Pirahesh, H., Zuzarte, C.: Canonical abstraction for outerjoin optimization. In: Pro-
ceedings of the 2004 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2004, pp. 671–682. ACM (2004)

3. Bhargava, G., Goel, P., Iyer, B.: Hypergraph based reorderings of outer join queries with
complex predicates. ACM SIGMOD Record 24(2), 304–315 (1995)

4. Xu, Y., Kostamaa, P.: A new algorithm for small-large table outer joins in parallel DBMS.
In: Proceedings of the 26th IEEE International Conference on Data Engineering, ICDE 2010,
pp. 1018–1024 (2010)

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 269

5. De Witt, D., Gray, J.: Parallel database systems: The future of high performance database
systems. Commun. ACM 35(6), 85–98 (1992)

6. DeWitt, D.J., Naughton, J.F., Schneider, D.A., Seshadri, S.: Practical skew handling in par-
allel joins. In: Proceedings of the 18th International Conference on Very Large Data Bases,
VLDB 1992, pp. 27–40 (1992)

7. AI Hajj Hassan, M., Bamha, M.: An efficient parallel algorithm for evaluating join queries
on heterogeneous distributed systems. In: Proceedings of The 16th annual IEEE International
Conference on High Performance Computing, HiPC 2009, pp. 350–358 (2009)

8. Kotoulas, S., Oren, E., van Harmelen, F.: Mind the data skew: distributed inferencing by
speeddating in elastic regions. In: Proceedings of the 19th International Conference on World
Wide Web, WWW 2010, pp. 531–540. ACM (2010)

9. Kim, C., Kaldewey, T., Lee, V.W., Sedlar, E., Nguyen, A.D., Satish, N., Chhugani, J., Di
Blas, A., Dubey, P.: Sort vs. hash revisited: Fast join implementation on modern multi-core
CPUS. Proc. VLDB Endow. 2(2), 1378–1389 (2009)

10. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join algorithms
for multi-core CPUS. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2011, pp. 37–48. ACM (2011)

11. Balkesen, C., Teubner, J., Öszu, G.A., Main-memory, M.T.: Hash joins on multi-core CPUs:
Tuning to the underlying hardware. In: Proceedings of the 29th International Conference on
Data Engineering, ICDE 2013, pp. 362–373 (2013)

12. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q., Sander, P.: Relational joins on
graphics processors. In: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, pp. 511–524. ACM (2008)

13. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32(4), 422–469 (2000)

14. Zhang, X., Kurc, T., Pan, T., Catalyurek, U., Narayanan, S., Wyckoff, P., Saltz, J.: Strategies
for using additional resources in parallel hash-based join algorithms. In: Proceedings of the
13th IEEE International Symposium on High Performance Distributed Computing, HPDC
2004, pp. 4–13 (2004)

15. Xu, Y., Kostamaa, P., Zhou, X., Chen, L.: Handling data skew in parallel joins in shared-
nothing systems. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2008, pp. 1043–1052. ACM (2008)

16. Cheng, L., Kotoulas, S., Ward, T., Theodoropoulos, G.: Efficient handling skew in outer joins
on distributed systems. In: Proceedings of the 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid 2014, pp. 295–304 (2014)

17. Hill, G., Ross, A.: Reducing outer joins. The VLDB Journal 18(3), 599–610 (2009)
18. Larson, P.Å., Zhou, J.: View matching for outer-join views. The VLDB Journal 16(1), 29–53

(2007)
19. Koloniari, G., Pitoura, E.: Peer-to-peer management of XML data: Issues and research chal-

lenges. ACM Sigmod Record 34(2), 6–17 (2005)
20. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A comparison of join

algorithms for log processing in MapReduce. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, pp. 975–986. ACM (2010)

21. Cheng, L., Kotoulas, S., Ward, T., Theodoropoulos, G.: QbDJ: A novel framework for
handling skew in parallel join processing on distributed memory. In: Proceedings of the
15th IEEE International Conference on High Performance Computing and Communications,
HPCC 2013, pp. 1519–1527 (2013)

22. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun,
C., Sarkar, V.: X10: An object-oriented approach to non-uniform cluster computing. In: Pro-
ceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2005, pp. 519–538. ACM (2005)

Top-k Item Identification
on Dynamic and Distributed Datasets

Alessio Guerrieri, Alberto Montresor, and Yannis Velegrakis

University of Trento, via Sommarive 5, Trento, Italy

Abstract. The problem of identifying the most frequent items across
multiple datasets has received considerable attention over the last few
years. When storage is a scarce resource, the topic is already a challenge;
yet, its complexity may be further exacerbated not only by the many in-
dependent data sources, but also by the dynamism of the data, i.e., the
fact that new items may appear and old ones disappear at any time. In
this work, we provide a novel approach to the problem by using an exist-
ing gossip-based algorithm for identifying the k most frequent items over
a distributed collection of datasets, in ways that deal with the dynamic
nature of the data. The algorithm has been thoroughly analyzed through
trace-based simulations and compared to state-of-the-art decentralized
solutions, showing better precision at reduced communication overhead.

1 Introduction

One of the classical problems in computer science is the development of efficient
algorithms to compute statistical functions over a dataset. Among these, identi-
fying the most frequent items has attracted considerable attention over the last
years. In particular, two challenging scenarios have been considered: very large
but static datasets [12] and continuous streams of data [15].

Recent advances in information and communication technology have dramati-
cally changed the computational landscape in which these problems are applied:
useful information is now often found across many physically distributed and
independent sources. For retrieving the most frequent items, one needs to collect
and integrate information from multiple, dynamic datasets, posing challenges on
the computation of a global function over the data located at distant nodes.

Computing the most frequent items over a collection of dynamically changing
and independent data sets is part of the problem of continuous distributed mon-
itoring [9]. This problem finds application in many different scenarios, such as
computing the popularity of topics in social services like Twitter and Facebook,
discovering global security attacks in communication networks, or identifying
popular web pages for ranking search results.

The straightforward solution to this problem is to send all the information
to a central node, which can in turn compute the statistics. As this approach
is impractical for very large and dynamic datasets, a number of variations to
this idea have been proposed aiming to reduce both the traffic and the load on

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 270–281, 2014.
c© Springer International Publishing Switzerland 2014

Top-k Item Identification on Dynamic and Distributed Datasets 271

the central node. One approach is to perform periodic polling or more sophisti-
cated random sampling [20] instead of continuous monitoring. Since the interest
is only on the k most popular elements, one can send information only when the
local set of top-k items changes, or when there is a number of changes above
a threshold [11]. An intermediate solution tries to predict the interesting items
and communicate them to the central node, using either knowledge of the data
distribution [5], entropy statistics [3] or sketches as a form of a compact data rep-
resentation [10]. This centralized approach can be applied when this information
must be gathered in a single location to use it as a reference when needed.

However, using a central node may not be preferable in all applications. Indi-
vidual sources may not be willing to send all their information to a central node
and allow it to acquire a global view of the entire system that goes well beyond
the original goal – identifying the most frequent items. If the number of sources
is really large, the central node may become a serious bottleneck, not only in
terms of communication but also in terms of computation. Finally, in a highly
distributed environment, individual sources may need to have always available
the information that the central node has computed and use it for their own
purposes.

We advocate here a completely decentralized approach for computing the top-
k most frequent items in a large collection of independent dynamically changing
datasets, based on the idea of gossip-based protocols for information propaga-
tion [13]. Intuitively, each source has an estimate of what are the most frequent
items globally. Initially, the only information a source has is the set of local
frequencies. Periodically, each source performs a random gossip exchange with
another source, sending and receiving their current estimates. Both sources then
update their estimates using the old local estimate and the estimate received
from the other source. This process is repeated until the estimates converge to
the actual top-k items.

This idea has been recently applied to the identification of top-k items [19] in
a collection of static datasets. The algorithm in [19] is shown to be very efficient,
converging to the correct top-k items in a logarithmic time with respect to
the size of the network. In this work we push this technique even further, by
considering dynamic datasets where new items may be added – while existing
items may be removed – at any time.

The contributions of this work are the following: (i) we formally define the
problem of computing the top-k most frequent items in a distributed, dynamic
environment (Section 2); (ii) we extend the algorithm presented in [19] by con-
sidering the case in which the collection of data is not fixed but varies over
time (Section 3); (iii) we prove that our novel algorithm converges with very
high probability despite the modifications to the original one (Section 4); (iv)
we experimentally test our solution on trace-driven datasets, showing that, even
without a central node, our approach manages to achieve a very good precision
at the expense of a communication overhead which is shared among all sources
(Section 5). We conclude the paper by analyzing related work (Section 6) and
summarizing our results (Section 7).

272 A. Guerrieri, A. Montresor, and Y. Velegrakis

2 Problem Statement

We consider a finite collection P of networked nodes. Each node can communi-
cate – if it chooses to do so – with any other node in P , provided they know
its identifier; process identifiers may be obtained either through a static list, or
through a peer sampling service [14]. We consider a universe I of items, a time
domain T and a function F : P × I × T → N, referred to as the local frequency
of an item i ∈ I in a node p ∈ P at a time t ∈ T , and denoted as F t

p(i) for
brevity. Intuitively, the function represents the number of times an item has been
observed in a node until a specific moment.

We define the global frequency of an item i at a time t, denoted as F t(i), to
be the cumulative frequency in all the nodes, i.e.,

F t(i) =
∑
p∈P

F t
p(i)

We are interested in finding the k most frequent items across the whole node
network. Let itk denote the k-th item in the sequence of all the items in the node
network sorted in decreasing order of global frequency at the time t. The set we
are interested in is the set MF t ⊆ I of the items with global frequency more
than or equal to F t(itk), i.e.,

MF t = {i | i ∈ I ∧ F t(i) ≥ F t(itk)}

Note that the cardinality of MF t may be larger than k since there may be
several items with the same global frequency as itk.

We consider two different cases of the problem. In the first we assume that
the frequency of the items can only increase in time. This finds application in
scenarios where one is interested in the number of times the items have appeared
in the nodes since the beginning of the operation of the system. We refer to this
case as the streaming scenario. In the second case, we are interested in counting
the appearances of items within a recent time window. This applies in scenarios
where one needs to ignore appearances of items that have occurred long time
ago and take into consideration only the recent appearances. This means that
the function F for an item may increase or decrease in time. We refer to this
case as the sliding window scenario.

3 Gossip-Based top-k Discovery

Since we assume no centralized authority or node with global knowledge, we
would like every node of the network to be able to provide an answer to the top-
k problem. Each node will estimate the average global frequency, i.e. the global
frequency of an item divided by the network size; given that the network size is
constant, this estimate can be used instead of global frequency to compute the
top-k set.

We adopt a solution that is based on a gossip-based aggregation protocol [13],
where the local knowledge of a node is expanded with knowledge collected from

Top-k Item Identification on Dynamic and Distributed Datasets 273

Algorithm 1: Gossip algorithm executed by node p

Data: Nodes P ,int k, int sleep, int s, int Δround

Map estp ← ∅
Set old ← ∅
int rounds ← 0

function main()
repeat every Δround time units

rounds ← rounds + 1
if extractTop(estp, k) �= old then

rounds ← 0
old ← extractTop(estp, k)

if rounds ≤ sleep then
Node q ← random(P)
send 〈request, extractTop(estp, s)〉 to q

upon receive 〈request,Map estq〉 from q do
Map Δ ← ∅
foreach i ∈ estq do

Δ[i] ← 1
2
(estp[i]− estq[i])

estp[i] ← estp[i]−Δ[i]

send 〈reply,Δ〉 to q

upon receive 〈reply,Map Δ〉 do
foreach i ∈ Δ do

estp[i] ← estp[i] +Δ[i]

function modifyLocalFrequency(Item i, int δFp(i))
estp[i] ← estp[i] + δFp(i)

function updateWindow(list activeItems)
cutoff ← currentTime − windowSize
while activeItems .head().timestamp < cutoff do

modifyLocalFrequency(activeItems .head().id,−1)
activeItems .removeHead()

other nodes in the network. The nodes try to estimate the average global fre-
quency of each item by updating any local estimate they may have to reflect
also the estimates of the other nodes. If this is repeated continuously in a gossip
fashion, then the information about the frequency of the most frequent items is
epidemically propagated to all the nodes in the system. Previous work [19] has
shown that not only this approach makes the frequencies of the various items
in the individual nodes to converge to the true average global frequencies of the
respective items, but also that they do so at an exponential rate [13].

The results of previous works [13,19] are based on the assumption that the
local frequencies are not changing, i.e., that the input remain static while the

274 A. Guerrieri, A. Montresor, and Y. Velegrakis

gossip algorithm is applied. We are interested in the case in which the local fre-
quencies of the items are continuously changing, making the global frequencies
continuously increase (in the case of the streaming scenario) or continuously fluc-
tuate (in the case of the sliding window scenario). Our gossip-based algorithm
is an extension of the one for the static case [19]. It propagates the changes that
occur in a distributed fashion all over the network, using the parallel partici-
pation of the nodes to obtain a very good approximation of the average global
frequencies.

The algorithm is shown in Algorithm 1. Each node p maintains a map struc-
ture estp : I → R that represents p’s estimate for the average global frequency
of each item i, i.e., an estimate for the value F t(i)/|P|. Since |P| is constant,
the top-k items in the map structure should coincide with the top-k among the
estimated global frequencies. The node does not need to keep the local frequen-
cies of the items in a different structure from the estimates. Whenever there is
a change in the local frequency of an item, it is enough to record it in estp by
changing the estimate for the respective item accordingly. This is implemented
by calling the function modifyLocalFrequency and providing to it the item and
the change in its local frequency. Furthermore, we consider a function extractTop
that given a map structure M and a number s, returns a new map structure
with only the entries of M with a frequency in the top s values.

Each node p works in periodic rounds, during which it may initiate a gossip
exchange with a random node q. A gossip exchange consists of a request mes-
sage sent from p to q, followed by a reply message sent by q to p. In the request
message, the node p includes the s ≥ k items from estp with the s highest fre-
quencies, alongside their estimated frequencies. Sending more than k items in
the request results in faster convergence; this is a trade-off, however, as higher
values of s result in larger communication costs.

When the request is received by node q, q updates its own estimates by sub-
tracting Δ[i] = 1

2 (estq[i]− estp[i]) from the estimate estq[i] of every item i that
the received message contained. It then responds to the request by sending a
reply message to p containing a map with the value Δ[i] of every item i whose
estimate frequency was modified. Upon receipt of the response from q, for every
item i for which the value Δ[i] is contained in the response message, the value
estp is updated to the value estp +Δ[i]. As a result, when the gossip exchange
between the two nodes is completed, both nodes will have their estimates for the
top-k items of p, updated to the average of the values that these two nodes had
before the gossip.

estq[i] ← estq[i]−Δ[i] =
1

2
(estq[i] + estp[i])

estp[i] ← estp[i] +Δ[i] =
1

2
(estq[i] + estp[i])

In other words, a gossip exchange between any two nodes p and q substitutes
the old values estp[i] and estq[i] with their average 1

2 (estq[i] + estp[i]).
Since it is possible that the global top-k items remain unchanged for

potentially long periods, our algorithm communicates only when nodes observe

Top-k Item Identification on Dynamic and Distributed Datasets 275

variations in their current top-k lists, thus using fewer messages and bandwidth.
We allow our nodes to be in one of two different states: active or dormant. Ac-
tive nodes periodically initiate gossip exchanges with other nodes. Dormants only
participate in exchanges initiated by other nodes. An active node becomes dor-
mant when the last sleep number of exchanges have not changed its set of top-k
items. A dormant node becomes active again whenever a variation in the set of
top-k items occurs, either because of information received from other nodes, or
because of variations in the local frequencies. The above approach ensures that
the number of exchanges is reduced whenever there are no important changes,
but can automatically and rapidly increase when needed.

For the case of a sliding window scenario each node keeps in a list the sequence
of items it has received. When the topmost item in the list is out of the window,
it is removed from the queue and its frequency in the local frequency table is
decreased by 1. The sum of the local frequencies for that item is thus kept equal
to the number of its active instances in the network. If this approach requires
too much memory, we can divide the window into smaller time chunks and keep,
for each of these chunks, the frequencies of all items the node has received in
that time chunk. The window will not move continuously, but in chunk-steps:
each time a chunk has become obsolete all its contents will be thrown away.
In our experiments we assume that each node has enough memory to store the
sequence of items it has received during the window and will update the local
frequency table every time an item has become obsolete.

4 Protocol Convergence Analysis

Previous work [19] has computed a probabilistic upper bound on the number of
rounds in the static case, showing that the convergence time grows logarithmi-
cally with the network size. If we assume that the local frequencies of the items
do not change, then our problem is reduced to the case of [19].

In our case, the presence of the sleep parameter plays an important role. When
the top-k of a node has not changed for sleep consecutive rounds, it will become

 0

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

(lo
gs

ca
le

)

Size of minority cluster

sleep=2
sleep=3
sleep=4
sleep=5

Fig. 1. Probability of convergence to a
wrong answer, with different values of sleep
(n = 1000).

dormant and will stop initiating ex-
changes until either it meets a node
with a different top-k set, or its local
top-k changes because of the arrival
of new local data. The introduction of
the sleep parameter creates the possi-
bility, however low, that part of the
network might converge to a wrong
answer.

To study the probability of such
a situation, we devised the following
scenario. Let C be the set of nodes
containing a wrong top-k; further-
more, consider the case where all top-
k sets maintained by nodes in C are

276 A. Guerrieri, A. Montresor, and Y. Velegrakis

equal. Let n = |P| and c = |C|. If, for sleep rounds of the protocol, nodes only
contact nodes of their kind (nodes in nodes in C only contact those in C, and
those in P − C only contact those in P − C), the entire network might become
dormant before a common answer is reached. The probability of this event to
occur in a complete graph is the following:(

c− 1

n− 1

)c·sleep
·
(
n− c− 1

n− 1

)(n−c)·sleep

As shown in Figure 1, the probability of the network becoming dormant while
a group of nodes still contain a wrong answer get exponentially small with the size
of the disagreeing group. Since nodes are also prone to exit from their dormant
state whenever the arrival of new data changes the composition of the local top-
k, we can conclude that the network will converge to the correct top-k with very
high probability.

5 Results

We performed extensive simulations of our algorithm using PeerSim [18], a peer-
to-peer simulator written in Java. If not stated otherwise, each experiment is
repeated 20 times.

Our objective is to design a protocol that identifies the items in MF t as accu-
rately as possible. Unfortunately, it is impossible to guarantee that the output
of our protocol corresponds exactly to MF t at each time t, because of the delay
occurring between the arrival of an item and the discovery of this fact by all
nodes in the network. We will therefore measure the quality of a proposed pro-
tocol by checking for each node in the network, at each time t, the number of
items that appear both in its output and in MF t. We then compute the average
across the entire network and, when needed, average across all time instants to
get the average precision of the network across the entire experiment.

Evaluation Framework. We tested the algorithm on two different scenarios.
The wcup dataset contains timestamped URL requests to the 1998 World Cup
servers across 90 days, covering a timeframe starting from a month before the
first match to a few days after the final [4]. The last.fm dataset records the
playing history of users across an entire year on the Last.fm website, a music
discovery service that provides personalized recommendations based on the lis-
tening habits [1]. Our protocol computes the top-k most accessed pages in wcup
and the top-k most listened artists in last.fm. Each single data item is deliv-
ered to a node chosen uniformly at random. Different policies have been studied,
without any impact on the quality of the solution.

The distributions of the frequencies of our chosen datasets follow a power
law, the few top ranked items having very large frequency while all the many
lower ranked items have very small frequency. This property guarantees a certain
degree of separation between the top-k items and all the lesser frequent items.

Table 1 contains all the default parameters for the experiments listed in the
current section. In our experiments, the d nodes that form the neighbor set of

Top-k Item Identification on Dynamic and Distributed Datasets 277

each node are chosen uniformly at random, property that could be achieved by
using a peer sampling protocol. The amount of data items s sent per round is
set to 2k. Such value has been experimentally validated in a previous paper [19]
as a good compromise between convergence speed and bandwidth. Larger values
for s do not induce a very large improvement in convergence speed (and thus
precision), but have a much steeper cost in terms of message size.

Table 1. Default values of our parameters, where not explicitly stated otherwise

N number of nodes in the network 100
d degree of nodes in the network 20
k number of most frequent items 40
s amount of data items per round per node 2k

Δround length of each round 1 hour
sleep sleeping factor 5
W size of the sliding window 1 day

Streaming Results. We first analyze how does our algorithm behave in the
streaming model, when it has to compute the top-k over all the items that have
arrived since the start of the experiment. To measure precision, in each instant
t we compare the top-k of each node in that instant against the global top-k
computed using all data delivered from instant 0 to instant t.

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

 100 200 300 400 500 600 700 800 900 1000

P
re

ci
si

on
 (

%
)

Network Size

World Cup
Last.fm

Fig. 2. Algorithm precision using variable
network size

In Figure 2 we show the precision of
our algorithm against the size of the
network, using a round length of one
hour. The larger the system, the more
time is needed for information to reach
all nodes; consequently, a slightly lower
precision is obtained. Still, since an in-
crease from 100 to 1000 nodes causes a
decrease in just 0.5% in precision, the
algorithm remains highly scalable.

The sleep parameter is very influ-
ential in decreasing both the amount
of messages and the workload of each
node. Figure 3a shows that a small
value for sleep can decrease the amount of messages sent by a huge margin across
the entire experiment. Figure 3b instead shows that the highest the value for
sleep, the slower the nodes will become dormant. If sleep is too low, the nodes
will quickly become dormant and the algorithm will be slower to react to changes
to the global top-k. By choosing the value for this parameter it is possible to
achieve the desired trade-off between precision and bandwidth.

Sliding Window Results This second group of experiments illustrate the per-
formance and behavior of our approach in a sliding window scenario, when each

278 A. Guerrieri, A. Montresor, and Y. Velegrakis

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

M
es

sa
ge

s
se

nt
 p

er
 r

ou
nd

Sleep parameter

WorldCup
Last.fm

(a) Average number of messages sent on
average by a single node per round against
sleep

 97

 97.5

 98

 98.5

 99

 99.5

 100

 100.5

 101

 0 5 10 15 20

P
re

ci
si

on
 (

%
)

Sleep parameter

WorldCup
Last.fm

(b) Average precision across the entire ex-
periment against sleep

Fig. 3. Analysis of the sleep parameter in the two datasets

occurrence of a data item is deleted after W rounds have passed. We assume that
each node has enough memory to store all the local items that are still within
the time window and updates the local frequency table whenever one local item
expires.

Figure 4 shows how the algorithm behaves with a sliding window 1-day long.
By decreasing the round length of the protocol we can achieve almost perfect
precision while using low bandwidth. Since each node will send around 1KB of
data during each round, even with a round length of one minute the amount of
bandwidth used is extremely small.

Real World Scenario. Since the wcup dataset also contains the identification
number of the server that served each page request, we can test our algorithm
in a real world scenario by simulating the network of 20 servers that managed
the web site during the 1998 World Cup. Figure 5 shows the precision of our
algorithm when replicating the exact same setting, with a window length of 1
day and k equal to 40. Again, with a small round length the algorithm achieves
almost perfect precision.

Comparison. To our knowledge, there are no other decentralized top-k algo-
rithm that work on sliding windows. We therefore compare our approach with
another decentralized top-k algorithm in the basic, streaming scenario.

In Figure 6 we compare our approach with the gossip-based decentralized
sampling approach in [16]. Since both approaches use gossip, it is possible to di-
rectly compare their performance by using the same round length and measuring
the amount of bandwidth used. Figure 6 shows that our approach obtains better
results using only a very small fraction of the bandwidth. When compared on
the last.fm dataset, the larger difference is caused by the larger dataset.

Top-k Item Identification on Dynamic and Distributed Datasets 279

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70

P
re

ci
si

on
 (

%
)

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350

P
re

ci
si

on
 (

%
)

Time (d)

Round = 1m
Round = 10m

Round = 1h

Fig. 4. Precision across time, using differ-
ent window sizes (wcup on top, last.fm
on the bottom)

 90
 92
 94
 96
 98

 100

P
re

ci
si

on
 (

%
)

Round = 1m

 90
 92
 94
 96
 98

 100

P
re

ci
si

on
 (

%
)

Round = 10m

 90
 92
 94
 96
 98

 100

 0 10 20 30 40 50 60 70 80

P
re

ci
si

on
 (

%
)

Time (d)

Round = 1h

Fig. 5. Precision in the realistic wcup
scenario with k = 40, using different
round lengths

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 (

%
)

Time (d)

Our approach
 1x bandwidth

 10x bandwidth
100x bandwidth

(a) wcup dataset

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

P
re

ci
si

on
 (

%
)

Time (d)

Our approach
 10x bandwidth

100x bandwidth
1000x bandwidth

(b) last.fm dataset

Fig. 6. Comparison of our algorithm with the gossiping sampling approach

6 Related Work

Finding the most frequent items is a classic problem with applications in many
different fields. According to the specific application and the properties of the
dataset, wildly different requirements need to be satisfied. In the most basic
case, where the dataset is stored in a single machine and the amount of memory
available is enough to store the frequencies of each item, the problem becomes
quite trivial. If the amount of memory is not large enough, the problem moves
into the streaming scenario. Theoretical work [2] proved that it is possible to
estimate items frequency to a constant factor in logarithmic space. The most
common approach is to define compressed data structures to store the approxi-
mated frequency of the interesting items, the items that may be part of the top-k
set. Among the many synopsis in the literature [12], the “count sketch” data
structure [7] allows a single pass algorithm that is able to compute an arbitrarily
close approximation of the top-k in logarithmic space. Other algorithms [8] can
also work in a sliding window scenario, by keeping track of both frequent items

280 A. Guerrieri, A. Montresor, and Y. Velegrakis

and items that might become frequent in the future, with different degrees of
precision. These algorithm cannot be directly applied when the dataset itself is
distributed across different machines.

A common approach to solve our problem is to have a number of slave nodes
that analyze their data and a master node that collects the partial findings and
computes the final solution. The main drawbacks of this approach are clear: the
system has a single point of failure and may cause an excessive amount of com-
putation on the master node. Cao and Wang’s algorithm [6] is an example of this
type of solutions. Each slave computes its own top-k, all of which are collected
by the master node to compute a lower bound on the frequency of the k-most
frequent item. This information is given to the slaves, that recompute their solu-
tion to include only those items that have local frequencies above the threshold.
Babcock and Olston’s approach [5] instead computes a starting approximation
of the top-k set in each slave node and in the master node. The temporary solu-
tion is then sent back to each slave, that starts analyzing the entirety of its data
as it arrives. When a slave sees that its own solution is “different enough” from
the global solution, it sends an update to the master node. It will be the master
node’s job to then notify all slave nodes if the global solution has changed.

One possible approach to avoid putting too much stress on the master node
is using an hierarchical structure. There is still a root node that computes the
final solution, but the costs of aggregation of temporary solution are spread
between all the inner nodes of the topology. The construction and maintenance
of the topology creates additional overhead on the system. Manjhi presents an
interesting algorithm [17] based on compressed synopsis. This data structure
offers an approximation of the frequencies of a datasets. Synopsises can be joined
together at the different level of the hierarchical topology to obtain in the root
node an estimate of the top-k set. This simple approach is then enhanced by the
idea of a precision gradient. The level of compression of the synopsis is not kept
constant in the system, but is adapted at each different level of the topology to
minimize the communication costs.

A completely decentralized algorithm is inherently more robust and should
guarantee better subdivision of work between the nodes. Lahiri and Tirtha-
pura [16] presented a gossip algorithm based on uniform random sampling. The
intuition behind this algorithm is that the top-k of a dataset should be similar
to a large enough random sampling of the dataset. The algorithm thus computes
a random sampling of all the data in the distributed system via repeated aggre-
gation. Since the entire sample must be sent around, the amount of data sent is
much bigger than in our algorithm.

7 Conclusions

In this work we have extended an existing approach to find the k most frequent
items across a distributed collection of datasets, without relying on a central node
that collects global knowledge about the data. The method we discussed is based
on a gossip protocol that allows local information in a node to be epidemically

Top-k Item Identification on Dynamic and Distributed Datasets 281

propagated to other sources. The algorithm presented has special features to
deal with continuously changing data. Trace driven experiments illustrate that
despite the dynamic changes in the global frequencies, the system is able to react
quickly and provide a good approximation from any node of the network.

References

1. Last.fm, http://www.lastfm.com
2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the

frequency moments. In: Proc. of STOC 1996, pp. 20–29. ACM (1996)
3. Arackaparambil, C., Brody, J., Chakrabarti, A.: Functional monitoring without

monotonicity. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 95–106. Springer,
Heidelberg (2009)

4. Arlitt, M., Jin, T.: 1998 World Cup web site access logs (August 1998),
http://www.acm.org/sigcomm/ITA/

5. Babcock, B., Olston, C.: Distributed top-k monitoring. In: Proc. of SIGMOD 2003,
pp. 28–39 (2003)

6. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In:
Proc. of PODC 2004, pp. 206–215. ACM (2004)

7. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theoretical Computer Science 312(1), 3–15 (2004)

8. Chi, Y., Wang, H., Yu, P., Muntz, R.: Moment: Maintaining closed frequent item-
sets over a stream sliding window. In: Proc. of ICDM 2004. IEEE (2004)

9. Cormode, G.: Continuous distributed monitoring: A short survey. In: Proc. of
AlMoDEP 2011, pp. 1–10. ACM (2011)

10. Cormode, G., Garofalakis, M.N.: Sketching probabilistic data streams. In: Proc. of
SIGMOD 2007, pp. 281–292 (2007)

11. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional
monitoring. ACM Transactions on Algorithms 7(2), 21 (2011)

12. Gibbons, P.B., Matias, Y.: Synopsis data structures for massive data sets. In:
External Memory Algorithms, pp. 39–70. American Mathematical Society (1999)

13. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dy-
namic networks. ACM TOCS 23(3), 219–252 (2005)

14. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-
based peer sampling. ACM TOCS 25(3) (August 2007)

15. Karp, R., Shenker, S., Papadimitriou, C.: A simple algorithm for finding frequent
elements in streams and bags. ACM Trans. Database Syst. 28(1), 51–55 (2003)

16. Lahiri, B., Tirthapura, S.: Identifying frequent items in a network using gossip. J.
Parallel Distrib. Computing 70(12), 1241–1253 (2010)

17. Manjhi, A., Shkapenyuk, V., Dhamdhere, K., Olston, C.: Finding (recently) fre-
quent items in distributed data streams. In: Proc. of ICDE 2005. IEEE (2005)

18. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: Proc. of P2P
2009, pp. 99–100 (September 2009)

19. Sacha, J., Montresor, A.: Identifying frequent items in distributed data sets. Com-
puting 95(4), 289–307 (2013)

20. Tirthapura, S., Woodruff, D.P.: Optimal random sampling from distributed
streams revisited. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 283–297.
Springer, Heidelberg (2011)

http://www.lastfm.com
http://www.acm.org/sigcomm/ITA/

Applying Selectively Parallel I/O Compression
to Parallel Storage Systems

Rosa Filgueira1, Malcolm Atkinson1, Yusuke Tanimura2, and Isao Kojima2

1 University of Edinburgh, School of Informatics, Edinburgh EH8 9AB, U.K.
{rosa.filgueira,mpa}@ed.ac.uk

2 Information Technology Research Institute, AIST, Tsukuba, Japan
{yusuke.tanimura,isao.kojima}@aist.go.jp

Abstract. This paper presents a new I/O technique called Selectively Parallel
I/O Compression (SPIOC) for providing high-speed storage and access to data
in QoS enabled parallel storage systems. SPIOC reduces the time of I/O opera-
tions by applying transparent compression between the computing and the stor-
age systems. SPIOC can predict whether to compress or not at runtime, allowing
parallel or sequential compression techniques, guaranteeing QoS and allowing
partial and full reading by decompressing the minimum part of the file. SPIOC
maximises the measured efficiency of data movement by applying run-time cus-
tomising compression before storing data in the Papio storage system.

Keywords: Parallel File System, Data Intensive Computing, Compression algo-
rithms, Adaptive systems.

1 Introduction

Large scale Data-Intensive Computing plays an important role in many scientific ac-
tivities and commercial applications, whether it involves data mining of commercial
transactions, experimental data analysis and visualization, or intensive simulation such
as climate modelling. The challenge [1] is to develop a new framework to support
Data-Intensive Computing that provides persistent storage for large datasets as well
as balanced computing so the data can be analyzed. Parallel file systems (PFSs) such
as Lustre [2], General Parallel File System (GPFS) [3], and Papio [4] are a type of
distributed file system that distributes file data across multiple servers and provides
for concurrent access by multiple tasks of a parallel application. For transferring com-
pletely a large dataset to or from PFS, the data are striped via several I/O streams. This
type of file system, is commonly used in Data-Intensive Computing for obtaining high-
performance I/O. While PFS, can scale in capacity and access bandwidth to support a
large number of clients and petabytes of data, they cannot mask the imbalance between
I/O throughput and compute power, the expensive storage network, and the limitation
of hard disk drive (HDD) throughput. Therefore, the rate at which data can be delivered
from disk to compute engine is a limiting factor, causing the data transfer channel to
become a serious bottleneck.

Our aim is to reduce this bottleneck by decreasing the overall I/O time needed for
transferring completely datasets between the computer and storage system (and vice
versa). To reach our objective, in this paper we present three new compression strate-
gies: Sequential Compression, Parallel Compression and Selectively Parallel I/O Com-
pression (SPIOC), which are located on the client’s side. Each strategy is an improve-
ment over the previous one, and they apply run-time lossless compression (sequential or

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 282–293, 2014.
c© Springer International Publishing Switzerland 2014

Applying Selectively Parallel I/O Compression to Parallel Storage Systems 283

parallel). SPIOC also decides whether to compress or not, and which technique should
be use (sequential or parallel) depending on the features of the client’s machine.

We have chosen Papio as the storage system, because it was designed for large scale
cluster computing. Papio provides QoS guarantees by employing an advanced reser-
vation approach. While Papio executes each I/O operation with the I/O throughput re-
quested by users, our techniques reduce the number of strips needed for completing the
data transfer. Therefore, the combination of Papio and SPIOC allows us to reduce the
time needed for writing and reading files while satisfying the reservation requests from
users.

The remainder of this paper is: Section 2 introduces related work. Section 3 describes
our system for selecting the compression algorithm. Section 4 explains the compression
strategies. Section 5 presents an extensive evaluation. We conclude with a summary and
a discussion of potential future work.

2 Related Work

2.1 The Papio Parallel File System

Papio is a storage system that supports parallel I/O and the performance reservation
functionality [4]. Papio has a client API library, which allows users to reserve I/O per-
formance with desired throughput (e.g. MB/sec), access type (read or write), and access
time (from start to end). Papio allocates storage resources according to these reserva-
tions. When the requested throughput is higher than that provided by a single Storage
Server (SS), multiple SSs are used, increasing the I/O parallelization. An I/O stream
is the channel which the data flow between the client’s application and one SS. There-
fore, the total number of I/O streams (called stripe count) is set to the number of SSs
assigned to the reservation. Furthermore, Papio’s API allows users to cut up a file into
parts for performing the I/O operations (read PAPIO and write PAPIO). Each part is
called a chunk. In each I/O operation, the chunk is striped over all of the I/O streams.
The minimum unit of transfer via an I/O stream in Papio is called a stripe of stripe size
bytes. So, according to the level of I/O parallelization, more stripes can be transferred
in parallel because more I/O streams are used. The total amount of data (stream width)
written or read each time by the I/O streams is stripe size* stripe count.

Figures 1(a), 1(b) show examples of application programs which write a 130MB
file to Papio by using different chunk sizes. In both examples, the user’s I/O through-
put reservation is 300MB/sec. As the requested I/O throughput is higher than a single
SS (100MB/sec), three SSs are assigned to the execution of the applications. In Fig-
ure 1(a), the entire file is written as one chunk, which requires one write PAPIO opera-
tion, and in Figure 1(b), the file is written in several chunks of 10MB, which requires 13
write PAPIO operations. Finally, each write PAPIO operation stripes the chunk (stripe
size is 1MB in the examples), written in parallel via 3 parallel I/O streams. If the re-

quested I/O throughput was 100MB/sec, only 1 SS would be assigned, and the stripes
would be written sequentially. For both examples, stream width is 3MB, and the num-
ber of stripes is 130.

Similar performance is obtained if users use a single or several chunks. Timing mea-
surements by using those methods with the environment explained in Section 6 are
at1. However, we have to be aware that if chunk size is smaller than stream width, Pa-
pio will wait for the next chunk to fill the streams, causing a performance degradation
called stream delay.

1 Supplementary details:
http://effort.is.ed.ac.uk/Compression/WritingMethods.pdf

http://effort.is.ed.ac.uk/Compression/WritingMethods.pdf

284 R. Filgueira et al.

File
(size 130MB)

write(File, chunk_size) e.g. write(File.txt, 130MB)

a) Stripe_size e.g. (1MB)

User application program

Papio Library

Papio storage server

Packing

*write_PAPIO(File_offset, chunk_size)

* Number of write_PAPIO operations = 1

Original File

Stripe

Client

Server

N_OC= 1

requested I/O
throughput=300MB/sec

SS SS SS

100MB/sec I/O 100MB/sec I/O 100MB/sec I/O

(a) Writing a file by using a single chunk to Pa-
pio

File
(size 130MB)

write(File, chunk_size) e.g. write(File.txt, 10MB)

b) Stripe_size e.g. (1MB)

User application program

Papio Library

Papio storage server

Packing

*write_PAPIO(File_offset, chunk_size)

a) chunk_size. e.g. (10MB) N_OC= 13

* Number of write_PAPIO operations = 13

Original File

Stripe

Server

Client

requested I/O
throughput=300MB/sec

SS SS SS

100MB/sec I/O 100MB/sec I/O 100MB/sec I/O

(b) Writing a file by using a several chunks to
Papio

Fig. 1. Methods for writting files to Papio

2.2 Applying Compression to File Systems

The following are examples of how compression can be applied to files before storing
them in the file system, with parallel or sequential strategies, and using different lossless
compression algorithms.

APCFS [5] is a file system which supports fast autonomous compression at high
compression rates by applying multiple compression techniques. It is designed as a vir-
tual layer inserted over an existing file system, compressing and decompressing data
by intercepting kernel calls. FuseCompress [6] provides a mountable Linux filesystem
which transparently compresses its content. FuseCompress supports several compres-
sion algorithms. However, when users want to read partial data by specifying an offset,
FuseCompress will decompress data from the beginning of the file to the specified off-
set.

ZBD [7] is a chunk-layer driver that transparently compresses and decompresses
data as they flow between the file-system and storage devices. ZBD maintains high
performance by leveraging modern multicore CPUs through explicit work scheduling.
In [8], two real-time methods are presented to identify the data that will yield significant
space savings when compressed. The first method estimates the compressibility of the
data. The second method examines data being written to the storage system in an online
manner and determines its compressibility.

All those approaches perform transparent compression to files before storing them,
and some of them have adaptive methods for deciding wether to compress or not. Our
work covers those two aspects, in addition it reduces the I/O time needed for transferring
the data guaranteeing the I/O throughput requested by users. We also apply adaptive
parallel techniques to reduce as much as possible the compression time. Furthermore,
our techniques allow us to perform partial reads decompressing the minimum part of
the file. Finally, the file system where we apply our compression techniques is a parallel
storage system, while others apply their techniques to serial file systems.

3 Selecting the Compression Algorithm

Depending on the datatype and redundancy levels, some algorithms can achieve a higher
compression ratio than others, or may need more time to perform the compression and

Applying Selectively Parallel I/O Compression to Parallel Storage Systems 285

decompression operations. So, an adaptive method that selects the most suitable com-
pression algorithm depending on a users priorities (speed vs compression ratio) and
data features is desirable.

In [9], we implemented a strategy called Runtime Adaptive Strategy (RAS) for ap-
plying compression to the communications among MPI processes, and it has been pro-
ductively by [10]. The decisions taken by RAS relies on two modules: The Network
Behaviour module, which estimates the speedup achieved by sending a message with
and without compression, and the Compression Behaviour Module which has a library
called Compression Library with several compression algorithms and it produces a
heuristics file, which stores the compression algorithm to use depending on the mes-
sage datatype and its redundancy level.

The Compression Behaviour Module allows us to select a compression algorithm
based on two criteria: high compression ratio; high compression and decompression
speed. Our goal is to improve the I/O performance by reducing as much as possible
the transfer time. Overhead introduced by the compression should be as small as pos-
sible. Therefore, we have tuned the Compression Behaviour Module to give us the best
algorithm for each datatype (primitive or derived) based in the second criterion.

The compression strategies presented in this paper are completely different from our
previous work. However, we have decided to use the Compression Behaviour Module
to select the compression algorithm for each file datatype. As well as modifying this
module to work with files instead of MPI messages, in this work we have added two
new lossless data compression algorithms to our Compression Library: LZ4 [11] and
Snappy [12]. So, the new version of the Compression Behaviour module has access to
the following algorithms: RLE, Huffman, LZO, Snappy and LZ4.

In the current work we have performed an exhaustive empirical study with synthetic
and real files to improve the heuristics file, by using the environment described in Ta-
ble 2. We have developed a synthetic file generator to test integers, floats and double
numbers and character string datatypes. The files generated have sized 100KB, 500KB,
900KB, 1MB, 2MB. We have added redundancy to the data as described in [13]: 0%,
25%, 50%, 75% and 100%. On the other hand, real files from different sources, and
with different sizes and datatypes have been selected :

– The UCI Machine Learning repository2: 3D spatial network (float), pop failure
(float), regression tom (integer and float), regression twitter (integer and float), and
ad (integer and float)

– The Canterbury corpus3: E.coli (text), Bible.txt (text), World192.txt (text),
plrabn12.txt (text), pi.txt (text) and kennedy.xls (excell)

– The Text Compression Benchmark4: enwiki8 (text), enwiki9 (text)
– The BISP3D application [14]: Mesh3 (integer), Mesh4 (integer).

The studies show that the shortest compression and decompression times are achieved
by LZ4, Snappy, LZO, RLE, Huffman in ascending order as shown in Table 1.The re-
sults for the synthetic files can be founded at5. Notice that the highest compression
ratios are not always achieved by the faster algorithms. But as the aim this work is to
provide high-speed storage and access to Papio, fast algorithms are preferred over high-
compression algorithms. LZ4 is the fastest algorithm, independent of the datatype, size,

2 http://archive.ics.uci.edu/ml/
3 http://corpus.canterbury.ac.nz/
4 http://mattmahoney.net/dc/text.html
5 Supplementary information:
http://effort.is.ed.ac.uk/Compression/SyntheticResults.htm

http://archive.ics.uci.edu/ml/
http://corpus.canterbury.ac.nz/
http://mattmahoney.net/dc/text.html
http://effort.is.ed.ac.uk/Compression/SyntheticResults.htm

286 R. Filgueira et al.

Table 1. Compression ratio, and compression and decompression times for real files

Compression ratio Time compr. + decompr(sec)
File Size(MB) RLE HUFF LZO Snappy LZ4 RLE HUFF LZO Snappy LZ4

3D spatial 20 1.00 2.14 1.67 1.61 1.65 10.4 54.00 8.45 6.33 5.36
pop failure 0.25 1.17 2.3 1.63 1.65 1.52 12.89 74.69 15.07 11.74 10.00

regression tom 15 1.24 3.51 4.95 4.79 4.70 10.61 35.33 3.70 2.80 2.46
regression twitter 217 1.20 2.99 4.08 4.27 3.81 7.06 36.04 4.18 3.24 3.26

ad 9.8 1 5.2 33.05 16.6 38.65 9.6 24.04 0.98 0.83 0.60
E.coli 4.5 1.01 4 2.03 2.14 1.60 14.72 46.01 9.91 5.97 4.69

Bible.txt 3.9 1.00 1.82 2.02 2.03 1.93 20.01 92.49 7.92 5.33 4.82
World192.txt 2.4 1.02 1.58 1.98 1.99 2.00 10.81 123.02 7.76 5.34 5.05
plrabn12.txt 0.47 1.00 1.74 1.55 1.51 1.49 10.09 125.13 16.43 12.05 10.79

pi.txt 0.97 1.00 2.35 1.22 1.20 1.26 11.53 85.07 14.00 14.02 11.89
kennedy.xls 1 1.00 2.22 2.84 2.42 2.74 11.02 62.21 6.29 5.51 4.88

enwki8 35 1.00 1.56 1.79 1.76 1.97 6.44 75.07 8.25 6.33 6.10
enwiki9 954 1.00 1.54 1.99 1.97 1.75 6.08 76.25 7.55 5.61 5.16
Mesh3 14 1.00 2.40 7.81 7.61 6.50 8.18 49.01 4.98 3.74 3.29
Mesh4 26 1.00 2.26 2.48 2.55 2.05 8.18 42.81 5.42 5.64 3.59

or redundancy level, so we have updated the heuristics file used by the Compression
Behaviour Module by selecting this algorithm for all datatypes and redundancy levels.
However, in future works this selection can be different if the selection criteria change,
or if a new algorithm is introduced which satisfies our requirements, for some or all
datatypes and redundancy levels.

4 Adding Compression to Papio

4.1 Sequential Compression Strategy

The first of three strategies proposed in this work is Sequential Compression, which
aims to reduce the total time needed for writing a file into Papio Storage Server, guar-
anteeing the I/O speed specified by the user. To reach this aim, this strategy divides the
file into several chunks and compresses them before writing to the storage system be-
cause if a user selects a part of file to read, only the chunks which belong to the selection
will be decompressed. Otherwise, the whole file must be decompressed.

This strategy applies an algorithm which returns the compression parameters: the
number of chunks to be compressed (N CC), the size of the chunks to compress (com-
pression chunk size), the compression ratio (compression ratio), and the compression
algorithm to use (algo) according to the heuristics file.

Firstly, the algorithm checks the compression heuristic file to determine the compres-
sion algorithm to use. Then, a compressibility study is performed to get the compression
ratio. Today there is not established method for estimating compression ratio rather than
just compressing. In [15], we find an analytically proof which affirms that accurately
estimate the compression cannot be performed unless reading practically all the data.
But this, will take too long. So, this algorithm selects three slices located randomly
from the middle until the end of the file and it studies their compressibility. The size of
each slice is 5% of the chunk size. Later, the algorithm calculates the compression ratio
getting an average of the compressed size of those slices. Finally, in order to avoid writ-
ing to Papio in very small chunks6, the algorithm ensures that each compressed chunk
is approximately the same size as the chunk size specified by the user. So, knowing

6 We want to prevent that the compressed chunks are not smaller than stream width to avoid the
stream delay problem.

Applying Selectively Parallel I/O Compression to Parallel Storage Systems 287

SS SS SS

File
(size 130 MB)

write(File, chunk_size) e.g. write(File.txt, 10MB)

c) Stripe_size
e.g. (1MB)

User application program

Papio Library

Papio storage server

a)
Compression
chunk_size
e.g. (18MB)

b) Compressed
chunk_size ~
chunk_size.
e.g. (9.8MB)

*write_PAPIO(compressed_chunk, compressed_chunk_size)
Packing

* Number of write_PAPIO operations = 8

Original File

Stripe
Compressed chunk

Client

Server

N_CC= 8

100MB/sec I/O

requested I/O
throughput=300MB/sec

100MB/sec I/O 100MB/sec I/O

(a) Sequential compression strategy

write(File, chunk_size) e.g. write(File.txt, 10MB)

d) Stripe_size
e.g. (1MB)

User application program

Papio Library

Papio storage server

Th1 Th2 Th3 Th4 Th5 Th1 Th2 Th3

master thread

a) Compression
chunk_size
e.g. (18MB)

c) Compressed
chunk_size ~
chunk_size.
e.g. (9.8MB)

*write_PAPIO(compressed_chunk compressed_chunk_size)

b) Parallel
Compression by

Num_Threads
e.g. (5 threads)

Packing

File
(size 130MB)

Original File

Stripe

Compressed chunk

Client

Server

* Number of write_PAPIO operations = 8

N_CC= 8

requested I/O
throughput=300MB/sec

SS SS SS

100MB/sec I/O 100MB/sec I/O 100MB/sec I/O

(b) Parallel compression strategy

Fig. 2. Adding compression to Papio write operation

the compression ratio, this algorithm computes the new chunk size to compress (com-
pression chunk size = �chunk size× compression ratio�) and the number of chunks to
compress (N CC= � f ile size/compression chunk size�). Pseudo code of the algorithm
at7. The outcome of this algorithm, is that the number of stripes is reduced.

Figure 2(a) illustrates the Sequential Compression Strategy. The number of chunks
(N OC) has been reduced from 13 uncompressed chunks to 8 compressed chunks. Note
that the chunk size is 10MB in 1(b) and the compression chunk size is 18MB in 2(a).
However, the compressed chunks size is chunk size. In the example, the number of
stripes has been reduced from 130 to 80. However, we need extra memory for allocat-
ing the compressed chunks. The write API of Papio has been modified to implement this
algorithm and to write the compressed chunks calling the compression API of the Com-
pression Library. So, the compression is completely transparent to the user. Finally, this
strategy stores in Papio a mapping file with information needed for decompressing the
file. To achieve an improvement in the I/O write operations with this strategy equation
(1) must hold:

Time write∗N OC
(Time write∗N CC)+(Time comp∗N CC)

> 1 (1)

Where Time write is the time needed for writing a chunk of data in Papio, and
Time comp is the time for compressing a chunk of data.

4.2 Parallel Compression Strategy

This strategy divides the file in chunks to compress in the same way as the previous
one. The main difference, is that Parallel Compression Strategy reduces as much as
possible the compression time, compressing several chunks in parallel. To benefit from
multithreaded compression we should use <= nc threads, where nc is the number of
cores available to the application [16]. Any number of threads higher than the number
of cores could cause performance degradation. There are studies that show, that when a

7 Supplementary details:
http://effort.is.ed.ac.uk/Compression/SequentialCompression.pdf

http://effort.is.ed.ac.uk/Compression/SequentialCompression.pdf

288 R. Filgueira et al.

machine has a large number of cores (>= 24 nc), it is not always true that the number
of threads created should be equal to the number of cores [17], [18]. However, in this
work we have set the nc as the number of cores, because the evaluations have been per-
formed in a machine with few cores (see Table 2). In future work, a more sophisticated
algorithm could be used to obtain the suitable number of threads at run time depending
on the characteristics of the machine.

To get the compression parameters, this strategy uses the outputs given by the algo-
rithm described in Section 4.1. However, this strategy also applies another algorithm
to perform the compression and write operations. Before explaining the algorithm, we
would like to highlight that Papio’s write operation requires that the file’s chunks must
be written in order. Therefore, although the compression can be performed in paral-
lel by several threads, only the master thread can write compressed chunks following
a sequential order. Note that the parallel compression and parallel streams (striping)
in Papio are independent. Therefore, parallel compression would be useful even when
only one SS is used, because the compression speed of each chunk with this strategy is
lower than the SS speed.

The algorithm starts by allocating the memory needed for compressing the chunks.
Next, the algorithm creates as many threads as cores has been detected in the machine.
In case that the number of chunks to be compressed (N CC) is smaller than the num-
ber of cores, the algorithm creates N CC threads. Later, to each thread a chunk (which
size compression chunk size) is assigned to compress. Compressions are performed in
parallel, and each thread writes the compressed data in its allocated buffer. For com-
pressing, each thread calls the compression API of the Compression Library.

In the mean time the master thread waits until the first thread has finished the com-
pression of its chunk, and then writes the compressed chunk to Papio. The information
of the compressed chunk is added to the mapping file. Blocks are compressed in groups
of the number of threads. So, as soon as the first compressed chunk of each group is
written to Papio, a new group of chunks are assigned to threads to be compressed. In
that way, the master thread only waits for the fist compressed chunk, and ideally, the
remaining chunks are going to be compressed by the time the master writes the com-
pressed ones. For pseudo code of the algorithm see at8.

The Figure 2(b) shows an example by applying Parallel Compression Strategy. The
number of chunks to compress is 8 (N CC), as in the previous example. However, the
first 5 chunks are compressed in parallel. In this example, we not only have reduced
the number of stripes from 130 to 80, but also the compression time. To achieve an
improvement in the I/O write operations with this strategy equation (2) has to be hold:

Time write∗N OC
(Time write∗N CC)+(Time comp)+(Time total wait)

> 1 (2a)

Time total wait = Time wait ∗ (N CC/Num T hreads) (2b)

Note that the Time wait could be most of the time zero or near zero. This happens when
the time spent by the threads to compress in parallel a group of chunks (Time comp)
is less than the time spent by the master to write those compressed chunks (Time write∗
Num Threads). Otherwise, Time wait would be the difference between these two times.

4.3 Selectively Parallel IO Compression Strategy

While storage system compression can save disk space, compressing data can adversely
affect, increasing sometimes the I/O time when the compression is applied. So, if writ-
ing a compressed file decreases the write performance, it probably will also decrease

8 Supplementary information:
http://effort.is.ed.ac.uk/Compression/ParallelCompression.pdf

http://effort.is.ed.ac.uk/Compression/ParallelCompression.pdf

Applying Selectively Parallel I/O Compression to Parallel Storage Systems 289

read performance. Therefore, we have designed Selectively Parallel I/O Compression
Strategy (SPIOC) whose decision algorithm only turns compression on when the esti-
mated time of compressing and writing the file is lower than writing the file without
compression. Also, in case the machine is single core, the file will be compressed and
written sequentially. Otherwise, multiple threads can be created for compressing and
writing the file in parallel.

SPIOC decision algorithm uses the algorithm explained in Section 4.1 for obtaining
the compression parameters. Firstly, the algorithm checks the compression ratio. If the
compression ratio is not higher than a predefined threshold (threshold 1, set up as 1.20),
the compression will be turned off, and the file will be written without compression.
Otherwise, the next step is to estimate the time for writing the file with and without
compression, applying the equation (1) in case of single core, an the equation (2) in
case of multi core. Because Papio guarantees the I/O throughput specified by the user,
we already know the time needed for writing a chunk in Papio (time write). On the
other hand we have modified the algorithm explained in Section 4.1 to measure the
time for compressing the slices of file used for checking the compression ratio and to
estimate which is the time needed to compress a chunk of data (Time comp). Only when
the estimated reduction by the decision algorithm is higher than a predefined threshold
(threshold 2, set up as 1.20), the compression is activated, and Sequential Compresion
or Parallel Compression strategy is applied depending on the machine’s features (single
or multi core). Otherwise, the file is written without compression

The values of the thresholds have been set after preliminary studies using the en-
vironment explained in Section 6. Those values could be different depending on the
characteristics of the machine where the applications are executed. Ideally, they should
be adjusted at run time by the decision algorithm. However, this feature is beyond the
scope of this work. As the previous algorithms, this one also has been implemented
by modifying the write API of Papio. Because SPIOC is an improvement over the two
previous strategies, it has been chosen as the strategy to use in Papio. Furthermore,
with this strategy the compression is not always applied, so the information stored in
the mapping file has been modified by adding a new line, to indicate wether the file is
stored compressed.

5 Adding Decompression to Papio

In order to make readings of compressed and non-compressed files stored in Papio
transparent by applying SPIOC, a decompression algorithm has been designed and im-
plemented for the read operations, as shown9. This algorithm performs full and partial
read operations by decompressing the minimum part of the file. This means that if a
user wants to read some portion of a file, the algorithm calculates which compressed
chunks it has to read and decompresses only those ones. Unlike write operations, Papio
allows read operations to be performed without following a specific order. Therefore,
in this case, multiple threads can read and decompress the chunks in parallel.

The algorithm starts by reading the mapping file associated with the file that is going
to be read from Papio. The mapping file states whether the file has been compressed
or not, and information about each compressed chunk written to Papio. Only the com-
pressed chunks that need to be read from Papio are obtained by mapping the parameters
provided by the user.

9 Supplementary information:
http://effort.is.ed.ac.uk/Compression/ReadCompression.pdf

http://effort.is.ed.ac.uk/Compression/ReadCompression.pdf

290 R. Filgueira et al.

Table 2. Machine specifications

Nodes Description
32 Compute nodes Intel Xeon E5540 (2.53GHz, 4 cores) CPU x 2, 48GB memory, Broadcom NetXtreme-II (10 GbE)
8 Storage servers Intel Xeon E3-1230 (3.2GHz, 4 cores) CPU, 8GB memory, Intel X520-DA2 (10 GbE)

1 Management server AMD Opteron 6128 CPU (2GHz, 8 cores), 8GB memory, Intel X520-DA2 (10 GbE)

In case of compression, the next step is to read the selected compressed chunks from
Papio and decompress them in parallel by several threads. For decompressing, each
thread calls our decompression API of the Compression Library. The master thread
waits until all threads finish their operations, and if it is needed, more threads are created
in the following iterations. However, if the file is stored without compression, the file is
read as in the original version of Papio.

6 Evaluation

We have evaluated our three compression strategies by using a High-Performance Clus-
ter described in Table 2. Several files have been used to evaluate our proposal. However,
we only show results for the seven largest files (Table 3) with the most different char-
acteristics, to demonstrate how our strategies adapt to different scenarios. The file sizes
displayed in the Table 3 correspond to originals (uncompressed). Using any of our com-
pression strategies these are reduced to size∗compression ratio

100 .
Figure 3(a) shows a comparative in terms of speed up between Sequential Compres-

sion and Parallel Compression strategies. As previously described, in Papio a higher
level of I/O parallelization is used whenever a higher I/O throughput is requested, be-
cause more stripes are written at the same time. By presenting the speedup values de-
pending on I/O throughput, we show how our techniques perform at different levels
of I/O paralelization. We have used the first five files described in table 3, and three
different I/O throughputs: 100MB/sec, 200MB/sec and 300MB/sec. The Parallel Com-
pression Strategy set up the threading level to 8 automatically. We define speed up as

Table 3. Details of files used for our evaluation

File Size Category Type Comp. Ratio
lgd element.rdf [19] 17GB geographic text 11.96

all geonames.rdf [20] 6.3GB geographic text 12.76
enwik9.txt [21] 950MB linguistics text 1.75

strain cat.txt [22] 433MB earth science float 1.3
biggan learn.bvecs [23] 13GB computer vision multidata 1.05
tiny metadata.bin [24] 38GB computer vision binary 8.13

dna 15.cel [25] 1.9GB biology numeric 1.52

Table 4. Estimated and real speed up values for sequential and parallel compression

100 MB I/O 200 MB I/O 300 MB I/O
File/Strategy Speed Up Speed Up Speed Up

strain cat estimated real estimated real estimated real
Sequential 0.78 0.84 0.49 0.43 0.33 0.38

Parallel 1.28 1.34 1.21 1.24 1.20 1.21
all geonames estimated real estimated real estimated real

Sequential 8.14 8.72 4.36 4.5 3.04 2.9
Parallel 12.58 13.45 12.25 12.35 11.97 11.68

Applying Selectively Parallel I/O Compression to Parallel Storage Systems 291

(a) Comparative between Sequential
Compression and Parallel Compression
strategies

(b) Speed up by applying SPIOC in the
write operations.

(c) Speed up by applying decompression in the
read operations

Fig. 3. Evaluations results

Original time IO operation
Strategy time IO operation . As the results show, in most cases both strategies reduce the
time needed for writing the different files by using different I/O throughput. The speed
ups obtained by Parallel Compression Strategy are higher than Sequential Compres-
sion Strategy, because the compression overhead has been almost hidden. However, we
can observe that there are some cases where using those strategies write performance
is decreased. For example, writing the file biggan learn.bvecs with any of those strate-
gies. Because the compression ratio of that file is very low, the overhead introduced
by applying compression is higher than the benefit from writing compressed chunks to
Papio.

Table 4 shows how SPIOC detects when the compression is going to improve the
I/O performance, and when not, estimating the speed up in each case. We have used
strain cat.txt and all geonames.rdf files, with different I/O throughput, and we have
applied sequential (by using 1 thread) and parallel (by using 8 threads) compression
techniques and measured the real speed up for each case. The estimated speed up by
SPIOC has been recorded. The results demonstrate that the estimated values by SPIOC
are very close to the real ones, with an error between 3%- 7%.

The performance of SPIOC has been evaluated, see Figures 3(b) and 3(c), with all
the files described in the table 3. SPIOC set up automatically the threading level to 8.
Experiments demonstrate how SPIOC reduces I/O time for reading/writing Papio in
most cases, and only in few cases, the I/O performance has not been improved, but it
has not been degraded. Note that for biggan learn.bvecs file the compression has been
deactivated. The reason is that SPIOC has detected that the compression ratio of this file
is smaller than the threshold 1. If we used a single core machine for evaluating SPIOC,
it would also deactivate the compression for strain cat.txt file because the estimated
speed ups for sequential compression (shown in table 4) are smaller than threshold 2
for any of the I/O throughputs.

292 R. Filgueira et al.

The difference between the speed ups shown in Figures 3(b) and 3(c) depends on how
much each file can be compressed. Also, we can appreciate in the results that with higher
I/O throughput, the speed up gained by SPIOC is lower. This is because with higher
I/O throughput, less time is required for I/O operations, and the impact of applying
compression is lower but still significant. Finally, we can observe that the speed up for
write operations is higher than for read operations. This is because the LZ4 compression
algorithm is 20% faster than the decompression algorithm. So, the threshold 2 has been
set up to 1.20, to be sure that the reads operations can also benefit from SPIOC.

7 Conclusions and Future Work

We have presented three different transparent compression strategies in order to im-
prove the I/O performance in QoS enabled parallel storage systems. With the Sequen-
tial Compression strategy, we have analysed how the I/O operations could be improved
by applying compression. With the Parallel Compression strategy we have studied how
to reduce the compression time by applying multithreading techniques. Since in some
cases compression may introduce overhead in the I/O operations, we have designed the
Selectively Parallel I/O Compression strategy. This strategy allows us to predict the I/O
time reduction achieved by compression. As the evaluations show, SPIOC is able to im-
prove the I/O operations, adapting the compression techniques at run time, and turning
it on, only when is beneficial.

In future work, we would like to improve SPIOC by detecting the optimal value for
the thresholds and threading level at run time depending on the characteristics of the
computer nodes and files. And to provide users the option to choose the compression
algorithm criteria that suit their requirements. Other improvements could apply different
compression algorithms to the file’s chunks depending on their datatypes, and apply our
strategies to collective I/O operations provided by the Papio. Finally, SPIOC could be
applied to other file systems which have similar QoS features to Papio’s. For other
systems where available throughput is not aware, Sequential Compression and Parallel
Compression strategies are still applicable.

Acknowledgment. The research has been supported by the NERC UK Grant
(NE/H02297X/1). We would like to thank the AIST institute for providing the infras-
tructures to evaluate the work.

References

1. Gu, Y., Grossman, R.L.: Toward efficient and simplified distributed data intensive computing.
IEEE Trans. Parallel Distrib. Syst., 974–984 (2011)

2. CFS Inc., Lustre: A scalable, high-performance file system, cluster File Systems Inc. white
paper, version 1.0 (2002)

3. Schmuck, F., Haskin, R.: GPFS: A shared-disk file system for large computing clusters. In:
Proc. of the First Conference on File and Storage Technologies (FAST), pp. 231–244 (January
2002)

4. Tanimura, Y., Hidetaka, K., Kudoh, T., Kojima, I., Tanaka, Y.: A distributed storage system
allowing application users to reserve i/o performance in advance for achieving sla. In: GRID,
pp. 193–200 (2010)

5. Kella, K.K., Khanum, A.: Apcfs: Autonomous and parallel compressed file system. Interna-
tional Journal of Parallel Programming 39(4), 522–532 (2011)

Applying Selectively Parallel I/O Compression to Parallel Storage Systems 293

6. Fusecompress, a linux file-system that transparently compresses its contents (2011),
http://code.google.com/p/fusecompress/

7. Klonatos, Y., Makatos, T., Marazakis, M., Flouris, M.D., Bilas, A.: Transparent online stor-
age compression at the block-level. TOS 8(2), 5 (2012)

8. Harnik, D., Kat, R., Sotnikov, D., Traeger, A., Margalit, O.: To zip or not to zip: Effective
resource usage for real-time compression. Presented as Part of the 11th USENIX Conference
on File and Storage Technologies. USENIX, Berkeley (2013),
https://www.usenix.org/conference/fast13/zip-or-not-zip-effective-
resource-usage-real-time-compression

9. Filgueira, R., Singh, D.E., Carretero, J., Calderón, A., Garcı́a, F.: Adaptive-compi: Enhanc-
ing mpi-based applications’ performance and scalability by using adaptive compression. IJH-
PCA 25(1), 93–114 (2011)

10. Filgueira, R., Atkinson, M., Nuñez, A., Fernández, J.: An adaptive, scalable, and portable
technique for speeding up mpi-based applications. In: Kaklamanis, C., Papatheodorou, T., Spi-
rakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 729–740. Springer, Heidelberg (2012)

11. Real time data compress (2012),
http://fastcompression.blogspot.co.uk/p/lz4.html

12. Russell, J., Cohn, R.: Snappy. Book on Demand (2012),
http://books.google.co.uk/books?id=PXajMQEACAAJ

13. Filgueira, R., Singh, D.E., Calderón, A., Carretero, J.: Compi: Enhancing mpi based applica-
tions performance and scalability using run-time compression. In: Ropo, M., Westerholm, J.,
Dongarra, J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 207–218. Springer, Heidelberg
(2009)

14. Loureiro, A., González, J., Pena, T.F.: A parallel 3D semiconductor device simulator for
gradual heterojunction bipolar transistors. Int. Journal of Numerical Modelling: Electronic
Networks, Devices and Fields 16, 53–66 (2003)

15. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.: Sublinear algorithms for approximat-
ing string compressibility. Algorithmica 65(3), 685–709 (2013),
http://dblp.uni-trier.de/db/journals/algorithmica/
algorithmica65.htmlRaskhodnikovaRRS13

16. Fan, D., Zhang, H., Wang, D., Ye, X., Song, F., Li, G., Sun, N.: Godson-t: An efficient many-
core processor exploring thread-level parallelism. IEEE Micro 99(1), 5555

17. Pusukuri, K.K., Gupta, R., Bhuyan, L.N.: Thread reinforcer: Dynamically determining num-
ber of threads via os level monitoring. In: Proceedings of the 2011 IEEE International Sym-
posium on Workload Characterization. IISWC 2011, pp. 116–125. IEEE Computer Society,
Washington, DC (2011)

18. Pusukuri, K.K., Gupta, R., Bhuyan, L.N.: Adapt: A framework for coscheduling multi-
threaded programs. ACM Trans. Archit. Code Optim. 9(4), 45:1–45:24 (2013)

19. Linked geo data (July 18, 2009),
http://downloads.linkedgeodata.org/releases/2009-07-01/

20. Geo names (September 2009),
http://www.geonames.org/ontology/documentation.html

21. Mahoney, M.: Large text compression benchmark (August 2013),
http://mattmahoney.net/dc/text.html

22. Bell, A.F., Greenhough, J., Heap, M.J., Main, I.G.: Challenges for forecasting based on ac-
celerating rates of earthquakes at volcanoes and laboratory analogues. Geophysical Journal
International 185(2), 718–723 (2011)

23. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE
Transactions on Pattern Analysis & Machine Intelligence 33(1), 117–128 (2011) (to appear)

24. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set for nonpara-
metric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30(11), 1958–1970 (2008)

25. Greshock, J., Bachman, K.E., Degenhardt, Y.Y., Jing, J., Wen, Y.H., Eastman, S., McNeil,
E., Moy, C., Wegrzyn, R., Auger, K., Hardwicke, M.A.: Molecular target class is predictive
of in vitro response profile. Cancer Res. 70(9), 3677–3686 (2010)

http://code.google.com/p/fusecompress/
https://www.usenix.org/conference/fast13/zip-or-not-zip-effective-resource-usage-real-time-compression
https://www.usenix.org/conference/fast13/zip-or-not-zip-effective-resource-usage-real-time-compression
http://fastcompression.blogspot.co.uk/p/lz4.html
http://books.google.co.uk/books?id=PXajMQEACAAJ
http://dblp.uni-trier.de/db/journals/algorithmica/algorithmica65.htmlRaskhodnikovaRRS13
http://dblp.uni-trier.de/db/journals/algorithmica/algorithmica65.htmlRaskhodnikovaRRS13
http://downloads.linkedgeodata.org/releases/2009-07-01/
http://www.geonames.org/ontology/documentation.html
http://mattmahoney.net/dc/text.html

Ultra-Fast Load Balancing of Distributed
Key-Value Stores through Network-Assisted Lookups

Davide De Cesaris1,2, Kostas Katrinis1, Spyros Kotoulas1, and Antonio Corradi2

1 IBM Research, Dublin, Ireland
2 DEIS, University of Bologna, Bologna, Italy

Abstract. Many systems rely on distributed caches with thousands of nodes to
improve response times and off-load underlying systems. Large-scale caching
presents challenges in terms of resource utilization, load balancing, robustness
and flexibility of deployment. In this paper, we propose a novel distributed caching
method based on dynamic IP address assignment. Keys are mapped to a large
IP address space statically and each node is dynamically assigned multiple IP
addresses. As a result, we have a system with minimal need for central coordi-
nation, while eliminating the single point of failure in competitive solutions. We
evaluate our system in our datacenter and show that our approach localizes the
effect of load-balancing to only loaded cache servers, while leaving cache clients
unaffected and also providing for finely-granular rebalancing.

1 Introduction

Massive distributed caches play an important role in large-scale computing infrastruc-
tures. For example, Facebook has reported [1,2] that they store tens of TB in a modified
implementation of memcached, distributed over hundreds of nodes in a cluster. A set of
challenges emerge, when managing caches of this size:

– Robustness The system should be robust against node failure and should not have
a single point of failure. On the other hand, distributed protocols should have low
overhead and be able to respond to failures quickly.

– Load-balancing In most caches, key lookups would follow a very irregular pattern,
presenting significant skew, as also described in [1]. Typically, HTTP requests and
other lookups would follow a power law [3]. Key popularity may shift with time or
rapidly change, due to unexpected events.

– Scalability Any distributed protocol should be able to scale to large numbers of
nodes and have minimal performance impact.

– Flexibility It is common and highly desirable to tap into unused resources in a data
center. We would like caching techniques that are flexible in terms of demand of
computational resources.

This paper introduces Network-Assisted Lookups (NAL), a method to do rapid load-
balancing of key-value stores by exploiting the existing IP infrastructure. The key points
in our approach are:

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 294–305, 2014.
c© Springer International Publishing Switzerland 2014

Ultra-Fast Load Balancing of Distributed Key-Value Stores 295

– IP protocol as a distributed location registry. Our system relies on a static mapping
of keys to a large space, the static mapping of this space to IP addresses and the
dynamic allocation of IP addresses to machines as a way to load balance the system.

– Exploit existing resources. The resources in the system need not be homogeneous
or have similar throughput.

– Scalability. The proposed method scales linearly and is limited only by the number
of available (private) IP addresses in the datacenter, which is not a problem in the
foreseeable future.

– Robustness. Our method relies on IP address re-allocation on the network. As such,
there is no central point of failure in the system.

We prototyped NAL in our lab datacenter and evaluated it using key access patterns
that are characteristic for skewed data access in a range of trending and established
workloads. Our results manifest that NAL manages to be as efficient as competitive
approaches (consistent hashing), while achieving to reduce convergence time after load-
balancing and also localizing the effect of block rebalancing to clients ”causing” the
imbalance.

This paper is structured as follows. Section 2 presents related approaches and delves
deeper into the most competitive one, namely consistent hashing, showing its scalability
limit via experimental evaluation we conducted. Section 3 presents the architecture of
NAL and discusses the workings of the various components, while Section 4 elaborates
in our load-balancing algorithm for distributed caching in NAL. We present evaluation
results we obtained using our NAL prototype implementation in Section 5 and conclude
in Section 6.

2 Related Art and Motivation

Distributed data-management/processing frameworks typically spread data block-
s/records across two or more store locations (e.g. servers). For instance, distributed
caching systems such as Memcached [4] and Redis [5] cache recently accessed key-
value pairs (e.g. database records) across distributed cache server processes. The latter
are typically started at servers, where spare compute, memory and network resources
have been harvested. Further examples are parallel/distributed databases and distributed
batch data-processing frameworks employing distributed filesystems (e.g. HDFS [6] in
Hadoop). A precondition for these distributed stores is the existence of a lookup service
entity that maps an identifier to the actual location of the data that needs to be retrieved.
Typically, a data record/block is identified by a key. Then, by means of the mapping
entity, the key is mapped to the identity (e.g. destination IP socket) of the physical/vir-
tual host (server), where the corresponding data record/block resides. Unless otherwise
qualified, we employ in the remainder of this paper the term ”key” to refer to data iden-
tifiers and the term ”block” (or ”data block”) to refer to the payload value (e.g. binary
object or database record) that is the data unit uniquely identified by exactly one key
and retrieved to a processing node as the result of a key lookup and data fetch action.

An additional functional requirement for a data lookup service is the ability to dy-
namically update the location of data blocks. The latter may change at runtime as the
result of a load/store balancing action or to maintain a desired replication factor to

296 D. De Cesaris et al.

counter data node failures. At the occurrence of any amendment of a block’s location
(referred to as ”block migration” hereafter), the key-to-location mapping entity needs
to be updated accordingly to ensure non-intermittent access to distributed data blocks.
Distributed stores relying on a centralized lookup service address this requirement by
sending location updates to a nameserver. At large-scale, the centralized name service
becomes quickly the bottleneck and typically replication (e.g. clustering) is employed
to guarantee reasonable lookup latency. However, replication has scalability limitations
due to cost and complexity proportionality between the data volume stored and the
lookup service capacity required. Distributed hash-tables (DHTs) such as Chord [7])
constitute a scalable and resilient solution; still, they are harder to implement and may
degrade performance due to operating at the application/session layer. In addition, hav-
ing block location ”encoded” among data nodes - as is the case with DHTs - can pose
security concerns (e.g. in a public cloud environment multiple tenants share the same
physical memory resources) and/or contradict the service model. A typical example
of the latter case is when the service model mandates the service provider as the sole
provider of a persistent and highly-available distributed filesystem service to multiple
datacenter tenants. Offering a distributed file service using a DHT and with high avail-
ability guarantees may be hard to achieve within such a model, given that e.g. tenants
may choose to reboot servers, where part of the block location information is stored.

Following the above discussion on limitations of alternative solutions, we narrow our
attention to distributed caching as the best solution for being extended to provide for
dynamic data re-balancing. Although various hashing techniques are possible, we focus
here on consistent hashing [8], a technique that is known to significantly reduce the miss
rate during cache server addition/removal. Figure 1a depicts the standard continuum-
based implementation of consistent hashing, assuming in this example four data (cache)
servers and an integer continuum set S (S = {0, 1, 2.., N}, N = 232 − 1). Also, each
data server is assigned a unique integer in the continuum (e.g. Data-Server-1 ← N/4).
Server selection for a given key k occurs as follows: the key is first hashed to an integer
value x in the integer set S. The server selected for retrieving the block identified by
k is then the server that is assigned to the smallest integer in {x, x + 1, .., N}. For
instance, on the left-hand side of Figure 1a, the block corresponding to k1 (resp. k2)
will be fetched from data server-1 (resp. data server-3).

In commodity distributed caching deployments (e.g. memcached [4]), consistent
hashing is static, i.e. servers are statically assigned to the continuum, albeit not nec-
essarily following a uniform key load per server (e.g. to cater for heterogeneity of avail-
able memory at each server). Here, we exercise the scalability of extending consistent
hashing with load-balancing capabilities, specifically via dynamic re-hashing. The ap-
proach has been proposed before in different contexts (e.g. processor memory hierarchy
[9]), albeit with scalability requirements not to the level required in this use-case. Fig-
ure 1a exemplifies dynamic load-balancing via re-hashing in our toy four-server setup.
Initially (left-hand side sub-figure), each server is assigned (for brevity) an equal num-
ber of keys along the continuum. Due to data skewness, a fraction of keys served by
Data-server-3 becomes hot (relative to average key popularity), leading to sub-optimal
cache performance. To remedy this, the continuum is rebuilt, shifting part of the hot key
range to Data-Server-2 (right-hand side in Figure 1a) and thus providing for a balanced

Ultra-Fast Load Balancing of Distributed Key-Value Stores 297

(a) (b)

Fig. 1. Consistent Hashing: (a) Load-balancing through dynamic continuum rebuilding on four
cache servers and (b) evaluation of time overhead due to load-balancing

caching load, adaptive to recent key access patterns. This approach assumes the exis-
tence of a centralized key access pattern monitoring and adaptation entity that is though
off the lookup and retrieval path.

To evaluate the performance of dynamic consistent hashing to provide for dynamic
load-balancing at scale, we created a prototype setup in memcached, using the pro-
vided consistent hashing implementation in libmemcached (libketama [10]). The latter
provides for the ability to dynamically re-assign keys to memcached servers through a
weighting mechanism. We also implemented a baseline centralized controller with the
sole functionality of notifying memcached clients to rebuild their continua (dynamic
re-hashing), together with communicating the set of weights that each client should use
as input during each re-hashing cycle to assign memcached server in its continuum. The
latter occurs via a simple application-level UDP protocol between the controller and the
memcached client.

Using this setup, we measured the time overhead of completing a load-balancing
action, specifically by measuring the time that each memcached client takes to finish
rebuilding its continuum data structure and reporting the maximum value over the entire
set of clients. For each client set size, we repeat the experiment for 5000 times and report
the average time overhead over all 5000 repetitions. Figure 1b depicts the results of this
experiment with a memcached client set size (actual servers) ranging from 1 to 30. By
applying linear regression to the measurements, we obtain the following expression for
estimating the time overhead Tdch of dynamic consistent hashing (in microseconds) as
a function of the number of cache clients x:

Tdch(x) = 100 + 6.6 · x (1)

In extrapolation for a conservative size of a web application comprising 1000 clients, the
last equation yields a load-balancing overhead of approximately 7ms just for rebuilding
the hashing data structures (i.e. not accounting for the cache misses that will inevitably
occur during any cache re-balancing action, regardless of the approach). Obviously, this
is a significant penalty, when sub-10ms queries is the desired operating range of target

298 D. De Cesaris et al.

applications. Even worse, the re-balancing penalty is uniform to all clients, e.g. the
key lookup has to be disrupted at all clients, even if the load-balancing adaptation is
performed to address a hot key range accessed by a small fraction of the client set.

All the above limitations of state-of-the art motivated the Network-Assisted Lookup
(NAL) approach presented in the following. Among others, NAL localizes the penalty
of load-balancing only to clients that access keys in hot key ranges, while also minimiz-
ing the overhead of location resolution during lookup.

3 NAL Architecture

The key paradigm shift introduced by NAL is the following: instead of having fixed
network service identifiers attached to data nodes and have these identifiers updated at
the lookup service, whenever the location of a data block is changed due to migration,
NAL employs a static key-to-location mapping created once and for all at key hash
generation time and provides for accurate lookup of arbitrarily migrated data blocks by
updating the network identity of the actual location of a block.

Figure 2 materializes the above abstract statement, depicting the architectural amend-
ments to a distributed application (e.g. web application) employing memcached with
Network-Assisted Lookups. The embodiment assumes deployment on an IT infrastruc-
ture employing an Ethernet 802.3/IPv4 network stack; due to this setup being ”stan-
dard” in commodity datacenters, we assume it in the rest of this work, whereby a
generalization of the approach to alternative network technologies is beyond the scope
of this paper. One of the many application servers comprising the distributed applica-
tion is shown at the top of Figure 2, where a memcached client is running. Although
the memcached client part is typically embedded into the application logic, we depict
it for the sake of presentation as a standalone service termed ”lookup service”. Unlike
the ”standard” memcached practice of having each key hashed to the single network
identifier (hostname or IP address) of a cache server process that potentially holds the
data block identified by the respective key, the NAL architecture takes a static hashing

Fig. 2. Network-assisted Lookup Architecture and Data Migration Example

Ultra-Fast Load Balancing of Distributed Key-Value Stores 299

approach of keys to IP addresses, the latter not being bound to a specific cache server
process.

The NAL Controller facilitates dynamic binding of IP addresses (that buckets are
mapped to) to memcached cache servers, whereby each IP address (and thus hash
bucket) corresponds to a set of data blocks (”Block Set”). Leveraging on the feature
provided by modern operating systems to have Network Interface Cards (NICs) iden-
tified by a plurality of IP addresses, the controller is capable of assigning multiple IP
addresses to the NIC of a memcached server and thus mapping multiple buckets to the
server. Dynamic address binding is in fact the last step taken by the controller at the
event of a block set migration event. Additional functionality implemented at the con-
troller is the continuous monitoring of cache servers’ load - either embedded as part of
the controller implementation or by interfacing existing memcached monitoring tools
via a dedicated API - and the execution of a load-balancing algorithm (cf. section 4) at
the detection of caching performance degradation as the result of one or more server
overload.

Figure 2 depicts also an example showcasing how the NAL approach
achieves dynamic load-balancing without breaking the linear scalability of the distributed
caching service. At the event of the NAL controller deducing a cache server overload
incident (e.g. Data Server 1 being overloaded in the example of Figure 2), the con-
troller takes a re-balancing action by picking a block set and migrating it from the
overloaded (Data Server 1) to a less utilized cache server (Data Server 2). For this,
the controller maintains a data structure that maps a bucket identifier to the list of keys
that hash to the specified bucket. The re-balancing action completes by also migrating
the IP address that the migrated block set statically maps to: in the example of Figure
2, this occurs by de-allocating IP Address 5 from Data Server 1 and allocating it via
a newly created aliased interface to Data Server 2. Deriving from this example, it fol-
lows that re-balancing in NAL involves interaction only between a constant number
of servers, leaving application/frontend servers untouched and providing for seam-
less key lookup while driving the system to a more balanced state and thus yielding
better end-user performance.

Load-Balancing Granularity Analysis at Scale. Based on the above specification, it
is straightforward that the bucket size used by a NAL deployment drives the granular-
ity of load-balancing, since a bucket of keys (i.e. a block set) is the minimum unit of
migration. Let Csize be the total cache size (in bytes) available in the system (i.e. the
sum of memory allocated to each cache process in the system) and addr be the number
of IP addresses dedicated within the datacenter to NAL use. Then, assuming uniform
block set size, the block set size BSsize (in bytes) is lower bounded by

BSsize ≥ Csize

addr
(2)

Due to NAL statically binding an IP address to a bucket and thus to a block set, it
follows that the maximum number of block sets that a cache server can hold equals
the maximum number of IP addresses addrnode that the cache server’s network inter-
face can be identified by. Assuming a uniform distribution of total cache size to cache
servers, let r be the average cache size ratio of the total cache size Csize that is allocated
to a cache server. Then, the block set size BSsize (in bytes) is also lower bounded by

300 D. De Cesaris et al.

Table 1. NAL dimensioning examples

Cache Size (Total) Cache Size (Server) Minimum Bucket Size
64 GBytes 0.5 GBytes 0.125 MBytes
64 GBytes 6.4 GBytes 1.6 MBytes
256 GBytes 0.5 GBytes 0.125 MBytes
256 GBytes 25.6 GBytes 6.4 MBytes

1 TBytes 1.024 GBytes 0.256 MBytes
1 TBytes 10.24 GBytes 2.56 MBytes
1 TBytes 102.4 GBytes 25.6 MBytes

32 TBytes 32.768 GBytes 8.192 MBytes
32 TBytes 327.68 GBytes 81.92 MBytes
32 TBytes 2 TBytes 512.0 MBytes
132 TBytes 131.072 GBytes 32.768 MBytes
132 TBytes 2 TBytes 512.0 MBytes
512 TBytes 524.288 GBytes 131.072 MBytes
512 TBytes 2 TBytes 512.0 MBytes

BSsize ≥ Csize · r
addrnode

(3)

and by combining Equations 2 and 3 we get the feasible set of block set sizes

max(
Csize

addr
,
Csize · r
addrnode

) (4)

Equation 4 governs the finest granularity of load-balancing and is obviously dependen-
dent on system dimensioning. To develop a practical feeling of this bound, we first seek
to specify the maximum number of IP addresses we could assign to a network interface
(addrnode in Eq. 4). Experimentation on a modern albeit ”commodity” server running
Redhat Enterprise Linux 6.3 revealed that we could assign up to 8192 addresses to a net-
work interface and seamlessly communicate with the server under test on the various IP
addresses assigned to it. In the rest, we assume a maximum bound of addrnode = 4096
IP addresses per cache server. We further set the total number of IP addresses available
to NAL to addr = 16M , thus allocating an entire /8 IPv4 subnet to NAL. Given the
abundance of private IP addresses in a datacenter, the latter choice is not expensive.
Using the above setup, we plug target total cache size values to Equation 4, covering
a range of systems, from small-scale campus hosting to the largest social networking
websites (Facebook reported [2] 800 servers offering at least 28 Tbytes of in-memory
cache in 2008). We also assume a broad range of average cache memory size allo-
cated to each per cache server, with the ratio r alternating among following values:
0.1%, 1%, 5% and 10%. Table 1 lists the minimum bucket sizes supported by the var-
ious setups generated by the process previously described. Evidently, the minimum
bucket size supported is always by multiple orders of magnitude smaller compared to
the per server average cache memory size. Taking the 2008 Facebook memcached setup
[2] as an example (shown in bold font in Table 1), each cache server has 35 Gbytes of
memory allocated to each memcached server (assuming uniform distribution of total

Ultra-Fast Load Balancing of Distributed Key-Value Stores 301

cache size to servers). In this example, an approximately 8 Mbytes bucket size is pos-
sible, yielding the possibility to do load-balancing at more than 1/1000th of cache size
on a per server basis.

It follows from the above that NAL provides for very fine-grained dynamic load-
balancing, even when dimensioned for the most aggressive distributed caching se-
tups that can be thought of today. Obviously, there is a trade-off between the selected
bucket size and the number of buckets in terms of bucket management overhead. It must
be noted that the numbers shown in Table 1 are only indicative of the minimum bucket
size, while it is still possible to dimension the system with a much larger bucket size to
strike a good balance between load-balancing granularity and management overhead.

4 Load Balancing Algorithm

This section presents the load-balancing algorithm we implemented within our proof
of concept prototype for the sake of evaluating the NAL approach. It must be though
noted that due to the modularity of the NAL Controller (cf. Figure 2), our algorithm can
be replaced by any alternative algorithm that interfaces with the rest of the controller
modules.

It is straightforward that a well balanced distributed caching system should strive to
minimize data access latency and thus global rate of cache evictions, obviously bounded
by the caching system dimensions and constrained on the actual key access pattern.
Around this intuition, our algorithm shown in Listing 1.1 works as follows:

– At the beginning of each load-balancing iteration, the algorithm reads via the Con-
troller monitor API the eviction rates of all cache servers and computes the average
eviction rate across the system.

– In case no outlier is identified, specifically no cache server with eviction rate di-
verging more than a predefined threshold from the average eviction rate, then no
load-balacing action is taken,

– or else the algorithm enters the core of its load-balancing logic towards deciding
the list of block sets (sets of key-value stores) that are to be migrated from the most
overloaded to the least loaded server.

– The choice of the destination server depends on the state of the caches: if there are
nodes without evictions, the algorithm chooses the server with the lower number of
requests per second, otherwise it picks the server with the lowest number of evic-
tions per second. The last critical decision taken by the load-balancing algorithms
deals with the how many and which block sets to migrate.

– In terms of which block sets to migrate, the algorithm picks the block sets with
the lowest number of requests per second, thus keeping the hot blocks at the over-
loaded data server. The intuition here is that, despite keeping all hot blocks in the
overloaded server, the migration of blocks from the latter will free up cache mem-
ory and thus decrease the eviction rate due to more hot blocks being able to be kept
in cache. An additional advantage of this approach is the continuity of service from
cache for a higher number of clients, for the hot block sets are highly demanded.
Would it be the hot block sets that were migrated, this would lead to an eviction
storm that would impact a larger number of client requests (hot requests).

302 D. De Cesaris et al.

– The number of block sets to migrate is driven by the parameter N . This allows for
adopting a coarse-grained approach when the system becomes very imbalanced,
while employing a more fine-grained adaptation (by dynamically setting the pa-
rameter N) when the skew between eviction rates is reduced and the system is
more stable.

Listing 1.1. Pseudo-code of Load-balancing Algorithm with NAL
� �

Set M // overload threshold (eviction rate)
Set N // normalization factor for deciding popularity of blocks to be migrated
LOOP
{
FOR all the nodes in cache server list
{
READ #evictions/sec into array E

}
AvgEvcts=Average(E)
FOR each item e in E
{
Max_Evcts = Max(Abs(e-AvgEvcts),Max_Evcts)

}
IF Max_Evcts < M // system is balanced
{
WAIT T_check seconds

}
ELSE // start load-balancing/block migration
{
S = node with max #evictions/sec
Max_reqs = #requests/sec of S
L = list of x nodes with least evictions
IF L is not empty
{
D = node with min #evictions/sec

}
ELSE
{
D = node of L with min #requests/sec

}
Min_reqs = #requests/sec of D
Reqs_to_move = (Max_reqs - Min_reqs) / N
B = list of less accessed Block Sets of S with sum of #requests/sec greater

than or equal to Reqs_to_move
MOVE B from S to D
WAIT T_check seconds

}
}

� �

Our algorithm scales with the number of cache servers and is highly responsive
within the dimensions of the most aggressive setups (O(100) servers). As part of our
ongoing work, we are currently formalizing its efficacy against equivalent standard al-
gorithms (e.g. bin packing), while also experimenting with hierarchical monitoring so
as to relieve the strain on the controller from having to poll all cache servers for cache
performance statistics.

5 Evaluation

We deployed our proof of concept prototype implementation of NAL in our lab datacen-
ter using 30 servers in total. All servers comprise two Intel Xeon X5670 6C processors,

Ultra-Fast Load Balancing of Distributed Key-Value Stores 303

Fig. 3. Evolution of 80th-percentile of key-value pair retrieval latency when load-balacing with
dynamic consistent hashing

128GB DDR3 RAM and an 1TB SATA disk, while interconnecting via a full-bisection
10GigE network. Eight (8) of the servers are used as cache servers (memcached), one
(1) server is running the persistent data store (MySQL database with 10M entries of
average size 100K each) and the rest of the servers are running client access code, i.e.
code that fetches key-value pairs randomly from the hierarchical data store.

Each client initially attempts to fetch a key-value pair from the cache (using libmem-
cached) and only in the case of a cache miss, it then fetches the requested key-value pair
from the database server. To drive the system to an imbalanced state for the purpose of
evaluating the efficacy and performance of NAL, a fraction of the client set requests
keys following a Zipf distribution, while the rest of the clients request keys uniformly.
This is a known key access pattern evident in various applications, e.g. web applications
requesting a popular web page or object, batch document/chunk processing frameworks
etc., and is exactly the root cause of imbalance in distributed data stores. We initially
run the system with uniform key access across all clients until the system stabilizes to a
constant average eviction rate (steady state) and then a fraction of the clients enter the
Zipf access pattern mode. Figures 3 and 4 depict the 80th percentile of key-value re-
trieval latency across all clients in the system for dynamic consistent hashing and NAL
respectively 1, whereby we have dissected the client set to a hot (clients using Zipf ac-
cess pattern) and a cold (clients following uniform access pattern) set. By inspecting
the two charts, one can easily observe the anticipated superiority of NAL over dynamic
consistent hashing: a) while consistent hashing causes a latency fluctuation to the cold
set of clients due to dynamic continuum rebuilding regardless of the type of client, NAL
leaves cold clients unaffected, while halving the latency of hot clients and b) NAL
manages to achieve a balanced state by almost 2x faster than consistent hashing, due to
the localized nature of the balancing act, as opposed to consistent hashing convergence
time, which is proportional to the number of clients.

1 We start reporting results at the time Zipf distribution mode comes into effect,i.e. steady state
latency is not shown

304 D. De Cesaris et al.

Fig. 4. Evolution of 80th-percentile of key-value pair retrieval latency when load-balacing with
NAL

Fig. 5. Time series of eviction rates across cache servers when load-balancing with NAL

To showcase the granular adaptation brought by our load-balancing algorithm, we
also depict in Figure 5 the time series of eviction rates across the eight cache servers
when using NAL. We observe that the algorithm reduces initially the eviction rate
of the most overloaded server (Data Server 2), then proceeding with the newly most
overloaded server (Data Server 3) and finally maintaining a fairly balanced system
by fine-tuning among all servers. We note here that throughout our evaluation, CPU
load due to the NAL Controller has never exceed 1%, memory footprint was only
4.25MB and control network throughput in-and-out of the controller was always less
than 4 Kbytes/s.

Ultra-Fast Load Balancing of Distributed Key-Value Stores 305

6 Conclusions

This paper presented a novel scheme that facilitates scalable, fast and fine-granular load-
balancing in distributed key-value data management systems. Leveraging on the ability
of modern servers and operating systems to alias network interfaces, we disconnect key
lookup from actual key-value pair location and thus cancel the need for dynamically
updating the location of a key, whenever the key-value pair location changes. We have
presented a comprehensive architecture that in turn we prototyped in our lab datacenter,
showing through experimentation that our approach achieves equal efficacy to state-
of-the-art, while being 2x faster for the setup size tested. In larger setups, we expect
the convergence gain of our approach to be proportional to cache system size, when
compared to competitive approaches.

References

1. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy, R.,
Paleczny, M., Peek, D., Saab, P., et al.: Scaling memcache at facebook. In: Proceedings of the
10th USENIX Conference on Networked Systems Design and Implementation, pp. 385–398.
USENIX Association (2013)

2. Facebook Note: Scaling memcached in facebook (2012),
https://www.facebook.com/note.php?note_id=39391378919

3. Adamic, L.A., Huberman, B.A.: Zipfs law and the internet. Glottometrics 3, 143–150 (2002)
4. Fitzpatrick, B.: Distributed caching with memcached. Linux J. 2004, 5 (2004)
5. Redis: Redis website (2014), http://redis.io/
6. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:

Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies,
MSST 2010, pp. 1–10. IEEE Computer Society, Washington, DC (2010)

7. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. SIGCOMM Comput. Commun. Rev. 31,
149–160 (2001)

8. Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto, K., Kim, B.,
Matkins, L., Yerushalmi, Y.: Web caching with consistent hashing. Computer Networks 31,
1203–1213 (1999)

9. Chang, K., Loh, G.H., Thottethodi, M., Eckert, Y., Connor, M.O., Subramanian, L., Mutlu,
O.: Enabling efficient dynamic resizing of large dram caches via a hardware consistent hash-
ing mechanism. Technical Report 2013-001, Electrical and Computer Engineering Depart-
ment,Carnegie Mellon University (2013)

10. Libmemcached: Libmemcached website (2014), http://libmemcached.org

https://www.facebook.com/note.php?note_id=39391378919
http://redis.io/
http://libmemcached.org

Virtual Machine Consolidation in Cloud Data

Centers Using ACO Metaheuristic

Md Hasanul Ferdaus1, Manzur Murshed2,
Rodrigo N. Calheiros3, and Rajkumar Buyya3

1 Faculty of Information Technology, Monash University,
Churchill Vic 3842, Australia

2 School of Information Technology, Faculty of Science,
Federation University Australia, Churchill Vic 3842, Australia

3 Department of Computing and Information Systems,
The University of Melbourne, Australia

Abstract. In this paper, we propose the AVVMC VM consolidation
scheme that focuses on balanced resource utilization of servers across
different computing resources (CPU, memory, and network I/O) with
the goal of minimizing power consumption and resource wastage. Since
the VM consolidation problem is strictly NP-hard and computationally
infeasible for large data centers, we propose adaptation and integration of
the Ant Colony Optimization (ACO) metaheuristic with balanced usage
of computing resources based on vector algebra. Our simulation results
show that AVVMC outperforms existing methods and achieves improve-
ment in both energy consumption and resource wastage reduction.

1 Introduction

Cloud computing, a very recent paradigm shift in IT industry, is growing rapidly
with the goal of providing virtually infinite amount of computing, storage, and
communication resources where customers are provisioned these resources ac-
cording to their demands as a pay-per-use business model [1]. To meet the rapid
growth of customer demands for computing power, cloud providers such as Ama-
zon and Google are deploying large number of planet-scale power-hungry data
centers across the world, even comprising more than 1 million servers [2]. Reports
show that energy is one of the critical TCO (Total Cost of Ownership) variables
in managing a data center, and servers and data equipment account for 55% of
energy used by data centers [3]. Large data centers also have enormous effects on
the environment: higher energy consumption consequently drive in more carbon
emission. Furthermore, inefficient use is one of the key factors for the extremely
high energy consumption: in traditional data centers, on average servers oper-
ate only at 10-15% of their full capacity most of the time, leading to expenses
on over-provisioning of resources [4]. Since cloud promises virtually unlimited
resources through elastic provisioning and absolute reliability and availability,
over-provisioning of resources in cloud data centers is a common phenomenon.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 306–317, 2014.
c© Springer International Publishing Switzerland 2014

Virtual Machine Consolidation in Cloud Data Centers 307

Virtualization technologies allow data centers to address such resource and en-
ergy inefficiency by placing multiple Virtual Machines (VM) in a single physical
server through live VM migration techniques. Reduction of energy consump-
tion is achieved by switching idle physical servers to lower power states (e.g.,
suspended) while still preserving application performance requirements.

In this paper, we propose AVVMC, a VM consolidation algorithm that focuses
on balanced resource utilization of servers for different resource types. We present
adaptation techniques of the popular Ant Colony Optimization (ACO) [5] meta-
heuristic with vector algebra-based multi-dimensional server resource utiliza-
tion capturing method [6]. Through simulation-based evaluation, we show that
AVVMC outperforms four other existing VM consolidation methods in different
performance metrics.

2 Related Works

VM consolidation techniques have been very attractive to reduce energy costs
and increase resource utilization in virtualized data centers. Consequently, a
good amount of research works have been done in this area and depending on
the modeling techniques used, different problem solving techniques are proposed.
Most of the works that apply greedy heuristics primarily model VM consolida-
tion as variants of the bin packing problem and propose extensions of simple
greedy algorithms such as First Fit Decreasing (FFD) [7], Best Fit [6], Best Fit
Decreasing [8], and so on [9, 10]. However, as VM consolidation is a NP-hard
problem, greedy approaches are not guaranteed to generate near optimal solu-
tions. Moreover, most of the approaches use mean estimators that fail to capture
the multi-dimensional aspect of server resource utilization [6].

Using constraint programming (CP) model, Van et al. [11] proposed VM pro-
visioning and placement techniques to achieve high VM packing efficiency in
cloud data centers. Entropy [12] is a server consolidation manager proposed for
clusters with the goal of minimizing the number of active servers and VM migra-
tion overhead. However, by the use of CP the proposed frameworks effectively
restrict the domain of the total number of servers and VMs in data center, and
thus limit the search space.

Recently, ACO metaheuristics have successfully been used to address 1-
dimensional bin packing problem and VM consolidation. Levine et al. [13] first
proposed an ACO-based solution for bin packing problem combined with a lo-
cal search algorithm. Later, Brugger et al. [14] used a later version of the ACO
metaheuristic that demonstrated superior performance over genetic algorithm
for large problem instances. Feller et al. [15] used another version of ACO to
address VM consolidation and has shown better results than FFD. However,
the evaluation is shown by varying only the number of cores demanded by VMs
while keeping other resource demands unchanged and as a result the evaluation
is simplified to one-dimensional resource. Another recent work [16] proposed
a multi-objective ACO algorithm to reduce resource wastage and power con-
sumption in cloud data centers. This work considers two types of resources (i.e.

308 M.H. Ferdaus et al.

CPU and memory) and demonstrates performance improvement over genetic
and other ACO-based algorithms.

3 Virtual Machine Consolidation

Most of the popular cloud providers offer different categories of VMs with spec-
ification for each type of resource. These VM instances differ in their individual
resource capacity: some instances are larger than others, whereas some instances
have relatively higher capacity of one type of resource compared to other re-
sources. Moreover, cloud VM instances host various types of applications and
active VMs exhibit dynamic resource demands in run-time that can be captured
and used to perform workload prediction and estimation [17]. Because of the
above properties of VM instances and dynamic workloads, complementary re-
source demands across difference resource dimensions are common in cloud data
centers [6]. Furthermore, as clouds offer an on-demand pay-as-you-go business
model, customers can demand for creation and termination of any number of
VMs according to their requirements. As a result, VMs are created and termi-
nated in the cloud data centers dynamically, which causes resource fragmentation
in the servers, and thus leads to degradation in server resource utilization. VM
consolidation is a tool to address the above issues in virtualized data centers
that tries to pack the active VMs in the minimum number of physical servers
considering multi-dimensional resource demands with the goal of energy saving
and maximization of server resource utilization.

3.1 Modeling VM Consolidation as Multi-dimensional Vector
Packing Problem

Multi-dimensional Vector Packing Problem (mDVPP) is a NP-hard combinato-
rial optimization problem where a number of items have to be packed into the
minimum number of bins provided that bins capacities are not violated [18]. We
model the physical machines (PMs) as bins and the VMs as items to pack into
the bins. Let P denotes the set of n PMs and V denotes the set of m VMs in the
data center. The set of d types of resources available in the PMs is represented by
R. Each PM Pi (Pi ∈ P) has a d-dimensional Resource Capacity Vector (RCV)
Ci = 〈C1

i , . . . , C
k
i , . . . , C

d
i 〉, where Ck

i denotes the total capacity of resource Rk

of PM Pi. Similarly, each VM Vj (Vj ∈ V) is represented by its d-dimensional
Resource Demand Vector (RDV) Dj = 〈D1

j , . . . , D
k
j , . . . , D

d
j 〉, where Dk

j denotes
the demand of resource Rk of VM Vj . The Resource Utilization Vector (RUV)
Ui = 〈U1

i , . . . , U
k
i , . . . , U

d
i 〉 of PM Pi is computed as the sum of the RDVs of the

hosted VMs:
Uk
i =

∑
Dk

j for ∀xi,j = 1 (1)

where x is the Placement Matrix that models the VM-to-PM placements and is
defined as follows:

xi,j =

{
1 if Vj is placed in Pi

0 otherwise
(2)

Virtual Machine Consolidation in Cloud Data Centers 309

We also introduce the PM Allocation Vector y, where each element yi equals 1
if PM Pi is hosting at least 1 VM, or 0 otherwise:

yi =

{
1 if

∑m
j=1 xi,j ≥ 1

0 otherwise
(3)

The goal of the AVVMC VM consolidation algorithm is to place the VMs
in the available PMs in such a way that: 1) resource utilization of active PMs
is maximized across all dimensions and 2) power consumption of active PMs is
minimized. Since available models for server power consumption primarily focus
on CPU utilization [19], any placement decision that results in lesser number of
active PMs compared to others have higher resource utilization across all dimen-
sions and lesser energy consumption. So, we formulate the objective function f
as a single minimization function on y:

minf(y) =

n∑
i=0

yi (4)

Finally, the PM resource capacity constraint (i.e. for each resource type, de-
mands Dk of hosted VMs not to exceed host PM’s resource capacity Ck) is
expressed as follows:

m∑
j=1

Dk
j xi,j ≤ Ck

i , ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , d} (5)

And the following ensures that each VM is assigned to at most one PM:

n∑
i=1

xi,j ≤ 1, ∀j ∈ {1, . . . ,m} (6)

3.2 Modeling Multi-dimensional Resource Utilization Based on
Vector Algebra

When placing VMs in a PM, capturing the measure of overall resource utiliza-
tion for multiple resource types is one of the most important factors for any
server consolidation algorithm: saturation of only one resource type can lead to
no further improvement in utilization while leaving other types of resource un-
derutilized. In order to capture both balanced and overall resource utilization,
we augment and integrate the vector algebra-based complementary resource uti-
lization capturing technique [6] in our ACO-based solution. Our model considers
CPU, memory, and network I/O as relevant server resources in the context of
VM consolidation. We consider storage resource is provided on-demand through
SAN/NAS-based storage backbone (e.g., Amazon EBS). PM’s normalized re-
source capacity is expressed as a unit cube (Resource Cube), with the three
dimensions representing three types of resources. RCV and RUV represent the

310 M.H. Ferdaus et al.

total capacity and current resource utilization of PM, respectively. To capture the
degree of imbalance in current resource utilization of a PM, the Resource Imbal-
ance Vector (RIV) is used which is computed as vector difference between RUV’s

projection on RCV and RUV itself. Given RUV = Cî+Mĵ + Ik̂ of a PM after
placing a VM (C, M , and I are current utilization of CPU, memory, and network

I/O), RIV = (C −H) î + (M −H) ĵ + (I −H) k̂, where H = (C +M + I)/3.
When selecting VMs for placement in a PM, the VM that shortens the magni-
tude of RIV most is the VM that mostly balances the resource utilization of the
PM across different dimensions. The magnitude of RIV is given by the following:

magRIV =
√

(C −H)2 + (M −H)2 + (I −H)2 (7)

We use magRIV to define the heuristic information for the proposed AVVMC
algorithm along with the overall resource utilization of PM (Eq. 13).

3.3 Modeling Resource Utilization and Wastage

The overall resource utilization of PM p is modeled as the summation of the
normalized resource utilization U r

p of each individual resource r ∈ R (Eq. 1):
Utilizationp =

∑
r∈R U r

p , where R = {CPU,MEM, IO}. Similarly, resource
wastage is modeled as the summation of the remaining resources (normalized)
of each individual resource:

Wastagep =
∑
r∈R

(1− U r
p) (8)

3.4 Modeling Power Consumption

Power consumption of servers is dominated by their CPU and can be expressed
as a linear expression of CPU utilization [19]. So, we model the energy drawn
by a PM p as a linear function of its CPU utilization UCPU

p ∈ [0, 1]:

E(p) =

{
Eidle + (Efull − Eidle)× UCPU

p if UCPU
p > 0

0 otherwise
(9)

where Efull and Eidle are the average energy drawn when a PM is fully uti-
lized (i.e. 100% CPU busy) and idle, respectively. Due to the non-proportional
power usage (i.e. high idle power) of physical servers, we consider turning off or
suspending idle servers after the VM placement. Therefore, the estimate of the
total energy consumed by a VM placement decision x is computed as follows:

E(x) =

n∑
p=1

E(p) (10)

Virtual Machine Consolidation in Cloud Data Centers 311

4 Proposed Solution

4.1 Adaptation of ACO Metaheuristic for VM Consolidation

ACO metaheuristics are computational methods that take inspiration from the
foraging behavior of some ant species [5]. In ACO, a number of artificial ants
build solutions to the considered optimization problem by choosing feasible so-
lution components and exchanging information on the quality of these solutions
via pheromone. In the proposed AVVMC algorithm, we adapt Ant Colony Sys-
tem (ACS) [20], a later version of ACO and consider each VM-to-PM assignment
as a solution component. Pheromone levels are associated to all VM-to-PM as-
signments representing the desirability of assigning a VM to a PM (Eq. 11 and
Eq. 18) and heuristic values are computed dynamically for each VM-to-PM as-
signment representing the favorability of assigning a VM to a PM in terms of
both overall and balanced resource utilization of the PM (Eq. 13).

4.2 AVVMC Algorithm

The AVVMC algorithm pseudocode is shown in Algorithm 1. Pheromone levels
are implemented using a n×m matrix τ . Each ant starts with an empty solution,
a set of PMs, and a randomly shuffled set of VMs [line 6-12]. Inside the while
loop, an ant is chosen at random and is allowed to choose a VM to assign next
to its current PM among all the feasible VMs (Eq. 16) using a probabilistic
decision rule (Eq. 15) [line 11-22]. If the current PM is fully utilized or there are
no feasible VMs left to assign to the PM, a new empty PM is taken to fill in
[line 14-16].

When all the ants have finished building their solutions, all the solutions in the
current cycle are compared to the so far found global-best-solution (GBS) against
their achieved objective function values f (Eq. 4). The solution with minimum
value of f is chosen as the current GBS [line 23-28]. The pheromone reinforce-
ment amount is computed based on (Eq. 19) and the pheromone levels of each
VM-PM pair is updated to simulate the pheromone evaporation and deposition
according to (Eq. 18) [line 29-34]. The algorithm reinforces the pheromone val-
ues only on the VM-PM pairs that belong to the GBS. Afterwards, the whole
process of searching new solutions repeats. The algorithm terminates when no
further improvement in the solution quality is observed for the last nCycleT erm
cycles [line 35]. Different parts of the algorithm are formally defined below.

Definition of Pheromone and Initial Pheromone Amount. At the begin-
ning of any ACO algorithm, ants start with a fixed amount of initial pheromone
for each VM-PM solution component. Following the approach used in the original
ACS algorithm [20], we use the measure of quality of the solution produced by a
reference baseline algorithm (FFD heuristic based on L1 norm mean estimator)
to compute the initial amount of pheromone:

τ0 := PEFFDL1Norm (11)

312 M.H. Ferdaus et al.

Algorithm 1. The AVVMC Algorithm.
1: Input: Set of PMs P and their RCV Ci, set of VMs V and their RDV Dj , set of ants antSet.

Set of parameters {nAnts, nCycleTerm, β,ω, δ, q0}
2: Output: Global-best-solution GBS
3: Initialize parameters, set pheromone value for each VM-PM pair (τv,p) to τ0, GBS :=

∅, nCycle := 0
4: repeat
5: for all ant ∈ antSet do
6: ant.solution := ∅; ant.pmList := P
7: ant.p := 1; ant.vmList := V
8: Shuffle ant.vmList
9: end for
10: antList := antSet;nCycle := nCycle+ 1
11: while antList �= ∅ do
12: pick an ant at random from antList
13: if ant.vmList �= ∅ then
14: if FVant(ant.p) = ∅ then
15: ant.p := ant.p + 1
16: end if
17: Choose a VM v from FVant(ant.p) accord. to Eq. 15
18: ant.solution.xp,v := 1; ant.vmList.remove(v)
19: else
20: ant.solution.f := p; antList.remove(ant)
21: end if
22: end while
23: for all ant ∈ antSet do
24: if ant.solution.f < GBS.f then
25: GBS := ant.solution
26: nCycle := 0
27: end if
28: end for
29: Compute Δτ
30: for all p ∈ P do
31: for all v ∈ V do
32: τv,p := (1 − δ) × τv,p + δ × Δτv,p
33: end for
34: end for
35: until nCycle = nCycleTerm

where PEFFDL1Norm is the Packing Efficiency of the solution produced by the
FFD heuristic. The PE of any solution sol produced by an algorithm is given
by:

PEsol =
nVM

nActivePM
(12)

Definition of Heuristic Information. During the solution building process,
the heuristic value ηv,p represents a measure of benefit of selecting a solution
component v − p. As the goal of AVVMC is to reduce the number of active
PMs by packing VMs in a balanced way, we define the heuristic value favoring
both balanced resource utilization in all dimensions and higher overall resource
utilization:

ηv,p = ω × |log10magRIVp(v)|+ (1− ω)× Utilizationp(v) (13)

where magRIVp(v) is the magnitude of RIV of PM p after assigning VM v to
it (Eq. 7). Logarithm of magRIVp(v) is taken to give higher heuristic values to

Virtual Machine Consolidation in Cloud Data Centers 313

the v-p pairs that result in smaller magnitudes of RIV. Utilizationp(v) is the
overall resource utilization of PM p if VM v is assigned to it:

Utilizationp(v) =
∑
r∈R

(U r
p +Dr

v) (14)

And ω is a parameter that trades off the relative importance of balanced versus
overall resource utilization as per our definition.

It can be shown that magRIV is in the interval [0.0, 0.82]. Since logarithm
of zero is undefined, we used the range [0.001, 0.82] in the evaluation and thus
|log10magRIV | results in the range [0.086, 3.0] which is compatible to
Utilizationp in terms of metric that results in the interval [0.0, 3.0].

Pseudo-random Proportional Rule. When constructing a solution, an ant
k selects a VM s to be assigned to PM p with the following pseudo-random
proportional rule [20]:

s =

{
argmaxv∈FVk(p){τv,p × [ηv,p]

β} if q ≤ q0

S otherwise
(15)

where q is a random number uniformly distributed in [0, 1], q0 is a parameter
in interval [0, 1], τv,p is the current pheromone value associated with the v-p
VM-PM pair (Eq. 18), and β is a non-negative parameter that determines the
relative importance of pheromone amount versus heuristic value in the decision
rule. FVk(p) defines the list of feasible VMs for ant k to assign to PM p:

FVk(p) =

{
v|

n∑
p=1

xp,v = 0
∧

U r
p +Dr

v ≤ Cr
p for ∀r ∈ R

}
(16)

When q ≤ q0, then the v-p pair resulting highest τv,p × [ηv,p]
β value is cho-

sen as the solution component (exploitation), otherwise a VM v is chosen with
probability Pk(v, p) using the following random-proportional rule (exploration):

Pk(v, p) =

⎧⎨⎩
τv,p×[ηv,p]

β∑
u∈FVk(p) τv,p×[ηv,p]β

if v ∈ FVk(p)

0 otherwise
(17)

Global Pheromone Update. In order to favor the solution components of
the GBS for subsequent iterations and to simulate pheromone evaporation, the
global update rule is applied on the pheromone values of each v−p pair according
to the following equation:

τv,p := (1− δ)× τv,p + δ ×Δτv,p (18)

where δ is the global pheromone decay parameter (0 < δ < 1) and Δτv,p is the
pheromone reinforcement applied to each v−p pairs and is computed as follows:

Δτv,p =

{
PEGBS if v − p ∈ GBS

0 otherwise
(19)

314 M.H. Ferdaus et al.

5 Performance Evaluation

Because of the lack of access to large scale testbeds or real cloud infrastructures
and ease of reproducibility, we resorted to simulation-based evaluation to com-
pare the performance of the proposed AVVMC to the following existing works in
literature: 1) an adapted version of Max-Min Ant System (MMAS) metaheuristic
for VM consolidation (MMVMC) [15], 2) a greedy algorithm (VectorGreedy) [6]
for solving consolidation that uses vector algebra for mean estimation of multi-
dimensional resources, 3) a modified version of the FFD algorithm (FFD-Volume)
[7] that uses volume-based mean estimator, and 4) another modified FFD
algorithm (FFD-L1Norm) based on L1 norm mean estimator.

The simulated data center consists of a cluster of homogeneous PMs and
VM resource demand for each resource type is expressed in percentage of to-
tal resource capacity of PM. We used reference-based VM resource demands:
Ref = z% means each randomly generated VM resource demand Dr falls in
the interval [0, 2z] for r ∈ {CPU,MEM, IO}. Considering the fact that clouds
deploy high-end servers and try to host as many VMs as possible in each active
server to increase resource utilization, we conducted our simulation for the sce-
narios where expected average PE would be more than 4, otherwise there would
not be much scope for consolidation and benefit of using specialized algorithms.
Therefore, we used reference values of Ref = 10%, 15%, 20%, and 25% with
their corresponding expected average PE of 10, 6.7, 5, and 4. The simulation is
conducted through 10 independent simulation runs and each run was repeated
for 100 times and finally, the results are generated after taking their average.

The optimal values of the parameters used in AVVMC are measured through
rigorous parameter sensitivity analysis in the preliminary phases of the experi-
ment and are set as follows: nAnts = 5, nCycleT erm = 5, β = 2, δ = 0.5, q0 =
0.8, and ω = 0.5. Parameters for the other algorithms are taken as reported in
the respective papers.

Table 1 summarizes performance of various algorithms for 1000 VMs in terms
of 1) the number of active PMs, 2) achieved VM packing efficiency, and 3) power
consumption according to the overall power consumption model (Eq. 10). For
the purpose of simulation, we set Eidle and Efull to 162 watts and 215 watts, re-
spectively as used by Gao et al. [16]. Table 1 shows that for all the four reference
values, AVVMC outperforms other algorithms in all the above performance met-
rics. It also shows that AVVMC achieves PE near the expected average values.
One interesting observation from column 6 of Table 1 is that AVVMC achieves
comparatively better performance over MMVMC and VectorGreedy for larger
reference values (i.e. larger VM sizes), whereas it achieves comparatively better
performance over FFD-based algorithms for smaller reference values (i.e. smaller
VM sizes). The reason is that metaheuristic-based solutions have higher flexibil-
ity to refine the solutions for smaller reference values (i.e. when higher number
of VMs can be packed in a single PM) compared to larger reference values. On
the other hand, FFD-based greedy solutions achieve higher overall resource uti-
lization and need lesser number of active PMs for larger reference values (i.e.
when VMs are larger).

Virtual Machine Consolidation in Cloud Data Centers 315

Table 1. Simulation results across various performance metrics

Ref Algorithm # Active Achieved Power Con. % Imp.
PM PE (Watt) (Power)

10%
AVVMC 100 10.00 21280.03
MMVMC 103 9.71 21759.55 2.20

VectorGreedy 108 9.26 22582.51 5.77
FFDL1Norm 117 8.55 23927.11 11.06
FFDVolume 118 8.47 24165.25 11.94

15%
AVVMC 156 6.41 33114.59
MMVMC 163 6.13 34331.21 3.54

VectorGreedy 167 5.99 34990.55 5.36
FFDL1Norm 178 5.62 36824.39 10.07
FFDVolume 177 5.65 36594.35 9.51

20%
AVVMC 215 4.65 45244.68
MMVMC 226 4.42 46945.68 3.62

VectorGreedy 240 4.17 49225.02 8.09
FFDL1Norm 242 4.13 49628.40 8.83
FFDVolume 242 4.13 49677.00 8.92

25%
AVVMC 267 3.75 56325.08
MMVMC 286 3.50 59438.72 5.24

VectorGreedy 310 3.23 63289.46 11.00
FFDL1Norm 296 3.38 61008.50 7.68
FFDVolume 296 3.38 61099.22 7.81

0

10

20

30

40

50

60

70

10% 15% 20% 25%

AVVMC

MMVMC

VectorGreedy

FFDL1Norm

FFDVolumeRe
so

ur
ce

 W
as

ta
ge

 (N
or

m
al

ize
d)

VM Resource Demand Reference (Ref)

Fig. 1. Bar chart representation of total resource (normalized) wastage of AVVMC
and other algorithms

Fig. 1 shows a bar chart representation of the total resource (normalized in
percentage) wastage of active PMs that host 1000 VMs according to (Eq. 8) for
the VM placement solutions produced by the different consolidation algorithms.
The figure shows that AVVMC significantly reduces the resource wastage com-
pared to other algorithms. This is because AVVMC tries to improve the overall
resource utilization with preference to consolidate VMs with complementary re-
source demands in each server and thus reduces resource wastage across different
resource dimensions.

In order to assess AVVMC for time complexity, simulation is conducted for
larger number of VMs and the solution computation time is plotted (Fig. 2). The
algorithm is written in Java language and ran on a Dell Workstation having Intel
Core i5-2400 3.10 GHz CPU (4 cores), and 4 GB of RAM. It is observed that
computation time increases non-linearly with the number of VMs with small
gradient and for 2000 VMs, AVVMC takes around 25 seconds on average.

316 M.H. Ferdaus et al.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Ref=10%
Ref=15%
Ref=20%
Ref=25%

Ru
n

tim
e

(s
ec

)

Number of VM

Ru
n

tim
e

(s
ec

)

Number of VMs

Fig. 2. Solution computation time of AVVMC for large problem instances

6 Conclusions and Future Work

In this paper, we presented several aspects of server resource utilization and
consolidation, and proposed an ACO metaheuristic-based server consolidation
mechanism to address both power consumption and resource wastage minimiza-
tion in large virtualized data centers. We presented performance evaluation by
comparing the proposed technique with some of the recent techniques proposed
in the literature. We also showed evaluation of time complexity of solution com-
putation and argued about the feasibility and effectiveness of the algorithm for
cloud data centers.

As future work, we plan to incorporate mechanisms for efficient network
resource utilization in cloud infrastructures during VM placement and consol-
idation decisions. We also expect to consider current VM assignments and re-
configuration (including VM live migrations) overheads during VM placement
decision making phase. In this way, an overall VM placement framework will be
designed and implemented that will be aware of both energy consumption and
compute-network resource utilization.

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

2. Miller, R.: Ballmer: Microsoft has 1 million servers (July 2013),
http://www.datacenterknowledge.com/archives/2013/07/15/

ballmer-microsoft-has-1-million-servers/

3. Perspectives, I.: Using a Total Cost of Ownership (TCO) model for your data center
(October 2013), http://www.datacenterknowledge.com/archives/2013/10/
01/using-a-total-cost-of-ownership-tco-model-for-your-data-center/

http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-microsoft-has-1-million-servers/
http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-microsoft-has-1-million-servers/
http://www.datacenterknowledge.com/archives/2013/10/01/using-a-total-cost-of-ownership-tco-model-for-your-data-center/
http://www.datacenterknowledge.com/archives/2013/10/01/using-a-total-cost-of-ownership-tco-model-for-your-data-center/

Virtual Machine Consolidation in Cloud Data Centers 317

4. Barroso, L., Holzle, U.: The case for energy-proportional computing. Com-
puter 40(12), 33–37 (2007)

5. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. Computational
Intelligence Magazine. IEEE 1(4), 28–39 (2006)

6. Mishra, M., Sahoo, A.: On theory of VM placement: Anomalies in existing method-
ologies and their mitigation using a novel vector based approach. In: 2010 IEEE In-
ternational Conference on Cloud Computing (CLOUD), pp. 275–282. IEEE (2011)

7. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: Black-box and
gray-box resource management for virtual machines. Computer Networks 53(17),
2923–2938 (2009)

8. Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient
consolidation of virtual machines in cloud data centers. In: Proceedings of the
8th International Workshop on Middleware for Grids, Clouds and e-Science. ACM
(2010)

9. Li, X., Qian, Z., Chi, R., Zhang, B., Lu, S.: Balancing resource utilization for con-
tinuous virtual machine requests in clouds. In: 2012 Sixth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp.
266–273. IEEE (2012)

10. Li, X., Qian, Z., Lu, S., Wu, J.: Energy efficient virtual machine placement algo-
rithm with balanced and improved resource utilization in a data center. Mathe-
matical and Computer Modelling 58(5), 1222–1235 (2013)

11. Van, H.N., Tran, F., Menaud, J.M.: Performance and power management for cloud
infrastructures. In: 2010 IEEE 3rd International Conference on Cloud Computing
(CLOUD), pp. 329–336 (July 2010)

12. Hermenier, F., Lorca, X., Menaud, J.M., Muller, G., Lawall, J.: Entropy: a consoli-
dation manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, VEE 2009, pp. 41–50.
ACM, New York (2009)

13. Levine, J., Ducatelle, F.: Ant colony optimization and local search for bin packing
and cutting stock problems. Journal of the Operational Research Society 55(7),
705–716 (2004)

14. Brugger, B., Doerner, K.F., Hartl, R.F., Reimann, M.: Antpacking-an ant colony
optimization approach for the one-dimensional bin packing problem. In: Got-
tlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 41–50. Springer,
Heidelberg (2004)

15. Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload place-
ment in clouds. In: Proceedings of the 2011 IEEE/ACM 12th International Con-
ference on Grid Computing, pp. 26–33. IEEE Computer Society (2011)

16. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing. Journal of Computer
and System Sciences (2013)

17. Wood, T., Cherkasova, L., Ozonat, K., Shenoy, P.: Predicting application re-
source requirements in virtual environments. HP Laboratories, Technical Report
HPL-2008-122 (2008)

18. Caprara, A., Toth, P.: Lower bounds and algorithms for the 2-dimensional vector
packing problem. Discrete Applied Mathematics 111(3), 231–262 (2001)

19. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. ACM SIGARCH Computer Architecture News 35(2), 13–23 (2007)

20. Dorigo, M., Gambardella, L.: Ant colony system: A cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computa-
tion 1(1), 53–66 (1997)

Workflow Scheduling on Federated Clouds

Juan J. Durillo and Radu Prodan

University of Innsbruck, Innsbruck, Austria
juan,radu@dps.uibk.ac.at

Abstract. Federated Clouds, or the orchestration of multiple Cloud ser-
vices for fulfilling applications’ requirements, is receiving increasing at-
tention. Despite their many advantages, federated Clouds also present
some downsides since different services may reside in different geograph-
ically located areas. This paper focuses on evaluating the advantages
and disadvantages, from the point of view of performance and financial
costs, of using a federation of Clouds for executing scientific workflows.
It evaluates a wide range of different workflow types with different re-
quirements in terms of computation and communication (produced and
consumed data), and discusses which kind of workflow applications can
benefit from a Cloud federation and how.

1 Introduction

Workflows emerged as a popular paradigm used by scientists and engineers to
model scientific and industrial applications. Workflow applications are usually
executed on parallel and distributed systems to minimize their completion time
or makespan. A challenging task here is to determine the “optimal” mapping
or schedule of the workflow tasks onto the available resources that produces the
shortest makespan, a well-known NP-complete problem.

Nowadays, Cloud computing is becoming attractive for companies and insti-
tutions to access to parallel and distributed resources. Despite the promise of
theoretically infinite number of resources, data centers acting as Cloud providers
have limited capacity to be shared among many clients. In overloaded situa-
tions, a provider infrastructure may not be large enough to accommodate all
customers’ requests, which negatively impacts its popularity. To mitigate this
problem, several providers limit the maximum number of instances that can be
simultaneously used by a single user, for example to 20 by Amazon EC2. In
response to this, federated Clouds [12] aim to coordinate (federate) the Cloud
infrastructure of several institutions, offering access to their services and, there-
fore, significantly increasing the resources available to an application. A Cloud
federation can be viewed as a marketplace where providers sell and buy on-
demand computational capacity and offer it transparently to their customers. In
this case, if a single provider does not have enough resources for accommodating
a customer request, it can buy the missing capacity from the marketplace.

Federated Clouds bring new opportunities when using commercial Clouds, as
different providers may offer resources with different performance and pricing

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 318–329, 2014.
c© Springer International Publishing Switzerland 2014

Workflow Scheduling on Federated Clouds 319

models. In such situations, a customermay be interested in scheduling low-priority
tasks on the slow resources offered by a cheap provider, and high-priority criti-
cal tasks on the expensive fast resources offered by a high-performance provider.
Scheduling a workflow application becomes therefore a multi-objective optimisa-
tion problem with at least two in-conflict criteria,makespan and financial cost, to
which a single solution does not exist. In fact, the solution to this kind of prob-
lems consists of a set of tradeoff solutions between the conflicting criteria, known
as Pareto front. Moreover, federated Clouds pose additional drawbacks limiting
the range of applications that can benefit from them. For example, resources
belonging to different providers may be located in different areas connected via
best-effort Internet, which is particularly problematic in the context of data-
intensive applications. In addition, companies may impose restrictions over sen-
sitive data that must stay within the frontiers of a single institution, limiting
optimisation opportunities. In this situations, it is not clear whether federated
Clouds are an appealing alternative for workflow applications.

In this paper we investigate the potential of a federation of Clouds for multi-
criteria workflow scheduling. We tackle the problem from the point of view of
a broker coordinating the services of two federated Clouds with different per-
formance and price models: Amazon EC2 and GoGrid 1. We analyse how that
federation can be used to schedule workflow applications with different shapes
(degree of parallelism), different number of activities, and different requirements
in terms of computation and communication. The contributions of this paper are
threefold: (1) we describe the multi-objective workflow scheduling problem on
federated Clouds using the Multi-Objective Heterogeneous Earliest Finish Time
(MOHEFT) algorithm; (2) we analyse whether federated Clouds improve the
execution of workflow application; and (3) we analyse of the tradeoff between
the workflow execution and its financial cost on federated Clouds.

The rest of the manuscript is organized as follows. Next section contains re-
lated work. In Section 3 we describe our architecture and research problem,
followed by the Cloud-aware MOHEFT scheduling algorithm in Section 4. Sec-
tions 5 and 6 describe the experimental setup and the obtained results. Finally,
Section 7 contains the conclusions and the future work.

2 Related Work

Previous attempts to multi-objective workflow scheduling consisted in trans-
forming the problem into a mono-objective optimization one using user pref-
erences [3,9,11], imposing constraints over the optimisation criteria [16,8], or
optimising single objectives individually [4]. More recently, several approaches
computing the whole set of tradeoff solutions emerged grouped in two main lines:
(1) genetic algorithms-based techniques for optimizing makespan and cost [23],
makespan and energy consumption [13], or makespan, cost and reliability [18];
and (2) list-based heuristics for optimizing makespan and cost or makespan [5,6]

1 http://www.gogrid.com/products/cloud-hosting

http://www.gogrid.com/products/cloud-hosting

320 J.J. Durillo and R. Prodan

and energy consumption [7]. Only few of these works targeted workflow schedul-
ing on Clouds and none of them considers Cloud federations.

While most related research deals with the placement of Virtual Machines
(VM) onto Physical Machines (PM) [14,15,20,21], scheduling of tasks onto VMs
has been scarcely studied on the context of a Cloud federation. In this sense,
[10] analyses and proposes several heuristics for task scheduling onto resources
belonging to the same provider but geographically located in different areas.
Though not purely a federation of Clouds, the authors address a similar problem
to the one arising in a federated system. The authors in [17] present a semantic
architecture to build schedulers for federated Cloud with emphasis on the system
architecture with no special focus to the optimality of the scheduler. None of
these approaches consider a purely multi-objective formulation of the problem.

3 Model

We describe in this section the architecture, workflow, and resource model under-
neath our approach, together with the makespan and financial cost objectives.

3.1 Architecture

Fig. 1 depicts our system architecture whose main component is the broker co-
ordinating resources belonging to different Cloud providers. This broker receives
a workflow application as input and is in charge of computing several schedule
solutions trading off makespan and financial cost. Once these tradeoff solutions
are computed, it selects a schedule out of them, usually user-guided and biased
by external conditions. Solution selection mechanisms are out of the scope of
this paper, which focuses on computing an optimal and representative set of
tradeoff solutions. Once a solution has been selected, the broker is in charge
of resource provisioning and deploying the workflow activities for execution. In
order to compute the tradeoff schedules, the broker needs to know the workflow,
the available resource types, and how to compute the makespan and financial
cost entailed by different schedules.

3.2 Workflow Model

We model a workflow as a directed acyclic graph: W = (A,D) consisting of n
activities A =

⋃n
i=1 {Ai}, interconnected through control flow and data flow de-

pendencies; D = {(Ai, Aj ,Dataij) | (Ai, Aj) ∈ A×A}, where Dataij represents
the size of the data which needs to be transferred from activity Ai to activity
Aj . We use pred(Ai) = {Ak| (Ak, Ai,Dataki) ∈ D} to denote the predecessor set
of activity Ai, (i.e. activities to be completed before starting Ai). We assume
that the computational workload of every activity Ai is known and is given by
the number of machine instructions to be executed.

Workflow Scheduling on Federated Clouds 321

Fig. 1. System architecture

Instance Speed PriceGFLOPS/
[GFLOPS] [$/h] $

Amazon EC2 Instances
m1.small 2.0 0.1 19.6
m1.large 7.1 0.4 17.9
m1.xlarge 11.4 0.8 14.2
c1.medium 3.9 0.2 19.6
c1.xlarge 50.0 0.8 62.5

GoGrid Instances
GG.large 8.8 0.16 46.4
GG.xlarge 28.1 0.76 37.0

Fig. 2. EC2 and GoGrid perfor-
mance and prices

3.3 Resource Model

The broker assumes that our hardware platform consists of a set of m heteroge-
neous resources R = ∪m

j=1Rj , which can be of any type as our case studies in
this paper Amazon EC2 and GoGrid. In particular, we consider in this paper the
five Amazon EC2 resources and the two GoGrid instances analysed in [2] and
summarized in Table 2. For a given resource Rj of a certain type, we know its av-
erage performance measured in GFLOPs and its price per hour of computation.
The final price of a schedule is based the resources’ usage and the data stored
and transferred. This price depends on four components: (1) price per hours of
resource usage PERi , (2) price per MB of data storage PSRi , (3) price per MB
of data received PIRi , and (4) price per MB of data sent PORi . The prices of
these components depend on the Cloud provider. As mentioned before, Cloud
providers may impose some constraints too. While in theory a user can access an
infinite pool of resources, most providers restrict this number to a maximum ofN
instances that can be simultaneously acquired. These N resources can be of any
type and do not have to be kept invariant during execution. We use sched(Ai)
to denote the resource on which the task Ai is scheduled for execution.

3.4 Makespan

To compute the makespan, it is necessary to define the execution time t(Ai,Rj)

of an activity Ai on a resource Rj = sched (Ai) as the sum of the time required
for transferring the biggest input data from any Ap ∈ pred (Ap) and the time
required to execute Ai on Rj :

t(Ai,Rj) = max
Ap∈pred(Ai)

{
Datapi

bpj

}
+

workload (Ai)

sj
, (1)

where Datapi is the size of the data to be transferred between Ap and Ai, bpj
is the bandwidth between the resource where task Ap was executed and the
resource Rj (corresponding to the bandwidth of the local network in case both
resources belong to the same provider, or to the Internet connection in case they
belong to different providers), workload (Ai) represents the length of the task
Ai in machine instructions, and sj the speed of the resource Rj in number of

322 J.J. Durillo and R. Prodan

machine instructions per second (see second column of Table 2). Next, we can
compute the completion time TAi of activity Ai considering the execution time
of itself and its predecessors:

TAi =

{
t(Ai,sched(Ai)), pred (Ai) = ∅;

max
Ap∈pred(Ai)

{
TAp + t(Ai,sched(Ai))

}
, pred (Ai) �= ∅. (2)

We define the makespan as the maximum completion time of all activities:

TW = max
i∈[1,n]

{
T(Ai,sched(Ai))

}
. (3)

3.5 Financial Cost

The financial cost for executing an activity depends on two terms: the computa-
tion cost C(comp) and the cost of data transfer and storage C(data). We assume
that all providers charge the customers using an hourly based model (i.e. per

hour of computation). We define C
(data)
(Ai,Rj)

as the cost of the data transfers In(Ai)

and Out (Ai) and storage Data (Ai) resulting from executing activity Ai on re-
source Rj :

C
(data)
(Ai,Rj)

= Data (Ai) · t(Ai,Rj) · PSRi + In(Ai) · PIRi +Out (Ai) · PORi , (4)

In defining the cost C
(comp)
Rj

of using a resource Rj , we assume that for each task

Ai executed on Rj we record two timestamps: t
(start)
Ai

when the activity starts

and t
(end)
Ai

when the activity finishes its execution. We consider without loss of
generality that the times for transferring the input In (Ai) and the output data

Out (Ai) are included in the interval between t
(start)
Ai

and t
(end)
Ai

.
Let us consider now the set of all p activities scheduled on resourceRj denoted

as {J1, . . . , Jp}, where p < n and sched (Ji) = Rj , i ∈ [1, p], sorted based on their

start timestamp: t
(start)
J1

< . . . < t
(start)
Jp

. Based on this ordering, we cluster these

activities in q ≤ p different groups G
(j)
k , 1 ≤ k ≤ q. All activities in one group

are executed consecutively without releasing the resource. After the activity with
the largest start timestamp in the group completes, the resource is released.

We construct the first group G
(j)
1 = {J1, . . . , Jr} , r ≤ p following three rules:

1. The first activity J1 belongs to the first group: J1 ∈ G
(j)
1 ;

2. Every activity Ji ∈ G
(j)
1 , 2 ≤ i ≤ r, starts before the current leased hour

expires and before the machine is released:

t
(start)
Ji

< t
(start)
J1

+

⌈
t
(end)
Ji−1

− t
(start)
J1

3600

⌉
· 3600. (5)

We convert the total time of using a resource to hours by dividing it by
3600 and using the ceiling operator. This equation guarantees a contiguous
resource allocation of activities within one hour slot;

Workflow Scheduling on Federated Clouds 323

3. The next activity not part of the first group Jr+1 �∈ G
(j)
1 , r + 1 ≤ p, starts

after the last hour of computation elapses and the resource is released:

t
(start)
J1

+

⌈
t
(end)
Jr

− t
(start)
J1

3600

⌉
· 3600 < t

(start)
Jr+1

. (6)

Successive groups are built until the last activity Jp has been assigned to one

group. The second group G
(j)
2 is constructed in the same way starting from Jr+1

instead of J1, and similarly for the rest of the groups. Once all groups have been

created, we define the cost C
(comp)
Rj

of using the resource Rj as the number of
hours required for executing all groups multiplied by the cost per hour:

C
(comp)
Rj

= PERj ·
q∑

k=1

⎡⎢⎢⎢
∑

Ai∈G
(k)
Rj

t(Ai,Rj)

3600

⎤⎥⎥⎥ . (7)

The cost of executing the workflow W = (A,D) is the sum of the cost of all
m the used resources and the cost for transferring and storing the data:

CW =

m∑
j=1

C
(comp)
Rj

+
∑

(Ai,Aj ,Dataij)∈D

C
(data)
(Ai,Rj)

. (8)

4 Cloud-Aware MOHEFT Algorithm

We employ a method for computing the tradeoff solutions as an extension of
the MOHEFT [6] algorithm customised for dealing with the characteristics of
federated Cloud environments. MOHEFT is an instance of a class of multi-
objective greedy algorithms as defined in [5], based on extending the HEFT [19]
algorithm to consider multiple simultaneous criteria. MOHEFT, summarized
in Algorithm 1, requires the instance types offered by all Cloud providers, the
maximum number of resources that can be simultaneously rented from each
provider N , and the desired number of tradeoff solutions K.

Firstly, MOHEFT ranks the tasks in the workflow using the B-rank metric and
creates a set S of K empty schedules (lines 2 and 3). Afterwards, it iterates over
the list of tasks and extends every solution in S by mapping the next task onto
different possible instances. For every task, the algorithm builds a list of possible
resources where the task can be executed, either by reusing an instance already
assigned to a previous task, or by acquiring a new instance (lines 10 and 14,
respectively). This list is used for building new schedules that also consider the
current task. The newly produced schedules are stored in a temporary set S′,
initially empty. After each iteration, S′ replaces S before the next task in the
list is considered. Obviously, this strategy results in an exhaustive search if we
do not include any restrictions. To avoid this, MOHEFT saves only the best
K tradeoff solutions from the temporary set S′ to the set S, selected based
on the objective functions and the diversity of the set, i.e., how different these

324 J.J. Durillo and R. Prodan

Algorithm 1. Cloud-aware MOHEFT algorithm.

Require: W = (A,D), A =
⋃n

i=1 Ai � Workflow application
Require: N = (N1, ...,Nc) � Maximum instances allowed in each of the c Cloud providers
Require: I =

⋃m
i=1 Ii � Different instance types offered by all c Cloud providers

Require: K � Desired number of trade off solutions
Ensure: S =

⋃K
i=1 schedW , schedW = {(Ai, sched (Ai)) |∀Ai ∈ A} � Set of K tradeoff schedules

1: function MOHEFT(W,N , I,K)
2: Rank ← B-rank(A) � Order tasks according to the B-rank
3: for k ← 1,K do � Create K empty workflow schedules
4: Sk ← ∅
5: end for
6: for i ← 1, n do � Iterate over the ordered tasks in the Rank list
7: S′ ← ∅
8: for k ← 1,K do � Iterate over all tradeoff schedules
9: R ← ∅ � Build a set of possible instances for executing next task
10: for r ← 1, |Sk| do � Reuse instance where tasks in Sk are executing
11:

(
A′, R′) = Skr

12: R ← R ∪ R′

13: end for
14: for r ← 1,m do � Consider a new instance of each type
15: R ← R ∪ Ir
16: end for
17: for j ← 1, |R| do � Iterate over all resources
18: s ← Sk ∪ (Ranki, Rj) � Extend all intermediate schedules
19: if ViolationConstraints(s,N) then � Check if too many VMs from a provider
20: Ts ← ∞ � Mark schedule as non-valid
21: Cs ← ∞
22: end if
23: S′ ← S′ ∪ {s} � Add new mapping to intermediate schedules
24: end for
25: end for
26: S′ ← sortCrowdDist(S′,K) � Sort according to the crowding distance
27: S ← First(S′,K) � Choose K schedules with the highest crowding distance
28: end for
29: return S
30: end function

solutions are (see [6]). To deal with the restriction on the maximum number of
instances that can be simultaneously rented from a provider, MOHEFT discards
any schedule that violates this constraint (line 19) by setting its financial costs
and makespan to infinite. This way, the partial solution will be always worse
(dominated) than any other schedule and will be discarded in line 26.

5 Experimental Setup

We describe in this section the workflow and resource setups used in evaluating
our approach.

5.1 Workflow Applications

We consider in our evaluation two types of workflow applications: synthetically-
generated and real-world.

We generated the synthetic workflows as described in [22] considering two
kinds of shapes: Type-1 workflows with many independent activities sharing one
successor and one predecessor, and Type-2 workflows where most tasks have

Workflow Scheduling on Federated Clouds 325

different successors and predecessors. Type-1 workflows represent applications
which can clearly benefit from a high number of resources since many activities
can be executed in parallel. In Type-2 workflows, the number of parallel activities
is lower than in the former case, hindering but not preventing the benefit of
parallel execution. In both cases, we consider workflow instances with a number
of activities between 100 and 1000. We generated the length of each activity
using a Gaussian distribution with the execution time of around 10 seconds
on an average single core instance. For both types, we considered three classes
with different data requirements: Low where each activity produces/consumes
around 10MB of data, Medium producing/consuming around 100MB, and High
producing/consuming around 1GB.

The Persitence of Vision Raytracer (POV-Ray) [1] application is a free tool for
creating three dimensional graphics used by scientists in biochemistry, medicine
or architecture visualisation. It consists of rendering a set of images/frames,
merging them, and storing the result in a file. The number of frames to merge
determines the number of activities in the workflow. The volume of data con-
sumed by this application also depends on the number of frames which have
to be transferred to the merger activity after being rendered. We consider here
three instances of this application rendering 512, 1024, and 4096 frames.

5.2 Resources

We carried out the experiments in a federated infrastructure with two IaaS
Cloud providers: Amazon EC2 and GoGrid. We use for modelling the workflows’
makespan the average performance in millions of floating point operations per
second (GFLOPs) of five different instance types of Amazon EC2 and three
instances of GoGrid, as reported the Iosup et al. in [2] after extensive benchmark
experimentation (see Table 2). We assume that the resources of the same provider
are connected using a local 1000mbps network and the different providers are
connected using a 150mbps wide area network. We consider that a user can
simultaneously rent 20 instances from both Amazon EC2 and GoGrid, which
can be of any of the types summarized in Table 2. Although these limits can be
usually extended upon request, we intend in this paper evaluate how MOHEFT
can deal with the default configurations.

6 Experimental Results

In this section, we analyse the schedules computed by MOHEFT for each type
of workflow when using a federation of EC2 and GoGrid Cloud and a maximum
of K = 10 tradeoff solutions. These tradeoff solutions will be graphically de-
picted in Figures 3, 4, and 5, showing for each solution (numbered 0− 9 on the
horizontal axis) the makespan and cost normalized in the interval [0, 1]. This nor-
malisation is done using the maximum and minimum values within the Pareto
front for both the makespan and financial cost. Therefore, a value of makespan
= 0 after the normalisation indicates the solution with the shortest makespan

326 J.J. Durillo and R. Prodan

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

Amazon
GoGrid

makespan
cost

(a) Low data class.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

Amazon
GoGrid

makespan
cost

(b) Medium data class.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

Amazon
GoGrid

makespan
cost

(c) High data class.

Fig. 3. Normalized Type-1 workflow tradeoff schedules

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

Amazon
GoGrid

makespan
cost

(a) Low data class.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

Amazon
GoGrid

makespan
cost

(b) Medium data class.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

Amazon
GoGrid

makespan
cost

(c) High data class.

Fig. 4. Normalized Type-2 workflow tradeoff schedules

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

Amazon
GoGrid

makespan
cost

(a) 512 frames.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

Amazon
GoGrid

makespan
cost

(b) 1024 frames.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

Amazon
GoGrid

makespan
cost

(c) 4096 frames.

Fig. 5. Normalized POV-Ray workflow tradeoff schedules

in the Pareto front, and a value of makespan = 1 indicates the solution with the
largest makespan within the Pareto front. The same is applicable to the cost.
These graphs also show the percentage of instances simultaneously used from
the maximum allowed by each provider. This information is showed in form of
bar charts, where the height of each bar indicates the percentage normalised in
the [0,0.5] interval. We use a total of 40 resources (20 from each provider) as
explained before, therefore, a bar with a height of 0.5 indicates that 20 provider
machines have been used. We use two different bar textures to differentiate be-
tween the two considered providers. In all the experiments of this section, graphs
depict the information for workflows consisting of 1000 activities; experiments
with a different number of activities have shown the same behavior but have
been omitted here due to space limitations.

6.1 Type-1 Workflows

Fig. 3 summarizes the results obtained for workflows Type-1. We focus first our
analysis on the advantages of using the Cloud federation and comment afterwards
on the makespan and cost of the computed solutions. The three graphs show that
the benefits of using a federation of Clouds decreases with the volume of the data

Workflow Scheduling on Federated Clouds 327

managed by the application.When the data volume is low, the workflowmakespan
can be further decreased by considering the joined use of services from the federa-
tion. We observe this behavior in Fig. 3a, where the three tradeoff schedules with
smallest makespan (labelled 7, 8, 9) uses all available machines provided by the
federation (the percentage of machines used from both providers is 0.5). As long
as the data volume increases, aggregating resources from different providers does
not reduce the makespan, despite the fact that the number of independent activ-
ities in the workflow is high. In particular, when the data volume is medium, the
percentage of machines used from the federation decreased and never receased the
maximum of 40. Finally, when the data volume is high, the federated Cloud does
not bring any advantage and the computed schedules only use machines of one
or the other provider. Regarding the makespan and financial cost, we observe in
all cases that a schedule with an overhead of less than 10% with respect to the
shortest computed makespan dramatically increases the costs. For example, the
difference between the makespan of the schedules labelled 6 and 9 is smaller than
5%, while the difference in financial costs are up to 80% (see Fig. 3a). A deeper
analysis of the results also reveals that cheap solutions rarely consider federated
resources and rather use resources from a single provider. A possible explanation
for this behavior is the hourly based price model offered by the providers, cheap
solutions trying to increase resource utilisation instead of launching simultaneous
instances.

6.2 Type-2 Workflows

Fig. 4 depicts the results obtained for Type-2 workflows. In all the evaluated sce-
narios, MOHEFT produced less than K = 10 tradeoff schedules which indicates
that the tradeoff between makespan and financial cost is lower for this kind of
workflows than for those of Type-1. Regarding to the used resources, only few
instances are required to execute this kind of workflows as a consequence of the
lower number of activities which can be executed in parallel. Therefore, the use
of a Cloud federation does not bring any benefit in this situation. The analysis
of the makespan versus cost reports in this case the same behavior as before:
reducing the makespan overhead to less than 10% over the shortest one implies
a strong economical investment, while schedules with more than 10% overhead
imply a small price fraction.

6.3 POV-Ray

As explained before, each activity of the POV-Ray workflow renders a frame and
transfers it to a final activity which merges all the frames and stores them into a
file. Each frame is of around 1MB in size; therefore, the POV-Ray application can
be considered as a Type-1 workflow and expects to achieve benefits from using a
federation of Clouds. As summarized in Fig. 5, it is obvious that the federation
helps in reducing the makespan of this application. The three evaluated cases
show that the higher the number of activities, the higher the benefit from the

328 J.J. Durillo and R. Prodan

federation. This result is a consequence of the high degree of parallelism showed
by this workflow application and the low volume of data required.

7 Conclusions and Future Work

In this paper we tackled the problem of multi-objective workflow scheduling
from the perspective of a Cloud federation and presented a Cloud-aware of the
multi-objective HEFT algorithm, called MOHEFT. We analyse the potential of
MOHEFT to schedule workflow applications with different properties: workflow
shape, size, and amount of data to be transferred among workflow activities.
Experimental results using Amazon EC2 and GoGrid as independent providers
illustrated that federated Clouds can help in shortening the makespan for work-
flow applications which do not require transferring large amounts of data among
activities. In situations when data transfers dominate the computation time, the
workflow does not benefit from a federation of Clouds and performs better in a
single provider configuration. In future work we will extend the analysis for other
real-world applications and a wider set of Cloud providers. We will also anal-
yse extensions to MOHEFT to better deal with federated Clouds and workflows
dealing with big data problems.

References

1. http://www.povray.org/

2. Alexandru, I., Ostermann, S., Yigitbasi, M., Prodan, R., Fahringer, T., Epema, D.:
Performance analysis of cloud computing services for many-tasks scientific comput-
ing. In: IEEE Transactions onf Parallel and Distributed Systems (2010)

3. Assayad, I., Girault, A., Kalla, H.: A bi-criteria scheduling heuristics for distributed
embedded systems under reliability and real-time constraints. In: International
Conference on Dependable Systems and Networks, DSN 2004, Firenze, Italy. IEEE
(June 2003)

4. Bessai, K., Youcef, S., Oulamara, A., Godart, C., Nurcan, S.: Bi-criteria workflow
tasks allocation and scheduling in cloud computing environments. In: Proceedings
of the 2012 IEEE Fifth International Conference on Cloud Computing, CLOUD
2012. IEEE Computer Society, Washington, DC (2012)

5. Canon, L.-C., Emmanuel, E.: Mo-greedy: An extended beam-search approach for
solving a multi-criteria scheduling problem on heterogeneous machines. In: Inter-
national Heterogeneity in Computing (2011)

6. Durillo, J., Fard, H., Prodan, R.: Moheft: A multi-objective list-based method for
workflow scheduling. In: 4th IEEE International Conference on Cloud Computing
Technology and Science (December 2012)

7. Durillo, J.J., Nae, V., Prodan, R.: Multi-objective workflow scheduling: An analysis
of the energy efficiency and makespan tradeoff. In: CCGRID (2013)

8. Fard, H., Prodan, R., Barrionuevo, J., Fahringer, T.: A multi-objective approach
for workflow scheduling in heterogeneous environments. In: 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (May
2012)

http://www.povray.org/

Workflow Scheduling on Federated Clouds 329

9. Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling parallel applications on utility grids:
Time and cost trade-off management. In: Proceedings of the Thirty-Second Aus-
tralasian Conference on Computer Science, ACSC 2009, Australian Computer So-
ciety, Inc., Darlinghurst (2009)

10. Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious
scheduling of hpc applications on distributed cloud-oriented data centers. J. Par-
allel Distrib. Comput. 71(6) (June 2011)

11. Hakem, M., Butelle, F.: Reliability and scheduling on systems subject to failures.
In: Proceedings of the 2007 International Conference on Parallel Processing ICPP
2007. IEEE Computer Society, Washington, DC (2007)

12. Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S., Kunze, M.: Cloud Fed-
eration. In: Proceedings of the 2nd International Conference on Cloud Comput-
ing, GRIDs, and Virtualization, CLOUD COMPUTING 2011. IARIA (September
2011)

13. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Albi, E.-G.T., Zomaya, A.Y., Tuyt-
tens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware s cheduling
for cloud computing systems. Journal of Parallel and Distributed Computing (71)
(2011)

14. Rao, L., Liu, X., Liu, W.: Minimizing electricity cost: Optimization of distributed
internet data centers in a multi-electricity-market environment. In: In Proc. of
INFOCOM (2010)

15. Ren, S., He, Y., Xu, F.: Provably-efficient job scheduling for energy and fairness
in geographically distributed data centers. In: Proceedings of the 2012 IEEE 32nd
International Conference on Distributed Computing Systems, ICDCS 2012. IEEE
Computer Society, Washington, DC (2012)

16. Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows
with budget constraints. In: Gorlatch, S., Danelutto, M. (eds.) Integrated Research
in Grid Computing. CoreGrid series. Springer (2007)

17. Santana-Perez, I., Perez-Hern’ndez, M.S.: A semantic scheduler architecture for
federated hybrid clouds. In: 2012 IEEE Fifth International Conference on Cloud
Computing (2012)

18. Talukder, A.K.M.K.A., Kirley, M., Buyya, R.: Multiobjective differential evolution
for scheduling workflow applications on global grids. Evolution 21(13) (2009)

19. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3) (March 2002)

20. Urgaonkar, R., Kozat, U.C., Igarashi, K., Neely, M.J.: Dynamic resource allocation
and power management in virtualized data centers. In: NOMS. IEEE (2010)

21. Yao, Y., Huang, L., Sharma, A., Golubchik, L., Neely, M.: Power cost reduction in
distributed data centers: A two time scale approach for delay tolerant workloads.
IEEE Transactions on Parallel and Distributed Systems 99 (2013) (PrePrints)

22. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid
computing. In: Xhafa, F., Abraham, A. (eds.) Meta. for Sched. in Distri. Comp.
Envi. SCI. vol. 146, pp. 173–214. Springer, Heidelberg (2008)

23. Yu, J., Kirley, M., Buyya, R.: Multi-objective planning for workflow execution on
grids. In: Proceedings of the 8th IEEE/ACM International Conference on Grid
Computing, GRID 2007. IEEE Computer Society Press, Washington, DC (2007)

Locality-Aware Cooperation for VM Scheduling

in Distributed Clouds

Jonathan Pastor1, Marin Bertier2, Frédéric Desprez4, Adrien Lebre1,
Flavien Quesnel1, and Cédric Tedeschi3

1 ASCOLA Research Group, Mines Nantes / Inria / LINA, Nantes, France
2 ASAP Research Group, INSA / Inria / IRISA, Rennes, France

3 Myriads Research Group, Université de Rennes 1 / Inria / IRISA, Rennes, France
4 Avalon Research Group, LIP ENS Lyon UMR 5668, Lyon, France

firstname.lastname@inria.fr

Abstract. The promotion of distributed Cloud Computing infrastruc-
tures as the next platform to deliver the Utility Computing paradigm,
leads to new virtual machines (VMs) scheduling algorithms leveraging
peer-to-peer approaches. Although these proposals considerably improve
the scalability, leading to the management of hundreds of thousands of
VMs over thousands of physical machines (PMs), they do not consider
the network overhead introduced by multi-site infrastructures. This over-
head can have a dramatic impact on the performance if there is no mech-
anism favoring intra-site v.s. inter-site manipulations.

This paper introduces a new building block designed on top of a net-
work with Vivaldi coordinates maximizing the locality criterion (i.e.,
efficient collaborations between PMs). We combined such a mechanism
with DVMS, a large-scale virtual machine scheduler and showed its ben-
efit by discussing several experiments performed on four distinct sites
of the Grid’5000 testbed. With our proposal and without changing the
scheduling decision algorithm, the number of inter-site operations has
been reduced by 72%. This result provides a glimpse of the promising
future of using locality properties to improve the performance of massive
distributed Cloud platforms.

Keywords: Cloud Computing, locality, peer-to-peer, overlay network,
Vivaldi, DVMS, virtual machine scheduling.

1 Introduction

Introduced few years ago [6], the new trend to deliver Cloud Computing re-
sources, in particular Infrastructure as a Service (IaaS) solutions, consists in
leveraging several infrastructures distributed world-wide. If such distributed
Cloud Computing platforms deliver undeniable advantages to address important
challenges such as reliability, latency or even in somehow jurisdiction concerns,
most mechanisms that were previously used to operate centralized IaaS plat-
forms must be revisited to offer the same level of transparency for the end-users.

Keeping such an objective in mind, the use of the P2P paradigm has to
be strongly investigated. This is particularly true for scheduling algorithms in

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 330–341, 2014.
c© Springer International Publishing Switzerland 2014

Locality-Aware Cooperation for VM Scheduling in Distributed Clouds 331

charge of assigning virtual machines (VMs) on top of physical machines (PMs)
according to their effective needs (and reciprocally usages), to preserve a good
quality of service (QoS). Indeed and although major improvements have been
done, centralized approaches [8] are neither scalable nor robust enough. Hier-
archical solutions [4] that can be seen as good candidates face important limi-
tations: First, finding an efficient partitioning of resources is a tedious task as
matching a hierarchical overlay network on top of a distributed infrastructure
is often not natural. Secondly, in addition to requiring complex failover mecha-
nisms to face crashed leader/super peer and network disconnections, hierarchical
structures have not been designed to react swiftly to physical topology changes
such as node apparitions/removals and network performance degradations. P2P
algorithms allow to address both concerns, i.e., scalability as well as resiliency of
infrastructures. Although promising approaches have been proposed to address
the scheduling problem of VMs in a P2P fashion [13,3], they are still facing lim-
itations coming from the overlay network they rely on. The approach proposed
in [13] maps a ring overlay network on a distributed infrastructure which pre-
vents making any distinction between close nodes and distant ones. Similarly,
the approach described in [3], while adopting an orthogonal, gossip-based ap-
proach, still suffers from building a randomized overlay network, thus breaking
the physical topology.

Considering that both the network latency and the bandwidth between peers
have a strong impact on the reactivity criterion of the scheduling problem, locality
properties of peers should be considered to favor efficient VM operations. In other
words, to reduce as much as possible the time to switch from one schedule (i.e.,
a mapping between VMs and PMs running in the infrastructure) to another one,
it is crucial to make cooperation first between peers in the closest neighborhoods
before contacting peers belonging to other sites. Moreover, it is noteworthy that
this notion of locality is dynamic, and varies over time according to the network
bandwidth/latency and disconnections.

The contribution of this paper is a new building block that enables to tackle
the locality concern in distributed VM scheduling algorithms such as the two
aforementioned ones. We estimate the locality through a cost function of the
latency/bandwidth tuple between peers in the network, thus enabling each peer
to select its closest neighbors. We rely on Vivaldi [2], a simple decentralized
protocol allowing to map a network topology onto a logical space while preserving
locality. On top of Vivaldi, a shortest path construction, similar to the well-
known Dijkstra algorithm, is performed each time there is a need for cooperation
between two nodes taking part in the schedule. We illustrate the advantage of this
new building block by changing the overlay network in the DVMS proposal [13].
We selected DVMS as we have a good expertise of it and because it is, as far as
we know, the only one that guarantees to find a solution if one exists [12].

The remainder of this article is structured as follows. In Section 2, we discuss
some background regarding the DVMS proposal and the P2P technics to handle
the locality aspects. Section 3 gives an overview of our proposal by introducing
the short path algorithm on top of Vivaldi and the way we integrate it into

332 J. Pastor et al.

DVMS. In Section 4, we validate the proposal by analyzing its benefits with
respect to the previous version of DVMS by discussing experiments conducted
on Grid’5000. Related works are discussed in Section 5. Finally, we discuss per-
spectives and conclude this article in Section 6.

2 Background

2.1 DVMS

DVMS [12,13] (Distributed Virtual Machine Scheduler) is a framework that
schedules VMs cooperatively and dynamically in large-scale distributed systems.
It is deployed as a set of agents that are organized following a ring topology and
that cooperate with one another to guarantee that VM demands are satisfied
during their executions. Concretely, when a node 1 cannot guarantee the QoS
for its hosted VMs or when it is under-utilized, it starts an iterative scheduling
procedure (ISP) by querying its first neighbor to find a better placement; it thus
becomes the initiator of the ISP. If the neighbor cannot satisfy the request, it
is forwarded to the following free node until the ISP succeeds. When a viable
mapping has been found, the leader (i.e., the last peer that has taken part to
the ISP) reconfigures the system by performing adequate VM migrations. Such
an approach allows each ISP to send requests only to a minimal number of
nodes and even though an ISP can reserve all nodes if the corresponding prob-
lem is particularly hard to solve (thus guaranteeing that a solution will always
be found if it exits), experiments have shown that in most cases ISPs involve
only few nodes. Moreover, the DVMS proposal allows several ISPs to occur in-
dependently at the same moment throughout the infrastructure; in other words,
scheduling is performed on partitions of the system that are created dynamically,
which significantly improves the reactivity of the system. To prevent conflicts
that could occur if several ISPs performed concurrent operations on the same
PMs or VMs, it should be emphasized that PMs are reserved for exclusive use
by a single ISP.

An example involving three partitions is shown in Figure 1; in particular, we
can see the growth of partition 1 between two steps. Explaining in detail the
notion of “first out” is beyond the scope of this article but readers can consider
that the “first out” relation enables to handle communications efficiently, as each
node involved in a partition can forward a request directly to the first node on
the outside of its partition [13].

We formally proved the correctness of DVMS using temporal logic, and we
validated the first version of the prototype at large scale (by means of simulations
involving up to 80k VMs and 8k nodes and with experiments on the Grid’5000
testbed involving up to 4.7k VMs and 470 nodes [12]).

As discussed earlier, one limitation of this approach is related to its ring
topology that prevents it from taking into account the actual network topology.

1 In the following, node and PM will refer to the same entity (i.e., a physical server
of the infrastructure).

Locality-Aware Cooperation for VM Scheduling in Distributed Clouds 333

Fig. 1. Solving three problems simultaneously and independently with DVMS. The
ring has been matched on top of three distinct clusters.

In other words, if the ISP strategy enables to limit the size of one partition
to a minimal number of nodes, these nodes are selected without considering
the network conditions at the time the ISP starts. This can lead to inefficient
situations where VM migrations occur between two nodes that are far from each
other, which lasts longer than a migration between two close nodes. Obviously
the ring can be built to limit the distance between peers globally (i.e., peers
of the same region/area would be grouped together as illustrated in Figure 1).
However, in such a case, at least two nodes of each group are directly connected
to two far nodes. Note that an approach such as the one proposed in [5], which
consists in deploying one ring per site and relying on a super-ring to interconnect
few representatives of each local ring, would not solve many problems. Besides
problems inherent to hierarchical and structured overlay networks, this solution
would not provide a good answer to locality: When going out of the local ring,
it would still not be possible to find the next closest ring.

2.2 Overlay Networks and Locality

As illustrated in the previous paragraph, one of the primary downsides of overlay
networks lies in that they break the physical topology by connecting nodes that
have no physical proximity. Besides hierarchical attempts in building locality-
aware overlay networks [5,17,18], we can first mention the locality improvement
mechanisms of the Pastry structured overlay network [15]. In order to reduce
the latency of the routing process, each node is given the opportunity to choose
the closest nodes to fill its routing table. Learning the existence of new nodes
relies on a periodic exchange of parts of routing tables.

Similar mechanisms have been adopted within unstructured overlay networks
to make their logical connections reflect the physical proximity of nodes, each

334 J. Pastor et al.

node discovering its closest nodes through gossiping. Note that the proximity
between two nodes can be estimated through any transitive metric, in particular
the latency between the nodes [9].

These approaches need to constantly maintain the knowledge of close nodes
in order to provide the best node possible at the cost of periodic communications
(uncorrelated to the actual amount of requests to be processed by the overlay
network).

The overlay network we propose in this paper differs in that it adopts a lazy
approach consisting in searching close nodes only upon receipt of requests. This
way, the quality of the response is proportional to the frequency of requests.

Our protocol relies on the Vivaldi protocol [2] to detect close nodes. Vivaldi
places nodes in a multi-dimensional space. Each node is given coordinates in-
side this space reflecting its physical location. The protocol is based on simple
message exchanges. Initially, each node is given a random position in the space
and chooses (possibly arbitrarily) a small subset of nodes, composing its view.
Then, each node starts estimating the round trip time between itself and another
node chosen randomly in its view, and adapts its distance with this node in the
space accordingly, coming closer to it or moving away from it. The nodes can re-
peat this step independently (each with another node from its view), to improve
the accuracy of the positioning. A globally accurate positioning of nodes can
be obtained very quickly (in a small number of such steps) if nodes have a few
long-distance nodes in their view and if the network is not excessively dynamic.
These long distance links can be easily maintained.

Recall that Vivaldi does not allow to directly know the nodes that are close
in the network, but to be able to recognize them through their coordinates.
Our overlay relies on the examination of Vivaldi coordinates of nodes discovered
during the processing of requests sent to it.

3 Contributions

The aim of this paper is to revisit a distributed scheduling algorithm, the DVMS
proposal, in order to take account of locality criteria. To this aim, we focus
first on the overlay network, and second, we propose an abstraction that allows
combining DVMS with a locality-aware overlay network without being intrusive
in its source code.

3.1 Locality-Aware Overlay Network

We here present our lazy locality-aware overlay network that underlies the VM
scheduling platform we developed. It is made of two layers.

The lower layer is mainly an implementation of the Vivaldi protocol (which
core mechanisms were described earlier) making nodes (that are initially inter-
connected arbitrarily) aware of their position in the infrastructure.

Based on these coordinates, the upper layer is responsible for building a
locality-aware overlay dynamically. This layer takes its roots in the classic Di-
jkstra’s shortest path algorithm to collect a set of close nodes starting from a
given position.

Locality-Aware Cooperation for VM Scheduling in Distributed Clouds 335

Searching for Close Nodes. Once the Vivaldi map is achieved, and each node
knows its coordinates, we are able to estimate how close two given nodes are
by calculating their distance in the map. However, recall that the view of each
node does not a priori contain its closest nodes 2. Therefore, we need additional
mechanisms to locate a set of nodes that are close to a given initial node. Vivaldi
gives a location to each node, not a neighborhood.

We use a modified, distributed version of the classic Dijkstra’s shortest path
algorithm that leverages the Vivaldi map to build such a neighborhood. More
specifically, its goal is to build a spiral3 interconnecting the nodes in the plane
that are the closest ones from a given initial node.

Let us consider that our initial (or root) point is the node nR. The first step
is to find a node to build a two-node spiral starting with nR. This is done by
selecting the node from nR’s network view, say ni, which exhibits the smallest
distance with nR. ni becomes the second node in the spiral. From this point
on, nR remembers ni as its successor and ni remembers nR as its predecessor.
nR also sends its network view to ni, which, on receipt, creates its spiral view
that contains the N nodes closest to nR taken from both nR and ni network
views. It will allow ni to find the next node to build the spiral. Assuming this
closest node from nR in ni’s spiral view is nj , nj will be added in the spiral by
becoming the successor of ni. nj receives ni’s spiral view and creates and fills
its own spiral view with nodes closest to nR contained in both ni’s spiral view
and nj ’s network view. This algorithm is repeated until the amount of nodes
requested by the application have been interconnected in the spiral.

Note that there is a risk to be blocked at some point, having a spiral view
containing only nodes that are already in the spiral, hindering from extending
it further. However, this problem can be easily addressed by introducing few
long-distance nodes when the spiral view is created/updated.

Learning. Applying the protocol described above, the quality of the spiral is
questionable in the sense that the nodes that are actually close to the root node
nR may not be included.To improve the quality of the spiral, i.e., to reduce the
average distance from each of its nodes to the initial node, we rely on a learning
mechanism coming with no extra communication cost: When a node is contacted
to become the next node in one spiral, and when it receives the associated
spiral view, it can also keep in its network view the nodes that are closer to
itself, thus potentially increasing the quality of a future spiral construction. Such
an improvement through learning is illustrated in Figure 2. Note that learning
may also be used to constantly improve already built spirals. While providing
obvious advantages, allowing it comes at the cost of changing links in the spirals
dynamically, which may not match all applications’ constraints.

2 In the following, we call this view the network view, to distinguish it from the
spiral view to be introduced later.

3 Our use of the term spiral is actually a misuse of language, since the graph drawn
in the plane might contain crossing edges.

336 J. Pastor et al.

(a) (b) (c)

Fig. 2. Learning mechanism: (a) The initial view of each node is materialized by the
dashed lines. Given these views, the spiral obtained from node A is represented by the
double thick lines. In particular, this spiral allowed A and B to discover each other.
(b) If B starts building a spiral, it will start by contacting A. This spiral construction
allows also E and B to discover each other. (c) If A is requested to start another spiral,
it will exhibit an increased locality awareness.

3.2 PeerActor: A Building Block to Abstract Overlay Networks

Physical Machine

DVMS Service

Peer Actor

Notification
Actor

Vivaldi
Overlay

Chord
Overlay

Overlay
Actor

or

Fig. 3. DVMS on top of
the Peer actor

As a P2P scheduling algorithm, the DVMS proposal
can be divided in two major components: (i) The ring
overlay network and (ii) the protocol in charge of de-
tecting and resolving scheduling issues. As our goal
consists in taking into account locality criteria without
changing the DVMS protocol, we designed a building
block, i.e., the Peer actor, which enables us to revisit
DVMS by abstracting the overlay network it relies on.
At a coarse-grain level, the Peer actor can be seen as a
generic layer for high level distributed services, provid-
ing network abstractions and robust communications
between agents deployed on each node. By leveraging
the Peer actor API, developers can focus on the service
itself without dealing with node apparitions/removals
and network disconnections.

From the software point of view, the Peer actor re-
lies on modern software frameworks (Scala and Akka)
following the actor model rules. In such a model, each
instance will collaborate by exclusively exchanging messages, and priority will
be given to collaboration between close instances when using the locality-based
overlay (LBO).

As illustrated in Figure 3, the Peer actor contains two sub actors: The No-
tification actor and the Overlay network actor. The Notification actor enables
services to subscribe to events that will be triggered by other services, as for
detecting overloading of nodes or for handling crash of neighbours. The Overlay
network actor is in charge of sending/receiving messages through the network.
In order to compare both approaches, ring-based v.s. locality-aware, we devel-
oped two different Overlay network actors: The first one provides a Chord-like

Locality-Aware Cooperation for VM Scheduling in Distributed Clouds 337

overlay [16], while the second one delivers the locality-aware overlay described
in Section 3.1.

4 Experiments

The main objective of the experiments we conducted was to estimate the impact
of locality on the performance of a distributed scheduling algorithm. A significant
portion of the reconfiguration time is spent in live migration of virtual machines,
which depends of network parameters such as latency and bandwidth. One way
to improve the performance of distributed scheduling algorithms is to promote
collaborations between close resources, which can be reached by maximizing the
ratio nb intrasite migrations/nb migrations.

4.1 Experimental Protocol

To compare our experiments, we implemented a dedicated injector that makes
load changes of VMs during a predefined time. VMs are launched on PMs in a
round-robin manner, i.e., each PM hosts roughly the same number of VMs at the
beginning. The experiment consists in repeatedly changing target CPU loads of
VMs. Every t seconds, the injector that is deployed on a dedicated node selects
one VM and changes its CPU load according to a Gaussian distribution. t is
a random variable that follows an exponential distribution with rate parameter
λ. The Gaussian distribution is defined by a mean (μ) as well as a standard
deviation (σ) that are given at the beginning of the experiment. The parameters
are λ = Nb VMs/300 and μ = 70, σ = 30. Concretely, the load of each VM
starts from 0% and varies on average every 5 minutes in steps of 10 (with a
significant part between 40% and 100% of CPU usage). The duration of each
experiment was set to 3600 seconds.

800 km

Grenoble (10)

Luxembourg (10)

Nancy (10)
Rennes (10 + 1)

Fig. 4. Testbed

Figure 4 depicts our testbed. For
each experiment, we booked 40 compute
servers spread over 4 geographical sites
(10 PMs per site) and 1 service server
from the Grid’5000 testbed. The compute
servers were used to run VMs and DVMS
while the service node runs the aforemen-
tioned injector. Each compute node was
equipped with 8 cores and hosted a num-
ber of VMs proportional to its number of
CPU cores (nbVM = 1.3 × nb cores),
leading to a global number of 416 VMs.
Although such a number is rather small
regarding the latest experiments that have
been performed on DVMS [12], our goal is not to validate once again the scala-
bility criteria but to focus on the locality aspect of such an algorithm.

338 J. Pastor et al.

4.2 Results

Maximization of Intra-Site Migrations. Table 1 compares the ratio between
intra-site migrations and the total number of migrations, using Chord or our
LBO network. The results show that the impact of locality is significant: Using
LBO leads to an average number of 86.3% of intra-site migrations while using a
Chord-based DVMS decreases this ratio to 49.6%.

Table 1. Comparison of intra-site migrations ratio (DVMS/Chord vs. DVMS/LBO)

Chord LBO

Average 0.496 0.863

Minimum 0.378 0.798

Maximum 0.629 0.935

Dynamic Clustering. During our investigation of the results brought about
LBO, we noticed that many of the inter-site migrations were performed between
Luxembourg and Nancy sites. In Table 2, it is noticeable that Luxembourg and
Nancy have a latency that is significantly below usual inter-site latencies (Nancy
and Luxembourg are separated by only 100 kilometers), while Rennes and Greno-
ble have almost the same latency with all their respective remote sites. Indeed,
servers located in Luxembourg and Nancy are more likely to collaborate with
each other, while those located on Rennes and Grenoble will find collaborators
regardless of their location. This explains why many of the inter-site migrations
were performed between Luxembourg and Nancy. This means that LBO en-
abled DVMS to learn which site is more interesting to perform VM migration.
Promoting low latency inter-site collaboration made many inter-site migrations
acceptable compared to those executed by the Chord version.

Reactivity. Table 3 depicts metrics that allow for an objective comparison of
the efficiency of both overlay networks. In addition to reducing the number of
inter-site migrations, the side effect of using the LBO is to reduce the solving
time: The partition duration is 46% lower than that encountered with Chord.
This result is consistent with the fact that with our locality-aware overlay, the
number of sites that are involved in partitions becomes very close to one. Indeed
collaborating with closer nodes allows exchanging information between nodes of
the partition much faster, thus increasing once again the reactivity of the system.

Table 2. Latency measured between sites

Grenoble Luxembourg Nancy Rennes

Grenoble 0.09 ms 16.55 ms 14.24 ms 15.92 ms

Luxembourg 0.17 ms 2.70 ms 13.82 ms

Nancy 0.27 ms 11.42 ms

Rennes 0.23 ms

Locality-Aware Cooperation for VM Scheduling in Distributed Clouds 339

Table 3. Comparison of partitions metrics using DVMS/Chord and DVMS/LBO

Chord LBO

Average number of sites involved 1.645 1.082

Average duration to detect a valid configuration (msec) 154.63 98.50

5 Related Work

Many virtual infrastructure managers have been proposed to deal with specific
concerns. In this section, we will focus on some of their limitations, especially
regarding locality, scalability, and fault-tolerance.

The most common managers are the centralized ones, like Entropy [7,8], since
they are easy to deploy. They are generally designed to work on a cluster. In
this context, they do not take account of the network topology, and they can-
not manage VMs efficiently in a multi-site/multi-cluster deployment. Moreover,
they are prone to fault-tolerance, scalability, and reactivity issues; to avoid these
limitations, one possibility is to rely on more decentralized approaches, like hi-
erarchical or distributed ones.

Hierarchical managers, like Snooze [4], may be more suited to handle locality.
For instance, it is possible to setup (i) one manager per cluster, and (ii) one
(fault-tolerant) super manager that monitors cluster managers and chooses on
which cluster a new VM should start. The main problem with this approach
is that, in the absence of cooperation between cluster managers, VMs cannot
be migrated from one cluster to another, which is especially annoying if one
cluster is overloaded. Moreover, the super manager is not necessarily aware of
the network topology and therefore may not be able to interact efficiently with
cluster managers if the latter are distributed among several sites. Furthermore,
the super manager limits the scalability of this approach; to deal with this issue,
researchers have designed distributed approaches.

Many distributed approaches have been proposed to manage
VMs [1,3,10,11,14,19]. Some of them are limited in terms of scalability since
they (i) require a global view of the infrastructure to take a decision [14,19]
and/or (ii) rely on a centralized service node that is not fault-tolerant [11,19].
Some approaches lead to a huge number of migrations [1,11] without neces-
sarily optimizing the chosen scheduling criterion [1]. Moreover, none of these
approaches have been designed to take account of the network topology and
therefore manage VMs efficiently in a multi-site deployment.

To summarize, a locality-aware distributed approach is required to (i) avoid
issues related to scalability and single points of failures, and to (ii) manage
VMs efficiently in heterogeneous network environments like those found in multi-
site/multi-cluster deployments. Our work in this paper targets such a challenge.

6 Conclusion

Cloud Computing has entered our everyday life at a very high speed and huge
scale. From classic High Performance Computing simulations to the management

340 J. Pastor et al.

of huge amounts of data coming from mobile devices and sensors, its impact
can no longer be minimized. While promoted for a long time, delivering Cloud
Computing capabilities by leveraging only few large-scale data centers does not
enable to cope with the demand of Cloud resources anymore, and a new model
consisting in leveraging several micro/nano data centers distributed WANwide
is more and more investigated. The main challenge is thus to revisit most of
the mechanisms that are common to current IaaS management systems to lever-
age more decentralized algorithms. Among the different contributions that have
been proposed, a large number have focused on the scheduling issue of the VMs
to achieve the scalability required but at the expense of the locality criteria.
However, manipulating VMs WANwide degrades significantly the performance
as well as the quality of the service of the whole system.

Hence, the first step toward such a highly distributed Cloud infrastructure is
to take into account this notion of locality between Cloud Computing resources.
In this paper, we showed how such locality criteria can be considered by deliv-
ering a new building block using P2P algorithms and a Vivaldi overlay network
connected to the DVMS proposal, an efficient and flexible VM scheduler. Our
first experiments over Grid’5000 showed that, connecting 4 different sites and
scheduling VMs over them, we could gain up to 72% of inter-site operations. It
is worth noting that one experimental observation we had during this work was
that the proposed overlay network was actually able to reflect the underlying
topology, and in particular to build a hierarchical overlay dynamically if the
underlying topology is hierarchical.

Our future work will consist in refining the decision model used in scheduling
mechanisms to enable them to consider the cost difference between intra-site
and inter-site migrations, thus promoting intra-site migrations in multi-site par-
titions. More generally, the association between locality-based overlay networks
and Peer Actors will become a building block for revisiting every single service
composing IaaS systems. It will enable to deliver a new generation of Utility
Computing as depicted by the Discovery Initiative4.

Acknowledgments. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, being developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER, and several
Universities as well as other funding bodies (see https://www.grid5000.fr).

References

1. Barbagallo, D., Di Nitto, E., Dubois, D.J., Mirandola, R.: A Bio-inspired Algorithm
for Energy Optimization in a Self-Organizing Data Center. In: Weyns, D., Malek,
S., de Lemos, R., Andersson, J. (eds.) SOAR 2009. LNCS, vol. 6090, pp. 127–151.
Springer, Heidelberg (2010)

2. Dabek, F., Cox, R., Kaashoek, M.F., Morris, R.: Vivaldi: A Decentralized Network
Coordinate System. In: 2004 Conf. on Applications, Technologies, Architectures,
and Protocols for Computer Comm. SIGCOMM 2004, pp. 15–26 (2004)

4 http://beyondtheclouds.github.io/

https://www.grid5000.fr
http://beyondtheclouds.github.io/

Locality-Aware Cooperation for VM Scheduling in Distributed Clouds 341

3. Feller, E., Morin, C., Esnault, A.: A Case for Fully Decentralized Dynamic VM
Consolidation in Clouds. In: CloudCom 2012: 4th IEEE International Conference
on Cloud Computing Technology and Science (December 2012)

4. Feller, E., Rilling, L., Morin, C.: Snooze: A Scalable and Autonomic Virtual Ma-
chine Management Framework for Private Clouds. In: CCGRID 2012: 12th Int.
Symp. on Cluster, Cloud and Grid Comp, pp. 482–489 (May 2012)

5. Garcés-Erice, L., Biersack, E.W., Ross, K.W., Felber, P., Urvoy-Keller, G.: Hier-
archical Peer-To-Peer Systems. Parallel Processing Letters 13(4), 643–657 (2003)

6. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The Cost of a Cloud: Research
Problems in Data Center Networks. SIGCOMM Comput. Commun. Rev. 39(1),
68–73 (2008)

7. Hermenier, F., Demassey, S., Lorca, X.: Bin Repacking Scheduling in Virtualized
Datacenters. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 27–41. Springer,
Heidelberg (2011)

8. Hermenier, F., Lawall, J., Muller, G.: BtrPlace: A Flexible Consolidation Manager
for Highly Available Applications. IEEE Transactions on Dependable and Secure
Computing 99 (2013) (PrePrints)

9. Jelasity, M., Babaoglu, O.: T-Man: Gossip-based Overlay Topology Management.
In: Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.)
ESOA 2005. LNCS (LNAI), vol. 3910, pp. 1–15. Springer, Heidelberg (2006)

10. Marzolla, M., Babaoglu, O., Panzieri, F.: Server consolidation in Clouds through
gossiping. In: WoWMoM 2011: Proceedings of the 12th IEEE International Sym-
posium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–6. IEEE
Computer Society, Washington, DC (2011)

11. Mastroianni, C., Meo, M., Papuzzo, G.: Self-economy in cloud data centers: Statis-
tical assignment and migration of virtual machines. In: Jeannot, E., Namyst, R.,
Roman, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 407–418. Springer,
Heidelberg (2011)

12. Quesnel, F., Lebre, A., Pastor, J., Sudholt, M., Balouek, D.: Advanced Validation
of the DVMS Approach to Fully Distributed VM Scheduling. In: ISPA 2013: 12th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, pp. 1249–1256 (July 2013)

13. Quesnel, F., Lèbre, A., Südholt, M.: Cooperative and Reactive Scheduling in Large-
Scale Virtualized Platforms with DVMS. Concurrency and Computation: Practice
and Experience 25(12), 1643–1655 (2013)

14. Rouzaud-Cornabas, J.: A Distributed and Collaborative Dynamic Load Balancer
for Virtual Machine. In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop 2010.
LNCS, vol. 6586, pp. 641–648. Springer, Heidelberg (2011)

15. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

16. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications. In: ACM SIGCOMM
Computer Communication Review, vol. 31, pp. 149–160. ACM (2001)

17. Xu, Z., Mahalingam, M., Karlsson, M.: Turning Heterogeneity into an Advantage
in Overlay Routing. In: INFOCOM (2003)

18. Xu, Z., Zhang, Z.: Building Low-Maintenance Expressways for P2P Systems. Tech.
Rep. HPL-2002-41, Hewlett-Packard Labs (2002)

19. Yazir, Y.O., Matthews, C., Farahbod, R.: Neville, S., Guitouni, A., Ganti, S.,
Coady, Y.: Dynamic Resource Allocation in Computing Clouds Using Distributed
Multiple Criteria Decision Analysis. In: Cloud 2010: IEEE 3rd Int. Conf. on Cloud
Computing, Los Alamitos, CA, USA, pp. 91–98 (July 2010)

Can Inter-VM Shmem Benefit MPI Applications
on SR-IOV Based Virtualized Infiniband Clusters?�

Jie Zhang, Xiaoyi Lu, Jithin Jose, Rong Shi, and Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering,
The Ohio State University

{zhanjie,luxi,jose,shir,panda}@cse.ohio-state.edu

Abstract. Single Root I/O Virtualization (SR-IOV) technology has been intro-
duced for high-performance interconnects such as InfiniBand. Recent studies
mainly focus on performance characteristics of high-performance communica-
tion middleware (e.g. MPI) and applications on SR-IOV enabled HPC clus-
ters. However, current SR-IOV based MPI applications do not take advantage
of the locality-aware communication on intra-host inter-VM environment. Al-
though Inter-VM Shared Memory (IVShmem) has been proven to support ef-
ficient locality-aware communication, the performance benefits of IVShmem for
MPI libraries on virtualized environments are yet to be explored. In this paper, we
present a comprehensive performance evaluation for IVShmem backed MPI us-
ing micro-benchmarks and HPC applications. The performance evaluations show
that, through IVShmem, the performance of MPI point-to-point and collective op-
erations can be improved up to 193% and 91%, respectively. The application per-
formance can be improved up to 96%, compared to SR-IOV. The results further
show that IVShmem just brings minor overhead compared to native environment.

Keywords: IVShmem, SR-IOV, Virtualization, MPI, InfiniBand.

1 Introduction

Distributed computing infrastructures are becoming increasingly virtualized, owing to
the ease of system management and administration. They provide desirable features
to meet demanding requirements of computing resources in modern computing sys-
tems, including server consolidation, performance isolation and ease of management,
along with guaranteeing security, and live migration [21]. Virtual Machine (VM) tech-
nologies have already been widely adopted in industry computing environments, es-
pecially data-centers. For instance, data-center providers, Amazon’s Elastic Compute
Cloud (EC2) [1], rely on virtualization to consolidate computational resources for ap-
plications from different customers, with required Quality of Service guarantees on the
same underlying hardware. Even though virtualization has gained significant momen-
tum in the enterprise computing domain, its adoption in the High Performance Comput-
ing (HPC) domain remains lower. One of the biggest hurdles in realizing this objective
comes from lower performance of virtualized I/O devices, offered by virtualized com-
puting environments [13]. The performance of virtualized I/O devices is likely to be

� This research is supported in part by National Science Foundation grants #OCI-1148371,
#CCF-1213084 and #CNS-1347189.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 342–353, 2014.
c© Springer International Publishing Switzerland 2014

Can Inter-VM Shmem Benefit MPI Applications on SR-IOV 343

the key driver in the adoption of virtualized cloud computing systems in HPC domains.
High performance MPI libraries such as MVAPICH2 [19], OpenMPI [20], can provide
sub-microsecond latencies. However, realizing such performance in virtualized envi-
ronment is still a challenge.

The recently introduced Single Root I/O Virtualization (SR-IOV) [23] offers an at-
tractive alternative for virtualizing I/O devices, when compared to existing software-
based virtualization techniques. According to the SR-IOV specification, a PCIe device
can present itself as multiple virtual devices and each virtual device can be dedicated to
a single VM. Our earlier study [13] indicates that SR-IOV can attain near to native per-
formance for inter-node point to point communication, at the MPI level. However, one
of the main drawbacks of SR-IOV is that it does not support VM locality aware com-
munication. Thus, inter-VM communications within the node also have to go through
SR-IOV channel, leading to performance overheads. On the other hand, VM communi-
cation schemes such as Inter-VM shared memory (IVShmem) [16], offer shared mem-
ory backed communication for VMs within a single host. Consequently, we carry out
a primitive-level experiment using Perftest-1.2.3 [2], as shown in Figure 1. The experi-
ment compares the primitive level latencies between SR-IOV based IB communication
and shared memory communication, and underscore the performance overheads. For
64 bytes message size, the latencies observed are 0.96 and 0.20 μs, for SR-IOV(IB-
Send) and IVShmem, respectively. These performance overheads motivate this study,
to explore whether IVShmem scheme can benefit MPI communication within a node
on SR-IOV enabled InfiniBand clusters.

 0

 50

 100

 150

 200

 2 4 16 64 256 1K 4K 16K 64K256K1M

L
at

en
cy

 (
u
s)

Message Size (bytes)

IB-Send
IB-Read
IB-Write

IVShmem

 0

 0.8

 1.6

 2.4

 3.2

 2 4 16 64 2561K 4k

Fig. 1. Primitive-Level Latency Comparison be-
tween SR-IOV enabled IB and IVShmem

In this paper, we study the perfor-
mance characteristics of IVShmem and
explore its applicability in VM local-
ity aware communication for MPI li-
braries on SR-IOV enabled InfiniBand
clusters. We propose a high performance
prototype design of MPI library, for
intra-host inter-VM communication us-
ing IVShmem. Then we conduct a com-
prehensive performance evaluation using
micro-benchmarks and HPC applica-
tions. The evaluation results indicate that
IVShmem scheme has big potential to
benefit intra-host inter-VM communication on SR-IOV enabled InfiniBand clusters.
This paper mainly focuses on evaluating the performance improvement potential of
IVShmem backed MPI communication, on SR-IOV based InfiniBand clusters. We make
the following key contributions as part of this paper:

1. Identify the performance overheads associated with SR-IOV for intra-host inter-
VM communication

2. Detailed performance evaluations of IVShmem, and exploring its performance im-
provement potential for VM locality aware communication

3. Performance analysis and scalability evaluations of IVShmem backed MPI library
using micro-benchmarks and HPC applications

344 J. Zhang et al.

4. Performance comparisons between IVShmem backed and native mode MPI li-
braries, using HPC applications

The evaluation results indicate that IVShmem can improve point to point and collective
operations by up to 193% and 91%, respectively. The application execution time can be
decreased by up to 96%, compared to SR-IOV. The results further show that IVShmem
just brings small overheads, compared with native environment.

The rest of the paper is organized as follows. Section 2 provides an overview of
IVShmem, SR-IOV, and InfiniBand. Section 3 describes our prototype design and eval-
uation methodology. Section 4 presents the performance analysis results using micro-
benchmarks and applications, scalability results, and comparison with native mode. We
discuss the related work in Section 5, and conclude in Section 6.

2 Background

Inter-VM Shared Memory (IVShmem) (e.g. Nahanni) [16] provides zero-copy access
to data on shared memory of co-resident VMs on KVM platform. IVShmem is designed
and implemented mainly in system calls layer and its interfaces are visible to user space
applications as well. As shown in Figure 2(a), IVShmem contains three components:
the guest kernel driver, the modified QEMU supporting PCI device, and the POSIX
shared memory region on the host OS. The shared memory region is allocated by host
POSIX operations and mapped to QEMU process address space. The mapped memory
in QEMU can be used by guest applications by being remapped to user space in guest
VMs. Evaluation results illustrate that both micro-benchmarks and HPC applications
can achieve better performance with IVShmem support.

Qemu Userspace

Guest 1

Userspace

kernelPCI
Device

mmap
region

Qemu Userspace

Guest 2

Userspace

kernel

mmap
region

Qemu Userspace

Guest 3

Userspace

kernelPCI
Device

mmap
region

/dev/shm/<name>

PCI
Device

Host

mmap mmap mmap

shared mem fd

eventfds

(a) Inter-VM Shmem Mechanism [16]

Guest 1

Guest OS

VF Driver

Guest 2

Guest OS

VF Driver

Guest 3

Guest OS

VF Driver

Hypervisor PF Driver

I/O MMU

SR-IOV Hardware

Virtual
Function

Virtual
Function

Virtual
Function

Physical
Function

PCI Express

(b) SR-IOV Mechanism [23]

Fig. 2. Overview of Inter-VM Shmem and SR-IOV Communication Mechanisms

Single Root I/O Virtualization (SR-IOV) is a PCI Express (PCIe) standard which
specifies the native I/O virtualization capabilities in PCIe adapters. As shown in Fig-
ure 2(b), SR-IOV allows a single physical device, or a Physical Function (PF), to present
itself as multiple virtual devices, or Virtual Functions (VFs). Each virtual device can be
dedicated to a single VM through the PCI pass-through, which allows each VM to di-
rectly access the corresponding VF. Hence, SR-IOV is a hardware-based approach to

Can Inter-VM Shmem Benefit MPI Applications on SR-IOV 345

implement I/O virtualization. Furthermore, VFs are designed based on the existing non-
virtualized PFs. Therefore, the drivers of the current adapters can also be used to drive
the VFs in a portable manner.

InfiniBand [12] is an industry standard switched fabric designed for interconnecting
nodes in HPC clusters. The TOP500 rankings released in November 2013 indicate that
more than 41% of the computing systems use InfiniBand as their primary high perfor-
mance interconnect.

3 Prototype Design and Evaluation Methodology

In this section, we first propose the prototype design for IVShmem based MPI commu-
nication and then discuss various dimensions for evaluating the performance impact of
IVShmem for intra-host inter-VM communication on SR-IOV based InfiniBand clus-
ters. The results of evaluation for each dimension are described in Section 4.

3.1 Prototype Design

As introduced in Section 2, SR-IOV and IVShmem are two different mechanisms that
can be used for intra-host inter-VM communication. To better illustrate, the two inter-
VM communication schemes are presented in Figure 3(a). For SR-IOV scheme, which
is shown in the solid line, each VM is configured with a dedicated Virtual Function, so
that an MPI process in Guest-1 can communicate with another MPI process in Guest-2
without concerning whether Guest-2 is co-located with Guest-1 in a same physical node
or not. This does not deliver the best approach to high performance communication. In
order to take advantage of shared memory between VMs co-located in a given host,
guest VMs need to detect which VMs are co-located with themselves, so that they can
map the same memory region into their own memory spaces. Based on what we dis-
cussed in Section 2, IVShmem provides a mechanism to expose a host memory region
to all co-resident VMs as virtual PCI devices. And finally, this memory region can be
mapped to user spaces of guest systems. We implement a prototype MPI library by uti-
lizing IVShmem. Therefore, the communication between co-resident VMs can happen
along the IVShmem channel as shown in the dashed line in Figure 3(a), instead of the
SR-IOV channel, as shown in the solid line.

3.2 Evaluation Dimensions

We follow a five-pronged approach to evaluate the performance improvement poten-
tial of IVShmem for intra-host inter-VM communication on SR-IOV based InfiniBand
clusters, as shown in Figure 3(b).

Point to Point Communication: Point to point communication is a basic commu-
nication scheme in MPI communication. On virtualized environments with SR-IOV
support, our earlier studies [13] showed related performance evaluations. In this paper,
we mainly evaluate the performance improvement potential of IVShmem for point to
point communication including both two-sided and one-sided operations.

Collective Communication: Collective communication is an important and fre-
quently used communication scheme of MPI. However, current SR-IOV solution does

346 J. Zhang et al.

Host Environment

Guest 1

Hypervisor PF Driver

Infiniband Adapter

Physical
Function

user space

kernel space

MPI
proc

PCI
Device

VF
Driver

Guest 2
user space

kernel space

MPI
proc

PCI
Device

VF
Driver

Virtual
Function

Virtual
Function

/dev/shm/

IV-SHM

rne rnel

IV-Shmem Channel

SR-IOV Channel

(a) Inter-VM Communication Channels

Pt2pt
One-sided
Two-sided

Collective
Bcast
Allgather
Allreduce
AlltoAllApplications

HPL
Graph500
NAS
P3DFFT
LAMMPS

Scalability
strong (Graph500)
weak (HPL)

Overhead
Native v.s. VM
(NAS)

(b) Evaluation Dimensions

Fig. 3. Inter-VM Communication Channels and Evaluation Dimensions

not take advantage of the locality aware collective communication on intra-host inter-
VM environment, which leads to performance overhead. Therefore, we evaluate the
performance improvement potential of IVShmem for four widely used collective oper-
ations across VMs on a single node in this paper.

Application Execution Time: MPI has established itself as the de-facto standard
of programming model for HPC applications. Clearly, the performance of MPI libraries
will significantly impact the execution time of these HPC applications. Thus, we choose
five representative HPC applications (as shown in Table 1) to evaluate the performance
benefits of IVShmem.

Table 1. Representative HPC Applications for Evaluation

Name Description
P3DFFT Parallel Three-Dimensional Fast Fourier Transforms, dubbed P3DFFT [5], is a library for large-scale com-

puter simulations in a wide range of sciences, such as physics, climatology and chemistry.
HPL High Performance Linpack (HPL) is the parallel implementation of Linpack [7] and the performance mea-

sure for ranking the computer systems of the Top 500 supercomputer list.
LAMMPS LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator [22]. It is a classical

molecular dynamics simulator from Sandia National Laboratory.
Graph500 Graph500 [24] is one of the representative benchmarks of Data intensive supercomputer applications. It

exhibits highly irregular communication pattern.
NAS NAS [3] contains a set of benchmarks which are derived from the computing kernels, which is common

on Computational Fluid Dynamics (CFD) applications. These represent the class of regular iterative HPC
applications.

Virtual Machine Scalability: As the emergence of virtualization technology, we
can achieve easier system management and performance isolation. However, the per-
formance characteristics might vary significantly as the number of VMs increase. This
paper evaluates the performance impact of IVShmem scheme by adjusting the number
of VMs within a physical node in SR-IOV enabled InfiniBand clusters.

Performance Overhead: Earlier studies indicate that high performance VM envi-
ronments are able to achieve low cost of CPU and memory virtualization [25]. I/O
virtualization, however, leads to longer I/O latency, since I/O devices are usually shared
by multiple VMs within a host. In this paper, we evaluate the performance overheads of
SR-IOV and IVShmem compared to native environment.

Can Inter-VM Shmem Benefit MPI Applications on SR-IOV 347

4 Performance Evaluation

In this section, we describe our experimental testbed and discuss our evaluation of two-
sided and one-sided point to point, collective operations, and HPC applications. Since
this paper focuses on performance evaluation of IVShmem scheme on InfiniBand clus-
ters with SR-IOV support, we use one node with multiple cores for evaluation.

4.1 Experiment Setup

Our testbed is an InfiniBand cluster, where each node has dual 8-core 2.6 GHz Intel
Xeon E5-2670 (Sandy Bridge) processors with 20MB L3 shared cache, 32 GB main
memory and equipped with Mellanox ConnectX-3 FDR (56 Gbps) HCAs with PCI
Express Gen3 interfaces. We use RedHat Enterprise Linux Server release 6.4 (Santiago)
with kernel 2.6.32-279.19.1.el6.x86 64 as the host OS.

We use the Mellanox OpenFabrics Enterprise Distribution MLNX OFED LINUX
2.1-1.0.0 to provide the InfiniBand interface with SR-IOV support and KVM as the
Virtual Machine Monitor (VMM). Each VM is pinned to a single core and has 1.5 GB
main memory. The OS used in each VM is RedHat Enterprise Linux Server release 6.4
(Santiago) with kernel 2.6.32-131.0.15.el6.x86 64.

All applications and libraries used in this study are compiled with gcc 4.4.6 com-
piler. All MPI communication performance experiments use MVAPICH2 2.0rc1 and
OSU Micro-Benchmarks. Experimental results are averaged by 5 runs to ensure fair
comparison. Our tests are conducted with different numbers of VMs on one node, 8 for
power of two case, and 15 for full-subscribed case (while reserving one core for host
OS).

 0

 10

 20

 30

 40

 50

 1 4 16 64 256 1K 4K 16K 64K

L
at

en
cy

 (
u
s)

Message Size (bytes)

SR-IOV
IVShmem

Native(w/o shm)
Native(w shm)

 0
 0.5

 1
 1.5

 2
 2.5

 3

 1 4 16 64 256 1K

(a) Point to Point Latency (Small)

 0

 200

 400

 600

 800

 1000

256K 1M 4M

L
at

en
cy

 (
u

s)

Message Size (bytes)

SR-IOV
IVShmem

Native(w/o shm)
Native(w shm)

(b) Point to Point Latency (Large)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 4 16 64 256 1K 4K 16K64K256K1M 4M

B
an

d
w

id
th

 (
M

b
)

Message Size (bytes)

SR-IOV
IVShmem

Native(w/o shm)
Native(w shm)

(c) Point to Point Bandwidth

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 4 16 64 256 1K 4K 16K64K256K1M 4M

L
at

en
cy

 (
u
s)

Message Size (bytes)

SR-IOV
IVShmem

 0

 8

 16

 24

 32

 2 4 16 64 2561K 4k 16k

(d) Multi-Pair Latency (14 Pairs)

Fig. 4. Two-sided Point to Point Performance

348 J. Zhang et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 4 16 64 256 1K 4K 16K64K256K1M 4M

L
at

en
cy

 (
u
s)

Message Size (bytes)

SR-IOV
IVShmem

 0

 4

 8

 12

 16

 2 4 16 64 2561K 4k 16k

(a) Passive Put Latency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 4 16 64 256 1K 4K 16K 64K256K

B
an

d
w

id
th

 (
M

b
)

Message Size (bytes)

SR-IOV
IVShmem

(b) Passive Put Bandwidth

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 4 16 64 256 1K 4K 16K64K256K1M 4M

L
at

en
cy

 (
u
s)

Message Size (bytes)

SR-IOV
IVShmem

 0

 4

 8

 12

 2 4 16 64 2561K 4k 16k

(c) Passive Get Latency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 4 16 64 256 1K 4K 16K 64K256K
B

an
d

w
id

th
 (

M
b

)

Message Size (bytes)

SR-IOV
IVShmem

(d) Passive Get Bandwidth

Fig. 5. One-sided Point-to-Point Performance

4.2 Point to Point Communication Performance

In this section, we evaluate the MPI level point to point performance for intra-node
inter-VM communication in terms of latency and bandwidth. Figure 4(a) and Fig-
ure 4(b) show the two-sided point to point latencies of small and large message sizes,
respectively. We can observe that, IVShmem based MPI library achieves lower latency
for both small and large message sizes, compared to the SR-IOV. For example, the la-
tency of SR-IOV is 1.2μs, while it is 0.22μs for IVShmem at 4 bytes message size.
The experimental results indicate that the latency based on IVShmem can be decreased
up to 82%, compared to that of SR-IOV. With respect to point to point bandwidth, we
can see from Figure 4(c) that IVShmem can significantly improve the bandwidth for
various message size ranging from 1 byte to 4 MB. The improvement is up to 158%.
The peak bandwidth that IVShmem can achieve is near to 10 GB per sec, while it is
around 6 GB per sec for SR-IOV. We also evaluate the performance gains that comes
from using shared memory instead of InfiniBand for intra-node communication in na-
tive environment. Compared to not using shared memory (w/o shm), the performance of
native MPI can be improved by enabling shared memory (w shm) up to 77% and 191%
in terms of latency and bandwidth. From these, we can see that the performance gains
of using IVShmem instead of SR-IOV for intra-node communication in the virtualized
environment matches the gains that we observed in the native environment here.

Another important point we can observe is that IVShmem attains near to native per-
formance in terms of latency and bandwidth. The latency overheads compared to native
performance are 3%-5% at small message sizes. For example, the latencies for IVSh-
mem and native at 256 bytes message size are 0.35μs and 0.34μs, respectively. The
overhead is only 3%. We also present the evaluation results of multi-pair latency (7
pairs) in Figure 4(d). At 4 bytes message size, the latency of IVShmem is 0.77μs, while
it is 2.72μs for SR-IOV. When the message size varies from 1 byte to 4 MB, IVShmem

Can Inter-VM Shmem Benefit MPI Applications on SR-IOV 349

can decrease the latency by up to 86%, compared to SR-IOV. Thus, IVShmem can
significantly improve the point to point communication performance for MPI library
compared to SR-IOV, and can also achieve near to native performance.

The recent MPI standard [18] has introduced one-sided communication model. In
this model, one process’s memory can be updated directly by another process. Unlike
MPI two-sided communication model in which both sender and receiver are involved
for data transfer, one-sided communication allows one process to specify all necessary
parameters, and synchronization is done explicitly to ensure the completion of commu-
nication. As it can be seen from Figure 5(a) and Figure 5(b), IVShmem based MPI one-
sided passive Put operation achieves lower latency and higher bandwidth, compared to
SR-IOV. The latency is decreased up to 85% at 1 KB message size, while bandwidth
can be improved up to 193% at 16 bytes message size. Similarly, the evaluation results
shown in Figure 5(c) and 5(d) indicate that IVShmem also benefits one-sided passive
Get operation in terms of latency and bandwidth. Similar performance improvements
are observed for passive Get operation. The results indicate that IVShmem scheme can
significantly improve performance of one-sided and two-sided point-to-point commu-
nications operations.

4.3 Collective Communication Performance

We select four widely used collective communication operations in our evaluations:
Broadcast, Allgather, Allreduce and Alltoall. Figure 11(a) to Figure 11(d) show that,
compared to SR-IOV, IVShmem significantly cuts down the latencies of the above four
collective operations across 15 VMs. For example, at 4 bytes message size, the latency
of broadcast operation for IVShmem is 0.5μs, while it is 4.15μs for SR-IOV. From 1
byte to 1 MB message size, the latencies can be decreased up to 91%, 87%, 85% and
88% through IVShmem for the above four collective operations, respectively. Based
on our experimental evaluations, IVShmem can remarkably improve MPI collective
communication performance within one node.

4.4 Application Performance

As discussed in Section 3, many of the HPC applications rely on MPI performance.
In this section, therefore, we evaluate the performance benefit of IVShmem using real
HPC applications. According to above evaluations on four collective communication
operations, we use several HPC applications, each one as a representative mainly cor-
responding to one or two particular collective operations. From Figure 6(a) to Fig-
ure 6(d), we depict the evaluation results of different test programs in P3DFFT library,
which are test inverse.c, test rand.c, test sine.c and test spec.c.
The inverse evaluation results using 15 VMs are shown in Figure 6(a). As we can see,
the execution times can be decreased by 96%, 79%, 40% through IVShmem for input
size 128, 256, 512, respectively. The execution times of rand also can be reduced by
96%, 76%, 37%. Similar results can be observed for sine and spec. This is because
the majority of the total execution time is spent in MPI Alltoall operation. However,
as the problem size increases, the proportion of communication drops down, and thus
the performance improvement decreases. The evaluation results indicate that IVShmem
can effectively reduce the execution time of the above four P3DFFT test programs. And
it also verifies the evaluation results of collective communication in Section 4.3.

350 J. Zhang et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

128 256 512

T
im

e(
m

s)

Problem Size

SR−IOV
IVShmem

(a) P3DFFT inverse

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

128 256 512

T
im

e(
m

s)

Problem Size

SR−IOV
IVShmem

(b) P3DFFT rand

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

128 256 512

T
im

e(
m

s)

Problem Size

SR−IOV
IVShmem

(c) P3DFFT sine

 0

 100

 200

 300

 400

 500

 600

 700

 800

128 256 512

T
im

e(
m

s)

Problem Size

SR−IOV
IVShmem

(d) P3DFFT spec

Fig. 6. P3DFFT Performance on 15 VMs

 60

 70

 80

 90

 100

 110

 120

 130

 140

 10000 15000 20000 25000 30000 35000 40000

P
ea

k
 P

er
fo

rm
an

ce
 (

G
F

lo
p
s)

Problem Size

SR-IOV
IVShmem

(a) Peak GFlops (15 VMs)

 0

 20

 40

 60

 80

 100

 120

SR−IOV IVShmem SR−IOV IVShmem

T
im

e(
se

c)

 Virtual Machine Grid
1ROW8COL 2ROW4COL

bcast
laswp
others
rfact
update

(b) Time Decomposition (8 VMs)

Fig. 7. HPL Performance

 0

 5

 10

 15

 20

 25

 30

 35

 40

SR−IOV IVShmem SR−IOV IVShmem

T
im

e(
se

c)

LAMMPS Benchmark
CHAIN LJ

comm
other
output
neigh
bond
pair

Fig. 8. LAMMPS Perfor-
mance

The HPL evaluation results are presented in Figure 7. Here, we first measure the
peak performance achieved by launching tests on 15 VMs as shown in Figure 7(a).
Both SR-IOV and IVShmem achieve peak performance when the problem size is larger
than 40,000. In our evaluations, IVShmem outperforms SR-IOV by around 4%-18%
in GFLOPS, for various experiments. To better analyze the communication cost, we
decomposed the time of HPL benchmark by using 8 VMs with various VM grid con-
figuration. From Figure 7(b), we observe that the main communication benefit in HPL
is coming from Broadcast. Through IVShmem, the broadcast latency can be decreased
by 66% and 50% for 2x4 and 1x8 grids, respectively.

We also profile the time decomposition of Chain and LJ benchmark in LAMMPS.
Figure 8 shows that IVShmem can decrease the communication time by 36% and 13%
for Chain and LJ, respectively. And the total execution time can be decreased by up to
8% for Chain.

4.5 Virtual Machine Scalability

In this section, we evaluate the virtual machine scalability to explore the performance
impact on increasing the number of virtual machines in a single host. Such evaluation
helps to determine the optimal number of virtual machines to be deployed within a sin-
gle host. We measure the weak scalability of HPL with fixed memory usage of each
VM and increasing number of VMs. Figure 9(a) shows that IVShmem brings 2%-7%
benefits compared to SR-IOV. We also use Graph500 benchmarks to evaluate the strong
scalability of IVShmem and SR-IOV. As shown in Figure 9(b), IVShmem exhibits bet-
ter scalability and decreases the execution time up to 35%, compared to SR-IOV.

4.6 Performance Overhead

For performance overhead evaluation, we used NAS to run seven different computing
kernels of class B: IS, MG, CG, LU, FT, BT and SP. The first 5 kernels ran across
8 VMs, while BT and SP ran across 9 VMs, based on the requirement of these two
application kernels. It can be noted from Figure 10, IVShmem reduces the execution

Can Inter-VM Shmem Benefit MPI Applications on SR-IOV 351

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8

P
ea

k
 P

er
fo

rm
an

ce
 (

G
F

lo
p

s)

VMs

SR-IOV
IVShmem

(a) HPL Weak Scalability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 4 8

M
ed

ia
n

 T
im

e
(s

ec
)

VMs

SR-IOV
IVShmem

(b) Graph500 Strong Scalability

Fig. 9. Virtual Machine Scalability

 0

 10

 20

 30

 40

 50

 60

IS−8 MG−8 CG−8 LU−8 FT−8 BT−9 SP−9

T
im

e(
se

c)

NAS Class B

SR−IOV
IVShmem
Native

Fig. 10. Performance Over-
head Comparison

times for NAS Parallel Benchmarks - IS (21%), MG (19%), LU (17%), compared to
SR-IOV. We also ran them on native environment, and we observe that IVShmem only
introduces around 5% overhead compared to native performance. Our evaluation results
indicate that IVShmem introduces a small overhead.

5 Related Work

I/O virtualization can be broadly classified into two categories – software based and
hardware based. Earlier studies such as [17] and [4] have shown network performance
evaluation of software-based approaches in Xen. Studies [14,6,11] have demonstrated
that SR-IOV is significantly better than software-based solutions for 10GigE networks.
In [14], the authors have provided a detailed performance evaluation on the environ-
ment of SR-IOV capable 10GigE in KVM. They have studied several important factors
that affect network performance in both virtualized and native systems. Further, stud-
ies [9,15,10] with Xen have demonstrated the ability to achieve near-native performance
in VM-based environment for HPC.

Our previous study of the performance characteristics of using SR-IOV with In-
finiBand [13] has shown that while SR-IOV enables low-latency communication, MPI
libraries need to be designed carefully and offer advanced features for improving intra-
node, inter-VM communication. Previously, we proposed designs for improving intra-
node inter-VM communication by using an Inter-VM Communication Library (IVC)
and re-designed the MVAPICH2 library to leverage the features offered by the IVC [8].
However, this solution was based on the Xen platform and did not show the studies with
SR-IOV enabled InfiniBand clusters. In addition, an implementation of IVShmem [16]
provided the detailed introduction of Nahanni, a IVShmem implementation. Based on
the implementation, the authors developed the MPI-Nahanni user-level library, which is
ported to the Nemesis channel in MPICH2 library. Their design used memory-mapped
shared memory provided by Nahanni in order to accelerate inter-VM communication
on the same host.

Different from the previous work, this paper presents a comprehensive performance
improvement potential study of IVShmem for intra-host inter-VM communication
based on MVAPICH2 library on SR-IOV enabled InfiniBand clusters. Performance
evaluation shows promising results of IVShmem based MPI communication using point
to point, collective micro-benchmarks and several representative HPC applications.
This paper is the first paper to carry out performance studies with IVShmem on SR-
IOV enabled InfiniBand clusters.

352 J. Zhang et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 4 16 64 256 1K 4K 16K64K256K1M

L
at

en
cy

 (
u
s)

Message Size (bytes)

SR-IOV
IVShmem

 0

 4

 8

 12

 16

 1 4 16 64 256 1K 4k

(a) Broadcast

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 4 16 64 256 1K 4K 16K64K256K1M

L
at

en
cy

 (
u
s)

Message Size (bytes)

SR-IOV
IVShmem

 0
 40
 80

 120
 160
 200
 240

 1 4 16 64 256 1K 4k

(b) Allgather

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 4 16 64 256 1K 4K 16K 64K256K

L
at

en
cy

 (
u

s)

Message Size (bytes)

SR-IOV
IVShmem

 0
 30
 60
 90

 120
 150
 180

 1 4 16 64 256 1K 4k

(c) Allreduce

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 4 16 64 256 1K 4K 16K64K256K1M

L
at

en
cy

 (
u
s)

Message Size (bytes)

SR-IOV
IVShmem

 0

 100

 200

 300

 400

 500

 1 4 16 64 256 1K 4k

(d) Alltoall

Fig. 11. Collective Communication Performance on 15 VMs

6 Conclusion and Future Work

In this paper, we have studied the performance improvement potential of IVShmem
for intra-host inter-VM MPI communication. We have briefly introduced the prototype
design of a high performance MPI library for intra-host inter-VM communication us-
ing IVShmem. And then we have conducted detailed performance evaluations using
MPI micro-benchmarks and representative HPC applications. Our performance evalu-
ations using micro-benchmarks show that IVShmem based MPI library improves point
to point (two-sided and one-sided) and collective performance by up to 193% and 91%,
respectively. Application evaluation results indicate that based on IVShmem, the exe-
cution times of NAS, P3DFFT, LAMMPS benchmarks were decreased by up to 21%,
96%, 8%, respectively, compared to SR-IOV. And the peak performance of HPL is
improved by 18% using IVShmem. The evaluations using Graph500 and NAS also
demonstrate that IVShmem based MPI library shows good scalability and introduces
minor overhead, compared to native performance.

In the future, we plan to continue our research along this direction, and provide a
high performance MPI library design to dynamically switch between IVShmem and
SR-IOV for efficiently supporting locality aware MPI communication across nodes on
SR-IOV enabled InfiniBand clusters.

References

1. Amazon EC2, http://aws.amazon.com/ec2/
2. CPMD Consortium, http://www.openfabrics.org/downloads/perftest/
3. NAS Parallel Benchmarks,

http://www.nas.nasa.gov/Resources/Software/npb.html

http://aws.amazon.com/ec2/
http://www.openfabrics.org/downloads/perftest/
http://www.nas.nasa.gov/Resources/Software/npb.html

Can Inter-VM Shmem Benefit MPI Applications on SR-IOV 353

4. Apparao, P., Makineni, S., Newell, D.: Characterization of Network Processing Overheads
in Xen. In: Proceedings of the 2nd International Workshop on Virtualization Technology in
Distributed Computing, VTDC 2006. IEEE Computer Society, Washington, DC (2006)

5. Pekurovsky, D.: P3DFFT: A Framework for Parallel Computations of Fourier Transforms in
Three Dimensions. SIAM Journal on Scientific Computing 34(4), C192–C209 (2012)

6. Dong, Y., Yang, X., Li, J., Liao, G., Tian, K., Guan, H.: High Performance Network Virtual-
ization with SR-IOV. Journal of Parallel and Distributed Computing (2012)

7. Dongarra, J.J., Duff, L.S., Sorensen, D.C., Vorst, H.A.V.: Numerical Linear Algebra for High
Performance Computers. Society for Industrial and Applied Mathematics (1998)

8. Huang, W., Koop, M.J., Gao, Q., Panda, D.K.: Virtual Machine aware Communication Li-
braries for High Performance Computing. In: Proceedings of the 2007 ACM/IEEE Confer-
ence on Supercomputing, SC 2007, pp. 9:1–9:12. ACM, New York (2007)

9. Huang, W., Liu, J., Abali, B., Panda, D.K.: A Case for High Performance Computing with
Virtual Machines. In: Proceedings of the 20th Annual International Conference on Super-
computing, ICS 2006, New York, NY, USA (2006)

10. Huang, W., Liu, J., Koop, M., Abali, B., Panda, D.: Nomad: Migrating OS-bypass Networks
in Virtual Machines. In: Proceedings of the 3rd International Conference on Virtual Execu-
tion Environments, VEE 2007, New York, NY, USA (2007)

11. Huang, Z., Ma, R., Li, J., Chang, Z., Guan, H.: Adaptive and Scalable Optimizations for High
Performance SR-IOV. In: Proceedings of 2012 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 459–467. IEEE (2012)

12. Infiniband Trade Association, http://www.infinibandta.org
13. Jose, J., Li, M., Lu, X., Kandalla, K., Arnold, M., Panda, D.: SR-IOV Support for Virtualization

on InfiniBand Clusters: Early Experience. In: Proceedings of 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 385–392 (May 2013)

14. Liu, J.: Evaluating Standard-Based Self-Virtualizing Devices: A Performance Study on 10
GbE NICs with SR-IOV Support. In: Proceedings of IEEE International Symposium on Par-
allel & Distributed Processing (IPDPS), pp. 1–12. IEEE (2010)

15. Liu, J., Huang, W., Abali, B., Panda, D.K.: High Performance VMM-bypass I/O in Virtual
Machines. In: Proceedings of the Annual Conference on USENIX 2006 Annual Technical
Conference, ATC 2006, Berkeley, CA, USA (2006)

16. Macdonell, A.C.: Shared-Memory Optimizations for Virtual Machines. PhD Thesis. Univer-
sity of Alberta, Edmonton, Alberta, Fall (2011)

17. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diagnosing Per-
formance Overheads in the Xen Virtual Machine Environment. In: Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution Environments, VEE 2005,
pp. 13–23. ACM, New York (2005)

18. MPI Forum: MPI: A Message Passing Interface. In: Proceedings of Supercomputing (1993)
19. MVAPICH2: High Performance MPI over InfiniBand and iWARP,

http://mvapich.cse.ohio-state.edu/
20. OpenMPI: Open Source High Performance Computing, http://www.open-mpi.org/
21. Rosenblum, M., Garfinkel, T.: Virtual Machine Monitors: Current Technology and Future

Trends. Computer 38(5), 39–47 (2005)
22. Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp.

Phys. 117, 1–19 (1995)
23. Single Root I/O Virtualization,

http://www.pcisig.com/specifications/iov/single_root
24. The Graph500, http://www.graph500.org
25. Huang, W., Liu, J.X., Abali, B., Panda, D.K.: A Case for High Performance Computing

with Virtual Machines. In: The Proceedings of 20th Annual International Conference on
Supercomputing (ICS), Queensland, Australia, June 28-30 (2006)

http://www.infinibandta.org
http://mvapich.cse.ohio-state.edu/
http://www.open-mpi.org/
http://www.pcisig.com/specifications/iov/single_root
http://www.graph500.org

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 354–365, 2014.
© Springer International Publishing Switzerland 2014

Power-Aware L1 and L2 Caches for GPGPUs

Ehsan Atoofian and Ali Manzak

Electrical Engineering Department,
Lakehead University,
Thunder Bay, Canada

{atoofian,amanzak}@lakeheadu.ca

Abstract. General Purpose Graphics Processing Units (GPGPUs) employ sev-
eral levels of memory to execute hundreds of threads concurrently. L1 and L2
caches are critical to performance of GPGPUs but they are extremely power
hungry due to the large number of cores they need to serve. This paper focuses
on power consumption of L1 data caches and L2 cache in GPGPUs and proposes
two optimization techniques: the first optimization technique places idle cache
blocks into drowsy state to reduce leakage power. Our evaluations show that
cache blocks are idle for long intervals and putting them into drowsy mode im-
mediately after each access reduces leakage power dramatically with negligible
impact on performance. The second optimization technique reduces dynamic
power of caches. In GPGPU applications, many warps have inactive threads
due to branch divergence. Existing GPGPU architectures access cache blocks
for both active and inactive threads, wasting power of caches. We use active
mask of GPGPUs and access only the portion of cache blocks that are required
by active threads. By dynamically disabling unnecessary sections of cache
blocks, we are able to reduce dynamic power of caches significantly.

Keywords: GPGPU, CUDA, Memory hierarchy, Cache, Power.

1 Introduction

Early Graphics Processing Units (GPUs) exploited software-managed local memories
(or scratch-pad) instead of caches. GPU workloads include large amount of streaming
data which are difficult to cache. However, recent general purpose GPU applications
demonstrate high level of data locality which makes them suitable for caches. In re-
sponse, GPU vendors have included caches in their designs. For instance, NVIDIA
introduced up to 48KB L1 cache per core in Fermi [9] and AMD’s Fusion GPU [13]
offers 16KB L1 cache per core. Both vendors’ recent GPUs have global coherent L2
caches. NVIDIA increased size of L2 cache from 768KB in Fermi architecture [9] to
1536KB in GK110 [11]. It is expected that the size of caches grows in future.

Large caches consume significant static and dynamic power. This problem exacer-
bate in future: voltage reduction has slowed down in recent years, limiting dynamic
power reduction through voltage scaling. Lowering the threshold voltage results in
significant increase in static power. Therefore, it is necessary to optimize caches to
reduce power consumption.

 Power-Aware L1 and L2 Caches for GPGPUs 355

Several architectural and circuit level techniques have been proposed to deal with
the power of caches in processors [6, 14]. However, GPGPUs provide unique oppor-
tunities to reduce power of caches due to their architecture. For example, once a cache
block is accessed by a thread, it takes several hundreds of clock cycles until the same
block is accessed again. This is mainly due to the round-robin scheduling policy [5]
used in GPGPUs. So, once a thread is executed, it should wait until GPGPU schedules
other threads before it is executed again. The long inter-access delay can be used to
reduce leakage power by placing cache blocks into drowsy mode [8] immediately
after each access. The other opportunity for optimization of caches in GPGPUs is
related to underutilization of cache blocks. Due to branch divergence, some applica-
tions are not able to fully utilize warp slots each cycle. Hence, dynamically disabling
access to inactive cache blocks can reduce dynamic power.

In summary, this paper makes the following contributions:

1) The inter-access delay of L1 and L2 cache blocks is in the range of several hun-
dreds of clock cycles. We exploit this property and propose a method that dynamical-
ly changes the state of cache blocks between ON and drowsy.

2) The number of active threads within a warp varies across the cycles. We exploit
GPU active-mask feature to detect inactive portions of cache blocks before an instruc-
tion is scheduled for execution. We disable bit-lines, word-lines, and sense amplifiers
of inactive SRAM cells to reduce dynamic power in L1 and L2 caches.

The remainder of the paper is structured as follows. Section 2 describes our base-
line GPGPU model. Section 3 explains the motivation behind this work. Section 4
details our optimization techniques. Section 5 discusses our measurement methodol-
ogy and reports the results. Section 6 describes related work and Section 7 concludes
the paper.

2 Background

In this section, we provide a brief description of GPGPU architecture. For consisten-
cy, we use NVIDIA and CUDA terminology in this paper. However, our techniques
are general and can be applied to a broader range of GPGPUs from other vendors.

A GPGPU consists of many Streaming Multiprocessors (SMs) and each SM typi-
cally has 8 to 32 Processing Elements (PEs). For instance, NVIDIA’s Fermi series has
16 SM and each SM has 32 PEs. Figure 1 shows architecture of a GPGPU. Each SM
is associated with a private L1 data cache and read-only constant and texture caches
along with a low latency shared memory. The memory is organized as several DRAM
banks and each bank is associated with a slice of shared L2 cache. SMs and L2 cache
are connected through an interconnection network. In this work, we use a 2D mesh
topology for interconnection network since it is simple to implement and is through-
put-effective [4].

A CUDA program is composed of one or more kernel functions that are launched
and executed on the GPGPU (Figure 2). Each kernel divides its work into identically
sized groups, called Cooperative Thread Arrays (CTAs). Every CTA is assigned to an
SM for execution. To improve utilization of resources in an SM, more than one CTA

356 E. Atoofian and A. Manzak

can be assigned to the SM. The maximum number of CTAs per SM is limited by SM
resources such as number of threads, size of shared memory and register file, etc.
[10]. For example if a CTA requires 8KB of shared memory and the baseline SM has
32KB available, then only 4 CTAs can be launched simultaneously on the same SM.
From a programmer’s point of view, all threads within a CTA execute each instruc-
tion in the kernel concurrently. However, on the real hardware, because of resource
constrains, software threads are actually executed in groups of threads called warps. A
warp has 32 threads on current NVIDIA GPUs. The SM executes one warp at a time.
If a warp is stalled due to a long latency instruction, then the SM selects another warp
for execution.

Fig. 1. GPGPU architecture

Fig. 2. GPGPU application hierarchy

A GPGPU kernel commonly accesses global memory space which is shared by all
threads. When threads access data in the global memory, their accesses go through a
two-level cache hierarchy. The L1 caches are private to SMs but the L2 cache is shared
by all SMs. The L1 caches are not coherent. They follow write-evict, write-no-allocate
policy [10]. On the other side, the L2 cache is coherent and uses write-back with
write-allocate policy [10]. The cache blocks in GPGPUs are wide. For instance, in
Fermi family, the cache blocks in L1 and L2 caches are 128 bytes. So, if all load or
store instructions of a warp map to the same cache line, then all threads of the warp
can be completed in a single transaction.

SM

L1

……
SM

L1

Interconnection Network

DRAM

L2

DRAM

L2 ……

… KernelKernel Kernel …

CTA CTA CTA ……

… warpwarp

Application

 Power-Aware L1 and L2 Caches for GPGPUs 357

In this work, we employ a two-level scheduler [17]. The scheduler partitions warps
into two groups: an active group holding warps eligible for execution and an inactive
group of pending warps. Warps that are waiting for long latency events such as loads
from DRAM are placed in the pending set. Once a warp is ready for execution, it is
removed from the pending list and is inserted into the active list. This approach avoids
stall cycles in a one level round-robin based scheduler [5] since warps progress with
different speeds and the probability that all warps stall due to a long latency memory
operation reduces significantly.

3 Motivation

In this section, we explain motivation behind our work and characterize several work-
loads used in this study to show power saving opportunities in GPGPUs. We use ap-
plications from NVIDIA SDK [18], Rodinia Benchmark suite [20], and Parboil
Benchmark suite [21] (for detail of experimental framework, please refer to Section
5). The second column in Table 1 shows abbreviations for the benchmarks.

Fig. 3. Breakdown of accesses to cache blocks in L1 and L2 caches

Figure 3 shows breakdown of accesses to the cache blocks in L1 and L2 caches. For
each benchmark, the first bar corresponds to the L1 cache and the second bar corre-
sponds to the L2 cache. Each bar in the graph is divided into 16 sections. The top most
component of a bar labeled A16384 shows number of blocks that are accessed 16384
times or more. Similarly, the bottom most component labeled A0 shows the number
of blocks that are not accessed by any SMs. In L1 caches, 50% of cache blocks are
accessed 16 times or less. In L2 cache, 50% of cache blocks are accessed 8 times or
less. Since most of memory requests are serviced by L1 caches, cache blocks in L2 are
idle more often. In DWT, GSS, and MYC, more than 88% of the cache blocks are
never used for execution of the programs. These cache blocks can be put into drowsy
mode to reduce power consumption.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BN
L

CO
N

D
W
T

D
XT

EIG

H
IS

M
ST

N
BD

BPR

CFD

G
SS

H
SP

M
YC

SRD

STM

CU
T

H
ST

M
RI

SA
D

STC

A0 A1 A2 A4 A8 A16 A32 A64 A128 A256 A514 A1024 A2048 A4096 A8192 A16384

358 E. Atoofian and A. Manzak

Next, we focus on cache blocks that are accessed by PEs. Figure 4 shows break-
down of inter-access cycles for cache blocks in L1 and L2 caches. For each bench-
mark, the first bar corresponds to the L1 caches and the second bar corresponds to the
L2 cache. We measure the number of cycles elapsed between two consecutive access-
es to the same cache blocks. For L1 caches, more than 50% of cache blocks have in-
ter-access cycle of 128 or more. For L2 cache, more than 50% of cache blocks have
inter-access cycle of 64 or more. On average, the inter-access cycle for L1 and L2
caches are 2442- and 2840-cycle, respectively. In the two-level scheduler, after a
warp is scheduled for execution, it should wait until all the other warps in the active
list are scheduled. The only time that a warp is scheduled for execution in two con-
secutive cycles is when there is no other warp in the active list. Hence, quite often,
there is a gap between two executions of a warp. This inter-access delay provides
opportunity to put the cache blocks into drowsy mode immediately after they have
been accessed.

Fig. 4. Breakdown of inter-access cycles for cache blocks in L1 and L2 caches

GPGPUs execute threads in the granularity of warps. Each warp consists of 32
threads executing instructions in a lock-step manner. A fully utilized warp has 32
active threads executing one instruction at a time. In Graphics applications, quite
often warps utilize all 32 slots. However, this may not be true for general purpose
applications. General purpose applications exhibit more complex control flow behav-
ior due to frequent branch instructions. Conditional branch instructions can cause
threads within a warp take different paths, or diverge. Since GPGPUs allow a warp to
have only one active PC at any given time, GPGPUs execute taken and not-taken
paths in two phases. In the first phase, threads in the taken path execute and all
threads in the not-taken path are idle. In the second phase, threads in the not-taken
path execute and the rest are idle. Existing GPGPU implementations access cache
blocks for all 32 threads within a warp although many warps may have fewer than 32
threads. The last two columns in Table 1 show the percentage of active threads within
the warps that access L1 and L2 cache blocks, respectively. It is important to note

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BN
L

CO
N

D
W
T

D
XT

EIG

H
IS

M
ST

N
BD

BPR

CFD

G
SS

H
SP

M
YC

SRD

STM

CU
T

H
ST

M
RI

SA
D

STC

L0 L1 L2 L4 L8 L16 L32 L64 L128 L256 L514 L1024 L2048 L4096 L8192 L16384

 Power-Aware L1 and L2 Caches for GPGPUs 359

that L2 cache is accessed when a miss occurs in any of the L1 caches including data,
texture, and shared L1 caches. This is the main reason that block utilization in L2
cache is lower than block utilization in L1 data caches. While in some benchmarks,
i.e. CUT, all warps have 32 active threads throughout the entire execution, some oth-
ers, i.e. MYC, have very low cache block utilizations. Unnecessary accesses to the
cache blocks in benchmarks with low warp utilization waste power. By avoiding these
unnecessary accesses, we can reduce dynamic power in caches.

Table 1. GPGPU Benchmarks and Warp Utilization

Benchmark Abbr. L1 block Utilization L2 block Utilization

binomialOptions BNL 99% 98%

convolutionSeparable CON 100% 81%

dwtHaar1D DWT 100% 95%

dxtc DXT 100% 1%

eigenvalues EIG 100% 33%

histogram HIS 100% 94%

MersenneTwister MST 100% 73%

nbody NBD 100% 14%

backprop BPR 91% 81%

cfd CFD 100% 93%

gaussian GSS 65% 37%

hotspot HSP 100% 96%

myocyte MYC 4% 2%

srad_v1 SRD 99% 99%

streamcluster STM 98% 99%

cutcp CUT 100% 100%

histo HST 100% 98%

mri-gridding MRI 100% 99%

sad SAD 93% 93%

sgemm STC 100% 100%

4 Reducing Power of L1 and L2 Caches

In this section, we present static and dynamic power reduction techniques based on
opportunities discussed in Section 3.

4.1 Static Power Reduction Using Drowsy Cells

Inter-access cycles in Figure 4 show that cache blocks are not accessed for long inter-
vals and it is possible to save power of cache blocks when they are idle. Several tech-
niques have been proposed to reduce leakage power of cache cells by turning off
cache blocks when they are not needed [1, 22]. The drawback of these techniques is

360 E. Atoofian and A. Manzak

that data in cache blocks are lost when they are turned off and the extra power needed
to access interconnection network and L2 cache (if L1 miss occurs) or main memory
(if L2 miss occurs) to reload data may negate any power saving and may degrade per-
formance. To avoid these pitfalls, we put cache blocks into drowsy mode [8].

A drowsy cell exploits dynamic voltage scaling to reduce leakage power. Each
cache block can switch between high and low (drowsy) supply voltages. When a
cache block is idle its voltage is set to low supply voltage. Due to short-channel ef-
fects in deep-submicron processes, leakage current reduces significantly in idle cache
blocks. The combined effect of reduced leakage current and voltage results in a dra-
matic saving in static power. Whenever an SM sends a request to a cache, the cache
controller checks the condition of the voltage of the cache line. If the accessed line is
in normal mode, no extra delay is incurred, because the power mode of the line can be
checked concurrently with the read and comparison of the tag. However, if the line is
in drowsy mode, we need to prevent the discharge of the bit-line of the cache line
because it may read out the wrong data. We need to wait an extra cycle to switch the
supply voltage back to normal mode before reading out the data.

One implication of drowsy cell is that execution time of programs may increase
since drowsy cells require extra time to wake-up. We use a two-level scheduler [17]
to select a warp for execution. Each cycle, the scheduler selects a ready warp from the
active list and sends it for execution. To hide wake-up latency of drowsy cells, the
scheduler should send the source operands of a load/store instruction to the memory
unit before the associated instruction is issued. To handle this, the scheduler can issue
a warp and concurrently look into active warps to find the warp that is going to be
issued in the next cycle. Thus, one can eliminate the overhead of drowsy cells with 1-
cyle wake-up delay. Similarly, the scheduler can look into active list and send infor-
mation of the warp to the memory unit n cycles ahead and may wake-up drowsy cells
to hide n cycles of wake-up delay. So, the two-level scheduler is able to hide the la-
tency of drowsy cells. However, we also evaluate a scheduler which is not able to
check the warps ahead of time. In Section 5, we explore the performance impact of
drowsy cells with different wake-up latencies assuming that it is not feasible to hide
the latency of drowsy cells.

4.2 Reducing Dynamic Power Using Active Mask

In the previous section, we used drowsy cells to reduce leakage power when a cache
block is idle. However, when the cache block is accessed all bytes within the block
are placed in ON state. For example, in Fermi family, each cache block is 128-byte.
So, when SM executes a load/store instruction, the whole 128-byte is woken up. Ac-
cessing such a large number of SRAM cells incurs significant dynamic power because
of activating word-lines, bit-lines, and sense amplifiers.

As shown in Table 1, the percentage of active threads varies across the bench-
marks. Because of branch divergence, some warps cannot fill the whole 32 slots.
However, in existing implementations of GPGPUs, a warp with partial utilization still
activates the whole cache block. This means that we have to pre-charge word-line
(WL), bit-line (BL), bit-line-bar (BLB), and sense amplifiers for the whole cache

 Power-Aware L1 and L2 Caches for GPGPUs 361

block although a subset of the cache block is used for warp execution. One way to
reduce dynamic power of the cache blocks is to access only portions of cache blocks
that are accessed by active threads. GPUs use an active mask which indicates active
threads within a warp. The mask is a vector of 32 bits and each bit corresponds to a
thread. When a branch instruction diverges, the bits corresponding to active threads
are set and the rest are cleared. Hence, we can use active mask to disable portions of
cache blocks associated with inactive threads.

We use the Divided Word Line (DWL) [23] technique to implement active mask
aware access to caches. Figure 5 illustrates the structure of DWL. In DWL, the WL is
segmented into several Small WLs (SWLs). Each SWL enables or disables accessing
to the portion of cache block attached to it. For our work, each SWL covers 4-byte of
the cache block. The output of a row decoder is connected to SWLs. GPU architecture
is suited for easy integration of DWL into caches. A warp’s active mask has all in-
formation required to determine which SWL should be active or inactive. Each SWL
is activated by an AND gate which has two inputs, the horizontal line coming from
the row decoder and the vertical line coming from the active mask. DWL reduces
dynamic power since whenever a cache block is accessed those bytes within the cache
block that correspond to the inactive threads are disabled.

Fig. 5. Structure of DWL

5 Methodology and Results

We used GPGPU-Sim (version 3.1.1) [3] to evaluate our power aware optimization
techniques. GPGPU-Sim is a publicly available, detailed cycle-based simulator for
GPGPUs. We configure the simulator to closely match NVIDIA’s Fermi GTX480 as
recommended in the GPGPU-Sim manual (Table 2). We use a collection of bench-
marks from CUDA SDK [18], Rodinia Benchmark suite [20], and Parboil Benchmark
suite [21] (Table 1). We ran the benchmarks until completion or for 1 billion instruc-
tions, whichever comes first.

WL

SWL

.

.

.

mask[0] mask[31]

…

…
…

row decoder

…

…

362 E. Atoofian and A. Manzak

5.1 Experimental Results

In this section, we report power saving in L1 and L2 caches. Figure 6 shows static, dy-
namic, and total power saving in L1 and L2 caches. For each benchmark, the first bar
represents static power in caches with drowsy mode relative to the static power of the
baseline scheme. Bars less than one show power reduction. In order to quantify the
leakage current in caches, we modeled a cache based on 6T SRAM cells in HSPICE.
We used the technology files from Predictive Technology Models (PTM) [12] with
feature size of 32-nm and nominal voltage of 0.9V. We found that the state of SRAM
cells can be maintained if Vdd is reduced up to 0.2V. While an ideal drowsy cell can
work at 0.2v, in practice it is necessary to add safety margin to take into account noise
and also mismatch between transistors. Table 3 shows static power for nominal voltage
and reduced voltages in a row of L1 and L2 caches. Even when Vdd is reduced to 0.4v,
the static power is less than 8% of static power when cache cells operate at full Vdd.
For the rest of this section, we assume drowsy cells operate at 0.4v.

Table 2. GPGPU-Sim Configuration Table 3. Static power in a row of $L1/$L2

Number of SMs 16
Warps/Shader 48

Threads per warp 32
PEs/SM 32

Registers per core 32768
$L1 (size/assoc/line) 16KB/4-way/128B
$L2 (size/assoc/line) 768KB/16-way/128B
Memory controller FR-FCFS

The second column in Figure 6 shows dynamic power in L1 and L2 caches with ac-

tive mask relative to dynamic power of the baseline scheme. We extracted resistance
and capacitance of SWLs based on the model used in CACTI v6.0 [15]. Similar to
static power, we used HSPICE with PTM [12] and feature size of 32-nm to estimate
dynamic power. The dynamic power depends on warp utilization of the benchmarks
(Table 1). Benchmarks with low warp utilization, i.e. MYC, show significant dynamic
power saving. On the other side, benchmarks such as CUT that usually have 32 active
threads do not benefit from this technique. Benchmarks with moderate warp utiliza-
tion, i.e. GSS, have limited dynamic power saving. On average, the dynamic power
reduces by 7% and 24% in L1 and L2 caches, respectively.

 The third column in Figure 6 shows the relative total power saving. The combined
system first changes the state of a requested cache block from drowsy to active. Then,
based on active mask, it decides which portion of the cache block should be activated.
Benchmarks with low warp utilization, i.e. MYC, have the highest power saving be-
cause they take advantage of both the leakage and the dynamic power saving tech-
niques. On average, the total power is reduced by 90% and 96% in L1 and L2 caches,
respectively.

As we discussed in Section 4.1, a two level scheduler can activate a cache block
ahead of time and avoid any penalty due to wake-up delay. However, if it is not

Vdd(v) 0.2 0.3 0.4 0.9

Static Power

$L1/$L2(mw)

0.04/0.260.056/0.360.08/0.531.081/6.7

 Power-Aware L1 and L2 Caches for GPGPUs 363

feasible to hide wake-up latency (for example if GPGPU uses a scheduler other than
the two level scheduler), we assume that this delays execution of the warps. To quan-
tify the effect of wake-up latency, we ran the benchmarks with one and two extra
cycles overhead. Note that these latencies are in addition to the latency of the baseline
cache. Figure 7 shows performance of a GPGPU with drowsy cache relative to the
baseline scheme. Bars less than one show slow-down. A GPGPU has many warps and
if a warp is stalled due to cache delay, the GPGPU can issue and execute another
warp. Hence, the performance changes slightly with wake-up delay. On average, the
performance of the benchmarks changes by less than 0.3% when wake-up delay is
one and two cycles. In some benchmarks, i.e. STM, execution time reduces when
wake-up delay increase. We analyzed these benchmarks and found that the sequence
of executed warps changes with wake-up delay. In the new sequence, cache miss rate
reduces and this improves performance of these benchmarks slightly.

a)

b)

Fig. 6. Static, dynamic, and total power saving in a) L1 and b) L2 caches

Fig. 7. Performance impact of drowsy cache with one and two cycles wake-up delay

0.0

0.2

0.4

0.6

0.8

1.0

BNL CON DWT DXT EIG HIS MST NBD BPR CFD GSS HSP MYC SRD STM CUT HST MRI SAD STC

Lo
w

er
 is

 b
et

te
r

L1_Stat L1_Dyn L1_Total

0.0

0.2

0.4

0.6

0.8

1.0

BNL CON DWT DXT EIG HIS MST NBD BPR CFD GSS HSP MYC SRD STM CUT HST MRI SAD STC

Lo
w

er
 is

 b
et

te
r

L2_Stat L2_Dyn L2_Total

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

BNL CON DWT DXT EIG HIS MST NBD BPR CFD GSS HSP MYC SRD STM CUT HST MRI SAD STC

D1 D2

364 E. Atoofian and A. Manzak

6 Related Work

Gebhart et al. [2] proposed a unified local memory which can dynamically change the
capacity of register, shared memory, and cache on a per application basis. Existing
implementations of GPGPUs use a one-size-fit-all policy and hard-partition local
storage of an SM in design time. However, GPGPU applications have diverse local
storage requirements and a single memory unit is often most critical to performance
of a given application. Gebhart et al. [2] proposed a unified memory architecture that
aggregates different memory units and allows a flexible allocation based on applica-
tions’ requirements. The tuning that this flexibility enables improves both perfor-
mance and energy of GPGPUs.

Sankaranarayanan et al. [7] proposed adding tinyCache to reduce power of L1 data
cache. A tinyCache is a small filter inserted between a PE and an L1 data cache and
intercepts accesses to the shared L1 cache. The main challenge of tinyCache is cache
coherency. Since each PE has a private tinyCache, it is necessary to maintain coher-
ency across tinyCaches of an SM. To reduce coherence overhead, Sankaranarayanan
et al. proposed to either evict content of tinyCache into L1 cache (e.g. for barriers) or
bypass tinyCache (e.g. for atomic operations). TinyCache is able to reduce power of
L1 data cache by filtering out a sizable portion of memory accesses to the L1 cache.

The above techniques can be used along with our optimization techniques to re-
duce power consumption of caches in GPGPUs further.

Warped register file [16] uses compiler to turn off unallocated registers and places
the rest into drowsy mode to reduce leakage power. It also avoids charging bit-lines
and word-lines of registers associated with inactive threads to reduce dynamic power.
Our work is different from warped register file since we focus on the power of caches
in GPGPUs.

This paper is an extension of our previous work [19] on L1 data caches in
GPGPUs. We have studies inter-access cycle and warp utilization in L2 cache and
found that the behavior of L2 cache is similar to L1 cache. We applied drowsy cell and
active mask to the cache blocks and reduced static, dynamic, and total power of L1
and L2 caches.

7 Conclusion

This paper proposes two power-aware optimization techniques that target static and
dynamic power of L1 and L2 caches in GPGPUs. Due to large inter-access distance of
cache blocks, GPGPUs provide unique opportunities to reduce power. Our first opti-
mization technique puts cache blocks into drowsy state and brings them to active state
only when they are accessed. Given the large pool of warps in GPGPUs, this aggres-
sive drowsy state management technique impacts performance negligibly. The second
technique exploits active masks and eliminates activation of unused portions of cache
blocks. These two optimization techniques combined are able to reduce power of L1
and L2 caches by 90% and 96%, respectively.

 Power-Aware L1 and L2 Caches for GPGPUs 365

Acknowledgment. This work was supported by the National Sciences and Engineer-
ing Research Council of Canada.

References

1. Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: Exploiting generational behavior to re-
duce cache leakage power. In: Proceedings of ISCA, pp. 240–251 (2001)

2. Gebhart, M., et al.: Unifying primary cache, scratch, and register file memories in a
throughput processor. In: Proceedings of MICRO-45, pp. 96–106 (2012)

3. Bakhoda, A., Yuan, G., Fung, W., Wong, H., Aamodt, T.: Analyzing CUDA workloads
using a detailed GPU simulator. In: Proceedings of ISPASS (April 2009)

4. Bakhoda, A., Kim, J., Aamodt, T.: Throughput-effective On-chip Networks for Manycore
Accelerators. In: MICRO (2010)

5. Fung, W., Sham, I., Yuan, G., Aamodt, T.: DynamicWarp Formation and Scheduling for
Efficient GPU Control Flow. In: MICRO (2007)

6. Boettcher, M., et al.: MALEC: A Multiple Access Low Energy Cache. In: Design, Auto-
mation & Test in Europe Conference & Exhibition (DATE), pp. 368–373 (2013)

7. Sankaranarayanan, A., Ardestani, E.K., Briz, J.L., Renau, J.: An Energy Efficient GPGPU
Memory Hierarchy with Tiny Incoherent Caches. In: ISLPED, pp. 9–14 (2013)

8. Flautner, K., et al.: Drowsy caches: Simple techniques for reducing leakage power. In:
Proceedings of ISCA, pp. 148–157 (2002)

9. NVIDIA Corp. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi (2009)
10. NVIDIA. CUDA Programming Guide Version 5.0 (2013)
11. NVIDIA Corp. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110

(2012)
12. Arizona state university predictive technology model, http://ptm.asu.edu
13. Demers, E.: Evolution of AMD graphics, AMD Fusion Developer Summit (2011)
14. Agrawal, A., Jain, P., Ansari, A., Torrellas, J.: Refrint: Intelligent refresh to minimize

power in on-chip multiprocessor cache hierarchies. In: Proceedings of HPCA (2013)
15. Muralimanoharet, N., et al.: Optimizing NUCA Organizations and Wiring Alternatives for

Large Caches with CACTI 6.0. In: Proceedings of MICRO (2007)
16. Abdel-Majeed, M., Annavaram, M.: Warped Register File: A Power Efficient Register File

for GPGPUs. In: Proceedings of HPCA (2013)
17. Gebhart, M., et al.: Energy-efficient mechanisms for managing thread context in through-

put processors. In: Proceedings of the ISCA, pp. 235–246 (2011)
18. NVIDIA. CUDA C/C++ SDK code samples (2013)
19. Atoofian, E.: Reducing Static and Dynamic Power of L1 Data Caches in GPGPUs. In:

Proceedings of HPPAC, Phoenix AZ (2014)
20. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Lee, S.-H., Skadron, K.: Rodinia: A

Benchmark Suite for Heterogeneous Computing. In: IISWC (2009)
21. Stratton, J.A., et al.: Parboil: A Revised Benchmark Suite for Scientific and Commercial

Throughput Computing (2012)
22. Zhou, H., et al.: Adaptive mode-control: A static-power-efficient cache design. In: Pro-

ceedings of International Conference on Parallel Architectures and Compilation Tech-
niques (2001)

23. Yoshimoto, M., et al.: A divided word-line structure in the static ram and its application to
a 64k full cmos ram. IEEE Journal of Solid-State Circuits 18(5), 479–485 (1983)

Power Consumption Due to Data Movement

in Distributed Programming Models

Siddhartha Jana1, Oscar Hernandez2, Stephen Poole2, and Barbara Chapman1

1 Computer Science Department,
University of Houston,

Houston, Texas
{sidjana,chapman}@cs.uh.edu

2 Computer Science and Mathematics Division,
Oak Ridge National Laboratory,

Oak Ridge, Tennessee
{oscar,spoole}@ornl.gov

Abstract. The amount of energy consumed due to data movement
poses a serious challenge when implementing and using distributed pro-
gramming models. Message-passing models like MPI provide the user
with explicit interfaces to initiate data-transfers among distributed pro-
cesses. In this work, we establish the notion that from a programmer’s
standpoint, design decisions like the size of the data-payload to be trans-
ferred and the number of explicit MPI calls to service such transfers
have a direct impact on the power signatures of communication kernels.
Upon closer look, we additionally observe that the choice of the trans-
port layer (along with the associated interconnect) and the design of
the data transfer protocol, both, contribute to these signatures. This pa-
per presents a fine-grained study on the impact of the power and energy
consumption due to data movement in distributed programming models.
We hope that results discussed in this work would motivate application
and system programmers to include energy consumption as one of the
important design factors while targeting HPC systems.

1 Introduction and Related Work

One of the primary challenges on the pathway to Exascale Computing is the
20MW power consumption envelope established by the U.S. Department of
Energy’s Exascale Initiative Steering Committee [11]. The direct outcome of
this has been a rising concern about the energy and power consumption of large-
scale applications that rely on various communication libraries for efficient data
movement in distributed systems. As part of this work, we establish the notion
that the factors responsible for the performance of such libraries, also govern the
power-profiles of such applications. Fig. 1 lists many such factors throughout the
hardware and software stack.

This work is an extension of our previous experience of studying the im-
pact of one-sided communication in PGAS models (OpenSHMEM) [7]. We had

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 366–378, 2014.
c© Springer International Publishing Switzerland 2014

Power Consumption Due to Data Movement 367

Fig. 1. Factors impact-
ing the energy and power
consumption across the
hardware and software
stack

learned that managing small-sized data transfers on RDMA-capable networks
are more energy efficent that handling large bulk transfers. In this paper, we
present empirical evidence highlighting the contribution of design factors within
the software stack to the power consumption by the underlying system. Our
takeaway from this study is that the protocols used to implement such inter-
faces, play a significant role in impacting its power-cost. In addition, since the
design of communication libraries are tuned to specific interconnect solutions,
the choice of the transport layer adopted for servicing data transfers plays an
equally significant role.

In Section 2, we discuss the impact of the above factors on the behavior of
two-sided communication interfaces within MPI, the de facto standard for dis-
tributed memory model. This is an extension of past work on analyzing the im-
pact of data-transfer characteristics on one-sided communication interfaces [7].
We discuss the characteristics of our testbed and our experimental methodology
in Section 3. This is followed by a description of our observations of the impact
on power consumption by CPU cores and the DRAM while relying on Ether-
net (via traditional TCP) and Infiniband (via OFED or OpenFabrics Enterprise
Distribution [1]) fabrics (Section 4). All of these are discussed with respect to
the implementation of two basic message-passing schemes - the Eager and Ren-
dezvous protocols. Finally in Section 4, we summarize our findings by discussing
the total power efficiency achievable for each of the above configurations. We
hope this work motivates the practice of taking power-metrics into considera-
tion while designing middleware solutions for Exascale-era machines.

2 Factors Affecting Power and Energy Profile of Remote
Data Transfers

Two-sided data-transfer in distributed-memory models like MPI, sockets, etc.
require the active participation of both the sender and the receiver of the data.

368 S. Jana et al.

(a) Eager Protocol (b) Rendezvous Protocol

Fig. 2. Sequence Diagrams for Eager and Rendezvous protocols

The impact on the achievable latency and bandwidth of such transfers depend
on the design of the transport layer (and the associated interconnect) and the
data transfer protocol. As part of this work, we learned that the impact of these
factors on the energy metrics is very important.

2.1 Choice of Transport Layer and the Associated Interconnect

If the target platform relies on an OS-based TCP protocol for servicing data
transfers, CPU cores undergo multiple switches between user and supervisor op-
erating modes. In addition, relying on Ethernet-based fabric has the potential
of degrading the achievable efficiency both in performance and energy consump-
tion (as discussed later). To avoid this, a communication library may exploit
kernel-bypass mechanisms and RDMA-based capabilities of the OFED stack on
top of modern interconnects like InfiniBand, etc.

2.2 Design of Data-Transfer Protocols

Data transfers within message-passing libraries are based on two well-established
paradigms - the eager and rendezvous protocols. The primary phases involved
in these protocols are depicted in the line diagrams in Fig. 2.

Rendezvous protocols incorporate RTS-CTS1 handshaking to ensure that the
sender waits for an explicit request from the receiver before servicing the actual
transfer. Such an exchange ensures that the receiver’s buffer is ready for being
overwritten with the incoming payload. This method has proven to be beneficial
for large bulk transfers since the overhead of the handshaking operation gets
eclipsed by the gain in the throughput of the end-to-end data movement [2]. For
small message sizes, however the additional round trip proves expensive.

Eager protocols help mitigate the above overhead by reducing the time and
energy spent by the sender waiting for the receiver to post the destination buffer

1 Request-To-Send / Clear-To-Send two-sided handshake signal.

Power Consumption Due to Data Movement 369

address. The sender may choose to start transfering its data to a pre-allocated
buffer without waiting for the receiver to send a CTS signal. This is easily
facilitated by an underlying interconnect solution that supports RDMA-based
transfers. Once the receiver calls MPI Recv(), it can copy-out the data from this
pre-allocated buffer. Not surprisingly, the impact of latency of such techniques
is bounded by the costs of memory registration and the additional in-memory
copies both at the sender’s and the receiver’s end.

2.3 Power versus Latency

Energy efficient communication depends on a number of factors listed in Fig. 1.
Through this text, we hope to establish the difference between optimizing for
energy versus power. It must be noted that one doesn’t always have to sacri-
fice the lowest possible latency to achieve energy-efficiency2. Consider the plots
shown in Fig. 3.

(a) Using 64 fragments to transfer data.
Energy=6mJ

(b) Using 2 fragments to transfer data.
Energy=0.33mJ

Fig. 3. Power Versus Latency. Use of
a 32KB data payload transferred using
MPI Send() over InfiniBand

The plots (a) and (b) depict the
average power consumed by CPU cores
(Y-axis) and the corresponding latency
(X-axis) incurred while transferring a
32KB payload across the network (MPI
Send-Recv over InfiniBand). If this pay-
load is divided into 64 fragments, the
energy consumption by the CPU cores
is about 6 mJ and the transfer takes
about 370 µs to complete. The aver-
age power consumption during this trans-
fer is about 16.21 Watts (Fig. 3a). If
instead, we chose to split this payload into
only 2 fragments (16KB each), the energy
consumption drops to 0.33 mJ (by 94.5%)
and latency to 20 µs (by 94.6%). How-
ever, this comes at the cost of a rise in
power consumption to 16.565W, i.e. an in-
crement by 1.8% (Fig. 3b). Thus, despite
the higher power consumption, choosing
the latter option enables the CPU cores
to service the transfer using lesser energy.

3 Experimental Setup

Our study was aimed at performing a fine-grained analysis of the impact on
different components of a distributed system, namely, the cores, the socket,
the motherboard, the memory unit, and the entire compute-node as a whole.

2 It is very important to remember that optimizing for energy consumption is not
always equivalent to optimizing for power.

370 S. Jana et al.

Table 1. Test-Platform characteristics

RAPL monitored Node PowerPack monitored SystemG Node

Processor
Intel Xeon CPU
E5-2670

Microarchitecture Intel’s Sandy Bridge
Operating Frequency 2.6 GHz
Maximum Thermal Design
Power (TDP)

115 Watts

Hyperthreading support Disabled

Infiniband card
Mellanox MT26428,
fw-ver:2.7.0

Linux kernel version 2.6.32 x86 64
Compiler gcc version 4.4.6
Compiler flags used -O3
Energy Sampling rate 1ms

Processor
Intel Xeon CPU
E5462

Microarchitecture Intel’s Sandy Bridge
Operating Frequency 2.8 GHz
Maximum Thermal Design
Power (TDP)

80 Watts

Hyperthreading support Disabled

Infiniband card
Mellanox MT26428,
fw-ver:2.5.9

Linux kernel version 2.6.32 x86 64
Compiler gcc version 4.4.4
Compiler flags used -O3
Power Sampling rate 10ms

The experiments were performed for two different implementations of MPI -
Open MPI [4] and MVAPICH2 [9]. We observed similar behavior between the
two MPI implementations. Due to space constraints, we discuss the impact of
only Open MPI’s implementation of data transfers on two major components [5]
that contribute to the total power consumption of a system, viz. the CPU cores
and the memory. While the network card forms an important component of a
distributed system, past study indicates that its impact on the total power con-
sumption by a system is about 1% [3]. We therefore omit any further discussion
on the impact of NIC from the rest of the text.

Fig. 4. Layout of the plots in this paper

Note on Interpreting the Graph-
ical Plots. We briefly discuss the
method of interpreting the plots pre-
sented in the following sections. Each
plot illustrates empirical results in
terms of an energy metric. It corre-
sponds to a specific transport layer
and a communication protocol.

The coordinate axes (log-scale) cor-
respond to two controllable factors
that define a communication phase in
an application - the total size of data

transferred during that phase (X-axis) and the number of explicit MPI-calls (Y-
axis) used to transfer that payload. Throughout this text, we refer to the latter
as the count of fragments3. The shade of a point in this coordinate space indi-
cates the value of monitored metric that is represented by the color-scale to the
right of each plot.

Microbenchmark Used for Evaluating the Impact of Data Transfers.
The pseudo-code and the sequence diagram of the synthetic microbenchmark

3 It must be noted that each fragment may further be divided into smaller chunks by
the underlying layers based on the middleware design, NIC hardware contraints, etc.

Power Consumption Due to Data Movement 371

Table 2. Synthetic microbenchmark used for evaluating energy and power consump-
tion by varying the total size of data payload and the number of fragments

Sequence Diagram Code snippet

/∗MAX WRK SIZE : i s t h e maximum da t a
p a y l o a d t o b e t r a n s f e r r e d
w i t h i n a c ommun i c a t i o n k e r n e l

∗/
MPI Comm rank(MPI COMM WORLD, &rank) ;
for (j =1; j<=MAX WRK SIZE; j ∗=2)
{
for (f r a g cn t =1; f r ag cn t<=j ; f r a g c n t ∗=2)
{
bytes per msg = j / f r a g c n t ;
MPI Barrier () ;
// START m o n i t o r i n g
for (i t =0; i t<f r ag cn t ; i t++)
i f (rank==0)
MPI Send (. . . , bytes per msg ,MPI BYTE, 1 , . .) ;

else
MPI Recv (. . . , bytes per msg ,MPI BYTE, 0 , . .) ;

// STOP m o n i t o r i n g
}

}

used to study the impact of the explicit data transfers are presented in Table 2.
It must be noted that the type of transfers being evaluated use traditional MPI
blocking two-sided point-to-point interfaces.

Test Platform for Monitoring Energy and Power Consumption. We
incorporated two different power-monitoring schemes:

– Intel’s Running Average Power Limiting (RAPL): The energy consumption
by the CPU cores were monitored using the RAPL interface [6] which are
exposed as model specific registers on SandyBridge platforms. These were
read using VampirTrace [8] via PAPI [10]

– PowerPack on SystemG: The power consumption by the memory unit, was
measured using the PowerPack 4.0 framework on the SystemG cluster at
Virginia Tech. The power consumption is measured directly using the four
VDC pins that supply power to the module [5].

4 Empirical Observation and Analysis

In this section, we present our observations of the impact on the energy and
power consumption by the CPU cores and memory due to the factors discussed
in the previous section.

4.1 Using TCP over Ethernet

Using Rendezvous Protocol. Consider the power consumption by the CPU
cores servicing the sender process (Fig. 5a(I)). While handling small data pay-
loads (< 1KB) the CPU cores suffer a high power cost (region A). The reason

372 S. Jana et al.

(a) Power consumed by the CPU cores

(b) Power consumed by the DRAM

Fig. 5. Power consumed by the CPU cores and the DRAM while servicing remote data
transfers by the sender process

Power Consumption Due to Data Movement 373

(a) Power consumed by the CPU cores

(b) Power consumed by the DRAM

Fig. 6. Power consumed by the CPU cores and the DRAM while servicing remote data
transfers by the receiver process

374 S. Jana et al.

for this may be attributed to the very low latency of the operation, the frequent
context switches between the operating modes (see Section 2) and the high over-
head incurred during the handshake operations. This cost reduces for large bulk
transfers (> 32KB) due to a rise in the latency of the data transfer and a drop in
the rate of active participation by the CPU cores (region B). Dividing such bulk
buffers into smaller fragments again leads to a rise in the cost (region-C). How-
ever, this rise in power-cost in limited due to high latency that arises with heavy
fragmentation. Due to this, the inverse relation between the increase in latency
and the drop in the average power consumption can be observed in region-D.
On the receiver’s end (Fig. 6a(I)), the power consumed primarily depends on
the size of the data being transferred (regions A,B). It must also be noted that
the passive participation by the receiver (when compared to the sender), leads
to a lower range of power-consumption (15.5-16.2W as compared to 17-18W).
From the memory unit’s perspective (Fig. 5b(I)) the power cost incurred by the
sender process while servicing small transfers (region A) is lesser than that while
servicing large transfers (region B).

Using Eager Protocol. Switching from a rendezvous protocol to an eager
protocol definitely reduces the operating power-cost incurred by the CPU cores
while servicing large data transfers by the sender and the receiver processes
(Figs. 5a(III), 6a(III)(regions A-B)). The negative impact of fragmentation can
be observed in terms of the rise in the power-cost incurred by the memory
modules, both by the sender as well as the receiver (Figs. 5b(III), 6b(III)(regions
A-B)). Implementing an eager protocol using a non-RDMA based fabric like
Ethernet leads to a significant rise in power-consumption at the receiver’s end
(Fig. 6b(III)(region A)). A rise in the number of bytes transferred per fragment
leads to a rise in the energy consumed by the memory. However, we see from
region B in Figs. 5b(III), 6b(III) that the power consumption by the memory
module drops. This can be attributed to the rise in the latency in completion of
the transfer of the entire data payload.

4.2 Using OpenIB/OFED Stack over InfiniBand

Using Rendezvous Protocol. At first glance, Figs. 5a(II), 6a(II) (regions
A,B,C), depict that the power consumed by the CPU cores is dependent on the
total size of the data payload and not so much on the degree of fragmentation.
However, one must take into account that using the rendezvous protocol over the
OFED stack leads to a combination of two different types of overhead. The first is
the power-penalty of using either memory-pinning or local memcpy operations
(as explained in the next subsection). The second is the overhead due to the
handshaking operations (as explained in the previous sub-sections).

With regards to the power consumed by the memory at the sender’s side, the
cost increases monotonically with a rise in the size per fragment. As discussed in
the following bullet point below, using the OFED stack is accompanied with the
power-penalty of either memory-pinning or local memcpy operations. This cost
varies with the number of bytes transferred with each fragment (Fig.5b(III)).

Power Consumption Due to Data Movement 375

Using Eager Protocol. Parallel diagonally-colored bands in Figs. 5a(IV),
5b(IV), 6a(IV), 6b(IV) show that the power consumed by the cores and the
memory unit, both depend on the number of bytes transferred within each frag-
ment. As discussed before, either the memory space containing these fragments
are dynamically pinned-down (registered) with the NIC or its contents are copied
over to some pre-registered buffer. The performance penalty of dynamic regis-
tration of small buffers is expensive. Thus, a runtime implementation would
typically perform a local copy of the contents into a pre-registered buffer. Our
experience shows that the power cost of this memory copy increases with rise
in the fragment size (i.e. bytes/fragment). This can be observed in region-C.
As the size of each fragment increases, an implementation would typically start
dynamically registering user buffers with the NIC. Either way, this keeps the
CPU cores active. It is during this inflection point that we observe a slight drop
in the cores power consumption. Further increase in the size of fragment again
leads to a rise in this cost (region A).

Complementary to the CPU power consumption, the power-cost incurred by
the memory rises with the size per fragment (region A). It too hits a cool spot
(region B) and then rises up monotonically with a rise in the achievable band-
width on the NIC.

4.3 Summary: Achievable Energy-Efficiency during Data Transfers

To study the net impact of the choice of the communication protocols and the
transport layer, we evaluated the power efficiency using a metric tuned towards

Fig. 7. A summary of the total bytes transferred per Joule of energy consumed by the
sender and the receiver while participating in remote data transfers

376 S. Jana et al.

communication-intensive kernels. The energy-efficiency of a compute-intensive
application kernel is given by the total number of machine/floating-point oper-
ations per second per watt of power consumed (MOPS/Watt or FLOPS/Watt).
To evaluate the cost of data transfer operations, we use a similar metric - the
net bandwidth achievable per watt of power consumed by the participating pro-
cesses; in other words - the number of bytes that can be transferred across the
network for each joule of energy consumed by the sender and receiver. For a
point-to-point communication model like MPI, this may be represented by the
equation below:

Bw
Pnet

= Bw
(Ps,cpu+Ps,mem+Pr,cpu+Pr,mem)

=
Bpayload

ΔEs+ΔEr
(Bytes
Joule)

(1)

Table 3. Symbols in Eqn.1

Sym-
bols Metric

Bw Achievable bandwidth (bytes/sec)
Pnet Net average power consumed (W)

BpayloadTotal number of bytes transmitted

ΔEs Energy consumption by sender (J)
ΔEr Energy consumption by receiver (J)
Ps,cpu Cores power consumption at sender (W)

Pr,cpu
Cores power consumption at receiver
(W)

Ps,mem
Memory power consumption at sender
(W)

Pr,mem
Memory power consumption at receiver
(W)

The symbols used in this equa-
tion are listed in Table 3. The net
impact on this metric is discussed
in Fig: 7. The primary observations
are:

– The net bandwidth achievable
using an interconnect directly
impacts the maximum value
of energy-efficiency. Thus the
peak bytes transmitted per
joule is an order of a magnitude
higher when using the OpenIB
over InfiniBand as compared to
TCP over Ethernet. Moreover,
irrespective of the type of transport adopted, energy-efficient communication
can be achieved using an eager-based protocol.

– Impact of number of bytes packed
per transfer:
• In the figure, the arrow points towards the direction of the increase in
the number of bytes transferred per call. For TCP+Rendezvous config-
uration (Fig. 7(I)), we see that the peak energy efficiency during a data
transfer (about 0.565MB/Joule) may be attained only when the total
message size per transfer is higher than 128KB. With the TCP+Eager
protocol however, this peak is attained for message sizes beyond 1KB in
size.

• The highest power efficiency among all the configurations is achievable
while using an eager-based protocol over the OpenIB stack - A maximum
of 3MB of data is transferred for every joule of energy consumed.

5 Conclusion

Data movement across large-scale systems has the potential of impacting
not only the performance of distributed programming models, but also the

Power Consumption Due to Data Movement 377

power-signatures. In this paper, we established the notion that the choice of the
transport layer and the design of communication protocols play a significant role
in terms of the energy and power consumption. The empirical results discussed
in this paper highlighted the behavior of this impact on the CPU cores and the
memory. It was observed that the power consumption by CPU cores and the
memory bandwidth is not only impacted by the latency of the remote transfers,
but also the memory bandwidth between the CPU cores and the memory.

While using traditional TCP over Ethernet, energy savings can be obtained
by choosing an eager-based protocol over a rendevous-based one. While using
an eager protocol, an efficiency of upto 600bytes/joule may be obtained. Despite
these savings, it must be noted that mapping an eager protocol over a non-
RDMA based fabric leads to high power consumption by the memory. While
using an RDMA-capable network like InfiniBand, the use of eager-based protocol
lends itself naturally to the semantics of the transport layer (OpenFabrics OFED,
in our case).

Irrespective of the type of transport and protocol, higher efficiency (bytes
transferred per joule) can be achieved by aggregating user buffers into contigu-
ous larger fragments before servicing the transfer. In addition, the net band-
width achievable during a transfer impacts this efficiency. We hope that results
of energy-efficiency as well as a detailed study of the impact on the various
sub-components of the system would motivate the design of “power-aware” mid-
dleware for use with HPC applications.

As the next step, we plan to extend this study to evaluate the impact on
large-scale multi-node systems. It is equally essential to study the contribution
of communication kernels to the energy profiles of large scale real world HPC
applications.

Acknowledgments. This work is supported by the U.S. Dept. of Defense via
the Extreme Scale Systems Center and used resources at the Oak Ridge Leader-
ship Computing Facility, which is supported by the Office of Science (U.S. Dept.
of Energy) under Contract No. DE-AC05-00OR22725. Thanks are due to the
support teams of VampirTrace from the Zentrum für Informationsdienste und
Hochleistungsrechnen (ZIH, Technische Universität Dresden, Germany), Power-
Pack from the Scalable Performance Lab (Virginia Tech, U.S.A.) and PAPI from
the Innovative Research Lab (University of Tennessee at Knoxville, U.S.A.).

References

1. OpenFabrics Alliance: The Case for Open Source - RDMA (August 2011),
https://www.openfabrics.org/index.php/ofa-documents/presentations/

doc download/228-the-case-for-open-source-rdma-.html
2. Barrett, B.: OpenMPI Data Transfer (December 2012),

http://www.open-mpi.org/video/internals/Sandia_BrianBarrett-1up.pdf,
detailed overview of the Open MPI data transfer system

3. Feng, X., Ge, R., Cameron, K.: Power and Energy Profiling of Scientific Appli-
cations on Distributed Systems. In: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium 2005, pp. 34–34 (April 2005)

https://www.openfabrics.org/index.php/ofa-documents/presentations/doc_download/228-the-case-for-open-source-rdma-.html
https://www.openfabrics.org/index.php/ofa-documents/presentations/doc_download/228-the-case-for-open-source-rdma-.html
http://www.open-mpi.org/video/internals/Sandia_BrianBarrett-1up.pdf

378 S. Jana et al.

4. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel,
D.J., Graham, R.L., Woodall, T.S.: OpenMPI: Goals, Concept, and Design of a
Next Generation MPI Implementation. In: Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, pp. 97–104 (September 2004)

5. Ge, R., Feng, X., Song, S., Chang, H.C., Li, D., Cameron, K.W.: Powerpack:
Energy Profiling and Analysis of High-Performance Systems and Applications.
IEEE Transactions on Parallel and Distributed Systems 21(5), 658–671 (2010)

6. Intel Corporation: Intel(R) 64 and IA-32 Architectures Software Developer’s Man-
ual Vol. 3B: System Programming Guide, Part-2 (February 2014),
http://www.intel.com/content/www/us/en/architecture-and-technology/

64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html

7. Jana, S., Hernandez, O., Poole, S., Hsu, C.-H., Chapman, B.M.: Analyzing the
Energy and Power Consumption of Remote Memory Accesses in the Openshmem
Model. In: Poole, S., Hernandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS,
vol. 8356, pp. 59–73. Springer, Heidelberg (2014),
http://dx.doi.org/10.1007/978-3-319-05215-1_5

8. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Mller,
M., Nagel, W.: The Vampir Performance Analysis Tool-Set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting, pp. 139–155. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-68564-7_9

9. Liu, J., Wu, J., Panda, D.: High Performance RDMA-Based MPI Implementation
Over Infiniband. International Journal of Parallel Programming 32(3), 167–198
(2004), http://dx.doi.org/10.1023/B%3AIJPP.0000029272.69895.c1

10. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: A Portable Interface to Hardware
Performance Counters. In: Proceedings of the Department of Defense HPCMP
Users Group Conference, pp. 7–10 (1999)

11. Shalf, J., Dosanjh, S., Morrison, J.: Exascale Computing Technology Challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010.
LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011)

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
http://dx.doi.org/10.1007/978-3-319-05215-1_5
http://dx.doi.org/10.1007/978-3-540-68564-7_9
http://dx.doi.org/10.1023/B%3AIJPP.0000029272.69895.c1

Spanning Tree or Gossip for Aggregation:
A Comparative Study

Lehel Nyers1 and Márk Jelasity2,�

1 University of Szeged, Hungary, and Subotica Tech, Subotica, Serbia
2 MTA-SZTE Research Group on Artificial Intelligence, and University of Szeged, Hungary

Abstract. Distributed aggregation queries like average and sum can be im-
plemented in several different paradigms including gossip and hierarchical ap-
proaches. In the literature, these two paradigms are routinely associated with
stereotypes such as “trees are fragile and complicated” and “gossip is slow and
expensive”. However, a closer look reveals that these statements are not backed
up by thorough studies. A fair and informative comparison is clearly needed.
However, it is a very hard task, because the performance of protocols from the
two paradigms depends on different subtleties of the environment and the im-
plementation of the protocols. We tackle this problem by carefully designing the
comparison study. We use state-of-the-art algorithms and propose the problem
of monitoring the network size in the presence of churn as the ideal problem
for comparing very different paradigms for global aggregation. Our experiments
help us identify the most important factors that differentiate between gossip and
spanning tree aggregation: the time needed to compute a truly global output,
the properties of the underlying topology, and the sensitivity to dynamism. We
demonstrate the effect of these factors in different practically interesting topolo-
gies and scenarios. Our results help us to choose the right protocol in the knowl-
edge of the topology and dynamism patterns.

1 Introduction

Fully distributed aggregation is an important problem where we wish to execute queries
such as sum, average, minimum, or maximum over unreliable networks (sensor net-
works, physical networks of routers, overlay networks, etc.), in which no central servers
are directly accessible.

At least two paradigms are known for solving this problem. On the one hand, gossip
algorithms were proposed to achieve large degrees of robustness. Gossip protocols do
not rely on fixed topologies: nodes exchange information with random neighbors to
implement a diffusion-like computation pattern, and as a result the system converges to
a state where all the nodes know the query result. From the vast literature, here we focus
on the adaptive approaches only. In [1], the authors propose the restarting technique
to convert any one-shot algorithm into an adaptive one. Apart from restarting, other
approaches have been proposed that focus on error correction through some form of
bookkeeping at the nodes [2–5].

� M. Jelasity was supported by the Bolyai Scholarship of the Hungarian Academy of Sciences.
This work was supported by the European Union and the European Social Fund through
project FuturICT.hu (grant no .: TAMOP-4.2.2.C-11/1/KONV-2012-0013).

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 379–390, 2014.
c© Springer International Publishing Switzerland 2014

380 L. Nyers and M. Jelasity

The other paradigm is hierarchical aggregation, a popular method in sensor net-
works [6]. It was also proposed for general process groups [7]. Tree-based aggrega-
tion remained unpopular in some areas, for example, peer-to-peer networks due to
the widely held assumptions about its lack of robustness. There are a few notable ex-
ceptions: the Astrolabe framework [8], which is in fact only a virtual tree with com-
pletely unstructured gossip communication patterns behind it; the GAP protocol and
its variants [5, 9–11] that actually build a spanning tree over a distributed network; and
PRISM [12], a hierarchical approach that is built on top of a distributed hashtable, with
a focus on detecting and signaling imprecise output.

Unfortunately, the literature is strongly influenced by stereotypes about both ap-
proaches like “spanning tree protocols are fragile” and “gossip protocols are slow and
expensive”. It is tacitly assumed that these statements have been conclusively settled.
However, when surveying the literature, this does not turn out to be the case. In fact,
we are not aware of any studies with a focus on a principled comparison among very
different paradigms for aggregation. For example, Merrer et al [13] compare algorithms
for size estimation, but they do not include spanning tree methods that are in the focus
of our interest. Chitnis et al consider a very basic tree protocol that has no capabilities
for reconfiguration, and briefly compare it with gossip [14]. The environment they con-
sider is sensor networks. Due to the limited scope and suboptimal representatives of
gossip and tree protocols, this work does not settle the problems we raised. Wuhib et
al [5] propose an adaptive gossip protocol and compare it to GAP. Interestingly, GAP
outperformed the gossip protocol in all scenarios examined (which were inspired by
aggregation tasks in wired networks of routers). While this is a very nice result, it is far
from complete due to the particular selection of the communication topology and the
aggregation problem.

Our main contribution is that we propose a careful experimental design to shed light
on the strengths and the weaknesses of both approaches. We experiment with compet-
itive, state-of-the-art representatives of spanning tree and gossip protocols, and model
different network environments. We identify the key aspects that determine the perfor-
mance of the protocols in order to help application developers select the best solution
in a given practical setting.

2 System Model

We assume that the system consists of N nodes that form a network with the help of
reliable channels such as a TCP connections or physical links. Nodes communicate by
exchanging messages over these channels only. Messages can be delayed. In addition,
nodes can join and leave at any time. We assume the existence of a failure detector that
sends a message to the node when a neighbor node fails. Leaving nodes and crashed
nodes are treated identically. Leaving nodes can join again, and while offline, they retain
their state. When they join again, they reconnect to their previous neighbors.

3 The Protocols in Our Comparison

The common problem these algorithms solve is the monitoring of aggregate values.
That is, at any point in time t we have a network of N(t) nodes all of which have
a value. Let the set of values at time t be A(t) = {a1(t), . . . , aN(t)(t)}. The task is

Spanning Tree or Gossip for Aggregation: A Comparative Study 381

to continuously calculate (monitor) a global function f(A(t)). A given algorithm for
solving this problem typically supports a well-defined set of aggregate functions f .

Due to lack of space we cannot present a complete description of all the protocols
we examine in our experimental study. Instead, we describe the key ideas behind them,
along with comments about our own implementation, where applicable. Our full imple-
mentation can also be downloaded.1

3.1 GAP (General Aggregation Protocol)

GAP is an adaptation of the classical self-stabilizing BFS construction algorithm of
Dolev et al [15] that is based on message passing instead of shared tables. We imple-
mented the version of GAP described in [9].

In GAP, there is a special node that acts as the root of the spanning tree. The root
is fixed and guaranteed to remain available. The tree grows from the root as all the
nodes discover their shortest path towards the root, starting with the neighbors of the
root, and so on. GAP implicitly assumes a relatively stable underlying network. Each
node in the network maintains a table that contains an entry for each neighbor and the
node itself. Each table entry contains the level in the tree, and classifies the neighbor as
parent, child, or peer. The parent of each node is always the neighbor with the minimal
level (say, �), and the node’s own level is always � + 1. A table entry also contains the
aggregate value in the subtree rooted in the neighbor. These values are used to calculate
the node’s own aggregate.

A node gets several types of messages related to changes in the topology (failed or
new neighbors) or changes in the aggregate value (locally or in a subtree of a child
node). When receiving a message, the node updates its own tables if necessary in such
a way that the invariants of the tree structure and aggregate calculation are restored. Our
implementation uses the “cache-like” policy [9] for maintaining the table, which means
that table entries change only due to explicit messages and never due to predictions.

GAP can be implemented in a reactive or a proactive manner. In the former case,
all changes are immediately reported to the neighbors. In the latter case, changes ac-
cumulate during a time period and are reported at once in a round-based fashion. We
implemented the proactive round-based version, as it has better load balancing and gen-
erates fewer messages on average in dynamic environments.

The original publication of GAP did not mention that it is also important that the
connections with neighbors need to preserve the order of the messages, otherwise in-
consistent states can occur. This can be achieved with an appropriate transport layer, or
at the application level as well.

3.2 Adaptive Gossip Protocols

We used the push-sum algorithm as a starting point [16]. In this algorithm (as in all gos-
sip variants) the basic idea is that the nodes engage in a diffusive computation, during
which nodes periodically send to each neighbor a proportion of the “mass” they store
and also receive mass from neighbors. This way the nodes can collectively compute the
average of all the values. Other aggregates, such as the network size can also be com-
puted: if a single node has a value of 1, and all the other nodes have a value of 0 then
the average is 1/N , which can be used to recover the network size N .

1 http://peersim.sourceforge.net/

http://peersim.sourceforge.net/

382 L. Nyers and M. Jelasity

The push-sum algorithm is by default a one-shot algorithm, unsuitable for moni-
toring. There are two approaches to achieve adaptivity. The first is the restart-based
approach and the second is what we call the “bookkeeping” approach. We included in
our set of algorithms a representative of both classes. In both cases, in each round a
node with k neighbors sends one kth of its mass to each of the neighbors.

Restarted push-sum. The key idea is that the algorithm is run in epochs of some
fixed length, after which the gossip protocol is restarted automatically in a distributed
way [1]. In effect, the restart mechanism takes a snapshot of the system at the beginning
of the epoch that involves the nodes that were live at that time, and then the aggregate
of this snapshot is computed during the epoch. After the completion of the epoch, the
computed aggregate value is used as the output of the algorithm, hence the output is
delayed by roughly two epoch lengths at most. Depending on the topology of the net-
work, epochs can be rather short (as few as 20 rounds) due to the quick convergence of
gossip.

LiMoSense, a bookkeeping approach. Instead of restarting, a gossip protocol might
attempt to repair the state of the nodes as a reaction to failure. This can be achieved
if some variant of bookkeeping for the underlying gossip algorithm (e.g. push-sum) is
implemented that makes it possible to “undo” those computations that had to do with a
failed node, or that makes it possible to repair message drop failure by comparing books
with neighbors. The main design goal of such protocols is the classical requirement of
self-stabilization, that is, to be able to eventually converge after failures and dynamism
stop. A state-of-the-art representative of such protocols is LiMoSense [2]. We use this
protocol in our comparison study.

3.3 Common Properties

When comparing different paradigms, we should focus on application areas and systems
where the paradigms in question all are feasible and have a similar cost. In other words,
there are systems that are obviously suitable only for one or the other algorithm. Here,
we do not focus on these obvious cases.

First, the system is assumed to have a special stable node that is guaranteed to remain
available in the network. GAP crucially relies on such a node to act as the root of the
tree for tree building and maintenance. Such a node is not critical for gossip but—given
that due to GAP we need to assume a stable root—gossip protocols can and will take
advantage of it too. For example, when calculating the network size, the node that has
the initial value of 1 can be the root (see Section 4.1). Note that GAP does not rely on
the root for reading out the value: it can be modified to propagate the global aggregate
to all the nodes.

Second, all the protocols are round based with a period (round length) of Δ. They
generate a very similar amount of traffic in each round: each node sends one message
to each neighbor in each round. In the case of GAP this can be substantially reduced,
but only when the network becomes static and there is no failure either. This is because
no messages need to be sent if there is no change in the aggregated value or in the
underlying topology. In our implementation, GAP broadcasts in each round even if
there is seemingly no change. The reason is that—since we work with systems that
constantly change—this results in a negligible amount of extra traffic, and it solves a
subtle issue of the original algorithm related to churn.

Spanning Tree or Gossip for Aggregation: A Comparative Study 383

4 Experimental Setup and Methodology

We used the PeerSim [17] simulator with the event-based engine in all our experiments.

4.1 Network Size as the Aggregation Problem of Choice

Calculating the average of distributed values is often the baseline problem used to eval-
uate generic distributed aggregation algorithms. This, however, is rather problematic
because the performance then depends crucially on the distribution of the values. If the
distribution is concentrated around the average, then one cannot differentiate between
the ability of an algorithm to provide real global results and between the local sampling
effect, that is, when the average of local samples is similar to the global average by pure
chance. This is true in the case of both gossip and spanning tree algorithms.

It is vital that here we wish to compare the global behavior of the algorithms, that
is, how they behave in scenarios where they need to consider the entire data set. The
performance of such global tasks can be considered a worst case, which can only im-
prove when local neighborhoods already offer a good approximation of a given query.
Of course it is of interest how certain algorithms react to specific distributions, and one
could even develop algorithms that explicitly exploit specific known distributions, if
such prior knowledge is available. However, without prior knowledge getting a quick
result due to local sampling is just a matter of chance, so when comparing very differ-
ent generic paradigms, we consider a robust worst case analysis more informative and
preferable.

Our choice is the network size estimation problem. For this problem, the spanning
tree approach counts each node according to the tree hierarchy: all nodes have a value of
1, and the tree calculates the sum. The gossip protocols here will calculate the average
in a network of N nodes were the initial value is 0 at all nodes except the root, where
it is 1, which gives 1/N as a result [1]. In both cases, the point is that the problem is
clearly global, where a useful answer is available only after the algorithm has globally
converged.

4.2 Network Topologies

Our protocols need undirected topologies, so where the original topology definition
is directed, it has to be understood with the directionality of the edges dropped. All
networks are of size N = 1000 unless otherwise stated.

NewsCast. A dynamic topology defined in [18]. In a nutshell, without describing NEWS-
CAST in detail, each node will have a new set of random neighbors in each cycle us-
ing the same cycle period as the aggregation protocol. The number of neighbors is
k = 30. The motivation is that gossip protocols are often implemented over such dy-
namic topologies so that nodes can communicate with random samples from the net-
work in each cycle, as assumed in theoretical discussions of gossip protocols.

Random k-out. A static topology in which every node connects to a set of k random
neighbors. After dropping directionality, the average degree is 2k. The motivation is that
randomly sampled, but static, topologies have been proposed recently as the optimal
choice in commercial P2P platforms over the Internet [19].

384 L. Nyers and M. Jelasity

Binary Tree. An undirected balanced binary tree is formed. In our experiments the root
node of the aggregation protocols is placed at different levels of the tree from 0 (the
root of the binary tree) to �log2 N�, the leaf level of the tree. We include this artificial
topology to be able to illustrate a major difference between gossip and spanning tree
approaches.

Barabasi-Albert (BA). To test heavy tailed degree distributions, we include the BA
network that is constructed incrementally. New nodes connect to old nodes already in
the network according to the preferential attachment rule, that is, with a probability
proportional to the degree of the old node [20]. New nodes get k = 2 edges when they
are added to the topology. In our experiments the root node of the aggregation protocols
is placed at nodes with different degrees in this topology.

4.3 Failure and Churn Scenarios

We used the same model of message delay in all experiments: each message is delayed
by a uniform random time drawn from the interval [0, 0.2Δ]. Our preliminary exper-
iments revealed very little sensitivity to message delay in all the protocols, so we do
not focus on this aspect. We consider no message drop failures. This is because in most
scenarios that are reasonable for a spanning tree the underlying topologies in question
are static, so it is feasible to apply a reliable transport layer such as TCP.

The protocols require a failure detector. We assume a timeout-based detector with
a timeout of 5Δ in all experiments. Our preliminary experiments suggested very little
sensitivity to this parameter as well, so we keep it fixed throughout the study.

Node churn was modeled based on statistics from a BitTorrent trace [21] as well
as known empirical findings [22]. We draw the online session length for each node
independently from a log-normal probability distribution with two different parameter
settings. The first setting that we call fast churn is μ = 3 and σ2 = 1, which results in
a mean of ∼ 33. The unit of the resulting online session lengths is the communication
period Δ. This—considering that Δ can be expected to be in the range of seconds—is
a rather short session length so it represents a very dynamic scenario. The second set of
parameters that we call slow churn is μ = 6 and σ2 = 2, which results in a mean of
∼ 1096.

Offline session lengths are determined implicitly by fixing the number of nodes that
are online at the same time. The ratio of online nodes was set to a range of values from
α = 1 to α = 0.2. As stated previously, nodes that re-join the network retain the state
they had when leaving the network.

4.4 Evaluation Methodology and Metrics

We are interested in static behavior. As mentioned above, we assume a constant churn
pattern with a static expected network size αN , where α is the ratio of online nodes
in the scenario in question. In this setting, we expect a good monitoring algorithm to
consistently signal N̂(t) = αN as the approximated network size in cycle t.

To measure how close a given algorithm is to this optimal behavior, we run each
scenario 10 times for 10,000 cycles, and collect statistics of the absolute error |αN −
N̂(t)|/(αN) over the last 9,000 cycles in each run. We ignore the first 1,000 cycles in
order to allow the system to reach an equilibrium state. We plot the average and the
standard deviation (with error bars).

Spanning Tree or Gossip for Aggregation: A Comparative Study 385

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Er
ro

r (
%

)

level of aggregation root node

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Er
ro

r (
%

)

level of aggregation root node

GAP
restart-100

restart-20
LiMoSense

Fig. 1. Binary tree, no churn (left) and fast churn, 80% of the nodes online (right). The horizontal
axis shows the level of the aggregation root node in the physical topology (0: root, 10: leaves).

5 Results

First, we demonstrate some weaknesses of the gossip approaches and GAP that are
not so evident at first sight. This will shed light on which scenarios to avoid for these
paradigms. Subsequently, we look at the two realistic topologies: static random k-out
and the BA topology, and take a closer look at some interesting subtleties that are im-
portant in these cases, and that define which approaches are preferable.

5.1 The Achilles Heel of Gossip

Let us start with the Achilles heel of gossip protocols. In principle, gossip protocols for
aggregation have been shown to work on any connected topology, that is, they are guar-
anteed to converge. However, if the communication topology is not a fully connected
graph, but instead a static graph with relatively small average degree, then the conver-
gence speed is well-known to depend on the mixing time of a certain random walk on
this topology [23]. On the other hand, the convergence time of GAP depends on the
diameter (that is, the maximal minimal path length) that bounds the maximal number
of steps information needs to take to reach the root.

It is often the case that graphs with a low diameter also have a rapid mixing time,
but trees are exceptions. For example, the rooted balanced binary tree has a diameter of
O(logN) whereas it has a mixing time of O(N) (see, for example, [24], Example 7.7).

For this reason, at least in the failure-free scenario, we expect gossip protocols to
suffer, and this is indeed the case as Figure 1 (left) shows. GAP achieves full preci-
sion very quickly, whereas even LiMoSense does not reach convergence within 10,000
rounds when the node that is assigned the role of the root node is closer to the leaves
in the physical topology, let alone restart that is inherently limited in the number of
rounds until convergence. (We remind the reader not to confuse the root node of the ag-
gregation with the root of the physical topology.) However, when we introduce churn,
all algorithms suffer since the underlying topology is very fragile. Still, GAP performs
best (see Figure 1 (right)).

The results also reveal another important point, namely it does matter a lot where the
root node is placed within the underlying physical topology. It is much harder to break
out of a region closer to the leaves for the diffusion process as it is from the root (recall
that for gossip the aggregation root is initialized with a value of 1, while the remaining
nodes have a value of 0).

386 L. Nyers and M. Jelasity

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25

Er
ro

r (
%

)

refresh period (Δ)

GAP
restart-100

restart-20

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25

Er
ro

r (
%

)

refresh period (Δ)

Fig. 2. NewsCast with k = 30, no churn (left) and fast churn, 80% of the nodes online (right).
The horizontal axis shows the neighborhood refresh period of NewsCast in rounds (Δ).

5.2 The Achilles Heel of Spanning Trees and Bookkeeping Gossip Protocols

In many cases, gossip protocols assume a random set of neighbors in each round [1]
that is given by a dynamic protocol for peer sampling [18]. This radically dynamic
neighbor set is ideal for vanilla gossip, however, if bookkeeping is involved, it becomes
a serious problem, since the tables will grow indefinitely until they reach the size of
the whole network. This is not scalable, since all entries have an associated failure
detector as well, which need to maintain a communication link with each node. For this
reason, the members of the old neighbor set should be treated as failed nodes, to get
scalability. This, however, completely destroys the ability of the protocol to converge
if the aggregation task is global, like network size estimation. All in all, with dynamic
peer sampling bookkeeping gossip cannot be applied at all with any hope of success.

For GAP, the changing neighbor set raises similar issues: growing tables (and even-
tually a spanning tree with a star topology) or the option of treating old neighbors as
failed. In our implementation, we opt for the second approach, as the option of growing
tables is clearly not scalable.

Figure 2 shows simulation results with the NewsCast dynamic topology. Clearly, for
fast refreshing periods the only feasible protocol is restarted gossip. Yet in the case of
slower refreshing (when the topology becomes relatively stable on the short run) GAP
is competitive. LiMoSense is the least favorable option in this scenario.

5.3 The k-Out Topology

We examined the k-out topology for different values of k. Without churn, all the proto-
cols can achieve an error that is practically 0% for k ≥ 2, except restart-20 that achieves
25% error for k = 2. Clearly, an epoch length of 20 is not sufficient for such a low value
of k. Note that the lower the value of k is the greater the mixing time becomes.

Figure 3 contains our experiments involving churn. Our first observation is that GAP
and restart are rather insensitive to the speed of churn, whereas LiMoSense is very
sensitive. In the slow churn scenario its results are dramatically better. This is because
fast churn is highly disruptive for this algorithm due to the constant attempts to repair
the state of the system when a neighbor leaves.

At the same time, in slow churn all the algorithms become rather unstable when the
offline session lengths are long (that is, when α is small). This is because—although
the network is relatively stable—in such scenarios the aggregation root can become
disconnected and can remain so for a relatively long time, which temporarily causes
extremely large errors.

Spanning Tree or Gossip for Aggregation: A Comparative Study 387

α = 0.8

α = 0.6

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

GAP
restart-100

restart-20
LiMoSense

α = 0.4

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

α = 0.2

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

Fig. 3. Results with k-out topology, fast churn (left column) and slow churn (right column). The
horizontal axis shows values of k. The proportion of online nodes is given by α.

As for GAP, we can observe an interesting case that is consistent with our findings
over the binary tree topology: when k is very small, GAP has a slight advantage due
to not depending on the mixing time of the topology. Note that for a very small k the
random k-out topology behaves locally like a tree as there is a rather small probability
for finding short circles, which slows gossip protocols down.

For large values of k gossip protocols can take advantage of the very good mixing
properties and can beat GAP, esp. with an epoch length of 100. GAP also profits from
an increasing k (and therefore a decreasing diameter, and more options to repair the
tree) but not as much as gossip protocols.

5.4 The Barabasi-Albert Topology

We generated one BA topology with k = 2 as previously described. In this fixed topol-
ogy we placed the aggregation root at nodes with different degrees. Our results involv-
ing churn are shown in Figure 4.

388 L. Nyers and M. Jelasity

α = 0.8

α = 0.6

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

GAP
restart-100

restart-20
LiMoSense

α = 0.4

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

α = 0.2

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

Fig. 4. Results with the BA topology, fast churn (left column) and slow churn (right column). The
horizontal axis shows the degree of the node where the aggregation root is placed. The proportion
of online nodes is given by α.

We can observe a strong dependence of the precision of the aggregation result on the
position of the aggregation root in the underlying BA topology. Central nodes with a
large degree achieve a significantly better approximation. This is also true for the gossip
protocols, which here also rely on a fixed “root” node (see Section 3.3).

As in the k-out topology, without churn (not shown), all the protocols can achieve
an error that is practically 0%, except restart-20 that achieves an error of 35% to 5%
depending on the centrality of the root. Restart-20 performs poorly throughout the ex-
periments, clearly indicating that an epoch length of 20 is not sufficient. At the same
time, restart-100 is among the best options in most scenarios.

Clearly, in these scenarios GAP provides the most stable performance. As with the
k-out topology, gossip protocols continue to be sensitive to the speed of churn: with
LiMoSense it is more so, but the restart variants also show sensitivity, with restart-100
being the most robust.

As in the k-out topology, in slow churn we observe a very large variance for small α
and for a low degree aggregation root. The reason is the same: the aggregation root can
get disconnected.

Spanning Tree or Gossip for Aggregation: A Comparative Study 389

Table 1. Summary of conclusions

sensitivity to changing delay due to
membership topology convergence epoch length

spanning tree moderate high diameter none

bookkeeping gossip high high mixing time none

restarted gossip moderate none mixing time epoch length

6 Discussion and Conclusions

In this paper, we compared three different paradigms for global distributed aggregation:
approaches based on a spanning tree, restarted gossip, and bookkeeping gossip. We
argued that network size estimation is an appropriate problem for the purposes of this
comparison. We stressed the role of different topologies, and shed light on the weak and
strong points of the approaches.

Table 1 summarizes some of the conclusions we arrived at in the evaluation section.
In our experiments the effective network size was constant, so the effect of the delay
due to the epoch length remained hidden. However, the epoch length must be chosen
such that it lies in the range of the mixing time so as to allow for proper convergence.
This means that restarted gossip will double the delay of bookkeeping gossip in the
worst case, while it is not sensitive to a dynamic topology (due to not relying on failure
detectors and neighborhood tables) and it is less sensitive to churn for the same reason.

As for the spanning tree, the convergence time of gossip (that depends on the mix-
ing time) is typically at least an order of magnitude larger than the diameter in most
topologies, even in the random k-out topology (which has a low mixing time), let alone
more practical topologies. Our experiments clearly support this insight. This means that
a spanning tree is much faster than the other methods, and its advantages mainly result
from this property, along with the ability to self-repair equally quickly, when the topol-
ogy is not too dynamic.

Overall, when selecting the right protocol, one needs to consider the structure of
the topology and the patterns of dynamism in the membership (churn) and the topol-
ogy itself. If the topology is relatively stable, a spanning tree approach is preferable
even in high churn, while for dynamic topologies a restarted gossip protocol with the
right epoch length is more suitable. We could identify no scenarios where bookkeeping
gossip is clearly preferable, when truly global aggregation is needed. If local sampling
approximates the global aggregate well, we face a very different problem that requires a
different approach for analysis. Nevertheless, results on global problems always repre-
sent a lower bound on performance. The ultimate solution is most likely a combination
of gossip and tree approaches in an adaptive way, based on the automated detection of
topology and dynamism properties; an interesting venue for future research.

References

1. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic net-
works. ACM Transactions on Computer Systems 23(3), 219–252 (2005)

2. Eyal, I., Keidar, I., Rom, R.: Limosense – live monitoring in dynamic sensor networks. In:
Erlebach, T., Nikoletseas, S., Orponen, P. (eds.) ALGOSENSORS 2011. LNCS, vol. 7111,
pp. 72–85. Springer, Heidelberg (2012)

390 L. Nyers and M. Jelasity

3. Jesus, P., Baquero, C., Almeida, P.S.: Fault-tolerant aggregation by flow updating. In:
Senivongse, T., Oliveira, R. (eds.) DAIS 2009. LNCS, vol. 5523, pp. 73–86. Springer,
Heidelberg (2009)

4. Mehyar, M., Spanos, D., Pongsajapan, J., Low, S.H., Murray, R.M.: Asynchronous dis-
tributed averaging on communication networks. IEEE/ACM Trans. Netw. 15(3), 512–520
(2007)

5. Wuhib, F., Dam, M., Stadler, R., Clemm, A.: Robust monitoring of network-wide aggregates
through gossiping. In: Proc. 10th IFIP/IEEE Intl. Symp. on Integrated Management (IM
2007), pp. 21–25 (May 2007)

6. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A tiny aggregation service for
ad-hoc sensor networks. In: Proc. 5th Symp. on Operating Systems Design and Implementa-
tion (OSDI 2002), pp. 131–146 (2002)

7. Gupta, I., van Renesse, R., Birman, K.P.: Scalable fault-tolerant aggregation in large pro-
cess groups. In: Proc. Intl. Conf. on Dependable Systems and Networks (DSN 2001). IEEE
Computer Society Press (2001)

8. Birman, K.P., van Renesse, R., Vogels, W.: Scalable data fusion using astrolabe. In: Proc.
Fifth Intl. Conf. on Information Fusion (FUSION 2002), vol. 2, pp. 1434–1441 (2002)

9. Dam, M., Stadler, R.: A generic protocol for network state aggregation. In: Proc. Radioveten-
skap och Kommunikation, RVK 2005 (2005)

10. Prieto, A.G., Stadler, R.: A-gap: An adaptive protocol for continuous network monitoring
with accuracy objectives. IEEE Trans. on Netw. and Serv. Manag. 4(1), 2–12 (2007)

11. Krishnamurthy, S., Ardelius, J., Aurell, E., Dam, M., Stadler, R., Wuhib, F.Z.: Brief an-
nouncement: the accuracy of tree-based counting in dynamic networks. In: ACM Symp. on
Principles of Distr. Comp. (PODC), pp. 291–292. ACM (2010)

12. Jain, N., Mahajan, P., Kit, D., Yalagandula, P., Dahlin, M., Zhang, Y.: Network imprecision:
A new consistency metric for scalable monitoring. In: Proc. 8th USENIX Conf. on Operating
Systems Design and Implementation (OSDI 2008), pp. 87–102. USENIX Association (2008)

13. Le Merrer, E., Kermarrec, A.M., Massoulie, L.: Peer to peer size estimation in large and dy-
namic networks: A comparative study. In: Proc. 15th IEEE Intl. Symp. on High Performance
Distr. Comp. (HPDC 2006), pp. 7–17 (2006)

14. Chitnis, L., Dobra, A., Ranka, S.: Aggregation methods for large-scale sensor networks.
ACM Trans. Sen. Netw. 4(2), 9:1–9:36 (2008)

15. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only
read/write atomicity. Distributed Computing 7(1), 3–16 (1993)

16. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information.
In: Proc. 44th Annual IEEE Symp. on Foundations of Computer Science (FOCS 2003),
pp. 482–491. IEEE Computer Society (2003)

17. Montresor, A., Jelasity, M.: Peersim: A scalable P2P simulator. In: Proc. 9th IEEE Intl. Conf.
on P2P Comp. (P2P 2009), pp. 99–100. IEEE (September 2009), extended abstract

18. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based
peer sampling. ACM Transactions on Computer Systems 25(3), 8 (2007)

19. Roverso, R., Dowling, J., Jelasity, M.: Through the wormhole: Low cost, fresh peer sampling
for the internet. In: Proc. 13th IEEE Intl. Conf. on P2P Comp. (P2P 2013). IEEE (2013)

20. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern
Physics 74(1), 47–97 (2002)

21. Roozenburg, J.: Secure decentralized swarm discovery in Tribler. Master’s thesis, Parallel
and Distributed Systems Group, Delft University of Technology (2006)

22. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: Proc. 6th ACM
SIGCOMM Conf. on Internet Measurement (IMC 2006), pp. 189–202. ACM (2006)

23. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans-
actions on Information Theory 52(6), 2508–2530 (2006)

24. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. AMS (2008)

Shades: Expediting Kademlia’s Lookup Process�

Gil Einziger, Roy Friedman, and Yoav Kantor

Computer Science Department, Technion, Haifa 32000, Israel
{gilga,roy,ykantor}@cs.technion.ac.il

Abstract. Kademlia is considered to be one of the most effective key
based routing protocols. It is nowadays implemented in many file sharing
peer-to-peer networks such as BitTorrent, KAD, and Gnutella.

This paper introduces Shades, a combined routing/caching scheme
that significantly shortens the average lookup process in Kademlia and
improves its load handling. The paper also includes an extensive perfor-
mance study demonstrating the benefits of Shades and compares it to
other suggested alternatives using both synthetic workloads and traces
from YouTube and Wikipedia.

1 Introduction

Distributed Hash Tables (DHT) are at the heart of most peer-to-peer (P2P)
systems. Consequently, a plethora of papers and ideas on how to implement
DHTs has been published, e.g., [4,19]. DHTs tend to differ from each other in
the routing scheme they employ, as well as the space and message overhead they
incur for maintaining their overlay. During the last few years, Kademlia has
become one of the most widely used DHTs in practice [20,22]. This is largely
due to its proven robustness to churn, enabled by its unique partially parallel
lookup mechanism and large routing tables. Further, Kademlia’s applications
extend beyond P2P. For example, a variant of Kademlia was suggested for high
performance computing in grids and clusters [25].

Like many other DHTs, Kademlia’s routing phase may involve contacting a
logarithmic number of nodes, which may be too slow for time sensitive appli-
cations [18,21]. For example, one of the lessons of the CoralCDN project [10],
a successful DHT based content delivery network, is that DHT lookup latency
was a performance bottleneck for their system.

Since typical workloads of Internet based applications are often highly skewed,
caching lookup results along the search path has the potential of reducing the
average lookup time experienced by users. However, due to Kademlia’s unique
routing and dynamic bucket manipulation schemes, caching is less effective in
Kademlia than in more rigid DHTs like Chord [9].

To tackle this problem, we introduce a novel caching and augmented routing
mechanism for Kademlia called Shades (the entire code of Shades is available
as open source at [2]). That is, each node maintains a small local cache that is

� This work is partially supported by the Technion HPI Research School.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 391–402, 2014.
c© Springer International Publishing Switzerland 2014

392 G. Einziger, R. Friedman, and Y. Kantor

managed using an effective cache filtering mechanism called TinyLFU. TinyLFU
maintains a compressed approximate statistics of all items encountered and uses
this as an admission filter that only admits popular items into the cache and is
able to do so in a very time and space efficient manner, as reported in [8]. Fur-
ther, Shades augments Kademlia’s routing decisions using a secondary hashing
technique that we call colors. As described later in this paper, colors are used to
help caches specialize in items of their own color, thereby increasing the skewing
in the observed access distribution of the requests they encounter, resulting in
much higher hit rates. In particular, a limited number of lookup requests are
issued to nodes whose id hashes to the same color as the key of the item being
searched rather than according to the usual Kademlia lookup process. In addi-
tion, the hints from TinyLFU’s statistics are used to limit the number of such
deviations from the normal lookup process and only apply them when there is
statistical evidence that they are likely to help. Finally, we employ an overload
protection mechanism to prevent Kademlia nodes from becoming overwhelmed
with requests1.

We have experimented with Shades and compared it to plain Kademlia and
other previous caching suggestions for Kademlia, namelyKadCache – the caching
suggestion of the Kademlia authors [20], the local cache suggested in [12] – a.k.a.
Local and Kaleidoscope [9]. These experiments were conducted using both syn-
thetic workloads mimicking ones that are often found in real applications, as well
as real traces from YouTube and Wikipedia. In these results, we have found that
Shades significantly reduces the number of nodes participating in the lookup
process compared to plain Kademlia, KadCache, Local and Kaleidoscope. At
the same time, it also achieves competitive message and bandwidth overheads
relative to the other suggested caching schemes.

The rest of this paper is organized as follows: We start by describing Shades
(and Kademlia) in Section 2. Section 3 survey an additional related work. Perfor-
mance evaluation is presented in Section 4. Finally, we conclude with a discussion
in Section 5.

2 Shades

As indicated before, Shades includes three components: a highly effective small
cache, an augmented routing that is based on secondary hashing (colors) whose
goal is to direct lookup traffic to caches that are likely to have the data, and
an overload protection mechanism. The caching mechanism is described below
in Section 2.1, the routing scheme is presented in Section 2.2, and the overload
protection is explained in Section 2.3.

2.1 Caching Mechanism

With Shades, each node in the system maintains a small local cache in addition
to its Kademlia storage. When a node receives a lookup request, it can either

1 This latter optimization does not improve the lookup hop-count, but rather the
overall latency by avoiding routing to nodes that are overloaded.

Shades: Expediting Kademlia’s Lookup Process 393

return the k-closest nodes, return a cached result or return the stored value.
The difference between Kademlia storage and the cache is that the former has
to store all items that the node is assigned to according to the Kademlia DHT
algorithm. On the other hand, the goal of the cache is to boost the performance
of the system by storing selective items. In particular, in order to keep the
cache size small and since real world workloads tend to exhibit access locality,
intuitively the cache should include the most frequently requested items.

For the cache management, we have chosen to employ the cache architecture of
TinyLFU [8]. In TinyLFU, there is a separation between cache eviction policies
and admission policies. TinyLFU maintains an approximated statistics over all
recently encountered items such that a new item will replace the cache victim
only if it is more frequent than the cache victim as illustrated in Figure 1(a). Since
the statistics are kept over a large collection of past requests and can potentially
be very big, TinyLFU only maintains an approximation of this statistics. To keep
the statistics fresh, TinyLFU perform a periodic Reset operation, this operation
halves all counters. As reported in [8], the memory overhead associated with
TinyLFU is comparable to a memory pointer per cache line. Since TinyLFU
can work with any eviction policy, we complement TinyLFU, with a Lazy LFU
eviction policy. This policy attempts to find the least frequently used item in the
cache, however does so lazily, performing a single search step per cache lookup,
resulting in O(1) query complexity, and hit rate similar to a true LFU cache.

(a) TinyLFU general architecture: a new item is
only admitted if it is recently more popular
than the cache victim.

(b) Shades Palette

Fig. 1. An illustration of TinyLFU and Shades Palette

2.2 Routing

As mentioned before, Shades augments the standard Kademlia routing scheme
by utilizing a secondary key called color in order to partition cache content
between nodes and create a distributed large cache out of many small individual
caches. Unlike the Kademlia key that comes from a large domain to prevent
collisions, the color domain is small and collisions are desirable.

During the parallel iterative lookup process, Shades may issue cache lookup
requests to nodes that have the same color as the requested key even if these

394 G. Einziger, R. Friedman, and Y. Kantor

nodes do not advance in Kademlia’s XOR distance metric [20].2 For this reason,
we call such deviations a side step. Hence, while intuitively a side step improves
the chances of hitting a cache due to the use of colors, in the case of a cache miss,
it prolongs the lookup process since it does not advance toward the key in the
XOR metric. In order to avoid paying this price for cache misses, Shades only
takes side steps if the item is relatively likely to be cached already. To that end,
Shades relies on TinyLFU to keep track of the likelihood that the item would
indeed be in the cache, as detailed later in this section.

Finally, once the lookup is done, the search result is only stored in caches that
are interested in caching it. Since TinyLFU only admits items to the cache if
they are more frequent then the cached items, Shades ensures that the cached
result is shared with a node that is likely to admit it. In the rest of this section,
we first describe an auxiliary data structure used by the routing mechanism of
Shades and then provide the details of the protocol.

Palette. Since going over all the k-buckets in order to find a matching color
candidate can be time consuming, each node p maintains a mapping between
colors and the nodes matching these colors that p is award of. This mapping,
implemented as a hash table, is called the Palette of node p. For each color i,
when node p has at least one node of color i in any of its k-buckets, then the ith
entry of p’s Palette points to these nodes. However, if p does not have any node
of color i in any of its k-buckets, then we fill the corresponding entry with other
nodes that p detects using the following pull gossip mechanism.

Whenever p sends a lookup message, it piggybacks on the lookup message a
bitmap that represents which colors have no representatives in its Palette. I.e.,
bit i in the bitmap contains 1 if p is already aware of at least one node of color
i and 0 otherwise. When a node q receives such a lookup message, it piggybacks
on the reply one node corresponding to the color of each 0 bit in the bitmap that
q is aware of (if q knows such a node). In addition, q includes at least one node
whose color matches the color of the searched key. All this data is piggybacked
on existing messages to avoid generating new messages. The size of piggybacked
data is relatively small: a bitmap whose size in bits is the number of colors and
at most one id per color (and typically only a few ids or none at all).

Shades’ Palette is illustrated in Figure 1(b). In this example, there are 8 dif-
ferent colors. The dark tokens represent the nodes that appear in the k-buckets
whereas the bright tokens are nodes discovered through the bitmap gossip mech-
anism. In this example, color 8 does not have any representative. Therefore the
bitmap [11111110] will be added to any outgoing Kademlia message. If any of
the nodes that receive such a message knows of a node that matches color 8, it
will include this node in its response.

Shades Routing Protocol. The routing protocol for key lookup, performed
by node p, goes as follows. Denote c the searched key’s color. While node p is not

2 The distance metric used by Kademlia to decide on hashed ids proximity is XOR.

Shades: Expediting Kademlia’s Lookup Process 395

aware of c-colored nodes, p performs traditional Kademlia lookups. When node
p is aware of c-colored nodes, either from its data structures or through replies
received from other nodes, it performs multiple cache lookups denoted as side
steps. These cache lookups are performed simultaneously to Kademlia’s routing
protocol. We call these cache lookups side steps since they are not necessarily
advancing the search according to the Kademlia XOR metric.

Let q be the c-colored node that is closest to the searched key. The first side
step is performed by sending a request to node q, which does not have to be in
the k-candidates list. q checks whether the requested key is in its cache. If so, it
sends back the (key, value) item from the cache. Otherwise, q returns a response
that contains the following additional information:

– Is the item needed? I.e., will this specific cache admit this item if encountered
based on the mechanism described in Section 2.1.

– Is the item popular? I.e., is this item likely to be admitted to other caches.

When p receives the response from q, it acts according to the response: In case
of a cache hit, the lookup is finished. Otherwise, if the item is not popular, then
no more side steps are performed and the lookup is continued as in Kademlia.
If the item is popular, then another side step can be taken. Note that by this
point, p received more c-colored nodes from responding nodes. If p discovered
more than one c-colored node, it favors contacting the closest one according to
the XOR metric.

At the end of the lookup, if the lookup is successful, p sends the (key,value)
item to the c-colored node that is closest to the searched key and has noted in
its response that the value is needed. This node stores the result in the cache
for future requests.

Shades, as Kademlia, has up to α outstanding queries at any given time.
When not performing a side step, all the outstanding queries advance according
to the key XOR distance metric as in Kademlia. While performing a side step,
α − 1 of the outstanding queries advance according to the key distance metric
in addition to the one outstanding side step.

Note that in order to perform a side step, p needs to know a node with the
same color as the searched key. Recall that the Palette significantly increases
the probability that p knows such a node. This enables our protocol to usually
perform the first side step right in the start of a lookup, which is important since
the benefit of hitting a cache early is far greater than hitting it later.

2.3 Congestion Control

When we started experimenting with Kademlia in general and Shades in partic-
ular, we encountered a severe congestion problem when running test cases with
many nodes (this can be seen in the result in Section 4.5 below). For this reason,
we implemented a simple congestion control mechanism .

In that mechanism every message is attached an additional bit that is set if
the sender’s incoming message queue was more then 75% full when the message

396 G. Einziger, R. Friedman, and Y. Kantor

was sent. Once a node receives a message with a set congestion bit, it marks the
sending node as a candidate for replacement. That is the receiver encounter a
possibility to replace the congested, it will do so without sending a ping message.
The result of this mechanism is that congested nodes reduce their representation
in routing tables and therefore receive less incoming traffic.

3 Related Work

Several works have investigated how to use caching to reduce the lookup cost
in DHTs. For example, in [12] it is suggested to add to Kademlia a local cache
named Fast Table. This table stores the results of previous lookups the node has
performed. When a node receives a lookup request, it first checks its Fast Table
to see if it contains cached results for it. This approach was shown in [9,12] to
yield a reduction in average lookup length. As mentioned in the introduction,
we refer to this scheme as Local in this paper.

Another important caching suggestion appears in the original Kademlia pa-
per [20]. In this suggestion, every time a node performs a lookup operation, it
sends a store value request to the last node it contacted that did not have the
value. This suggestion, called KadCache in this paper, was evaluated in [9] for
its message cost and (lack) of load balance capabilities. In this paper, we ex-
tend that evaluation of KadCache to cover its latency aspects. As we show in
the performance section of this paper, Shades reduces considerably the number
of contacted nodes compared to both Local and KadCache, and usually also
improves the communication overhead.

The work most related to Shades is Kaleidoscope [9]. Kaleidoscope also uses
colors to augment the combined routing and caching process of Kademlia to
obtain better caching, but focuses on communication overhead reduction. In
Kaleidoscope, messages are first forwarded to a node of a matching color along
the lookup path, and only then an iterative lookup starts. Since Kaleidoscope
never deviates from the lookup path, it cannot efficiently use as many colors as
Shades, and therefore achieves lower cache hit rates than Shades. Further, the
more colors Kaleidoscope uses, the longer it take to reach each cache.

Unlike Kaleidoscope, Shades may deviate from the lookup path of Kademlia
if there is probabilistic evidence that doing so is likely to find a cached result
nearby. Shades bases its decisions on a compressed approximated statistics in
order to both manage its cached content, and also decide on the maximal number
of cache lookups that may deviate from the Kademlia lookup path. So while both
Kaleidoscope and Shades rely on the notion of colors as a secondary hashing
mechanism, each takes this concept in a completely different direction.

The main differences between Kaleidoscope and Shades are summarized in
Table 1. As can be seen, Shades uses more colors than Kaleidoscope and therefore
forms a more effective distributed cache. Further, Shades benefits more from each
cache hit as it performs the first cache lookup earlier than Kaleidoscope. Shades
also uses a more advanced cache policy that is also used to decide how many
times we deviate from the lookup path, and what node is most suitable to store

Shades: Expediting Kademlia’s Lookup Process 397

the cached value at the end of the lookup. Finally, the last line of the table titled
“share policy” indicates that shades stores the results of successful lookups in
caches of matching colors that were encountered along the lookup process only
if these caches are likely to benefit from them. In contrast, Kaleidoscope always
pushes the results of lookups to such caches. This helps Shades save messages.
Evidently, in our performance evaluation section, we show that Shades contacts
substantially fewer nodes than Kaleidoscope, obtains significantly better load
sharing, and generates similar overall traffic as Kaleidoscope.

Table 1. Comparison between Kaleidoscope and Shades

Kaleidoscope Shades

Colors 17 150

On path lookups Unlimited Unlimited

Deviates from path No Yes

Time of first cache lookup During lookup First step

Cache policy LRU TinyLFU+LazyLFU

Share policy Always Only if needed

Other methods to reduce Kademlia’s lookup latency includes careful param-
eter configuration [22], techniques to fill k-buckets with nodes of geographical
proximity [16], a new metric based on geographical distance [11] and a recursive
lookup scheme [15]. We believe that many of these suggestions can be deployed
alongside with Shades as they either reduce the latency of individual messages,
or optimize the configuration parameters of the protocol. In contrast, Shades
slightly changes the algorithm and satisfies lookups using information from fewer
nodes.

Other DHT’s like OneHop [13], Kelips [14] and Tulip [3] achieve O(1) lookups
at the cost of background traffic overheads. In contrast, Shades does not gen-
erate any background traffic. Systems that include O(1) lookups include, e.g.,
Dynamo [7] and ZHT [17]. Both systems target high performance data centers.
Given that a variant of Kademlia was also suggested for this context [25], Shades
can be adopted to that domain as well.

4 Performance Measurements

4.1 Methodology and Setup

In this section, we evaluate the performance of Shades. We also compare Shades
to Kaleidoscope [9], Local [12], and the caching scheme suggested by the origi-
nal Kademlia paper [20] (a.k.a. KadCache). For the evaluation, we used a Java
implementation of Shades, Kaleidoscope, KadCache, and Local. We have exper-
imented with several different sizes of networks by running multiple Java VMs
(one VM per 80 nodes) on two servers and emulating the users lookup requests
that are picked from a given, pre calculated workload. We used both synthetic
and real life workloads. The real workloads are distributions that were taken
from a real YouTube data set [6] and a real Wikipedia data set [23].

398 G. Einziger, R. Friedman, and Y. Kantor

In the synthetic distributions, each node in the system periodically picks an
item out of 1,000,000 possible keys according to the specific distribution and
issues a lookup request for that key. In the YouTube distributions, we used a
data set that contains statistics of over 161k newly created videos. These videos
were monitored weekly during 21 weeks starting from 16th April, 2008. We used
the number of views per week in order to directly generate a distribution that
reflects the popularity of each video during that week. As for the Wikipedia
trace, it contains an ordered list of requests that were accepted by Wikipedia
servers during a period of two months. It is very extensive and contains 10%
of the traffic for Wikipedia at that time period. Unfortunately, this trace does
not contain client information. Therefore, we simply picked a continuous flow of
5 million requests, cut it into small chunks and randomly but equally assigned
them nodes. Each request is then assigned to a key and is searched for during
the experiment.

In all experiments, caches are given a warm-up period in which each node
in the system issues 500 lookup requests. After the warm-up period, each
node in the system issues 500 additional lookup requests. Statistics of message
send/receive, incoming/outgoing bandwidth and the latency are monitored lo-
cally by each node and are collected via HTTP at the end of the experiment.
Our experiments where performed on the real system code with the following
parameters: bucket size k = 7; network sizes: 500, 2, 500 and 5, 000 nodes; re-
quest distributions: Zipf 0.7, Zipf 0.9. Zipf distributions with similar values were
found, e.g., in Web caching and file sharing applications [5]. Notice that in the
case of 5, 000 nodes, the experiment includes a total of 5, 000, 000 requests, half
during the warmup period and the other half during the measurement interval.

4.2 Metrics and Definitions

Since the wall-clock latency depends on a large number of factors and is therefore
very noisy, we have decided to focus on measuring the number of contributing
nodes for each lookup, i.e., the number of nodes whose replies were utilized while
performing the lookup, instead of wall-clock latency. We note that this number
may be different from the number of contacted nodes, e.g., if three parallel
lookups are sent and the first reply returns the value, then the number of con-
tributing nodes is 2 (the initiator and the node that returned the cached result),
even though 3 nodes were contacted. Since Kademlia works with concurrent iter-
ative lookup, this is not exactly the latency in hops. Yet, since our experiments
were conducted with α = 3, dividing the number of contributing nodes by α
(3) gives a relatively good estimation to the number of hops used in the lookup
process. We have also studied the cache hit rates as well as the amount of traffic
generated both in terms of message count and overall bandwidth.

4.3 Number of Colors

Varying the number of colors has a complex effect. On the one hand, increasing
the number of colors enhances the observed frequency of correctly colored items

Shades: Expediting Kademlia’s Lookup Process 399

Table 2. Effect of the number of colors on the performance of Shades

Performance And The Number of Colors

Wikipedia YouTube

Shades(50) Shades(150) Shades(50) Shades(150)

Local 0.28 0.26 0.21 0.2

First side step 0.47 0.5 0.59 0.64

Second side step 0.5 0.53 0.65 0.69

more aggressively, thereby increasing their weight in the cache. On the other
hand, since the cache size is limited, it comes at the expense of general items,
hurting the performance of the local cache.

Hence, the number of colors is a tradeoff parameter. Picking the correct num-
ber mainly depends on what the system goals are. In order to explain this trade-
off, we measured the hit rates of the local cache, the first side step and the second
side step for different color configurations. This check neglects searches that end
due to other reasons within their first few steps.

The results in Table 2 present the different hit rates achieved using 50 and 150
colors. As expected, 50 Colors achieves higher local cache hit rates, but lower
chromatic cache hit rates. We feel that Shades offers a more attractive tradeoff
with 150 colors than with 50 colors.

This configuration achieves over 50% hit rate within the first two side steps
with both Wikipedia and YouTube workloads. In the latter, it reaches 65% hit
rate for the first side step and over 70% hit rate after the second side step.

Hence, as long as the increase in hit rate after the first side step is significant,
we suggest increasing the number of colors in order to achieve lower latency. The
rest of our measurements focus on the 150 colors configuration of Shades.

4.4 Comparison to Other Caching Mechanisms

In this section, we compare Shades to previously suggested caching schemes as
well as to a plain Kademlia. We use concurrency of α = 3 and measure how
many nodes contributed to the lookup resolution.

Fig. 2. Number of contributing nodes required to perform a lookup

400 G. Einziger, R. Friedman, and Y. Kantor

To get a better feel for the latency improvement of Shades, we exhibit the
average and median lookup latency measured by the number of contributing
nodes. The median represents how many nodes are required on average to resolve
half of the lookups.

Table 3 presents the median latency values for all the protocols evaluated.
Shades reduces the median latency by as much as 22%− 34% compared to the
best alternative for every workload.

Unlike median, average latency can be manipulated in many ways and is
sensitive to edge values. For example, lookups that are resolved at the local cache
significantly reduce the average latency without impacting the median latency.
Also the minority of very long lookups increase the average latency without
increasing the median latency. Our results are presented in Table 3.As can be
seen, Shades improves also the average latency by ≈ 18− 23% in comparison to
the best alternative of each workload.

Table 3. Average and median latency during the measurements

Average And Median Latency (Contributing Nodes)

Kademlia Local KadCache Kaleidoscope Shades Shades/Best

Metric A M A M A M A M A M A M

Zipf 0.7 5.34 5.47 5.29 5.29 5.16 5.18 5.12 5.1 4.08 3.27 0.79 0.64

Zipf 0.9 4.01 3.76 3.92 3.42 4.01 3.76 4.20 3.15 3.03 2.18 0.77 0.69

YouTube 3.72 2.69 3.41 2.66 3.40 2.44 3.40 2.64 2.74 1.9 0.81 0.78

Wikipedia 4.32 3.48 4.06 3.44 4.14 3.23 4.15 3.2 3.31 2.21 0.82 0.69

We expect Shades’ latency advantage to become more dominant with larger
networks. Since the lookup paths of Kademlia grow longer with the network size,
the impact of finishing a large portion of the searches within the first two hops
becomes greater in large networks.

4.5 Load Distribution

Table 4 compares the average number of messages handled by the most congested
50 nodes in the network (1% busiest nodes). As can be observed, for each work-
load Shades improves the load placed on these nodes by 22%-43%. Since all rout-
ing protocols are equipped with the same congestion control mechanism, we credit
the improvement to our routing technique. Intuitively, Shades sends lookups in two
different directions, distributing the load more evenly in the system.

Table 4. Load placed upon the most congested nodes

Messages Handled By 1% Most Congested Nodes

Kademlia Local KadCache Kaleidoscope Shades Shades/Best

Zipf 0.7 26.2 23.9 22.7 20.05 11.45 0.57

Zipf 0.9 21.4 18.6 16.7 17 13.00 0.78

YouTube 22.4 18.2 21.1 17.9 13.3 0.74

Wikipedia 26.6 17.6 19.9 17 13.3 0.78

Shades: Expediting Kademlia’s Lookup Process 401

5 Discussion

We have presented Shades, a combined caching/routing scheme that augments
Kademlia, yielding a significant improvement in latency. Through simulations
that are based on artificial Zipf-like distributed workloads as well as real traces
from YouTube and Wikipedia, we have found that Shades reduces the median
number of nodes contributing to each lookup by 22-36% compared to the best of
breed among the other schemes in the workloads tested and a 30-40% reduction
compared to plain Kademlia. Shades obtains a load reduction on the busiest
nodes (hot-spots) of 22-43% with respect to the best scheme and 40-56% com-
pared to plain Kademlia. With reported latencies of 5.8-7.6 seconds for tuned
Kademlia based systems such as [18,21], our improvements can have a significant
impact on the user experience of these systems.

Shades also generated fewer messages than Kadcache and Local, and a similar
bandwidth consumption as the best of breed among them. In some workloads
Kaleidoscope offers slightly lower message and bandwidth costs than Shades,
but the differences are small.

Another interesting aspect of Shades is that its latency with a small cache
of 100 items is better than any of the other caching schemes we have compared
against even when they are equipped with an unbounded cache. Shades is an
open source project [2], implemented as an extension to OpenKad [1].

When using caching, there is always the question of keeping the cache content
consistent. There are many applications in which data is immutable, in which
case the problem does not exist. In particular, in such systems explicit versioning
is often used instead of updates (e.g., http://www.saphana.com/). In other cases,
using periodic revalidation against the main copy or deleting items from the
cache after a TTL is enough to ensure timely eventual consistency [24].

References

1. OpenKad, http://code.google.com/p/openkad/
2. Shades source code, https://code.google.com/p/shades/
3. Abraham, I., Badola, A., Bickson, D., Malkhi, D., Maloo, S., Ron, S.: Practical

locality-awareness for large scale information sharing. In: van Renesse, R., Castro,
M. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 173–181. Springer, Heidelberg (2005)

4. Androutsellis-Theotokis, S., Spinellis, D.: A Survey of P2P Content Distribution
Technologies. ACM Computing Survey 36, 335–371 (2004)

5. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like
distributions: Evidence and implications. In: INFOCOM, pp. 126–134 (1999)

6. Cheng, X., Dale, C., Liu, J.: Statistics and social network of youtube videos. In:
16th Int. Workshop on Quality of Service, IWQoS 2008, pp. 229–238 (June 2008)

7. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

8. Einziger, G., Friedman, R.: Tinylfu: A highly efficient cache admission policy. In:
22nd Euromicro Int. Conf. on Parallel, Distributed and Network-Based Processing
(PDP), pp. 146–153 (February 2014)

http://code.google.com/p/openkad/
https://code.google.com/p/shades/

402 G. Einziger, R. Friedman, and Y. Kantor

9. Einziger, G., Friedman, R., Kibbar, E.: Kaleidoscope: Adding colors to kademlia.
In: Proc. of the 13th IEEE Int. Conf. on P2P Computing (September 2013)

10. Freedman, M.J., Freudenthal, E., Mazières, D.: Democratizing content publication
with coral. In: Symposium on Networked Systems Design and Implementation,
NSDI 2004, pp. 18–18. USENIX Association, Berkeley (2004)

11. Groß, C., Stingl, D., Richerzhagen, B., Hemel, A., Steinmetz, R., Hausheer, D.:
Geodemlia: A robust p2p overlay supporting location-based search. In: Proc. of
the 12th IEEE Int. Conf. on P2P Computing. IEEE (September 2012)

12. Guangmin, L.: An Improved Kademlia Routing Algorithm for P2P Network. In:
Int. Conf. on New Trends in Information and Service Science, pp. 63–66 (2009)

13. Gupta, A., Liskov, B., Rodrigues, R.: One hop lookups for peer-to-peer overlays.
In: Proc. of the 9th Conf. on Hot Topics in Operating Systems, HOTOS 2003.
USENIX Association, Berkeley (2003)

14. Gupta, I., Birman, K., Linga, P., Demers, A., van Renesse, R.: Kelips: Building an
efficient and stable p2p dht through increased memory and background overhead.
In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 160–169.
Springer, Heidelberg (2003)

15. Heep, B.: R/kademlia: Recursive and topology-aware overlay routing. In: 2010
Australasian Telecommunication Networks and Applications Conf (ATNAC), 31
October- November 3, pp. 102–107 (2010)

16. Kaune, S., Lauinger, T., Kovacevic, A., Pussep, K.: Embracing the peer next door:
Proximity in kademlia. In: Eighth Int. Conf. on P2P Computing, P2P 2008, pp.
343–350 (September 2008)

17. Li, T., Zhou, X., Brandstatter, K., Zhao, D., Wang, K., Rajendran, A., Zhang, Z.,
Raicu, I.: Zht: A light-weight reliable persistent dynamic scalable zero-hop dht. In:
Parallel & Distributed Processing Symposium, IPDPS (2013)

18. Liu, B., Wei, T., Zhang, J., Li, J., Zou, W., Zhou, M.: Revisiting why kad lookup
fails. In: Proc. of the 12th Int. Conf. on P2P Computing, pp. 37–42. IEEE (2012)

19. Lua, E., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A Survey and Comparison
of P2P Overlay Network Schemes. IEEE Communications Surveys Tutorials 7(2),
72–93 (2005)

20. Maymounkov, P., Mazières, D.: Kademlia: A P2P Information System Based on
the XOR Metric. In: Proc. of the 1st Int. Workshop on P2P Systems (IPTPS),
pp. 53–65 (2002)

21. Steiner, M., Carra, D., Biersack, E.W.: Faster content access in kad. In: Proc.
of the 8th Int. Conf. on P2P Computing, pp. 195–204. IEEE Computer Society,
Washington, DC (2008)

22. Stutzbach, D., Rejaie, R.: Improving lookup performance over a widely-deployed
dht. In: INFOCOM 2006. 25th IEEE Int. Conf. on Computer Communications.
Proc., pp. 1–12 (2006)

23. Urdaneta, G., Pierre, G., van Steen, M.: Wikipedia workload analysis for decen-
tralized hosting. Elsevier Computer Networks 53(11), 1830–1845 (2009)

24. Vogels, W.: Eventually consistent. Communications of the ACM 52(1), 40–44
(2009)

25. Wozniak, J.M., Jacobs, B., Latham,R., Lang, S., Son, S.W.,Ross, R.B.: C-mpi:A dht
implementation for grid and hpc environments. In: Preprint ANL/MCS-P1746-0410,
04/2010 (2010)

Analysis and Comparison of Truly Distributed

Solvers for Linear Least Squares Problems
on Wireless Sensor Networks

Karl E. Prikopa, Hana Straková, and Wilfried N. Gansterer

University of Vienna, Vienna, Austria
Faculty of Computer Science

Abstract. The solution of linear least squares problems across large
loosely connected distributed networks (such as wireless sensor networks)
requires distributed algorithms which ideally need very little or no co-
ordination between the nodes. We first provide an extensive overview of
distributed least squares solvers appearing in the literature and classify
them according to their communication patterns. We are particularly
interested in truly distributed algorithms which do not require a fusion
centre, cluster heads or any multi-hop communication. Beyond existing
methods, we propose the novel least squares solver PSDLS, which utilises
a recently developed distributed QR factorisation algorithm. All com-
munication between nodes is exclusively performed within the push-sum
algorithm for distributed aggregation.

We analytically compare the communication cost of PSDLS and the
existing truly distributed algorithms. In all these algorithms, the commu-
nication cost of reaching a predefined accuracy depends on many factors,
includingnetwork topology, problem size, and settings of algorithm-specific
parameters. We illustrate with simulation experiments that our novel PS-
DLS solver requires significantly fewer messages per node than the previ-
ously existing methods to reach a predefined solution accuracy.

1 Introduction

We consider the problem of solving the linear least squares problem

min
x

‖b−Ax‖2 (1)

for x ∈ IRm in a truly distributed way, where A ∈ IRn×m with n ≥ m and
b ∈ IRn. We are interested in solving such problems over a loosely connected,
decentralised network, e. g. a wireless sensor network (WSN), where each node
holds part of the input data. In particular, we assume that A is distributed
row-wise over the N nodes of the network and that the element b(i) resides on
the same node as the ith row of A. For n > N , each node contains a block of
consecutive rows of A.

Many applications in WSNs require the distributed solution of a linear least
squares problem, e. g., the reconstruction of physical fields [1], target tracking [2],

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 403–414, 2014.
c© Springer International Publishing Switzerland 2014

404 K.E. Prikopa, H. Straková, and W.N. Gansterer

the solution of the seismic tomography inversion problem [3] when monitoring
volcanic activity or localisation [4]. WSNs typically consist of a large number of
inexpensive sensor nodes which act autonomously but cooperate with each other
to achieve a common goal. Working in a fully decentralised manner allows for
decisions to be made on any node. In combination with actuators, the nodes can
take autonomous actions in the physical world. Asynchronous communication
is an important challenge to be considered in the design of a truly distributed
algorithm. The sensor nodes are normally constrained in terms of their resources,
primarily their energy supply and computation capabilities. One of the sources
of high power consumption is communication. The energy required by the nodes
to communicate with other nodes is directly proportional to the communication
range. This implies that communicating with the immediate neighbourhood of
a node is significantly cheaper than communicating with very distant nodes.
Preserving energy also increases the lifespan of the nodes and in turn of the
entire network.

As we will summarise in the following section, many distributed least squares
solvers can be found in the literature, but most of them do not operate in a
truly distributed manner without the need for centralised fusion centres, cluster
heads or multi-hop communication. Multi-hop communication requires routing
tables, and setting those up requires additional communication. The overhead is
particularly large if the routing tables have to be updated frequently.

Dynamic changes and distributed fault tolerance are also important factors
in the design of a distributed algorithm for WSNs. Although such difficult sce-
narios are beyond the scope of this paper, they can be implicitly considered by
the use of gossip algorithms for aggregation. The push-sum algorithm [5] used
by the PSDLS algorithm proposed in this paper can be directly replaced by
fault-tolerant alternatives which are able to recover from silent message loss and
temporary or permanent link failures [6,7].

Synopsis. In Section 2, we provide an extensive review of the existing literature
about distributed least squares solvers and classify them based on their communi-
cation patterns. In Section 3, we introduce the new push-sum-based distributed
least squares solver PSDLS. Section 4 provides an analytical comparison of the
communication cost of PSDLS and the truly distributed algorithms appearing
in the literature up until now. Simulation results are presented in Section 5, and
our conclusions are summarised in Section 6.

2 Existing Distributed Least Squares Solver

In this section, we summarise the efforts presented in the literature for solving the
linear least squares problem (1) in a distributed setting. We categorise existing
algorithms into three groups: (i) Centralised approaches using a fusion centre or
approaches which require global communication, (ii) clustered approaches where
the communication of each node is limited to a subset of the network (cluster)

Truly Distributed Least Squares Solvers 405

with a cluster head, and (iii) truly distributed approaches where the communi-
cation of each node is limited to its immediate neighbourhood without using any
multi-hop communication.

2.1 Centralised Approaches or Global Communication

A strategy that has been studied extensively is the use of a central unit (fu-
sion centre) which performs the computation for the entire network. The fusion
centre approach first collects the data from all nodes in the network (global
communication), then solves problem (1) at the fusion centre and finally dis-
tributes the result to all nodes (global communication). The positioning of the
fusion centre is crucial for communication cost and scalability (cf. [3]). There
are several drawbacks to this approach: Potential congestion effects (particu-
larly around the fusion centre [8]) can lead to delays and in the worst case to
data loss. Multi-hop communication and setting up routing tables incur addi-
tional overhead. Last, but not least, the fusion centre becomes a single point
of failure. Research on fusion centre approaches often focusses on the efficient
accumulation of the data at the fusion centre (see, e. g., [9]). Other efforts per-
form only parts of the computation at the fusion centre and offload other parts
onto the individual nodes (see, e. g., [4]). However, these approaches still require
global (multi-hop) communication of each node with the fusion centre.

Reichenbach et al. [4] consider the problem that each node needs to determine
its location and analyse three methods for solving the least squares problem
arising in this context: normal equations, QR factorisation and singular value
decomposition. For all three methods, they split the computation into two parts
in order to distribute them between a high performance base station and wireless
sensor nodes. The base station computes the computationally intensive tasks and
then sends the result to the nodes, which only have to perform low complexity
computations to determine their location. This approach significantly reduces the
amount of computation performed on the sensor nodes, saving more than 47%
of floating-point operations for normal equations and more than 99% for the QR
factorisation and the SVD. The disadvantage is the communication cost incurred
by the nodes having to send their measurements to the fusion centre either over
long distances or with multi-hop communication and non-static routing.

One example for exploiting a specific routing structure is presented by Borgne
et al. [9], where the measured data is aggregated at each node towards the fu-
sion centre along a routing tree. The authors extend the basic set of available
aggregation functions (minimum, maximum, sum, count and average) to a re-
gression operator which uses the sensor node measurements as input, reducing
the amount of data based on the regression model. The advantage of this ap-
proach is the reduction of the communication range of the nodes to a localised
neighbourhood. However, the final result is only available at the fusion centre,
which in the event of a failure leads to the breakdown of the entire computation.

The distributed multisplitting method [10], based on the parallel multiplitting
method by Reanut [11], applies the well-known fixed-point iteration methods
Jacobi, Gauss-Seidel and successive over-relaxation to the normal equations.

406 K.E. Prikopa, H. Straková, and W.N. Gansterer

The matrix A is distributed column-wise over the nodes and weighting matrices
are used to recombine the solutions of the local problems, which are independent
problems resulting from the linear multisplitting of A. Note that in this method,
the solution x is not replicated, but distributed across the nodes. In each iteration
a vector of size n has to be broadcast to all other nodes (global communication).

The distributed modified conjugate gradient least squares (D-MCGLS) algo-
rithm [10] exploits the fact that the conjugate gradient method can be applied to
the symmetric and positive definite normal equations. It is also based on a par-
allel method, MCGLS by Yang and Brent [12], which is targeted at distributed
memory architectures. Yang and Brent have improved the parallel performance
of the standard CGLS method by reducing the global synchronisation points for
the inner products. D-MCGLS requires A to be distributed row-wise. If A is not
symmetric, for each local row of A, the node also needs to have the correspond-
ing column locally. Each node has to use the same initialisation for x. In each
iteration, a vector of length m and a scalar value have to be broadcast to all
other nodes in the network (global communication).

2.2 Clustered Approaches

A first step towards a more decentralised setting than the fusion centre ap-
proaches summarised in Section 2.1 is based on clustering. The network is di-
vided into clusters. In each cluster, one node acts as the cluster head, which
often is more powerful than the other nodes in the cluster. The division is based
on a certain criterion, e. g., on the geographical location of the nodes or on the
predefined communication radius of the cluster head. The cluster heads act as
intermediate fusion centres for the clusters. The nodes of a cluster only commu-
nicate with their cluster head and with nodes within the same cluster. Compared
to the fusion centre approaches, a multi-tier model is used where only the cluster
heads communicate with the fusion centre, reducing the communication cost and
also the risk of congestion.

Behnke et al. [13] address issues arising with the clustered version of the dis-
tributed least squares algorithm presented in [4]. They report that the algorithm
does not scale well with an increasing number of nodes and on large networks
does not work at all due to the assumption that each node can communicate
with all cluster heads which distribute the precomputed parts of the solution.
They develop the scalable distributed least squares (sDLS) algorithm to over-
come these drawbacks by limiting the communication of each node to its cluster
head. To achieve this, each node is provided with individual precomputed data,
in turn reducing the size of the data transferred to each node and also the
computations to be performed by each node. Communication and computation
costs are therefore independent of the network size and enable scalability of the
algorithm also in large networks.

Shakibian and Charkari [14] propose a clustered, multi-swarm version of the
particle swarm optimisation algorithm (MMS-PSO) for solving a least squares
problem as a minimisation problem. Each cluster head manages the member
nodes acting as a sub-swarm of the process. They also use a fusion centre to get

Truly Distributed Least Squares Solvers 407

the final global result from all cluster heads through weighted averaging. The
authors claim that their method decreases the latency through clustering and
converges faster than a fusion centre approach.

Summarising, clustering reduces but does not eliminate the risk of a single
point of failure affecting the entire network. The cluster heads usually have to
be more powerful than the other nodes to be able to handle the higher volume
of messages received. If a cluster head fails, the complete area covered by the
cluster and its data are lost until a new cluster head takes over.

2.3 Truly Distributed Approaches

The most decentralised approach is to limit the communication of the nodes
to their immediate neighbourhood (defined by the communication range). Each
communication partner has to be reachable in a single hop as multi-hop com-
munication would incur additional overhead through routing and thus increase
the energy consumption of the resource restricted nodes.

Zhou et al. [15] propose a distributed least squares solver which they claim
is robust against reported node failures. The algorithm is designed for m =
1 and higher dimensions are not considered in [15]. The distributed iterative
algorithm exchanges the values of A and b with the neighbours and updates
them using a Metropolis weight based on the degree of the node’s neighbours,
which are determined before the iterative algorithm initialises. In the event of
a node failure, convergence is still guaranteed, but the result will no longer
be correct. Therefore, the authors extend their algorithm, trying to reduce the
magnitude of the occurring error. A disadvantage is that node failures have
to be detectable. Once detected, the weights used in the computation have to
be updated throughout the network, which poses a global updating problem
requiring communication across the entire network. In the event of a node failure,
the magnitude of the error depends on the network topology. Although the
algorithm presented in [15] is truly distributed, we do not consider it in our
analysis and in our simulations because it is restricted to the special case m = 1.

Sayed et al. [2,16,17] propose a diffusion-based least mean square estimator
(diffLMS) using steepest-descent iterations for solving the normal equations. Dif-
fusion strategies are seen as an alternative to consensus strategies for distributed
optimisation problems, both limiting the communication to the neighbourhood.
A and b are both distributed row-wise. In each iteration, diffLMS consists of two
main steps, an adaption step and a combination step, and delivers an estimate of
the solution x in each node. The authors provide two variants of their algorithm,
adapt-then-combine (ATC) and combine-then-adapt (CTA), which differ in the
order of these computation steps (for details, see Section 4).

Another fully distributed approach is the distributed least mean squares
method (D-LMS) by Schizas, Mateos and Giannakis [18,19,20]. D-LMS is based
on Lagrange multipliers and uses the least squares residual and the difference
between the estimates of x from the neighbourhood in a correction step to com-
pute the least squares solution iteratively. The data distribution of A and b is
again row-wise. At each step an estimate for the solution x is available in each

408 K.E. Prikopa, H. Straková, and W.N. Gansterer

node. D-LMS communicates twice in each iteration, once to broadcast the cur-
rent estimate to all neighbours and a second time to send individual correction
vectors to each neighbour (single-hop unicast – for details, see Section 4).

3 A Push-Sum-Based Least Squares Solver

In this section, we introduce the Push-Sum Distributed Least Squares Solver
(PSDLS), shown in Algorithm 1, for problem (1). The matrix A and the vector
b are distributed row-wise across the participating nodes. The parts of A and b
available locally at node u will therefore be denoted by Au and bu, respectively.
The solution x is approximated at each node. The local instance of a vector v
which occurs at every node u will be referred to as vu, and vu(i) refers to the ith

element of vu. In particular, xu refers to the approximation of the entire solution
vector x at node u. The algorithm does not require any knowledge about the
global topology of the network and it does not assume any specific connections
between the nodes. Each node only needs to know its neighbours. In such a
setup, the push-sum algorithm [5] provides a truly distributed way for summing
or averaging values across the nodes of the network. If each node knows the total
number of nodes N in the network, then the sum of the values over all nodes can
be computed using distributed averaging. Note that N can also be estimated in a
truly distributed way [21]. Alternatively, the push-sum algorithm can be used to
compute the sums directly without the need to know N at every node. However,
based on our experience, this variant leads to slightly slower convergence.

Algorithm 1. Push-Sum Distributed Least Squares Solver (PSDLS)

Input: A ∈ IRn×m with n > m, b ∈ IRn, both distributed row-wise over N nodes
Output: xu ∈ IRm on every node
1: in each node u do
2: [Qu, Ru] ← vdmGS(Au)
3: zu ← dmmv(Qu�, bu)
4: xu ← solve Ruxu = zu � local

PSDLS is a direct least squares solver first computing a distributed QR
factorisation of A (line 1.21) and subsequently solving locally a linear system
with the triangular matrix Ru at every node (line 1.4). For the distributed
QR factorisation we use the gossip-based distributed modified Gram-Schmidt
orthogonalisation method vdmGS introduced in [22,23]. vdmGS returns the or-
thonormal matrix Q ∈ IRn×m distributed row-wise (denoted by Qu) and the
complete upper-triangular matrix R ∈ IRm×m in every node (denoted by Ru).
Consequently, Q� is distributed column-wise across the nodes. To compute the
right-hand side of the linear system (line 1.3), the distributed matrix-vector mul-
tiplication dmmv described in [23] is used, which accepts the matrix argument

1 Line x.y refers to line y in Algorithm x.

Truly Distributed Least Squares Solvers 409

distributed column-wise and the vector argument distributed row-wise. The so-
lution of the linear system (back substitution) can be computed locally and does
not need any further communication with the other nodes because every node
has its local estimate of R. At the end of the algorithm, each node u has its own
local approximation xu of the solution of the least squares problem (1).

4 Communication Cost of Distributed LS Solvers

We compare the communication cost of the novel PSDLS method, both variants
of diffLMS described in [16] and D-LMS described in [20] in terms of number of
messages and amount of data sent per node.

diffLMS. There are different versions of the diffLMS algorithm aside from the
order of execution in ATC and CTA mentioned previously. diffLMS can also
exchange the observations bu and matrix rows Au with the neighbouring nodes
to improve the estimate of the solution. This requires an additional step for
exchanging the information which increases the communication cost. For better
comparison with [16], we will limit the analysis to the versions without the
additional information exchange.

In the ATC version of the diffLMS method, shown in Algorithm 2, each node
u first computes an intermediate value ψu ∈ IRm, which adds a step-size μ of
the least squares residual to the current estimation of xu, where Au and bu

correspond to the rows of A and b available locally on node u. The intermediate
value ψu is subsequently broadcast to the local neighbourhood Du. Each node
then updates its estimate of xu with a weighted sum of all received ψi (i ∈ Du),
and its own ψu, the weights being denoted as ωu(i). A proof of convergence and
several possible weighting matrices are given in [16].

The CTA variant of diffLMS performs exactly the same operations but in
a different order. The intermediate values ψu are first broadcast to the neigh-
bourhood, then each node computes its estimate of xu and in the last step the
new intermediate value ψu. According to [2, p.31], “. . . the difference between the

Algorithm 2. Diffusion Least Mean Square (diffLMS) - ATC and CTA

Input: A ∈ IRn×m with n > m, b ∈ IRn, both distributed row-wise over N nodes
For all nodes u: xu and ψu initialised with zero

Output: xu ∈ IRm on every node

Adapt-then-Combine (ATC)

1: in each node u do
2: while not converged do
3: ψu ← xu+ μAu�(bu − Auxu)
4: Broadcast ψu to Du

5: xu ← ωu(u)ψu+Σi∈Duωu(i)ψi

6: end while

Combine-then-Adapt (CTA)

1: in each node u do
2: while not converged do
3: Broadcast ψu to Du

4: ψu ← ωu(u)xu+Σi∈Duωu(i)xi

5: xu ← ψu+ μAu�(bu − Auψu)
6: end while

410 K.E. Prikopa, H. Straková, and W.N. Gansterer

Algorithm 3. Distributed Least-Mean Squares Solver (D-LMS)

Input: A ∈ IRn×m with n > m, b ∈ IRn, both distributed row-wise over N nodes
For all u and ∀i ∈ Du: xu and viu initialised with zero

Output: xu ∈ IRm on every node

1: in each node u do
2: while not converged do
3: Broadcast xu to Du

4: for each node i ∈ Du do
5: viu = viu + c

2
(xu − xi)

6: Send viu to each corresponding node i ∈ Du

7: xu = xu + μ[2Au�(bu − Auxu)−Σi∈Nu(v
i
u − vui)− cΣi∈Nu(xu − xi)]

8: end while

implementations lies in which variable we choose to correspond to the updated
weight estimate.”. In ATC, xu is the result of the combination step (line 2.5 of
ATC), in CTA it is the result of the adaption step (line 2.5 of CTA). However,
mathematically and numerically this does not result in the same solution.

D-LMS. The D-LMS method is shown in Algorithm 3. A node u first broadcasts
its current estimate xu to its neighbourhood Du (line 3.3). Then an individual
correction vector viu is computed for each neighbour i ∈ Du using the received
estimation xi and its own estimation xu (line 3.5). These values are then sent
to each corresponding node i. In the last step of each iteration (line 3.7), the
new estimate xu is computed using a least squares residual from Au and bu, the
locally available parts of A and b, and the correction terms viu and vui received
from the neighbourhood. This term is added to the current xu and weighted
with a step-size parameter μ resulting in an estimate xu of the solution x in
each node. Proof of convergence is given in [18].

Comparison of Communication Cost

The cost of a broadcast to all neighbours (“local broadcast”) depends on the
topology and on the type of connection. Therefore, we introduce the broadcasting
parameter B(d) for denoting the number of messages required for broadcasting
to d neighbours. In a wireless setting, a single message is required to perform a
broadcast to all neighbours, thus B(d) = 1. However, in a setting with point-
to-point communication (e. g., wired connections), d messages are required for
sending a message to d neighbours, thus B(d) = d. For a global broadcast beyond
the neighbourhood in any network other than a fully connected one, additional
messages are needed for multi-hop message relaying over intermediate nodes.

The communication patterns and costs for ATC and CTA are identical. In each
iteration, each node u broadcasts a vector of size m to its neighbourhood Du. In
k1 iterations, node u sends k1B(|Du|) messages. D-LMS requires communication
in two of its steps. In line 3.3, a local broadcast is required to distribute the vector
xu of size m to the neighbours. Line 3.6 sends |Du| individual messages of size

Truly Distributed Least Squares Solvers 411

Table 1. Comparison of the communication cost for diffLMS, D-LMS and PSDLS

Algorithm Number of messages Total amount of data
sent per node sent per node

diffLMS k1 B(|Du|) k1 B(|Du|)m
D-LMS k2 (B(|Du|) + |Du|) k2 (B(|Du|) + |Du|)m
PSDLS 2mR 1

2

(
m2 + 7m

)
R

m to distribute the correction term. This results in k2(B(|Du|)+ |Du|) messages
and k2(B(|Du|) + |Du|)m data values sent per node.

Although PSDLS is not an iterative method, we have to consider the number
of rounds R required by each push-sum algorithm. Note that in practice R
may vary slightly for different push-sum calls due to the randomisation. In the
distributed QR decomposition, for the first m − 1 columns of the matrix A
two push-sum calls have to be executed, the first one summing scalars and the
second one summing vectors. In column l of A the length of these vectors is m−l.
For column m only one scalar push-sum call has to be executed. The matrix-
vector product Q�b requires one more push-sum call on vectors of length m.
Consequently, the number of messages sent per node is 2mR. In each push-sum
call, the values and a weight have to be transmitted [5].

Table 1 summarises the analytical results of this section. We conclude that
independently of the number of iterations k1 and k2, D-LMS sends |Du| more
messages and more data per iteration than diffLMS. For comparing the com-
munication cost, information about the number of iterations k1 and k2 required
by diffLMS and D-LMS, respectively, and the number of push-sum rounds R re-
quired by PSDLS is necessary. As our simulation results in Section 5 illustrate,
these quantities differ significantly across the three methods.

5 Experiments

The simulation results presented in this section demonstrate the different con-
vergence speeds in terms of average number of messages sent per node and
therefore provide some qualitative insight into typical values of k1, k2 and R for
the algorithms compared in this paper. Our simulations are based on Matlab
implementations of the algorithms. The implementation of the push-sum algo-
rithm is round-based and synchronised. The neighbours are selected at random
from a uniform distribution. For all methods, A and b are distributed row-wise
over all N nodes. Without loss of generality, we consider the special case n = N ,
i. e., each node holds one row of A and one element of b. Like in [16], the relative
degree weight matrix was used for both diffLMS and D-LMS.

In order to evaluate the accuracy of the approximate solution xu computed
by the algorithms, we evaluated the relative error

max
u=1,..,N

‖xu − x∗‖∞/‖x∗‖∞, (2)

where x∗ is the solution computed sequentially in Matlab.

412 K.E. Prikopa, H. Straková, and W.N. Gansterer

PSDLS
D-LMS
ATC
CTA

Hypercube

Average number of messages per node

m
a
x
u
=
1
,.
.,
N

‖x
u
−
x
∗ ‖

∞
/
‖x

∗ ‖
∞

105104103102101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8 PSDLS
D-LMS
ATC
CTA

Random Geometric

Average number of messages per node

105104103102101

Fig. 1. Comparison for N = n = 64, m = 8 on different topologies: hypercube (left) and
random geometric (right). The step-sizes are μATC = μCTA = 0.01 and μD-LMS = 0.2.

diffLMS and D-LMS are both iterative methods, whereas the PSDLS is a di-
rect method with an iterative building block (the push-sum algorithm) in each
step. For a fair comparison of the methods, the instances of the push-sum algo-
rithm in PSDLS were not terminated based on reaching a predefined accuracy,
but based on a predefined maximum number of rounds.

The behaviour of diffLMS and D-LMS strongly depends on the choice of the
step-size parameter μ. Based on our experience, in particular the convergence
speed of diffLMS is very sensitive to the choice of μ, and for bad choices of μ the
methods even diverge. The best choice for μ in terms of convergence speed seems
to vary greatly withm, the topology and the average node degree. Unfortunately,
the literature does not give any guidance on how to choose μ. Thus, we performed
extensive simulations across a wide range of values for μ and chose the values at
which the respective algorithm eventually achieves the highest accuracy.

Figure 1 shows the convergence behaviour of the different algorithms for N =
64 nodes arranged in a hypercube and as a random geometric graph on the unit
square with a communication radius 0.2. The horizontal axis shows the average
number of messages sent per node and the relative error (2) achieved for this
number of messages sent per node is plotted on the vertical axis. The experiments
show that the diffLMS methods do not reach the targeted accuracy of 10−8 and
after 12000 messages only achieve an accuracy of 10−2 on a hypercube. On
a random geometric graph diffLMS diverges at around 3100 messages and does
not even reach 10−1. On a hypercube network, the D-LMS algorithm achieves an
accuracy of 10−8, but requires around 32600 messages to be sent per node. The
PSDLS method converges significantly faster than the other algorithms requiring
only about 1950 messages per node to reach an accuracy of 10−8, which is a factor
of 16 less than D-LMS. The amount of data sent per node is also significantly
lower for PSDLS, sending only 5400 values compared to 261000 values sent by

Truly Distributed Least Squares Solvers 413

D-LMS. Similar behaviour can be observed for the random geometric graph.
PSDLS converges more than 7 times faster than D-LMS and sends only 0.05%
of the data sent by D-LMS.

6 Conclusion

We surveyed existing distributed least squares solvers and classified them based
on their communication pattern. We introduced a novel truly distributed least
squares solver PSDLS based on the push-sum algorithm, which limits the com-
munication to the immediate neighbourhood of each node and does not require
a fusion centre or clustering.

We analysed and compared the communication cost of all existing truly dis-
tributed methods in terms of the number of messages and the amount of data
sent per node. Numerical simulations showed that the number of messages per
node required for a solution accuracy of 10−8 is more than a factor of seven lower
for the novel PSDLS algorithm than for the other truly distributed methods.

Future work will consider fault tolerance in distributed least squares solvers.

Acknowledgement. This work was partly supported by the Austrian Science
Fund (FWF): S 10608-N13 (NFN SISE).

References

1. Reise, G., Matz, G., Gröchenig, K.: Distributed field reconstruction in wireless sen-
sor networks based on hybrid shift-invariant spaces. IEEE Transactions on Signal
Processing 60(10), 5426–5439 (2012)

2. Sayed, A.H.: Diffusion adaptation over networks. In: Academic Press Library in
Signal Processing, vol. 3, pp. 323–454. Academic Press, Elsevier (2014)

3. Shi, L., Song, W.Z., Xu, M., Xiao, Q., Kamath, G., Lees, J., Xing, G.: Imaging
seismic tomography in sensor network. In: IEEE International Conference on Dis-
tributed Computing in Sensor Systems (DCOSS), pp. 304–306 (2013)

4. Reichenbach, F., Born, A., Timmermann, D., Bill, R.: A distributed linear least
squares method for precise localization with low complexity in wireless sensor net-
works. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006.
LNCS, vol. 4026, pp. 514–528. Springer, Heidelberg (2006)

5. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, pp. 482–491 (2003)

6. Gansterer, W.N., Niederbrucker, G., Straková, H., Schulze Grotthoff, S.: Scalable
and fault tolerant orthogonalization based on randomized distributed data aggre-
gation. Journal of Computational Science 4(6), 480–488 (2013)

7. Niederbrucker, G., Straková, H., Gansterer, W.N.: Improving fault tolerance and
accuracy of a distributed reduction algorithm. In: SC Companion: High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 643–651 (2012)

8. Khan, M.I., Gansterer, W.N., Haring, G.: Static vs. mobile sink: The influence
of basic parameters on energy efficiency in wireless sensor networks. Computer
Communications 36(9), 965–978 (2013)

414 K.E. Prikopa, H. Straková, and W.N. Gansterer

9. Le Borgne, Y.A., Nowe, A., Abughalieh, N., Steenhaut, K.: Distributed regression
for high-level feature extraction in wireless sensor networks. In: 2010 Seventh In-
ternational Conference on Networked Sensing Systems (INSS), pp. 249–252 (2010)

10. Shi, L., Song, W.Z., Kamath, G., Xing, G., Liu, X.: Distributed least-squares iter-
ative methods in networks: A survey. Submitted to Computing Journal (2013)

11. Renaut, R.A.: A parallel multisplitting solution of the least squares problem. Nu-
merical Linear Algebra with Applications 5(1), 11–31 (1998)

12. Yang, L., Brent, R.: Parallel MCGLS and ICGLS methods for least squares prob-
lems on distributed memory architectures. The Journal of Supercomputing 29(2),
145–156 (2004)

13. Behnke, R., Salzmann, J., Lieckfeldt, D., Timmermann, D.: SDLS - Distributed
least squares localization for large wireless sensor networks. In: International Con-
ference on Ultra Modern Telecommunications & Workshops, pp. 1–6 (2009)

14. Shakibian, H., Charkari, N.: MMS-PSO for distributed regression over sensor net-
works. In: IEEE Conference on Multisensor Fusion and Integration for Intelligent
Systems (MFI), pp. 68–73 (2010)

15. Zhou, Q., Kar, S., Huie, L., Poor, H.V.: Robust distributed least-squares estima-
tion in sensor networks with node failures. In: IEEE Global Telecommunications
Conference, pp.1–6 (2011)

16. Cattivelli, F., Sayed, A.: Diffusion LMS strategies for distributed estimation. IEEE
Transactions on Signal Processing 58(3), 1035–1048 (2010)

17. Tu, S.Y., Sayed, A.: Diffusion strategies outperform consensus strategies for dis-
tributed estimation over adaptive networks. IEEE Transactions on Signal Process-
ing 60(12), 6217–6234 (2012)

18. Schizas, I.: Consensus in ad hoc WSNs with noisy links - Part II: Distributed
estimation and smoothing of random signals. IEEE Transactions on Signal Pro-
cessing 56(4), 1650–1666 (2008)

19. Mateos, G., Schizas, I.D., Giannakis, G.B.: Performance analysis of the consensus-
based distributed LMS algorithm. EURASIP Journal on Advances in Signal Pro-
cessing 2009(1), 68:6–68:6 (2009)

20. Schizas, I.D., Mateos, G., Giannakis, G.B.: Distributed LMS for consensus-based
in-network adaptive processing. IEEE Transactions on Signal Processing 57(6),
2365–2382 (2009)

21. Sluciak, O., Rupp, M.: Network size estimation using distributed orthogonalization.
IEEE Signal Processing Letters 20(4), 347–350 (2013)

22. Straková, H., Gansterer, W.N., Zemen, T.: Distributed QR factorization based
on randomized algorithms. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 235–244. Springer,
Heidelberg (2012)

23. Straková, H., Gansterer, W.N.: A distributed eigensolver for loosely coupled net-
works. In: 21st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 51–57 (2013)

High-Performance Computer Algebra:
A Hecke Algebra Case Study

Patrick Maier1, Daria Livesey2, Hans-Wolfgang Loidl3, and Phil Trinder1

1 School of Computing Science, University of Glasgow, Glasgow, UK
2 School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK

3 School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK

Abstract. We describe the first ever parallelisation of an algebraic computation
at modern HPC scale. Our case study poses challenges typical of the domain: it
is a multi-phase application with dynamic task creation and irregular parallelism
over complex control and data structures.

Our starting point is a sequential algorithm for finding invariant bilinear forms
in the representation theory of Hecke algebras, implemented in the GAP compu-
tational group theory system. After optimising the sequential code we develop a
parallel algorithm that exploits the new skeleton-based SGP2 framework to par-
allelise the three most computationally-intensive phases. To this end we develop
a new domain-specific skeleton, parBufferTryReduce. We report good par-
allel performance both on a commodity cluster and on a national HPC, delivering
speedups up to 548 over the optimised sequential implementation on 1024 cores.

1 Introduction

Computational algebra is an important area of symbolic computation with many com-
plex and expensive computations that would benefit from parallel execution. The area is
served by a variety of systems, many specialising in some mathematical domain, for ex-
ample GAP [7], a computational algebra system (CAS) specifically designed for group
theory and combinatorics.

Some discrete mathematical problems are embarrassingly parallel, and this has been
exploited for years even at Internet scale, e. g. the “Great Internet Mersenne Prime
Search”. Other problems have more complex coordination patterns and both parallel
algorithms and parallel CAS implementations have been developed, e. g. ParGAP [5].
Many parallel algebraic computations exhibit high degrees of irregularity, at multiple
levels, with numbers and sizes of tasks varying enormously (up to 5 orders of magni-
tude) [16]. They tend to use complex user-defined data structures, exhibit highly dy-
namic memory usage and complex control flow, often exploiting recursion. They make
little, if any, use of floating-point operations.

This combination of characteristics means that symbolic computations are not well
suited to conventional HPC paradigms with their emphasis on iteration over floating
point arrays, and has motivated the development of scalable domain-specific scheduling
and management frameworks like SymGrid-Par [16] and SymGridPar2 (SGP2) [20].

This paper outlines the first ever modern HPC-scale parallelisation of a problem in
computational group theory, namely finding the invariant bilinear forms of Hecke al-
gebra representations. These bilinear forms, and Hecke algebras more generally, are an

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 415–426, 2014.
c© Springer International Publishing Switzerland 2014

416 P. Maier et al.

important tool in the study of symmetries that arise in many branches of mathematics,
e. g. in topology and knot theory, with applications in theoretical physics and chemistry.

Our starting point is a sequential algorithm for computing bilinear forms, imple-
mented in GAP. Prior to parallelising, we optimise the sequential algorithm, reducing
sequential runtime by a factor of 350 (Section 2).1 The paper makes the following re-
search contributions.

(1) The development of a parallel algorithm for finding above bilinear forms. The
parallelisation exploits the new SGP2 framework designed for scalable GAP compu-
tations. Core elements of SGP2 are a set of algorithmic skeletons, implemented in the
parallel Haskell DSL HdpH [21], and a GAP binding for Haskell. We parallelise the
three most time-consuming phases of the algorithm: (a) solving homomorphic images
of linear systems over finite fields, (b) solving interpolation problems over rationals, and
(c) bilinear invariance check (over polynomial matrices). All algebraic computations are
performed by sequential GAP instances and coordinated by HdpH (Section 4).

(2) Some SGP2 skeletons are generic, e. g. the parMap parallel map of a function
over a list. Other skeletons are specific to the algebraic domain. Specifically to compute
with homomorphic images, a technique that is typical for a large class of algebraic
algorithms, we have developed a new algebraic skeleton parBufferTryReduce that
repeatedly checks whether the homomorphic results accumulated thus far are sufficient
to reconstruct the final result (Section 3).

(3) Many mathematicians have access to commodity clusters rather than HPCs, so
SGP2 is designed for both. We report good speedup and efficiency for a range of bilin-
ear form problems, both on a Beowulf cluster and on medium-scale configurations of
the HECToR UK supercomputer [12]. For example, one problem instance achieves a
speedup of 548, coordinating 992 GAP instances on 1024 cores (Section 5).

2 Algorithm for Finding Invariant Bilinear Forms

Background. Using the terminology of [8], let R = Z[x, x−1] be the ring of Laurent
polynomials in an indeterminate x. For the purpose of this paper, it suffices to know
that a Hecke algebra2 H is an R-algebra with a basis {Tw | w ∈ W} over R, where W
is a finite Coxeter group with set of generators S. In this paper, we only consider Hecke
algebras of type Em (m = 6, 7, 8), that is, W is the exceptional Coxeter group Em, and
the cardinality of the set of generators S is m.

An n-dimensional representation ρ of a Hecke algebra H is an R-algebra homo-
morphism from H to Mn(R), the R-algebra of n × n matrices over R. Note that ρ is
generated by the matrices ρ(Ts), s ∈ S. H is known to have a finite number of so-called
cell representations ρ. Moreover, Howlett and Yin [13] have brought each of these cell
representations ρ into a form where all m matrices ρ(Ts) are sparse.

Graham and Lehrer [11] and Geck [8] show that for any given ρ there exists a non-
trivial symmetric matrix Q ∈ Mn(R), unique up to scalar multiplication, such that

1 Such dramatic optimisations are not unusual in computer algebra as the typical high-level pre-
sentation of computational mathematics often omits opportunities for sequential optimisation.

2 More precisely, H is a one-parameter generic Iwahori-Hecke algebra.

High-Performance Computer Algebra: A Hecke Algebra Case Study 417

Q · ρ(Ts) = ρ(Ts)
T ·Q (1)

for all generators ρ(Ts). We call Q the matrix of an invariant bilinear form.
Depending on the representation ρ, finding the invariant bilinear form Q may require

substantial computation. For each algebra type, the table below lists the number of cell
representations ρ, the range of dimensions of ρ and the range of spreads of degree
bounds of Laurent polynomials in Q. These numbers (and hence the difficulty of the
problem) vary by several orders of magnitude.

Hecke algebra type E6 E7 E8

number of cell representations ρ 25 60 112
dimension of ρ 6–90 7–512 8–7168
spread of degree bounds of polynomials in Q 29–54 45–95 65–185

Sequential Algorithm for Computing Q. In principle,Q can be computed by viewing
Equation (1) as a system of linear equations and solving for the entries of Q. However,
solving linear systems over Z[x, x−1] is too expensive to obtain solutions for high di-
mensional representations.

Instead, we solve the problem by interpolation. We view each entry of Q as a Laurent
polynomial with u− l+1 unknown coefficients, where u− l+1 is the spread between
lower degree bound l and upper degree bound u. Solving Equation (1) at u− l+1 data
points will provide enough information to compute the unknown coefficients by solving
linear systems over the rationals instead of Z[x, x−1]. To avoid computing with very
large rational numbers (due to polynomials of high degree), we solve homomorphic
images of Equation (1) modulo small primes and use the Chinese Remainder Theorem
to recover the rational values.

The algorithm takes as input m generators ρ(Ts) of dimension n, lower and upper
degree bounds l and u, and a finite set of small primes P . From the degree bounds, we
construct a set Vlu of u− l+1 small integers (excluding zero) to be used as data points
for interpolation. The primes in P must be chosen large enough not to divide any of the
integers in Vlu. The algorithm runs in three phases:

1. For all p ∈ P and v ∈ Vlu, GENERATE a modular interpolated solution Qvp of (1)
by instantiating the unknown x with v and solving the resulting system modulo p.

2. For all v ∈ Vlu, REDUCE the modular matrices Qvp by rational Chinese remain-
dering and obtain a rational interpolated solution Qv of (1). Construct each Laurent
polynomial qij in Q by gathering the (i, j)-entries of all Qv and solving a rational
linear system for the coefficients qij . Since Q is symmetric, there are (n + 1)n/2
such systems, each of dimension u− l + 1.

3. For all generators ρ(Ts), CHECK that the resulting Q satisfies (1) over Z[x, x−1].

After some (offline) pre-processing, the theory of Hecke algebras admits a particularly
efficient way to GENERATE Qvp. Instead of solving a linear system, the rows of Qvp are
computed by a spinning basis algorithm [9,17], multiplying, or spinning, the basis vec-
tor e of a pre-determined one-dimensional sub-space with n pre-determined products
of the generators ρ(Ts).

418 P. Maier et al.

We observe that Q often has many identical entries. Therefore, the gather step of the
REDUCE phase filters duplicates to avoid repeatedly solving the same linear systems.
Typically, avoiding duplicates reduces the workload of REDUCE by a factor of 5 to 10.

Sequential Optimisations. Profiling the GAP code on Hecke algebras of type E6 lead
to a number of improvements. The three most important ones are:

1. Avoiding unnecessary copying during the GENERATE phase by reducing the size
of lambda abstractions encoding the generators.

2. Reducing the memory footprint by storing generators in a sparse matrix format.
3. Spinning the basis more efficiently by exploiting associativity.

For type E6 these optimisations reduced sequential runtime of the algorithm (cumulative
over all representations) by a factor of about 350, and the memory footprint by an order
of magnitude from several GB to hundreds of MB.

3 The SymGridPar2 Framework

SGP2 System Architecture. GAP [7] is the leading free system for computational
discrete algebra. It is designed to be natural to use for mathematicians; to be powerful
and flexible for experts and to be freely extensible so that it can encompass new math-
ematics. GAP supports very efficient linear algebra over small finite fields, multiple
representations of groups, subgroups, cosets and different types of group elements, and
backtrack search algorithms for permutation groups.

This case study used the most recent stable GAP distribution, GAP 4.6, which does
not support parallelism. Hence the sequential GAP 4.6 instances are coordinated over
the network by a distributed middleware, the SymGridPar2 (SGP2) framework [20].
The middleware occupies one core per multicore node and controls (via a RPC-like
protocol) independent GAP 4.6 instances running on the remaining cores (Figure 1).

SGP2 itself is implemented in HdpH [21], a domain-specific language (DSL) for
distributed-memory task parallelism, embedded in Haskell. SGP2 consists of two parts:
(1) a GAP binding, enabling calls from HdpH to GAP, including automatic marshaling,
and (2) a number of general-purpose and domain-specific parallel skeletons.

GAP GAP GAP GAP GAPGAP

multicoremulticore

...

R
P

C

multicore

SymGridPar2

Fig. 1. SGP2 system architecture

High-Performance Computer Algebra: A Hecke Algebra Case Study 419

-- HdpH types
type Par a -- parallel computation, returns result of type ’a’
type Closure a -- serialisable value/computation of type ’a’
type Task a= Closure (Par (Closure a)) -- serialisable parallel computation

-- returning serialisable result of type ’a’

-- sample general-purpose skeletons
parMap :: Closure (a → b) → [Closure a] → Par [Closure b]
parReduce :: Closure (a → a → a) → [Closure a] → Par (Closure a)

-- novel domain-specific skeleton; repeatedly reduces the results of a lazy list of input tasks
-- until the reducer computes a result
parBufferTryReduce :: ([Closure a] → Par (Maybe (Closure b))) -- reducer

→ Int -- reducer batch size
→ Int -- number tasks eval’d in parallel
→ [Task a] -- lazy list of input tasks
→ Par (Maybe (Closure b)) -- result

Fig. 2. HdpH types and some SymGridPar2 skeleton signatures

SGP2 Programming Model. HdpH is a monadic DSL, embedding a high-level co-
ordination language into Haskell. Figure 2 introduces two central types of the HdpH
DSL: Par, the monad type constructor for parallel computations, and Closure, the
type constructor for serialisable values including unevaluated computations, or thunks.
A Task is defined as a serialisable monadic computation returning a serialisable result.
Thanks to serialisability, tasks and their results can be distributed over the network, and
HdpH exploits this to provide automatic load management by work stealing.

At the lowest level, HdpH exposes fork/join style primitives for parallel program-
ming. Using the primitives the HdpH library defines a number of general-purpose poly-
morphic skeletons (Figure 2), e. g. parallel maps (applying a function closure to a list
of closures, in parallel) and reductions. The skeletons evaluate their input lists strictly
as they coordinate monadic computations, and hence are unsuitable for computing with
potentially infinite lazy lists.

Our case study requires solving an unknown number of subproblems in parallel until
there are enough intermediate results to construct the solution. More specifically, the
algorithm of Section 2 requires the use of an unknown number of primes in the GEN-
ERATE phase. A typical Haskell program would parametrise the GENERATE phase with
an infinite lazy list of primes, and rely on demand from the REDUCE phase to decide
how many primes are actually needed. As the monadic context of HdpH precludes lazy
lists, we capture this domain-specific pattern3 in a new skeleton that combines a task
farm with a reducer.

The new parBufferTryReduce skeleton takes as input (in reverse order) a lazy
list of tasks, the number of tasks to evaluate in parallel, the reducer batch size and the re-
ducer function. A call to parBufferTryReduce f b n tasks continually forks
from the head of list tasks, aiming to keep n tasks under evaluation, accumulating a
list accu of intermediate results (not necessarily in the order of tasks). The reducer f
is executed every time the length of accu is a multiple of the batch size b. The skeleton

3 This pattern is common in algebraic computations that generate modular subproblems, e. g.
linear system solving based on modular arithmetic and Chinese remaindering.

420 P. Maier et al.

returns a result as soon as the reducer finds one; it returns Nothing only if the reducer
fails to produce a result even after all tasks are evaluated.

The HdpH DSL greatly simplifies developing domain-specific skeletons, particu-
larly skeletons with complex parallel coordination such as parBufferTryReduce.
A case in point is the implementation of the latter spanning less than 90 lines of code.

4 Parallel Algorithm for Finding Invariant Bilinear Forms

Each of the three phases of the sequential algorithm (Section 2) contains significant
amounts of parallelism. Deciding what and how to parallelise is guided by the ratio
between computation and communication costs on the distributed target architectures.

Parallel Phases. Figure 3 shows the parallel structure of the algorithm to compute Q,
with lower and upper degree bounds l and u, for an n-dimensional cell representation
given by m generators ρ(Ts); P is the set of primes used in the GENERATE phase.

The GENERATE phase forks |P |(u− l+1) parallel tasks, each taking as input a pair
of integers (p, v) ∈ P × Vlu, where Vlu is defined as in Section 2. Each task runs the
spinning basis algorithm to compute an n × n matrix Qvp of integers modulo p. Thus
the input size of GENERATE tasks is small and constant but the output size is quadratic
in the dimension.

The REDUCE phase first constructs k ≤ (n + 1)n/2 interpolation problems by
Chinese remaindering and filtering duplicates, then forks k parallel tasks solving the
interpolation problems. Each task takes as input a vector of u − l + 1 rational values,
solves a linear system of u− l + 1 equations over the rationals, and returns a vector of
u− l+1 polynomial coefficients. Thus input and output size of REDUCE tasks depend
(linearly) on the degree spread (and on the size of the rational numbers, which depends
on the choice of P .)

The CHECK phase forks m parallel tasks, each checking the validity of Equation (1)
w. r. t. one generator ρ(Ts). To this end, each task requires as input the whole matrix Q,
i. e. (n + 1)n/2 polynomials with up to u − l + 1 rational coefficients. Thus the input
size of CHECK tasks is quadratic in the dimension and linear in the degree spread (and
depends on the size of the rational coefficients), whereas the output is a single bit.

Overall Coordination. Figure 3 depicts a parallel structure where REDUCE synchro-
nises on the completion of GENERATE, which depends on the set of primes P . Instead,

polynomial matrix mult

m tasks

rational linear solve

<= (n+1)*n/2 tasks

GENERATE CHECKREDUCE

|P|*(u−l+1) tasks

modular basis spin

filter duplicates
Chinese remainder;

Fig. 3. Structure of parallel algorithm for computing invariant bilinear forms Q

High-Performance Computer Algebra: A Hecke Algebra Case Study 421

the parBufferTryReduce skeleton (Section 3) decouples GENERATE from RE-
DUCE: The list tasks is a (possibly lazy and infinite) list of GENERATE tasks, the
reducer f runs the REDUCE phase followed by the CHECK phase, and the batch size b
determines the frequency of (attempted) reductions.

Note that most tasks in Figure 3 run on GAP workers and have a small memory foot-
print. However, the big task constructing the interpolation problems at the beginning of
the REDUCE phase is executed on a dedicated GAP instance, the GAP master, because
it must gather all Qvp matrices and mangle them simultaneously, which may require
substantial amounts of memory.

5 Evaluation of Parallel Performance

We evaluate the parallel algorithm (Section 4) on all cell representations (reps) for
Hecke algebra of type E7 and on the smaller reps of type E8. The reps for type E6 don’t
warrant parallel execution as their sequential runtimes are less than 150s. We evaluate
on three different architectures:

– up to 16 nodes of a commodity cluster (Beowulf, 8 cores/node, 2.0GHz Intel Xeon
CPUs, 12GB RAM/node, Gigabit Ethernet),

– up to 32 nodes of a Cray XE6 (HECToR [12], 32 cores/node, 2.3GHz AMD Inter-
lagos CPUs, 32GB RAM/node, Cray Gemini interconnect), and

– a large memory NUMA server (Cantor, 48 cores, 2.8GHz AMD Opteron CPUs,
512GB RAM).

Figure 4 displays our results, organised into 2 columns: to the left data about the E7 reps
3 to 60, to the right about the E8 reps 3 to 16; reps 1 and 2 for E7 resp. E8 are trivial and
easy to solve sequentially.

Problem size. The top row of Figure 4 plots the representations’ dimensions and degree
spreads (right y-axis) as well as the numbers of GENERATE and REDUCE tasks (left y-
axis); recall that the number of CHECK tasks is constant at 7 and 8, respectively.

We observe that the number of GENERATE tasks tracks the degree spreads curve,
whereas the number of REDUCE tasks oscillates by an order of magnitude or more
though its trend is rising with the dimension.

To obtain reproducible results, the set of primes was chosen somewhat bigger than
minimal, and the batch size parameter of the parBufferTryReduce skeleton was
set so high that the reducer runs only once, after the GENERATE phase is completed.

Runtime. The second row of Figure 4 plots parallel runtimes, on 16 Beowulf nodes
(using 15 * 7 + 1 = 106 GAP workers) in the case of E7, and on Cantor (using 40
GAP workers) in the case of E8. The graph for E8 also plots the total work, i. e. the
cumulative runtime of all tasks, and the time spent in the sequential part of the REDUCE

phase. The graph for E7 only plots the parallel work, i. e. the cumulative runtime of all
parallel tasks.4 The reported times reflect single experiments as a statistically significant
number of repetitions would be prohibitively expensive.

4 We failed to record the runtime of the sequential REDUCE step for E7, thus can’t provide total
work; parallel work is an under-approximation.

422 P. Maier et al.

Fig. 4. Performance of parallel algorithm for finding invariant bilinear forms Q, E7 to the left, E8

to the right. Top to bottom: problem size, runtime, speedup, size of GAP tasks.

High-Performance Computer Algebra: A Hecke Algebra Case Study 423

We observe that the amount of (total, parallel, sequential) work and the parallel run-
time oscillate noisily due to the dramatic oscillation in the number of REDUCE tasks.
The trend of work and runtime appears to grow with the dimension; the degree spread
appears to have no influence.

Speedup. The third row of Figure 4 plots speedups on 16 Beowulf nodes (E7, using 106
GAP workers) and on Cantor (E8, using 40 GAP workers).

Since sequential runtimes are not available, we compute speedups w. r. t. parallel
work (for E7) or total work (for E8). This method systematically underestimates the true
speedup (particularly for E7) as it fails to account for some of the costs of sequential
execution, e. g. more time spent on sequential garbage collection.

We observe that most E7 reps up to 22 are too small to produce significant speedups
on 16 Beowulf nodes. Reps 39 and above, and particularly reps above 55, suffer from
Amdahl’s law due to significant time spent in the sequential part of REDUCE. Similarly,
the E8 reps up to 5 are too small for good speedups on Cantor. However, we cannot
observe the effect of Amdahl’s law for E8; there is so much parallel work that speedups
for reps 11 to 16 are close to the maximum of 40× despite rep 16 spending more than
1000 seconds in the sequential phase.

For the E7 reps 23 to 38, we also investigate strong scaling from 4 to 8 to 16 Beowulf
nodes. We observe that speedup oscillations increase with scale, i. e. some representa-
tions scale, others don’t; best speedup (53×) is achieved for rep 38, corresponding to
a best case efficiency of 50%. The picture is similar for the E8 reps 11 to 15 when
investigating strong scaling from 4 to 32 nodes on HECToR; rep 11 achieves the top
speedup of 548×, top efficiency of 55%, but the other reps do not scale so well. Note
that for multi-phase symbolic computations with irregular and dynamic parallelism an
efficiency of 40% is good, as previously reported on smaller architectures [15,16,26].

Task size. The bottom row of Figure 4 shows the average, minimum and maximum
runtimes of GENERATE, REDUCE and CHECK tasks; the time recorded is GAP compute
time, excluding communication and marshaling overheads.5

We observe that CHECK tasks are generally expensive but regular, and REDUCE tasks
are largely regular, with only some reps showing moderate irregularity (E7 rep 48 is an
outlier). However, GENERATE tasks are wildly irregular, varying by at least two orders
of magnitude. The average cost of GENERATE and CHECK tasks appears to grow with
the dimension, whereas the cost of REDUCE tasks appears to depend strongly on the
degree spread.

Limitations. Two issues preclude solving the remaining E8 reps with the current algo-
rithm. First, the sequential time spent in the REDUCE phase, which grows quadratically
with the dimension, obliterates speedups beyond dimension 200 (for E7). The parallel
algorithm needs to be redesigned to scale to dimensions between 1000 and 2000 (which
are typical of E8), let alone the maximum of 7168.

5 Overheads for calling GAP, including marshaling and data transfer, vary with task input and
output size. For E7 GENERATE tasks on Beowulf, for instance, overheads generally stay two
orders of magnitude below average task size, ranging from about 10−4 to about 0.1 seconds.

424 P. Maier et al.

The second issue is the memory consumption, growing quadratically in the dimen-
sion, of the GAP master at the start of the REDUCE phase. The 12GB RAM of a Beowulf
node prove insufficient already from E8 rep 12, dimension 168.

6 Related Work

Computational Algebra Skeletons. This paper gives further evidence to the success of
a parallel pattern, or skeleton, approach [2] in the domain of computational mathemat-
ics. We combine specialist domain knowledge, in the area of computational group the-
ory, with language and systems knowledge, specifically for high-level orchestration of
parallelism on large-scale clusters. This continues our work on domain-specific parallel
patterns for symbolic computation, and some recent examples are as follows. We have
designed a parallel Orbit, that achieves a speedup of up to 36 on a 64-core machine [14];
a critical-pair-completion pattern, with the Gröbner Bases computation as one instance
that achieves a speedup of 6.9 on an 8-core machine; and the multiple-homomorphic
images pattern, that achieves speedups of up to 11.9 on a 16-node cluster [18].

Parallel Computational Algebra. Several computer algebra systems offer dedicated
support for parallelism (see [10, Sec 2.18] and [25]). Distributed Maple [26] provides a
portable Java-based communication layer to permit interaction of Maple instances over
a network. It uses future-based language constructs for synchronisation and communi-
cation, and has been used to parallelise several computational geometry algorithms. The
Sugarbush [1] system is another distributed-memory extension of Maple, which uses
Linda as coordination language. A distributed-memory parallel extension to GAP is the
GAPMPI [3] package, which provides access to MPI functionality from within GAP. In
contrast to this model of explicit message passing, our approach provides higher level
abstractions, such as the parBufferTryReduce skeleton.

The TOP-C system provides task-oriented parallelism on top of a distributed shared-
memory system [4], implementing several symbolic applications, including parallel
computations over Hecke algebras [6] on networks of SPARC workstations.

Several efforts of parallelising computational algebra have targeted previous gen-
erations of HPC architectures. Sibert et al [27] describe the implementation of basic
arithmetic over finite fields on a Connection Machine. Roch et al [24] discuss the im-
plementation and performance of a parallel Gröbner basis algorithm on the Floating
Point System hypercube Tesseract 20 with 16 nodes. Another parallel Gröbner basis
algorithm is implemented on a Cray Y-MP by Neun and Melenek [23] and later on a
Connection Machine by Loustaunau and Wang [19]. We are not aware of any other
work within the last 20 years that targets HPC for computational algebra.

More recently main-stream computer algebra systems have developed interfaces for
large-scale distribution, aiming to exploit Grid infrastructures [22]. The community
effort of defining a protocol for symbolic data exchange on such infrastructures allows
interchange between different computer algebra systems [16]. In contrast to these Grid-
based infrastructures, our technology targets massively parallel supercomputers.

High-Performance Computer Algebra: A Hecke Algebra Case Study 425

Invariant Bilinear Forms for Hecke Algebra Representations. The invariant bilin-
ear forms Q carry data that enables us to find so-called Jantzen filtrations [17], which
simplify the general understanding of transformations of Hecke algebra representations.

Such bilinear forms Q for Hecke algebras of type E7 and E8 have previously been
computed by Geck and Müller in an ad-hoc way; their paper [9] describes the math-
ematical basis for their approach but does not consider parallelism or evaluate perfor-
mance. This paper and [17] are part of an ongoing project, started by Geck, to build a
systematic GAP database of bilinear forms Q for Hecke algebras of type E6,E7 and E8.

7 Conclusion

We have described what we believe is the first ever parallelisation of an algebraic com-
putation on a modern HPC. The computation of invariant bilinear forms for Hecke
algebra representations is multi-phase and exhibits irregular parallelism over the com-
plex control and data structures typical of computer algebra. The parallelisation ex-
ploits the new skeleton-based SGP2 framework and required the development of a new
domain-specific skeleton, parBufferTryReduce. The performance on a medium-
scale HPC configuration and a commodity cluster is good, if noisy, reflecting the
complexity of the problems solved. For example, for medium-size Hecke algebra rep-
resentations (23 to 38) of type E7 we obtain speedups of between 25 and 53 on 16
Beowulf nodes (128 cores, 106 GAP workers). For small E8 representations (11 to 15)
we obtain speedups of between 116 and 548 on 32 HECToR nodes (1024 cores, 992
GAP workers).

In related and ongoing work we report good performance results for small algebraic
kernels on far larger HPC configurations, e. g. weak scaling of the sumEuler kernel
(summing up Euler’s ϕ function over large intervals) on up to 32K HECToR cores [20].
Core failures are predicted to rise along with the number of cores. To insure large and
expensive symbolic computations against core failures, we have implemented and are
evaluating automatic recovery of idempotent computations in SGP2 [28].

Acknowledgements. This research was supported by the grants HPC-GAP (EPSRC
EP/G05553X), AJITPar (EPSRC EP/L000687/1), RELEASE (EU FP7-ICT 287510).

References

1. Char, B.W.: Progress report on a system for general-purpose parallel symbolic algebraic
computation. In: ISSAC 1990, Tokyo, Japan, pp. 96–103. ACM Press (1990)

2. Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT
Press (1989)

3. Cooperman, G.: GAP/MPI: Writing parallel programs in GAP easily. Tech. rep., Northeast-
ern University, Boston, USA (1998)

4. Cooperman, G.: TOP-C: Task-oriented parallel C for distributed and shared memory. In:
Cooperman, G., Jessen, E., Michler, G.O. (eds.) Workshop on Wide Area Networks and
High Performance Computing. LNCIS, vol. 249, pp. 109–117. Springer, London (1999)

426 P. Maier et al.

5. Cooperman, G.: Parallel GAP: Mature interactive parallel computing. In: Groups and Com-
putation III, Columbus, OH, USA, pp. 123–138. De Gruyter (2001)

6. Cooperman, G., Tselman, M.: New sequential and parallel algorithms for generating high di-
mension Hecke algebras using the condensation technique. In: ISSAC 1996, Zürich, Switzer-
land, pp. 155–160. ACM Press (1996)

7. GAP Group: GAP – groups, algorithms, and programming (2007),
http://www.gap-system.org

8. Geck, M.: Hecke algebras of finite type are cellular. Invent. Math. 169, 501–517 (2007)
9. Geck, M., Müller, J.: James’ conjecture for Hecke algebras of exceptional type, I. J. Alge-

bra 321(11), 3274–3298 (2009)
10. Grabmeier, J., Kaltofen, E., Weispfenning, V.: Computer Algebra Handbook. Springer (2003)
11. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)
12. HECToR: UK National Supercomputing Service, www.hector.ac.uk
13. Howlett, R.B.: W-graphs for the irreducible representations of the Hecke algebras of type E7

and E8, private communication with J. Michel (December 2003)
14. Janjic, V., et al.: Space exploration using parallel orbits. In: Advances in Parallel Computing,

ParCo 2013, Munich, Germany, vol. 25, pp. 225–232. IOS Press (2014)
15. Konovalov, A., Linton, S.: Parallel computations in modular group algebras. In: PASCO

2010, Grenoble, France, pp. 141–149. ACM Press (2010)
16. Linton, S., et al.: Easy composition of symbolic computation software using SCSCP. J. Symb.

Comput. 49, 19–95 (2013)
17. Livesey, D.: High Performance Computations with Hecke Algebras: Bilinear Forms and

Jantzen Filtrations. Ph.D. thesis, University of Aberdeen (2014)
18. Loidl, H.W., et al.: Comparing parallel functional languages: Programming and performance.

Higher-order and Symbolic Computation 16(3), 203–251 (2003)
19. Loustaunau, P., Wang, P.Y.: Towards efficient parallelizations of a computer algebra algo-

rithm. In: Frontiers of Massively Parallel Computation, McLean, VA, USA, pp. 67–74. IEEE
(1992)

20. Maier, P., Stewart, R., Trinder, P.W.: Reliable scalable symbolic computation: The design of
SymGridPar2. Computer Languages, Systems & Structures 40(1), 19–35 (2014)

21. Maier, P., Trinder, P.: Implementing a high-level distributed-memory parallel Haskell in
Haskell. In: Gill, A., Hage, J. (eds.) IFL 2011. LNCS, vol. 7257, pp. 35–50. Springer,
Heidelberg (2012)

22. Maple Grid Computing Toolbox,
http://www.maplesoft.com/products/toolboxes/GridComputing

23. Neun, W., Melenk, H.: Very large Gröbner basis calculations. In: Zippel, R.E. (ed.) CAP
1990. LNCS, vol. 584, pp. 89–99. Springer, Heidelberg (1992)

24. Roch, J.L., Sénéchaud, P., Françoise Siebert-Roch, F., Villard, G.: Computer algebra on
MIMD machine. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 423–439. Springer,
Heidelberg (1989)

25. Roch, J.L., Villard, G.: Parallel computer algebra. Tech. rep., IMAG, France, tutorial at
ISSAC 1997 (1997)

26. Schreiner, W., Mittermaier, C., Bosa, K.: Distributed Maple: parallel computer algebra in
networked environments. J. Symb. Comput. 35(3), 305–347 (2003)

27. Sibert, E.E., Mattson, H.F., Jackson, P.: Finite field arithmetic using the Connection Machine.
In: Zippel, R.E. (ed.) CAP 1990. LNCS, vol. 584, pp. 51–61. Springer, Heidelberg (1992)

28. Stewart, R.: Reliable Massively Parallel Symbolic Computing: Fault Tolerance for a Dis-
tributed Haskell. Ph.D. thesis, Heriot-Watt University (2013)

http://www.gap-system.org
www.hector.ac.uk
http://www.maplesoft.com/products/toolboxes/GridComputing

Generic Deterministic Random Number
Generation in Dynamic-Multithreaded Platforms

Stefano Mor1,2,3,4,�, Jean-Louis Roch1,3,4, and Nicolas Maillard2

1 Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
2 Instituto de Informática, Univ. Federal do Rio Grande do Sul, Porto Alegre, Brazil

3 CNRS, LIG, F-38000 Grenoble, France
4 Inria

{Stefano.Mor,Jean-Louis.Roch}@imag.fr, nicolas@inf.ufrgs.br

Abstract. On dynamic multithreaded platforms with on-line scheduling
such as work-stealing, randomized computations raise the issue of repro-
ducibility. Compliant with de facto standard sequential Deterministic
Random Number Generators (DRNGs) noted R, we propose a parallel
DRNG implementation for finite computations that provides determinis-
tic parallel execution. It uses the stateless sub-stream approach, enabling
the use of efficient DRNG such as Mersenne Twister or Linear Congru-
ential. We demonstrate that if R provides fast jump ahead in the random
sequence, the re-seeding overhead is small, polylog in expectation, in-
dependently from the parallel computation’s depth. Experiments bench-
mark the performance of randomized algorithms employing our solution
against the stateful DRNG DotMix, tailored to the Cilk Plus dynamic
multithreading runtime. The overhead of our implementation ParDRNG<

R> compares favorably to the linear overhead of DotMix re-seedings.

Keywords: Random Numbers, Dynamic-Multithreading, Generic, Dot-
Mix, Cilk.

1 Introduction

Deterministic Random Number Generators (DRNGs), stateful abstractions that
generate a random number stream from a given initial seed, provide reproducibil-
ity to random experiments and are useful in the debug of randomized algorithms.

Dynamic multithreading, defined by Leiserson et al. [1] as a synonym of task
parallelism, is a processor-oblivious parallel programming model where keywords
enable parallelism on the serial code without reference to the number of available
processors. A scheduler, such as non-blocking randomized work stealing, man-
ages the execution. These platforms guarantee deterministic results, despite the
intrinsic non-determinism introduced by the scheduler, except if the result relies
on stateful components. Such is the case of DRNGs. State-of-the-art DRNGs for
dynamic multithreaded environments overcomes this by fixing a tailored gen-
eration algorithm, trading-off abstraction of implementation properties (e.g.,
randomness, cryptography, regularity, etc.) for performance.

Contribution. As an alternative to fixed implementations for parallel
DRNGs, we propose a generic parallel API called ParDRNG<R> that ensures deter-
ministic parallel executions on dynamic multithreading platforms. ParDRNG<R>

� Scholarship holder CNPq - Brazil, Eiffel Laureate - FrenchMinistry of Foreign Affairs.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 427–438, 2014.
c© Springer International Publishing Switzerland 2014

428 S. Mor, J.-L. Roch, and N. Maillard

uses as underlying engine a sequential DRNG R and inherits its qualities without
compromising parallel efficiency. Its main insight is the use of R’s capability of
“jumping-ahead” in the generated stream to ensure determinism; the applica-
tion partitions the random sequence on-the-fly among the parallel tasks, and
each task re-seeds its DRNG through a jump-ahead to generate only random
numbers belonging to its subsequence. To ensure efficiency, these re-seeds oc-
cur only when triggered by a steal operation performed by the work stealing
scheduler. We prove this method to introduce an overhead upper-bounded by
the parallel work (work-efficiency) even when efficient jump-ahead is absent, and
that the theoretical re-seeding overhead is polylog (work-optimality) whenever
R provides at least polylog jump operations on the random sequence.

Related Works. Coddington [2] enumerates a useful array of techniques to
parallelize conventional DRNGs, like “leapfrog” (cyclic partition among proces-
sors) and “sequence splitting” (block partition among processors) but these are
not processor-oblivious. On the other hand, counter-based DRNGs [3] have ex-
cellent statistical properties and can be used in deterministic parallel executions.
However, considering performance, each random generation from the counter re-
quires an operation equivalent to re-seeding, and thus a linear overhead. The
polylog overhead of ParDRNG<R> compares favourably. Moreover, R can itself use
counter-based generators (e.g., AES). The “re-seed through jump” strategy is
also discussed by Haramoto et al. [4], which argued in favor of parallel programs
to build a fast jump-ahead algorithm over Mersenne Twister, what resulted in
the implementation of SIMD-oriented Fast Mersenne Twister (SFMT). This is
also the case of L’Ecuyer’s RNGStreams library (on the top of its MRG32k3a
generator [5]). Both approaches deliver a jump with high constant cost, compen-
sated by the large range skipped — which, contrary to ParDRNG<R>, is defined
at compile time. Languages like Haskell also follow this sub-stream approach,
offering their own splittable generators to the programmer. All these implemen-
tations offer a static set of properties, since the generation algorithm is fixed.

Comparison. ParDRNG<R> is compared performance-wise with the stateful,
counter-based DRNG DotMix [1], written in C++ for the Cilk Plus dynamic
multithreading platform. DotMix supports infinite simulations, but requires any
execution to match the same directed acyclic task graph (DAG). ParDRNG<R>
supports non-deterministic DAGs, but only finite computations. The polylog
overhead of ParDRNG<R> compares favorably with the linear overhead of DotMix
re-seedings. Also contrary to DotMix, the programmer may choose different un-
derlying engines providing different sets of properties. E.g., our approach can be
made secure by using underlying cryptographic generators.

Outline. Definitions for DRNGs, with general interface and required com-
plexity are at Sec. 2. The main reasoning over work-efficient and work-optimal
generic algorithms and its applicability to random number generators are on
Sec. 3. Experiments and performance comparison with DotMix are reported on
Sec. 4. Concluding remarks are on Sec. 5.

All the relevant data structures and algorithms are written in C++11 with
template facilities, aiming reproducibility and pragmatic analysis, although
knowledge on the language is not mandatory.

Generic Deterministic Random Number Generation 429

2 Sequential DRNGs and Generic Interface

A DRNG acts as a deterministic stream that provides new random numbers
based on its current state. The initial state is given by a seed value. Random
streams have a finite orbit, called its period, which corresponds to a sequence of
numbers that will eventually be repeated over successive generations.

Two DRNG classes are distinguished to generate the stream 〈rn〉 from a func-
tion r with finite output set and good statistical properties [3]. Conventional
DRNGs iterate rn = r(rn−1) (e.g., Mersenne Twister [6], Linear Congruential,
Tausworth [7], BBS [8]); while counter-based DRNGs independently compute
rn = r(n) (e.g., Philox [3], DotMix). Thus, counter-based are parallel, but con-
ventional DRNGs appear serial: implementations benefit from the previous value
rn−1 to efficiently generate rn with less overhead than counter-based ones. In
addition, some conventional DRNGs provide efficient jump-ahead over multiple
output values in less time than it takes to repeatedly invoke r [3].

A generic interface for DRNGs is now defined in order to set a common
notation and complexity requirements for our parallel algorithms. It is assumed
that the DRNGs work around integer types, for compatibility.

Function NEXT . Input: a reference to a DRNG. Return: the next random
number produced by the DRNG– sets its internal state. Complexity is Θ(1).

Function SEED. Input: a reference to a DRNG and optionally an unsigned
integer serving as the seed for the generator. Return: generator’s seed after the
call. Each call with the second parameter re-seeds the generator and resets the
internal state. Complexity is Θ(1).

Function CLONE . Input: two DRNG references, source and destination. Re-
turn: nothing. Copies the state from source to destination. Complexity is Θ(1).

Function JUMP. Input: a reference to a DRNG and a natural number n. Re-
turn: nothing. Performs a jump-ahead operation, advancing the generator’s state
as if NEXT was called n times. Different constraints on the DRNGs usually allow
faster implementations. Thus, the cost of jump is modelled as three variations
of a function δ : N → N.

– Linear : δ(n) = O(n). Direct implementation. It requires no extra memory
in order to operate, what may be prohibitive for other versions. Trade-offs
between memory and space are considered by Haramoto et al. [4].

– Log : δ(n) = O(log2 n). Could be implemented, e.g., by exponentiation over
current state, like the BBS generator [8].

– Const : δ(n) = O(1). Could be implemented, e.g., by extending the Log
version through pre-computation of the required powers in its finite period.

Function GENERATE . The kernel of this paper. Input: a (seeded) DRNG of type
R and non-negative memory range of size n. Output: a sequence of n numbers gen-
erated by the DRNG filling the range. Its reference sequential implementation is
template <OutputIterator I, DRNG R>
void GENERATE (I first, I last, R& r) {

while (first != last) *(first ++) = ValueType<I> (NEXT (r)) ;
}

The generic parameter R denotes an arbitrary sequential DRNG. For this reason
the interface is named ParDRNG<R>. Parallel implementations of Generate are
detailed that do not presuppose thread-safeness for the functions provided by R.

430 S. Mor, J.-L. Roch, and N. Maillard

3 Parallel DRNGs and Analysis

Dynamic-multithreading is examined through task-based computations. A task is
an indivisible set of machine instructions. Two tasks can be executed in parallel
unless related by a sequential dependency. Tasks are executed byworkers (threads
in this paper). A worker is inactive when it is idle and active otherwise. A top is a
totally ordered integer time stamp regarding the execution of a parallel program.
Current top is denoted s, previous top s− and next top s+. The top before the
execution is 0 and first top is 1. When a synchronization between worker i and j
occurs at s, it is noted by s(i, j). The platform provides a scheduler, an algorithm
that decides which worker executes which task at each top.

As recurrent notation, a parallel algorithm operates over P workers and input
size n and has work T (n) = W (n)+V (n), whereW (n) is the sequential work and
V (n) is the parallelism overhead. The total work with an unbounded number of
processors is the parallel algorithm’s depth.

The discussion is contextualized over Cilk Plus’ dynamic multithreading plat-
form [9], the most recent incarnation of Cilk [10]. It provides a fork-join abstrac-
tion where user threads are spawned as parallel procedures (keyword cilk_spawn
) and joined in a blocking way (keyword cilk_sync). This implies a processor-
oblivious model of computation.

Cilk Plus assigns continuations (ready tasks) to workers through a random-
ized work stealing scheduler [10]. It is implemented as a collection of worker
threads with a double-ended queue (deque) with two extremes, a front and a
back. Parallel continuations produced by the worker are placed in its deque’s
front. Idle workers with an empty deque keep randomly selecting victim workers
until choosing one with a non-empty deque. In this case, it steals the contin-
uation at the deque’s back. Idle workers with a non-empty deque remove and
execute continuations from its deque’s front. The runtime stops when all workers
are idle. The main invariants are the fact that a stolen task is executed without
entering the deque (prevents deadlocks) and the spawned task is immediately
executed, while the spawner goes to the deque’s front (depth-first execution).
This model is considered in the implementations that follow.

3.1 Work-Efficiency

A parallel algorithm is defined to be work-efficient iff T (n) = W (n) + V (n) =
O(W (n)), i.e., its overhead is not asymptotically larger than the work paral-
lelized. Consider a naive implementation of parallel generate:

1 template <ForwardIterator I, DRNG R>
2 void PARALLEL_GENERATE (I first, I last, R& r0) {
3 DistanceType<I> n = distance (first, last) ;
4 if (n < parallel_grain ()) return GENERATE (first, last, r0) ;
5 halve (n) ;
6 R r1 = r0 ; // CLONE
7 JUMP (r1, n) ;
8 I middle = successor_n (first, n) ;
9 cilk_spawn PARALLEL_GENERATE (first, middle, r0) ;

10 cilk_spawn PARALLEL_GENERATE (middle, last, r1) ;
11 }

Let n′ be the parallel threshold returned by parallel_grain(). Also, let α =
Θ(1) be the work performed by NEXT and β = Θ(1) be the same for the as-
signment of DRNGs (function CLONE, Sec. 2). Thus, regarding DRNG operations,

Generic Deterministic Random Number Generation 431

naive parallel generate has total work T (n) = αn′ when n < n′. Otherwise,
T (n) = β + δ(�n/2) + T (�n/2�) + T (�n/2). In closed form (only for powers of
two, which maintain asymptotic behavior by the Akra-Bazzi Method): T (n) =

αn+β(n−1)+
∑log2(n)−n′−1

i=0 2iδ
(
n/2i+1

)
. Subtracting from both sides W (n) =

αn+β, delivers the overhead: V (n) = β(n−2)+
∑log2(n)−n′−1

i=0 2iδ
(
n/2i+1

)
(1)

determined by δ. Both Const and Log versions of δ are work-efficient because
of its overhead O(n) when applied in Equation (1); while Linear version has
overhead O(n log2 n), and thus is not.

It is possible to reduce the number of jump-ahead operations when the
spawned routines run sequentially. Jumps are only performed to guarantee that
determinism is preserved when the recursive calls operate in parallel. Since par-
allelism only unfolds in the presence of steals, execution can jump exclusively
when a continuation is stolen; otherwise the original DRNG is used. This tactic
effectively moves the determinism overhead to computation’s depth, in a fashion
inspired by the work-first principle of Cilk’s scheduler [10].

Some meta-programming is applied over the work stealing scheduler, still
at application level: an extra parameter is appended to the recursive func-
tion call with the id of the worker that invoked the method originally. Cur-
rent worker’s id (obtained by calling __cilkrts_get_worker_number() through
wrapper (generic) function me ()) is compared to caller to determine whether
actual parallel execution is in course. The code is written using tail recursion
optimization, replacing the final recursive call by a loop. Also, in order to use
the same DRNG in absence of steals, the DRNGs are passed by reference and
cloned only whenever needed. This implies an occasional cancellation of the tail
recursion optimization, but only when a successful steal takes place:

1 template <ForwardIterator I, DRNG R, Natural N>
2 void PARALLEL_GENERATE (I first, I last, R& r0, N worker = me ()) {
3 DistanceType<I> n = distance (first, last) ;
4 while (n > parallel_grain ()) {
5 halve (n) ;
6 I middle = successor_n (first, n) ;
7 R r1 = r0 ; // CLONE
8 cilk_spawn PARALLEL_GENERATE (first, middle, r0, worker) ;
9 if (worker != me ()) { // steal

10 JUMP (r1, n) ;
11 return PARALLEL_GENERATE (middle, last, r1, me ()) ;
12 }
13 first = middle ;
14 }
15 return generate (first, last, r0) ;
16 }

3.2 Analysis

As demonstrated by Blumofe et al. [11], the expected number of total steal at-
tempts for a parallel execution with depth T∞ and scheduled by randomized work
stealing is O(PT∞). Nevertheless, the performance of our method is bounded by
the number of successful steals, i.e., the steal attempts over non-empty deques.
Next we employ a counting technique that estimates the size of an specific subset
of the performed steal attempts (e.g., successful ones) and does not depend on
execution’s depth. This generalizes the bound to non-deterministic DAGs.

First, let each worker 1 ≤ i ≤ P to have associated a local counter ϕi, and
their union to be the global counter :

432 S. Mor, J.-L. Roch, and N. Maillard

Definition 1 (Local Counter). Let S be the poset of all events during a par-
allel execution (identified by the respective tops). A local counter is any function
ϕi : S → R

+ where: (1) If i is inactive at s ∈ S, then ϕi(s) = 0. (2) If i is active
at s ∈ S, then ϕi(s) > ϕi(s−).

Definition 2 (Global Counter). Let Σ be a (possibly non maximal) sub-
set of S containing only synchronization operations. A global counter is any
function ϕ : S → N

P with s �→ (ϕ1(s), · · · , ϕP (s)) where: (1) Function ϕi is
a local counter for worker i. (2) If s(i, j) ∈ Σ, then min(ϕi(s+), ϕj(s+)) ≥
min(ϕi(s−), ϕj(s−)) + 1

Henceforward all successful steals are considered to be the interesting syn-
chronizations, i.e., the ones in Σ. The local counter ϕi(s) is the size of worker
i’s deque at s. The global counter is the total number of successful steals. Limit
M is defined as the maximum size of any deque during computation.

An upper-bound for all local counters also bounds the global counter:

Lemma 1. During a randomized work stealing execution over P workers, let
Σ be subset of steal operations, ϕ be a global counter over Σ. Also let u be a
random variable whose value is the number of occurrences of the steals in Σ and
E(u) be its expected value. If there is a constant M such that ϕi(s) ≤ M for all

1 ≤ i ≤ P active at s, then E(u) ≤ M(P−1)H(P−1), where H(P−1) =
∑P−1

k=1 1/k

is the harmonic number, and π2(P − 1)2/6 is the expected variance.

Proof (Sketch). First, any synchronization operation is named “local step”. Let
φmin(ϕ, s) be a function that returns the value of the minimal non-zero local
counter at top s. A local counter is increasing while i is active. A round of
consecutive local step where each processor has been victim of at least a steal
request in Σ is named a “global step”. Yet a global step is a coupon collector’s
problem, thus the expected number of consecutive successful steals in Σ is (P −
1)H(P−1), with variance π2(P −1)2/6. By Def. 2 the number of such steps is less
than M which states E(u) ≤ M(P − 1)H(P−1).

Fig. 1 shows a snapshot at top s of a global counter from Def. 2 (bounded by
M) and function φmin used in the proof sketch of Lemma 1.

The cost of a jump-ahead operation was modelled to be a function of current
sub-range’s size. Thanks to Lemma1, the next corollary bounds in expectation
the overhead introduced by each successful steal of a given range size:

Corollary 1. Let um be a random variable whose value is the number of occur-
rences of the steals of size m in Σ. Then, E(um) ≤ (P − 1)H(P−1).

Proof (Sketch). Once a steal of size m is suffered, it cannot be suffered again
until processor becomes idle (size is strictly decreasing). Thus, for any size m,
the maximum M is 1. The remaining follows directly from Lemma1.

JUMP’s overhead is bounded by summing the costs of different um. Since half
of the range is put at deque’s front at each spawn, there are log2 n different
steal sizes to appear, minus size n. Therefore, the expected overhead is: V (n) =

(n− 1)β +H(P−1)(P − 1)
∑log2(n)−1

i=0 δ(2i). For a fixed P the expected overhead
is O(n) when using the Linear version of δ. Thus, in expectation, work-efficiency
is always assured.

Generic Deterministic Random Number Generation 433

0

M

id
le

id
le

id
le

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ϕ3(s)

ϕ4(s)

ϕ5(s)

ϕ6(s)

ϕ7(s)

ϕ8(s)

ϕ9(s)

ϕ10(s)

ϕ12(s) ϕ13(s)

ϕ15(s)
φmin(ϕ, s)

ϕ1(s)

Fig. 1. Example of a Global Counter at top s. Here, P = 15 and each active worker i
has an value ϕi(s). In this example, φmin(ϕ, s) = ϕ3(s) = ϕ15(s). Workers 2, 11, an 14
are inactive (idle); they are not accounted in the calculus of φmin(s), and have ϕ(s) = 0.

The proof considers a loose bound of one idle worker per top. Nevertheless, the
local steps are generally performed in parallel, mitigating the P−1 factor. Also, as
P → ∞, the harmonic numberH(P−1) approximates log(P−1)+γ+1/2(P−1)+
o(1), where γ ≈ 0.58 is the Euler-Mascheroni constant. Indeed, asymptotically for
large value of P , Theorem 3 in Tchiboukdjian et al. [12] states that the expected
total number of steals is asymptotically less than 3.65 ·M · (P − 1).

3.3 Work-Optimality

A parallel algorithm is defined to be work-optimal iff V (n) = O(log
O(1)
2 n).

Our technique can be refined in order to obtain work-optimal parallel gener-
ation. The problem may be reduced to eliminate the fixed overhead introduced
by CLONE. In order to track the quantity of random numbers generated until a
given execution point, a counter is used, which is passed (by copy) as parameter
to recursive calls. This eliminates unnecessary DRNGs copies, in exchange for
paying the price of longer jumps. Nevertheless, the jumps are mitigated by par-
allelism and “cheap” when the DRNG provides polylog time jump-ahead. The
algorithm also relies on the polymorphic behavior of function seed described at
Sec. 2 and a seed constructor:

1 template <ForwardIterator I, DRNG R, Natural N0, Natural N1>
2 void PARALLEL_GENERATE (I first, I last, R& r0, N0 worker = me (), N1 hist = 0) {
3 DistanceType<I> n = distance (first, last) ;
4 while (n > parallel_grain ()) {
5 halve (n) ;
6 I middle = successor_n (first, n) ;
7 cilk_spawn PARALLEL_GENERATE (first, middle, r0, worker, hist) ;
8 hist += n ;
9 if (worker != me ()) { // steal

10 R r1 (SEED (r0)) ; // seed constructor
11 JUMP (r1, hist) ;
12 return PARALLEL_GENERATE (middle, last, r1, me (), hist) ;
13 }
14 first = middle ;
15 }
16 return generate_seq (first, last, r0) ;
17 }

Now we are able to cut off the β(n − 2) term from on Equation (1). Even
the more expensive JUMP calls are yet upper-bounded by the most expensive

434 S. Mor, J.-L. Roch, and N. Maillard

possible jump: H(P−1)(P − 1)
∑log2(n)−1

i=0 δ(n− n/2i+1). The cost of call to seed
constructor per successful steal is added, but it is assumed to be a small constant.
Now work-optimality for Const and Log versions can be guaranteed, because its

overhead results in O(log
O(1)
2 n), although work-efficiency for Linear version is

lost, since it results in an overhead of O(n log2 n).

4 Performance Results

This section provides experimental evidence that the asymptotic limits shown
previously do not excessively penalize the execution with its hidden constants
and whether they are competitive against Cilk Plus’ parallel DRNG, DotMix [1].

DotMix relies on pedigrees, thread-unique numerical labels, a feature its au-
thors persuaded Intel to include in its Cilk Plus implementation. A given ref-
erence to a global DotMix generator compresses the pedigree and then “RC6-
mixes” (hashes) the result with a small collision probability. To maintain pedi-
grees on the runtime overcharges it with less than 1% overhead. DotMix show
statistical quality rivaling (with high variance) the one of Mersenne Twister upon
the Dieharder random number test suite.

All experiments were performed using computer “Turing” from the Group
of Parallel and Distributed Computing of the Universidade Federal do Rio
Grande do Sul (Brazil): Linux 3.2.0-40-generic #64-Ubuntu SMP x86 64.
CPUs Intel Xeon X7550 2GHz ×32 (2 thread per core), Caches d32K +
i32K/256K/18432K. Mem. Total: 132,018,988 kB. Intel’s ICPC 2013 com-
piler with O2 optimizations is used because it is currently the only com-
piler that supports Cilk Plus’ pedigrees. Other relevant software are Cilkpub
1.03 (for DotMix) and Boost C++ Libraries 1.55. Sources are available in
http://www.inf.ufrgs.br/~sdkmor/Europar2014/.

Three sequential DRNGs from Boost C++ serve as the underlying engine of
the generic scheme: Mersenne Twister 19937 (MT19937) [6], Linear Congruential
(Rand48), both over 64-bit integers, and Tausworth Generator (Taus88) [7], over
32-bit integers. The only Boost generator that implements a jump operation in
log time is Rand48, the others executing in linear time. A Blum Blum Shub
(BBS) [8] crypto-secure generator over 512-bit integers with logarithmic time
jump was also implemented. In all tests, work-optimal algorithms are used with
Rand48 and BBS and the work-efficient versions with the others.

There are four test algorithms: Generate, Introsort, Maximal Independent
Set (by Luby’s Method), and Fibonacci, designed to evaluate performance in
an increasing level of adversity against our methods. The algorithms run for
a number of workers 1 ≤ P ≤ 32 as well as a sequential version. In order to
provide statistical confidence the pointed plots are the means of 50 executions
for each P and sequential version, lying within a 95.45% confidence interval. The
standard deviation is at worst case under 8% of the mean, a reasonable range for
randomized algorithms. Ts (resp. TP) denotes the sequential time (resp. parallel
time on P processors) with DRNG R (resp. ParDRNG<R>). Yet T1 is the time of
ParDRNG<R> scheduled on one processor.

The comparison criteria is total execution time. Since the algorithms do not
have a common sequential implementation (because of different implementa-
tions of the generator components), speedup and efficiency measurements are not

http://www.inf.ufrgs.br/~sdkmor/Europar2014/

Generic Deterministic Random Number Generation 435

Table 1. Average time (in milliseconds, rounded up) of parallel algorithms’ execution.
Shown sequential time Ts and parallel times T1 and T2.

DRNG Generate Intro Sort MIS Fibonacci

Ts T1 T2 Ts T1 T2 Ts T1 T2 Ts T1 T2

Rand48 559 529 268 5649 5730 2994 39 67 43 17 194 97
Taus88 703 660 1033 6132 6412 3661 38 67 45 30 193 146
MT19937 877 901 611 6451 6577 3680 38 66 43 30 327 199
DotMix 4201 1713 863 6227 9798 5217 51 67 42 129 389 195
BBS 25954 25602 13006 6316 6424 3503 149 182 102 701 910 455

meaningful when compared against each other, since a slow sequential implemen-
tation may wrongly boost the results. This way, we take out the unfairness of com-
paring relative speedups, but are use it to show anomalies in sequential executions.

In fact, some DotMix benchmarks running in sequential showed unusual mea-
surements for Ts and T1, but are as expected for T2 and above. Thus, for clearness
of comparison, these execution times are displayed separately; measurements on
Ts, T1, and T2 are in Tab. 1 and measurements for TP with P > 2, are in
Fig. 2. The unusual behavior of DotMix is contextualized within each bench-
mark. Highlights on the implementations and reviews over the results follow.

Generate. Implementation of PARALLEL_GENERATE. Generates 108 64-bit ran-
dom numbers in parallel. The sequential version for all DRNGs is a for loop call-
ing method NEXT. The parallel version of DotMix is a call to its own fill_buffer
function, implemented with the same tail-recursion optimization of our codes,
with parallel a threshold of 2,048. Target implementation has the same grain
size for comparison fairness. Boost generators and BBS have a minor difference
between Ts and T1, with BBS being much slower because of its extensive use
of integer modulus. DotMix, has a T1 that is 2.45× faster than its Ts. Since
DotMix is projected with a parallel-first principle, fill_buffer is optimized
regarding pedigree initialization (scope bounding), which is mandatory in order
to generate deterministic results, introducing large sequential overhead, what
does not affect ParDRNG<R>. A speedup comparison between T1 and T2 shows
Rand48 (work-optimal), BBS, and DotMix with ≈ 1.97 of speedup while work-
efficient MT19937 has ≈ 1.47 of speedup. Taus88, work-efficient and 32 bits, has
speed-down of ≈ 0.63. DotMix scales until P = 11 processors, being better than
MT19937 for P > 4 processors (it scales up to 6 processors). DotMix is never
better than Rand48. Taus88 does not profit at all from ParDRNG<R>, probably
due to 32 to 64-bit casting. Even BBS is faster for 26 or more processors. Overall
we are competitive with DotMix for fast underlying generators.

Randomized Introsort. STL’s sort, it is a quicksort algorithm that is
switched to heapsort whenever its tree depth goes beyond 2 log2 n. We use a
modified partition procedure to always divide the interval by half for compari-
son fairness between DRNGs. The pivots are generated in an “online” fashion, as
they are needed. To determine how many terms are to be jumped, it is supposed
that each recursive call will advance the generator as much as the size of the sub-
sequence it takes as input. This implies an “over-estimation overhead”, because
for under threshold instances the algorithm is switched to a non-randomized sort
and yet, the DRNGs need to be advanced accordingly to the subsequence. Dot-
Mix, because of its use of pedigrees, is not implemented with this overhead. We

436 S. Mor, J.-L. Roch, and N. Maillard

(a) Generate (b) Introsort

(c) Maximal Independent Set (d) Fibonacci

Fig. 2. Average time (in nanoseconds) of parallel algorithms’ execution. Shown parallel
times from T2 to T32. The respective colored areas around the points are the confidence
interval of 95.45%.

sort 108 integers. All generators have Ts ≈ T1, except DotMix, that has large
overhead T1 ≈ 1.58Ts without optimized fill_buffer. Indeed, until P = 13
DotMix has the worst performance, even when comparing to BBS, whose slow
performance seems to be mitigated by the work-optimal implementation, plac-
ing it at the same level and sometimes better than its work-efficient rivals. For
P > 13 DotMix is at most statistically equal to the work-efficient implementa-
tions. Rand48, being fast and work-optimal, is the incontestable winner. Taus88
has a significant gain, since no type casting is necessary.

Maximal Independent Set. Implementation of Luby’s method, it is divided
in three steps, repeated until the input is marked as empty: (1) select nodes with
probability 1/2i, where i is the node’s degree; (2) unselect lowest degree node of
two neighbor selected nodes; (3) move the remaining selected nodes to the MIS
and removes its neighbors from input. Steps (1) and (2) are performed in parallel
for each node, but step (2) only executes after (1). We use random numbers for the

Generic Deterministic Random Number Generation 437

probabilistic selection in step (1), but the parallel generate function is initialized
by a step (0) to generate random numbers in an “off-line” fashion at each round –
to the highest level of over-estimation. To provide comparison fairness, the same
numbers are selected despite a given generators output. The input is a grid graph
with 106 nodes. The implementation was written to have irregular scalability: at
each step a worker may have assigned a node already marked as unselected, per-
forming no useful work. For small P this behavior eliminates node removal opera-
tions, but the parallel performance degradetes fast for larger values. For the fixed
values we generate and for the selected input graph, performance loss begins be-
tween 6 and 8 workers.When considering both this highly irregular scalability and
the maximun level of over-estimation the non-secure DRNGs have the same statis-
tical performance — with larger confidence interval due to the other non-DRNG
operations the algorithm performs – while BBS penalizes execution because of its
integer modulus operations not being mitigated by online generation.

Fibonacci. A randomized recursive calculus of 30th Fibonacci term that uses
three random numbers (before, after and between the recursive calls) and adds
them to the recursive sum. As in Introsort, the random numbers are also gener-
ated “online”, as needed. We use it to illustrate the weakness of our design (it is
also a weak point for DotMix because of its depth [1]); the distance of jump is not
calculated in constant time, because although we are able to calculate how much
previous calls will advance the main generator, this calculus involves computing
how many nodes the tree will spawn. This is as much computational work com-
pared to the computation being performed. We used the fast doubling Fibonacci
algorithm to mitigate this cost. This decrease of arithmetical work prevents the
randomized algorithm to be work-optimal. For this algorithm, DotMix is statis-
tically paired with the work-efficient implementations, although slightly faster
for P > 5. Taus88 is nearly always better than MT193937, which reinforces its
previous improvements for online algorithms. Rand48 is the best until P = 25,
when it becomes statistically equal to DotMix. For the same range BBS is the
worst, being statistically equal to MT19937 afterwards.

5 Concluding Remarks

Despite the fact that we rely on Cilk Plus to implement our designs, our scheme is
not dependent on it. Its coding is simple to be written in another dynamic multi-
threaded environment and the theoretical analisys does not rely on a fixed execu-
tion’s depth. This implies correctness even on the presence of a non-deterministic
DAG, such as those on adaptive algorithms [13].

We have significant performance gains as described in Sec. 4. We are com-
petitive with DotMix for off-line generation algorithms and generally faster with
online generation and fast underlying generators.With our generic scheme we are
able to choose the desired point between quality and speed of several DRNGs. In
addition, it is possible to be drastically more performatic than DotMix or other
parallel DRNGs with fixed implementations by selecting underlying DRNGs
whose generated sequence is especially effective for a particular application.

An hybrid solution of our approach and DotMix is compelling. However, be-
cause DotMix does not have an equivalent to jump-ahead operation, the linear
version becomes mandatory. In our tests, this approach was more than 10×

438 S. Mor, J.-L. Roch, and N. Maillard

slower than SFMT, a 128bit generator. As shown at Tab. 1, DotMix is faster
when using its own internal generate function. However, maybe there is some
optimization inside DotMix to allow it. We plan to verify it as future work. Also,
we plan to extend the jump on steals technique to numerical algorithms.

In ParDRNG<R> the number of required random numbers must be known a
priori to the computation. This is a strong limitation to our method. There
is, however, a range of algorithms that are suited to it besides direct parallel
generation, such as randomized sorts, randomized graph generation, random-
ized genetic algorithms (crossing over), etc. Additionally, one may overcome this
limitation by guessing large non-overlapping ranges between the different work-
ers, thus enabling algorithms to not know exactly how many numbers they will
need in runtime, given an upper-bound. Combining over-estimation and poly-
log jumps mitigates largely the overheads. This is similar to what is done, for
instance, by SFMT [4] and RNGStreams [14].

References

1. Leiserson, C.E., Schardl, T.B., Sukha, J.: Deterministic parallel random-number
generation for dynamic-multithreading platforms. In: Proc. of PPoPP 2012,
pp. 193–204. ACM, New York (2012)

2. Coddington, P.: Random number generators for parallel computers. The NHSE
Review 2 (1997)

3. Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel random numbers:
As easy as 1, 2, 3. In: Proc. of SC 2011, pp. 16:1–16:12. ACM, New York (2011)

4. Haramoto, H., Matsumoto, M., L’Ecuyer, P.: A fast jump ahead algorithm for
linear recurrences in a polynomial space. In: Golomb, S.W., Parker, M.G., Pott,
A., Winterhof, A. (eds.) SETA 2008. LNCS, vol. 5203, pp. 290–298. Springer,
Heidelberg (2008)

5. Fischer, G.W., Carmon, Z., Ariely, D., Zauberman, G., L’Ecuyer, P.: Good pa-
rameters and implementations for combined multiple recursive random number
generators. Oper. Res. 47(1), 159–164 (1999)

6. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998)

7. L’Ecuyer, P.: Maximally equidistributed combined tausworthe generators. Mathe-
matics of Computation 65(213), 203–213 (1996)

8. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

9. Intel Corporation: Intel cilk plus language specification (2013)
10. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multi-

threaded language. In: Proc. of PLDI 1998, pp. 212–223. ACM, New York (1998)
11. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work

stealing. J. ACM 46(5), 720–748 (1999)
12. Tchiboukdjian, M., Gast, N., Trystram, D., Roch, J.-L., Bernard, J.: A tighter

analysis of work stealing. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC
2010, Part II. LNCS, vol. 6507, pp. 291–302. Springer, Heidelberg (2010)

13. Traoré, D., Roch, J.-L., Maillard, N., Gautier, T., Bernard, J.: Deque-free work-
optimal parallel stl algorithms. In: Luque, E., Margalef, T., Beńıtez, D. (eds.)
Euro-Par 2008. LNCS, vol. 5168, pp. 887–897. Springer, Heidelberg (2008)

14. L’Ecuyer, P., Simard, R.J., Chen, E.J., Kelton, W.D.: An object-oriented random-
number package with many long streams and substreams. Operations Re-
search 50(6), 1073–1075 (2002)

Implementation and Performance Analysis

of SkelGIS for Network Mesh-Based Simulations

Hélène Coullon1,2 and Sébastien Limet1

1 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orléans Cedex 2
{helene.coullon,sebastien.limet}@univ-orleans.fr

2 Géo-Hyd Antea Group, 101 rue Jacques Charles, 45160 Olivet, France

Abstract. The implicit parallelism is an active domain of computer-
science to hide intricate details of parallelization from the end-user. Some
solutions are specific to a precise domain while others are more generic,
however, the purpose is always to find the adapted level of abstraction to
ease the high performance and parallel programming. We present Skel-
GIS, a header-only implicit parallelism C++ library to solve mesh-based
scientific simulations. In this paper is detailed the implementation of
SkelGIS for the specific case of network simulations, where the space
domain can be represented as a directed acyclic graph (DAG). This im-
plementation is based on a modified, optimized and parallelized version
of the Compressed Sparse Row format, which is completely described
in this paper. Finally, experiments on different kinds of clusters and
different sizes of DAGs are evaluated.

1 Introduction

Taking advantage of the full potential of emerging parallel high performance
systems becomes increasingly difficult. In novel processor architectures such as
GPUs and many-cores processors, the memory hierarchy becomes complex, and
CPU clusters are growing toward a capability of millions and billions of cores.
Even if those extremes are not common nowadays, it becomes difficult and time
consuming to write efficient parallel codes, especially for non-computer scientists.
This is why implicit parallelism is one of the most active domain of computer
research. It consists in providing programming tools to improve the level of
productivity and performance of parallel codes, while hiding the intricate details
of new architectures and low level parallel libraries.

Most scientific simulations are based on partial differential equations (PDEs).
Some of those equations can be solved analytically, some of them cannot. This
technique is difficult and most resolutions are proceeded for specific boundary
or initial conditions. Thus, most PDEs are commonly solved using numerical
methods such as finite difference, finite volume or finite element methods. Those
methods produce mesh-based simulations where the time domain is discretized
by a set of iterations and the space domain is discretized by a set of points (finite
difference) or a set of cells to form a mesh (finite volume and finite element).
One or more numerical schemes are obtained from numerical methods. A scheme

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 439–450, 2014.
c© Springer International Publishing Switzerland 2014

440 H. Coullon and S. Limet

represents a computation to apply at each time iteration on the mesh and is of
the form:

{Ut−1(x), Ut−1(y); y ∈ N(x)} �−→ Ut(x), (1)

where x represents an element of the mesh, Ut(x) is the set of quantities to
compute for element x at the time iteration t, N(x) is the neighborhood of x
required to compute Ut(x). In other words, quantities of the element x at a time
iteration t is a function of quantities for this element and its neighborhood at
time iteration t − 1. In computer science, this kind of computation is called a
stencil and is intensively studied.

Some simulations have the particularity to identify two kinds of places in the
space domain, for which the behavior is different and where different numerical
schemes are applied to simulate the real phenomena. For example, in a blood
flow simulation in the human arterial network, the behavior is different in an
artery and at a conjunction node where arteries join. In this case, the domain is
first discretized as a network, before each kind of element is again discretized to
a mesh. A network is represented as a graph and contains two kinds of elements:
nodes and edges. For the same blood flow example, the arteries are represented
by the edges of the graph and the conjunction nodes by the nodes of the graph.
A node could have more or less incoming and outgoing edges (arteries), thus a
network is an irregular structure. Networks are used a lot in different kind of
simulations as, for example, arterial or vein simulations, road or rail traffic sim-
ulations, water-flow or pollutant transfer simulations etc. Thus, it is very impor-
tant to offer implicit parallelism solutions to write parallel network-simulations.
However, existing implicit parallelism solutions, to solve mesh-based PDEs, do
not propose an easy way to write network-simulations. SkelGIS is a header-only
C++ library to write parallel mesh-based simulations on distributed memory
architectures, using MPI. The parallelization of codes is totally hidden from
the user through four concepts: distributed data structures (DDS), data map-
pings, appliers and interfaces. Those concepts have already been implemented
for Cartesian two-dimensional regular mesh [5,6]. In this paper is presented the
implementation of the implicit parallelism library SkelGIS, for the specific case of
network simulations, and more precisely for networks which can be represented
by directed acyclic graphs (DAGs). The implementation of SkelGIS for network
simulations, and its efficiency, are based on an adaptation, a re-indexation and
a parallelization of the compressed sparse row (CSR) format, which is described
in this paper. Moreover, performances of the solution have been evaluated until
8000 cores on a blood flow simulation.

The rest of this paper is organized as follows. Section 2 explains the CSR
format for sparse matrices and graphs. Then, Section 3 describes the adaptation
of the CSR format for networks. Section 4 details the implementation of the
whole SkelGIS solution for network simulations. Performance of SkelGIS is eval-
uated in Section 5 and related work are discussed in Section 6. Finally, Section 7
concludes this work.

Efficiency of SkelGIS 441

2 The Compressed Sparse Row Format

The work presented in this paper is based on an adaptation of the Compressed
Sparse Row (CSR) format [3] for network simulations. Two different views of
the CSR format are presented in this section, first the sparse matrix view and
then the graph view.

The 3-array variation of the CSR format handles the storage of sparse matrices
with three arrays. The first array, named values, contains the non-zero values
of the matrix, stored line by line. The second array is named columns. The
element i of the array columns contains the column index of the associated ith

element of values. Finally, the third array is named rowIndex. The element i
of the array rowIndex contains the index, in the array values, of the first non-
zero element of the ith row of the matrix. A dummy entry, equal to zero, is
added at the beginning of the rowIndex array. This way, the row i contains
rowIndex[i+ 1]− rowIndex[i] non-zero elements. To access a non-zero element
with its row and column indexes (i, j) it is needed to find j between elements
columns[rowIndex[i]] and columns[rowIndex[i + 1]− 1]. The index where j is
found in columns is the index of the searched non-zero value in values. CSR, as
other formats, only stores non-zero values of a sparse matrix. Thus, the CSR has
a light memory footprint. However, it suffers from a lack of efficiency to access
a non-zero value with its row and column index (i, j). Nevertheless, CSR is very
efficient to represent connectivity in a graph as shown below.

CSR can be used to store undirected graphs. An undirected graph is denoted
by G = (V,E) where V is a finite set of vertices or nodes and E ⊆ V × V is the
set of edges. The matrix Sp(G) associated to a graph G represents the adjacency
matrix of the graph G (e.g. Figure 1(a)). In the case of undirected graphs, Sp(G)
is symmetric. In a graph G = (V,E), vi and vj ∈ V are said neighbor vertices
if (vi, vj) ∈ E. In other words, two vertices are neighbor vertices if a non-zero
value is placed at (vi, vj) and (vj , vi) in Sp(G). ∀v ∈ V,N(v) denotes the set of
neighbors of the vertex v. The degree of a vertex v ∈ V , denoted by deg(v), is the
number of incident edges to v, i.e. deg(v) = |N(v)|. In the row v of the matrix
Sp(G), N(v) represents column indexes where a non-zero value is present. In an
undirected graph G = (V,E) where V = {v0, ..., vn−1}, the cumulative degree of

a vertex vi ∈ V is denoted cdeg(vi) and defined by cdeg(vi) =
∑i

j=0 deg(vj) =∑i
j=0 |N(vj)|. In the matrix Sp(G), cdeg(vi) represents the number of non-zero

elements in the row vi added to the number of non-zero elements in previous
rows. Thus, it is possible to represent G with two arrays. The first one of size
n+1 = |V |+1, called cdeg, is defined by cdeg[i+1] = cdeg(vi), ∀i ∈ [0, n[, where

cdeg[0] = cdeg(v−1)
def
= 0. The second array, denoted N (for neighborhood), is of

size cdeg[n] = cdeg(vn−1) and ∀vi ∈ V,N(vi) = {vN [j]|j ∈ [cdeg[i], cdeg[i+ 1][}.
This two-arrays representation corresponds to the CSR format where arrays cdeg
and N of G are respectively equal to the arrays rowIndex and columns of Sp(G).
Figure 1(a) illustrates a simple undirected graph. The node 0 of this graph has
two neighbors, 1 and 2, as a result, the second cumulative degree value is 2. Node
1 has three neighbors therefore cdeg[2] = 2 + 3 = 5. Iterating this process on

442 H. Coullon and S. Limet

each node of the graph leads to cdeg = [0, 2, 5, 6, 7, 11, 12, 13, 14] for this graph.
Neighbors of node 0 are 1 and 2 and those of node 1 are 0, 3 and 4 etc. Finally,
N = [1, 2, 0, 3, 4, 0, 1, 1, 5, 6, 7, 4, 4, 4]. It can be noticed that the neighborhood of
node 4, for example, can be easily accessed since cdeg[4] = 7 and cdeg[5]−1 = 10
give the first and the last index of N where are stored indexes of the neighbors
of node 4, as a result nodes 1, 5, 6 and 7 are the neighbors of node 4.

0

1 2

3 4

5 6 7

1

1

10 0 0 0 0 01
1 1
1

1
1 1 1

1
1
1

0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

(a) An undirected graph G and its associated
sparse adjacency matrix Sp(G).

0

1 2

3 4

5 6 7

0 1

2 3

4 5 6

(b) The equivalent di-
rected graph G’.

Fig. 1. Examples of graphs

Unlike in the sparse matrix case, where elements are accessed by (row, column)
indexes, in the graph case elements are accessed by row index only and then the
neighborhood of the node can be accessed in O(1). Supposing that the data asso-
ciated to each nodes are stored in a table X such that |X | = |V |, then accessing
neighbor values of a node vi simply consist in accessing X from index N [cdeg[i]]
to N [cdeg[i+ 1]− 1].

3 A Distributed Data Structure for DAGs

This paper deals with the implementation of SkelGIS for the specific case of
networks which can be represented with directed acyclic graphs (DAGs). This
section shows how CSR can be used to implement DAGs, how it can be opti-
mized to fit scientific simulation needs, and how it can be efficiently parallelized.
A distributed version of the CSR format has already been proposed by Edmonds
et Al [8]. However this distributed version is not specifically improved and opti-
mized for scientific mesh-based simulations.

A directed graph G = (V,E) is a graph where each edge e = (v1, v2) ∈ E is
directed from v1 to v2 and where v1 and v2 are respectively called the source
and destination nodes of e. A directed acyclic graph (DAG) is a directed graph
G = (V,E) such that for all node v ∈ V , there is no path, following succes-
sive directed edges, from v to itself. In scientific simulations on DAGs, a node
could need incoming edges and nodes, and outgoing edges and nodes, to be com-
puted. An edge, on the other hand, needs its source and destination nodes to

Efficiency of SkelGIS 443

be computed. First, in a DAG G = (V,E), for a node v ∈ V and an edge e ∈ E,
S(e) denotes the source node of e and D(e) denotes the destination node of e.
Two arrays represent this information, S and D of size m where S[i] = S(ei)
and D[i] = D(ei) for all ei ∈ E. N+

V (v) denotes the set of output nodes of v such
that N+

V (v) = {v′|(v, v′) ∈ E}. N+
E (v) denotes the set of output edges of v, thus

N+
E (v) = {e ∈ E|S(e) = v}. Symmetrically N−

V (v) and N−
E (v) denotes the sets

of input nodes and edges of a vertex v. Finally, a root node v of a DAG G verifies
|N−

E (v)| = 0, and a leaf node verifies |N+
E (v)| = 0. Cumulative degrees are the

same for edges and nodes because the number of incoming edges and nodes are
the same, and the number of outgoing edges and nodes are equal too. Then, ∀vj ∈
V , |N+

E (vj)| = |N+
V (vj)| and |N−

E (vj)| = |N−
V (vj)|. In a DAG G = (V,E), where

V = {v0, ..., vn−1}), for a vertex vi ∈ V : cdeg+(vi) =
∑i

j=0 |N
+
E (vj)| denotes the

output cumulative degrees of a node vi and cdeg−(vi) =
∑i

j=0 |N
−
E (vj)| denotes

the input cumulative degrees of a node vi. cdeg
+ and cdeg− denote arrays of size

n + 1 such that cdeg+[i + 1] = cdeg+(vi) and cdeg−[i + 1] = cdeg−(vi), where
cdeg+[0] = cdeg−[0] = 0. Finally, as in Section 2, it is possible to define arrays
N+

V , N+
E , N−

V , and N−
E of size cdeg+[n] and cdeg−[n].

Figure 1(b) represents a directed graph which has the same structure as the
graph of Figure 1(a). Node 0 has no input neighbor but has two output neighbors,
as a result the second value of cdeg+ is 2 and the second value of cdeg− is 0 etc.
Associated neighbor nodes are stored inN+

V andN−
V , the corresponding edges are

stored in N+
E and N−

E . The whole representation of this DAG is given by the fol-
lowing eight arrays : cdeg+ = [0, 2, 4, 4, 4, 7, 7, 7, 7], cdeg− = [0, 0, 1, 2, 3, 4, 5, 6, 7],
N+

E = [0, 1, 2, 3, 4, 5, 6], N−
E = [0, 1, 2, 3, 4, 5, 6], N+

V = [1, 2, 3, 4, 5, 6, 7], N−
V =

[0, 0, 1, 1, 4, 4, 4], S = [0, 0, 1, 1, 4, 4, 4] and D = [1, 2, 3, 4, 5, 6, 7].
Some modifications of the DAG data structure are needed to parallelize it

on distributed memory architectures. Indeed, in this case, the DAG has to be
partitioned into sub-graphs (of equivalent sizes) which are distributed among
processors. Here is not discussed the way the graph is partitioned but only how
to optimize local representation of each sub-graph to keep benefits of the data
structure. Each processor receives a part of the graph where indexes are global,
which means that the initial local indexing may be non-continuous. Therefore a
re-indexing is needed to represent the local sub-graph. Figure 2(a) illustrates the
extraction of the sub-graph managed by the processor 1 from a DAG G = (V,G).
This sub-graph G1 = (V1, E1) has eight nodes, |V1| = 8, and seven edges, |E1| =
7. Connections with the rest of the DAG G are drawn with dashed lines. These
dashed elements are denoted as halo elements and represent needed information
from other processors to compute the stencil.

The re-indexation of local edges is very simple, it goes from up to bottom and
from left to right at each level (Figure 2(b)). The re-indexation of local nodes, on
the other hand, sorts nodes in several classes to optimize the use of cache lines
and to minimize the number of conditions in the SkelGIS code. First, roots and
leaves are distinguished from other nodes. Actually, in most simulations, roots
and leaves are computed differently to manage the physical border of the domain.
Grouping those nodes together in memory allows a better use of cache lines.

444 H. Coullon and S. Limet

10

12

13

13

17

16

20 21

25 26 27 28

16

14 15

18

17

19

18 19 20

22

22

23

23

24

24

25 26 27 28 29

(a) Sub-graph managed by
proc. 1

1

0

2

3

7

1

65 66

60 67 68 64

5

5 6

2

0

6

7 3 65

8

66 60

4

67 68 64

9

4 9 8

(b) Re-indexing of the sub-
graph.

Fig. 2. Sub-graph managed by proc. 1 (blue) and its connections with those of proc. 0
(red) and 2 (green).

Moreover, it makes possible to move through those elements avoiding conditions
in the code (to test if a node is a root or a leaf). Secondly, remaining local
nodes are partitioned into two sets: those needing communications to get halo
elements and the others. This makes possible an efficient overlap of computations
with communications [9], using non-blocking routines of MPI. As for roots and
leaves, those two classes improve cache use and avoid conditions in the code.
Thus, performances of final programs will be improved by the re-indexation.

Nodes to
compute

without comm

Nodes to
compute with

comm

RootsLeaves Nodes to get from
other processors

Local Nodes

Edges to get from
other processors

Local Edges

Fig. 3. Re-indexation for edges and nodes

Figure 3 illustrates the different classes used for re-indexation and an ex-
ample is shown Figure 2. The eight arrays of the local data structure of the
processor 1 are: cdeg+ = [0, 2, 5, 7, 7, 7, 7, 7, 7], cdeg− = [0, 1, 2, 2, 3, 4, 5, 6, 7],
N+

E = [2, 3, 4, 5, 6, 0, 1], N−
E = [0, 3, 1, 5, 6, 4, 2], N+

V = [7, 1, 6, 4, 5, 0, 3], N−
V =

[2, 0, 2, 1, 1, 1, 0], S = [2, 2, 0, 0, 1, 1, 1] and D = [0, 3, 7, 1, 6, 4, 5]. This data struc-
ture must be completed with information on connections with halo elements of
the rest of the DAG. To manage these incoming and outgoing information, the
halo elements are added to the local DAG structure with indexes starting from
the greater local index of local nodes and edges. This way, the cache line opti-
mization obtained by the re-indexation is kept. To insert external nodes in the

Efficiency of SkelGIS 445

local data structure, cumulative degrees arrays cdeg+ and cdeg− and associated
tables N+

E , N−
E , N+

V , N−
V must be updated. In Figure 2(b), one can note that

local nodes 2 and 3 receive one input edge and node from processor 0. Thus,
cdeg− is modified at indexes 3 and 4, adding one to each. As cdeg− represents
cumulative degrees, nodes 3 to |V1| and 4 to |V1| have to be updated. Modifi-
cations on N−

V consist in adding new indexes to store halo elements to receive
from other processors. Thus, indexes 8 and 9 are inserted at the right place. The
parallel data structure for processor 1 is then cdeg+ = [0, 2, 5, 7, 9, 11, 16, 16, 16],
cdeg− = [0, 1, 2, 3, 5, 6, 7, 8, 9], N+

E = [0, 2, 3, 4, 5, 6, 0, 1, 9, 10, 11, 12, 13, 14, 15],
N−

E = [0, 3, 7, 1, 8, 5, 6, 4, 2], N+
V = [7, 1, 6, 4, 5, 0, 3, 10, 11, 12, 13, 13, 14, 15] and

N−
V = [2, 0, 8, 2, 9, 1, 1, 1, 0]. As a consequence, neighborhood information can

still be obtained in O(1), even if information comes from other processors, and
the parsing of local elements is cache-optimized. However, it is not possible with
resulting arrays to determine communication scheme to proceed MPI exchanges.
For this reason six additional tables are added in the parallel data structure to
manage interprocess communications. These arrays rely on the cumulative de-
grees applied to processor ranks. Tables cdegtor and cdegtos are the cumulative
degrees of nodes and edges to send to and to receive from other processors,
where |cdegtor| = |cdegtos| = p + 1. And arrays N tor

E , N tos
E , N tor

V and N tos
V are

the associated sets of nodes and edges indexes to send and receive.
The data structure presented in this section is independent from the graph

partitioning method used to distribute the DAG. It is optimized to efficiently
parse each sub-graphs and to allow communications/computations overlaps.
However, the key point to obtain good performances of irregular structures lies
in a good partition of the structure. This problem is known to be NP-complete,
as a consequence, heuristics are used to approximate the solution. The network
partitioning problem is not presented in this paper, a sibling-edges heuristic has
been used for experiments and produces sensible results. Two other solutions,
using the hypergraph partitioning model, with Mondriaan [13], are under study.
Finally, ParMetis [12] and PTScotch [4] are known to obtain good partitioning
for unstructured meshes, and could probably be used for a network partitioning.

4 SkelGIS Implementation for Network Simulations

SkelGIS is an implicit parallelism library for distributed memory architectures,
which proposes a sequential programming view to the user while producing
SPMD parallel programs. Figure 4 illustrates the user- and the real-view of
a SkelGIS program. SkelGIS hides parallelization of codes through four concepts
which are illustrated in Figure 4: DDS which represents a distributed data struc-
ture. The DDS is responsible for storing the domain and its connectivity and
partitioning it automatically. In SkelGIS multiple DDSs are available to rep-
resent different kinds of domains and meshes. DPMap which maps data on the
DDS. Each instantiation of such an object represents data used in the simulation
and its mapping on the DDS. AP which is an applier. It is used to apply a se-
quential user code, called an operation, OP, to a set of DPMaps. An applier also

446 H. Coullon and S. Limet

transparently proceeds MPI communications between processors. I represents
the programming interface of SkelGIS. I is used to navigate through DPMaps,
read and update them. This interface is based on iterators and specific functions
to access the neighborhood of elements (stencil). Applied to network simulations,

Fig. 4. SkelGIS user’s view and its actual parallel execution

the DDS concept of SkelGIS is implemented using the distributed data struc-
ture presented in the previous section. Each of the three remaining concepts of
SkelGIS, applied to networks, are implemented using this DDS, which makes
possible and efficient the whole solution. Two DPMaps are needed for network
simulations, one to map data on nodes and the other one to map data on edges. A
DPMap can be compared to the array values of the CSR format. Using the DDS
presented in the previous section, a DPMap is a light object which maps a dis-
tributed one-dimensional array to the local re-indexation of nodes and edges on
each processor. This one dimensional array stores data associated to the DDS,
and is able to store, for each edge or node, another one-dimensional array to
implement complicated schemes. In this case, the order of the scheme gives in-
formation on needed communications. To be efficient with those different cases,
partial template specializations [1] are used in SkelGIS. An applier is responsible
for hiding communications from the user. As a result, appliers for networks use
communication arrays cdegtor, cdegtos, N tor

E , N tos
E , N tor

V and N tos
V of the DDS.

Three kinds of iterators are available to move through DPMaps applied to a
network in SkelGIS. The first kind moves through all local nodes or edges of
the DDS. The second kind moves through local nodes and edges which do not
need communications to be computed, or on the contrary through local nodes
and edges which need communications to be computed. This kind of iterators
makes possible an overlap of computations with communications. Finally, the
last kind of iterators moves through roots and leaves of the DAG, to manage the
physical border of the domain. All moves of iterators are unordered as there are
no dependencies in the numerical scheme (1), but all elements are guaranteed
to be parsed by the iterator. All iterators use the re-indexation described in the
previous section, to move contiguously in memory. Finally, functions to access
neighborhood values directly use arrays cdeg+, cdeg−, N+

E , N−
E , N+

V and N−
V .

As a result, neighborhood values can be obtained in O(1).

Efficiency of SkelGIS 447

5 Experiments

SkelGIS performances have been evaluated using three different clusters to com-
pute an arterial blood flow simulation [14]. This simulation is exclusively com-
posed of double precision operations. Configurations of the three clusters are
detailed in Table 1. The first one, at the university of Paris 6, is a well-equipped
mid-size cluster. The second one, the TGCC-Curie in France, is the 20th cluster
in the top500 list of November 2013. Finally, the third one, Juqueen in Ger-
many, is the 8th cluster of the same list. Each experiment were evaluated four
times, and the standard deviation of observed execution times is less than 1%.
No specific optimization are proposed in SkelGIS for vectorization, however the
simulation was compiled with the -O3 compilation flag.

Table 1. Hardware specifications of clusters

Cluster System (clock) Cores/n Mem./n Comp -O3 Net

Paris 6 2×Intel Xeon (3GHz) 12 24 GB OpenMPI InfiniBand
TGCC 2×SandyBridge (2.7GHz) 16 64 GB Bullxmpi InfiniBand
Juqueen IBM PowerPC (1.6GHz) 16 16 GB mpich2 5D Torus 40 GBps

On the Paris 6 cluster has been analyzed performances of the overlap of com-
putations with communications. A DAG with 15k nodes and edges, with an
average degree of nodes equal to 2, and with a unique root, has been used.
Results are shown in Figure 5(a) and clearly state that this optimization is con-
vincing, as expected. For all other experiments, the overlap optimization is used.
On the TGCC, the same 15k nodes/edges DAG has been used (Figure 5(b)) and
the speedup scale linearly until 256 cores, which is inferior than on the Paris 6
cluster. However, the use of these clusters is very different. Indeed, on the Paris
6 cluster we were the unique user and we were sure that no other processes were
running on the attributed machines. On the TGCC, which is massively used,
machines are attributed at their maximum and it is almost sure that other pro-
cesses were running on some machines. On the Juqueen cluster, three different
sizes of DAGs have been used to evaluate performances: 50k, 100k and 500k
nodes/edges DAGs. The three of them were similarly shaped with an average
degree of nodes equal to 2, and with a unique root. Results are shown on Fig-
ures 5(c) and 5(d). Those computations were very long (8 hours for the 500k
with 1024 cores), and hours of use on clusters are limited. Then for 50k and 100k
DAGs speedups are relative to 256 cores, and for the 500k DAG, the speedup
is relative to 1024 cores. The speedups scale linearly to 4098 cores for 50k and
100k DAGs, and to 8192 cores for the 500k DAG. One can note a knee in the
scaling for the 50k DAG at 2048 cores. This is probably due to a weakness in
the graph partitioning solution.

448 H. Coullon and S. Limet

Cores

S
pe

ed
up

without overlap
with overlap
ideal

16 64 128 256 384

16
64

12
8

25
6

38
4

(a) Speedup obtained with comp/comm
overlap on a 15k edges DAG on the
LMM cluster.

Cores

S
pe

ed
up

15k
ideal

8 64 256 512 1024

8
25

6
51

2
10

24

(b) Speedup on a 15k edges DAG on
the TGCC-Curie cluster.

Cores

S
pe

ed
up

50k
100k
ideal

256 1024 2048 4098

25
6

10
24

20
48

40
98

(c) Speedups on both 50k and 100k
edges DAGs on the Juqueen cluster.

Cores

S
pe

ed
up

500k
ideal

1024 2048 4098 8192

20
48

40
98

81
92

(d) Speedup on a 500k edges DAG on
the Juqueen cluster.

Fig. 5. Results

6 Related Work

There are several well established implicit parallelism libraries to solve mesh-
based PDEs. Some of them are more specific and some others are more generic,
however, the purpose is always to find the good level of abstraction to obtain the
easiest solution for the end-user. PETSc [2] proposes specific solutions for each
kind of mesh possible (matrices, sparse matrices, unstructured meshes etc.). It
is based on specific functions to solve PDEs such as, for example, functions to
interpolate or execute a jacobian. PETSc is close to a standard function-based
library but is specifically made to solve PDEs. The framework OP2 [11], to solve
unstructured mesh-based PDEs, is closer to SkelGIS in the chosen abstraction
level. It relies on four concepts, first to define unstructured meshes, then to ap-
ply data and make computations on it: sets, data on sets, connectivity between
the sets and operations over sets. However, it differs from SkelGIS on several
points. First, using OP2, the user can define the needed mesh and its connectiv-
ity, through the definition of different sets. This point offers a great flexibility,
however it is adapted to unstructured meshes, and it is not possible to define
a network with it. In addition to this, the OP2 operation concept is different
from the SkelGIS one. Actually, with OP2, a higher level of abstraction is pro-
posed to the user through operations, where loops do not have to be explicitly
written. Thus, the programming style of OP2 is closer to an algorithmic skele-
ton library [10]. In a SkelGIS operation, the user is in charge of loops, as in a

Efficiency of SkelGIS 449

sequential program, through Interfaces. This last concept does not exist in the
OP2 framework. Finally, SkelGIS is a library exclusively made of C++ header
files (it is called a “h-only” library), while OP2 first generates code from code,
before a final compilation. Liszt [7] is a Domain Specific Language (DSL) which
stays close to a standard C programming style, where new language features
and operators have to be used. Liszt, as OP2, is a solution to solve unstructured
mesh-based PDEs, and the abstraction level is similar. The main difference is
the way sets and their connectivity are defined. In OP2 the user is free to declare
and connect as much sets as he wants. Using Liszt, on the other hand, sets are
groups of mesh-elements pre-defined by the DSL: vertices, edges, faces and cells.
Liszt is closer to SkelGIS than OP2 for its abstraction level. Actually, the Liszt
code is close to a sequential program, as in SkelGIS. Loops are managed by the
user through the concept of for-comprehension, which expresses computation
on all mesh-elements in a set. Thus, for-comprehension could be compared to
iterators of SkelGIS. However, it is not clear how the specific case of physical
border elements can be parsed in Liszt, while using SkelGIS, specific iterators
are available. Both OP2 and Liszt propose implicit parallelism solutions to solve
unstructured mesh-based PDEs. The current version of SkelGIS can deal with
two-dimensional regular meshes [5,6] but do not propose solution for unstruc-
tured meshes. This point is under study, and a specific new kind of DDS and its
associated DPMaps, appliers and interfaces will be proposed. Note that SkelGIS,
on the other hand, proposes a solution adapted to network simulations where
nodes and edges do not form the cells of a mesh but a network. As far as we
know, neither Liszt nor OP2 can manage such simulations. The same lack can
be noticed for PETSc, however, using multiple sparse matrices, it seems possible
but very complicated to work on networks.

7 Conclusion

SkelGIS is an implicit parallelism header-only library to solve mesh-based PDEs
on distributed memory architectures. In this paper has been presented the imple-
mentation of SkelGIS for the specific case of networks which can be represented
by DAGs. This implementation relies on an adaptation, a re-indexation and a
parallelization of the CSR format for DAGs. The implementation of the asso-
ciated DPMaps, applier, iterators and neighborhood is based on this new DDS,
and its optimizations for cache lines and overlap of computations with commu-
nications. Experiments show that this solution scale on different architectures
and different sizes of DAGs. Some improvement are under study to obtain a bet-
ter graph partitioning algorithm and to use vectorization optimizations. Finally,
SkelGIS is able to deal with two-dimensional meshes and network simulations,
the next two steps are to propose implementations for unstructured meshes
and for adaptive meshes. This last work will require mutable distributed data
structures, not managed in the format presented in this paper.

450 H. Coullon and S. Limet

References

1. Alexandrescu, A.: Modern C++ design: Generic programming and design patterns
applied. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

2. Balay, S., Gropp, W.D., Curfman McInnes, L., Smith, B.F.: Efficient management
of parallelism in object oriented numerical software libraries. In: Modern Software
Tools in Scientific Computing, pp. 163–202. Birkhäuser Press (1997)

3. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM (1994)

4. Chevalier, C., Pellegrini, F.: PT-Scotch: A tool for efficient parallel graph ordering.
Parallel Computing 34(68), 318–331 (2008)

5. Coullon, H., Le, M.-H., Limet, S.: Parallelization of shallow-water equations with
the algorithmic skeleton library SkelGIS. In: ICCS. Procedia Computer Science,
vol. 18, pp. 591–600. Elsevier (2013)

6. Coullon, H., Limet, S.: Algorithmic skeleton library for scientific simulations: Skel-
GIS. In: HPCS, pp. 429–436. IEEE (2013)

7. DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barrientos, M., Elsen,
E., Ham, F., Aiken, A., Duraisamy, K., Darve, E., Alonso, J., Hanrahan, P.: Liszt:
A domain specific language for building portable mesh-based PDE solvers. In: Proc.
of 2011 Intern. Conf. for High Performance Computing, Networking, Storage and
Analysis, SC 2011, pp. 1–12. ACM (2011)

8. Nick Edmonds and Andrew Lumsdaine. Distributed compressed sparse row (2010)
9. Fishgold, L., Danalis, A., Pollock, L., Swany, M.: An automated approach to im-

prove communication-computation overlap in clusters. In: Proceedings of the 20th
International Conference on Parallel and Distributed Processing, IPDPS 2006, pp.
290–290. IEEE Computer Society, Washington, DC (2006)

10. Javed, N., Loulergue, F.: Parallel programming and performance predictability
with Orléans Skeleton Library. In: HPCS, pp. 257–263. IEEE (2011)

11. Mudalige, G.R., Giles, M.B., Reguly, I., Bertolli, C., Kelly, P.H.J.: OP2: An active
library framework for solving unstructured mesh-based applications on multi-core
and many-core architectures. In: Innovative Parallel Computing (InPar), pp. 1–12.
IEEE (2012)

12. Schloegel, K., Karypis, G., Kumar, V.: Parallel static and dynamic multi-constraint
graph partitioning. Concurrency and Computation: Practice and Experience 14(3),
219–240 (2002)

13. Vastenhouw, B., Bisseling, R.H.: A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM Rev. 47(1), 67–95 (2005)

14. Wang, X., Fullana, J.-M., Lagrée, P.-Y.: Verification and comparison of four nu-
merical schemes for a 1D viscoelastic blood flow model. Technical report, Institut
Jean Le Rond d’Alembert - IJLRA (2012)

GoFFish: A Sub-graph Centric Framework
for Large-Scale Graph Analytics

Yogesh Simmhan1, Alok Kumbhare2, Charith Wickramaarachchi2, Soonil Nagarkar2,
Santosh Ravi2, Cauligi Raghavendra2, and Viktor Prasanna2

1 Indian Institute of Science, Bangalore, India
2 University of Southern California, Los Angeles, USA

simmhan@serc.iisc.in,
{kumbhare,cwickram,snagarka,sathyavi,raghu,prasanna}@usc.edu

Abstract. Vertex centric models for large scale graph processing are gaining
traction due to their simple distributed programming abstraction. However, pure
vertex centric algorithms under-perform due to large communication overheads
and slow iterative convergence. We introduce GoFFish a scalable sub-graph cen-
tric framework co-designed with a distributed persistent graph storage for large
scale graph analytics on commodity clusters, offering the added natural flexibil-
ity of shared memory sub-graph computation. We map Connected Components,
SSSP and PageRank algorithms to this model and empirically analyze them for
several real world graphs, demonstrating orders of magnitude improvements, in
some cases, compared to Apache Giraph’s vertex centric framework.

1 Introduction

One defining characteristic of complexity in “Big Data” is the intrinsic interconnect-
edness, endemic to novel applications in both the Internet of Things and Social Net-
works. Such graph datasets offer unique challenges to scalable analysis, even as they are
becoming pervasive. There has been significant work on parallel algorithms and frame-
works for large graph applications on HPC clusters [1]1, massively multi-threaded ar-
chitectures [2], and GPUs [3]. Our focus here, however, is on leveraging commodity
hardware for scaling graph analytics. Such distributed infrastructure, including Clouds,
have democratized resource access, as evidenced by popular programming frameworks
like MapReduce. While MapReduce’s tuple-based approach is ill-suited for many graph
applications [4], recent vertex-centric programming abstractions [5,6], like Google’s
Pregel and its open-source version, Apache Giraph [7], marry the ease of specifying a
uniform logic for each vertex with a Bulk Synchronous Parallel (BSP) execution model
to scale2. Independent vertex executions in a distributed environment are interleaved
with synchronized message exchanges across them to form iterative supersteps.

However, there are short-comings to this approach. (1) Defining an individual ver-
tex’s logic forces costly messaging even within vertices in one partition. (2) Porting
shared memory graph algorithms to efficient vertex centric ones can be non-trivial. (3)

1 The Graph 500 List, http://www.graph500.org
2 Scaling Apache Giraph to a Trillion Edges, Facebook Engineering,
http://on.fb.me/1czMarU

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 451–462, 2014.
c© Springer International Publishing Switzerland 2014

http://www.graph500.org
http://on.fb.me/1czMarU

452 Y. Simmhan et al.

The programming abstraction is decoupled from the data layout on disk, causing I/O
penalties at initialization and runtime. A recent work [6] identified the opportunity of
leveraging shared memory algorithms within a partition, but relaxed the programming
model to operate on a whole partition, without guarantees of sub-graph connectivity
within a partition or implicit use of concurrency across sub-graphs.

In this paper, (1) we propose a sub-graph centric programming abstraction, Go-
pher, for performing distributed graph analytics. This balances the flexibility of reusing
shared-memory graph algorithms over connected sub-graphs while leveraging sub-
graph concurrency within a machine, and distributed scaling using BSP. (2) We cou-
ple this abstraction with an efficient distributed storage, GoFS. GoFS stores partitioned
graphs across distributed hosts while coalescing connected sub-graphs within partitions,
to optimize sub-graph centric access patterns. Gopher and GoFS are co-designed as part
of the GoFFish graph analytics framework, and are empirically shown here to scale for
common graph algorithms on real world graphs, in comparison with Apache Giraph.

2 Background and Related Work

There is a large body of work on parallel graph processing [8] for HPC clusters [1],
massively multi-threaded architectures [2], and GPGPUs [3], often tuned for specific
algorithms and architectures [9]. For e.g., the STAPL Parallel Graph Library (SGL) [10]
offers diverse graph data abstractions, and can express level-synchronous vertex-centric
BSP and coarse-grained algorithms over sub-graphs, but not necessarily a sub-graph
centric BSP pattern as we propose. SGL uses STAPL for parallel execution using
OpenMP and MPI, which scales on HPC hardware but not on commodity clusters with
punitive network latencies. Frameworks for commodity hardware trade performance in
favor of scalability and accessibility – ease of use, resource access, and programming.

The popularity of MapReduce for large scale data analysis has extended to graph
data as well, with research techniques to scale it to peta-byte graphs for some algo-
rithms [11]. But the tuple-based approach of MapReduce makes it unnatural for graph
algorithms, often requiring new programming constructs [12], platform tuning [4], and
repeated reads/writes of the entire graph to disk. Google’s recent Pregel [5] model uses
iterative supersteps of vertex centric logic executed in a BSP model [13]. Here, users
implement a Computemethod for a single vertex, with access to its value(s) and outgo-
ing edge list. Compute is executed concurrently for each vertex and can emit messages
to neighboring (or discovered) vertices. Generated messages are delivered in bulk and
available to the target vertices only after all Computes complete, forming one barriered
superstep. Iterative level-synchronized supersteps interleave computation with message
passing. The vertices can VoteToHalt in their Compute method at any superstep;
any vertex that has voted to halt is not invoked in the next superstep unless it has input
messages. The application terminates when all vertices vote to halt and there are no
new input messages available. Pseudocode to find the maximal vertex using this model
is shown in Alg. 1.. Apache Giraph [7] is an open source implementation of Google’s
Pregel, and alternatives such as Hama [14], Pregel.NET [15] and GPS [16] also exist.

Despite the programming elegance, there are key scalability bottlenecks in Pregel:
(1) the number of messages exchanged between vertices, and (2) the number of synchro-
nized supersteps required for completion. Message passing is done either in-memory

GoFFish: A Framework for Large-Scale Graph Analytics 453

(for co-located vertices) or over the network, while barrier synchronization across dis-
tributed vertices is centrally coordinated. This often makes them communication bound
on commodity hardware, despite use of Combiners [5] for message aggregation. Sec-
ondly, the default hashing of vertices to machines exacerbates this though better parti-
tioning shows mixed results [16,6]. Even in-memory message passing causes memory
pressure [15]. For e.g., GPS [16] performs dynamic partition balancing and replication
on Pregel and our prior work [15] used a swathe-based scheduling to amortize mes-
saging overhead. But these engineering solutions do not address key limitations of the
abstraction, which also leads to large number of supersteps to converge for vertex cen-
tric algorithms (e.g.∼30 for PageRank, or graph diameter for Max Vertex).

Recently, Tian, et al. [6] recognized these limitations and propose a partition centric
variant, Giraph++. Here, users’ Compute method has access to all vertices and edges
in a partition on a machine, and can define algorithms that operate on a whole partition
within a superstep before passing messages from boundary vertices of the partition to
neighboring vertices. They also partition the graph to minimize average ncuts. Such
local compute on the coarse partition can reduce the number of messages exchanged
and supersteps taken, just as for us. But this approach falls short on several counts.
(1) Though the partitions are called “sub-graphs” in Giraph++, these sub-graphs are
not connected components. This limits the use of shared-memory graph algorithms that
operate on connected graphs, and can lead to a suboptimal algorithm operating collec-
tively on hundreds of sub-graphs in a partition. This also puts the onus on the user to
leverage concurrency across sub-graphs in a partition. Our proposed abstraction and
execution model a priori identifies sub-graphs as locally connected components; users
define their Compute method on these. Our engine also automatically executes sub-
graphs in parallel on the local machine. (2) Their Compute can send messages to only
boundary vertices. We also allow messages to be sent to sub-graphs, fully exploiting the
abstraction. (3) Our distributed graph storage is designed for sub-graph access patterns
to offer data loading efficiencies, and extends beyond just prior graph partitioning.

Algorithm 1. Max Vertex Value using Vertex Centric Model

1: procedure COMPUTE(Vertex myVertex, Iterator〈Message〉 M)
2: hasChanged = (superstep == 1) ? true : false
3: while M.hasNext do � Update to max message value
4: Message m ← M.next
5: if m.value > myVertex.value then
6: myVertex.value ← m.value
7: hasChanged = true

8: if hasChanged then � Send message to neighbors
9: SENDTOALLNEIGHBORS(myVertex.value)

10: else
11: VOTETOHALT()

Distributed GraphLab [17] is another popular graph programming abstraction, opti-
mized for local dependencies observed in data mining algorithms. GraphLab too uses
an iterative computing model based on vertex-centric logic, but allows asynchronous
execution with access to vertex neighbors. Unlike Pregel, it does not support graph
mutations. There are other distributed graph processing systems such as Trinity [18]

454 Y. Simmhan et al.

that offer a shared memory abstraction in a distributed memory infrastructure. Here,
algorithms use both message passing and a distributed address space called memory
cloud. However, this assumes large memory machines with high speed interconnects.
We focus on commodity cluster and do not make such hardware assumptions.

3 Sub-graph Centric Programming Abstraction

We propose a sub-graph centric programming abstraction that targets the deficiencies
of a vertex centric BSP model. We operate in a distributed environment where the graph
is k − way partitioned over its vertices across k machines. We define a sub-graph as
a connected component within a partition of an undirected graph; they are weakly con-
nected if the graph is directed. The Fig. 1(a) shows two partitions with three sub-graphs.
Two sub-graphs do not share the same vertex but can have remote edges that connect
their vertices (dotted edges in Fig. 1(a)), as long as the sub-graphs are on different par-
titions. If two sub-graphs on the same partition share a local edge (solid edges), by
definition they are merged into a single sub-graph. A partition can have one or more
sub-graphs and the set of all sub-graphs forms the complete graph. Specific partition-
ing approaches are discussed later, and each machine holds one partition. Sub-graphs
behave like “meta vertices” with remote edges connecting them across partitions.

Formally, let Pi = {Vi,Ei} be a graph partition i where Vi and Ei are the set of
vertices and edges in the partition. We define a sub-graph S in Pi as S = {V,E,R|v ∈
V ⇒ v ∈ Vi; e ∈ E ⇒ e ∈ Ei; r ∈ R ⇒ r �∈ Vi; ∀u, v ∈ V ∃ an undirected path
between u, v; and ∀r ∈ R ∃v ∈ V s.t. e = 〈v, r〉 ∈ E} where V is a set of local
vertices, E is a set of edges and R is a set of remote vertices.

Each sub-graph is treated as an independent unit of computation within a BSP su-
perstep. Users implement the following method signature:

Compute(Subgraph, Iterator<Message>)

The Compute method can access the sub-graph topology and values of the vertices
and edges. The values are mutable though the topology is constant. This allows us to
fully traverse the sub-graph up to the boundary remote edges in-memory, within a single

Remote Edges

2 591 5 8 3 2 62

Sub-graph 1 Sub-graph 2 Sub-graph 3

Local Edges

SENDTOALLSUB-
GRAPHNEIGHBORS

END OF STEP 1

STEP 2

STEP 4

9 998 8 8 6 6 68

9 999 9 9 8 8 89

9 999 9 9 9 9 99

9 999 9 9 9 9 99

STEP 3

Find local max

Partition 1 Partition 2

INITIAL GRAPH

88
6

9

998

9 Shaded sub-graphs have voted to halt

(a)

C CC C
M

CC C C CC C C CC CC C C CC C C CCC C CCC CC C C CC C C C

SU
PE
RS
TE
PS

Control &
Data Msgs.

CPU core for sub-
graph compute

Manager to Sync
Supersteps & Halt

Partitions

Host Machines

Remote Vertices
Sub-graphs
in Partition

Metadata

Load Sub-
graphs

Metadata Metadata Metadata

Worker on Host

G
OFS

G
O
PHER

(b)

Fig. 1. (a) Sub-graph centric Max Vertex using Alg. 2.. Dashed arrows show messages passed.
(b) Sub-graph centric data access from GoFS and BSP execution by Gopher.

GoFFish: A Framework for Large-Scale Graph Analytics 455

superstep and accumulate values of the sub-graph or update values for the local vertices
and edges. Different sub-graphs communicate by message passing, with messages ex-
changed at synchronized superstep boundaries in a BSP model. Several methods enable
this messaging. Algorithms often start by sending messages to neighboring sub-graphs.

SendToAllSubGraphNeighbors(Message)

As other sub-graphs are discovered across supersteps, two other methods are useful:

SendToSubGraph(SubGraphID, Message)
SendToSubGraphVertex(SubGraphID, VertexID, Message)

We allow a (costly) broadcast to all sub-graphs, though it should be used sparingly.
SendToAllSubGraphs(Message)

As with Pregel, the Compute method can invoke VoteToHalt. The application
terminates when all sub-graphs have halted and there are no new input messages.

Alg. 2. presents the sub-graph centric version for finding the maximum vertex value
in a graph. Fig. 1(a) illustrates its execution. The Compute method operates on a sub-
graph mySG. Lines 2–6 are executed only for the first superstep, where each sub-graph’s
value is initialized to largest of its vertices. Subsequently, the algorithm is similar to the
vertex centric version: we send the sub-graph’s value to its neighboring sub-graphs and
update the sub-graph’s value to the highest value received, halting when there is no
further change. At the end, each sub-graph has the value of the largest vertex.

Algorithm 2. Max Vertex using Sub-Graph Centric Model

1: procedure COMPUTE(SubGraph mySG, Iterator〈Message〉 M)
2: if superstep = 1 then � Find local max in subgraph

3: mySG.value ← −∞
4: for all Vertex myVertex in mySG.vertices do

5: if mySG.value < myVertex.value then

6: mySG.value ← myVertex.value

7: hasChanged = (superstep == 1) ? true : false
8: while M.hasNext do
9: Message m ← M.next

10: if m.value > mySG.value then
11: mySG.value ← m.value
12: hasChanged = true

13: if hasChanged then
14: SENDTOALLSUBGRAPHNEIGHBORS(mySG.value)
15: else
16: VOTETOHALT()

Compared to the vertex centric algorithm, the sub-graph centric version reduces the
number of supersteps taken since the largest value discovered at any superstep prop-
agates through the entire sub-graph in the same superstep. For e.g., for the graph in
Fig. 1(a), the vertex centric approach takes 7 supersteps while we use 4. Also, this re-
duces the cumulative number of messages exchanged on the network. In the worst case,
when a sub-graph is trivial (has one vertex), we degenerate to a vertex centric model.
Benefits. Our elegant extension of the vertex centric model offers three key benefits.

456 Y. Simmhan et al.

1) Messages Exchanged. Access to the entire sub-graph enables the application to
make a significant progress within each superstep while reducing costly message ex-
changes that cause network overhead, disk buffering or memory pressure, between su-
persteps. While Pregel allows Combiners per worker, they operate after messages are
generated while we preclude message generation. Giraph++ has similar advantages, but
no better; as sub-graphs in a partition are disconnected, they do not exchange messages.

2) Number of Supersteps. Depending on the algorithm, a sub-graph centric model
can reduce the number of supersteps required compared to Pregel, thereby limiting syn-
chronization overheads. Also, the time taken by a superstep is based on its slowest sub-
graph, with a wide distribution seen across sub-graphs [15]. Reducing the supersteps
mitigates this skew. For traversal algorithms, the number of supersteps is a function of
the graph diameter. Using a sub-graph centric model, this reduces to the diameter of the
meta-graph where the sub-graphs form meta-vertices. In the best case (a linear chain),
the number of supersteps can reduce proportional to the number vertices in a sub-graph,
while for a trivial sub-graph, it is no worse. These benefits translate to Giraph++ too.

3) Reuse of Single-machine Algorithms. Lastly, our approach allows direct reuse of
efficient shared-memory graph algorithms on a sub-graph, while using a BSP model
across supersteps. The change from a simple vertex-centric approach is incremental, but
the performance improvement stark. e.g. In Alg. 2., but for the shaded lines 2–6 which
operates on the whole sub-graph, other lines are similar to Alg. 1.. This has two benefits
relative to Pregel and Giraph++: (1) We can leverage optimal single machines algorithms
for sub-graphs, even leveraging GPGPU accelerators, with the added guarantee that the
sub-graphs are connected (unlike Giraph++). This ensures traversals reach all sub-graph
vertices and avoids testing every vertex in the partition independently. Second, when a
partition has multiple sub-graphs, as is often, we can exploit concurrency across them
automatically. While the degree of parallelism is not as high as vertex centric (Pregel),
it is better than treating the partition as one computation unit (Giraph++).

4 Architecture

GoFFish is a scalable software framework for storing graphs, and composing and ex-
ecuting graph analytics3. A Graph oriented File System (GoFS) and Gopher execution
engine are co-designed ab initio to ensure efficient distributed storage for sub-graph
centric data access patterns. The design choices target commodity or virtualized hard-
ware with Ethernet and spinning disks. GoFFish is implemented in Java.

GoFS Distributed Graph Store. GoFS is a distributed store for partitioning, storing
and accessing graph datasets across hosts in a cluster. Graphs can have both a topology
and attributes associated with each vertex and edge. The former is an adjacency list
of uniquely labeled vertices and (directed or undirected) edges connecting them. At-
tributes are a list of name-value pairs with a schema provided for typing. Input graphs
are partitioned across hosts, one partition per machine, using the METIS tool [19] to
balance vertices per partition and minimize edge cuts (Fig. 1(b)).

GoFS uses a sub-graph oriented model for mapping the partition’s content to slice
files, which form units of storage on the local file system. We identify all sub-graphs

3 https://github.com/usc-cloud/goffish

https://github.com/usc-cloud/goffish

GoFFish: A Framework for Large-Scale Graph Analytics 457

in the partition – components that are (weakly) connected through local edges, and a
partition with n vertices can have between 1 to n sub-graphs. Each sub-graph maps to
one topology slice that contains local vertices, local edges and remote edges, with ref-
erences to partitions holding the destination remote vertex, and several attribute slices
that hold their names and values. We use Kryo4 for compact object storage on disk.

GoFS is a write once-read many scalable data store rather than a database with rich
query support. The GoFS Java API allows clients to access a graph’s metadata, attribute
schema and sub-graphs present in the local partition. Specific sub-graphs and select at-
tributes can be loaded into memory and traversed. Remote edges in a sub-graph resolve
to a remote partition/sub-graph/vertex ID that can be used to send messages to.

Gopher Sub-graph Centric Framework. The Gopher programming framework
implements our proposed sub-graph centric abstractions, and executes them using the
Floe [20] dataflow engine on a Cloud or cluster in conjunction with GoFS. Users im-
plement their algorithm in Java within a Compute method where they get access to
a local sub-graph object and data messages from the previous superstep. They use
Send* methods to send message to the remote sub-graphs in the next superstep and
can VoteToHalt(). The same Compute logic is executed on every sub-graph in the
graph, for each superstep.

The Gopher framework has a compute worker running on each machine and a man-
ager on one machine. The workers initially load all local sub-graphs for that graph
into memory from GoFS. For every superstep, the worker uses a multi-core-optimized
task pool to invoke the Compute on each sub-graph, transparently leveraging concur-
rency within a partition. Send* messages are resolved by GoFS to a remote partition
and host. The worker aggregates messages destined for the same host and sends them
asynchronously to the remote worker while the compute progresses.

Once the Compute for all sub-graphs in a partition complete, the worker flushes
pending messages to remote workers and signals the manager. Once the manager re-
ceives signals from all workers, it broadcasts a resume signal to the workers to start their
next superstep and operate on input messages from the previous superstep. Compute
is stateful for each sub-graph; so local variables are retained across supersteps. When
a worker does not have to call Compute for any of its sub-graphs in a superstep, be-
cause all voted to halt and have no input messages, it sends a ready to halt signal to the
manager. When all workers are ready to halt, the manager terminates the application.

Storage-Compute Co-design. Co-designing data layout and execution models is
beneficial, as seen with Hadoop and HDFS. GoFFish uses sub-graphs as a logical unit of
storage and computation; hence our data store first partitions the graph followed by sub-
graph discovery. Partitioning minimizes network costs when loading sub-graphs into
Gopher. We use existing partitioning tools (METIS) to balance vertices and minimize
edge cuts. Ideally, we should also balance the number of sub-graphs per partition and
ensure uniform size to reduce compute skew in a superstep. Further, having multiple
sub-graphs in a partition can leverage the concurrency across sub-graphs. Such schemes
are for future work. We also balance the disk latency against bytes read by slicing sub-
graphs into topology and attributes files. For e.g. a graph with 10 edge attributes that
uses only the weight attribute in an algorithm needs to load only one attribute slice.

4 Kryo serialization framework, https://github.com/EsotericSoftware/kryo

https://github.com/EsotericSoftware/kryo

458 Y. Simmhan et al.

5 Evaluation of Sub-graph Centric Algorithms on GoFFish
We present and evaluate several sub-graph centric versions of common graph algo-
rithms, both to illustrate the utility of our abstraction and the performance of GoFF-
ish. We comparatively evaluate against Apache Giraph, a popular implementation of
Pregel’s vertex centric model, that uses HDFS. We use the latest development version
of Giraph, at the time of writing, which includes recent performance enhancements.
Sub-graph centric Gopher and vertex centric Giraph algorithms are implemented for:
Connected Components, Single Source Shortest Path (SSSP) and PageRank.

Experimental Setup and Datasets. We run these experiments on a modest cluster
of 12 nodes, each with an 8-core Intel Xeon CPU, 16 GB RAM, 1 TB SATA HDD, and
connected by Gigabit Ethernet. This is representative of commodity clusters or Cloud
VMs accessible to the long tail of science rather than HPC users. Both Giraph and
GoFFish are deployed on all nodes, and use Java 7 JRE for 64 bit Ubuntu Linux. The
GoFFish manager runs on one node.

We choose diverse real world graphs (Table 1): California road network (RN), In-
ternet topology from traceroute statistics (TR)), and LiveJournal social network (LJ).
RN is a small, sparse network with a small and even edge degree distribution, and a
large diameter. LJ is dense, with powerlaw edge degrees and a small diameter. TR has a
powerlaw edge degree, with a few highly connected vertices. Unless otherwise stated,
we report average values over three runs each for each experiment.

Table 1. Characteristics of graph datasets used in evaluation

Graph Vertices Edges Diameter WCC

RN 1,965,206 2,766,607 849 2,638
TR 19,442,778 22,782,842 25 1
LJ 4,847,571 68,475,391 10 1,877

Summary Results. We compare the end-to-end time (makespan) for executing an
algorithm on GoFFish and on Giraph. This includes two key components: the time to
load the data from storage, which shows the benefits of sub-graph oriented distributed
storage, and the time to run the sub-graph/vertex centric computation. which shows
relative benefits of the abstractions. Fig. 2(a) highlights the data loading time per graph
on both platforms; this does not change across algorithms. Fig. 2(b) give the execution
time as a bar-plot for various algorithms and datasets once data is loaded, as well as the
makespan that includes the compute and load time, as a dot-plot. Also shown in Fig. 2(c)
is the number of supersteps taken to complete the algorithm for each combination.

One key observation is that GoFFish’s makespan is smaller than Giraph for all com-
binations but two, PageRank and SSSP on LJ. The performance advantage ranges from
81× faster for Connected Components on RN to 11% faster for PageRank on TR. These
result from abstraction, design and layout choices, as we discuss. In some, Giraph’s
data loading time from HDFS dominates (TR), in others, Gopher’s algorithmic advan-
tage significantly reduces the number of supersteps (RN for SSSP), while for a few,
Gopher’s compute time over sub-graphs dominates (PageRank on LJ).

Connected Components. Connected components identify maximally connected
sub-graphs within an undirected graph such that there is path from every vertex to every

GoFFish: A Framework for Large-Scale Graph Analytics 459

(a) Graph loading time (log
scale) from disk to memory.

(b) Compute time and Makespan (incl. load) for GoFFish and
Giraph for various graph algorithms and datasets (log scale)

(c) Number of supersteps (log scale) taken by Gopher and Giraph for var-
ious graph algorithms and datasets

Fig. 2. Comparison of GoFFish and Giraph for all Graph Algorithms and Datasets

other vertex in the sub-graph. The sub-graph and vertex centric algorithms are similar to
the Maximum Vertex Value algorithm [21]. In effect, we perform a breadth first traver-
sal rooted at the sub-graph with the largest vertex ID, with each superstep propagating
the value one level deeper till the farthest connected sub-graph is reached. Finally, all
vertices are labeled with the component ID (i.e. largest vertex ID) they belong to.

The computational complexity of this algorithm is O((d+ 1)× v/p), where d is the
diameter of the graph (specifically, of the largest connected component) constructed by
treating each sub-graph as a meta vertex, v is the number of vertices in the graph and
p is the number of machines (partitions). The key algorithmic optimization here comes
from reducing the number of supersteps (d+ 1) relative to the vertex centric model.

As a result, Connected Components for GoFFish performs significantly better than
Giraph for all three data sets – from 1.4× to 81×. Fig. 2(c) shows the number of super-
steps is much smaller for Gopher compared to Giraph, taking between 5 (TR, LJ) and
7 (RN) supersteps for Connected Components while Giraph takes between 11 (LJ) and
554 (RN). The superstep time in itself is dominated by the synchronization overhead.
The ratio of compute times improvements between Giraph and Gopher is highly corre-
lated (R2 = 0.9999) with the vertex-based diameter of the graph (Table 1), i.e., larger
the vertex-based graph diameter, greater the opportunity to reduce sub-graph-based
diameter, lesser the number of supersteps, and better that Gopher algorithm performs.

460 Y. Simmhan et al.

Gopher’s makespan for TR graph is 21× better than Giraph due to much faster data
loading by GoFS (27secs vs. 798secs). Giraph’s HDFS, which balances the vertices
across partitions, has to move one vertex with 1M edges that takes punitively long.

Algorithm 3. Sub-Graph Centric Single Source Shortest Path

1: procedure COMPUTE(SubGraph mySG, Iterator〈Message〉 M)
2: openset ← ∅ � Vertices with improved distances
3: if superstep = 1 then � Initialize distances
4: for all Vertex v in mySG.vertices do
5: if v = SOURCE then
6: v.value ← 0 � Set distance to source as 0
7: openset.add(v) � Distance has improved
8: else
9: v.value ← −∞ � Not source vertex

10: for all Message m in M do � Process input messages
11: if mySG.vertices[m.vertex].value > m.value then
12: mySG.vertices[m.vertex].value ← m.value
13: openset.add(m.vertex) � Distance improved

14: � Call Dijkstras and get remote vertices to send updates
15: remoteSet ← DIJKSTRAS(mySG, openset)
16: � Send new distances to remote sub-graphs/vertices
17: for all 〈remoteSG,vertex,value〉 in remoteSet do
18: SENDTOSUBGRAPHVERTEX(remoteSG, vertex, value)
19: VOTETOHALT()

SSSP. Intuitively, the sub-graph centric algorithm for Single Source Shortest Path (SSSP)
finds the shortest distances from the source vertex to all internal vertices (i.e. not having
a remote edge) in the sub-graph holding the source in one superstep using DIJKSTRAS

(Alg. 3.). It then sends the updated distances from the vertices having a remote edge to
their neighboring sub-graphs. These sub-graphs propagate the changes internally in one
superstep, and to their neighbors across supersteps, till the distances quiesce.

DIJKSTRAS has a compute complexity of O((e · log(v))) per superstep, where e and
v are typically dominated by the largest active sub-graph. The number of supersteps is
a function of the graph diameter d measured through sub-graphs, and this takes O(d)
supersteps. For a partitions with large number of small sub-graphs, we can exploit con-
currency across c cores on that machine. While the time complexity per superstep is
relatively larger for DIJKSTRAS, we may significantly reduce the number of supersteps
taken for the algorithm to converge.

SSSP’s compute time for GoFFish out-performs Giraph by 300× and 2× for RN
and TR, respectively, while it is the same for LJ. Gopher takes reduced supersteps on
RN and TR for SSSP, that is able to offset its higher computational complexity per
superstep. But this complexity impacts LJ which has high edge density, while its small
world network diameter does not reduce the number of supersteps. Hence SSSP for
Gopher only matches, rather than outperforms, Giraph’s compute time for LJ.

PageRank. For each superstep in a vertex centric PageRank [5], a vertex adds all
input message values into sum, computes 0.15/v + 0.85× sum as its new value, and
sends value/g to its g neighbors. The value is 1/v initially, for v vertices in the graph.
An equivalent sub-graph centric approach does not confer algorithmic benefits; it takes

GoFFish: A Framework for Large-Scale Graph Analytics 461

the same ∼30 supersteps to converge and each vertex operates independently in lock
step, with an O(30 · v

p·c · g), for an average edge degree of g.
As shown in Fig. 2(b), Gopher under performs Giraph for PageRank for TR and LJ

by 2.6×. It is 5.5× faster for RN. TR’s makespan offsets compute slowdown with data
loading benefits. As observed, the fixed supersteps used for PageRank negates algo-
rithmic benefits and the computation complexity per superstep for sub-graph centric is
higher than for vertex centric. This also exacerbates the time skew across sub-graphs
in a partition. For e.g., in LJ, many of the partitions complete their superstep within a
range of 23 − 26secs, but these are bound by single large sub-graphs in each partition
which are stragglers, and cause 75% of the cores to be idle. Giraph, on the other hand,
has uniform vertex distribution across machines and each worker takes almost the same
time to complete a superstep while fully exploiting fine grained vertex level parallelism.
This highlights the deficiencies of the default partitioning model used by GoFS that re-
duces edge cuts and balances the number of vertices per machine, without considering
the number of sub-graphs that are present per partition, and their sizes.

6 Discussion and Conclusions

We introduce a sub-graph centric programming abstraction for large scale graph an-
alytics on distributed systems. This model combines the scalability of vertex centric
programming with the flexibility of using shared-memory algorithms at the sub-graph
level. The connected nature of our sub-graphs provides stronger guarantees for such al-
gorithms and allows us to exploit degrees of parallelism across sub-graphs in a partition.
The GoFFish framework offers Gopher, a distributed execution runtime for this abstrac-
tion, co-designed with GoFS, a distributed sub-graph aware storage that pre-partitions
and stores graphs for data-local execution.

The relative algorithmic benefits of using a sub-graph centric abstraction can be char-
acterized based on the class of graph algorithm and graph. For algorithms that perform
full graph traversals, like SSSP, BFS and Betweenness Centrality, we reduce the num-
ber of supersteps to a function of the diameter of the graph based on sub-graphs rather
than vertices. This can offer significant reduction. However, for powerlaw graphs that
start with a small vertex based diameter, these benefits are muted.

The time complexity per superstep can be larger since we often run the single-
machine graph algorithm on each sub-graph. The number of vertices and edges in large
sub-graph will impact this. If there are many small sub-graphs in a partition, the number
of sub-graphs becomes the limiting factor as we approach a vertex centric behavior, but
this also exploits multi-core parallelism. For graphs with high edge density, algorithms
that are a linear (or worse) function of the number of edges can take longer supersteps.

We empirically showed that GoFFish performs significantly better than Apache Gi-
raph. These performance gains are due to both the partitioned graph storage and sub-
graph based retrieval from GoFS, and a significant reduction in the number of supersteps
that helps us complete faster. This offers a high compute to communication ratio.

We do recognize some short comings, with further research opportunities. Sub-graph
centric algorithms are vulnerable to imbalances in number of sub-graphs per partition
and non-uniformity in their sizes. This causes stragglers. Better partitioning to balance
the sub-graphs can help. The framework is also susceptible to small-world graphs with

462 Y. Simmhan et al.

high edge degrees that have high sub-graph level computational complexity. Our soft-
ware prototype offers opportunities for design and engineering optimizations.

References

1. Gregor, D., Lumsdaine, A.: The Parallel BGL: A Generic Library for Distributed Graph
Computations. In: Parallel Object-Oriented Scientific Computing, POOSC (2005)

2. Ediger, D., Bader, D.: Investigating Graph Algorithms in the BSP Model on the Cray XMT.
In: Workshop on Multithreaded Architectures and Applications, MTAAP (2013)

3. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the gpu using cuda. In:
IEEE High Performance Computing, HiPC (2007)

4. Lin, J., Schatz, M.: Design patterns for efficient graph algorithms in MapReduce. In: Work-
shop on Mining and Learning with Graphs, pp. 78–85. ACM (2010)

5. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: A system for large-scale graph processing. In: ACM International Conference on the
Management of Data (SIGMOD), pp. 135–146. ACM (2010)

6. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From “Think Like a Ver-
tex” to “Think Like a Graph”. Proc. of the VLDB (PVLDB) 7(3), 193–204 (2013)

7. Avery, C.: Giraph: Large-scale graph processing infrastructure on hadoop. In: Hadoop Sum-
mit (2011)

8. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph process-
ing. Parallel Processing Letters 17(01), 5–20 (2007)

9. Buluç, A., Madduri, K.: Parallel breadth-first search on distributed memory systems. In:
IEEE/ACM International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC). ACM (2011)

10. Harshvardhan, Fidel, A., Amato, N.M., Rauchwerger, L.: The STAPL Parallel Graph Library.
In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS, vol. 7760, pp. 46–60. Springer,
Heidelberg (2013)

11. Papadimitriou, S., Sun, J.: DisCo: Distributed Co-clustering with Map-Reduce. In: IEEE
International Conference on Data Mining, ICDM (2008)

12. Chen, R., Weng, X., He, B., Yang, M.: Large graph processing in the cloud. In: ACM Inter-
national Conference on the Management of Data (SIGMOD), pp. 1123–1126. ACM (2010)

13. Gerbessiotis, A.V., Valiant, L.G.: Direct bulk-synchronous parallel algorithms. Journal of
Parallel and Distributed Computing (JPDC) 22(2), 251–267 (1994)

14. Seo, S., Yoon, E.J., Kim, J., Jin, S., Kim, J.S., Maeng, S.: Hama: An efficient matrix computa-
tion with the mapreduce framework. In: IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE (2010)

15. Redekopp, M., Simmhan, Y., Prasanna, V.: Optimizations and analysis of bsp graph process-
ing models on public clouds. In: IEEE Intl. Parallel & Distr. Proc. Symp., IPDPS (2013)

16. Salihoglu, S., Widom, J.: GPS: A Graph Processing System. In: International Conference on
Scientific and Statistical Database Management, SSDBM (2013)

17. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed
graphlab: A framework for machine learning and data mining in the cloud. VLDB 5(8),
716–727 (2012)

18. Shao, B., Wang, H., Li, Y.: Trinity: A distributed graph engine on a memory cloud. In: ACM
International Conference on the Management of Data, SIGMOD (2013)

19. Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In: IEEE/ACM Intl. Conf.
for High Performance Computing, Networking, Storage and Analysis, SC (1995)

20. Simmhan, Y., Kumbhare, A., Wickramachari, C.: Floe: A dynamic, continusous dataflow
framework for elastic clouds. Technical report, USC (2013)

21. Kang, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: A peta-scale graph mining system im-
plementation and observations. In: IEEE Intl. Conf. on Data Mining, ICDM (2009)

Resolving Semantic Conflicts in Word Based

Software Transactional Memory

Craig Sharp, William Blewitt, and Graham Morgan

Newcastle University, NE1 7RU, UK
{craig.sharp,william.blewitt,graham.morgan}@ncl.ac.uk

Abstract. In this paper we describe a technique for addressing seman-
tic conflicts within word based Software Transactional Memory. A se-
mantic conflict is considered to be some application condition which
causes transactions to explicitly abort. Session locking and a companion
Contention Management Policy are described which support the paral-
lel exploration of multiple transaction schedules at run time, to resolve
semantic conflicts. Performance figures are provided to demonstrate the
effectiveness of our technique when semantic conflicts are introduced into
established benchmarks.

Keywords: Transactional Memory, Contention Management, Shared
Memory, Concurrency Control, STM.

1 Introduction

Software Transactional Memory (STM) has become a popular research area for
concurrent programmers given that the STM abstraction offers ease of use in
comparison to lock based approaches. More powerfully, composing sections of
concurrent code can be achieved with ease using STM unlike a lock-based imple-
mentation [1]. At the time of writing, however, there exist a variety of STM im-
plementations with two approaches gaining prominence: object based and word
based. Object based STMs [2,3] are generally particular to object orientated
languages and represent shared data in the form of atomic objects. Conversely,
shared data in word based STMs [4,5] is represented at the level of memory
words.

Felber et al observed in [4] that word based STMs allow transactional accesses
to be mapped directly to the underlying memory system. As a result, word based
STMs offer: (i) easier integration into existing programming languages and (ii)
greater efficiency in the context of compiler support. TinySTM [4,6] has been
provided as a lightweight and efficient word based STM. The (relatively) small
code base makes TinySTM particularly attractive for STM development, allow-
ing easy integration with the STAMP [7] benchmark suite. For these reasons,
the developments in this paper have been integrated into TinySTM.

A significant feature of any STM system concerns the handling of aborted
transactions under high contention for shared resources due to concurrent con-
flicts on shared data; a task typically delegated to the Contention Management

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 463–474, 2014.
c© Springer International Publishing Switzerland 2014

464 C. Sharp, W. Blewitt, and G. Morgan

Policy (CMP). Various CMPs exist to determine which transaction must abort
upon a conflict (time-stamp CMP, for instance, gives priority to the transaction
that began first). From the perspective of the application, however, there also
exist semantic conflicts which can be conceived as conditions within the appli-
cation which prevent a transaction from committing. Figure 1(A) provides an
example of a semantic conflict with two threads executing a withdrawal and de-
posit transaction concurrently. Let us suppose that there is a concurrent conflict
between the withdrawer and depositor transactions and that the CMP decides
to abort the depositor. If the withdrawer requires that a deposit be made be-
fore it can perform the withdrawal, however, then it cannot continue and must
(explicitly) abort. Both transactions re-execute until the depositor precedes the
withdrawer (or the CMP aborts the withdrawer). If a CMP is employed which
resolves conflicts based on transaction starting time or the amount of work com-
pleted, it is possible that the withdrawer may always succeed in aborting the
depositor (if the withdrawer began before the depositor or has carried out more
work, for instance).

Primitives exist to provide transaction coordination, which may in turn re-
duce the occurrence of semantic conflicts (e.g. Harris et al [1] provided primitives
such as retry and orElse). Alternatively, a ‘semantic transaction’ can be avoided
if simply allowed to commit rather than aborting explicitly (assuming no con-
current conflicts have occurred). The programmer may then specify that the
transaction execute at some future time. Neither approach, however, alleviates
the programmer from the burden of resolving the conflict. Conversely, [8] intro-
duced a new CMP (Hugh) which resolves semantic conflicts without placing a
burden on the programmer. Hugh was integrated with an object based STM and
micro-benchmarks demonstrated some encouraging initial results. Hugh2 has
since been implemented with TinySTM (a word based STM). [9] describes the
process of enabling transaction replication within TinySTM and severe implica-
tions for memory management are demonstrated (caused by the introduction of
semantic conflicts). In this paper the following contributions are provided:

– The implementation of a novel session locking technique to resolve semantic
conflicts in a manner both decoupled from the programmer and compatible
with existing CMPs;

– Performance results showing the impact and resolution of semantic con-
flicts with several CMPs in large-scale benchmarks (e.g. STAMP benchmark
suite [7]).

In Section 2 we describe the Implementation of our CMP and Section 3 sum-
marises Related Work. Section 4 provides an Evaluation and, finally, Section 5
concludes the paper and summarises possible avenues for future work.

2 Implementation

2.1 Overview

Hugh2 CMP is activated once some threadx encounters a semantic conflict (caus-
ing threadx to explicitly abort its transaction). Before the aborted transaction

Resolving Semantic Conflicts in Word Based Software Transactional Memory 465

Fig. 1. Scenarios A and B contrast the approaches of a conventional CMP with the
Hugh2 CMP when a semantic conflict occurs

is restarted, threadx enters a new session mode. During session mode, threadx
re-executes its own transaction in addition to the transactions of any other ses-
sion mode threads. Each session mode thread executes a single permutation
of transactions, to discover a schedule of transaction execution which resolves
the semantic conflict(s). Figure 1(B) shows the re-execution of two transactions
accessing a single account (specifically, a depositor and withdrawer transaction).
Thread 2 executes a permutation which succeeds in resolving the semantic con-
flict (the deposit ensures that the withdrawal can occur).

When there are no further transactions to execute, each thread performs con-
sensus to determine the permutation to be committed. Consensus is managed
using a Universal Construction (hereafter UC). The UC is essentially a linked-
list, which may be concurrently appended to by threads engaged in session mode.
Each new entry of the UC identifies the transactions that have been committed
during a particular session. Once a session has terminated each participating
thread can determine whether its own transaction was committed or aborted
by reading the log of the UC. Those threads whose transactions remain uncom-
mitted perform a new session, while the threads of the committed transactions
return to non-session mode.

2.2 Sessions

Hugh2 attempts to resolve semantic conflicts within the context of a session. A
non-session mode thread will enter session mode if: (i) it encounters a semantic
conflict while executing a transaction and (ii) it encounters data that is ses-
sion locked while executing a transaction. In addition to the normal structures
required by TinySTM, the following data structures are required to support
session execution:

– A global Transaction Table is provided where the n-th entry into the ta-
ble belongs to the n-th thread in the application. Threads in session mode
retrieve and execute transactions stored in the table;

– A global UC is provided (a linked list) with a session counter (an integer).
Each list entry corresponds to a session and the session counter identifies the

466 C. Sharp, W. Blewitt, and G. Morgan

Algorithm 1. TinySTM Handlers
function onStart(tx, ftn, args)

1 if tx.state �= started then return nocalltx;
2 if tx.nbAborts = 0 then setTableEntry(tx.id, ftn, args);
3 if tx.sessionMode then
4 setTableSession(tx.id, sessionCounter);

else
5 return calltx;

6 while true do
7 if (txcall ← getNextTx(tx)) = noMoreTx then
8 if onTimeout(tx) = 0 then break else continue;

9 if consensusReached(sessionNo(tx.id)) then break;
10 Invoke(txcall.ftn, txcall.arg);
11 if onTxSuccess(tx, txcall) = 0 then break;

12 return nocalltx;

function onPreCommit(tx)
13 if tx.state �= started then return;
14 logEntry ← UCLogEntry(sessionNo(tx.id));
15 if cas(&logEntry, logEntry, tx.txMask) = fail then
16 tx.state ← lostConsensus;
17 rollback();

else
18 tx.state ← wonConsensus;

function onCommit(tx)
19 logEntry ← UCLogEntry(sessionNo(tx.id));
20 if tx.state = wonConsensus then
21 atomicIncrement(sessionCounter);

22 tx.state ← started;
23 if bitIsSet(logEntry, tx.id) then
24 tx.sessionMode ← false;

else
25 rollback();

current session. Every entry contains a bit mask denoting which transactions
were committed for that particular session;

– Each thread also uses several variables to manage session execution includ-
ing: a flag indicating whether it is in session mode, a state variable to hold
its progress (which may hold the value: started, lostConsensus or wonCon-
sensus), and a bit mask to record the transactions executed during a ses-
sion (The i-th bit of the mask corresponds to the i-th entry in the Transac-
tion Table).

TinySTM allows custom handlers to be called upon the occurrence of several
important events during the per-thread execution of a transaction. Hugh2 is
mostly implemented within these handlers, specifically: onStart, onPreCommit,
onCommit and onAbort. Algorithms 1 and 2 provide the pseudo code:

OnStart performs the iterative execution of transactions when a thread enters
session mode. When a thread first executes a transaction it inserts the transac-
tion function and argument to the transaction table (line 2). Non session mode
threads return from the onStart handler and executes their transactions nor-
mally (line 5). If the thread is in session mode, then the thread’s table entry

Resolving Semantic Conflicts in Word Based Software Transactional Memory 467

is updated to hold the current value of the session counter (line 4). Setting the
session counter acts as a flag which other session mode threads can use to de-
termine which transactions can be executed as part of their own session. Lines 6
to 11 perform the iterative execution of transactions. The thread first attempts
to retrieve a new transaction to execute (line 7). If no more transactions are
available, however, the thread calls an onTimeout handler (line 8). If the thread
has not committed any transactions, it continues reading from the table. Other-
wise, the thread breaks out of the loop and returns the nocalltx constant (line
12). If consensus has been reached (line 9) or the next transaction is successfully
executed and no time remains (line 11), the thread breaks out of the loop and
returns nocalltx (line 12).

OnPreCommit contains the code where session mode threads attempt to decide
consensus. The session-mode thread invokes compare-and-swap (CAS) to set
the status of the next entry in the UC (line 15). the thread updates its state,
depending on the result of the CAS call (lines 16 and 18).

OnCommit is called after the onPreCommit handler has been invoked. If the
calling thread is in session mode and it decided the consensus result, then it
atomically increments the session counter (line 21) indicating to other threads
that the session has terminated. In line 23, threads check the UC to deter-
mine whether their transaction was committed, and if so, the thread leaves ses-
sion mode (line 24), otherwise the thread rolls-back execution and will attempt
a new session (line 25).

OnAbort is invoked whenever any transaction aborts (see Algorithm 2, line 26).
A flag is supplied to the abort handler to identify whether the abort was made
implicitly (a concurrent conflict) or explicitly (a semantic conflict). In the case
of explicit aborts, the aborting thread sets its session mode flag (effectively
entering session mode).

OnTxSuccess is invoked when a transaction is successfully executed in ses-
sion mode. The thread updates its bit mask (line 28), and decrements a pri-
vate counter (line 29). If the counter has reached 0, the onTimeout handler is
invoked (line 29). Threads invokes onTimeout (line 27) to determine whether
they should continue executing transactions in the transaction table, or perform
the onPreCommit handler (thus attempting consensus).

2.3 Session Locks

As with conventional TinySTM, locking is used to guarantee consistent reading
and writing of shared data (TinySTM provides both read and write locks). To
accommodate our CMP, however, we have added an extra type of lock, called a
session lock, with the following properties:

– Once locked, a session lock grants access to a word of shared data for any
thread operating in the same session, hence a session lock is locked only
once per session;

468 C. Sharp, W. Blewitt, and G. Morgan

– A session lock is never explicitly unlocked. A session lock has a viable life-
time for the duration of the session in which it was locked. Once the ses-
sion has ended, the session lock is considered stale and may be removed at
the discretion of any encountering thread.

Algorithm 2. TinySTM and Session Lock Handlers
function onAbort(tx, explicit)

26 if explicit = true then tx.sessionMode ← true;

function onTimeout(tx)
27 if commitCount(tx.txMask) > 0 then return 0;

else return (tx.counter ← newLimit);

function onTxSuccess(tx, txcall)
28 setBit(tx.txMask, txcall.id);
29 if decrement(tx.counter) = 0 then return onTimeout(tx);
30 return tx.counter;

function onSharedAccess(tx, lock)
31 ctr ← sessionCounter;
32 if ¬tx.sessionMode then
33 if ¬sessionLocked(lock) then return proceed;
34 if ctr �= sessionNo(lock) then return stale;
35 tx.sessionMode ← true;
36 return killself ;

if consensusReached(sessionNo(tx.id)) then return killself ;
if ¬sessionLocked(lock) then return proceed;

37 if nextctr �= sessionNo(lock) then return stale;
38 return sessionLocked;

function onLock(tx, lock, accessResult, accessType)
39 if ¬tx.sessionMode then
40 lockval ← createTinyStmLock(lock, accessType);
41 return (cas(lock.addr, lock.val, lockval) = success);

42 if accessResult = sessionLocked then return true;
43 nextctr ← sessionCounter;
44 sLockV alue ← createSessionLock(nextctr);
45 return (cas(lock.addr, lock.val, sLockVal) = success);

In TinySTM, a lock is represented by a word-sized integer, with the value of
the last two bits denoting the type of lock (binary 0 is unlocked, 1 denotes write
locked and 2 denotes read locked). A session lock is represented by setting both
bits. The remaining bits of the word value hold the session number in which the
lock was set. Algorithm 2 (lines 31-45) shows two handlers which are invoked
when dealing with session locks:

OnSharedAccess is called before a shared word is locked for reading or writing.
Non session mode threads may attempt to lock shared data which is not ses-
sion locked (line 33) or if the session lock is stale (line 34). Otherwise the thread
enters session mode (line 35) and aborts (line 36). Threads in session mode,
however, can attempt access of shared data as long as the session is still active.

OnLock is called whenever a thread attempts to lock shared data (lines 39-45).
Non session mode threads create a normal TinySTM type lock and attempt

Resolving Semantic Conflicts in Word Based Software Transactional Memory 469

to lock the data (line 41) while session mode threads can immediately access
session locked data (line 42). If the shared word is not session locked, then a
session mode thread must attempt to lock the data (line 45).

3 Related Work

A range of CMPs currently exist but which can be categorised as either wait
based and schedule-based. Wait-based CMPs [10,11] (e.g. Greedy, Karma, Polka
etc), are typically trivial to implement, versatile and offer good performance.
Heber et al, however, noted in [12] an inefficiency with wait-based approaches
due to the difficulty in finding an adequate back-off period, given the dynamic na-
ture of execution in STMs. Conversely, schedule-based CMPs typically resched-
ule or serialise aborted transactions. [13] exemplifies one such approach. Bai
et al produced several ‘transaction executor’ models with the aim of equitably
distributing transactions as ‘jobs’ among the threads of an application. ‘Keys’
are also used to predict the likelihood that conflicts will arise between execut-
ing transactions. Transactions which are likely to conflict are scheduled to be
executed by the same ‘worker’ thread (thus enforcing serialisation).

CAR-STM [14] and Steal on Abort [15] are also schedule-based CMPs where
transactional jobs are assigned to per-thread work queues. Both CAR-STM and
Steal on Abort move aborted transactions to the work queues of conflicting
transactions upon the occurrence of a conflict, to serialise the conflicting trans-
action’s execution. Steal on Abort experiments with various techniques when
rescheduling transactions among work queues. Additional work queues can also
be created when the number of transactional jobs is high. Hugh2 differs from the
cited approaches of both wait-based and schedule-based CMPs, insofar as Hugh2
is the only approach which focuses on the resolution of semantic conflicts. In ad-
dition, Hugh2 requires a single transaction table to hold transactional jobs, but
does not require the overhead of a thread pool to administer such jobs. Hugh2
also explores multiple schedules in parallel during the process of contention man-
agement.

Similarly with Hugh2, several approaches to STM have been developed which
rely on a Universal Construction (UC). Herlihy [16] introduced the UC concept
to enable multiple threads to access shared data structures via a wait-free algo-
rithm. Wamhoff [17] and Chuong [18] combined the UC technique with trans-
actions to handle certain failure conditions. Crain et al have shown that it is
possible to remove the abort semantics of STM using a UC [19]. While the cited
approaches apply the UC technique for a STM system, Hugh2 uses the UC for
contention management.

Finally, TL-STM [20] is an adaptation of SwissTm which incorporates Thread-
Level-Speculation (TLS) into memory transactions. TL-STM bears similarity to
Hugh2 insofar that platform parallelism is exploited to explore different per-
mutations of transactional elements. More specifically, TL-STM seeks to en-
hance transactional throughput by reordering the internal execution elements
of a transaction to better reflect concurrent schedules of execution. Conversely,

470 C. Sharp, W. Blewitt, and G. Morgan

Hugh2 seeks to reorder whole transactions to accommodate semantic schedules
of execution. Whereas TL-STM applies internal reordering based on the seman-
tics of a transaction, Hugh2 applies external reordering based on the semantics
of an application.

4 Evaluation

In this section we present results from a series of benchmarks to demonstrate the
performance of our system. The tests were carried out on a desktop PC featuring
2 x dual-core 3.07GHz Intel(R) processors with 4GB of RAM. The Operating
System used was Ubuntu (Linux) version 13.04 and the Transactional Memory
software was TinySTM version 1.04 with the Write-Back, Eager Transactional
Locking scheme using visible reads. Experiments were carried out with increasing
numbers of threads (from 2 to 16) with each run executed 5 times with the aver-
age results provided. Two existing CMPs were used as a measure of comparison
with Hugh2, specifically Karma and Polka [11].

Two benchmarks were used to test the performance of Hugh2. The first sce-
nario (bank) is provided in the TinySTM software and allows the execution of a
number of transaction types on a set of simulated bank accounts. The ‘bank’ in
this case is an array of account data structures. The second scenario (vacation)
is part of the STAMP benchmark suite [7] and provides transactional accesses
over several red-black trees to represent a holiday booking database system. Both
scenarios provide update, read-all and write-all transaction types which can be
generated at varying intensities. Transactions from the vacation scenario differ
from the bank simulation insofar as they tend to execute more statements of
greater complexity.

Semantic transactions were introduced into bank and vacation. In the bank sce-
nario, two extra transactions (called service charge and pay interest) were cre-
ated which explicitly call abort based on the balance of certain bank accounts. In
the vacation scenario an additional red-black tree was created and two transac-
tion types (called create customer and remove customer) which add and remove
nodes while explicitly aborting if the contents of the tree is deemed incorrect.
The semantic transactions introduce a consumer-producer relationship where a
producer transaction should precede a consumer to grant mutual success. The
semantic transactions interact with numerous other shared data elements, so it
is expected that if semantic transactions must abort frequently, this activity will
also increase the frequency of concurrent conflicts. Increasing the number of se-
mantic transactions in a scenario means we can measure the impact of semantic
conflicts on the application (for example, we might set up a scenario with 16
threads and specify that 8 of the threads execute semantic transactions to ob-
serve the effects of 50% semantic conflicts on the throughput of the application).

4.1 Transaction Throughput

Figure 2 provides graphs showing results for transaction throughput. Y-axes
shows the number of transactions committed per second and X-axes show the

Resolving Semantic Conflicts in Word Based Software Transactional Memory 471

2 4 8 16

(A) TX. THROUGHPUT IN BANK WITH 0% SEMANTIC CONFLICTS

T
H

R
O

U
G

H
P

U
T

 (
T

X
/S

E
C

)

20000

40000

60000

80000
HUGH2
KARMA
POLKA

2 4 8 16

(B) 50% SEMANTIC CONFLICTS

T
H

R
O

U
G

H
P

U
T

 (
T

X
/S

E
C

)

20000

40000

60000

80000

100000

120000

140000
HUGH2
KARMA
POLKA

2 4 8 16

(C) 100% SEMANTIC CONFLICTS (LOG SCALE)

T
H

R
O

U
G

H
P

U
T

 (
T

X
/S

E
C

)

1

100

10000

HUGH2
KARMA
POLKA

NO. OF THREADS

2 4 8 16

(D) TX. THROUGHPUT IN VACATION WITH 0% SEMANTIC CONFLICTS

20000

40000

60000

80000
HUGH2
KARMA
POLKA

2 4 8 16

(E) 50% SEMANTIC CONFLICTS

20000

40000

60000

80000

100000

120000

140000
HUGH2
KARMA
POLKA

2 4 8 16

(F) 100% SEMANTIC CONFLICTS (LOG SCALE)

1

100

10000

HUGH2
KARMA
POLKA

NO. OF THREADS

Fig. 2. Average transaction throughput for the Bank/Vacation scenario

number of threads used. Graphs 2(A) and 2(D) provide comparison between
the Karma, Polka and Hugh2 CMPs in the absence of semantic conflicts, for
the bank and vacation scenarios respectively. The system which employs Hugh2
for semantic conflicts, resorts to calling the Karma on occurrence of concurrent
conflicts. As expected, with no semantic conflicts being generated in either graph,
the performance of Hugh2 and Karma are practically the same.

In Graphs 2(B) and 2(E) semantic conflicts have been introduced into both
scenarios such that 50% of the threads generate semantic transactions in the case
of thread numbers: 4, 8 and 161. At this point the throughput for Karma and
Polka have both fallen noticeably relative to the throughput for Hugh2 which
has increased substantially. In Graphs 2(C) and 2(F), semantic transactions are
generated by 100% of the threads; once again the throughput for both Karma
and Polka has reduced dramatically, whereas Hugh2 outperforms both.

When comparing the vacation scenario to the bank scenario we can see that
the Polka CMP mostly outperforms both the Karma and Hugh2 CMPs when
semantic conflicts are absent, and indeed, Karma CMP and has been cited as
providing the best average performance of wait-based CMPs [15] (one notable
exception, however, is in the vacation scenario when 16 threads are used). It is
encouraging, however, to see that Hugh2 can function in combination with an

1 Two or more threads are required to resolve semantic conflicts (i.e. a producer and
consumer). To show 50% semantic conflicts therefore requires at least four or more
threads. The results for 2 threads show 0% semantic conflicts instead.

472 C. Sharp, W. Blewitt, and G. Morgan

2 4 8 16

(A) AVG. TX. MAX. RETRIES IN BANK WITH 0% SEMANTIC CONFLICTS

A
V

G
. M

A
X

. R
E

T
R

IE
S

100
200
300
400
500
600
700 HUGH2

KARMA
POLKA

2 4 8 16

(B) AVG. TX. MAX. RETRIES IN BANK WITH 0% SEMANTIC CONFLICTS

A
V

G
. M

A
X

. R
E

T
R

IE
S

500000

1000000

1500000 HUGH2
KARMA
POLKA

2 4 8 16

(C) 100% SEMANTIC CONFLICTS (LOG SCALE)

A
V

G
. M

A
X

. R
E

T
R

IE
S

1e+00

1e+02

1e+04

1e+06

HUGH2
KARMA
POLKA

NO OF THREADS

2 4 8 16

(D) AVG. TX. MAX. RETRIES IN VACATION WITH 0% SEMANTIC CONFLICTS

500

1000

1500

2000

2500

3000 HUGH2
KARMA
POLKA

2 4 8 16

(E) 50% SEMANTIC CONFLICTS (LOG SCALE)

1e+00

1e+02

1e+04

1e+06
HUGH2
KARMA
POLKA

2 4 8 16

(F) 100% SEMANTIC CONFLICTS (LOG SCALE)

1e+00

1e+02

1e+04

1e+06

HUGH2
KARMA
POLKA

NO OF THREADS

Fig. 3. Average maximum transaction retries for the Banking/Vacation scenario

existing CMP (in this case Karma), without degrading the performance with
respect to resolving concurrent conflicts. Conversely, as semantic conflicts are
introduced, neither Karma or Polka can approach the effectiveness of Hugh2
in terms of transaction throughput. Although Polka almost always produces a
higher throughput than Karma, neither approach maintains good performance
when semantic conflicts are present (regardless of scenario). Throughput also
diminishes for Hugh2, in the case of 50% semantic conflicts and to a lesser ex-
tent with 100% semantic conflicts. This suggests that the greater occurrence of
threads producing concurrent conflicts has a negative impact on Hugh2.

4.2 Maximum Transaction Retries

Figure 3 presents results showing the average maximum retries for a transaction
during the bank and vacation scenarios respectively. The format of the graphs
in Figure 3 mirrors the previous results for transaction throughput with the
exception that the Y-axis now shows average retries. A higher average number
of retries is indicative of threads experiencing difficulty in resolving semantic
conflicts. Hence, we expected that the average maximum retries should increase
in tandem with an increase in semantic conflicts for the Polka and Karma man-
agers, whereas this should not be the case for the Hugh2 CMP.

Graphs 3(A) and 3(D) provide comparison between the Karma, Polka and
Hugh2 CMPs when no semantic conflicts are present. As expected, Polka CMP
produces the smallest average maximum retries (graphs 2(A) and 2(D) have
already shown that Polka produces the highest throughput in the absence of

Resolving Semantic Conflicts in Word Based Software Transactional Memory 473

semantic conflicts). In Graphs 3(B) and 3(E), however, semantic conflicts have
been introduced at a rate of 50% (half the threads in the scenario generate
semantic transactions in the case of thread numbers: 4, 8 and 16). A substantial
increase in average maximum transaction retries is now observable in all CMPs,
although Hugh2 produces the best performance.

In Graphs 3(C) and 3(F), semantic transactions are being created by 100% of
threads. Once again the average maximum number of retries has increased for
both Karma and Polka CMPs. In the case of Hugh2, the average maximum has
fallen, with neither Karma or Polka tackling semantic conflicts more effectively
than Hugh2. In addition, there is only a negligible difference in performance
between Polka and Karma (suggesting that neither policy is more effective at
resolving semantic conflicts).

5 Conclusion

This paper presents Hugh2, a CMP which deals with semantic conflicts via the
speculative execution of aborted transactions. We have described how Hugh2 can
be integrated with a word based STM using a new session locking mechanism.
Two substantial benchmarks demonstrated performance improvements once se-
mantic conflicts are introduced. Given that Hugh2 can be incorporated with any
existing CMP, it would be interesting to test the performance of Hugh2 against
a wider range of CMPs. In addition, incorporating semantic conflicts into the
remaining STAMP benchmarks may be useful in order to observe how semantic
conflicts affect a diverse range of scenarios.

Going forward, we believe the session lock mechanism raises some exciting
possibilities for exploring our work within a distributed STM application. In par-
ticular, session locks may provide a greater scalability in the context of DSTM,
given session locks may be shared across threads and need not be explicitly
unlocked.

References

1. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 48–60. ACM (2005)

2. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg
(2006)

3. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. In: ACM SIGPLAN Notices, vol. 41, pp. 253–262.
ACM (2006)

4. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pp. 237–246. ACM
(2008)

474 C. Sharp, W. Blewitt, and G. Morgan

5. Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In:
ACM Sigplan Notices, vol. 44, pp. 155–165. ACM (2009)

6. Felber, P., Fetzer, C., Marlier, P., Riegel, T.: Time-based software transactional
memory. IEEE Transactions on Parallel and Distributed Systems 21(12), 1793–1807
(2010)

7. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional
applications for multi-processing. In: IEEE International Symposium on Workload
Characterization, IISWC 2008, pp. 35–46. IEEE (2008)

8. Sharp, C., Morgan, G.: Hugh: A semantically aware universal construction for
transactional memory systems. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par
2013. LNCS, vol. 8097, pp. 470–481. Springer, Heidelberg (2013)

9. Sharp, C., Morgan, G.: Introducing semantic conflict resolution to word based
software transactional memory. Technical report, 10 p. Newcastle University, UK
(2014)

10. Guerraoui, R., Herlihy, M., Pochon, B.: Towards a theory of transactional con-
tention managers. In: Annual ACM Symposium on Principles of Distributed Com-
puting: Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of
Distributed Computing, vol. 23, pp. 316–317 (2006)

11. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic
software transactional memory. In: Proceedings of the Twenty-fourth Annual ACM
Symposium on Principles of Distributed Computing, pp. 240–248. ACM (2005)

12. Heber, T., Hendler, D., Suissa, A.: On the impact of serializing contention manage-
ment on stm performance. Journal of Parallel and Distributed Computing (2012)

13. Bai, T., Shen, X., Zhang, C., Scherer, W., Ding, C., Scott, M.: A key-based adaptive
transactional memory executor. In: IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2007, pp. 1–8. IEEE (2007)

14. Dolev, S., Hendler, D., Suissa, A.: Car-stm: Scheduling-based collision avoidance
and resolution for software transactional memory. In: Proceedings of the Twenty-
seventh ACM Symposium on Principles of Distributed Computing, pp. 125–134.
ACM (2008)

15. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-
abort: Improving transactional memory performance through dynamic transaction
reordering. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.)
HiPEAC 2009. LNCS, vol. 5409, pp. 4–18. Springer, Heidelberg (2009)

16. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 13(1), 124–149 (1991)

17. Wamhoff, J., Fetzer, C.: The universal transactional memory construction. Tech-
nical report, 12 p. University of Dresden, Germany (2010)

18. Chuong, P., Ellen, F., Ramachandran, V.: A universal construction for wait-free
transaction friendly data structures. In: Proceedings of the 22nd ACM Symposium
on Parallelism in Algorithms and Architectures, pp. 335–344. ACM (2010)

19. Crain, T., Imbs, D., Raynal, M.: Towards a universal construction for transaction-
based multiprocess programs. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A.
(eds.) ICDCN 2012. LNCS, vol. 7129, pp. 61–75. Springer, Heidelberg (2012)

20. Barreto, J., Dragojevic, A., Ferreira, P., Filipe, R., Guerraoui, R.: Unifying thread-
level speculation and transactional memory. In: Narasimhan, P., Triantafillou, P.
(eds.) Middleware 2012. LNCS, vol. 7662, pp. 187–207. Springer, Heidelberg (2012)

Automatic Tuning of the Parallelism Degree
in Hardware Transactional Memory�

Diego Rughetti1, Paolo Romano2, Francesco Quaglia1, and Bruno Ciciani1

1 Sapienza Universita’ di Roma, Italy
2 Instituto Superior Técnico, Universidade de Lisboa/INESC-ID, Portugal

Abstract. Transactional Memory (TM) is an emerging paradigm that promises
to ease the development of parallel applications. Due to its inherently specula-
tive nature, however, TM can suffer of performance degradations in presence of
conflict intensive workloads.

A key technique to tackle this issue consists in dynamically regulating the
number of concurrent threads, which allows for selecting the concurrency level
that best fits the intrinsic parallelism of specific applications. In this area, several
self-tuning approaches have been proposed for Software-based implementations
of TM (STM). In this paper we investigate the effectiveness of these techniques
when applied to Hardware TM (HTM), a theme that is particularly relevant and
timely given the recent integration of hardware supports for TM in next generation
of mainstream Intel processors. Our study, conducted on Intel’s implementation
of HTM, identifies several issues associated with the employment of techniques
originally conceived for STM. Motivated by these findings, we propose an inno-
vative machine learning based technique explicitly designed to take into account
peculiarities of HTM systems, and demonstrate its advantages, in terms of higher
accuracy and shorter learning times, using the STAMP benchmark suite.

1 Introduction

Transactional Memory (TM) [12,20] is an attractive programming paradigm for devel-
oping parallel/concurrent applications. By relying on the notion of atomic transaction,
TM stands as a simper alternative to traditional lock-based synchronization. In more
detail, with TM code blocks accessing shared-data can be marked as transactions. The
complexity associated with enforcing coherency of concurrent data accesses is then del-
egated to the TM layer, rather than to any hand crafted synchronization scheme defined
by the programmer. The maturing of the intense research that targeted TM over the
last decade has recently led to the development of TM supports for the most popular
open source compiler (GCC), and to the integration of hardware implementations of
TM (HTM) in the last generations of processors produced by major vendors, such as
Intel or IBM.

Even though TM shows a big potential for simplifying the software development
process, another aspect that is central for the success of TM systems is the actual level

� This work was supported by national funds through FCT (Fundação para a Ciência e Tecnolo-
gia) under project PEst-OE/EEI/LA0021/2013, by the COST Action IC1001 Euro-TM and by
project GreenTM EXPL/EEI-ESS/0361/2013.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 475–486, 2014.
c© Springer International Publishing Switzerland 2014

476 D. Rughetti et al.

of performance they can deliver. In such a context, one core issue to cope with is related
to maximize parallelism, while avoiding thrashing phenomena due to excessive data
contention and high transaction abort rates.

For the case of Software-based implementations of TM (STM), several approaches
have been proposed to cope with thrashing avoidance (see, e.g., [5,18,1,2,23]). One of
the key techniques exploited in these approaches consists in (dynamically) regulating
the actual level of concurrency, i.e. the number of concurrently active threads. All these
approaches rely on performance models (either white-box, e.g. analytic [18,5], or black-
box, e.g. machine-learning [1]), which are used to predict the expected performance,
depending on the application’s workload, while varying the number of threads.

On the other hand, we are not aware of any study in literature that investigates the
issue of how to optimize the degree of parallelism in HTM systems. In this paper we
aim to fill this gap, whose relevance is particularly strong given the recent integration
of HTM in mainstream processors. We start by showing that the problem cannot be
effectively addressed by reusing techniques originally conceived to operate in STM
contexts, due to two key reasons:

1. Existing techniques targeting STM rely on models that do not consider transac-
tion abort causes that are specific to HTM, and that are completely absent in STM
systems. Particularly, in HTM a large number of transaction aborts is due to ca-
pacity constraints of processors’ caches, as well as to a plethora of different micro-
architectural reasons [13] (e.g. interrupts, faults or traps).

2. STM-oriented approaches are typically based on software instrumentation and run-
time monitoring of specific parameters (whose values serve as input to instantiate
performance models aimed to guide concurrency optimization). Monitoring these
same parameters in the context of HTM is however unaffordable: existing HTM
implementations do not externalize them, and monitoring them at the software level
would induce overheads analogous to those of implementing an STM, defeating the
whole purpose of HTM.

In the light of these considerations, this paper makes an additional contribution, by
proposing a novel machine learning based technique to dynamically adapt the concur-
rency degree of HTM-based applications. The proposed self-tuning mechanism is ex-
plicitly designed to take into account the peculiarities of HTM systems, and avoids the
issues that affect existing STM-oriented solutions. Via an extensive experimental evalu-
ation based on the well known STAMP benchmark suite [14], and on a HTM-equipped
Intel Haswell processor (8 virtual cores - 4 physical with hyper-threading), we show
that the proposed approach achieves, on average, twice the accuracy of existing meth-
ods, while imposing negligible overheads and abating learning times dramatically.

The remainder of this paper is structured as follows. Section 2 discusses the state of
the art on adaptive solutions for TM systems. In Section 3, we discuss issues associated
with the employment, in the context of HTM, of solutions originally designed to self-
tune the degree of parallelism in STM. Section 4 presents the proposed solution for
optimizing the parallelism level in HTM applications. Section 5 presents the results
of the experimental evaluation based on the STAMP benchmark. Finally, Section 6
concludes the paper.

Automatic Tuning of the Parallelism Degree in HTM 477

2 Related Work

Several analytical models of STM [17,11] have been presented in literature. These mod-
els adopt a white-box approach to capture execution dynamics of STM and allow for
predicting applications’ performance in different configurations. Employing these tech-
niques for the self-tuning of HTM systems is however infeasible for several of reasons.
First, as they rely on white-box models tailored to STM, they fail to capture important
peculiar aspects of HTM, in particular aborts induced by hardware-imposed restrictions.
Further, these solutions typically require extensive instrumentation to gather a large set
of parameters that serve as input for the white-box performance prediction model. Such
instrumentation is not supported by existing HTM, and implementing it via software
would induce unaffordable overheads, as we will also show in Section 3.

Other works have been based on black-box approaches, relying on various types
of statistical/machine learning techniques to capture STM performance trends. These
include techniques based on fitting to predetermined families of functions [8,16], or
more generic regressors such as neural networks [15] and decision trees [5]. As we will
discuss in more detail in the next section, employing these techniques in HTM systems
would induce prohibitive instrumentation overheads. Also, being designed to operate in
STM environments, the input parameters used by these models turn out to be inadequate
to capture the proper dynamics of HTM.

Other black-box approaches adopt a model-free feedback-based method, implement-
ing hill-climbing techniques that adapt the parallelism degree by reacting to variations
of some key performance indicator, such as throughput [4] or abort rate [1]. Due to
their model-free/exploratory nature, these approaches suffer of two main issues: slow
convergence to the optimal solution [19], and risk of being trapped in local maxima.

Another related topic is transaction scheduling [23,9], in which the mapping of trans-
actions to threads is dynamically adapted in order to minimize data contention. Such
a technique has the effect of adapting the degree of parallelism, because rescheduled
threads are removed from the execution for a while. Existing scheduling techniques
employ different types of information, ranging from high level statistics on the abort
ratio [23], to details on transaction’s readset and writeset [9]. As already discussed, ob-
taining information on transactions’ data access patterns is not feasible with existing
HTM implementations.

Other related works, exploit machine learning to optimize orthogonal configuration
parameters of STM, such as selecting the best performing conflict detection and man-
agement algorithm [22] or the most suitable mapping of threads to CPU-cores [3].

Our work is also related to recent research in the area of performance evaluation of
HTM, both for Intel [7,10] and IBM implementations [21]. To the best of our knowl-
edge, the only existing work in the area of self-tuning for HTM [6] copes with an issue
orthogonal to the one tackled in this work, namely the tuning of the retry logic and
fall-back path.

3 Concurrency Regulation Approaches: STM vs HTM

In this section we assess the effectiveness of existing approaches for self-tuning the
degree of parallelism of STM, when employed in the context of HTM. We focus our

478 D. Rughetti et al.

study on model-based approaches that rely on machine learning [15,16]. This choice is
motivated by the fact that, as discussed in Section 2, we are not aware of any analytical
model capable of predicting the performance of HTM. Also, model-based approaches
are known to achieve faster convergence than model-free ones [19], and avoid the issue
of getting stuck in local maxima.

The performance models adopted in these approaches [15,16] aim at predicting the
transaction wasted time (namely the CPU time spent in the execution of transaction
instances that are eventually aborted) as a function of the number of concurrent threads.
These models take as input a set of parameters, some of which are used to capture the
data access pattern, and provide in output the expected wasted time. Specifically, these
models can be seen as implementing the following function:

wtime = f(rssize, wssize, rwaff , wwaff , ttime, ntctime, k) (1)

where k denotes the number of concurrent threads supposed to run the application,
wtime is the average transaction wasted time, rssize (resp. wssize) is the average read-
set (resp. write-set) size of transactions, rwaff – read-write affinity (resp. wwaff –
write-write affinity) is an index providing an estimation of the likelihood that an object
read (resp. written) by a transaction is also written by another transaction, ttime is the
average execution time of the committed transaction runs, and ntctime is the average
execution time of non-transactional code blocks. As for the latter parameter, it is typical
for TM applications interleave, in the same thread, the execution of transactional and
non-transactional code blocks. The non-transactional blocks are typically used for tasks
such as the interaction with an external user/application and/or the acquisition of input
parameters for the transaction to be run.

In the solutions in [15,16] the shape of the function f is determined either by fit-
ting data in the training set using generic neural networks, or by using a specialized
family of analytical functions (which is used to build sub-functions whose composition
determines the actual shape of f). In both cases, the predicted value of the transaction
wasted time is used to compute the value of the expression k/(wtime+ttime+ntctime),
which represents the system throughput, and so to predict the value of k that is expected
to maximize the throughput.

As pointed out before, both approaches rely on the run-time monitoring of the input
parameters of function f . This is requested both for the initial model instantiation phase,
as well as for performance prediction and concurrency regulation (once the application
is already deployed). Particularly, the run-time monitoring of rssize , wssize, rwaff

and wwaff allows for determining whether workload shifts occur, which may require
a change of the parallelism degree k in order to ensure optimal performance.

These approaches adopt a further refinement of the performance model, which takes
into account the fact that, besides wtime, also ttime and ntctime can actually vary sig-
nificantly with k. This phenomenon is imputable to hardware level contention, such as
cross-core cache contention at lower cache-levels in the multi-core architecture. Hence,
the observed values of ttime and ntctime cannot be immediately used as input to the
function f when carrying out predictions with values of k different from the ones used
when those values were observed. Rather, correction functions are used to predict the
values of ttime and ntctime in the target configuration of the parallelism level for which

Automatic Tuning of the Parallelism Degree in HTM 479

Fig. 1. STM-oriented concurrency regulation architecture

estimation is being carried out. These correction functions are typically much simpler
than f (in fact, they are often linear), and have been shown to be identifiable in various
ways, e.g., via a simple polynomial regression approach [16]. Overall, the final equation
used for dynamically computing the best suited parallelism level, via maximization vs
the value of k, is

k

wtime,k + ttime,k + ntctime,k
(2)

where the subscript ’k’ exactly expresses the above depicted parameter dependency
(also involving ttime and ntctime). The architecture that has been proposed for exploit-
ing the above model in order to dynamically regulate concurrency in STM systems is
schematized in Figure 1.

When porting the above approaches (that are naturally conceived for STM) on top of
HTM-based systems, the following two issues arise:
1. Monitoring overhead - tracing the features to be used as input to the performance

model in Eq. 1 would be too costly in HTM. Specifically, obtaining information on
readset/writeset size would require instrumenting every single transactional opera-
tion, paying a cost analogous to the one paid when handling transactional
accesses via software techniques (just like in STM). Also, the relative cost for com-
puting parameters like rwaff and wwaff (which are based on the scalar product
of relative read/write access rates to individual transactional objects kept by the
TM) would dominate, when compared to the actual transaction processing time in
HTM based systems. These overheads would hinder performance severely, espe-
cially when considering that the key advantage of HTM systems is to avoid any
cost related to additional software instrumentation.

2. Inadequacy of the input features - as already mentioned, a key difference between
STM and HTM is that, in the former, data conflicts are the unique source of trans-
action aborts. In fact, the input parameters for Eq. 1, used as the base performance
model by the works in [15,16], are targeted to characterise the data access profile as
the unique cause for transaction aborts, and do not capture the dynamics of aborts
due to architectural constraints. As shown in Table 1, this kind of aborts actually rep-
resents the dominant source of aborts for all the STAMP benchmark applications.

480 D. Rughetti et al.

Table 1. Abort reasons

Benchmark conflict capacity other
vacation 1% 41% 58%
kmeans 0% 2% 98%
genome 1% 35% 64%
intruder 1% 40% 59%
labyrinth 0% 79% 21%

ssca2 0% 2% 98%
yada 34% 37% 29%

Table 2. Sampling overhead

Conc. level kmeans intruder genome
1 2% 3% 3%
2 2% 4% 3, 5%
3 3% 1, 3% 3, 5%
4 2% 1, 8% 1, 3%
5 4% 0, 1% 3, 5%
6 3, 5% 0, 1% 3%
7 1, 6% 0, 1% 3, 5%
8 4, 5% 4, 5% 1, 7%

Hence, the need for devising models capable of explicitly capturing these phenom-
ena, and to overcome the inadequacy of existing STM-oriented models.

These considerations led us to reconsider the set of input parameters to be used in
the performance model, and to investigate on the ability of the following variant of the
model to capture the dynamics proper of HTM:

wtime = f(ttime, ntctime, abortconflict, abortcapacity, abortother, k) (3)

where ttime and ntctime have the already explained meaning, whereas the explana-
tion of the other parameters is the following: abortconflict is the abort rate due to
data-conflict, abortcapacity is the abort rate due to overflows of cache capacity, and
abortother is the abort rate due to other architectural reasons.

We evaluated this approach considering an instantiation of Eq. 3 based on neural
networks, and two alternative instantiations of the correction function for ttime and
ntctime, one using linear regression and the other using again neural networks (NN).
We refer to the whole approach as 2-layered, due to the presence of the correction
function. Table 3 shows the discrepancy in the throughput (compared to the optimal
throughput, statically determined by exploring all the concurrency levels between 1 and
8 for all the different phases of each benchmark run) which is achieved by regulating
concurrency via the reliance on the model in Eq. 3. Instead, in Table 2 we report the
run-time monitoring overhead for sampling the input parameters of the performance
model as the number of thread varies (again between 1 and 8). We can see that the sam-
pling overhead is very limited, confirming the adequacy of our choice in relation to the
input features for the performance model in Eq. 3, from the perspective of efficiency.
Concerning effectiveness while regulating concurrency, which is a reflection of the per-
formance model accuracy, the results are less exciting, with errors (expressed in terms
of throughput penalty with respect to the optimal achievable throughput) of up to 18%
for the approach using linear regression, and 15% for the one using neural networks.

The key reason for this is that, contrary to the base performance model developed
for STM (expressed by Eq. 1), in the proposed model for HTM in Eq. 3, all the input
parameters may exhibit a dependency on the level of parallelism. So specific correc-
tion functions should be used for each of them (which might exhibit non-linear shape),
increasing significantly the complexity of the approach, and ultimately degrading its
accuracy. In order to back this claim, in the third column of Table 3 we provide data
related to the performance that could be reached by the 2-layered approach if a set of

Automatic Tuning of the Parallelism Degree in HTM 481

Table 3. Throughput penalty with the 2-layered approach

Benchmark 2-layered-linear 2-layered-NN 2-layered-optimal
intruder 8% 6, 3% 3, 2%
genome 10% 4, 4% 2, 7%
kmeans 18% 15% 5, 6%
vacation 18% 14% 3, 4%

ssca2 0, 80% 0, 74% 0, 55%
yada 0% 0% 0%

labyrinth 10% 9% 3, 2%

optimal correction functions for input parameters were available. As we can see com-
paring the third column with the first two, the performance delivered by the 2-layered
approach strictly depends on the accuracy of the correction functions.

4 A Classification Based Approach

In order to cope with the issues pointed out in the previous section, we worked on an
alternative way of approaching the problem of instantiating the performance model used
to guide the adaptation of the concurrency level. To this end, we cast the performance
prediction problem as a classification, and not a regression, problem. Specifically, given
a workload profile, instead of predicting the system performance for every possible
concurrency level (and then picking the optimal one), we aim to determine directly the
optimal parallelism level, among the (finite set of) possible ones.

In this way we operate according to a “1-step” approach that does not require the
use of correction functions, which were shown to be the Achilles’ heel of existing ap-
proaches in Section 3. We decided to use and compare two different machine learning
approaches to cope with this classification problem: Decision Trees and Neural Net-
works. However, as we will see in Section 5, both the algorithms provide very similar
accuracy levels.

The fulcrum of the new approach is the construction of the training set for the clas-
sification algorithms. Particularly, each sample we relied on is a couple < i,o > where
i = [ttime,ntctime,abortconflict, abortcapacity , abortother] and o = [kopt], with kopt
representing the optimal level of parallelism, namely the concurrency level that ensures
the best throughput given the workload profile expressed by i.

The training set can be populated by executing a few runs of the application with
different inputs and configuration parameters. For each input, the application is exe-
cuted for any level of parallelism, namely varying the number of threads from 1 to the
maximum number of hardware-threads supported by the target system. This way, for
each workload/configuration tested during the training phase, it is always possible to
determine the best performing concurrency level.

As we will show in Section 5, the new approach achieves consistently better accu-
racy than the 2-layered approach based on the performance model expressed by Eq. 3,
namely the variation of the STM performance model originally exploited in [15,16].
Further, a relevant advantage of the new approach, beyond its higher accuracy, consists

482 D. Rughetti et al.

of its simplicity. On the other hand, a drawback with respect to the 2-layered approach,
is that it does not allow to estimate the absolute performance achievable when using a
degree of parallelism not considered in the training phase, which could be instead use-
ful, for instance, to support what-if analysis. This aspect is inter-twinned with, e.g., pro-
visioning processes in the Cloud, since what-if analysis with non-observed parallelism
levels may lead to planning for provisioning adequately powerful multi-core machines
(or scaling up/down already in use resources) in order to meet specific performance lev-
els (while optimizing the costs). On the other hand, the new 1-step approach based on
classification is targeted at optimizing the application run-time in scenarios where the
available resources (and hence the set of possible parallelism levels for the hosted appli-
cation) are known and could be tested during the training phase used to instantiate the
performance model. Note that this is a means for optimizing already done investments.

5 Experimental Results

In this section we report experimental data for a comparison between the 2-layered
approach derived by adapting the proposals in [16], [15] and the new classification
based approach. We executed our tests on top of system equipped with an Intel Haswell
Xeon E3-1275 3,5 GHz processor (8 virtual cores: 4 physical with hyper-treading1) with
32 GB RAM. Intel TSX extension (i.e., Intel’s implementation of HTM) requires that a
software-based fall-back method is specified, in case a transaction cannot be executed
in hardware. In the evaluation we consider a fall-back path based on a single global
lock. We keep on relying on the STAMP benchmark suite [14] also in this comparative
study.

Let us start by analyzing the results considering the usage of a global lock on the fall-
back path. Table 4 shows the mean penalty, with respect to the optimal throughput, due
to wrong concurrency level choices. The first and the second columns report results for
the classification approach implemented resp. with decision trees and neural networks.
The third and fourth columns show results for the 2-layered approach using neural
networks for the performance prediction model, and linear regression (column 3) or
neural networks (column 4) for the correction function. Note that for all the considered
approaches we are here considering the set of features specified by Eq. 3.

As we can see by comparing the first two columns, excluding the row related to
the Intruder benchmark, using neural network or decision tree to implement classifica-
tion approaches yields approximately the same performance. Looking at the third and
fourth column, it emerges clearly that the proposed classification approach can pro-
vide significant benefits in terms of accuracy: the average throughput penalty (across
all benchmarks) is in fact equal to 3, 71% and 3, 39%, for the classification-based ap-
proach using, respectively, decision tree (DT) and neural network (NN), whereas the
average throughput penalty for the 2-layered approach is of about 9, 33% when using
a linear correction function and of approximately 7, 06% when using neural networks.
This means, on average, a relative increase of accuracy by a factor 2.

1 At the time of writing, this is the largest degree of parallelism achievable using HTM-equipped
Intel processors.

Automatic Tuning of the Parallelism Degree in HTM 483

Table 4. Throughput penalty comparison

Benchmark classification-DT classification-NN 2-layered-linear 2-layered-NN
intruder 7, 8% 2, 7% 8% 6, 3%
genome 5, 2% 7, 1% 10% 4, 4%
kmeans 5, 4% 5, 9% 18% 15%
vacation 3, 1% 3, 8% 18% 14%

ssca2 0, 70% 0, 72% 0, 80% 0, 74%
yada 0% 0% 0% 0%

labyrinth 3, 8% 3, 5% 10% 9%

average 3, 71% 3, 39% 9, 33% 7, 06%

The graphs in Figure 2 show how the performance penalty due to wrong prediction
varies with respect to the number of samples used to train two different performance
predictors, the one based on the proposed classification approach and the one based on
the 2-layered approach. Each point is the mean value of the results of experiments exe-
cuted with a fixed number of predictors that have been trained varying the composition
of the training set and the configuration of the predictors (e.g. the number of hidden
nodes in the neural networks). If we look at the left graph, which shows the results
for the labyrinth, genome and kmeans benchmarks, we can see that the classification
approach consistently outperforms the 2-layered one. Moreover the proposed approach
requires less samples to ensure optimal performance and presents less variation in the
results as shown by the bars on top of the histograms. These trends are confirmed by the
right graph, which shows the performance penalty for other three benchmarks, namely
intruder, vacation and ssca2. We avoid to present results related to the yada benchmark
because, as shown in Table 4, for this benchmark all the approaches always ensure
optimal performance (this is due to the fact that, at any point in time, the optimal con-
figuration for yada never varies).

 0

 10

 20

 30

 40

 50

50 100 200 400 800 1200

th
ro

ug
hp

ut
 p

en
al

ty
 (

%
)

training samples number

1-step labyrinth
2-layered labyrinth

1-step kmeans
2-layered kmeans

1-step genome
2-layered genome

 0

 10

 20

 30

 40

 50

50 100 200 400 800 1200

th
ro

ug
hp

ut
 p

en
al

ty
 (

%
)

training samples number

1-step intruder
2-layered intruder

1-step vacation
2-layered vacation

1-step ssca2
2-layered ssca2

Fig. 2. Performance penalty varying predictor’s training set size

The graphs in Figure 3 show the application speedup with respect to a non-
instrumented sequential version, while varying the degree of parallelism, for two bench-
marks of the STAMP suite, respectively Intruder and Genome. When running with no

484 D. Rughetti et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

sp
ee

du
p

Maximum concurrent threads

intruder

Adaptive
Not-adaptive

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

sp
ee

du
p

Maximum concurrent threads

genome

Adaptive
Not-adaptive

Fig. 3. Speedup

adaptive regulation of concurrency, we fix the degree of parallelism statically at start-up.
On the other hand, when considering the adaptive version, we set the initial and max-
imum parallelism level according to the value reported on the x-axis of the figure, but
then let the concurrency regulation mechanism adjust the parallelism level according to
the indications of the performance model.

For the Intruder benchmark, when increasing the level of parallelism, the perfor-
mance of the non-adaptive version of the application increases until it reaches a con-
currency level equal to 4. Beyond this optimal level of parallelism, the performance
decreases due to an excessive number of transaction aborts. The adaptive version of the
application, instead, is able to determine at runtime which is the optimal concurrency
level. As the dotted line in the graph shows, if we execute the application with a num-
ber of maximum available threads larger than 4, the adaptive version ensures the same
speed-up that the application can reach when it is executed with the optimal concur-
rency level. Similar results can be obtained with the Genome benchmark as shown by
the right plot.

Finally, in Figure 4 we report data showing the relative performance improvements
achievable by approaches that dynamically regulate concurrency vs the static case
where all the 8 available virtual cores are always employed for running the applica-
tion. In this study we considered both our 1-step proposal, based on machine learning,

 0

 0.5

 1

 1.5

 2

genome vacation intruder

re
la

tiv
e

sp
ee

du
p

w
rt

 th
e

st
at

ic
 c

as
e

Benchmark

static (8-threads fixed)
hill-climbing

1-step

Fig. 4. Speedup (vs the static configuration employing 8 threads) of hill-climbing [4] and 1-step

Automatic Tuning of the Parallelism Degree in HTM 485

and the hill climbing based technique investigated in [4]. The data refer to three differ-
ent benchmark applications from STAMP, namely genome vacation and intruder. The
plots highlight that the 1-step approach constantly outperforms the hill-climbing tech-
nique. This is as a result of the ability of the proposed approach to avoid sub-optimal
exploration phases (unlike hill-climbing) and of identifying the optimal configuration
in a prompt and accurate way.

6 Conclusions

In this paper we presented the results of a study aimed at evaluating the feasibility of
re-using concurrency regulation techniques originally conceived for STM systems, or
adaptations of them, in the context of HTM systems.

We have shown, also via experimentation, that these techniques do not fully fit HTM
scenarios for two main reasons. On the one hand, the inadequacy of the parameters
selected as input to the performance models used to drive the concurrency regulation
process. On the other hand, the overhead for the monitoring of the model’s input pa-
rameters, which becomes unaffordable in HTM.

We then devised and investigated a machine learning approach, based on classifica-
tion and specifically tailored for HTM, which we have shown to yield higher accuracy,
reduced overhead and shorter learning time. The assessment of this approach has been
based on experimental results achieved by running the STAMP benchmark suite on
top of a machine equipped with and Intel 8 virtual cores CPU (4 physical plus hyper-
threading) with HTM support.

As future work along the concurrency regulation path we plan to investigate how to
combine performance prediction models, and how to devise innovative models, for con-
texts where STM and HTM co-exist as an hybrid support for shared-data management
in parallel/concurrent applications.

References

1. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: Advanced con-
currency control for transactional memory using transaction commit rate. In: Luque, E.,
Margalef, T., Benı́tez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 719–728. Springer,
Heidelberg (2008)

2. Blake, G., Dreslinski, R.G., Mudge, T.: Proactive transaction scheduling for contention man-
agement. In: Proc. of MICRO, pp. 156–167. ACM (2009)

3. Castro, M., Goes, L.F.W., Ribeiro, C.P., Cole, M., Cintra, M., Mehaut, J.F.: A machine
learning-based approach for thread mapping on transactional memory applications. In: Proc.
of HiPC, pp. 1–10. IEEE Computer Society (2011)

4. Didona, D., Felber, P., Harmanci, D., Romano, P., Schenker, J.: Identifying the optimal level
of parallelism in transactional memory applications. In: Gramoli, V., Guerraoui, R. (eds.)
NETYS 2013. LNCS, vol. 7853, pp. 233–247. Springer, Heidelberg (2013)

5. Didona, D., Romano, P., Peluso, S., Quaglia, F.: Transactional auto scaler: elastic scaling of
in-memory transactional data grids. In: Proc. of ICAC, pp. 125–134. ACM (2012)

6. Diegues, N., Romano, P.: Self-tuning intel transactional synchronization extensions. In: Proc.
of ICAC (2014)

486 D. Rughetti et al.

7. Diegues, N., Romano, P., Rodrigues, L.: Virtues and limitations of commodity hardware
transactional memory. In: Proc. of PACT (2014)

8. Dragojević, A., Guerraoui, R.: Predicting the scalability of an STM: A pragmatic approach.
In: TRANSACT (2010)

9. Dragojević, A., Guerraoui, R., Singh, A.V., Singh, V.: Preventing versus curing: Avoiding
conflicts in transactional memories. In: Proc. of PODC, pp. 7–16. ACM (2009)

10. Goel, B., Titos, R., Negi, A., McKee, S.A., Stenstrom, P.: Performance and energy analysis
of the restricted transactional memory implementation on haswell. In: Proc. of IPDPS. IEEE
Computer Society (2014)

11. He, Z., Hong, B.: Modeling the run-time behavior of transactional memory. In: Proc. of
MASCOTS, pp. 307–315 (2010)

12. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data
structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

13. Intel Corporation: Intel Transactional Synchronization Extensions (Intel TSX) - Program-
ming Considerations

14. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transactional Appli-
cations for Multi-Processing. In: Proc. of IISWC, Seattle, WA, USA, pp. 35–46 (2008)

15. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Machine learning-based self-adjusting
concurrency in software transactional memory systems. In: Proc. of MASCOTS, pp. 278–285.
IEEE Computer Society (2012)

16. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Regulating concurrency in software trans-
actional memory: An effective model-based approach. In: Proc.of SASO. IEEE Computer
Society (2013)

17. di Sanzo, P., Ciciani, B., Palmieri, R., Quaglia, F., Romano, P.: On the analytical modeling
of concurrency control algorithms for software transactional memories: The case of commit-
time-locking. Performance Evaluation 69(5), 187–205 (2012)

18. di Sanzo, P., Palmieri, R., Ciciani, B., Quaglia, F., Romano, P.: Analytical modeling of
lock-based concurrency control with arbitrary transaction data access patterns. In: Proc. of
WOSP/SIPEW (2010)

19. Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E., Wierman, A.: How to determine
a good multi-programming level for external scheduling. In: Proc. of ICDE (2006)

20. Shavit, N., Touitou, D.: Software transactional memory. In: Proc. of PODC, pp. 204–213.
ACM (1995)

21. Wang, A., Gaudet, M., Wu, P., Ohmacht, M., Amaral, J.N., Barton, C., Silvera, R., Michael,
M.M.: Software support and evaluation of hardware transaction memory on blue gene/q.
IEEE Transactions on Computers 99 (2013)

22. Wang, Q., Kulkarni, S., Cavazos, J.V., Spear, M.: Towards applying machine learning to
adaptive transactional memory. In: Proc. of TRANSACT (2011)

23. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional memory systems.
In: Proc. of SPAA, pp. 169–178. ACM (2008)

A Distributed CPU-GPU Sparse Direct Solver

Piyush Sao1, Richard Vuduc1, and Xiaoye Sherry Li2

1 Georgia Institute of Technology
{piyush3,richie}@gatech.edu

2 Lawrence Berkeley National Laboratory
xsli@lbl.gov

Abstract. This paper presents the first hybrid MPI+OpenMP+CUDA
implementation of a distributed memory right-looking unsymmetric
sparse direct solver (i.e., sparse LU factorization) that uses static piv-
oting. While BLAS calls can account for more than 40% of the overall
factorization time, the difficulty is that small problem sizes dominate the
workload, making efficient GPU utilization challenging. This fact moti-
vates our approach, which is to find ways to aggregate collections of small
BLAS operations into larger ones; to schedule operations to achieve load
balance and hide long-latency operations, such as PCIe transfer; and to
exploit simultaneously all of a node’s available CPU cores and GPUs.

1 Introduction

Given a sparse matrix A, we consider the problem of factoring it into the product
A = L ·U , where L is a unit lower triangular matrix and U is an upper triangular
matrix. This problem (“sparse LU”) is usually the most expensive step in a sparse
direct solver, the use of which appears in a variety of computational science and
engineering applications. It typically needs a lot of memory, thereby benefiting
from the use of a distributed memory system. A natural question is, given the
increased reliance on some form of GPU-like acceleration for such systems, how
to exploit all forms of available parallelism, whether distributed memory, shared
memory, or “accelerated.”

The challenge is that sparse LU factorization is, computationally, neither
strictly dominated by arithmetic, like high-performance LINPACK is when A
is dense, nor is it strictly dominated by communication, as is often the case with
iterative linear solvers. Thus, it is an open question whether or by how much we
should expect to speed up sparse LU factorization using distributed CPU+GPU
machines [9]. Additionally, the facts of indirect irregular memory access, irregu-
lar parallelism, and a strong dependence on the input matrix’s structure—known
only at runtime—further complicate its implementation. These complications re-
quire carefully designed data structures and dynamic approaches to scheduling
and load balancing. Indeed, perhaps due to these myriad issues, there are many
studies offering distributed algorithms and hybrid single-node CPU+GPU im-
plementations but, to date, no fully distributed hybrid CPU+GPU sparse direct
solver of which we are aware (§ 2).

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 487–498, 2014.
c© Springer International Publishing Switzerland 2014

488 P. Sao, R. Vuduc, and X.S. Li

This paper presents the first such algorithm and implementation that can run
scalably on a cluster comprising hybrid CPU+GPU nodes. We extend an ex-
isting distributed memory sparse direct solver, SuperLU_DIST [5], by adding
CPU multithreading and GPU acceleration during the LU factorization step.
To effectively exploit intranode CPU and GPU parallelism, we use a variety of
techniques (§ 4). These include aggregating small computations to increase the
amount of compute-bound work; asynchronously assigning compute-bound work
to the GPU and memory-bound work to the CPU, thereby minimizing CPU-
GPU communication and improving system utilization; and careful scheduling
to hide various long-latency operations. We evaluate this implementation on test
problems derived from applications (§ 5). We show speedups of over 2× (§ 5) over
a highly scalable MPI-only code; and, provide the required explanation when our
approach does not yield speedups.

2 Related Work

The last five years have seen several research developments on accelerating sparse
factorization algorithms using GPUs. Most of these efforts rely on the GPU for
solving large dense matrix subproblems, performing any other processing on
the host CPU with data transfer as needed. There exist methods for multi-
frontal Cholesky [4,12,9,6]; and, in single-precision, left-looking sparse LU [8].
In essence, all of these methods use the GPU as a BLAS accelerator.

George et al. go beyond BLAS acceleration for their single-node multifrontal
sparse Cholesky algorithm, implemented in WSMP [3]. They examine three
compute-intensive kernels associated with each frontal matrix: factoring the
diagonal block, triangular solution, and Schur complement update. These com-
putations are selectively offloaded to the GPU depending on the workload dis-
tribution of the flops, which in turn depends on the input matrix. Their method
achieves 10-25× speedups over a single-core.

Yeralan et al. developed a sparse multifrontal QR factorization algorithm using
one CPU-GPU combination [11]. Since sparse QR has intrinsically higher arith-
metic intensity than sparse LU, the pay-off of GPU acceleration should be higher.

Our approach also offloads the most arithmetic-intensive part of the workload
to GPUs. However, one distinction of our work is that we aim to exploit the max-
imum available parallelism of a distributed memory system, namely, distributed
memory parallelism via MPI combined with intranode parallelism through mul-
tithreading and GPU acceleration. While our implementation is specific to Su-
perLU_DIST, we believe techniques discussed in this paper can be extended
to other direct solvers.

3 Overview of SuperLU_DIST

Solving a linear system Ax = b using SuperLU_DIST involves a number of
steps [10,7]. However, the most expensive step is numerical factorization, which
is the focus of this paper. For test matrices in our study, numerical factorization

A Distributed CPU-GPU Sparse Direct Solver 489

Algorithm 1. SuperLU_DIST Numerical Factorization
1: for k = 1, 2, 3 . . . ns do

Panel Factorization
2: Column computation of L:,k.
3: if pid ∈ Pc(k) then
4: compute the block column Lk:ns,k

5: (communicate Uk,k among Pc(k))
6: send Lk:ns,k to required processes in Pr(:)
7: else
8: receive Lk:ns,k if required

Row computation of Uk,:.
9: if pid ∈ Pr(k) then

10: wait for Uk,k

11: compute the block row Uk,k+1:ns

12: send Uk,k+1:ns to required processes in Pc(:)
13: else
14: receive Uk,k+1:ns if required

Schur Complement Update
15: if L:,k and Uk,: are locally non-empty then
16: for j = k + 1, k + 2, k + 3 . . . ns do
17: for i = k + 1, k + 2, k + 3 . . . ns do
18: if pid ∈ Pr(i) ∩ Pc(j) then
19: Ai,j ← Ai,j − Li,kUk,j

accounts for at least 75% of the total solve time, and in fact more often accounts
for 90% or more. Therefore, we focus on just the numerical factorization phase.
Accelerating the remaining steps is a good avenue for future research.

SuperLU_DIST uses a fan-out (right-looking, outer-product) supernodal al-
gorithm. A supernode is a set of consecutive columns of L with a dense triangular
block just below the diagonal and with the same nonzero structure below the tri-
angular block. To achieve good parallelism and load balance, the MPI processes
are assigned to the supernodal blocks in a 2D cyclic layout.

Algorithm 1 shows the pseudocode of the factorization algorithm, where ns is
the number of supernodes, pid is the ID of this process, and Pc(k) and Pr(k) are
the groups of processes assigned to the k-th supernodal column and the k-th su-
pernodal row, respectively. Step 1 is the k-th panel factorization, where the k-th
supernodal column of L and the k-th supernodal row of U are computed. Subse-
quently, each process in Pc(k) and Pr(k) sends its local blocks of the factors to
the processes assigned to the same row and column, respectively. Consequently,
Step 2 updates the trailing submatrix using the k-th supernodal column and row
of the LU factors. The block Ai,j is updated only if both blocks Li,k and Uk,j

are not empty. A more detailed description appears elsewhere [10].

4 New Intranode Enhancements

Our work enhances the intranode performance and scaling of alg. 1. The
panel factorization and row computation phases primarily are concerned with

490 P. Sao, R. Vuduc, and X.S. Li

communication. By contrast, the Schur complement update phase (lines 15–19)
is the local computation that dominates intranode performance. Thus, it is our
main target for optimization.

Baseline Schur complement update. The Schur complement update step at iter-
ation k of alg. 1 computes Ak+1,ns:k+1,ns as

Ak+1,ns:k+1,ns = Ak+1,ns:k+1,ns − Lk+1:ns,kUk,:k+1:ns . (1)

SuperLU_DIST uses an owner-computes strategy, where each process updates
the set of blocks, {Ai,j}, which it owns once it has received the required blocks
L:,k and Uk,:.

Each GEMM subproblem computes one Ai,j , which is line 19 of alg. 1. In the
baseline SuperLU_DIST implementation, a process updates each of its Ai,j

blocks in turn, traversing the matrix in a columnwise manner (outermost j-loop
at line 18 of alg. 1). The update takes place in three steps: packing the U block,
calling BLAS GEMM, and unpacking the result. We refer to the first two steps
as the GEMM phase, and the last step as the Scatter phase.

Packing allows the computation to use a highly optimized BLAS implemen-
tation of GEMM. Packing converts the Uk,j , which is stored in a sparse format,
into a dense BLAS-compliant column major format, Ũk,j . This packing takes
place once for each Uk,j . The Li,k operand need not be packed, as it is already
stored in a column major form as part of a rectangular supernode.

The second step is the BLAS GEMM call, which computes V ← Li,kŨk,j ,
where V is a temporary buffer.

The final Scatter step updates Ai,j by subtracting V from it. Since only the
nonzero rows of L and U are stored, the destination block Ai,j usually has more
nonzero rows and columns, than Li,k and Uk,j . Thus, this step must also map
the rows and columns of V to the rows and columns of Ai,j before the elements
of Ai,j can be updated, which involves indirect addressing. This final unpacking
step is what we refer to as the Scatter phase.

Aggregating small GEMM subproblems. Relative to the baseline (above), we
may increase the intensity of the GEMM phase by aggregating small GEMM
subproblems into a single, larger GEMM. This aggregated computation then
becomes a better target for GPU offload, though it also works well even in the
multicore CPU-only case.

Our approach to aggregation, illustrated in fig. 1, has two aspects. First,
we process an entire block column at once. That is, instead of calling GEMM
for every block multiply Li,kŨk,j , we aggregate the L-blocks in column k into a
single GEMM call that effectively computes V ← Lk+1:ns,kŨk,j , thereby reusing
Ũk,j . Secondly, the packed block Ũk,j may still have only a few nonzero columns.
Thus, we group multiple consecutive U -blocks to form a larger Ũk,jst:jend

block,
where jst and jend are the starting and the ending block indices. This large block
has some minimum number of columns Nb, a tuning parameter. We schedule
the computation of Lk+1:ns,kŨk,jst:jend

onto the GPU, using CUDA streams as
explained below.

A Distributed CPU-GPU Sparse Direct Solver 491

Fig. 1. Aggregating Small GEMM subproblems

Fig. 2. Overlapping GEMM with Scatter

Aggregation may increase the memory footprint relative to the baseline. In
particular, we may need to store a large U -block, Ũ , and a large intermediate
output, V . Our implementation preallocates these buffers, using Nb as a tunable
parameter to constrain their sizes.

Pipelined execution. Given aggregated GEMMs, we use a software pipelining
scheduling scheme to overlap copying the GEMM operands to the GPU with
execution of both the GEMMs themselves as well as the CPU Scatter.

Our pipelining scheme, illustrated in fig. 2, uses CUDA’s streams facility. Our
scheme divides Ũ into ns partitions, where ns is the number of desired CUDA
streams, a tuning parameter. To perform this division, our scheme first ensures
that each partition has a minimum of Nb columns. It also ensures that the
number of columns in each partition does not cross the boundary of the block
columns. It then uses a greedy algorithm to ensure that each partition has a
number of columns of at most the average number of columns, except for the
last partition which has all the remaining columns.

The pipelining begins with the transfer of L to the GPU. Now each CUDA
stream asynchronously initializes transfer of i-th partition, Ũi, and a CUDA

492 P. Sao, R. Vuduc, and X.S. Li

BLAS GEMM call to perform Vi ← LŨi, and transfer of Vi to the host. Once Vi

is copied back to the host, this Vi is scattered as soon as possible. We schedule the
GEMM and scatter of the first block column on CPU. This is done to minimize
idle time of CPU, while it waits for the first CUDA stream to finish transferring
the V1. Note that CUDA streams mainly facilitates overlap of CPU, GPU, and
PCIe transfer. The streams themselves may, but do not necessarily, overlap

CUDA streams facility carries a nontrivial setup overhead. Suppose asyn-
chronous CUDA calls take time ts to initialize, and the effective floating-point
throughput of the CPU is Fcpu operations per unit time. Then, offloading fewer
than tsFCPU would be slower than executing on the host. Our implementation
uses such a heuristic to decide whether offloading a particular GEMM phase to
the GPU will pay off, or otherwise executes on the CPU.

OpenMP parallelization of Scatter. We parallelized Scatter using OpenMP. There
are a number of ways to assign blocks to be scattered to threads. Prior work on
SuperLU_DIST used a block cyclic assignment [10]. However, we discovered
by experiment that particular static assignment can lead to severe load imbal-
ance. In addition, assigning one block to a thread can be inefficient since many
blocks may have very little work in each, leading to an overly fine grain size.

We address these issues as follows. When there are a sufficient number of
block columns, we schedule the Scatter of the entire block column to one thread
using OpenMP’s guided scheduling option. We also tried dynamic scheduling
options, but for our test cases, there was no significant difference in performance.
When there are fewer block columns than the number of threads, we switch from
parallelizing across block columns to parallelizing across block rows.

In addition, we also use OpenMP to parallelize the local work at the look-
ahead phase and the panel factorization phase. However, doing so does not
affect performance by much because these phases are dominated by MPI
communication.

5 Experiments and Results

We used two GPU clusters in our evaluation (table 2). We tested our implemen-
tations on the input matrices in table 2, which derive from real applications [2].

We evaluated 6 implementation variants. (All variants use double-precision
arithmetic, including on the GPU.) The baseline is SuperLU_DIST. We mod-
ified this baseline to include the BLAS aggregation technique of § 4. Since
all variants derive from SuperLU_DIST, they all include distributed memory
parallelism via MPI. Their mnemonic names describe what each variant adds to
the MPI-enabled baseline.

– MKL1 is the baseline, based on SuperLU_DIST Version 3.3 “out-of-the-
box.” It uses MPI-only within a node and uses Intel’s MKL, a vendor BLAS
library, running in single-threaded mode. This implementation is what we
hope to improve by exploiting intranode parallelism. Unless otherwise noted,

A Distributed CPU-GPU Sparse Direct Solver 493

Table 1. Evaluation testbeds for our experiments

Parameter Jinx-Cluster Dirac-GPU test bed

GPUs per node 2 1
Type of GPU Tesla M2090 “Fermi” Tesla C2050 “Fermi”

GPU double-precision peak 665 GF/sec 515 GF/sec
GPU DRAM / Bandwidth 6 GB / 177 GBytes/sec 3 GB / 144 GBytes/sec

Host Intel Xeon X5650 @2.67 GHz Intel Xeon X5530 @2.4 GHz
PCIe / Bandwidth PCIe x16 /8GB/s PCIe x16 /8GB/s

Sockets × Cores / socket 2× 6 2× 4
CPU double-precision peak 128 GF/sec 76.8 GF/sec

L3 Cache 2 × 12M 2× 8M
Memory 24GB 24GB

Network /Bandwidth InfiniBand/ 40 Gbit/s InfiniBand/ 32 Gbit/s

Table 2. Different test problems used for testing solvers. ∗ See the University of Florida
Sparse Matrix Collection [2]; † from NERSC users

Fill-in
Name n nnz nnz

n
symm Ratio Application

audikw_1∗ 943695 77651847 82.28 yes 31.43 structural
bone010∗ 986703 47851783 48.49 yes 43.52 model reduction
nd24k∗ 72000 28715634 398.82 yes 22.49 2D/3D

RM07R∗ 381689 37464962 98.15 no 78.00 fluid dynamics
dds.quad† 380698 15844364 41.61 no 20.18 cavity
matrix211† 801378 129413052 161.48 no 9.68 Nuclear Fusion
tdr190k† 1100242 43318292 39.37 no 20.43 Accelerator

Ga19As19H42∗ 133123 8884839 66.74 yes 182.16 quantum chemistry
TSOPF_RS_b2383_c1∗ 38120 16171169 424.21 no 3.44 power network

dielFilterV2real∗ 1157456 48538952 41.93 yes 22.39 electromagnetics

we try all numbers of MPI processes within a node up to 1 MPI process per
physical core, and report the performance of the best configuration.

– MKLp is the same as MKL1, but with multithreaded MKL instead. It uses 1
MPI process per socket; within each socket, it uses multithreaded MKL with
the number of threads equal to the physical cores per socket.

– {cuBLAS,Scatter} is MKLp but with most GEMM calls replaced by their
NVIDIA GPU counterpart, via the CUDA BLAS (or “cuBLAS”) library.
(Any other BLAS call uses MKLp.) Additionally, cuBLAS may execute asyn-
chronously; therefore, there may be an additional performance benefit from
partial overlap between cuBLAS and Scatter, as the mnemonic name sug-
gests. Like MKL1, we try various numbers of MPI processes per node and re-
port results for the best configuration. (When there are more MPI processes
than physical GPUs, the cuBLAS calls are automatically multiplexed.)

494 P. Sao, R. Vuduc, and X.S. Li

– OpenMP+MKL1 exploits intranode parallelism explicitly using OpenMP. It par-
allelizes all phases using OpenMP. For phases that use the BLAS, we use
explicit OpenMP parallelization and with single-threaded MKL. Scatter and
GEMM phases run in sequence, i.e., they do not overlap.

– OpenMP+{MKLp,cuBLAS} shares the work of the GEMM phase between both
the CPU and GPU, running them concurrently. This tends to reduce the
time spent in GEMM compared to OpenMP+MKL1 implementation, but may
not hide the cost completely.

– OpenMP+{MKLp,cuBLAS,Scatter}+pipeline adds pipelining to OpenMP+{MKLp,
cuBLAS}. We use ns = 16 CUDA streams and Nb = 128.

The first three implementations use implicit parallelism via multithreaded or
GPU-accelerated BLAS; the last three involve explicit parallelism. We used
Xs = 144 as maximum supernode size. To profile the computation’s execution
time, we use TAU. When we evaluate memory usage, we use the IPM tool [1].

Overall impact of intranode optimization. Our first analysis answers the ques-
tion, by how much can explicit intranode optimization techniques improve
performance above and beyond having a highly tuned multicore and/or GPU-
accelerated BLAS? These experiments use just two nodes of the cluster. The

1.0x1 0x0x000

1.5x1 5x5
1.6x1 66

2.5x2 55
3.0x3.0x0

0.7x0 7x7

1.0x1.0x0x.00
1.1x1

1.7x7
1.9x1 99

0.6x0 6x6
0.7x0 7x7

0.9x0 9x9 0.8x0 88

1.0x0

0.7x0 7x0 7

0.9x0.9x0 99
1.0x1.0x1 0x0

1.1x1 1x1

1.3x1 3x3

0.4x0 40 4

0.6x0 6x6

1.1x1 1x1x1
1.3x1 3x3 1.5x1 5x5

1.0x0

1.1x1 1x1 1.1x1 1x1

1.7x1.7x7
1.9x1 9x9

0.5x0 55

0.7x0.7x7

1.1x1 111

1.4x1 44
6x6x1.61 66

0.7x7

1.4x4
1.7x7

2.3x3
2.7x2 7x7

0.6x0.6x6
0.6x0 6x6

0.8x0 88

0.7x0.7x7

0.8x0.8x8

0.1x0 1x1

1x1x0.0 1

5x55x0.50 50.55 6x6x0.60 66 6x6x0.60 66

audikw_1 bone010 dds.quad dielFilterV2real Ga19As19H42

matrix211 nd24k RM07R tdr195k TSOPF_RS_b2383_c1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0
1
2
3
4
5
6
7
8
9

10
11
12
13

mkl1
mklp

{cublas,scatter}

omp +mkl1

omp +{mklp,c
ublas}

omp +{mklp,c
ublas,scatter} +

pipelining
mkl1

mklp

{cublas,scatter}

omp +mkl1

omp +{mklp,c
ublas}

omp +{mklp,c
ublas,scatter} +

pipelining
mkl1

mklp

{cublas,scatter}

omp +mkl1

omp +{mklp,c
ublas}

omp +{mklp,c
ublas,scatter} +

pipelining
mkl1

mklp

{cublas,scatter}

omp +mkl1

omp +{mklp,c
ublas}

omp +{mklp,c
ublas,scatter} +

pipelining
mkl1

mklp

{cublas,scatter}

omp +mkl1

omp +{mklp,c
ublas}

omp +{mklp,c
ublas,scatter} +

pipelining

R
el

at
iv

e
tim

e

Scatter DGEMM Other

Fig. 3. Performance of different implementations for different test problems on Jinx
cluster. Each bar is labeled by its speedup relative to the baseline (MKL1).

A Distributed CPU-GPU Sparse Direct Solver 495

results show best-case improvements of up to 3× using our techniques, and high-
light scenarios in which our methods may yield a slowdown.

We show results for the Jinx system in fig. 3. (Dirac results are similar [7],
and so omitted for space.) It shows time (y-axis) versus implementation variant
(x-axis) for a given matrix. The time is normalized to the baseline, with actual
baseline execution times in the range of 10 to 1,000 seconds (not shown). Each
bar breaks down the execution time into its components, which correspond to
different phases of SuperLU. The GEMM phase and Scatter phase are as
described in § 4. The Scatter phase includes any CUDA stream setup and
wait time. The “Other” phase has three major components: MPI_Wait, MPI_Recv,
and triangular solve. When phases may overlap, the bar shows only the visible
execution time, i.e., the part of the execution time that does not overlap. Thus,
the total height of the bar is the visible wall-clock time.

Both the MKLp and {cuBLAS,Scatter} variants are slower or just comparable to
MKL1 in many cases. Though they may improve GEMM, Scatter and Other
may slowdown since they tend to improve with more MPI processes. Thus, only
relying on accelerating BLAS calls—whether by multithreading or offload—tends
not to yield a significant overall speedup, and can in fact decrease performance.

The OpenMP+MKL1 variant reduces the cost of Scatter and Other phases com-
pared to MKLp and {cuBLAS,Scatter}. While Other for OpenMP+MKL1 is better than
with MKL1, Scatter is worse. OpenMP+MKL1 often matches the baseline MKL1. The
OpenMP+{MKLp,cuBLAS} variant reduces the time spent in GEMM compared to
OpenMP+MKL1 implementation, but cannot hide the cost of GEMM completely.

Our combined OpenMP+{MKLp,cuBLAS,Scatter}+pipeline implementation out-
performs MKL1 on 7 of the 10 test matrices on either platform, yielding speedups
of up to 3× (fig. 3, audikw_1). Compared to MKL1, this variant hides the cost
of GEMM very well. However, Scatter still cannot achieve the same paral-
lel efficiency as with MKL1. The worst case occurs with TSOPF_RS_bs2383_c1,
which derives from a power network analysis application. On Jinx, it is nearly
2× slower than MKL1 (fig. 3). However, even with a slowdown our implementation
can reduce the memory requirement of this problem; see below.

Strong Scaling. Part of the benefit of intranode parallelism is to enhance strong
scaling. We consider this scenario, for configurations of up to 8 nodes and 64
cores (Dirac) or 96 cores (Jinx), showing results for Jinx in fig. 4. (Dirac results
are better than Jinx [7].) We present results for just two “extremes”: Matrix
nd24k, on which our implementation does well, and TSOPF_RS_b2383_c1, on which
it fairs somewhat poorly.

We focus on three of our implementationvariants: thebaseline MKL1, OpenMP+MKL1,
and OpenMP+{MKLp,cuBLAS,Scatter}+pipeline. For the MKL1 variant, we use 1 MPI
process per core. For OpenMP+MKL1 and OpenMP+{MKLp,cuBLAS,Scatter}+pipeline
cases, we use 1 MPI process per socket and one OpenMP thread per core.

Figure 4 shows scalability as a log-log plot of time (y-axis) versus configura-
tion as measured by the total number of cores (x-axis). Each series shows one
of the three implementation variants. Each column is a phase, with the leftmost
column, Total, showing scalability of the overall computation, inclusive of all

496 P. Sao, R. Vuduc, and X.S. Li

Total GEMM Scatter MPI Other

●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●●

●●●

●
●

●●●

●●●
●●●

●
●

●

●

●

●●●●

●

●

●

●

●

●●●

●
●

●
●

●

●●●

● ●

●

●●●

●
●

●
●

●

●●●

●

●

●

●●●●

1/512

1/256

1/128

1/64

1/32

1/16

1/8

1/4

1/2

1

2−12
2−11
2−10

1/512
1/256
1/128
1/64
1/32
1/16
1/8
1/4
1/2

1
2

n
d

2
4
k

T
S

O
P

F
_
R

S
_
b

2
3
8
3
_
c
1

1x6 1x122x124x128x121x6 1x122x124x128x121x6 1x122x124x128x121x6 1x122x124x128x121x6 1x122x124x128x12
(Nodes) x (Cores per node)

T
im

e
 (

s
e
c
)

● mpi +omp +gpu

Fig. 4. Strong scaling on up to 8 nodes (96 cores and 16 GPUs) on Jinx

phases. Time is always normalized by the total MKL1 time when running on the
smallest configuration (1 node and 1 socket), to reveal the relative time spent in
each phase. Dashed lines indicate ideal linear speedup for MKL1; perfect scaling
would be parallel to this line, while sublinear scaling would have a less steep
slope and superlinear scaling would have a more steep slope.

On Dirac (not shown), both test matrices exhibit good scaling behavior for
nearly all the phases; by contrast, Jinx scaling (fig. 4) exhibits sublinear be-
havior. At 96 cores and 16 GPUs (2 GPUs per node), all three implemen-
tations differ by only a little on nd24k. This is due largely to the relatively
poor scaling of the Other phase, which eventually becomes the bottleneck for
OpenMP+{MKLp,cuBLAS,Scatter}+pipeline.

On TSOPF_RS_b2383_c1, the baseline MKL1 is always fastest on both clusters,
when it ran successfully. On Jinx, there was not enough memory per node to ac-
commodate the 48 and 96 MPI processes cases, due to the fundamental memory
scaling requirement of SuperLU_DIST; for more analysis, see below.

Matrix TSOPF_RS_b2383_c1 case shows superlinear scaling. The Scatter phase
is a major contributing factor in cost. As noted previously, the Scatter phase
scales with increasing MPI processes, primarily due to better locality.

Overall, OpenMP+MKL1 shows good strong scaling. By contrast, the scaling of
OpenMP+{MKLp,cuBLAS,Scatter}+pipeline can be worse, as observed on Jinx. How-
ever, this owes largely to Amdahl’s Law effects due to Other. That component
is primarily a triangular solve step, which our work has not yet addressed.

Time and memory requirements. Sparse direct solvers like SuperLU_DIST
may exhibit a time-memory tradeoff. We show an example on three representa-
tive problems in fig. 5. This example includes nd24k, which shows common-case

A Distributed CPU-GPU Sparse Direct Solver 497

nd24k tdr190k TSOPF_RS_b2383_c1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1x8 2x4 4x2 8x1 1x8 2x4 4x2 8x1 1x8 2x4 4x2 8x1
(MPI processes) x (OMP threads)

T
im

e
 r

e
la

ti
v

e
 t

o
 8

x
1

Component Factorization MPI

(a) Time in MPI vs. compute

nd24k tdr190k TSOPF_RS_b2383_c1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1x8 2x4 4x2 8x1 1x8 2x4 4x2 8x1 1x8 2x4 4x2 8x1
(MPI processes) x (OMP threads)

M
e

m
o

ry
 r

e
la

ti
v

e
 t

o
 8

x
1

Component User MPI

(b) User vs. MPI-runtime memory

Fig. 5. Effect of intranode threading on memory and time

behavior; as well as TSOPF_RS_b2383_c1, which was a worst-case in execution time
for our approach. The experiment tests the OpenMP+MKL1 variant on one node of
Dirac, which has 8 cores per node, under all configurations of (# of MPI pro-
cesses) × (# of OpenMP threads) = 8.

Matrix TSOPF_RS_b2383_c1 exhibits the time-memory tradeoff. The Scatter
phase dominates execution time, as observed above; since Scatter scales with
MPI processes, the all-MPI configuration wins. However, memory usage actually
increases with increasing numbers of MPI processes. Among user allocated mem-
ory, it turns out that the memory required by the L and U factors remains fairly
constant, whereas the buffers used for MPI_Send and MPI_Recv increase. Memory
allocated by MPI runtime also increases. Thus, even if our intranode threading
approach is slower than the all-MPI case, there can be a large reduction in the
memory requirement.

6 Conclusions and Future Work

The high-level question this paper considers is how to exploit intranode par-
allelism in emerging CPU+GPU systems for distributed memory sparse direct
solvers. At the outset, one expects a highly tuned multicore and/or GPU BLAS
will yield much of the potential performance benefits. The real question, then, is
how much additional performance gain is possible from explicit parallelization.
Our results for SuperLU_DIST suggest that on today’s systems, there may be
up to a factor of 2× more to gain above and beyond BLAS-only parallelization.

Other avenues to pursue would include alternative accelerator platforms (e.g.,
Intel Xeon Phi, near-memory processing solutions); accelerating the Scatter

498 P. Sao, R. Vuduc, and X.S. Li

phase, which requires extensive data structure changes; deeper architecture-
dependent performance analysis; and evaluation of time-energy tradeoffs, which
we believe are present intrinsically in the SuperLU_DIST algorithm.

References

1. IPM : Integrated performance monitoring, http://ipm-hpc.sourceforge.net/
(accessed: January 26, 2014)

2. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans-
actions on Mathematical Software (TOMS) 38(1), 1 (2011)

3. George, T., Saxena, V., Gupta, A., Singh, A., Choudjury, A.: Multifrontal factor-
ization of sparse spd matrices on GPUs. In: Proc. of IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2011), Anchorage, Alaska, May
16-20 (2011)

4. Krawezik, G., Poole, G.: Accelerating the ANSYS direct sparse solver with GPUs.
In: Proc. Symposium on Application Accelerators in High Performance Computing
(SAAHPC). Urbana-Champaign, IL (2009),
http://saahpc.ncsa.illinois.edu/09

5. Li, X.S., Demmel, J.W.: SuperLU_DIST: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM Trans. Mathematical Soft-
ware 29(2), 110–140 (2003)

6. Lucas, R.F., Wagenbreth, G., Davis, D.M., Grimes, R.: Multifrontal computations
on GPUs and their multi-core hosts. In: Palma, J.M.L.M., Daydé, M., Marques, O.,
Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 71–82. Springer, Heidelberg
(2011), http://vecpar.fe.up.pt/2010/papers/5.php

7. Sao, P., Vuduc, R., Li, X.: A distributed CPU-GPU sparse direct solver. Technical
report, Georgia Institute of technology (2014)

8. Schenk, O., Christen, M., Burkhart, H.: Algorithmic performance studies on graph-
ics processing units. J. Parallel and Distributed Computing 68(10), 1360–1369
(2008)

9. Vuduc, R., Chandramowlishwaran, A., Choi, J., Guney, M., Shringarpure, A.: On
the limits of GPU acceleration. In: Proc. of the 2nd USENIX Conference on Hot
Topics in Parallelism, HotPar 2010, Berkeley, CA (2010)

10. Yamazaki, I., Li, X.S.: New scheduling strategies and hybrid programming for a
parallel right-looking sparse LU factorization algorithm on multicore cluster sys-
tems. In: 2012 IEEE 26th International Parallel & Distributed Processing Sympo-
sium (IPDPS), pp. 619–630. IEEE (2012)

11. Yeralan, S.N., Davis, T., Ranka, S.: Sparse QR factorization on gpu architectures.
Technical report, University of Florida (November 2013)

12. Yu, C.D., Wang, W., Pierce, D.: A CPU-GPU hybrid approach for the unsymmetric
multifrontal method. Parallel Computing 37, 759–770 (2011)

http://ipm-hpc.sourceforge.net/
http://saahpc.ncsa.illinois.edu/09
http://vecpar.fe.up.pt/2010/papers/5.php

Parallel Computation of Echelon Forms�

Jean-Guillaume Dumas1, Thierry Gautier2,
Clément Pernet3, and Ziad Sultan1,2

1 LJK-CASYS, UJF, CNRS, Inria, G’INP, UPMF, Grenoble, France
2 LIG-MOAIS UJF, CNRS, Inria, G’INP, UPMF, Grenoble, France

3 LIP-AriC UJF, CNRS, Inria, UCBL, ÉNS de Lyon, France

Abstract. We propose efficient parallel algorithms and implementations
on shared memory architectures of LU factorization over a finite field.
Compared to the corresponding numerical routines, we have identified
three main specifities of linear algebra over finite fields. First, the arith-
metic complexity could be dominated by modular reductions. Therefore,
it is mandatory to delay as much as possible these reductions while mix-
ing fine-grain parallelizations of tiled iterative and recursive algorithms.
Second, fast linear algebra variants, e.g., using Strassen-Winograd al-
gorithm, never suffer from instability and can thus be widely used in
cascade with the classical algorithms. There, trade-offs are to be made
between size of blocks well suited to those fast variants or to load and
communication balancing. Third, many applications over finite fields re-
quire the rank profile of the matrix (quite often rank deficient) rather
than the solution to a linear system. It is thus important to design par-
allel algorithms that preserve and compute this rank profile. Moreover,
as the rank profile is only discovered during the algorithm, block size has
then to be dynamic. We propose and compare several block decompo-
sitions: tile iterative with left-looking, right-looking and Crout variants,
slab and tile recursive. Experiments demonstrate that the tile recursive
variant performs better and matches the performance of reference nu-
merical software when no rank deficiency occurs. Furthermore, even in
the most heterogeneous case, namely when all pivot blocks are rank de-
ficient, we show that it is possbile to maintain a high efficiency.

1 Introduction

Triangular matrix factorization is a main building block in computational linear
algebra. Driven by a large range of applications in computational sciences, par-
allel numerical dense LU factorization has been intensively studied since several
decades which results in software of great maturity (e.g., LINPACK is used for
benchmarking the efficiency of the top 500 supercomputers. More recently, effi-
cient sequential exact linear algebra routines were developed [5]. They are used in
algebraic cryptanalysis, computational number theory, or integer linear program-
ming and they benefit from the experience in numerical linear algebra. In partic-
ular, a key point there is to embed the finite field elements in integers stored as

� This work is partly funded by the HPAC project of the French Agence Nationale de
la Recherche (ANR 11 BS02 013).

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 499–510, 2014.
c© Springer International Publishing Switzerland 2014

500 J.-G. Dumas et al.

floating point numbers, and then rely on the efficiency of the floating point matrix
multiplication dgemm of the BLAS. The conversion back to the finite field, done
by costly modular reductions, is delayed as much as possible. Hence a natural in-
gredient in the design of efficient dense linear algebra routines is the use of block
algorithms that result in gathering arithmetic operations in matrix-matrix mul-
tiplications. Those can take full advantage of vector instructions and have a high
computation per memory access rate, allowing to fully overlap the data accesses
by computations and hence deliver close to peak performance efficiency. In order
to exploit the power of multi-core and many-core architectures, we now investi-
gate the parallelization of the finite field linear algebra routines. We report in this
paper the conclusions of our experience in parallelizing exact LU decomposition
for shared memory parallel computers. We try to emphasize which specificities of
exact computation domains led us to use different approaches than that of nu-
merical linear algebra. In short, we will illustrate that numerical and exact LU
factorization mainly differ in the following aspects:

– the pivoting strategies,

– the cost of the arithmetic (of scalars and matrices),

– the treatment of rank deficiencies.

Those have a direct impact on the shape and granularity of the block decompo-
sition of the matrix used in the computation.

Types of block algorithms. Several schemes are used to design block linear al-
gebra algorithms: the splitting can occur on one dimension only, producing row
or column slabs [11], or both dimensions, producing tiles [2]. Note that, here,
we denote by tiles a partition of the matrix into sub-matrices in the mathemat-
ical sense regardless what the underlying data storage is. Algorithms processing
blocks can be either iterative or recursive. Figure 1 summarizes some of the
various existing block splitting obtained by combining these two aspects. Most
numerical dense Gaussian elimination algorithms, like in [2], use tiled iterative
block algorithms. In [4] the classic tiled iterative algorithm is combined with a
slab recursive one for the panel elimination. Over exact domains, recursive al-
gorithms are preferred to benefit from fast matrix arithmetic (see below). Slab
recursive exact algorithms can be found in [10] and references therein and [6]
presents a tiled recursive algorithm.

Slab iterative Slab recursive Tile iterative Tile recursive

Fig. 1. Main types of block splitting

Parallel Computation of Echelon Forms 501

The granularity is the block dimension (or the dimension of the smallest blocks in
recursive splittings). Matrices with dimensions below this threshold are treated
by a base-case variant (often referred to as the panel factorization). It is an
important parameter for optimizing efficiency: a finer grain allows more flexibil-
ity in the scheduling when running numerous cores, but it also challenges the
efficiency of the scheduler and can increase the bus traffic.

The cost of the arithmetic. In numerical linear algebra, the cost of arithmetic op-
erations is more or less associative: with dimensions above a rather low threshold
(typically a few hundreds), the BLAS sequential matrix multiplication attains
the peak efficiency of the processor. Hence the granularity has very little impact
on the efficiency of a block algorithm run sequentially. On the contrary, over
a finite field, a small granularity can imply a larger number of costly modular
reductions, as we will show in Section 3.1. Moreover, numerical stability is not
an issue over a finite field, and asymptotically fast matrix multiplication algo-
rithms, like Winograd’s variant of Strassen algorithm [8, §12] can be used on
top of the BLAS. Their speed-up increases with matrix dimension. The cost of
sequential matrix multiplication over finite field is therefore not associative: a
larger granularity delivers better sequential efficiency.

Pivoting strategies and rank deficiencies. In dense numerical linear algebra, a
pivoting strategy is a compromise between the two competing constraints: en-
suring good numerical stability and avoiding data movement. In the context of
dense exact linear algebra, stability is no longer an issue. Instead, only certain
pivoting strategies will reveal the echelon form or, equivalently, the rank profile
of the matrix [10,6]. This is a key invariant used in many applications using exact
Gaussian elimination, such as Gröbner basis computations [7] and computational
number theory [13].

In the case of numerical LU factorization, quite often all panel blocks have
full rank. Therfore the splitting can be done statically according to a granularity
parameter. Over exact domains, on the contrary, the large blocks are almost
always rank deficient. Thus, the tiles or slabs have unpredictable dimensions
and the block splitting necessarily dynamic, as will be illustrated in Section 4.

Consequently the design of a parallel exact matrix factorization necessarily
differs from the numerical algorithms as follows:

– granularity should be as large as possible, to reduce modular reductions and
benefit from fast matrix multiplication;

– exact algorithms should preferably be recursive, to group arithmetic opera-
tions in matrix products as large as possible;

– block splitting and pivoting strategies must preserve and reveal the rank
profile of the matrix.

It also implies several requirements on the parallel run-time being used:

– the block splitting has to be dynamically computed;
– the computing load for each task is not known in advance (some panel blocks

may have high rank deficiency), making the tasks very heterogeneous.

502 J.-G. Dumas et al.

This motivated us to look into parallel execution runtimes using tasks with
work-stealing based scheduling.

All experiments have been conducted on a 32 cores Intel Xeon E5-4620 2.2Ghz
(Sandy Bridge) with L3 cache(16384 KB). The numerical BLAS is ATLAS
v3.11.4, LAPACK v3.4.2 and PLASMA v2.5.0. We used X-KAAPI-2.1 version
with last git commit: xkaapi 2.1-30-g263c19c638788249. The gcc compiler ver-
sion used is gcc 4.8.2 that supports OpenMP 3.1.

We introduce in Section 2 the algorithmic building blocks on which our al-
gorithms will rely and the parallel programming models and runtimes that we
used in our experiments. In order to handle each problem separately, we focus
in Section 3 on the simpler case where no rank deficiency occur. In particular
Section 3.1 presents detailed analysis of the number of modular reductions re-
quired by various block algorithms including the tiled and slab recursive, the
left-looking, right-looking and Crout variants of the tiled iterative algorithm.
Lastly Section 4 deals with elimination with rank deficiencies. We there present
and compare new slab iterative, tiled iterative and tiled recursive parallel algo-
rithms that preserve rank profiles. We then show that the latter can match state
of the art numerical routines, even when taking rank deficiencies into account.

2 Preliminaries

2.1 Auxiliary Sequential Routines

All block algorithms that we will describe rely on four types of operations that
we denote using the BLAS/LAPACK naming convention:

gemm: general matrix multiplication, computing C ← αA×B + βC,
trsm: solving upper/lower triang. syst. with matrix right/left h.s B ← BU−1.
laswp: permuting rows or columns by sequence of swaps.
getrf: computing (P,L, U,Q), L and U stored in place of A, s.t. A = PLUQ.

A first prefix letter d or f specifies if the routine works over double precision
floating point numbers or finite field coefficients and an optional prefix p stands
for parallel implementation. Our implementations use the sequential routines of
the fflas-ffpack library1 [5]. There, the elements of a finite Z/pZ for a prime
p of size about 20 bits are integers stored in a double precision floating point
number. The sequential fgemm routine combines recursive steps of Winograd’s
algorithm calls to numerical BLAS dgemm and reductions modulo p when neces-
sary. The ftrsm and fgetrf routines use block recursive algorithms to reduce
most arithmetic operations to fgemm. More precisely fgetrf is either done by a
slab recursive algorithm [5] or a tile recursive algorithm [6].

2.2 Parallel Programming Models

We base our implementation on the task based parallel features of the OpenMP
standard. This is motivated by the use of recursive algorithms where tasks are

1 http://linalg.org/projects/fflas-ffpack

http://linalg.org/projects/fflas-ffpack

Parallel Computation of Echelon Forms 503

mandatory. Now in tile iterative algorithms, loops with tasks happen to perform
at least as well as parallel loops.

libgomp is the GNU implementation of the OpenMP API for multi-platform
shared-memory parallel programming in C/C++ and Fortran. Alternatively, we
also used libkomp [1], an optimized version of libgomp, based on the XKaapi

runtime, that reduces the overhead of the OpenMP directives and handles more
efficiently threads creation, synchronization and management. In the experi-
ments of the next sections, we will compare efficiency of the same code linked
against each of these two libraries.

2.3 Parallel Matrix Multiplication

In the iterative block algorithms, all matrix product tasks are sequential, whereas
the recursive block algorithms must call parallel matrix products pfgemm, which
we describe here. Operation pfgemm is of the form C ← αA×B + βC. In order
to split the computation into independent tasks, only the row dimension of A
and the column dimension of B only are split. The granularity of the split can
be chosen in two different ways: either as a fixed value, or by a ratio of the
input dimension (e.g. the total number of cores). We chose the second option
that maximizes the size of the blocks while ensuring a large enough number of
tasks for the computing resources. All our experiments showed that this option
performs better than the first one. When used as a subroutine in a parallel
factorization, it will create more tasks than the number of available cores, but
this heuristic happens to be a good compromise in terms of efficiency.

Figure 2 shows the computation time on 32 cores of various matrix multi-
plications: the numerical dgemm implementation of Plasma-Quark, the imple-
mentation of pfgemm of fflas-ffpack using OpenMP tasks, linked against the
libkomp library. This implementation is run over the finite field Z/131071Z or
over field of real double floating point numbers, with or without fast Strassen-
Winograd’s matrix product. One first notices that most routine perform very
similarly. More precisely, Plasma-Quark dgemm is faster on small matrices but
the effect of Strassen-Winograd’s algorithm makes pfgemm faster on larger ma-
trices, even on the finite field where additional modular reductions occur. In
terms of speed-up, the pfgemm reaches a factor of approximately 27 (using 32
cores) whereas the numerical dgemm of Plasma-Quark reaches a factor of 29, but
this mostly reflects the fact that dgemm has a less efficient sequential reference
timing since it does not use Strassen-Winograd’s algorithm.

Similarly, other basic routines used in the recursive block algorithms, such
as ftrsm (solving matrix triangular systems) and flaswp (permuting rows or
columns), have been parallelized by splitting a dimension into a constant number
of blocks (typically the number of cores).

3 Eliminations with No Rank Deficiency

In this section, we make the assumption that no rank deficiency occurs during
the elimination of any of the diagonal block. This hypothesis is satisfied by

504 J.-G. Dumas et al.

 0

 100

 200

 300

 400

 500

 0 5000 10000 15000 20000 25000 30000

2n
3 /

tim
e/

10
9

matrix dimension

parallel dgemm (PLASMA-QUARK) vs parallel fgemm

libKomp Winograd p-fgemm<131071>
libkomp Winograd p-fgemm<double>

libkomp classic p-fgemm<131071>
libkomp classic p-fgemm<double>

PLASMA-QUARK dgemm

Fig. 2. Speed of exact and numerical matrix multiplication routines

matrices with generic rank profile (i.e. having all their leading principal minor
non zero). This assumption allows us to focus on the problem of reducing the
modular reduction count.

3.1 Modular Reductions

When computing over a finite field, it is of paramount importance to reduce
the number of modular reductions in the course of linear algebra algorithms.
The classical technique is to accumulate several multiplications before reducing,
namely replacing

∑n
i=1(aibi mod p) with (

∑n
i=1 aibi) while keeping the result

exact. If ai and bi are integers between 0 and p−1 this is possible with integer or
floating point units if the result does not overflow, or in other words if n(p−1)2 <
2mantissa, see, e.g., [5] for more details.

This induces a splitting of matrices in blocks of size the largest n∗ satisfying
the latter condition. Now the use of block algorithms in parallel, introduces a
second blocking parameter that interferes in the number of reductions. We will
therefore compare the number of modular reductions of three variants of the
tile iterative algorithm (left-looking, right-looking and Crout, see [3]), the slab
recursive algorithm of [5], and the tile recursive algorithm of [6]. For the sake of
simplicity, we will assume that the block dimensions in the parallel algorithms
are always below n∗. In other words operations are done with full delayed re-
duction for a single multiplication and any number of additions: operations of
the form

∑
aibi are reduced modulo p only once at the end of the addition,

but a · b · c requires two reductions. For instance, with this model, the num-
ber of reductions required by a classic multiplication of matrices of size m × k
by k × n is simply: Rgemm(m, k, n) = mn. From [6, Theorem 3], this extends
also for triangular solving with an m × n unknown matrix: with unit diagonal,
Rutrsm(m,m, n) = mn (actually the computation of the last row of the solution
requires no modulo reduction as it is just a division by 1, we will therefore rather

Parallel Computation of Echelon Forms 505

use Rutrsm(m,m, n) = (m− 1)n) and Rtrsm(m,m, n) = 2mn (with the previous
refinement for Rutrsm(m,m, n), this also reduces to Rtrsm(m,m, n) = (2m−1)n).
Table 1 sketches the different shapes of the associated routine calls in the main
loop of each variant.

Then the number of modular reductions required for these different LU factor-
ization strategies is given in Table 2. The last two rows of the table corresponds
to [6, Theorem 4] where Rutrsm has been refined to (m−1)n as mentioned above.
The first three rows are obtained by setting k = 1 in the following block versions.
The next three rows are obtained via the following analysis where the base case
(i.e. the k × k factorization) always uses the best unblocked version, that is the
Left variant described above. Following Table 1, we thus have:

Table 1.Main loops of the Left looking, Crout and Right looking tile iterative block LU
factorization, n and k are respectively matrix and block dimensions (see [3, Chapter 5])

Left looking Crout Right looking

for i=1 to n/k do
utrsm ((i-1)k,(i-1)k,k)
gemm (n-(i-1)k,(i-1)k,k)
pluq (k,k)
trsm (k,k,n-ik)

for i=1 to n/k do
gemm (n-(i-1)k,(i-1)k,k)
gemm (k,(i-1)k,n-ik)
pluq (k,k)
utrsm (k,k,n-ik)
trsm (k,k,n-ik)

for i=1 to n/k do
pluq (k,k)
utrsm (k,k,n-ik)
trsm (k,k,n-ik)
gemm (n-ik,k,n-ik)

The right looking variant performs n
k such k× k base cases, pluq(k, k), then,

at iteration i, (nk − i)(utrsm(k, k, k) + trsm(k, k, k)), and (nk − i)2 gemm (k,k,k),

for a total of n
k (

3
2n

2 − 5
2n + 1) +

∑n
k
i=1(n − ik)

(
(3k − 2) + (nk − i)k

)
= 1

3kn
3 +(

1− 1
k

)
n2 +

(
1
6k − 3

2 + 1
k

)
n.

The Crout variant requires, at each step, except the first one, to compute
Rgemm(n − ik, ik, k) reductions for the pivot and below and Rgemm(k, ik, n− (i −
1)k) for the other block; at each step, to perform one base case for the pivot
block, to solve unitary triangular systems, to the left, below the pivot, using
(nk − i)Rutrsm(k, k, k) reductions and to solve triangular systems to the right,
using (nk − i)Rtrsm(k, k, k) reductions.

Similarly, the Left looking variant requires Rgemm(n − ik, ik, k) + Rpluq(k) +
Rutrsm(ik, ik, k) +Rtrsm(k, k, n− ik) reductions in the main loop.

In Table 2 we see that the left looking variant always performs less modular
reductions. Then the tiled recursive performs less modular reductions than the
Crout variant as soon as 2 ≤ k ≤ n

2+
√
2
. Finally the right looking variant clearly

performs more modular reductions. This explains the respective performance
of the algorithms shown on Table 3 (except for larger dimensions where fast
matrix multiplication comes into play). Also, we see that even when the number
of modular reductions is an order of magnitude lower than that of the integer
operations the cost of the divisions is nonetheless not negligible. Moreover, the
best algorithms here may not perform well in parallel, as will be shown next.

506 J.-G. Dumas et al.

Table 2. Counting modular reductions in full rank block LU factorization of an n×n
matrix modulo p when np(p− 1) < 2mantissa, for a block size of k dividing n

k
=

1 Iterative Right looking 1
3
n3 − 1

3
n

Iterative Left Looking 3
2
n2 − 5

2
n+ 1

Iterative Crout 3
2
n2 − 5

2
n+ 1

k
≥

1 Tile Iterative Right looking 1
3k
n3 +

(
1− 1

k

)
n2 +

(
1
6
k − 3

2
+ 1

k

)
n

Tile Iterative Left looking
(
2− 1

2k

)
n2 − 5

2
kn+ 2k2 − 2k + 1

Tile Iterative Crout
(
5
2
− 1

k

)
n2 +

(
−2k − 3

2
+ 1

k

)
n+ k2

Tiled Recursive 2n2 − n log2 n− 2n

Slab Recursive (1 + 1
4
log2 n)n

2 − 1
2
n log2 n− n

Table 3. Timings (in seconds) of sequential LU factorization variants on one core

k = 212 k = n
3

Recursive

Right Crout Left Right Crout Left Tile Slab

n=3000 3.02 2.10 2.05 2.97 2.15 2.10 2.16 2.26

n=5000 11.37 8.55 8.43 9.24 8.35 8.21 7.98 8.36

n=7000 29.06 22.19 21.82 22.56 22.02 21.73 20.81 21.66

3.2 Parallel Experiments

In Figure 3 we compare the tiled iterative variants with the tiled recursive al-
gorithm. The latter uses as a base case an iterative Crout algorithm too which
performs fewer modular operations, The tiled recursive algorithm performs bet-
ter than all other tiled iterative versions. This can be explained by a finer and
more adaptive granularity and a better locality. The left looking variant per-
forms poorly for it uses an expensive sequential trsm task. Although Crout and
right-looking variant perform about the same number of matrix products, those
of an iteration of the right-looking variant are independent, contrarily to those of
the Crout variant, which explains a better performance despite a larger number
of modular reductions.

Figure 4 shows the performance without modular reductions, of the tiled re-
cursive parallel implementation on full rank matrices compared to Plasma-Quark.
The best block size for the latter library was determined by hand for each matrix
size. The two possible data-storage for Plasma-Quark are used: the collection of
tiles or the row-major data-storage. Our tiled recursive parallel PLUQ imple-
mentation without modular reductions behaves better than the Plasma-Quark

getrf tile. This is mainly due to the bi-dimensional cutting which allows for a

Parallel Computation of Echelon Forms 507

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

(2
/3

)n
3 /

tim
e/

10
9

number of cores

Exact Parallel LU for matrix dim. 16000*16000 with k=212

tiled recursive pFFPACK <mod131071>
tiled iterative Right pFFPACK <mod131071>
tiled iterative Crout pFFPACK <mod131071>

tiled iterative Left pFFPACK<mod131071>

Fig. 3. Parallel LU factorization on full rank matrices with modular operations

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

(2
/3

)n
3 /

tim
e/

10
9

number of cores

computation performance for Parallel LU for matrix dim. 16000*16000

FFPACK-pfgetrf<double>: tiled recursive
PLASMA-dgetrf: tiled iterative, tiled data-storage k=212

PLASMA-dgetrf: tiled iterative, row major data-storage k=212

Fig. 4. Speed (normalized to 2/3n3 of parallel LU factorization on full rank matrices
without modular operations

faster panel elimination, parallel trsm computations, more balanced gemm com-
putations and some use of Strassen-Winograd’s algorithm. This explains why
performance become similar again on more than 24 cores: the size of the sequen-
tial blocks get below the threshold where this algorithm speeds up computations
(typically 2400 on this machine).

4 Elimination with Rank Deficiencies

4.1 Pivoting Strategies

We now consider the general case of matrices with arbitrary rank profile, that
can lead to rank deficiencies in the panel eliminations. Algorithms computing
the row rank profile (or equivalently the column echelon form) used to share

508 J.-G. Dumas et al.

Fig. 5. Slab iterative factorization of a matrix with rank deficiencies, with final recon-
struction of the upper triangular factor

a common pivoting strategy: to search for pivots in a row-major fashion and
consider the next row only if no non-zero pivot was found (see [10] and references
therein). Such an iterative algorithm can be translated into a slab recursive
algorithm splitting the row dimension in halves (as implemented in sequential
in [5]) or into a slab iterative algorithm. More recently, we presented in [6] a
more flexible pivoting strategy that results in a tile recursive algorithm, cutting
both dimensions simultaneously. As a by product, both row and column rank
profiles are also computed simultaneously.

A slab iterative algorithm. In the slab iterative algorithm shown in Figure 5,
each panel factorization has to be run by a sequential algorithm. This sequential
task is costly and therefore imposes a choice of a fine granularity, which, as we
saw, on the other hand implies more modular reductions and a lesser speed-up
of Strassen-Winograd’s algorithm.

Another difficulty is the fact that the starting column position of each panel is
determined by the rank of the blocks computed so far. It can only be determined
dynamically upon the execution. This implies in particular that no data-storage
by tiles, that fit the tiles of the algorithm is possible here. Moreover, the work-
load of each block operation may strongly vary, depending on the rank of the
corresponding slab. Such heterogeneous tasks lead us to opt for work-stealing
based runtimes instead of static thread management.

Tiled iterative elimination. In order to speed-up the panel computation, we
can split it into column tiles. Thanks to the pivoting strategy of [6], it is still
possible to recover the rank profiles afterwards. Now with this splitting, the
operations remain more local and updates can be parallelized. This approach
shares similarities with the recursive computation of the panel described in [4].
Figure 6 illustrates this tile iterative factorization obtained by the combination
of a row-slab iterative algorithm, and a column-slab iterative panel factorization.

This optimization used in the computation of the slab factorization improved
the computation speed by a factor of 2, to achieve a speed-up of 6.5 on 32 cores
with libkomp.

Fig. 6. Panel PLUQ factorization: tiled sub-calls inside a single slab and final recon-
struction

Parallel Computation of Echelon Forms 509

Tiled recursive elimination. Recursive algorithms in dense linear algebra is a
natural choice for hierarchical memory systems [14]. For large problems, the
geometric nature of the recursion causes that the total area of operands for re-
cursive algorithms is less compared to iterative algorithms [9]. We use the tile
recursive algorithm described in [6]: the recursive splitting is done in four quad-
rants. Pivoting is done first recursively inside each quadrant and then between
quadrants. It has the interesting feature that if the top-left tile is rank deficient,
then the elimination of the bottom-left and top-right tiles can be parallelized.
Thus it can be run in parallel using recursive tasks and the pfgemm, ftrsm and
flaswp routines.

Figure 7 shows performance obtained for the tiled recursive and the tiled
iterative factorization. Both versions are tested using libgomp and libkomp li-
braries. The input S16K is a 16000×16000 matrix with low rank deficiency (rank
is 15500). Linearly independent rows and columns of the generated matrix are
uniformly distributed on the dimension.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

(2
/3

)n
3 /

tim
e/

10
9

number of cores

tiled recursive pFFPACK<131071> libkomp
tiled recursive pFFPACK<131071> libgomp
tiled iterative pFFPACK<131071> libkomp
tiled iterative pFFPACK<131071> libgomp

Fig. 7. Performance of tiled recursive and tiled iterative factorizations using libgomp

and libkomp. Matrix dimension n = 16000 with rank 15500

The implementation with OpenMP of the tiled recursive LU maintained high
efficiency in the case of rank deficient matrices. It attained a speed-up of 13.6 on
32 cores. Besides the fact that it benefits from Strassen-Winograd implementa-
tion, it is adapted to minimize memory accesses and optimize data placement.
Using libkomp instead of libgomp library and numactl, for round and robin
interleave memory placement, that helps reducing dependency on bus speed, we
manage to obtain high performance for our tiled recursive LU factorization.

5 Conclusion

We analyzed five different algorithms for the computation of Gaussian elimina-
tion over a finite field. The granularity surely optimizes the parallelization of

510 J.-G. Dumas et al.

these algorithms but at the cost of more modular operations. Algorithms opti-
mizing modular reductions are unfortunately not the most efficient in parallel.
The best compromise is obtained with our recursive tiled algorithm that per-
forms best in both aspects.

Perspective. Our future work focuses on two main issues. First, the use of spe-
cific allocators that can be used for a better mapping of data in memory and
reduce distant accesses. Second, parallel programming frameworks for multicore
processors [12] could be more effective than binding threads on each NUMA
node. Dataflow based dependencies, like when using OpenMP 4.0 directives, can
ensure more parallelism for recursive implementation using libkomp [1] library.

References

1. Broquedis, F., Gautier, T., Danjean, V.: libKOMP, an Efficient OpenMP Run-
time System for Both Fork-Join and Data Flow Paradigms. In: Chapman, B.M.,
Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312,
pp. 102–115. Springer, Heidelberg (2012)

2. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing 35(1), 38–53
(2009), http://dx.doi.org/10.1016/j.parco.2008.10.002

3. Dongarra, J.J., Duff, L.S., Sorensen, D.C., Vorst, H.A.V.: Numerical Linear Alge-
bra for High Performance Computers. SIAM (1998)

4. Dongarra, J.J., Faverge, M., Ltaief, H., Luszczek, P.: Achieving numerical accu-
racy and high performance using recursive tile LU factorization. Concurrency and
Computation: Practice and Experience 26(7), 1408–1431 (2014),
http://hal.inria.fr/hal-00809765

5. Dumas, J.-G., Giorgi, P., Pernet, C.: Dense linear algebra over prime fields. ACM
TOMS 35(3), 1–42 (2008), http://arxiv.org/abs/cs/0601133

6. Dumas, J.-G., Pernet, C., Sultan, Z.: Simultaneous computation of the row and
column rank profiles. In: Kauers, M. (ed.) Proc. ISSAC 2013, Grenoble, France,
pp. 181–188. ACM Press, New York (2013)

7. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139(1–3), 61–88 (1999)

8. Gathen, J.V., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, New York (1999)

9. Gustavson, F.G.: Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBMJournal ofResearch andDevelopment 41(6), 737–756 (1997)

10. Jeannerod, C.-P., Pernet, C., Storjohann, A.: Rank-profile revealing Gaussian elim-
ination and the CUP matrix decomposition. J. Symb. Comp. 56, 46–68 (2013)

11. Klimkowski, K., van de Geijn, R.A.: Anatomy of a parallel out-of-core dense linear
solver. In: ICPP, vol. 3, pp. 29–33. CRC Press (August 1995)

12. Kurzak, J., Ltaief, H., Dongarra, J., Badia, R.M.: Scheduling dense linear algebra
operations on multicore processors. Concurrency and Computation: Practice and
Experience 22(1), 15–44 (2010)

13. Stein, W.: Modular forms, a computational approach. Graduate studies in mathe-
matics. AMS (2007), http://wstein.org/books/modform/modform

14. Toledo, S.: Locality of reference in lu decomposition with partial pivoting. SIAM
Journal on Matrix Analysis and Applications 18(4), 1065–1081 (1997)

http://dx.doi.org/10.1016/j.parco.2008.10.002
http://hal.inria.fr/hal-00809765
http://arxiv.org/abs/cs/0601133
http://wstein.org/books/modform/modform

Time-Domain BEM for the Wave Equation:

Optimization and Hybrid Parallelization

Berenger Bramas1, Olivier Coulaud1, and Guillaume Sylvand2

1 Inria Bordeaux, Sud-Ouest, 33405 Talence, France
2 Airbus Group Innovations, Applied Mathematics and Simulation, Toulouse, France
{Berenger.Bramas,Olivier.Coulaud}@inria.fr, Guillaume.Sylvand@eads.net

Abstract. The problem of time-domain BEM for the wave equation
in acoustics and electromagnetism can be expressed as a sparse linear
system composed of multiple interaction/convolution matrices. It can
be solved using sparse matrix-vector products which are inefficient to
achieve high Flop-rate. In this paper we present a novel approach based
on the re-ordering of the interaction matrices in slices. We end up with
a custom multi-vectors/vector product operation and compute it using
SIMD intrinsic functions. We take advantage of the new order of the
computation to parallelize in shared and distributed memory. We demon-
strate the performance of our system by studying the sequential Flop-rate
and the parallel scalability, and provide results based on an industrial
test-case with up to 32 nodes.

Keywords: Boundary element method (BEM), time domain, sparse
matrix-vector product (SpMV), shared/distributed memory paralleliza-
tion, SIMD.

1 Introduction

Airbus Group Innovations is an entity of Airbus Group devoted to research and
development for the usage of Airbus Group divisions (Airbus Civil Aircraft,
Airbus Defence & Space, Airbus Helicopters). The numerical analysis team has
been working for more than 20 years on integral equations and boundary element
methods for wave propagation simulations. The resulting software solutions are
used on a daily basis in acoustics for installation effects computation, aeroacous-
tic simulations (in a coupled scheme with other tools), and in electromagnetism
for antenna siting, electromagnetic compatibility or stealth. Since 2000, these
frequency-domain Boundary Element Method (BEM) tools have been extended
with a multipole algorithm (called Fast Multipole Method) that allows to solve
very large problems, with tens of millions of unknowns, in reasonable time on
parallel machines. More recently, H-matrix techniques have enabled the design of
fast direct solvers, able to solve with a very high accuracy problems with millions
of unknowns without the usual drawback associated with the iterative solvers
(no control on the number of iterations, difficulty to find a good preconditioner,
etc.). At the same time, we are working on the design and optimization of time

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 511–523, 2014.
c© Springer International Publishing Switzerland 2014

512 B. Bramas, O. Coulaud, and G. Sylvand

domain BEM (TD-BEM) that allows to obtain with only one calculation the
equivalent results of many frequency-domain computations. In this paper, we do
not focus on the mathematical formulation of this TD-BEM (based on [2]), but
rather on the parallel implementation of the algorithm.

In [3], the authors have implemented a TD-BEM application and their formu-
lation is similar to the one we use. They show results up to 48 CPU and rely on
sparse matrix-vector product without giving details on the performance. In [4],
the author uses either multi-GPU or multi-CPU parallelization and accelerates
the TD-BEM by splitting near field and far field. In [6], they give an overview of
an accelerated TD-BEM using Fast Multipole Method. The paper does not con-
tain any information on the sequential performance or even the parallelization
which makes it difficult to compare to our work.

The optimization of the Sparse Matrix-Vector product (SpMV) operator has
been widely studied because this is an essential operation in many scientific
applications. Our work is not an optimization or an improvement for the general
SpMV because we use a custom operator that matches our needs. Nevertheless,
the optimizations of our implementation have been inspired by the historical
work on SpMV which are the reordering of rows/columns, the management of
the memory accesses, the blocking of the contiguous data or the data reuse, see
[7],[8],[10],[9],[11],[12]. The performance is limited by the memory access pattern,
the memory bandwidth and the instruction pipelining. It achieves 20% of the
peak performance on common X86 architecture.

This paper addresses two major problems of the TD-BEM solver. First, we
by-pass the low performance of SpMV by reordering the computation and by
using a custom multi-vectors/vector product. Second, based on this new ordering
we propose novel parallelization strategies for shared and distributed memory
platforms.

The rest of the paper is organized as follows. Section 2 provides background
and mathematical formulation of the problem. Section 3 describes the new or-
ganization of computations and the multi-vectors SIMD operator. Section 4 de-
tails the parallelization strategies inherited from the new computational order.
Finally, in Section 5 we provide an experimental performance evaluation of our
multi-vectors/vector operator and of the different parallelization strategies.

2 Formulation

Our formulation has been originally defined in [2] but in order to keep this
paper self-explanatory, we introduce the relevant aspects of the TD-BEM. An
incident wave w with a velocity c and a wavelength λ is emitted on a boundary
Ω. This surface Ω is discretized by N unknowns. The problem is also discretized
in time with a step Δt and a finite number of iterations driven by the frequency
study. In fact, increasing the number of time steps improves the results towards
the bottom of the frequency range considered. At iteration time tn = nΔt, the
vector ln contains the illumination of w over the unknowns from one or several
emitters. The wave illuminates the location where the unknowns are defined

Time-Domain BEM for the Wave Equation 513

and is reflected by these ones over the mesh. It takes a certain amount of time
for the waves from the emitter or an unknown to illuminate some others. This
relation is characterized by the interaction/convolution matrices Mk. A matrix
Mk contains the interactions between unknowns that are separated by a distance
around k.c.Δt and contains zero for unknowns that are closer or further than
this. These N ×N matrices, where N is the number of unknowns, are positive
definite and sparse in realistic configuration. They have the following properties:

– The number of non-zero values for a given matrix Mk depends on the struc-
ture of the mesh (the distance between the unknowns) and the physical
properties of the system c, λ and Δt.

– For k > Kmax = 2 + �max/(cΔt), with �max = max(x,y)∈Ω×Ω(|x − y|) the

maximum distance between two unknowns, the matrices Mk are null.

The construction of these matrices is illustrated in Figure 1. The matrices are
filled with values depending on the delay taken by a wave emitted by an unknown
to pass over another one.

(a) M0 (b) M1 (c) M2 (d) M3

Fig. 1. Example of Mk matrices for three unknowns A,B,C in 1D. A wave emit-
ted from each unknown is represented at each time step. When a wave is around an
unknown, a value is added in the matrix which is symbolized by a gray square. All
matrices Mk with k > 3 are zero since the longest distance between elements is lower
than 3.c.Δt.

Convolution system. Using the convolution matrices Mk, and the incident wave
ln emitted by a source on the mesh, the objective is to compute the state of the
unknowns an at time n for a given number of time iterations. The problem to
solve at time step n is defined in Equation (1)

Kmax∑
k≥0

Mk · an−k = ln . (1)

Equation (1) can be rewritten as in Equation (2) where the left hand side is the
state to compute and the right-hand side is known from the previous time steps
and the test case definition

an = (M0)−1

(
ln −

Kmax∑
k=1

Mk · an−k

)
. (2)

514 B. Bramas, O. Coulaud, and G. Sylvand

Solution algorithm. The solution is computed in two steps. In the first step, the
past is taken into account using the previous values of ap with p < n and the
interaction matrices as shown in Equation (3). The result sn is subtracted from
the illumination vector, see Equation (4)

sn =

Kmax∑
k=1

Mk · an−k , (3)

s̃n = ln − sn . (4)

In the second step, the state of the system at time step n is obtained by solving
the following linear system where s̃n is the right-hand side

M0an = s̃n . (5)

The first step is the most expensive part, from a computational standpoint. The
solution of Equation (5) is extremely fast, since the matrix M0 is symmetric,
positive definite, sparse and almost diagonal. One can solve it using a sparse
direct solver for example.

Context of the application. Our application is a layer of an industrial compu-
tational work-flow. We concentrate our work on the solution algorithm and we
delegate to some black-boxes the generation of the interaction matrices and the
direct solver. Moreover, in our simulations the meshes are static and all the
interaction matrices and the pre-computation needed by the direct solver are
performed once at the beginning. The most costly part of our algorithm is the
computation of the right-hand side sn. Our resulting implementation will re-
place a legacy version developed by Airbus Group Innovation which performs
the solution algorithm using SpMV.

3 Summation Algorithm

3.1 Summation Ordering

We refer to the process of computing sn as the summation stage. The summation
uses the interaction matrices Mk and the past values of the unknowns an−k. A
natural implementation of this computation is to perform Kmax independent
SpMV. That is implemented with four nested loops. The first loop is over the
time step denoted by index n. The second loop is over the interaction matrices
and is controlled by index k in our formulation and goes from 1 to Kmax. Finally,
the two remaining loops are over the rows and the columns of the matrices and
are indexed by i and j respectively. The indices i and j cover the unknowns
and go from 1 to N . The complete equation is written in Equation (6) where all
indexes n, k, i and j are visible.

1 ≤ i ≤ N, sn(i) =

kmax∑
k=1

N∑
j=1

Mk(i, j)× an−k(j) (6)

Time-Domain BEM for the Wave Equation 515

In term of implementation, there is no need to keep the outer loop on index k and
two other orders of summation are possible using i or j. The three possibilities
are represented in Figure 2 where all interaction matrices Mk are shown one
behind the other and represented as a 3D block. This figure illustrates the three
different ways to access the interaction matrices according to the outer loop
index. The natural approach using k is called by front and usually relies on
SpMV. We propose to use a different approach called by slice using j as outer
loop index. One can see the data access pattern of the interaction matrices in
slice which is illustrated by Figure 2c.

(a) Front (k) (b) Top (i) (c) Slice (j)

Fig. 2. Three ways to reorder the computation of sn with current time step n = 6,
number of unknowns N = 8 and Kmax = 6. For front the outer loop is on the different
Mk matrices. For top the outer loop is over the row index of Mk and sk. For slice the
outer loop is over the column index of Mk.

3.2 Slice Structure

We use the word slice to name the data that are used when the outer loop index
of the summation is j. A Slicej is composed of the concatenation of each column
j of the interaction matrices [M1(∗, j)M2(∗, j) ...MKmax(∗, j)]. Therefore, a slice
is a sparse matrix of dimension (N × (Kmax−1)). It has a non-zero value at line
i and column k if d(i, j) ≈ k · c ·Δt, where d(i, j) is the distance between the un-
knowns i and j. This definition is induced by the relationMk(i, j) = Slicej(i, k).
From the formulation, an interaction matrix represents the interaction between
the unknowns for a given time/distance k. Whereas a Slicej represents the in-
teraction that one unknown j has with others over the time. This provides an
important property to the sparse structure of a slice: the non-zero values are
contiguous on each line. In fact, it takes several iterations for a wave to cross
over an unknown. In other words, for a given row i and column j all the interac-
tion matrices Mk that have a non zero value at this position are consecutive in
index k. In the slice format, it means that each slice has one vector per line but
each of this vector may start at a different column k. If it takes p time steps for

516 B. Bramas, O. Coulaud, and G. Sylvand

the wave from j to cross over i, then Slicej(i, k) = Mk(i, j) �= 0, ks ≤ k ≤ ks+p
where ks = d(i, j)/(cΔt).

3.3 Slice Computation

The Figure 3a shows a slice and how the values are contiguous on each line.
It is natural to use level 1 BLAS dot-product instead of SpMV in order to
take advantage of this particular structure. Therefore, for the entire summation
defined in Equation (6), there are N ×N dot-products to compute sn (N dot-
products per slice andN slices). However, the level 1 BLAS functions are memory
bound and cannot achieve a high Flop-rate. In fact, for a vector of length v, we
need to load 2.v+1 floating point values to perform 2.v floating point operations
(Flop). In order to increase the ratio of Flop against loaded data, we propose
to compute several summation vectors together, see Figure 3b. By computing a
group of ng vectors s∗, we can use the matrix-vector product which is a level 2
BLAS operation. However, to compute the summation vector sn at time n we
need the past results from an−1 to an−Kmax

. When we group, we also work on
the future summation sn+1 which requires an to an−Kmax+1. But an has not
been computed yet since it needs sn which is involved in the current process.
That is why we need to replace the values of an by zero in the past values matrix.
A similar strategy is requested for the other vectors of the group, and the vector
sn+ng−1 has its part of the past matrix starting with ng − 1 zeros. Therefore,
the past values matrix has a triangle of zero under the diagonal of the first rows.
At time n, the algorithm computes N ×N matrix-vector products and obtains
ng summation vectors where only the first one is complete. Like in the original
algorithm, a direct solver gives an from s̃n (Equations (4) and (5)). Because the

Fig. 3. Three ways of computing a slice product: (a) using dot-products, (b) by group-
ing with ng = 4 and using matrix-vector product and (c) by grouping ng = 4 and using
custom multi-vectors/vector product

Time-Domain BEM for the Wave Equation 517

values of an were replaced by zeros in the summation the algorithm needs to
update the incomplete summation vectors. The algorithm computes the action of
the current values of an (at time step n) on the partial summation vectors from
sn+1 to sn+ng−1 (corresponding to future time steps n+ 1 to n+ ng − 1) using
SpMV and the ng first interaction matrices. This operation is called radiation
and it has to be repeated ng times at each iteration.

The past matrix which is used in the slice computation using matrix-vector
product has a particular structure. Each column is a copy of the previous column
shifted by one and padded with zero (as illustrated on Figure 3b). Thus, instead
of storing these data in a matrix of size ng ×Kmax, it is possible to use a special
vector of size ng + Kmax − 1 with the values of an−1 to an−Kmax

at its end
and with ng − 1 zeros at its beginning as shown in Figure 3c. By grouping ng

vectors and using the special vector, we improve the ratio of Flop against loaded
data: for a slice vector of length v, we need to load 2 · v + 2 · ng − 1 floating
point values and we can perform 2 · v ·ng Flops. In such configuration we should
be able to call an external matrix-vector product with a leading dimension of
one for the past matrix. However, most of the BLAS libraries check the validity
of the leading dimension and one is not a correct value. Moreover, a general
matrix-vector product cannot take completely advantage of the pattern of the
special past vector.

That is why we propose an implementation of an optimized operator to per-
form this operation and we refer to it as the multi-vectors/vector product. In our
implementation, we reduce the memory access by re-using the past values, see
Algorithm 1 that computes just one row in the set of output vectors sn, sn+1,
..., sn+ng−1 .

Algorithm 1. Multi vectors/vector product

Data: ng the number of result vectors to compute simultaneously (should be ≥ 2)
function MultiVectorsVector(vec[SIZE V EC], past[SIZE V EC + ng − 1]) : res[ng]

register res[ng] = 0;
// We store the first past values (to load them once)
register buffer[ng-1];
for idxBuffer = 0 → ng-2 do

buffer[idxBuffer] = load(past[idxBuffer]);
end
// For all values in the vec
for idxVec = 0 → SIZE VEC-1 do

// Copy the current vec value
register value = load(vec[idxVec]);
for idxRes = 0 → ng-3 do

res[idxRes] += value * buffer[idxRes];
// Shift the buffer value for the next idxVec loop
buffer[idxRes] = buffer[idxRes+1];

end
res[ng-2] += value * buffer[ng-2];
// Load a new value from the past vector
buffer[ng-2] = load(past[idxVec+ng]);
res[ng-1] += value * buffer[ng-2];

end
return res ;

518 B. Bramas, O. Coulaud, and G. Sylvand

4 Parallelization Strategies

4.1 Distributed Memory Parallelization

The parallelization over distributed memory is realized using Message Passing
Interface (MPI) [16] and we name a MPI process a process. A slice interval
is assigned to each process. This interval from jstart to jend can be obtained
in different ways: for example by dividing the number of N slices equally or by
taking into account the amount of work in each slice. Each process needs to have
the past values of the unknowns which match its slice interval. In a first stage,
each process computes a part of the summation vectors without communicating
with others. Then, all processes synchronize and call a sparse direct method
to solve (5) and obtain the current solution an. With a number of threads per
process equal to one, this algorithm is detailed in Algorithm 2.

At every iteration, the result is saved to disk for later work and it also has to
be distributed to let each process have the current result for its interval jstart to
jend.

4.2 Shared Memory Parallelization

The straightforward parallelization in shared memory is implemented by split-
ting the slices computation and the radiation between threads. This is done using
OpenMP for pragma [17] and it is detailed in Algorithm 2. If the number of
threads per process is 1 and the parallelism relies on MPI only, we refer to the
algorithm 2 as the Full-MPI implementation. If the number of threads is larger
than 1, we refer to it as the Hybrid-MPI/OpenMP implementation.

5 Numerical and Performance Studies

5.1 Experimental Setup

Hardware configuration. We use up to 32 nodes and each node has the following
configuration: 2 Quad-core Nehalem Intel Xeon X5550 at 2.66GHz and 24GB
(DDR3) of shared memory.

Compiler and libraries. We use the Gcc 4.7.2 compiler and Open-MPI 1.6.5. The
compilation flags are -m64 -march=native -O3 -funroll-loops -freorder-blocks-
and-partition -ftree-vectorize -msse -msse2 -msse3 -mfpmath=sse. The direct
solver is a state of the art solver Mumps 4.10.0 [15] which relies on Parmetis
3.2.0 and Scotch 5.1.12b. The calculation is performed in 64 bit arithmetic.

Test case. The test case is an airplane composed of 23 962 unknowns shown
in Figure 4. The simulation should perform 10 823 time iterations. There are
341 interaction matrices. The total number of non-zero values in the interaction
matrices, except M0, is 5.5× 109. For one iteration the total amount of Flops to
compute the summation sn is around 11GFlops. If we consider that the direct

Time-Domain BEM for the Wave Equation 519

Algorithm 2. Complete simulation with Hybrid-MPI/OpenMP paral-
lelization

Data: Slices[N] the interaction matrices in slice/vectors shape. Each process is working on
an interval [j start; j end] that cover the entire slices.

Result: PastV alues[j end − j start + 1][NB STEPS + ng − 1] the state of the unknowns
for all time step

begin
// Direct Solver initialization (factorize/inverse M0)

invM0 handle = direct solver(M [0]);
// For all time step with progression by ng

for n = 0 → NB STEPS-1 by ng do
S[ng][N] = 0;
// Compute ng vectors with each slices in my interval
#pragma omp parallel reduce(+:S);
for j = j start → j end do

foreach Vec v in Slices[j].blocks do
S[:][v.row] += MultiVectorsVector(v.values, PastValues[j][v.col - ng + 1
:v.col + v.length]) ;

end

end
// Finalization
for idx = 0 → ng-1 do

distributed reduce(S[ng - idx -1][:]);

an = solve(invM0 handle, L[n+idx][:] - S[ng - idx - 1][:]);
master saves an to disk;
// Copy result in Pastvalues format
PastValues[j start:j end][NB STEPS - n - 1] = an[j start:j end];
// Radiation
#pragma omp parallel;
for past = idx + 1 → ng-1 do

S[ng - past][:] += SpMV(Mpast−idx[j start:j end],an[j start:j end];
end

end

end

end

solver has the cost of a matrix-vector product, the total amount of Flop for the
entire simulation is 130 651GFlop. Storing all the data of the simulation takes
more than 70GB. Our application can execute out-of-core simulations, but we
concentrate our study on in-core executions. We need at least 4 nodes to have
the entire test case fitting in memory.

Fig. 4. Illustration of the Airplane test case

520 B. Bramas, O. Coulaud, and G. Sylvand

Parallel Efficiency. Usual parallel efficiency is defined by en = T1/(Tp ∗p) where
T1 is the sequential elpased time to execute the simulation and Tp the elapsed
time using p cores. In our case, we use a modified version of the definition because
we use at least 4 nodes (to remain in-core) and never execute the simulation
sequentially. Using 1 core as a reference would artificially improve efficiency,
since we would compare sequential out-of-core computations with parallel in-
core computations. Hence, we replace the sequential time T1 by Tr the time
taken by the lowest number of cores which gives the new efficiency formula
ẽn = (r ∗ Tr)/(Tp ∗ p) where r is the number of cores for the time reference.

5.2 Multi-vectors/Vector Product

We compare three implementations of the multi-vectors/vector product. We
choose to have ng = 8 as it is enough to by-pass the memory bandwidth lim-
itation without paying too much extra cost in the radiation stage. The first
implementation comes out of the Equation (6) and is implemented in C. Some
important compilation flags are used in order to enable loop unrolling and the use
of SSE instructions by the compiler. This is referred to as the Compiler Version
implementation. The second version is written in C and comes out of the Algo-
rithm 1. It is written with intrinsic SSE functions proposed by the compiler and
SSE data types (m128d). We refer to it as the SSE-Intrinsic implementation.
We have analyzed the assembly code the compiler has generated and we have
considered that it is not optimal for both implementations. Thus, we have de-
veloped a third implementation in asm64 assembly to maximize the data re-use.
With ng = 8 it is possible to use all 16 SSE registers in order to read each value
only once from the main memory. We refer to it as the SSE-Asm implementation.
Figure 5 shows the Flop-rate for all three operators for different lengths of vector
v. The two SSE based implementations are close but the SSE-Asm can achieve
a slightly higher Flop-rate for large vectors. Both implementations suffer from
small cache effects for Nr = 1 000 and v = 100 (Figure 5a) and for Nr = 20 000,
v = 25 and v = 80 (Figure 5b). However, the length of the vectors of the slices
in real test cases depends on Δt the time step, and the size of the elements on
the mesh. In the airplane test case, each vector has a length between 1 and 15
and the average length is 9.5. In this configuration, the SSE-Asm implementa-
tion achieves 3.9GFlop/s per core (Compiler Version achieves 1.7GFlop/s) for
a peak performance of 10.64GFlop/s.

5.3 Scalability

We compare the Full-MPI and the Hybrid-MPI/OpenMP implementations to
compute the airplane test case. We use 4 to 32 nodes and 8 cores per node.
In Figure 6 we give the total execution time and the parallel efficiency. The
efficiency is worthy for both implementations but in terms of execution time,
the Full-MPI is better. Even if the number of processes involved in the global
communications becomes larger because there are 8 MPI processes on each node,
there is no advantage to reduce this number by having one process per node

Time-Domain BEM for the Wave Equation 521

0 200 400
0

2

4

6

8

10

Length of vectors (v)

S
p
ee
d
(G

F
lo
p
/
s)

(a) Number of rows in slices Nr =
1000

0 200 400
0

2

4

6

8

10

Length of vectors (v)

SSE-Asm

SSE-Intrinsic

Compiler Version

(b) Number of rows in slices Nr = 20 000

Fig. 5. Performance evaluation in GFlop/s for the multi-vectors/vector slice compu-
tation code for three implementation methods with ng = 8. The test cases are slices of
dimension Nr × v.

and intra-node parallelism using threads. Figure 7 gives the percentages of time
taken by the different operations. The time spent for the summation decreases
as the number of nodes increases for both implementations. However, we can
see that the Hybrid-MPI/OpenMP implementation exhibits more idle time than
the Full-MPI when the number of nodes increases. In the Hybrid-MPI/OpenMP
implementation some parts of the code are sequential, the threads share data,
they parallelize small operations like the radiation for instance and the work is
balanced statically between threads. In consequence, there are less MPI-processes
in the Hybrid-MPI/OpenMP implementation but the threads are less balanced
and they have to wait longer in the synchronization/reduction points.

4 10 20 30
0

500

1,000

1,500

Number of nodes

E
x
ec
u
ti
o
n
T
im

e
(s
)

(a) Execution time

4 10 20 30
0

0.5

1

Number of nodes

E
ffi
ci
en

cy

Full-MPI Hybrid-MPI/OpenMP

(b) Parallel efficiency ẽn

Fig. 6. Execution time and parallel efficiency of the airplane simulation for the Full-
MPI and the Hybrid-MPI/OpenMP implementations using 4 to 32 nodes, 8 CPU per
node and ng = 8

The previous application used by Airbus Group takes 13 500 seconds to com-
pute the airplane simulation on 6 nodes. The new version presented in this paper
takes only 1 200 seconds, which is around 10 times faster.

522 B. Bramas, O. Coulaud, and G. Sylvand

4 10 20 30
0

20

40

60

80

100

Number of nodes

P
er
ce
n
ta
g
e
(%

)

(a) Full-MPI

4 10 20 30
0

20

40

60

80

100

Number of nodes

Summation

Idle

Direct solver

Radiation

Input/Output

(b) Hybrid-MPI/OpenMP

Fig. 7. Percentage of the time taken for the different operations to compute the airplane
simulation for the Full-MPI and the Hybrid-MPI/OpenMP implementations using 4
to 32 nodes, 8 CPU per node and ng = 8

6 Conclusion

We have presented a new parallelization and efficient implementation of a TD-
BEM solver. We showed that the method scales efficiently and how the reordering
of the computation leads to a good Flop-rate despite the sparse structure of the
data. Moreover, our current application has a speedup of 10 against the previous
implementation. In future work, we intend to compute larger simulations and in
the longer term to use accelerators. We intend to investigate how a Slice product
can be performed efficiently on accelerators using the abundant research that has
been developed for the SpMV.

Acknowledgement. Experiments presented in this paper were carried out us-
ing the PLAFRIM experimental test bed. This work is supported by the Airbus
Group Innovations, Inria and Conseil Régional d’Aquitaine initiative.

References

1. Liu, Y.J., Mukherjee, S., Nishimura, N., Schanz, M., Ye, W., Sutradhar, A., Pan, E.,
Dumont, N.A., Frangi, A., Saez, A.: Recent advances and emerging applications
of the boundary element method. ASME Applied Mechanics Review 64(5), 138
(2011)

2. I. Terrasse, Résolution mathématique et numérique des équations de Maxwell in-
stationnaires par une méthode de potentiels retardés, PhD dissertation, Ecole Poly-
technique Palaiseau France (1993)

3. Abboud, T., Pallud, M., Teissedre, C.: SONATE: A Parallel Code for Acous-
tics Nonlinear oscillations and boundary-value problems for Hamiltonian systems,
Technical report (1982),
http://imacs.xtec.polytechnique.fr/Reports/sonate-parallel.pdf

4. Hu, F.Q.: An efficient solution of time domain boundary integral equations for
acoustic scattering and its acceleration by Graphics Processing Units. In: 19th
AIAA/CEAS Aeroacoustics Conference, ch. (2013), doi:10.2514/6.2013-2018

http://imacs.xtec.polytechnique.fr/Reports/sonate-parallel.pdf

Time-Domain BEM for the Wave Equation 523

5. Langer, S., Schanz, M.: Time Domain Boundary Element Method. In: Marburg,
S., Nolte (eds.) Computational Acoustics of Noise Propagation in Fluids - Finite
and Boundary Element Methods, pp. 495–516. Springer, Heidelberg (2008)

6. Takahashi, T.: A Time-domain BIEM for Wave Equation accelerated by Fast Mul-
tipole Method using Interpolation, pp. 191–192 (2013), doi:10.1115/1.400549

7. Karakasis, V., Goumas, G., Koziris, N.: Perfomance Models for Blocked Sparse
Matrix-Vector Multiplication Kernels. In: International Conference on Parallel Pro-
cessing 2009, pp. 356–364 (2009), doi:10.1109/ICPP.2009.21

8. Nishtala, R., Vuduc, R.W.: When Cache Blocking of Sparse Matrix Vector Multiply
Works and Why. In: Proceedings of the PARA 2004 Workshop on the State-of-the-
art in Scientific Computing (2004)

9. Toledo, S.: Improving the memory-system performance of sparse-matrix vector
multiplication. IBM Journal of Research and Development 41(6), 711–725 (1997)

10. Pinar, A., Heath, M.T.: Improving performance of sparse matrix-vector multipli-
cation. In: Proceedings of the 1999 ACM/IEEE Conference on Supercomputing.
ACM (1999)

11. Yzelman, A.N., Bisseling, R.H.: Cache-Oblivious Sparse MatrixVector Multiplica-
tion by Using Sparse Matrix Partitioning Methods. SIAM Journal on Scientific
Computing 31(4), 3128–3154 (2009), doi:10.1137/080733243

12. Vuduc, R.W., Moon, H.-J.: Fast sparse matrix-vector multiplication by exploiting
variable block structure. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J.
(eds.) HPCC 2005. LNCS, vol. 3726, pp. 807–816. Springer, Heidelberg (2005)

13. Goto, K., Advanced, T.: High-Performance Implementation of the Level-3 BLAS,
117 (2006)

14. Morton, G.M.: A Computer Oriented Geodetic Data Base and a New Technique
in File Sequencing. International Business Machines Company (1966)

15. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: MUMPS MUltifrontal Massively Par-
allel Solver Version 2.0 (1998)

16. Snir, M., Otto, S., et al.: The MPI core, 2nd edn (1998)
17. OpenMP specifications, Version 3.1 (2011), http://www.openmp.org

http://www.openmp.org

Structured Orthogonal Inversion

of Block p-Cyclic Matrices on Multicores
with GPU Accelerators�

Sergiy Gogolenko1, Zhaojun Bai2, and Richard Scalettar2

1 Donetsk National Technical University, Donetsk, 83001, Ukraine
sergiy.gogolenko@gmail.com

2 University of California, Davis, CA 95616, USA
{bai@cs,scalettar@physics}@ucdavis.edu

Abstract. We present a block structured orthogonal factorization
(BSOF) algorithm and its parallelization for computing the inversion of
block p-cyclic matrices. We aim at the high performance on multicores
with GPU accelerators. We provide a quantitative performance model
for optimal host-device load balance, and validate the model through nu-
merical tests. Benchmarking results show that the parallel BSOF based
inversion algorithm attains up to 90% of DGEMM performance on hybrid
CPU+GPU systems.

Keywords: p-cyclic matrix, matrix inversion, structured orthogonal
factorization, performance modelling, GPU acceleration.

1 Introduction

Since the pioneering works of Varga, Young, Romanovsky, and others in the
1950s, p-cyclic matrices have been found to be a very useful class of struc-
tured matrices with applications in numerical methods for differential equations,
Markov chain modeling and quantum Monte Carlo simulations. The concept of
block p-cyclic matrices in its modern term refers to matrices which can be trans-
formed to the following normalized block p-cyclic form by row and/or column
permutations:

H =

⎡⎢⎢⎢⎢⎢⎣
A1 Bp

B1 A2

B2 A3

. . .
. . .

Bp−1 Ap

⎤⎥⎥⎥⎥⎥⎦ , (1)

� This work was supported by the National Science Foundation under grant NSF-
PHY-1005503. SG would like to thank the Fulbright Program Office in Ukraine
and the Institute of International Education for financial support during this study.
This research used resources of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 524–535, 2014.
c© Springer International Publishing Switzerland 2014

BSOI on Multicores with GPUs 525

where Ai and Bi are non-zero blocks. For the sake of simplicity, in this paper,
we are concerned entirely with the normalized block p-cyclic matrices, and fur-
thermore, we assume that Ai and Bi are n-by-n square blocks, although in some
applications Ai and Bi are rectangular. The fact that we discuss only matrices
with the square blocks Ai and Bi does not limit the generality of approaches
presented in this paper.

The early studies of p-cyclic matrices were closely related to numerical solu-
tion of differential equations [3,9,10]. In these applications, the p-cyclic matrices
are also referred to as bordered almost block diagonal (BABD) matrices. An
incomplete list of BABD-based numerical algorithms includes multiple shooting
and finite difference schemes for two-point boundary value problems (BVPs), or-
thogonal spline collocation methods for separable elliptic BVPs, method of lines
and Keller’s box scheme for various initial BVPs [3,9]. The p-cyclic matrices also
appear in Markov chain modeling, where the p-cyclic stochastic matrices rep-
resent infinitesimal generators of continuous-time Markov chains with periodic
transition graphs for queuing networks and stochastic Petri nets [2]. In quan-
tum Monte Carlo (QMC) simulations of Hubbard models for strongly correlated
materials, the inverses of p-cyclic matrices, referred to as Green’s functions, are
required to be repeatedly computed explicitly for physical observables (see [1,6]
and references therein). Other sources of applications of p-cyclic matrices include
some linear least-square problems and parameter estimation with non-linear dif-
ferential algebraic equations (DAE) models.

In contrast to the subject of solving block p-cyclic linear systems, where we
observe tremendous progress over the last six decades, the problem of computing
p-cyclic matrix inversion explicitly remains in a state of infancy. The recent
advances are mainly related to computing some particular blocks in the inverse
of a p-cyclic matrix using well-known explicit expressions [1]. For instance, the
paper [6] addresses stabilized algorithms for calculation of diagonal blocks of
the inverse of block p-cyclic matrices. To the best of our knowledge, there is no
previous work focused on numerical algorithms for the entire inversion of block
p-cyclic matrices, which is required for time-dependent physical measurements
in the quantum Monte Carlo simulation [1]. Filling this gap is the main purpose
of our paper.

In this paper, we pay particular attention to algorithmic solutions designed
specifically for high performance computing on GPU accelerated multicore sys-
tems. We should point out that numerical libraries for GPGPU computing, in-
cluding widely used CuSPARSE, CuLA, Paralution, and CUSP, do not
support inversion of structured matrices. Furthermore, solvers in dense linear
algebra libraries for GPUs such as CuBLAS, Magma [7], and CuLA, do not
implement mechanisms for avoiding redundant computations with zero-blocks.

2 Previous Work

Historically, the studies of p-cyclic matrices were primarily focused on iterative
and direct methods for p-cyclic linear systems. The vast literature on iterative

526 S. Gogolenko, Z. Bai, and R. Scalettar

methods covers in detail successive overrelaxation, aggregation and disaggrega-
tion, Chebyshev semi-iterative, and Krylov subspace methods [2]. On the other
hand, the attention to the direct solvers is also remarkable. Researchers explored
numerous variations of Gaussian elimination and orthogonal factorization ap-
proaches for solving p-cyclic systems. There is a large volume of literature on
Gaussian elimination dealing with a special case of p-cyclic systems, called al-
most block diagonal (ABD) systems [9]. Nevertheless, while handling the ABD
systems successfully, Gaussian elimination processes could fail in more general
cases of p-cyclic systems. In fact, in [10], it is shown that the Gaussian elimi-
nation with row partial pivoting produces exponential error growth for p-cyclic
systems arising from multiple shooting for some linear BVPs with mixed two-
point boundary conditions. There is a number of approaches that enlarge the
class of linear systems for which numerical stability is ensured, such as certain
forms of pre-scaling and replacing row-by-row pivoting with more accurate panel
pivoting strategies. In the recent paper [5] Khabou et al. propose to use a panel
rank-revealing pivoting strategy based on strong rank revealing QR, which sig-
nificantly reduces the growth factor, and thus results in practical stability of
Gaussian elimination in most cases.

Due to numerical stability issues of Gaussian elimination algorithms, Wright
proposed to use a structured orthogonal factorization (SOF) [9]. He described a
serial and two parallel block SOF algorithms. The first parallel algorithm uses
the recursive factorization process similar to cyclic reduction, whereas the second
one factorizes p-cyclic matrix in two steps, at first splitting the entire matrix in
parts and factorizing these parts concurrently, and then performing factorization
of the reduced p-cyclic matrix formed from border blocks of the parts factorized
in the previous step. A proof of the stability of SOF is presented in [9].

3 Basic Algorithms

This section gives a brief overview of an algorithm for structure-exploiting or-
thogonal inversion of block p-cyclic matrices. It is referred to as BSOFI. For
more details of the BSOFI and its modifications such as blocking and batching,
we refer readers to our technical report [4].

The algorithmic framework of BSOFI is composed of three phases. The first
one is the block SOF of H : H = QR. Once factors Q and R are computed,
the inverse is calculated by the identity H−1 = R−1QT in two phases, namely
inversion of the factor R and applying the transpose of the factor Q.

Block structured orthogonal factorization (BSOF) is a block structured QR
factorization algorithm introduced in [9], and has an identical complexity to the
best known block structured Gaussian elimination based algorithms. The essence
of this algorithm is in transformation of the matrixH through a sequence of p−1
block row updates (Fig. 1).

BSOI on Multicores with GPUs 527

Data: H , n, p
Result: R, {Q(k)|1 ≤ k < p− 1}

1 R ← O; Ã1 ← A1 ; B̃1 ← Bp;
2 for k ∈ {1, 2, ..., p− 2} do

3 Compute regular QR: Q(k)

[
Rkk

0

]
=

[
Ãk

Bk

]
;

4

[
Rk,k+1 Rk,p

Ãk+1 B̃k+1

]
←

(
Q(k)

)T
[

0 B̃k

Ak+1 0

]
;

5 Compute the QR: Q(p−1)

[
Rp−1,p−1 Rp−1,p

0 Rp,p

]
=

[
Ãp−1 B̃p−1

Bp−1 Ap,p

]
;

Fig. 1. BSOF – Wright’s serial version of SOF algorithm

This reduction process results in the factorization H = QR, where Q is a
product of the orthogonal 2n-by-2n matrices Q(k) extended by identity blocks:

Q =

p−1∏
k=1

Qk =

p−1∏
k=1

In(k−1) ⊕Q(k) ⊕ In(p−k−1), Q(k) =

[
Q

(k)
11 Q

(k)
12

Q
(k)
21 Q

(k)
22

]
,

and R has block upper bidiagonal form with full last block column:

R =

⎡⎢⎢⎢⎢⎢⎣
R11 R12 R1,p

R22 R23 R2,p

. . .
. . .

...
Rp−1,p−1 Rp−1,p

Rp,p

⎤⎥⎥⎥⎥⎥⎦ . (2)

Inversion of matrix R via block back substitution is the second phase. The
inverse X = R−1 is block upper triangular, and its non-zero blocks can be
computed via block back substitution (BBS). We obtain a row version of the
BBS Fig. 2a by taking into account the zero-blocks of R, while solving the matrix
equation RX = I for X . Likewise, the column version of the BBS algorithm is
based on solving XR = I.

Both versions of the BBS have their virtues and flaws. The columnwise BBS
requires two times more floating point operations (flops) compared to its row
version. On the other hand, we are able to perform SOF and the column version
in parallel, which overcomes lack of parallelism in the factorization phase (see
Fig. 1). In contrast, the latter is impossible in the row version.

Applying the orthogonal factor QT to R−1 is the last phase. Due to the or-
thogonality of Q(k), the inverse of Q is equal to

Q−1 = QT =

p−1∏
k=1

QT
p−k =

p−1∏
k=1

In(p−k−1) ⊕
(
Q(p−k)

)T
⊕ In(k−1). (3)

1 Batched denotes group of kernels that can be implemented in a single batched run.

528 S. Gogolenko, Z. Bai, and R. Scalettar

Data: R, n, p
Result: X

1 X ← O;

2 Xp−2:p,p−2:p ← R−1
p−2:p,p−2:p;

3 Batched i=1:p−3 {Xii ← R−1
ii } ;

4 X1:p−3,p ← R1:p−3,pXp,p ;
5 Batched i=1:p−3

{Xi,p ← −XiiRi,p,
Xi,i+1 ← −XiiRi,i+1 } ;

6 for i ∈ {p− 3, p− 4, ..., 1} do
7 Xi,i+2:p ←

Xi,i+2:p +Xi,i+1Xi+1,i+2:p ;
8 Xi,i+1 ← Xi,i+1Xi+1,i+1;

(a) BSTRI RV – Row Version of the BBS

Data: R, n, p
Result: X

1 X ← O;

2 Batched j=3:p {Xjj ← R−1
jj };

3 Batched j=3:p−1

{Xj−1,j ← −Rj−1,jXjj};
4 X1:2,1:2 ← R−1

1:2,1:2; X1,p ← X11X1,p;

5 for j ∈ {3, ..., p− 1} do
6 Batched {X1:j−1,j ← X1:j−1,j−1Xjj ,

X1:j−1,p ←
X1:j−1,p +X1:j−1,j−1Rj−1,p}

7 X1:p−1,p ← X1:p−1,p +X1:p−1,p−1Xp−1,p;
8 X1:p−1,p ← −R1:p−1,pXp,p;

(b) BSTRI CV – Column Version of the BBS

Fig. 2. Inversion of matrix R via block back substitution1

Data: X, {Q(k)|1 ≤ k < p− 1}, n, p
Result: X

1 for k ∈ {p− 1, p− 2, ..., 1} do

2 X1:p,k:k+1 ← X1:p,k:k+1Q
(k)T

(a) BSOI – Update X via applying QT

Data: X1:p,k:k+1, Q
(k), n, p

Result: X1:p,k:k+1

1 W1:k+1,k:k+1 ← X1:k+1,k:k+1Q
(k)T ;

2 Wk+2:p,k:k+1 ← Xk+2:p,k:k+1Q
(k)T
1:2,2;

3 X1:p,k:k+1 ← W ;

(b) BSOI Qk – Applying QT
k

Fig. 3. Applying the orthogonal factors (Householder reflectors) to R−1

Thus, computing product R−1QT is equivalent to applying Householder reflec-

tors of
(
Q(k)

)T
to the pairs of column panels of R−1 from right in a backward

order, as shown in Fig. 3a. This is the gist of the last phase of BSOFI.
If matrices Q(k) are given in an explicit form, we benefit from the upper

triangular structure of matrix R−1 by means of replacing line 2 in Fig. 3a by the
algorithm BSOI Qk from Fig. 3b. This simple modification reduces the number
of flops in the algorithm shown in Fig. 3a from 8n3p(p− 1) to 2n3(3p2 − p− 4).
Note that complete reconstruction of matrices Q(k) from Householder reflectors
requires O(n3p) extra flops.

Computational complexity of the BSOFI algorithms is shown in Table 1. If
BSTRI RV is used, the total flops is Θ(7nN2), where N = n×p. This is roughly
just two times more than the minimum flops count Θ(72nN

2) for the unstable
Gaussian elimination based inversion without pivoting.

2 The lower order terms are omitted for the sake of simplicity. More accurate formulae
are presented in [4].

BSOI on Multicores with GPUs 529

Table 1. Operation counts for the three phases of BSOFI algorithm2

Phase Routine Additions Multiplications Total Flops

I BSOF 1
6
n2 (46np − 60n+ 15p) 1

6
n2 (46np − 60n+ 39p) 1

3
n2 (46np − 60n + 27p)

II BSTRI RV 1
6
n3

(
3p2 + 7p− 21

)
1
6
n3

(
3p2 + 7p− 21

)
1
3
n3

(
3p2 + 7p− 21

)
BSTRI CV 1

6
n3

(
6p2 − 11p+ 12

)
1
6
n3

(
6p2 − 11p+ 12

)
1
3
n3

(
6p2 − 11p+ 12

)
III BSOI n2p (3np− 2n+ p) n2p (3np− 2n+ p) 2n2p (3np− 2n+ p)

4 Parallel Implementation on Multicore with GPU
Accelerators

Parallel “host-device” BSOFI algorithm. We design our parallel “host-device”
algorithm in a way to maximally benefit through extensive use of well optimized
vendor-specific linear algebra kernels. The latter implies paying attention to the
limited choice of batched linear algebra kernels for GPUs and the diversity in
the kernel’s performance on throughput and latency oriented processors.

Specifically, our design is inspired by the following well-known observation.
The performance efficiency highly varies for different numerical kernels, and the
matrix-matrix multiplication routine DGEMM tends to be the most efficient among
other BLAS/LAPACK kernels. Furthermore, performance gaps between DGEMM

and other kernels are usually much lower for latency oriented processors com-
pared to the throughput oriented ones. At the same time, in both cases, the
gaps become smaller as the size of the problems grows. Hence, to attain bet-
ter performance of hybrid CPU+GPU algorithm, it is preferable to exploit the
throughput oriented GPU accelerators only for DGEMM and, conversely, to use the
latency oriented CPUs for the whole variety of required kernels. In addition, such
work distribution strategy avoids those LAPACK kernels for GPU platforms,
which require CPU resources, and thus may interfere with pure CPU kernels
executed in parallel. Specifically, following the recipes given in [8], QR factor-
ization routines from the state-of-the-art LAPACK API implementations for
GPUs, such as Magma [7] and CuLA, usually use an approach, where column
panels are factorized on CPU and afterwards sent to GPU for trailing matrix
update.

Since a vast part of computations in the BSOFI is spent on DGEMM, this al-
gorithm has a great potential to be reorganized in accordance with the work
distribution strategy discussed above. The necessary modifications are sketched
in Fig. 4. To overcome the lack of parallelism and DGEMM operations in the fac-
torization phase, we modify the basic BSOFI algorithm by merging the first two
phases – factorization of H and inversion of factor R – in a single factoriza-
tion/inversion algorithm BSOFTRI. Hence, in the BSOFTRI, factorization is a part
of computation process which utilizes both host and devices in parallel.

The merged factorization/inversion phase consists of three steps. At the first
step, we perform partial factorization of input p-cyclic matrix H on the host,
where we run lF loop iterations of BSOF algorithm (see Fig. 1). This step is

530 S. Gogolenko, Z. Bai, and R. Scalettar

CPU GPU(s)

Partial factorization of AStep 1

Completing factorization of A Partial inversion of R via column version of BBSStep 2

Completing inversion of R via row version of BBSStep 3

Applying Householder reflectors

B
S
O
F
T
R
I

B
S
O
I

Fig. 4. Framework of the BSOFI adopted to execution on hybrid CPU+GPU platforms

aimed at preparing columns of R for further inversion and avoiding idles re-
lated to synchronizing concurrent threads in the next step. Since the optimal
number of iterations lF is usually relatively small, this step does not influence
the overall performance of the algorithm much. At the second step, we fork the
computational process on two asynchronous threads. The first thread completes
factorization on CPU, whereas the second one computes upper left corner of ma-
trix R−1 performing iterations of the column-wise inversion algorithm BSTRI CV

(see Fig. 2b). Once the SOF is completed, we join both threads and proceed to
the third step, where we continue computing R−1 via row version of the BBS
algorithm BSTRI RV (see Fig. 2a) omitting treatment of the jF already inverted
blocks columns of R−1. Switching from column-wise to row-wise inversion algo-
rithm reduces computational complexity of BSOFTRI compared to the algorithm
which uses only column version of BBS.

Depending on the ratio between multicores and device performance and the
value of p, we make a decision on the need for processing the last column panel
in BSOFTRI inversion thread. If device performance is insufficient to invert more
than first p − 2 column panels of R while H is factorizing, we postpone pro-
cessing the last column panel in order to avoid doubling of computational costs
introduced by the original column version of BBS shown in Fig. 2b (see table 1).

In order to minimize data transfers from host to device in BSOFTRI algorithm,
we employ devices in computing only those blocks of R−1, which correspond to
the zero blocks of R. The workload distribution between CPU and GPU(s) is
controlled by parameters lj and li respectively as illustrated in Fig. 5a and 5b.

In the phase of applying Householder reflectors to R−1, we update block
column pairs by means of explicit reconstruction of matricesQ(k) and the scheme
similar to the algorithm shown in Fig. 3b. In this way, we replace DORMQR calls
for applying reflectors to column panels in favor of more efficient DGEMM calls
under the small computational overhead. The upper parts of block columns are
updated on the host, whereas devices are used to update lower parts. Since the
lower part of R−1 has more zero blocks, this approach requires less data transfers
from CPU to GPUs. In order to avoid physical data transfers inside devices, we
store block columns of the input matrix W in the reversed order with respect to
the natural order of columns in matrix X . Namely, the (k + 1)th block column

3 White – zero blocks, light gray – input non-zero blocks, dark gray – blocks processed
(partially or fully) in the preceding iteration. Irrelevant zero blocks are omitted.

BSOI on Multicores with GPUs 531

j − 1 j

1

...
...

lj

lj + 1

...
...

j − 2

j − 1

j

l j

G
P
U
(s
)

j
−

l j
−

2

C
P
U

(a) BSTRI CV

i · · · · · ·
· · · · · ·

i i + 1 i+ 2 p − li − 1p − li p − 1 p

li

GPU(s)
p − i − li − 2

CPU ·

CPU

(b) BSTRI RV

k k + 1

1

...
...

k − 1

k

k + 1

...

P − lk

P − lk + 1

...
...

P

k
P

−
k
−

l k

C
P
U

l k

G
P
U
(s
)

(c) BSOI Qk, if
lk + k ≤ p

k k + 1

1

...
...

P − lk

P − lk + 1

...
...

k − 1

k

k + 1

...
...

P

P
−

l k

C
P
U

k
+

l k
−

P
P

−
k

G
P
U
(s
)

(d) BSOI Qk, if
lk + k > p

Fig. 5. Workload distribution between host and device(s) while processing jth block
column and ith block row of R−1 (a,b) and applying QT

k to R−1 (c,d)3

of X corresponds to W:,1 and the kth block column of X corresponds to W:,2.
Herewith we use the following equality to update column pairs on device

Xp−lk:p,k:k+1Q
(k)T =

[
Xp−lk:p,k+1 Xp−lk:p,k

] [
Q

(k)
1:2,2 Q

(k)
1:2,1

]T
(4)

The workload distribution between host and device is controlled by lk. If
lk + k ≤ p (Fig. 5c), then Xp−lk:p,k = 0, and hence device does not require sub-

matrix Q
(k)
1:2,1 to compute update according to (4). In contrast, if lk + k > p

(Fig. 5c), whole matrix Q(k) and non-zero blocks of kth column panel of X
should be sent from host to device for further processing. For more details on
the algorithm presented in this paragraph, see [4].

Performance modelling and load balancing. The parameters li, lj , lk and lF
introduced in the previous paragraph, control workload distribution between
host and devices, and play a crucial role in performance tuning. The following
text is an excerpt of results related to choosing above-mentioned parameters and
performance modelling. These results are based on the following assumptions:
(i) the elapsed time for multiplying mn-by-n and kn-by-n matrices is nearly mk
times more than the wall time for computing the product of two n-by-nmatrices;
(ii) the performance of numerical kernel is roughly proportional to the number
of CPU cores utilized in its computing. These assumptions are consistent with
benchmarking results for moderate and large values of n [4]. For more details
and derivation of formulae, we refer to [4].

The formulae presented below use the following notation for time measures.
T cr
R(P) denotes the wall time for BLAS and LAPACK routines R with a tuple of

parameters P on the computational resource CPU or GPU, respectively. E.g.,
T cpu
DGEMM(m,n,k) is an elapsed time for computing a product of m-by-k and k-by-n

matrices by means of the routine DGEMM on the CPU. We alias the routines for
copying rectangular matrices to and from GPU with SET and GET respectively.
We use braces if these data exchange operations can be executed algorithmi-
cally in parallel with some numerical kernel(s). I.e., {T gpu

DGEMM(n,n,n), T
gpu
GET(n,n)} is

532 S. Gogolenko, Z. Bai, and R. Scalettar

equal to max{T gpu
DGEMM(n,n,n), T

gpu
GET(n,n)} if copying is asynchronous and implemented

via cublasGetMatrixAsync, and T gpu
DGEMM(n,n,n) + T gpu

GET(n,n) if synchronous routine
cublasGetMatrix is used.

The optimal values of the parameters lj , li, and lk correspond to the situa-
tion if the elapsed time of processing assigned kernels on both host and devices
are roughly the same in each iteration. These conditions result in the following
approximations

lj ≈ 1

1 + κC
(j + cj) , li ≈

1

1 + κR
(p−min{i, jF}+ 1 + ci) , (5)

lk ≈

⎧⎪⎪⎨⎪⎪⎩
1

1 + κQ
(p+ k + 2 + c′k − c′′k) , if k ≤ κQp− 2− c′k

κQ + 2
,

1

1 + κQ

(
p+

κQ

2
(p− k) + 1 + c′k/2− c′′k

)
, if k >

κQp− 2− c′k
κQ + 2

,
(6)

where

κC =
{T gpu

DGEMM(n,n,n) , T
gpu
GET(n,n)}

T cpu
DGEMM(n,n,n)/(1 + η)

, cj = 2
T cpu
DTRTRI(n) + 2T cpu

DTRMM(n,n)

2T cpu
DGEMM(n,n,n)

− 1 >
1

6
,

κR =
{T gpu

DGEMM(n,n,n) , T
gpu
GET(n,n)}

T cpu
DGEMM(n,n,n)

, ci = 2
T cpu
DTRTRI(n) + 3T cpu

DTRMM(n,n)

2T cpu
DGEMM(n,n,n)

− 2 > −1

3
,

κQ =
{T gpu

DGEMM(2*n,n,n) , T
gpu
GET(n,n)}

T cpu
DGEMM(2*n,n,n)

, c′k =
T cpu
DORGQR(2*n,2*n,n)

T cpu
DGEMM(2*n,n,n)

− 2 >
1

3
, c′′k =

T gpu
SET(n,n)

T cpu
DGEMM(2*n,n,n)

,

η is a ratio between the number of cores involved in factorization of H and the
number of cores involved in inversion of R in the second step of BSOFTRI (e.g.,
the typical values of η for single hexa-core are 3 : 3, 4 : 2, or 5 : 1).

In order to reduce idle time related to the synchronization of parallel threads
in the merged factorization/inversion phase, the total elapsed time for inversion
of the first jF columns should be less than the elapsed time for performing jF −lF
factorization steps. This condition leads to the following lower bound for lF

lF (δ) ≥
1

2
− cj +

δη

10βF

(
c2j + cj −

1

4

)
+

5βF

2δη
, (7)

where

βF =
T cpu
DGEQRF(2*n,n) + T cpu

DORMQR(’R’,’N’,2*n,n,n)

5T cpu
DGEMM(n,n,n)

,

δ = 1 if the last column panel inversion is postponed in the second step of
BSOFTRI, and δ = 2 otherwise. The latter inequality usually holds true for some
2 ≤ lF ≤ 6. If δ = 1, lF and jF are linked by expression

l̂F (jF) = p− 1

5

(
η

βF

(
1

2

κC

1 + κC

(
j2F + (1 + 2cj)jF − 4cj − 6

)
+ 1

)
− 3p+ 10

)
.

Hence, postponed processing of the last column panel in the second step of
BSOFTRI makes sense only if lF (1) > l̂F (p−2) for minimal lF which satisfies (7).

BSOI on Multicores with GPUs 533

Table 2. Performance model of parallel “host-device” BSOFI, where Metric 1 is the
number of flops on GPU, Metric 2 is the number of words CPU�GPU and Metric 3
is the number of messages CPU�GPU

Metric BSOFTRI BSOI

1 n3p
1+κR

(
θ2βF

(
1 + δ−1

δη

(
1 + 1

κC

))
+ p+ 1 + 2ci

)
2n3p
1+κQ

(3p+ 1 + 2c′k − 4c′′k)

2 n2p
1+κR

1
2

(
θ2βF

δ
+ p+ 5 + 2κR + 2ci

)
n2p2

1+κQ

1
2

3κQ+4

κQ+2

3 2p+ 2(2− δ)θ

√
βF
δη

(
1 + 1

κC

)
(p− 2) + 2δ − 12 2p− 2

Results of the theoretical performance study are summarized in the table 2.
For the sake of simplicity, the lower order terms are neglected. θ is a decreasing
function of lF . Its upper bound is 2

√
2. The lower bound on θ is

√
3 if δ = 1.

5 Experimental Results and Analysis

Experimental setup. In order to examine our algorithmic solutions, we developed
codes for stand-alone CPU and GPU processing, as well as hybrid CPU+GPU
implementation. Our solvers receive p-cyclic matrix H in an unpacked form as
input, and replace it with its inverse H−1 by performing in-place inversion.
The POSIX threads are used for threading in the second step of BSOFTRI.
For performance data presented below, the codes were compiled with ICC and
linked against CuBLAS, Magma, and Intel’s MKL library. Our codes are pub-
licly available from https://github.com/SGo-Go/BSOFI. The performance data
were collected on a 2-socket Intel Xeon X5670 coupled with NVIDIA GeForce
GTX480 GPU. Intel Xeon X5670 is a 6-core processor with 2.9GHz clock rate.
GTX480 is a CUDA-enabled NVIDIA GPU, which implements Fermi archi-
tecture, and has 15 streaming multiprocessors with 32 CUDA cores in each.
For multi-GPU studies, we used a multi-GPU Fermi node on the Dirac cluster,
housed at NERSC of Lawrence Berkeley National Laboratory. This node con-
tains 2 Intel 5530 2.4GHz Quad core Nehalem processors, and 4 C1060 NVIDIA
Tesla GPUs.

Performance tuning. In order to make our hybrid CPU+GPU codes architecture-
aware, we perform benchmarking of basic kernels used in the modified BSOFI
algorithm, evaluate parameters for (5)–(7), and embed their approximate mod-
els into the code. Our experiments have shown that parameters κR, κC , and
κQ depend dramatically on the block size n if n is small, and this dependence
can be sufficiently well approximated by the first order rational functions. We
obtain parameters of these rational functions by Gauss-Markov estimator. The
correction parameters ci, cj, c

′
k, and c′′k are approximated by descending step-

wise functions of n. At first, we filter curves for these parameters received after

https://github.com/SGo-Go/BSOFI

534 S. Gogolenko, Z. Bai, and R. Scalettar

32× 320 64× 160 100× 102 256× 40 512× 20 1024× 10

N = n× P

0

20

40

60

80

100

120

140

160

Pe
rf

or
m

an
ce

,G
F

lo
p/

s

CPU (6 threads)
CPU (12 threads)
GPU
CPU/GPU

(a) Performance of the CPU, GPU and hy-
brid BSOFI codes

0 10000 20000 30000 40000 50000

N = n× P

0

50

100

150

200

250

Pe
rf

or
m

an
ce

,G
F

lo
p/

s

n = 128 n = 256 n = 512

(b) Performance of the hybrid BSOFI
codes

Fig. 6. Performance of BSOFI on a 2-socket Intel Xeon X5670 coupled with NVIDIA
GeForce GTX480 GPU

benchmarking, and afterwards round the filtered curves to the closest integers.
The same approach is used to build a step-wise approximation for parame-
ter lF .

Benchmarking results. To investigate the quality of exploiting structure by
BSOFI algorithm, we compare performance of our CPU implementation with
näıve BLAS3 LU inversion and inversion by multifrontal sparse LU solvers from
UMFPack. Benchmarking shows significant speed-up of BSOFI with respect to
LU inversion. We observe up to 22× speed-up if n × p < 104 and n ≥ 32. The
general tendency is an increase of speed-up with a decrease of n.

Fig. 6a shows the performance of BSOFI codes on different platforms for N =
10240. Hybrid implementation is up to 1.7× faster over the best of CPU and
GPU codes. Its peak performance is higher than peak performance of DGEMM on
CPU and is only 1.1× lower than the peak of DGEMM on GPU. Moreover, the
difference in performance in the interval 32 ≤ n ≤ 1024 does not exceed 1.5×
for our hybrid CPU+GPU implementation. Fig. 6b compares the performance
of CPU+GPU codes for different sizes of p-cyclic matrices if n is fixed. If n
is large, performance of subroutine BSOI on the single GPU node is two times
more in the case of CPU+GPU implementation than in the case of pure CPU
implementation. At the same time, performance improvements for subroutine
BSOFTRI are less significant than for BSOI. If n � 512, performance curves are
close to each other. This is a consequence of reaching maximum performance for
DGEMM on both CPU and GPU.

More benchmarking results on both single and multi-GPU platforms can be
found in [4].

BSOI on Multicores with GPUs 535

6 Conclusions and Further Directions

We presented serial and parallel algorithms for structured orthogonal inversion
of block p-cyclic matrices. We provided a performance model and discussed host-
device load balance. Finally, we developed and explored CPU, GPU and hybrid
CPU+GPU codes for in-place inversion of p-cyclic matrices. Benchmarking has
shown that our codes for multicores with GPU accelerators maintain sustain-
able performance for different values of problem size n, and attain up to 90%
of realistic peak performance in terms of the operation of the matrix-matrix
multiplication.

There are numerous ways to extend the results presented in this paper. Since
GPUs have a lot in common with Intel MIC architecture, it seems natural to
verify the approaches on multicores with MIC accelerators. Another promising
direction is in coupling of BSOFI with inversion based on explicit formulae. We
conclude by mentioning that the solutions proposed here can be extended to the
problems with other block structured matrices such as block upper Hessenberg
matrices. This leads us to believe that the BSOFI could be a vital substitute to
conventional Gaussian elimination based inversion for broader classes of block
structured matrices.

References

1. Bai, Z., Chen, W., Scalettar, R., Yamazaki, I.: Numerical methods for Quantum
Monte Carlo simulations of the Hubbard model. In: Hou, T.Y., Liu, C., Liu, J.G.
(eds.) Multi-Scale Phenomena in Complex Fluids. Contemporary Applied Mathe-
matics, ch. 1, vol. 12, pp. 1–100. World Scientific (2009)

2. Ernst, O.G.: Equivalent iterative methods for p-cyclic matrices. Numerical Algo-
rithms 25(1-4), 161–180 (2000)

3. Fairweather, G., Gladwell, I.: Algorithms for almost block diagonal linear systems.
SIAM Review 46(1), 49–58 (2004)

4. Gogolenko, S., Bai, Z.: A structured orthogonal inversion of block p-cyclic matrices
on multicores with GPU accelerators. Tech. Rep. CSE-2013-78, CS Dept., UC Davis
(2013),
http://www.cs.ucdavis.edu/research/tech-reports/2012/CSE-2013-78.pdf

5. Khabou, A., Demmel, J., Grigori, L., Gu, M.: LU factorization with panel rank re-
vealing pivoting and its communication avoiding version. SIAM J. Matrix Analysis
Applications 34(3), 1401–1429 (2013)

6. Tomas, A., Chang, C.C., Scalettar, R., Bai, Z.: Advancing large scale many-
body QMC simulations on GPU accelerated multicore systems. In: Proceedings
of IPDPSW 2012, pp. 308–319. IEEE, Washington, DC (2012)

7. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for
multicore with GPU accelerators. In: Proceedings of IPDPSW 2010, pp. 1–8. IEEE,
Atlanta (2010)

8. Volkov, V., Demmel, J.: LU, QR and Cholesky factorizations using vector capabil-
ities of GPUs. Tech. Rep. UCB/EECS-2008-49, EECS Dept., UC Berkeley (2008)

9. Wright, S.J.: Stable parallel algorithms for two-point boundary value problems.
SIAM J. Sci. Stat. Comput. 13(3), 742–764 (1992)

10. Wright, S.J.: A collection of problems for which Gaussian elimination with partial
pivoting is unstable. SIAM J. Sci. Comput. 14(1), 231–238 (1993)

http://www.cs.ucdavis.edu/research/tech-reports/2012/CSE-2013-78.pdf

High-Throughput Maps on Message-Passing

Manycore Architectures:
Partitioning versus Replication

Omid Shahmirzadi, Thomas Ropars, and André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract. The advent of manycore architectures raises new scalability
challenges for concurrent applications. Implementing scalable data struc-
tures is one of them. Several manycore architectures provide hardware
message passing as a means to efficiently exchange data between cores. In
this paper, we study the implementation of high-throughput concurrent
maps in message-passing manycores. Partitioning and replication are the
two approaches to achieve high throughput in a message-passing system.
Our paper presents and compares different strongly-consistent map algo-
rithms based on partitioning and replication. To assess the performance
of these algorithms independently of architecture-specific features, we
propose a communication model of message-passing manycores to ex-
press the throughput of each algorithm. The model is validated through
experiments on a 36-core TILE-Gx8036 processor. Evaluations show that
replication outperforms partitioning only in a narrow domain.

1 Introduction

Manycore architectures, featuring tens if not hundreds of cores, are becom-
ing available. Taking advantage of the high degree of parallelism provided by
such architectures is challenging and raises questions about the programming
model to be used [22, 13]. Most existing architectures are still based on cache-
coherent shared memory but some provide message passing, through a highly
efficient network-on-chip (NoC), as a basic means to communicate between
cores [10, 21, 11]. Designing a scalable concurrent algorithm for cache-coherent
architectures is a difficult task because it requires understanding the subtleties
of the underlying cache coherence protocol [5]. On the other hand, message pass-
ing looks appealing because it provides the programmer with explicit control of
the communication between cores. However, compared to the vast literature on
concurrent programming in shared-memory systems [9], programming message-
passing processors is not yet a mature research topic.

Implementing scalable data structures is one of the basic problems in concur-
rent programming. To increase the throughput of data structures in shared mem-
ory architectures, severalwell-known techniques can be used including fine-grained

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 536–547, 2014.
c© Springer International Publishing Switzerland 2014

High-Throughput Maps on Message-Passing Manycore Architectures 537

locking, optimistic synchronization and lazy synchronization [9]. In the case of
message-passing systems, partitioning and replication are the twomain approaches
to improve the throughput of concurrent data structures [7]. Using partitioning,
a data structure is partitioned among a set of servers that answer clients requests.
Using replication, each client has a local copy of the data structure in its private
memory. Both have been considered in recent work on message-passing many-
cores [2, 24, 4], but performance comparisons are lacking. In this paper we present
a performance comparison of these two approaches for the implementation of high-
throughput concurrent objects inmessage-passingmanycores, considering the case
of a linearizable map. Note that existing studies made in distributed message-
passing systems are only of little help because the high performance of NoCs pro-
vides a completely different ratio between computation and communication costs
compared to large scale distributed systems.

Maps are used in many systems ranging from operating systems [2, 24] to
key-value stores [4]. Their performance is often crucial to the systems using
them. A map is an interesting case study because it is a good candidate to apply
both partitioning and replication techniques. Since operations on different keys
are independent, maps are easily partitionable [4]. Because a large majority of
operations are usually lookup operations [1], replication can help handling a
large number of local lookup requests concurrently.

Since message-passing manycores are a new technology, only few algorithms
targeting this kind of architectures are available. Thus, to compare partitioning
and replication in this context, we devise simple map algorithms that have been
chosen to be representative of the design space. To compare our algorithms, we
present a model of the communication in message-passing manycores, and ex-
press the throughput of our algorithms in this model. Using a performance model
allows us to compare the algorithms independently of platform-specific features
and to cover a large scope of manycore architectures. We use a 36-core Tilera
TILE-Gx8036 processor to validate our model. Evaluations on the TILE-Gx
shows an extremely poor performance for replication compare to partitioning.
However some limitations of this platform, i.e. costly interrupt handling and lack
of broadcast service, can be blamed for the poor performance. Our model allows
us to come up with a hypothetical platform based on the TILE-Gx, which does
not suffer form its limitations. Our evaluations on this ideal platform show that
even in the best setting in favor of replication, i.e. having highly efficient inter-
rupt handling and a hardware-based broadcast service, replication can outper-
form partitioning only when update operations are rare and replicas are located
in the cache system of the cores.

This paper is organized as follows. Section 2 specifies the underlying as-
sumptions and goal of the study. Section 3 introduces the algorithms. Section 4
presents the modeling methodology and its validation on the TILE-Gx proces-
sor. Section 5 studies performance of the algorithms on different architectures.
Related work and conclusion are presented in Sections 6 and 7.

538 O. Shahmirzadi, T. Ropars, and A. Schiper

2 Assumptions and Goal

The study assumes a fault-free manycore architecture where a large number of
threads, each pinned to a single-threaded core during its lifetime, communicate
through an on-chip network using the following operations: send(m, i) sends
message m to thread i; bcast(m) sends m to all threads; mcast(m, list) sends
m to all threads in the list; rcv(m) blocks until message m can be received. A
thread can be interrupted to deliver a new message m upon its receipt, which is
denoted as arcv(m). Communication channels are asynchronous and FIFO.

The study considers the most general consistency criteria, linearizability, and
compares the maximum achievable throughput of different linearizable map im-
plementations. A map is a set of items indexed by unique keys that provides
lookup and update operations: lookup(key) returns the value indexed by key
(null if no value is associated with key); update(key, val) updates the value
indexed by key to val (deleting a key can be done using update(key, null)).

3 Algorithms

The two basic techniques to implement scalable concurrent maps on message-
passing manycores are partitioning and replication. For each technique, we con-
sider a few algorithms which are representative of the design space. Algorithmic
details and correctness proofs can be found in our technical report [20].

3.1 Partitioning

Partitioning a map among a set of server threads can parallelize accesses to
different map items. We study two algorithms based on partitioning. In the
first algorithm, Part simple, a map is partitioned among a set of s servers,
i.e. item < key, val > is located on server key mod s. A client accesses the
corresponding server upon executing a map operation on a key. In the second
algorithm, Part caching, recently accessed items are cached on client side.
Cached values need to be invalidated if they are updated by other clients. To
ensure linearizability, after multicasting an invalidation message, the server waits
to receive the acknowledgement from all invalidated clients to finish the update.

3.2 Replication

Replicating a map on each client thread can localize accesses to map items during
lookup operations. Unlike in large scale distributed systems, in message-passing
manycores locating a replica close to a set of clients is not that beneficial. Even
accessing a map replica located in a neighboring core is much more expensive
than accessing it locally, since the main access cost is the network cycles used
to pack and unpack the payload rather than traversing the hops. In this case
replication and partitioning have similar lookup costs, while the former needs
expensive updates to ensure consistency. Therefore we only consider the case
where each client has its own local map replica.

High-Throughput Maps on Message-Passing Manycore Architectures 539

In replication algorithms, clients deliver updates upon receiving inter-core
interrupts. An alternative is to buffer updates and apply them before executing
the next map operation. We eliminate this option due to the need for potentially
large network buffers, which is not the case in current architectures [21]. To
ensure linearizability the following conditions are necessary with respect to each
key: (i) updates should be totally ordered; (ii) lookups should be synchronized
with updates. We address each condition before describing the algorithms.

Atomic broadcast can be used for total ordering of updates. Among the five
classes of atomic broadcast protocols mentioned in [6], we select the one based on
a fixed sequencer. In a fixed sequencer algorithm, a sequencer server is in charge
of assigning sequence numbers to updates. Three reasons motivate this choice:
(a) it needs only one broadcast; (b) updates on different keys can propagate
in parallel (by partitioning the sequencing service among multiple sequencer
servers, if using a single sequencer can become the bottleneck); (c) replicas can
issue requests independently of each other. Other classes lack some of these
properties, and so, would provide much lower throughput. Alternatively atomic
commitment, e.g. two-phase commit, can be used for total ordering of updates.
Atomic commit ensures that only one update is applying in the system at a
time. This can circumvent the need for dedicating sequencer threads. Therefore
we also consider a variant of two-phase commit for total ordering of updates.

Executing lookups without synchronization can violate linearizability, as il-
lustrated by Figure 1, and must be avoided. In this scenario, client c issues an
operation update(key,newval), which is applied on the map replicas on c′ and
c′′ at time t1 and t2 respectively. If lookups can return immediately with no
synchronizing, linearizability can be violated: lookup(key) on c1 returns the new
value while, at a later time, the same operation on c2 returns the old value.

We describe three algorithms satisfying the two mentioned conditions: two
based on atomic broadcast and one based on atomic commit. For simplicity we
describe the algorithms from the perspective of only one key. We partition the se-
quencer service among s sequencer servers, each responsible for a subset of keys.
In the first algorithm, Rep remote, clients atomically broadcast their updates
and return. Lookups need to contact the corresponding sequencer to know the
sequence number sn of the last issued update. Lookups can return only when the
update with sequence number sn has been delivered. In the second algorithm,
Rep local, lookups do not need any remote communication to synchronize
with updates. This makes updates more complex: After atomic broadcast of an
update, the source waits until all other clients acknowledge delivery of this up-
date before broadcasting a final acknowledgement and terminating the operation.
Lookups issued after delivering an update should wait until the final acknowl-
edgement is delivered in order to return. In the third algorithm, Rep 2pc, a
client, before issuing an update, requests from all other clients whether they are
applying a conflicting update or not. If no client is applying a conflicting update,
it broadcasts the new update and waits to receive an acknowledgement from all
to terminate the operation. Otherwise it aborts its own update. Lookups apply
a similar technique as in Rep local to synchronize with updates.

540 O. Shahmirzadi, T. Ropars, and A. Schiper

c

c’

c’’ t2

t1

update(key,newval)

lookup(key) newval

lookup(key) oldval

Fig. 1. Non-linearizable execution with a replicated map

4 Performance Modeling

We model the throughput of our map algorithms on message-passing manycores
to be able to compare them independently of architecture-specific features and
to help manycore programmers to decide about their implementation choice on
different platforms. In this section we describe the modeling methodology and
we validate it using an existing manycore architecture.

4.1 Methodology

To model the throughput of our algorithms, we assume threads are divided
into c clients, which issue map operations, and s servers, which execute map
related code1. Client and server threads are located in different cores. Keys are
distributed evenly among the servers and are accessed uniformly by the clients.

In manycore architectures with highly efficient NoCs, cores are the main per-
formance bottleneck. We define the following computation parameters to express
throughput of our algorithms. We consider a generic map implementation de-
fined by three parameters opre, olup and oupd: opre is the computation time
on the client before accessing the map, e.g. executing a hash function if the
map is implemented using a hash table; olup and oupd are the computation
times corresponding to accessing the underlying data structure during a lookup
and an update respectively. In a configuration with multiple servers, osel stands
for the server selection overhead on the clients. We also associate an overhead
with each of the communication primitives introduced in Section 2. Moreover,
we introduce the parameter Trtt, to represent round-trip times. More precisely,
Trtt(send op, rcv op) is the round-trip time for the initial message sent with the
send op operation (i.e. send, bcast or mcast) and received with the rcv op oper-
ation (i.e. rcv or arcv). The answer is always sent back using send and received
using rcv. If the round trip is initiated with bcast or mcast, it finishes when
the answers from all destinations have been received. We assume that all other
computational costs related to the execution of the algorithms, e.g. L1 cache
accesses, are negligible. Model parameters are summarized in Table 1.

We define Tlup and Tupd, the number of CPU cycles required to execute a
lookup and an update respectively. For each operation op, Top can be divided into
the CPU cycles it takes on the client (T c

op) and on the server (T s
op). Considering

1
Rep 2pc includes no servers.

High-Throughput Maps on Message-Passing Manycore Architectures 541

Table 1. Model parameters and their values (”-” : the same as on TILE-Gx)

parameter description TILE-Gx int. ideal
c number of clients
s number of servers
p probability of a lookup operation

opre computation before a map access
olup access to the map for a lookup
oupd access to the map for an update
osel server selection overhead if s = 2x 17,else 90 - -
osend overhead of send(m) 8 + |m| - -
obcast overhead of broadcast(m) c · osend - osend

omcast overhead of multicast(m, list) |list| · osend - osend

orcv overhead of a synchronous receive 2 · |m| - -
oarcv overhead of an asynchronous receive 138 + orcv 4 + orcv 4 + orcv
L average communication latency 16 - -

Trtt(send, rcv) round-trip time with send and rcv 2 · (osend + orcv + L) - -
Trtt(send, arcv) round-trip time with send and arcv 2 · (osend + oarcv + L) - -

Trtt(bcast, arcv) round-trip time with bcast and arcv
obcast + oarcv+

osend + orcv + 2 · L - -

Trtt(mcast, arcv) round-trip time with mcast and arcv
omcast + oarcv+

osend + orcv + 2 · L - -

a load where the probability of having a lookup operation is p, the maximum
throughput T c achievable by clients (and equivalently by the servers) is:

T c =
c

p · T c
lup + (1− p) · T c

upd

(1)

Hence, the maximum throughput T of a map is:

T = min(T c,T s) (2)

As an example we model the throughput of the Part simple algorithm. The
communication pattern is described in Figure 2. It is similar for a lookup and
an update operation. The only difference is that during an update operation,
applying the update on the map can be removed from the critical path of the
client. Computing T s

op (where op is upd or lup), T c
lup and T c

upd is as follows:

T s
op = orcv + oop + osend (3)

T c
lup = opre + osel + Trtt(send, rcv) + olup (4)

T c
upd = opre + osel + Trtt(send, rcv) (5)

Unlike Part simple, modeling the throughput of other algorithms involves
some complexity. In replication algorithms, a client can deliver asynchronous
messages for free during idle periods. This increases the throughput of the clients
and alters the general Formula 1. Moreover in Part caching, the probability
of hitting the local cache as well as the number of clients which need to be
invalidated should be computed. The detailed performance model of the other
algorithms can be found in [20].

4.2 Validation

We use a Tilera TILE-Gx8036 processor [21] as a representative of current
message-passing manycore architectures to validate our model. It consists of 36

542 O. Shahmirzadi, T. Ropars, and A. Schiper

(a) Update (b) Lookup

Fig. 2. Part simple algorithm

cores communicating through a mesh interconnect. Cores and mesh operate at
the same frequency, 1.2 Ghz. Each core is provided with a 32 KB L1 instruction
cache, a 32 KB L1 data cache, a 256 KB L2 cache and four independent FIFO
receive buffers where each can contain up to 118 64-bit words. Threads located
on different cores can communicate using send and rcv primitives with no oper-
ating system intervention. A send puts the data in one of the four receive buffers
of the destination and a rcv blocks until this data is available. Upon receipt of
a message in any of the four buffers, an interrupt can be raised to perform an
asynchronous receive. There is no hardware support for collective operations.

We obtain the model parameters for the TILE-Gx processor through mi-
crobenchmarks. Each send has a fixed overhead of 8 cycles plus 1 cycle per
word. Due to the lack of collective operations, we implement bcast and mcast as
a set of consecutive send operations, so their cost is a linear function of osend

2.
Each rcv needs 2 cycles to deliver each word from the receive buffers. Each arcv,
in addition to the cycles needed for receiving messages from the buffers, requires
an overhead of 138 cycles to save and retrieve the execution context. We com-
pute the round trip times, as the length of the critical path on the source thread
from the first send operation to the last receive operation. Round-trip times
take into account the average communication latency L, which involves a fixed
packing and unpacking overhead of 10 network cycles plus an average traversal
cost of 6 network cycles (1 cycle per hop). Finally osel is 17 cycles if the number
of servers is a power of two, otherwise 90 cycles (mod function is implemented
using bitwise operations). Table 1 summarizes the TILE-Gx parameters.

To validate our model, we pin each thread to a different core. Clients issue map
operations with 90% probability a lookup (p = 0.9). Keys are evenly distributed
among the servers and are accessed uniformly by the clients. We consider a
map implemented using a hash table which fits into the L1 cache of the cores:
olup = oupd = 0 cycles3. We use the DJB hash function to generate 4 bytes
long keys from 36 bytes long strings: opre = 156 cycles. We consider a collision-
free scenario. Experiments are run with version 2.6.40.38-MDE-4.1.0.148119 of
Tilera’s custom Linux kernel, compiled using GCC 4.4.6 with O3 flag.

Figure 3(b) presents the maximum throughput of the five algorithms, obtained
through experiments and model, for different total number of threads. Each point
in the experimental results is the average throughput of 6 runs, where in each

2 Effects of such an implementation will be later removed by considering a platform
with a hardware-based broadcast service.

3 We consider L1 to better evaluate the accuracy of our communication model.

High-Throughput Maps on Message-Passing Manycore Architectures 543

 0

 50

 100

 150

 200

 1 10 20 30 35

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Number of server threads

Part-simple (model)
Part-simple (exp)

(a) Part simple with 36 threads

 0

 50

 100

 150

 200

 4 8 12 16 20 24 28 32 36

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

Part-simp (mod)
Part-simp (exp)
Part-cach (mod)
Part-cach (exp)
Rep-rem (mod)
Rep-rem (exp)
Rep-loc (mod)
Rep-loc (exp)

Rep-2pc (mod)
Rep-2pc (exp)

(b) Performance of algorithms

Fig. 3. Model validation on TILE-Gx processor (p=0.90)

run every client issues 10000 operations on the map. Keys are distributed among
the servers uniformly and clients randomly select the key for the next operation
with a uniform distribution. For a given number of threads, the corresponding
throughput for each algorithm represents the throughput obtainable from the
best possible configuration of clients and servers. For example, the throughput
of the simple partitioning algorithm with 36 threads in Figure 3(b) is obtained
through the graph shown in Figure 3(a), where the configuration with 2 servers
and 34 clients leads to the best throughput (hiccups are due to osel). These figures
show that we manage to model the throughput of the algorithms with good
approximation (a maximum of 12% deviation in the case of Part caching).
However the throughput obtained through the model is slightly higher than
through experiments. This is mainly because in practice other computational
costs are involved (e.g. operations on the cached variables).

5 Evaluation

Studying algorithms only on the TILE-Gx leads to architecture-specific results.
Two limitations of this processor can decrease the performance: (i) asynchronous
receives, although relatively efficient compared to existing architectures, are still
much more costly than synchronous ones; (ii) there is no efficient broadcast ser-
vice4. These limitation could impair the performance of all replication algorithms
and of Part caching and so, could be the reason for the higher throughput of
Part simple observed in Figure 3(b). Using our model, we define two platforms
based on TILE-Gx to avoid the harmful effects of the mentioned limitations. We
define an intermediate platform where synchronous and asynchronous receives
have similar costs. We also define an ideal platform, which enhances the inter-
mediate platform with broadcast operation in hardware. In this case the cost of
bcast is equal to the cost of a single send. The ideal platform provides the best
setting for the replication algorithms. These assumptions are realistic. In [18], a

4 When broadcast is implemented using asynchronous communication, the throughput
of the system is independent from the broadcast algorithm [16].

544 O. Shahmirzadi, T. Ropars, and A. Schiper

solution with a constant 4 cycles cost of saving and restoring an execution con-
text is presented. Moreover some existing manycores, e.g. Kalray [11], provide
hardware-based broadcast. Table 1 summarizes parameter values for these plat-
forms. In this section we compare the algorithms performance on these platforms.
We also discuss how different consistency, configuration and load assumptions
can alter the results (see [20] for detailed discussions).

5.1 Comparison on Different Platforms

To compare the algorithms on different platforms, we apply our analytical model.
We consider a map implemented using a hash table as the most popular map
implementation. To avoid orthogonal issues, we consider a collision free scenario
where the keys are evenly distributed among servers and are accessed uniformly
by the clients. To assess different computational costs, we identify three use cases
with different hash function costs (depending on its input type) and hash table
sizes (small enough to fit in the L2 cache or otherwise in memory). Namely we
consider (i) a small hash table with an integer hash function (opre = 12, oop =
11); (ii) a small hash table with a string hash function (opre = 156, oop = 11);
(iii) a big hash table with a string hash function (opre = 156, oop = 88). The
first two are representative use cases in operating systems [12] while the latter
is a representative use case in key-value stores [14]5.

Considering the first use case, we compare the performance of the algorithms
on different platforms with 90% and 99% of lookups (see Figure 4). We ap-
ply the same methodology as in model validation to obtain throughput graphs.
Three main conclusions can be taken from the results. First, with 90% of lookups
Part simple outperforms other algorithms on all platforms at almost all scales.
Second, with 99% of lookups Rep local outperforms the partitioning algo-
rithms only if asynchronous receives are handled efficiently. Actually on the
ideal platform the minimum ratio of lookups for replication to outperform parti-
tioning is 98%. Third, having broadcast in hardware does not change the relative
performance of the algorithms dramatically (compare Figures 4(e) and 4(f)).

Considering other use cases, the mentioned conclusions remain valid. The only
exception is the scenario where the hash table is located in the main memory.
In this case even with 99% of lookups, Part caching shows best performance
on all platforms. This is due to the fact that replicated maps are not able to
leverage the locality if map replicas are not cached.

5.2 Discussion

To assess the effects of weakening the consistency criteria, we also study the
case of sequential consistency. Replicated maps are able to exploit sequential
consistency by removing the synchronization between lookups and updates. On
the contrary partitioned maps are not able to exploit sequential consistency,
mainly because sequential consistency is not compositional. Evaluations show
that replication still needs the same conditions as with the case of linearizability

5 We did not find any use cases for a big hash table applying a cheap hash function.

High-Throughput Maps on Message-Passing Manycore Architectures 545

 0

 200

 400

 600

 800

 1000

 1200

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

Part-simple
Part-caching
Rep-remote

Rep-local
Rep-2pc

(a) TILE-Gx, p=90%

 0

 200

 400

 600

 800

 1000

 1200

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

(b) intermediate, p=90%

 0

 200

 400

 600

 800

 1000

 1200

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

(c) ideal, p=90%

 0

 200

 400

 600

 800

 1000

 1200

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

(d) TILE-Gx, p=99%

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

(e) intermediate, p=99%

 0

 500

 1000

 1500

 2000

 2500

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

(f) ideal, p=99%

Fig. 4. Analytical performance on the three platforms (opre = 12, oop = 11)

to outperform partitioning. Study of even weaker consistency criteria [23], using
a similar methodology, can complement this study.

Clients and servers can be collocated on the same core. This configuration
avoids dedicating resources to play the server role. On the TILE-Gx, this is
not a desirable choice since a costly asynchronous receive will be involved in
every request sent to the servers. Evaluations on the ideal platform show that,
despite efficient asynchronous receives, this collocation only leads to a negligible
performance gain. The main reason is that in the best configurations, the number
of servers which can be collocated with the clients is small.

Client can access the servers non-uniformly, e.g. when the map is implemented
using a hash table with a non-uniform hash function. This phenomenon decreases
the throughput of the servers, and consequently of the overall map (except for
Rep 2pc). Moreover a non-uniform access of the clients to different keys in-
creases the throughput of the Part caching algorithm, by increasing the prob-
ability of local lookups and decreasing the number of invalidations. For a given
distribution of the client accesses among servers and the key accesses among
clients, throughput of the maps can be quantified using our model.

We considered the TILE-Gx, a general purpose message-passing manycore, as
the baseline for our evaluations. We believe that our conclusions remain valid on
similar architectures since: (i) TILE-Gx provides efficient inter-core communica-
tion; (ii) using our model we could consider cases where broadcast operations and
asynchronous receives are very efficient. Still, using our model, one can directly
do a comparison on other architectures. One exception is the architectures with
one-sided communication primitives, e.g. Intel SCC [10]. The main reason is that
inter-core communication in these architectures involves some synchronization
costs [17] which are not included in our model.

546 O. Shahmirzadi, T. Ropars, and A. Schiper

6 Related Work

This paper compares different map algorithms using performance modeling. A
few recent studies have proposed performance models for other manycore archi-
tectures [17, 19]. Our approach is similar to the one used in these papers. The
main difference is that the underlying communication system considered in these
studies are different from our paper: [17] models RMA-based communication and
targets the Intel SCC processor; [19] models point-to-point communication on
top of cache-coherent shared memory and targets the Intel Xeon Phi processor.

Implementation of scalable data structures is an important research topic for
message-passing-based operating systems [2, 24, 8]. Partitioning and replication
were both originally proposed as a mean to scale the operating systems in the
Tornado project [8]. Since Tornado was designed for shared-memory processors,
message-passing was emulated in software with a high cost for software-based
multicast operations. We compared partitioning and replication in the context
of modern message-passing manycore chips which provide completely different
trade-offs regarding communication performance compared to [8]. As an inter-
esting use-case, a naming service for the FOS operating system is implemented
using a weakly-consistent replicated hash map [3]. The replication algorithm used
in this study is a variant of Rep 2pc, but is not compared to other alternatives.

Optimization of in-memory key-value stores for manycores is another area
where our results could be used [4, 15]. The authors of [4] and [15] both propose
a partitioning approach similar to the Part simple algorithm. The solution
proposed in [15] is based on message-passing emulated on top of shared memory
whereas [4] takes advantage of hardware message-passing provided by Tilera. Our
paper complements these studies by comparing replication and partitioning.

7 Conclusion

The paper studies the implementation of strongly-consistent maps in message-
passing manycores. Using a communication model it compares the performance
of partitioned and replicated maps under different settings. A Tilera TILE-
Gx8036 processor is used to validate the model and serves as a baseline for
the evaluations. The results show that replication can outperform partitioning
only if handling interrupts is highly efficient, update operations are rare and
map replicas are located in the cache system of the cores.

References

[1] Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload
analysis of a large-scale key-value store. In: Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE, pp. 53–64 (2012)

[2] Baumann, A., Barham, P., Dagand, P., et al.: The multikernel: a new OS archi-
tecture for scalable multicore systems. In: Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, pp. 29–44 (2009)

[3] Beckmann, N.: Distributed naming in a factored operating system. Master’s thesis,
Massachusetts Institute of Technology (2010)

High-Throughput Maps on Message-Passing Manycore Architectures 547

[4] Berezecki, M., Frachtenberg, E., Paleczny, M., Steele, K.: Many-core key-value
store. In: Proceedings of the 2011 International Green Computing Conference and
Workshops, pp. 1–8 (2011)

[5] Calciu, I., Dice, D., Lev,Y., Luchangco, V.,Marathe, V.J., Shavit, N.: NUMA-aware
reader-writer locks. In: Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (2013)

[6] Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Computing Surveys 36(4), 372–421 (2004)

[7] Devlin, B., Gray, J., Laing, B., Spix, G.: Scalability terminology: Farms, clones,
partitions, and packs: Racs and raps. Technical Report MS-TR-99-85, Microsoft
Research (1999)

[8] Gamsa, B., Krieger, O., Appavoo, J., Stumm, M.: Tornado: Maximizing locality
and concurrency in a shared memory multiprocessor operating system. In: The
Third Symposium on Operating Systems Design and Implementation, pp. 87–100
(1999)

[9] Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2012)

[10] Howard, J., Dighe, S., Hoskote, Y., et al.: A 48-core IA-32 message-passing pro-
cessor with DVFS in 45nm CMOS. In: International IEEE Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), pp. 108–109 (2010)

[11] Kalray, http://www.kalray.eu
[12] Lever, C.: Linux kernel hash table behavior: analysis and improvements. Technical

Report TR 00-1, University of Michigan (2000)
[13] Martin, M.M.K., Hill, M.D., Sorin, D.J.: Why on-chip cache coherence is here to

stay. Communications of the ACM 55(7), 78–89 (2012)
[14] Memcached, http://www.memcached.org
[15] Metreveli, Z., Zeldovich, N., Kaashoek, M.F.: Cphash: A cache-partitioned hash

table. In: Proceedings of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 319–320 (2012)

[16] Petrović, D., Shahmirzadi, O., Ropars, T., Schiper, A.: Asynchronous broadcast on
the Intel SCC using interrupts. In: Proceedings of the 6th Many-core Applications
Research Community Symposium, pp. 24–29 (2012)

[17] Petrović, D., Shahmirzadi, O., Ropars, T., Schiper, A.: High-performance RMA-
based broadcast on the Intel SCC. In: Proceedinbgs of the 24th ACM Symposium
on Parallelism in Algorithms and Architectures, pp. 121–130 (2012)

[18] Rafla, N., Gauba, D.: Hardware implementation of context switching for hard
real-time operating systems. In: 54th IEEE International Midwest Symposium on
Circuits and Systems (2011)

[19] Ramos, S., Hoefler, T.: Modeling communication in cache-coherent SMP systems:
A case-study with Xeon Phi. In: Proceedings of the 22nd International Symposium
on High-Performance Parallel and Distributed Computing, pp. 97–108 (2013)

[20] Shahmirzadi, O., Ropars, T., Schiper, A.: High-throughput maps for message-
passing manycore architectures: partitioning versus replication. Technical Report
196582, EPFL (2014)

[21] Tilera, http://www.tilera.com
[22] Torrellas, J.: Architectures for Extreme-Scale Computing. IEEE Computer 42(11),

28–35 (2009)
[23] Vogels, W.: Eventually consistent. Communications of the ACM 52(1), 40–44

(2009)
[24] Wentzlaff, D., Agarwal, A.: Factored operating systems (FOS): the case for a

scalable operating system for multicores. ACM SIGOPS Operating Systems Re-
view 43(2), 76–85 (2009)

http://www.kalray.eu
http://www.memcached.org
http://www.tilera.com

A Fast Sparse Block Circulant Matrix

Vector Product

Eloy Romero, Andrés Tomás, Antonio Soriano, and Ignacio Blanquer

Instituto de Instrumentación para Imagen Molecular (I3M),
Centro Mixto CSIC – Universitat Politècnica de València – CIEMAT,

Camino de Vera s/n, 46022 Valencia, Spain
{elroal,antodo,asoriano}@i3m.upv.es, iblanque@dsic.upv.es

Abstract. In the context of computed tomography (CT), iterative im-
age reconstruction techniques are gaining attention because high-quality
images are becoming computationally feasible. They involve the solution
of large systems of equations, whose cost is dominated by the sparse ma-
trix vector product (SpMV). Our work considers the case of the sparse
matrices being block circulant, which arises when taking advantage of the
rotational symmetry in the tomographic system. Besides the straight-
forward storage saving, we exploit the circulant structure to rewrite
the poor-performance SpMVs into a high-performance product between
sparse and dense matrices. This paper describes the implementations
developed for multi-core CPUs and GPUs, and presents experimental
results with typical CT matrices. The presented approach is up to ten
times faster than without exploiting the circulant structure.

Keywords: Circulant matrix, sparse matrix, matrix vector product,
GPU, multi-core, computed tomography.

1 Introduction

Iterative approaches to image reconstruction have cut down the radiation dose
delivered to the patient in computed tomography (CT) explorations [5], because
they are less sensitive to noisy acquisitions than filtered backprojection (FBP).
Iterative methods consider the reconstruction problem as a system of linear
equations y = Ax. The probability matrix A constitutes a mathematical model
of the tomographic system that links the reconstructed attenuation map x with
the estimation of the measurement y. The large number of projections and the
high spatial resolution (≈ 0.1 mm) in CT require the solution of huge systems.
This is the reason why CT image reconstruction has been dominated by analytic
methods like FBP [3]. However the availability of cheaper and more powerful
hardware has favoured a novel interest in the use of iterative methods in CT
image reconstruction [1,18,15].

Like in many other engineering and scientific applications, A is usually a large,
sparse matrix, i.e., with relatively few non-zeros. Operating with sparse matrices
is computationally efficient: the storage requirements and the time of a product

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 548–559, 2014.
c© Springer International Publishing Switzerland 2014

A Fast Sparse Block Circulant Matrix Vector Product 549

by a vector are almost linear to the number of non-zeros, instead of quadratic
to the matrix dimension for dense matrices. In spite of this good asymptotic
behavior, the performance shown by sparse matrices is far from exhausting the
computing throughput of modern processors, mainly because of low count of
operations per memory transaction. As an example, results testing the matrix-
vector (SpMV) product on several multi-core processors in [23] show disparate
peak performance between 3% and 40%. This has aimed the development of
optimizations techniques and enhanced formats specialized for matrices with
dense blocks [7,22], dense triangles, diagonals, symmetry [12,11] and general
patterns [10].

In the same way, this work addresses block circulant matrices, block matri-
ces where each row of blocks is rotated one element to the right relative to
the previous row. Examples of these matrices can be found in applications in-
volving discretization aware of cylindrical or cyclical symmetries in the domain
[4,9,13,20]. Particularly in the context of CT scanners, mathematical descrip-
tions based on polar coordinates take advantage of the rotational symmetries in
the tomographic system, because it is easy to find an ordering of the unknowns
so that projections share the same pattern of weights in the probability matrix,
although shifted by a fixed number of columns [19,16]. The probability matrix A
constructed like this corresponds to a block circulant matrix, in which the rows
associated to a projection form a row of blocks with the displacement being the
number of columns in every block. Implicit representations of A can save storage
and speed up its construction by a factor of the number of projections, which is
around 100 in practice. Nevertheless, the cost of the associated SpMV product
remains the same, in terms of the number of floating-point operations.

In general the SpMV products dominate the time spent on the solution of the
system of linear equations by iterative methods such as the maximum likelihood
expectation maximization (MLEM) algorithm [17], one of the most used in CT.
In this paper, we propose to accelerate these products by rewriting them as
sparse matrix-dense matrix (SpMM) products. The results we obtained show a
reduction of time by a factor up to ten.

The remainder of this paper is organized as follows. In section 2 it is explained
the approach based on the SpMM product and possible implementations. Sec-
tions 3 and 4 detail several implementations for multi-core CPUs and GPUs,
respectively, and show performance results. And finally section 5 concludes.

Notation. We denote matrices with uppercase letters (A, B...) and vectors with
bold lowercase letters (x, y...). Indices in vectors and matrices start by zero. Xi,j

or X[i, j] refer to the element on row i and column j of the matrix X . We refer
to the BLAS-1 functions, AXPY as y ← y+α ·x, and MAXPY with cardinality
k as y ← y + α0 · x0 + α1 · x1 + · · ·+ αk−1 · xk−1.

2 Circulant Matrix Product Approach

Let C being a block circulant matrix of size mC × nC , made by k × k matrix
blocks Ai of sizemB×nB. Then mC = k·mB and nC = k·nB. The matrix-vector
product y ← Cx takes the form

550 E. Romero et al.⎛⎜⎜⎜⎜⎜⎝
y0

y1

...
yk−2

yk−1

⎞⎟⎟⎟⎟⎟⎠←

⎛⎜⎜⎜⎜⎜⎝
A0 A1 · · · Ak−2 Ak−1

Ak−1 A0 · · · Ak−3 Ak−2

...
...

...
...

A2 A3 · · · A0 A1

A1 A2 · · · Ak−1 A0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
x0

x1

...
xk−2

xk−1

⎞⎟⎟⎟⎟⎟⎠ , (1)

where xi are subvectors of length nB and yi are of lengthmB. The block circulant
matrix C is fully specified by the first block of rows, which we named A =
(A0 A1 . . . Ak−1). Basic implementations avoid storing explicitly the matrix C,
for instance by rewriting the whole product as products by the blocks Ai,

yi ←
k−1∑
j=0

A(j−i) mod k xj , for i from 0 to k − 1. (2)

This approach employs the SpMV product, which in practice has a perfor-
mance mostly limited by the memory bandwidth. Instead, we propose to rewrite
the block circulant matrix-vector product into a matrix-matrix product, which
offers better performance even in simple implementations, as we show further.
Then the product in (1) can be reformulated as Y ← AX̊ , which is in detail

(
y0 y1 . . . yk−1

)
←
(
A0 A1 . . . Ak−1

)
⎛⎜⎜⎜⎜⎜⎝

x0 x1 · · · xk−2 xk−1

x1 x2 · · · xk−1 x0

...
...

...
...

xk−2 xk−1 · · · xk−4 xk−3

xk−1 x0 · · · xk−3 xk−2

⎞⎟⎟⎟⎟⎟⎠ . (3)

Therefore, the circulant property has transfered from C to the vector x, con-
verting the latter in a kind of anti-circulant block matrix X̊, where the rows of
blocks rotate to the left instead. The matrix X̊ is of size nC×k and, as earlier, it is
fully specified by the first row of blocks, which we named X = (x0 x1 ... xk−1).
In the process, also the output vector y is transformed into the matrix form
Y = (y0 y1 ... yk−1).

An efficient (at least, in memory) implementation of the product needs to
maintain X̊ implicit. In a SpMM product code, a way to do so is by replacing
the X̊ accesses by accesses to X like this,

X̊i,j = Xi′,j′ , where i′ = i mod nB and j′ = (�i/nB + j) mod k. (4)

This solution can be useful if either the SpMM product routine allows to reim-
plement the behaviour of the operators (for instance, because matrices are im-
plemented as classes in an object oriented language like C++), or the source
code is available.

Nevertheless, we propose an alternative when it is not possible, for instance in
the case of using a commercial numerical library. If the routine requires the dense
matrix to be stored in column-major (i.e., elements in consecutive rows and in

A Fast Sparse Block Circulant Matrix Vector Product 551

Data: A : Rm×n sparse matrix; X : Rn×k, dense matrix
Result: Y : Rm×k, dense matrix with the product AX

1 Y ← 0
2 for i ← 0 to m− 1 do (in parallel)
3 foreach nonzero with column index j and value v in row i of A do
4 for p ← 0 to k − 1 do // Done as an AXPY

5 Y[i, p] ← Y[i, p]+ v · X[j, p]

Fig. 1. Generic sparse-dense matrix product, Y ← AX

the same column are contiguous in memory), then the next relation between X̊
and a vector x̂ that contains two contiguous copies of x can be useful,

X̊i,j = j′-th element in x̂, where j′ = i+ j · nB and x̂ =

(
x
x

)
. (5)

Then the routine is passed the sparse matrix A, and x̂ as the dense matrix,
indicating the leading dimension nB (the number of elements in between two
elements with consecutive indices in the dimension that is not contiguous in
memory).

Otherwise, if the dense matrix has to be stored in row-major (i.e., elements in
the same row are contiguous in memory) instead, column indices of the non-zeros
in the sparse matrix has to be updated in the next way,

Ai,j = Âi,j′ , where j′ = 2 · k · (j mod nB) + (�j/nB) mod k. (6)

Then the routine is passed the modified sparse matrix Â (with size mB × 2 ·
nC) and the dense matrix X̂ = (X X) in row-major, indicating the leading
dimension 1.

3 Multi-Core CPU Implementation

Earlier we discussed how to perform the block circulant SpMV product by using
a SpMM product. Although the SpMM product is algorithmically simple, it
admits several implementations. One of them consists on multiple calls to the
SpMV product kernel, but in the case of implementing (3) it is equivalent to do
the product in the original way of (1).

From the rest of implementations, we conveniently choose the one that for
every nonzero value in a sparse matrix A with row i and column j, an AXPY
operation is done involving the j-th row of the input matrix X and the i-th row
of the output matrix Y . The algorithm is illustrated in Fig. 1.

The product is not computationally heavy, then the performance is condi-
tioned to the capability of the machine’s cache system to take advantage of the
reference locality of the implementation. Considering the spatial locality (i.e.,
the use of data elements within relatively close address locations), the memory
access pattern is efficient if the vectors involved in the AXPYs are contiguous.

552 E. Romero et al.

Table 1. Description of tested matrices

Matrix Rows Columns Blocks Nnz A Nnz/row At Nnz/row

CT small 19,600 1,284,000 150 7,029,618 358.7 821.2
CT medium 19,600 5,583,600 150 18,845,735 961.5 506.3
CT big 19,600 15,767,700 150 40,601,519 2,071.5 386.2
CT large 78,400 29,764,800 150 120,506,745 1,537.1 607.3
CT huge 78,400 116,660,700 150 304,228,353 3,880.5 391.2

Table 2. Description of the test machines

CPU Name Freq. PUs Cores L1 L2 L3 Mem. Bandwidth

Intel Xeon X3450 2.7 GHz 8 4 32 KiB 256 KiB 8 MiB 4 GiB 21 GB/s
Intel i7 3930K 3.2 GHz 12 6 32 KiB 256 KiB 12 MiB 32 GiB 51 GB/s
NVIDIA GTX680 1.1 GHz 8 192 48 KiB 512 KiB – 4 GiB 192 GB/s

This is the case of the input X and output Y dense matrices stored in row-major.
Considering the temporal locality (i.e., the use of the same data elements within
a relatively small time duration), per nonzero value in A read it is done k read
accesses of X , and k read and write accesses of Y . Along a row in the sparse
matrix A, all the accesses go to the same row of Y . Then it seems an optimal
strategy to visit the non-zeros on the sparse matrix by rows. A similar conclusion
is found on [7].

In addition, the straightforward parallelization is that every task carries on the
AXPYs of several rows of the sparse matrix A, which corresponds to distribute
the iterations of the loop at line 2 in Fig. 1. This strategy prevents two tasks
accessing the same row of Y . The distribution of work will be balanced if every
task performs almost the same number of AXPYs, i.e., every task processes
almost the same number of non-zeros from A.

3.1 Custom Product for Circulant Block Sparse Matrices

We developed several kernels that implement the product for sparse circulant
matrices in CSR format. They are written in C++ and parallelized using threads
by means of OpenMP directives. We present performance results of the ker-
nels compiled with GNU GCC 4.8 and the options -Ofast -march=native

-mtune=native, running on two Intel multi-core processors detailed on Table 2.
The test set comprises five matrices from a CT scanner, whose characteristics
are detailed on Table 1. They come from reconstructions with different spatial
resolutions. Their patterns are quite similar and, as an example, Fig. 2.a shows
the pattern of the first rows for some blocks of the smaller matrix on the set.

Figure 3 summarizes the performance of the kernels grouped by processor and
matrix. In order to emulate the behavior of an iterative solver (like MLEM), it

A Fast Sparse Block Circulant Matrix Vector Product 553

a) Original matrix

0

1500
A0 A1

ro
w

A25 A26 A47 A48 A97 A98

... 0

0.2

0.4

0.6

0.8

1

blocks

b) Transformed matrix

0

1500
Â0 Â2

ro
w

Â50 Â52 Â94 Â96 Â194 Â196

... 0

0.2

0.4

0.6

0.8

1

blocks

Fig. 2. Fragments of nonzero pattern in a) the matrix CT small and b) after applying
the transformation of (6)

is performed 20 products alternating the direct and the transposed matrix. The
results correspond to the shorter time of three attempts.

The first kernel, tagged basic MV, uses the matrix-vector product approach
and it is parallelized by every thread computing a yi as (2) indicates.

The second kernel, tagged MM, uses the matrix-matrix product approach
(indicated in (3)) and the implicit circulant matrix formulas for X̊ (indicated
in (4)) over the input vector, stored as a row-major matrix. It corresponds to
the algorithm in Fig. 5 without the code under the while loop at line 4. The for
loop at line 9 is implemented as two calls to an AXPY kernel: one from p ← 0
to p0 − 1 and other from p ← p0 to k − 1, where p0 is k − �Aj[j]/nB mod k.
Otherwise GNU GCC fails to vectorize the loop. The results suggest a gain of
this kernel up to four times with respect to basic MV.

If the kernel is passed the matrix X̂ = (X X) instead of X , then the for loop
at line 9 can be implemented as a single call to an AXPY kernel with k-length
vectors. This variant, tagged MM-2, obtains an extra performance of up to 70%
respect to MM.

Finally, some memory transactions from the output matrix Y can be saved by
merging s AXPYs originated from the same row, in a single MAXPY operation,
as shown on Fig. 5. Although it can make worse the temporal locality of X
(because s different parts of X are being visited at a time), simple tests shown
in Fig. 4 suggest that in general the performance is improved with larger s,
while the compiler is able to vectorize the innermost loop of MAXPY, which
corresponds to for at line 5 in Fig. 5. Codes using MAXPYs with s > 8 vectors
fail to be vectorized by the tested compiler. The performance of this optimization
for s = 8, tagged as MM-2-8, is about 25% better than MM-2, and about 10
times better than the basic MV kernel.

554 E. Romero et al.

0

5

10

15

20

25

C
T
sm
all

C
T
m
edium

C
T
big

C
T
large

G
F
L
O
P
S

Xeon

0

10

20

30

40

50

60

C
T
sm
all

C
T
m
edium

C
T
big

C
T
large

C
T
huge

G
F
L
O
P
S

i7

basic MV
MM

scsrmm
MM-2

MM-2-8

Fig. 3. Performance on CPU of several kernels computing the SpMV product with
circulant block sparse matrices of different sizes. (CT huge matrix cannot be tested on
Xeon machine due to memory limitations.)

0
2
4
6
8

10
12
14
16
18
20

A
X
P
Y

M
A
X
P
Y
2

M
A
X
P
Y
3

M
A
X
P
Y
4

M
A
X
P
Y
6

M
A
X
P
Y
8

M
A
X
P
Y
12

M
A
X
P
Y
16

G
F
L
O
P
S

Xeon

0
5

10
15
20
25
30
35
40
45
50

A
X
P
Y

M
A
X
P
Y
2

M
A
X
P
Y
3

M
A
X
P
Y
4

M
A
X
P
Y
6

M
A
X
P
Y
8

M
A
X
P
Y
12

M
A
X
P
Y
16

G
F
L
O
P
S

i7

Fig. 4. Performance on both processors of AXPY and MAXPY (with different cardi-
nalities) adding 50 vectors with 100 elements. GCC reports that it failed to vectorize
the loops in the routines MAXPY12 and MAXPY16.

3.2 Using a SpMM Kernel in a Numerical Library Software

We found two open source implementations of the SpMM product. One is in
the Scipy library (the core library of SciPy [8]), in which the input and output
matrices are stored in row-major. And other is in Epetra (a core linear algebra
package in Trilinos [6]), which merges multiple AXPYs in MAXPYs, but the
dense matrices are stored in column-major. We do not show results with any
of these libraries because none of them include both optimizations at the same
time. Other popular libraries, like OSKI [21] or CUSP [2], offer an interface to
perform the SpMM product but the implementation relies on multiple calls to
the SpMV product kernel.

Regarding commercial high-performance numerical libraries, only Intel R© Math
Kernel Library (Intel R© MKL) offers several routines for SpMM product. Con-
cretely we tested the function *csrmm, in which the sparse matrix is introduced
in CSR format and the input and the output dense matrices are stored in row-
major. For that, the original sparse matrix A has to be modified as indicated
in (6) (the new nonzero pattern is shown in Fig. 2.b), and the input dense matrix

A Fast Sparse Block Circulant Matrix Vector Product 555

introduced is the replicated X̂ in row-major. As Fig. 3 shows, its performance is
superior to the basic MV and MM kernels in few cases, and MM-2-8 can double
the performance of the MKL kernel.

Data: Ai : NmB+1, Aj : Nnnz, Av : Rnnz, CSR vectors of a mB × (nB · k), nnz
non-zeros sparse matrix representing the first block row of a k × k block
circulant matrix; X : RnB×k, dense matrix.

Result: Y : RmB×k dense matrix with the product of the sparse matrix by X.
1 Y ← 0
2 for i ← 0 to mB − 1 do (in parallel)
3 j ← Ai[i]
4 while j + s ≤ Ai[i+ 1] do // Optional: take s vector at a time

5 for p ← 0 to k − 1 do // MAXPY

6 Y[i, p] ← Y[i, p]+
j+s−1∑
l=j

Av[l] ·X[Aj[l] mod nB , (�Aj[l]/nB�+ p) mod k]

7 j ← j + s

8 while j ≤ Ai[i+ 1] do // Take the last vectors

9 for p ← 0 to k − 1 do
10 Y[i, p] ← Y[i, p]+ Av[j] · X[Aj[j] mod nB , (�Aj[j]/nB�+ p) mod k]

Fig. 5. Product of block circulant sparse matrix by dense matrix, taking s by s
vectors at a time (CPU)

4 Circulant Sparse Product Implementation on GPU

Current GPU accelerators provide a cost-effective platform for CT applications.
These applications require single precision arithmetic only, allowing to use low
cost graphics hardware. Furthermore, the sparse matrix vector product perfor-
mance is limited by memory bandwidth and GPU accelerators provide much
higher bandwidth than CPU main memory.

In this paper a NVIDIA Geforce GTX 680 is selected as the hardware platform
and CUDA as the software counterpart. The CUDA software package includes an
implementation of the SpMM product in the CUSPARSE library [14]. However,
this routine checks the input parameters and, unlike the MKL library, forbids to
set the leading dimension of the dense matrix to a value smaller than its number
of rows. Therefore, an implementation based on the CUSPARSE SpMM routine
cannot be tested, and we present only results performing several calls to the
SpMV routine from the same library.

We developed a custom CUDA kernel based on the SpMM approach from (3),
following many of the considerations detailed earlier on the CPU. In particular,
the data layout of the dense matrices X and Y is also row-major. However, these
matrices are stored without any redundancy, this is important as GPU memory
is not as large as CPU memory.

The work distribution among GPU processors is completely different from the
CPU implementation. The key to obtain high performance in a GPU is to keep

556 E. Romero et al.

Data: Ai : Nm+1, Aj : Nnnz , Av : Rnnz, CSR vectors of a m× n, nnz nonzeros
sparse matrix representing the first block row of a k × k block circulant
matrix; X : RnB×k, dense matrix.

Result: Y : Rm×k dense matrix with the product of the sparse matrix by X.
1 for i ← 0 to m− 1 do (in parallel) // block parallelism

2 for p ← 0 to k − 1 do (in parallel) // thread parallelism

3 w ← 0
4 for j ← Ai[i] to Ai[i+ 1] do
5 c ← Aj[j]/nB + p
6 if c > nB then
7 c = c− nB

8 l ← Aj[j] mod nB

9 w ← w + Av[j] · X[l, c];
10 Y[i, p] ← w;

Fig. 6. Product of block circulant sparse matrix by dense matrix (GPU)

all of the computing elements busy with a minimum of communications among
them. Therefore, a straightforward work distribution is to assign to each thread
the computation of just one element from the product result vector Y .

Figure 6 contains the GPU implementation pseudocode for the circulant
sparse matrix product. The CUDA runtime environment provides blocks of
threads, that is, two levels of parallelism. The first level (blocks) is presented
in Fig. 6 as the first loop, while the second level (threads) corresponds to the
second loop. The actual implementation does not contain these two loops, they
are implicitly created by the kernel invocation parameters.

First, to obtain good performance in the GPU a large number of thread blocks
must be created, in this case one block per matrix row. The actual amount of
work per block is determined by the matrix pattern and could be quite different
from row to row. However, this is not an issue because there are enough blocks to
keep busy all GPU processors. If the execution time of a block is too short, the
hardware scheduler could easily select another block from the execution queue.

Second, the number of threads inside a block should be a small multiple of
32 (warp size) to obtain good performance on the GPU. In this implementation
there are as many threads as blocks has the circulant matrix. Although this
number might not be a multiple of 32 (150 in our tests), it is sufficiently large
to occupy several warps.

Last but not least, GPU performance is very dependent on memory access
patterns. In this case, all data is stored in device memory with a similar distri-
bution as presented before for the CPU implementation. The vector X is read in
coalesced form via a texture cache to further increase the effective bandwidth.
Each element of vectors Ai, Aj and Av is read simultaneously by all threads in
a block. This memory access is quite efficient and saturate most of the device

A Fast Sparse Block Circulant Matrix Vector Product 557

0

10

20

30

40

50

60

C
T
sm
all

C
T
m
edium

C
T
big

C
T
large

C
T
huge

G
F
L
O
P
S

NVIDIA GTX680

CUSPARSE SpMV
SpMM kernel

Fig. 7. Performance on GPU of kernels based on the SpMV and SpMM approaches
with different matrix sizes

memory bandwidth. Our tests show no tangible benefits in using shared or con-
stant memory for this access pattern.

One small optimization different to the CPU implementation is that Aj (col-
umn index) is stored in two separate vectors, one with values �Aj[j]/nB and
another with Aj[j] mod nB. Both operations have a low throughput on the GPU,
and precomputing them on the CPU improves performance of the whole circu-
lant sparse product.

Figure 7 compares the performance of two circulant sparse matrix product
implementations on the GTX680 GPU. The first is based on CUSPARSE SpMV
routines while the second is our custom SpMM kernel implementation, which is
several times faster than the SpMV implementation. The performance of SpMM
is almost constant (about 60 GFLOPS) for all matrix sizes, and up to two times
faster than our optimized SpMM on the CPU. The main advantage of the GPU
over the CPU is that performance does not decrease with large matrices.

5 Conclusions and Future Work

In this paper, we have described optimization techniques to improve the perfor-
mance of the sparse matrix vector product (SpMV) for block circulant matrices.
This matrix structure allows to rewrite the SpMV into a product of two matrices,
one sparse and other dense (SpMM). Moreover, we propose to replicate vector
data and to join several AXPY products into a MAXPY. Both optimizations
simplify data access and improve cache locality.

Our optimized SpMM kernel reduces execution time by 10 times on an Intel i7
CPU compared to a trivial SpMV implementation. We also tested alternative
implementations using the SpMV and SpMM products from high-performance
libraries (Intel MKL), but all of them obtain worse performance than our kernels.

On GPU, we propose a similar distribution of data which allows to fully ex-
ploit the device raw bandwidth via coalesced and textured memory accesses. This
SpMM implementation is about 6 times faster than the SpMV from the CUS-
PARSE library on a NVIDIA GTX680 graphics card. For very large matrices, this

558 E. Romero et al.

GPU halves execution time with respect to our own optimized kernel running on
the Intel i7 CPU.

Furthermore the described optimizations are compatible with other enhance-
ments, especially on CPU, such as exploiting patterns in the blocks of the sparse
matrix and implementing explicit prefetch to improve performance with large
matrices. Beside them, as a future work we intend to develop a competitive
kernel for the transposed matrix product without explicitly transposing the ma-
trix. On GPU would be interesting to combine several graphics cards to increase
performance and memory capacity.

References

1. Bian, J., Siewerdsen, J.H., Han, X., Sidky, E.Y., Prince, J.L., Pelizzari, C.A., Pal,
X.: Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam
ct. Physics in Medicine and Biology 55, 6575–6599 (2010)

2. Dalton, S., Bell, N.: CUSP: A C++ templated sparse matrix library version 0.4.0
(2014), http://cusplibrary.github.com/

3. Feldkamp, L., Davis, L., Kress, J.: Practical cone-beam algorithm. Journal of the
Optical Society of America 1, 612–619 (1984)

4. Ganine, V., Legrand, M., Michalska, H., Pierre, C.: A sparse preconditioned iter-
ative method for vibration analysis of geometrically mistuned bladed disks. Com-
puters & Structures 87(5-6), 342–354 (2009)

5. Hara, A.K., Paden, R.G., Silva, A.C., Kujak, J.L., Lawder, H.J., Pavlicek, W.: Iter-
ative reconstruction technique for reducing body radiation dose at CT: Feasibility
study. American Journal of Roentgenology 193, 764–771 (2009)

6. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G.,
Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thorn-
quist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An
overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

7. Im, E.J., Yelick, K., Vuduc, R.: Sparsity: Optimization framework for sparse matrix
kernels. International Journal of High Performance Computing Applications 18(1),
135–158 (2004)

8. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for
Python (2001), http://www.scipy.org/

9. Kaveh, A., Rahami, H.: Block circulant matrices and applications in free vibration
analysis of cyclically repetitive structures. Acta Mechanica 217(1-2), 51–62 (2011)

10. Kourtis, K., Goumas, G., Koziris, N.: Optimizing sparse matrix-vector multiplica-
tion using index and value compression. In: Proceedings of the 5th Conference on
Computing Frontiers, CF 2008, pp. 87–96. ACM, New York (2008)

11. Krotkiewski, M., Dabrowski, M.: Parallel symmetric sparse matrix–vector product
on scalar multi-core CPUs. Parallel Computing 36(4), 181–198 (2010)

12. Lee, B., Vuduc, R., Demmel, J., Yelick, K.: Performance models for evaluation and
automatic tuning of symmetric sparse matrix-vector multiply. In: International
Conference on Parallel Processing, ICPP 2004, vol. 1, pp. 169–176 (2004)

13. Leroux, J.D., Selivanov, V., Fontaine, R., Lecomte, R.: Accelerated iterative im-
age reconstruction methods based on block-circulant system matrix derived from
a cylindrical image representation. In: Nuclear Science Symposium Conference
Record, NSS 2007, vol. 4, pp. 2764–2771. IEEE (2007)

http://cusplibrary.github.com/
http://www.scipy.org/

A Fast Sparse Block Circulant Matrix Vector Product 559

14. NVIDIA: CUSPARSE library (2014), https://developer.nvidia.com/cusparse
15. Pan, X., Sidky, E.Y., Vannier, M.: Why do commercial CT scanners still employ

traditional, filtered back-projection for image reconstruction? Inverse Problems 25,
123009 (2008)

16. Rodŕıguez-Alvarez, M.J., Soriano, A., Iborra, A., Sánchez, F., González, A.J.,
Conde, P., Hernández, L., Moliner, L., Orero, A., Vidal, L.F., Benlloch, J.M.:
Expectation maximization (EM) algorithms using polar symmetries for computed
tomography CT image reconstruction. Computers in Biology and Medicine 43(8),
1053–1061 (2013)

17. Sheep, L., Vardi, Y.: Maximum likelihood reconstruction for emmision tomography.
IEEE Transactions on Medical Imaging 1, 113–122 (1982)

18. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed to-
mography by constrained, total-variation minimization. Physics in Medicine and
Biology 53, 4777–4807 (2008)

19. Soriano, A., Rodŕıguez-Alvarez, M.J., Iborra, A., Sánchez, F., Carles, M., Conde,
P., González, A.J., Hernández, L., Moliner, L., Orero, A., Vidal, L.F., Benlloch,
J.M.: EM tomographic image reconstruction using polar voxels. Journal of Instru-
mentation 8, C01004 (2013)

20. Thibaudeau, C., Leroux, J.D., Pratte, J.F., Fontaine, R., Lecomte, R.: Cylindrical
and spherical ray-tracing for ct iterative reconstruction. In: 2011 IEEE Nuclear
Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 4378–4381
(2011)

21. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned
sparse matrix kernels. Journal of Physics: Conference Series 16(1), 521 (2005)

22. Vuduc, R.W., Moon, H.-J.: Fast sparse matrix-vector multiplication by exploiting
variable block structure. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J.
(eds.) HPCC 2005. LNCS, vol. 3726, pp. 807–816. Springer, Heidelberg (2005)

23. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. Parallel
Computing 35(3), 178–194 (2009)

https://developer.nvidia.com/cusparse

Scheduling Data Flow Program in XKaapi:

A New Affinity Based Algorithm
for Heterogeneous Architectures

Raphaël Bleuse1, Thierry Gautier2, João V.F. Lima4,
Grégory Mounié1, and Denis Trystram1,3

1 Univ. Grenoble Alpes, France
{raphael.bleuse,gregory.mounie,denis.trystram}@imag.fr

2 Inria Rhône-Alpes, France
thierry.gautier@inrialpes.fr
3 Institut universitaire de France

4 Universidade Federal de Santa Maria (UFSM), Brazil
jvlima@inf.ufsm.br

Abstract. Efficient implementations of parallel applications on hetero-
geneous hybrid architectures require a careful balance between compu-
tations and communications with accelerator devices. Even if most of
the communication time can be overlapped by computations, it is es-
sential to reduce the total volume of communicated data. The litera-
ture therefore abounds with ad hoc methods to reach that balance, but
these are architecture and application dependent. We propose here a
generic mechanism to automatically optimize the scheduling between
CPUs and GPUs, and compare two strategies within this mechanism:
the classical Heterogeneous Earliest Finish Time (HEFT) algorithm and
our new, parametrized, Distributed Affinity Dual Approximation algo-
rithm (DADA), which consists in grouping the tasks by affinity before
running a fast dual approximation. We ran experiments on a heteroge-
neous parallel machine with twelve CPU cores and eight NVIDIA Fermi
GPUs. Three standard dense linear algebra kernels from the PLASMA
library have been ported on top of the XKaapi runtime system. We re-
port their performances. It results that HEFT and DADA perform well
for various experimental conditions, but that DADA performs better for
larger systems and number of GPUs, and, in most cases, generates much
lower data transfers than HEFT to achieve the same performance.

Keywords: Heterogeneous architectures, scheduling, cost models, dual
approximation scheme, programming tools, affinity.

1 Introduction

With the recent evolution of processor design, the future generations of proces-
sors will contain hundreds of cores. To increase the performance per watt ratio,
the cores will be non-symmetric with few highly powerful cores (CPU) and nu-
merous, but simpler, cores (GPU). The success of such machines will rely on the
ability to schedule the workload at runtime, even for small problem instances.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 560–571, 2014.
c© Springer International Publishing Switzerland 2014

Scheduling Data Flow Program in XKaapi 561

One of the main challenges is to define a scheduling strategy that may be able
to exploit all potential parallelisms on a heterogeneous architecture composed of
multiple CPUs and multiple GPUs. Previous works demonstrate the efficiency
of strategies such as static distribution [14, 15], centralized list scheduling with
data locality [6], cost models [1–4] based on Heterogeneous-Earliest-Finish-Time
scheduling (HEFT) [16], and dynamic for some specific application domains
[5,10]. Locality-aware work stealing [9], with a careful implementation to overlap
communication by computation [13], improves significantly the performance of
compute-bound linear algebra problems such as matrix product and Cholesky
factorization.

Nevertheless, none of the above cited works considers scheduling strategies
from the viewpoint of a compromise between performance and locality. In this
paper, we propose a scheduling algorithm based on dual approximation [12] that
uses a performance model to predict the execution time of tasks during schedul-
ing decision. This algorithm, called Distributed Affinity Dual Approximation
(DADA), is able to find a compromise between transfers and performance. This
trade-off is tuned thanks to a parameter α. The main advantage of dual ap-
proximation algorithms is their theoretical performance guarantee as they have
a constant approximation ratio. On the contrary, the worst case of HEFT can
be arbitrarily bad [12].

We compare these two different scheduling strategies for data-flow task pro-
gramming. These strategies are implemented on top of the XKaapi scheduling
framework with performance models for task execution time and transfer pre-
diction. The contributions of this paper are first the design and implementation
of dual approximation scheduling algorithms (with and without affinity) and
second their evaluation in comparison to the well-known HEFT algorithm on
three dense linear algebra algorithms in double precision floating-point opera-
tions from PLASMA [7]: namely Cholesky, LU, and QR. To our knowledge, this
paper is the first report of experimental evaluations studying the impact of data
transfer model and contention on a machine with up to 8 GPUs.

The main lesson of this work is that scheduling algorithms need extra informa-
tion in order to take the right decisions. Such extra information could be obtained
in a precise communication model to predict processing time of each task or in a
more flexible information such as the affinity in DADA. Even if HEFT remains a
good candidate for scheduling such linear algebra kernels, DADA is highly com-
petitive against it for multi-GPU systems: the experimental results demonstrate
that it achieves the same range of performances while reducing significantly the
communication volume.

The remainder of this paper is organized as follows. Section 2 provides an
overview of XKaapi runtime system, describes the XKaapi scheduling framework
and the cost model applied for performance prediction. Section 3 details the two
studied scheduling strategies. Section 4 presents our experimental results on a
heterogeneous architecture composed of 12 CPUs and 8 GPUs. In Section 5
we briefly survey related works on runtime systems, scheduling strategies and

562 R. Bleuse et al.

performance prediction. Finally, Section 6 concludes the paper and suggests
future directions.

2 Scheduling Framework in XKaapi

The XKaapi1 data-flow model [8] – as in Cilk, Intel TBB, OpenMP-3.0, or
OmpSs [6] – enables non-blocking task creation: the caller creates the task and
proceeds with the program execution. Parallelism is explicit while the detec-
tion of synchronizations is implicit [8]: dependencies between tasks and memory
transfers are automatically managed by the runtime system.

XKaapi runtime system is structured around the notion of worker : it is the
internal representation of kernel threads. It executes the code of the tasks and
takes local scheduling decisions. Each worker owns a local queue of ready tasks.
Our interface is mainly inspired by work stealing scheduler and is composed
of three operations that act on workers’ queues of tasks: pop, push and steal.
In our previous work, we demonstrated the efficiency of XKaapi locality-aware
work stealing as well as the corresponding multi-GPU runtime support [9] using
specialized implementation of these operations. A new operation, called activate,
has been defined to push ready tasks to a worker’s queue.

2.1 Execution Flow

The sketch of the execution mechanism is the following: at each step, either the
own queue of worker is not empty and the worker uses it; or the worker emits
a steal request to a randomly selected worker in order to get a task to execute.
According to the dependencies between tasks, once a worker finishes a task, it
calls the activate operations in order to activate the successors of the task which
become ready for execution.

The XKaapi runtime system gets information from each internal events (such
as start-end of task execution, or start-end of communication toward GPU)
to calibrate the performance model and corrects erroneous predictions due to
unpredictable or unknown behavior (e.g. operating system state or I/O distur-
bance). StarPU [4] uses similar runtime measurements in order to correct the
performance predictions in its HEFT implementation.

All of our scheduling strategies follow this sketch. Every worker terminates
its execution when all the tasks of the application have been executed.

2.2 Pop, Push, Steal and Activate Operations

A framework interface for scheduling strategies is not a new concept in hetero-
geneous systems. Bueno et al. [6] and Augonnet et al. [4] described a minimal
interface to design scheduling strategies with selection at runtime. However, there
is little information available on the comparison of different strategies. Most of

1 http://kaapi.gforge.inria.fr

Scheduling Data Flow Program in XKaapi 563

them reported performance on centralized list scheduling and performance mod-
els. Our framework is composed of three classical operations in the work stealing
context, plus an action to activate tasks when their predecessors have completed.

– The push operation inserts a task into a queue. A worker can push a task
into any other workers’ queue.

– A pop removes a task from the local queue owned by the caller worker.
– A steal removes a task from the queue of a remote worker. It is called by

an idle thread – the thief – in order to pick tasks from a randomly selected
worker – the victim.

– The activate operation is called after the completion of a task. The role of
this operation is to allocate the tasks that are ready to be executed. Hence,
most of the scheduling decision are done during this operation.

2.3 Performance Model

Cost models depend on a certain knowledge of both application algorithm and
the underlying architecture to predict performance at runtime. In order to pre-
dict performance, we designed a StarPU [3] like performance model for task
execution time and communication. Our task prediction relies on an history-
based model, and transfer time estimation is based on asymptotic bandwidth.
They are associated with scheduling strategies that are based on task completion
time such as HEFT and DADA with and without affinity.

In order to balance efficiently the load, for each processor XKaapi maintains
a shared time-stamp of the predicted time when it has completed its tasks. The
completion date of the last executed task is also kept. The update and incremen-
tation of the time-stamps are efficiently implemented with atomic operators.

3 Scheduling Strategies

This section introduces the scheduling strategies designed on top of the XKaapi
scheduling framework. We consider a multi-core parallel architecture with m ho-
mogeneous CPUs and k homogeneous GPUs. First, we describe our implemen-
tation of HEFT [16]. Then, we recall the principle of the dual approximation
scheme [11]. We propose a new algorithm – Distributed Affinity Dual Approxi-
mation (DADA) – based on this paradigm which takes into account the affinity
between tasks.

In the following, the number of tasks is denoted by n. We denote by pCPU
i

the processing time of task Ti on a CPU and pGPU
i on a GPU. We define the

speedup Si of task Ti as the ratio Si = pCPU
i / pGPU

i .

3.1 HEFT within XKaapi

The Heterogeneous Earliest-Finish-Time algorithm (HEFT), proposed by [16],
is a scheduling algorithm for a bounded number of heterogeneous processors. Its

564 R. Bleuse et al.

Algorithm 1. HEFT – activate operation

Input : A list of ready tasks Ti LR
Output: Tasks Ti pushed to the worker’s queues

1 foreach Ti ∈ LR do
2 Si ← pCPU

i / pGPU
i

3 end
4 Sort all ready tasks Ti by decreasing speedup Si

5 foreach Ti ∈ LR do
6 Schedule Ti on the worker wj achieving the earliest finish time
7 push Ti into queue of worker wj

8 Update processor load time-stamps on worker wj

9 end

time complexity is in O(n2 · (m+ k)). It has two major phases: task prioritizing
and worker selection. Our XKaapi version of HEFT implements both phases
during the activate operation. The task prioritizing phase computes for all ready
tasks Ti its speedup Si relative to an execution on GPU. Next, it sorts the list of
ready tasks by decreasing speedups. Whereas the original HEFT rule sorts the
tasks by decreasing upward rank (average path length to the end), our rule gives
priority on minimizing the sum of the execution times. In the worker selection
phase, the algorithm selects tasks in the order of their speedup Si and schedules
each task on the worker which minimizes the completion time. Algorithm 1
describes the basic steps of HEFT over XKaapi.

3.2 Dual Approximation and Affinity

Dual Approximation. Let us first recall that a ρ-dual approximation schedul-
ing algorithm considers a guess λ (which is an estimation of the optimal
makespan) and either delivers a schedule of makespan at most ρλ or answers
correctly that there exists no schedule of length at most λ [11]. The process is
repeated by a classical binary search on λ up to a precision of ε. We target ρ = 2.
The dual approximation part of Algorithm 2 consists in the following steps:

– Choice of the initial guess λ (lines 2 and 4);

– Extract the tasks which fit only into GPUs (pCPU
i > λ), and symmetrically

those which are dedicated to CPUs (line 9);

– Keep this schedule if the tasks fit into λ (line 12). Otherwise, reject it if there
is a task larger than λ on both CPUs and GPUs (line 15);

– Add to the tasks allocated to the GPU those which have the largest speedup
Si up to overreaching the threshold λ (line 19) which guarantees the ratio
ρ = 2;

– Put all the remaining tasks in the m CPUs and execute them using an
earliest-finish-time scheduling policy (line 19).

Scheduling Data Flow Program in XKaapi 565

Algorithm 2. DADA – activate operation

Input : A list of ready tasks Ti LR
Output: Tasks Ti pushed to the worker’s queues

1 lower ← 0

2 upper ←
∑

i max(pCPU
i , pGPU

i)
3 while (upper− lower) > ε do
4 λ ← (upper+ lower)/ 2
5 begin local affinity phase
6 Schedule tasks of LR per affinity score on its affinity processor, loading

each processor up to overreaching αλ
7 end
8 begin global balance phase
9 Schedule LR to minimize finish time using λ as hint

10 if tasks do fit into (ρ+ α)λ then
11 upper ← λ
12 Keep current schedule

13 else
14 lower ← λ
15 Reject current schedule

16 end

17 end

18 end
19 Push each task Ti of LR on queue of worker wj based on the last fitting

schedule and update processor load time-stamps

Affinity. DADA builds a compromise taking into account both raw performance
and transfers. The principle consists in two successive phases: a first local phase
targeting the reduction of the communications through the abstraction described
below and a second phase which counter-balances the induced serialization aim-
ing at a global balance. Any algorithm optimizing the makespan could be used
for the second phase. We use a basic dual-approximation. In order to gain a finer
control, the length of the first phase is controlled by a parameter (denoted by α,
0 ≤ α ≤ 1). A value of 0 for α means that the affinity is not taken into account:
DADA is then a basic dual-approximation. While at the opposite a value close
to 1 allows a length up to λ for the first phase, thus giving a greater weight
to affinity.

Each pair (task, computation resource) is given an affinity score. Maximizing
the score over the whole schedule enables to consider local impacts. The affinity
scores are computed using extra information automatically gathered by the run-
time system. In our implementation, they were computed using the amount of
data updated by each task. For instance, a task that writes or modifies a data
stored on a resource R has a high score and is prone to be scheduled on R.

566 R. Bleuse et al.

4 Experiments

4.1 Experimental Setup: Platform and Benchmarks

Platform. All experiments have been conducted on a heterogeneous, multi-
GPU system. It is composed of two hexa-core Intel Xeon X5650 CPUs running
at 2.66 GHz with 72 GB of memory. It is enhanced with eight NVIDIA Tesla
C2050 GPUs (Fermi architecture) of 448 GPU cores (scalar processors) running
at 1.15 GHz each (2688 GPU cores total) with 3 GB GDDR5 per GPU (18 GB
total). The machine has 4 PCIe switches to support up to 8 GPUs. When 2 GPUs
share a switch, their aggregated PCIe bandwidth is bounded by the one of a single
PCIe 16x. Experiments using up to 4 GPUs avoid this bandwidth constraint by
using at most 1 GPU per PCIe switch.

Benchmarks. All benchmarks ran on top of a GNU/Linux Debian 6.0.2 squeeze
with kernel 2.6.32-5-amd64. We compiled with GCC 4.4 and linked against
CUDA 5.0 and the library ATLAS 3.9.39 (BLAS and LAPACK). All experiments
use the tile algorithms of PLASMA [7] for Cholesky (DPOTRF), LU (DGETRF), and
QR (DGEQRF). The QUARK API [17] has been implemented and extended in
XKaapi to support task multi-specialization: the XKaapi runtime system main-
tains the CPU and GPU versions for each PLASMA task. At the task execution,
our QUARK version runs the appropriate task implementation in accordance
with the worker architecture. The GPU kernels of QR and LU are based on pre-
vious works from [1,2] and adapted from PLASMA CPU algorithm and MAGMA
from [15]. Each running GPU monopolizes a CPU core to manage its worker.
The remaining CPU cores are involved in the application computations.

Methodology. Each experiment has been executed at least 30 times for each
set of parameters and we report on all the figures (Fig. 1, 2, 3 and 4) the mean
and the 95% confidence interval. The factorizations have been done in double
precision floating-point operations with a PLASMA internal block (IB) of size
128 and tiles of size 512. For each of them, we plot the highest performance
obtained on various matrix sizes with the discussed scheduling strategies.

In the following, DADA(α) represents DADA parametrized by α. We denote
by DADA(α)+CP the algorithm using Communication Prediction as supple-
mentary information. HEFT strategy always computes the earliest finish time of
a task taking into account the time to transfer data before executing the task.

4.2 Impact of the Affinity Control Parameter α

This section highlights the impact of the affinity control parameter α on the
compromise between performance and data transfers. The measures have been
done with the Cholesky decomposition on matrices of size 8192 × 8192 and
16384 × 16384. However, we present only results for the smallest size as we
observe similar behaviors for both matrix sizes.

Scheduling Data Flow Program in XKaapi 567

 0

 100

 200

 300

 400

 500

 600

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

=0.95
=0.25
=0.1

=0.05
=0

(a) Performance of DADA(α).

 0

 100

 200

 300

 400

 500

 600

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

=0.95
=0.25
=0.1

=0.05
=0

(b) Performance of DADA(α)+CP.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

=0.95
=0.25
=0.1

=0.05
=0

(c) Memory transfer of DADA(α).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

 =0.95
=0.25
=0.1

=0.05
=0

(d) Memory transfer of DADA(α)+CP.

Fig. 1. Impact of parameter α on Cholesky (DPOTRF) with matrix of size 8192 × 8192

Fig. 1 shows both performance (Fig. 1(a) and 1(b)) and total memory transfers
(Fig. 1(c) and 1(d)) for several values of α with respect to the number of GPUs.
Both metrics are shown without (Fig. 1(a) and 1(c)) and with (Fig. 1(b) and
1(d)) communication prediction taken into account. Once affinity is considered
(i.e. α �= 0), the higher the value of α, the better the policy scales. Using as
little information as possible (i.e. DADA(0) and no communication prediction),
the policy performance does not scale with more than two GPUs due to a too
huge amount of transfers.

4.3 Comparison of Scheduling Strategies

We present in this section the results for the three kernels with matrix size
8192× 8192. Other tested sizes have the same behavior. The idea is to evaluate
the behavior of each strategy with different work loads. Both performance and
data transfers of the policies introduced above: HEFT, DADA(0), DADA(α) and
DADA(α)+CP are studied.

Experimental Evaluation. Fig. 2 reports the behavior of the Cholesky de-
composition (DPOTRF) with respect to the number of GPUs used. It studies
both performance results (Fig. 2(a)) and total memory transfers (Fig. 2(b)). All
scheduling algorithms have similar performances. DADA(α)+CP scales slightly
better with the number of GPU. As expected DADA(α)+CP and DADA(α)

568 R. Bleuse et al.

 0

 100

 200

 300

 400

 500

 600

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
DADA(=0.95)+CP

(a) Performance (8192 × 8192).

 0

 0.5

 1

 1.5

 2

 2.5

 3

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
DADA(=0.95)+CP

(b) Memory Transfer (8192× 8192).

Fig. 2. Benchmarks of Cholesky (DPOTRF)

are the policies with the lowest bandwidth footprint up to 6 GPU. Yet, as the
number of GPU grows, the use of communication prediction allows to reduce
the communication volume with sustained high performances.

Fig. 3 reports the behavior of the LU factorization (DGETRF). It studies both
performance results (Fig. 3(a)) and total memory transfers (Fig. 3(b)). Apart
from the performance of DADA+CP for six CPUs and six GPUs (with a large
confidence interval), all scheduling policies sustain the same performance. Data
transfers seem to have a little impact on performance. However, DADA(α)+CP
generates less memory movements than other strategies. DADA(0) is the most
costly policy while DADA(α) and HEFT have similar impacts. The total memory
transfers of the LU and the Cholesky factorizations behave in a similar way. Still,
the gap between the curves is widening: DADA(α)+CP is 3.5 less demanding
in bandwidth than HEFT for only a slowdown of about 1.13 in performance for
8 GPU.

Finally, Fig. 4 reports the behavior of the QR factorization (DGEQRF) with re-
spect to the number of GPUs used. Both performance results (Fig. 4(a)) and total
memory transfers (Fig. 4(b)) are studied. All dual approximations (DADA(0),
DADA(α), DADA(α)+CP) behave the same and are outperformed by HEFT.
Even the low transfer footprint of both DADA(α) is not able to sustain perfor-
mance. It seems that the dependencies between tasks for QR factorization have
a strong impact on the schedule computed by all dual approximation algorithms.
We are still investigating this particular point.

Discussion

Communication Prediction Affinity is a viable alternative to communication
modeling. Indeed, DADA without communication prediction is comparable to
HEFT in terms of performance. Moreover, affinity based policy combined with
communication prediction allows to reduce further more memory transfers (up
to a factor 3.5 when compared to HEFT).

Comparison with Work Stealing Scheduling Algorithm For the sake of complete-
ness, we also tested the work stealing algorithm. However we did not plot the

Scheduling Data Flow Program in XKaapi 569

 0

 20

 40

 60

 80

 100

 120

 140

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
DADA(=0.95)+CP

(a) Performance (8192 × 8192).

 0

 1

 2

 3

 4

 5

 6

 7

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
 DADA(=0.95)+CP

(b) Memory Transfer (8192× 8192).

Fig. 3. Benchmarks of LU (DGETRF)

 0

 20

 40

 60

 80

 100

 120

 140

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
DADA(=0.95)+CP

(a) Performance (8192 × 8192).

 0

 1

 2

 3

 4

 5

 6

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
DADA(=0.95)+CP

(b) Memory Transfer (8192× 8192).

Fig. 4. Benchmarks of QR (DGEQRF)

results in previous figures for the sake of readability. We briefly discuss them now.
The naive work stealing algorithm is cache unfriendly, especially with small ma-
trices as its random choices are heavily penalizing [9]. On the contrary, the affin-
ity policies proposed here are suitable for this case. When scheduling for medium
and large matrix sizes, the impact of modeling inaccuracies grows. Model oblivi-
ous algorithms such as work-stealing behave well by efficiently overlapping com-
munications and computations while HEFT is induced in error by the imprecise
communication prediction. Hence, our approach is much more robust than work
stealing and HEFT since it does not need a too precise communication model
and adapts well to various matrix sizes.

5 Related Works

StarPU [4], OmpSs [6] and QUARK [17] are programming environments or li-
braries that enables to automatically schedule tasks with data flow dependen-
cies. OmpSs is based on OpenMP-like pragmas while StarPU and QUARK are
C libraries. QUARK does not schedule tasks on multi-GPU architecture and im-
plements a centralized greedy list scheduling algorithm. OmpSs locality-aware
scheduling, similar to our data-aware heuristic from [9], computes an affinity

570 R. Bleuse et al.

score based on both data location and size. Then, the task is placed on the high-
est affinity resource or in a global list, otherwise. The StarPU scheduler uses
the HEFT [16] algorithm to schedule all ready tasks in accordance with the cost
models for data transfer and task execution time [3]. Our data transfer model
is based on the StarPU model with minor extension. In the context of dense
linear algebra algorithms, PLASMA [7] provides fine-grained parallel linear al-
gebra routines with dynamic scheduling through QUARK, which was conceived
specially for numerical algorithms on multi-CPU architecture. MAGMA [15]
implements static scheduling for linear algebra algorithms on heterogeneous sys-
tems composed of GPUs. Recently it has included some methods with dynamic
scheduling in multi-CPU and multi-GPU sytems on top of StarPU, in addition
to the static multi-GPU version. In [14] the authors based their Cholesky fac-
torization on 2D block cyclic distribution with an owner compute rule to map
tasks to resources. DAGuE [5] is a parallel framework focused on multi-core clus-
ters and supports single-GPU nodes. Other papers reported performance results
of task-based algorithms with HEFT cost model scheduling on heterogeneous
architectures for the Cholesky [4], LU [1], and QR [2] factorizations. All the re-
sults report evaluation of single floating point arithmetics with up to 3 GPUs.
Due to the small number of GPUs, such studies cannot observe contention and
scalability.

6 Conclusion

We presented in this paper a new scheduling algorithm on top of the XKaapi
runtime system. It is based on a dual approximation scheme with affinity and has
been compared to the classical HEFT algorithm for three tile algorithms from
PLASMA on an heterogeneous architecture composed of 8 GPUs and 12 CPUs.
Both algorithms attained significant speed up on the three dense linear algebra
kernel. Moreover, if HEFT achieves the best absolute performance with respect
to DADA on QR, while DADA has similar or better performances than HEFT
on Cholesky and LU for large numbers of GPU. Nevertheless, DADA allows
to significantly reduce the data transfers with respect to HEFT. More interest-
ing, thanks to its affinity criteria DADA can introduce communication in the
scheduling without too precise communication cost model which are required in
HEFT to predict the completion time of tasks.

We would like to extend the experimental evaluations on robustness of schedul-
ing with respect to uncertainties in cost models, especially on the communication
cost which is very sensitive to contentions that may appear at runtime. Another
interesting issue would be to study other affinity functions.

Acknowledgments. This work has been partially supported by the French
Ministry of Defense – DGA, the ANR 09-COSI-011-05 Project Repdyn and
CAPES/Brazil.

Scheduling Data Flow Program in XKaapi 571

References

1. Agullo, E., Augonnet, C., Dongarra, J., Faverge, M., Langou, J., Ltaief, H., Tomov,
S.: Lu factorization for accelerator-based systems. In: IEEE/ACS, AICCSA 2011,
pp. 217–224. IEEE Computer Society, Washington, DC (2011)

2. Agullo, E., Augonnet, C., Dongarra, J., Faverge, M., Ltaief, H., Thibault, S., To-
mov, S.: QR Factorization on a Multicore Node Enhanced with Multiple GPU
Accelerators. In: IEEE IPDPS. EUA (2011)

3. Augonnet, C., Thibault, S., Namyst, R.: Automatic calibration of performance
models on heterogeneous multicore architectures. In: Lin, H.-X., Alexander, M.,
Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009
Workshops. LNCS, vol. 6043, pp. 56–65. Springer, Heidelberg (2010)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23(2), 187–198 (2011)

5. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.: DAGuE: A generic distributed DAG engine for High Performance Computing.
Parallel Computing 38(1–2), 37–51 (2012)

6. Bueno, J., Planas, J., Duran, A., Badia, R.M., Martorell, X., Ayguadé, E., Labarta,
J.: Productive Programming of GPU Clusters with OmpSs. In: IEEE IPDPS (2012)

7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing 35(1), 38–53
(2009)

8. Gautier, T., Besseron, X., Pigeon, L.: KAAPI: A thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: PASCO 2007. ACM,
London (2007)

9. Gautier, T., Lima, J.V., Maillard, N., Raffin, B.: XKaapi: A Runtime System for
Data-Flow Task Programming on Heterogeneous Architectures. In: IEEE IPDPS,
pp. 1299–1308 (2013)

10. Hermann, E., Raffin, B., Faure, F., Gautier, T., Allard, J.: Multi-GPU and Multi-
CPU Parallelization for Interactive Physics Simulations. In: D’Ambra, P., Guarra-
cino, M., Talia, D. (eds.) Euro-Par 2010, Part II. LNCS, vol. 6272, pp. 235–246.
Springer, Heidelberg (2010)

11. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)

12. Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling independent
tasks on multi-cores with GPU accelerators. In: an Mey, D., et al. (eds.) Euro-Par
2013. LNCS, vol. 8374, pp. 228–237. Springer, Heidelberg (2014)

13. Lima, J.V.F., Gautier, T., Maillard, N., Danjean, V.: Exploiting Concurrent GPU
Operations for Efficient Work Stealing on Multi-GPUs. In: 24th SBAC-PAD,
pp. 75–82. IEEE, New York (2012)

14. Song, F., Dongarra, J.: A scalable framework for heterogeneous GPU-based clus-
ters. In: ACM SPAA, pp. 91–100. ACM, New York (2012)

15. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Computing 36(5-6), 232–240 (2010)

16. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE TPDC 13(3), 260–274 (2002)

17. YarKhan, A., Kurzak, J., Dongarra, J.: Quark users’ guide: Queueing and runtime
for kernels. Tech. Rep. ICL-UT-11-02, University of Tennessee (2011)

Delegation Locking Libraries for Improved
Performance of Multithreaded Programs�

David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad

Department of Information Technology, Uppsala University, Sweden

Abstract. While standard locking libraries are common and easy to use, dele-
gation algorithms that offload work to a single thread can achieve better perfor-
mance in multithreaded applications, but are hard to use without adequate library
support. This paper presents an interface for delegation locks together with li-
braries for C and C++ that make it easy to use queue delegation locking, a ver-
satile high-performance delegation algorithm. We show examples of using these
libraries, discuss the porting effort needed to take full advantage of delegation
locking in applications designed with standard locking in mind, and the improved
performance that this achieves.

1 Introduction

In many programming languages, locking is still the dominant synchronization mech-
anism that multithreaded programs use to protect their critical sections. Especially in
systems programming languages, lock-based multicore programming is supported by
libraries which are readily available and easy to use. Recently, particularly in programs
manipulating shared data structures protected by a single lock, researchers have inves-
tigated ways of offloading critical sections to a single processor core and letting them
be executed by the same thread [3, 4, 7, 9–11]. Such delegation algorithms, which ef-
fectively bring the operations of critical sections to the data instead of bringing data
to where the operations execute, have significant performance advantages on modern
multicores and are often superior to implementing concurrent data structures either by
fine-grained locking or in lock-free ways [3, 4]. Alas, this style of multicore program-
ming is very hard to employ without adequate library support.

This paper presents an interface for delegation locks and two libraries for C and C++
that make a versatile high-performance delegation algorithm, called queue delegation
locking (Sect. 2), easy to use. More specifically, we describe the most important aspects
of the programming interfaces of our libraries (Sect. 3 and 4), and our experiences in
porting code of significant size (≈ 16 300 LOC) to using this library both in effort
required as well as in performance improvements that this brought (Sect. 5). To the best
of our knowledge, our libraries1 are the first to provide portable support for delegation.
By portable we mean that they only require the presence of a compiler that adheres to
the C11/C++11 standards. In addition, we discuss issues that are involved when one
wants to modify existing multithreaded programs that have been written with standard
locking in mind to take full advantage of delegation locking (Sect. 7).
� Research supported in part by EU project RELEASE (IST-2011-287510) and by UPMARC.
1 http://www.it.uu.se/research/group/languages/software/qd_lock_lib

(Publicly available)

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 572–583, 2014.
c© Springer International Publishing Switzerland 2014

http://www.it.uu.se/research/group/languages/software/qd_lock_lib

Delegation Locking Libraries for Improved Performance of Multithreaded Programs 573

2 Queue Delegation Locking

The delegation algorithm we use, called Queue Delegation (QD) locking [6], is a new
efficient delegation algorithm whose idea is simple. When, e.g., a shared data structure
protected by a single lock is contended, the threads do not wait for the lock to be released.
Instead, they try to delegate their operation to the thread currently holding the lock (called
the helper). If the operation does not read from the shared structure, successful delegation
allows a thread to immediately continue execution, possibly delegating more operations
or doing other work. The helper thread is responsible for eventually executing delegated
operations in the order they arrived to ensure linearizability. This implies that reading
from the shared data structure needs to wait for all prior operations so that no outdated
data is ever read. Most kinds of critical sections can be delegated with this scheme, and
waiting is only needed when effects of a critical section need to be visible.

QD locking is realized by placing delegated operations in a delegation queue. The
operations are stored in order of their arrival, and thus their linearization point is the suc-
cessful enqueueing into the delegation queue. However, the enqueueing can fail when
the lock holder is not accepting any more operations. This happens when the queue is
already full or when the helper already executed all operations it found and is about to
release the lock. If delegation fails, the thread has to retry until it succeeds to either take
the lock itself or delegate its operation to a new lock holder.

The delegation queue is implemented as a fixed size buffer which stores operations
together with arbitrarily sized parameters, e.g. some data to insert. This avoids the allo-
cation of additional memory to pass data for each operation. An atomically incremented
offset is used to access the buffer and automatically close the queue when it is full. If the
required data exceeds the remaining space in the queue, the queue still closes, but the
delegation has to be retried. A standard mutual exclusion (mutex) lock is used only to
determine the helper thread to which operations are delegated.2 Our libraries also come
with a lock which allows multiple readers in parallel. We base our multiple readers QD
(MRQD) lock on the mutex lock agnostic write-preference readers-writer lock algorithm
of Calciu et al. [2]. As a reader indicator we use reader groups [5], which essentially is
a counter that is distributed over many cache lines to avoid false cache invalidations.

The QD lock is accessed using a delegate function. When needed, e.g. for reading
data, futures can be used to wait until the data is available. Futures can be as simple
as having the delegated operation setting a flag upon completion or writing data to a
predetermined location. MRQD locks come with an additional trade-off: For consis-
tency, readers have to wait immediately for previously delegated operations before they
can all access in parallel. By the time the read operation is performed it is guaranteed
that any previously delegated operation on the same QD lock has finished. Read-only
critical sections using the rlock and runlock functions work exactly as in traditional
readers-writer locks. To ease porting of existing code we also provide lock and unlock
on QD and MRQD locks, which are simply forwarded to the underlying mutex lock.
For more information on the queue delegation algorithm, e.g. hierarchical NUMA vari-
ants or susceptibility to starvation, see a companion paper [6] describing QD locking in
detail.

2 Our libraries use a test-and-test-and-set lock for this; for the reasoning of this choice refer
to [6].

574 D. Klaftenegger, K. Sagonas, and K. Winblad

3 C Library

We will present the C API of our QD locking library through examples. Let us first con-
sider the implementation of a shared integer (ShInt) that can be accessed concurrently
by several threads. All operations on ShInts are supposed to be atomic. A ShInt can be
represented with the following C structure which employs an MRQD lock to coordinate
concurrent accesses to it.

1 typedef struct { MRQDLock lock; int value; } ShInt;

Now consider a mult operation that multiplies a ShInt with an integer value and
stores the result back on the ShInt. Since MRQD locks support the traditional locking
operations lock and unlock, the mult function could be implemented like this:

1 void mult1(ShInt* v1, int v2) {
2 LL_lock(&v1->lock); v1->value = v1->value * v2; LL_unlock(&v1->lock);
3 }

This implementation is easy to understand, but it may not be very efficient when a
ShInt is contented on a multicore machine. One reason is that every thread has to wait
for the thread currently holding the lock to release it before its execution can proceed.
With thread preemption, the OS can force the lock holding thread to be suspended for
an arbitrary amount of time. Since mult does not return any value, we could instead
delegate the responsibility of executing the critical section to another thread that has
already acquired the lock. This is easy to do using the LL_delegate function from the
QD locking library:

1 typedef struct { ShInt* v1; int v2; } MultMsg;
2 void mult_cs(unsigned int sz, void* msgP) {
3 MultMsg* msg = (MultMsg*)msgP;
4 msg->v1->value = msg->v1->value * msg->v2;
5 }
6 void mult2(ShInt* v1, int v2) {
7 MultMsg msg = {.v1 = v1, .v2 = v2};
8 LL_delegate (&v1->lock, mult_cs, sizeof(msg), &msg);
9 }

The LL_delegate call (line 8) either executes the mult_cs function in the current thread
while holding the lock or delegates the responsibility to execute it to the current lock
holder. As long as all accesses to the ShInt are done by threads that have acquired the
lock, mult1 and mult2 are equivalent in the sense that it is impossible to detect which
one is used. The parameters to LL_delegate are the lock, the function with the code of
the critical section, the message size and a pointer to the message data. The message
data and the message size will be passed to the delegated function when it is executed.
The programmer cannot rely on that the mult_cs function is executed by the current
thread or that the message data is not copied to another location. Many threads can
delegate critical sections to the same helper, which has the performance advantage that
the manipulated data can stay in the same private cache while it is being manipulated.

Extending the example, suppose we now also want the result of the multiplication as
a return value. We can create the function mult_res for that purpose:

Delegation Locking Libraries for Improved Performance of Multithreaded Programs 575

1 typedef struct { ShInt* v1; int v2; int* retval; } MultResMsg;
2 void mult_res_cs(unsigned int sz, void* msgP) {
3 MultResMsg* msg = (MultResMsg *)msgP;
4 msg->v1->value = msg->v1->value * msg->v2;
5 *msg->retval = msg->v1->value;
6 }
7 int mult_res(ShInt* v1, int v2) {
8 int res;
9 MultResMsg msg = {.v1 = v1, .v2 = v2, .retval = &res};

10 LL_delegate_wait (&v1->lock, mult_res_cs , sizeof(msg), &msg);
11 return res;
12 }

The delegated function writes back the result to the location pointed to by retval in
MultResMsg (line 5). Here we are using a variant of delegate called LL_delegate_wait
(line 10), which waits for the delegated function’s execution before it returns. Unsur-
prisingly, LL_delegate_wait also guarantees that the lock is held by the thread that ex-
ecutes the delegated function. Instead of returning the actual value from mult_res one
could return at this point a future that will contain the result when it is ready. However,
in a low-level language such as C, constructing this future is something that needs to
be done by the program itself. In the next section we will see how the situation changes
in C++.

The QD locking library also supports read-only critical sections:

1 int read(ShInt* v) {
2 int res;
3 LL_rlock(&v->lock); res = v->value; LL_runlock(&v->lock);
4 return res;
5 }

Using read-only critical sections is a powerful way to support multiple parallel read
operations. Mixing read-only critical sections with delegated critical sections can give
excellent performance. Since threads can delegate critical sections without waiting for
the actual execution they can continue and issue a read-only critical section. Read-
critical sections are thus more likely to bulk up so that more can execute in parallel than
if a readers-writer lock without delegation was used.

We have almost gone through all functions in the locking library for C. The only
ones left are the LL_delegate_or_lock family of functions. These provide the same
functionality as LL_delegate but avoid the overhead that LL_delegate has in creating a
separate buffer for copying the message for the delegated critical section to the current
lock holder. Creating this buffer can be particularly expensive when the size of the buffer
is not known at compile time and needs to be allocated dynamically. Dynamic memory
allocation is expensive and can be a scalability problem on multicores. The code at the
top of the next page shows how this family of functions is used. The enqueue function is
for a concurrent queue. The function enq is not shown for lack of space but we can as-
sume that it is a non-thread-safe enqueue function which copies the data into the queue
data structure. The LL_delegate_or_lock function (line 5) attempts to get a message
buffer of the specified size for a critical section. If LL_delegate_or_lock succeeds a
buffer address will be returned, otherwise NULL is returned and the lock is acquired.

576 D. Klaftenegger, K. Sagonas, and K. Winblad

1 void enqueue_cs(unsigned int sz, void* m) {
2 enq(*((Queue**)m), sz - sizeof(Queue*), &((char*)m)[sizeof(Queue*)]);
3 }
4 void enqueue(Queue* q, int dSize, void* d) {
5 void* buff = LL_delegate_or_lock (q->lock, dSize + sizeof(Queue*));
6 if (buff == NULL) {
7 enq(q, dSize, d);
8 LL_delegate_unlock (lock);
9 } else {

10 memcpy(buff, &q, sizeof(Queue*));
11 memcpy(&((char*)buff)[sizeof(Queue*)], d, dSize);
12 LL_close_delegate_buffer (q->lock, buff, enqueue_cs);
13 }
14 }

The function LL_delegate_unlock (line 8) is used to unlock the lock when no mes-
sage buffer was acquired. LL_close_delegate_buffer (line 12) will indicate to the lock
holder that the message buffer is fully written. After the LL_close_delegate_buffer
call, the delegated function (provided as parameter) can be executed with the message
buffer given as parameter.

4 C++ Library

While the C library performs very well, its interface restrictions mean that a C++ pro-
grammer has to write many function wrappers so that operations could be delegated. For
this reason, we also developed a C++11 implementation of QD locking, which makes
delegation in C++ code easier. It provides the same variants of QD locks as the C li-
brary, namely qdlock and mrqdlock. For the user, it provides two delegation interfaces:
delegate_n, which detaches the execution entirely, and delegate_f, which returns a
future that is bound to the critical section. The initial example in C could look similar
to this in C++:

1 mrqdlock lock;
2 void mult_cs(int* a, int b) { *a = *a * b; }
3 void mult(int* v1, int v2) {
4 lock.lock(); mult_cs(v1, v2); lock.unlock();
5 }

From the parameters to the critical section, it is clear what data needs to be transferred.
As the type of each object is known at compile time, the compiler can produce code to
forward the data to the critical section.

3 void mult(int* v1, int v2) {
4 lock.delegate_n(&mult_cs, v1, v2);
5 }

Furthermore, with C++11 lambda functions it is not even necessary to have a separate
named function, like mult_cs above, for the critical section.

Delegation Locking Libraries for Improved Performance of Multithreaded Programs 577

3 void mult(int* v1, int v2) {
4 lock.delegate_n([](int* a, int b) { *a = *a * b; }, v1, v2);
5 }

Even with these simple examples one can see the flexibility of the library. Using
functors – which lambda functions are – or normal function pointers, the library takes
them together with their parameters and passes them to the QD lock, serializing each
element as needed. However, this flexibility comes at a price. To determine the types
of the parameters, a function is constructed by the compiler, which can deserialize the
parameters and passes them to the function or functor specified by the user. This ad-
ditional function pointer needs to be passed to the lock together with the parameters,
resulting in a one word overhead when compared to the C version of the library. This
can be avoided only for non-overloaded functions by passing the function address as a
template parameter to the library code.

4 lock.delegate_n<void (*)(int*, int), &mult_cs>(v1, v2);

Due to language restrictions, we need to specify the function signature as well, so that
the compiler can type-check it later. For convenience, we provide a macro which inserts
the function signature automatically.

4 lock.DELEGATE_N(&mult_cs, v1, v2);

To return values from critical sections or wait for their actual execution, we use
futures. This allows the programmer to execute an arbitrary amount of code between
issuing a critical section and the point where the return value or side effect of it needs
to be visible to the system.

1 int read(int* shared) {
2 auto future = lock.delegate_f ([=shared]() -> int { return *shared; });
3 return future.get();
4 }
5 void add_two_and_wait_for_first (int* shared) {
6 auto future = lock.delegate_f ([=shared]() -> void { *shared += 1; });
7 lock.delegate_n ([=shared]() -> void { *shared += 1; });
8 future.wait();
9 }

10 void add_two_and_block_both (int* shared) {
11 auto future1 = lock.delegate_f ([=shared]() -> void { *shared += 1; });
12 auto future2 = lock.delegate_f ([=shared]() -> void { *shared += 1; });
13 future2.wait();
14 }

In the last example the waiting for the second future is sufficient, as the order of delega-
tions is preserved. If a future is destructed, the behaviour depends on the implementation
used, which is currently std::future. To avoid ambiguity it is best to always store the
return value of delegate_f and explicitly decide when the future needs to be invoked.

For a more complicated example, we will use std::map in a thread-safe way. While
the example does not actually use concurrency, the code could be plugged into a con-
current program. It first inserts two values, then reads one back using a delegation, and
finally reads the other value back using rlock. Remember that rlock has to wait for the
completion of prior delegated sections, which means the future.get() call at the end
will always immediately return the value.

578 D. Klaftenegger, K. Sagonas, and K. Winblad

1 #include<map>
2 #include "qd.hpp"
3 int main() {
4 std::map<int, double> map;
5 mrqdlock lock;
6 lock.delegate_n ([&map]() { map.insert(std::make_pair(21, 2.56)); });
7 lock.delegate_n ([&map]() { map.insert(std::make_pair(42, 3.14)); });
8 auto future = lock.delegate_f ([&map](int key) {return map[key];}, 42);
9 lock.rlock(); double r2 = map[21]; lock.runlock();

10 double r1 = future.get();
11 }

5 Queue Delegation Locking for the Erlang Term Storage

In this section we will discuss the applicability of delegation locking to protect a shared
key-value store, namely the Erlang Term Storage (ETS). ETS is a heavily used part of
the Erlang programming language and is implemented in C for efficiency reasons. Er-
lang programs can use ETS as shared memory between threads (Erlang processes). Be-
ing shared memory, ETS has become a scalability concern on multicore machines [5].
Because of the complexity of ETS, it is difficult to apply efficient fine grained locking
or lock-free techniques. This is especially true for the ordered_set ETS table type that
is implemented as an AVL tree. Such ETS tables are currently protected by a single
readers-writer lock. We will describe the steps we went through when porting the ETS
code to use an MRQD lock instead of a readers-writer lock and the performance we got.

5.1 Porting

We have chosen to focus on the ETS operations insert, delete and lookup when port-
ing. The first two operations are interesting since they do not have any return value
and can thus be delegated to the current lock holder without any need to wait for their
execution. The lookup operation is interesting because it can help us show how well
QD locking works together with the multiple-readers extension. We divided the porting
work into three steps of increasing difficulty, where each step produced working code
that we could benchmark to measure the resulting performance. We started from an
ETS code base of eight files with a total of 16 277 lines of code.

Step 1, delegate and wait: In this step we just delegate the original critical section and
wait for its actual execution with the LL_delegate_wait function from the C library. In
most situations this works without any semantic change of the original code. However,
if thread-local variables are accessed inside the critical section, as was the case in ETS,
care must be taken so the right thread-local variable is accessed. In ETS, the thread-local
variable access was subtle since it was done in the read-unlock call of a readers-writer
lock. To fix this issue we simply moved the read-unlock call to after the issuing of
the critical section. Another way to deal with this problem would have been to pass a
reference to the thread-local variable to the delegated function. In total this step required
changing about 400 lines of code (60 of which were changes and 340 were additions,
many to integrate with the existing locking structure).

Delegation Locking Libraries for Improved Performance of Multithreaded Programs 579

Step 2, delegate without wait: To delegate without waiting for the actual execution
of the critical section required more changes. The original code did some checking of
parameters inside the critical section that could result in a return value indicating an
error. These checks did not need to be done inside the critical section and could simply
be lifted out. The parameters to the insert and delete functions are allocated on the
heap of the issuing thread (process in Erlang terminology) and can be deallocated as
soon as the functions have returned. Therefore it is not safe to send references to these
values to delegated critical sections. Instead, we changed the original code to allocate
a clone of the value and send a reference to the clone. For the insert case, the clone
is in a form that can be inserted directly into the table data structure. The effort of
allocating a clone is therefore not wasted since a clone would need to be created anyway
to store the object. Furthermore, since the cloning is done outside the critical section,
this modification can also decrease the length of the critical section. However, if the
object being inserted is replacing an existing larger object, the original code had less
memory management cost because it would just overwrite the existing object. For the
delete operation, both the allocation of the cloned key and its subsequent freeing incurs
an overhead compared to the original code. This step required changes in about 400
more lines of code (760 if one starts counting the differences from the original code).

Step 3, delegate and copy directly into the QD queue: In this step we got rid of the
need to do more memory management than the original code by copying all parameters
needed in the critical section directly into the queue buffer of the QD lock. This also
had the benefit of improving the cache locality for the helper thread that is executing
the critical sections. Because all needed data for the critical sections is stored in a con-
tinuous array, data for several operations can potentially be read with a single cache
miss. The only additional porting effort required in this step was the serialization of the
key and the object to a form that can be stored directly into the QD queue. This step
required changing only about 100 more lines of code.

5.2 Performance Evaluation

We used ets_bench, a benchmark from BenchErl [1] to evaluate the performance and
scalability of ETS tables of type ordered_set after applying each porting step described
in the previous section. A detailed description of ets_bench can be found in a paper
about the scalability of ETS [5], but basically it measures the performance of ETS under
variable contention levels and distributions of operations. We ran the benchmark on an
Intel(R) Xeon(R) E5-4650 (2.70GHz) chip with eight cores and two hardware threads
per core (i.e., a total of 16 hardware threads running on eight cores). The machine ran
Debian Linux 3.10-0.bpo.2-amd64 and had 128GB of RAM. All code was compiled
using GCC version 4.7.2 with -O3. We pinned the software threads to logical processors
so that the first eight software threads in the graphs were pinned to separate cores. Each
configuration was run three times and we report the average run time. The minimum
and maximum are shown as bars when varying enough to be visible.

The update only scenario presented in Fig. 1(a) shows the run time of N threads
(Erlang processes) performing 222/N operations each. The inserted objects are Erlang
tuples with an integer key randomly selected from the range [0, 216]. The operations are

580 D. Klaftenegger, K. Sagonas, and K. Winblad

0 2 4 6 8 10 12 14 16
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
e
c
o
n
d
s

MRQD-wait

MRQD-malloc

MRQD-copy

DR-MCS

CC-Synch

Default

(a) Only Updates

0 2 4 6 8 10 12 14 16
Threads

0.0

0.5

1.0

1.5

2.0

2.5

S
e
c
o
n
d
s

MRQD-wait

MRQD-malloc

MRQD-copy

DR-MCS

CC-Synch

Default

(b) 80% Reads, 20% Updates

Fig. 1. Scalability Benchmarks for ETS. Dataset size is 216.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Key Range

0

1

2

3

4

S
e
c
o
n
d
s

MRQD-wait

MRQD-malloc

MRQD-copy

DR-MCS

CC-Synch

(a) Key-value store structure size

0 100 200 300 400 500 600
Value in bytes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
e
c
o
n
d
s

MRQD-wait

MRQD-malloc

MRQD-copy

DR-MCS

CC-Synch

(b) Stored value size

Fig. 2. Benchmarks varying the size of data. Using eight threads for all measurements.

insert or delete with equal probability. The line labeled Default represents the default
readers-writer lock used by ETS. It is optimized for frequent reads and the uncontended
case. Therefore, it does not scale well with parallel writers. We also include the state-of-
the-art readers-writer lock DR-MCS presented by Calciu et al. [2]. The MCS lock [8]
that DR-MCS uses to synchronize writers is good at minimizing cache coherence traf-
fic in the lock hand over. However since MCS is a queue based lock, the thread that
executes critical sections is likely to alternate between the cores. This is causing a lot
of expensive cache coherence traffic inside the critical section which is one reason why
its performance is worse than all delegation based locks. CC-Synch [3] is included in
our comparison to show an alternative delegation locking mechanism that can be used
with the same interface as QD locking. MRQD-copy, which is corresponding to port-
ing step 3 in the previous section, performs best in all contended cases. MRQD-copy is
closely followed by MRQD-wait, CC-Synch (both step 1) and MRQD-malloc (step 2).
MRQD-wait, CC-Synch and MRQD-malloc are almost indistinguishable except for the
case with two threads. MRQD-malloc performs better in this case because of its ability
to continue directly after delegating work.

Figure 2(a) shows how the performance varies with the set size (key range) while
the thread count is fixed to eight. The figure shows that the performance advantage of
delegation based locks compared to DR-MCS is larger with smaller set sizes. This is
expected since with smaller set sizes, the length of the critical sections is smaller and
the helper thread can keep most data in the private cache while executing operations.
The larger slowdown is caused by running out of shared cache and hitting memory.

Delegation Locking Libraries for Improved Performance of Multithreaded Programs 581

Figure 2(b) shows performance with varied value size and thread count fixed to eight.
MRQD-malloc is least affected by the size of the value passed together with the key to
the insert operation. The reason is that MRQD-malloc clones the key and the value
before the critical section so that the size of the critical section stays largely unaffected
by the value size. MRQD-copy, which is the best performing variant for value sizes
up to a few cache lines, has to read the whole value from the queue inside the critical
section. In Fig. 2(b) we use the key range [0, 210] to make the effect of the value size
more visible.

In Fig. 1(b) we show the performance when 80% of the operations are lookups and
the rest are inserts and deletes with equal probability. Unsurprisingly, since they use
the same read synchronization algorithm, the order between MRQD-copy, MRQD-
malloc, MRQD-wait and DR-MCS is the same as in the update only scenario. With
99% lookup operations the difference between MRQD-copy, MRQD-malloc, MRQD-
wait and DR-MCS is very small, but the performance advantage of the four delegation
based algorithms gets larger and larger with more updates. Due to space limitations we
only show measurements for 80% lookups in this paper.

6 Related Synchronization Algorithms

QD locking comes from the same line as other delegation locking techniques such as
the detached contexts algorithm by Oyama et al. [9], the flat combining algorithm by
Hendler et al. [4], and the Synch algorithms by Fatourou and Kallimanis [3]. The com-
mon property of all these techniques is that a helper thread can execute critical sections
for other threads. Under contention this means that the same processor core can execute
many critical sections, one after the other, and thereby keep the protected data in the
same fast private cache. In the uncontended case the delegation locking algorithms be-
have like traditional locking algorithms, although most of them have a small overhead
for opening the delegation data structure.

The algorithm of Oyama et al. shares with QD locking the ability to continue a
thread’s execution immediately after delegation. However, unlike QD locking, under
high contention it will starve the helper thread. Furthermore, its need to allocate con-
texts for critical sections can easily become another bottleneck. While flat combining
has a very efficient handover of critical sections to the helper thread, it does not exe-
cute critical sections in arrival order, which means that threads have to block until their
delegated section is executed in order to maintain linearizability. The Synch algorithms
execute the critical sections in arrival order and have efficient handover of critical sec-
tions. To avoid the problem of starving helper threads, they allow the helper to stop
helping. In this case the thread owning the next delegated section becomes the new
helper, which means that all threads must wait until their section is executed as well.

In short, QD locking offers delegation without waiting, and does not starve helper
threads, which we have not found possible in other algorithms. This is achieved through
a preallocated queue buffer which enables both a fast handover and limiting the amount
of work a helper thread has to do. Experiments reported elsewhere [6] show that QD
locking performs better than other delegation algorithms at various contention levels.

582 D. Klaftenegger, K. Sagonas, and K. Winblad

7 Discussion

Many delegation algorithms have been shown to outperform non-delegating locking
approaches, but compared to traditional locks the support for programming with dele-
gation has been somewhat limited so far. Code for using flat combining3 and the Synch
algorithms4 is available online, but significant work is required to use them in programs
other than the benchmarks these implementations were written for. Making use of del-
egation based locking thus requires a substantial investment from programmers. The
libraries presented in this paper aim to make it easier to use delegation locking, lower-
ing the entrance barrier and enabling more programs to take advantage of them. In fact
the APIs of our libraries can be used for other delegation locking schemes as well.

As has been illustrated in this paper, many types of critical sections can be ported
straightforwardly. However, some other types of critical sections cannot use delegation
algorithms. As an example, hand-over-hand locking interleaves lock and unlock calls,
resulting in partially overlapping critical sections, which cannot be delegated. This is
not a problem for many applications, as the most common use of locks allows critical
sections to be tranformed into subroutines.

For latency critical programs a complaint could be that the helper can get stuck ex-
ecuting critical sections for other threads. This is actually not a big problem as the
maximum amount of help that a thread does can be limited using a parameter to
the lock. Furthermore, if the critical section allows for delegating without waiting for
the actual execution, threads can continue where they would have needed to wait with
traditional locking. The ability to continue without waiting for the actual execution of a
critical section could even make QD locking an attractive alternative if otherwise only
non-blocking algorithms would be considered.

8 Future Work and Concluding Remarks

To ease the porting of large programs with many locks and critical sections, it would
be useful to have a tool that detects critical sections that can be used with delegation
locking. Such a tool would need to detect if the critical section can be factored into a
function or if it uses thread local variables. Additionally, the tool could detect implicit
return values from the critical sections and decide whether delegation without waiting
for the actual execution can be used or not.

More options for performance tuning in the libraries will be added in the future.
For example, a companion paper presents a hierarchical QD (HQD) lock variant for
NUMA systems [6]. On such systems, it has faster delegation and execution at the
cost of more often having to wait for delegate calls to succeed. This means that it is not
always better to use this variant on NUMA systems, but rather depends on the workload.
Another extension would be to make delegate wait passively instead of spinning. The
libraries also could incorporate other locking and delegation algorithms to facilitate
comparisons. For the C library it is already possible to use it to compare against a few
other locking algorithms, including DR-MCS and CC-Synch as used in this paper.

3 http://github.com/mit-carbon/Flat-Combining
4 https://code.google.com/p/sim-universal-construction/

http://github.com/mit-carbon/Flat-Combining
https://code.google.com/p/sim-universal-construction/

Delegation Locking Libraries for Improved Performance of Multithreaded Programs 583

All in all, there is room to improve the libraries, but also potential to apply them. For
writing new code, the idea to delegate operations is fairly intuitive, but when porting
from lock and unlock some effort is required to achieve optimal performance. Even
then, experiments in this and other papers show that delegation can improve perfor-
mance twofold and sometimes more. For many applications this may be enough incen-
tive to give QD locking a try, and the libraries presented here make it a lot easier to get
started.

References

1. Aronis, S., Papaspyrou, N., Roukounaki, K., Sagonas, K., Tsiouris, Y., Venetis, I.E.: A scal-
ability benchmark suite for Erlang/OTP. In: Proceedings of the Eleventh ACM SIGPLAN
Workshop on Erlang Workshop, pp. 33–42. ACM, New York (2012)

2. Calciu, I., Dice, D., Lev, Y., Luchangco, V., Marathe, V.J., Shavit, N.: NUMA-aware reader-
writer locks. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 157–166. ACM, New York (2013)

3. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization technique. In: Pro-
ceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 257–266. ACM, New York (2012)

4. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-
parallelism tradeoff. In: Proceedings of the 22nd ACM Symposium on Parallelism in Al-
gorithms and Architectures, pp. 355–364. ACM, New York (2010)

5. Klaftenegger, D., Sagonas, K., Winblad, K.: On the scalability of the Erlang term storage.
In: Proceedings of the Twelfth ACM SIGPLAN Workshop on Erlang, pp. 15–26. ACM, New
York (2013)

6. Klaftenegger, D., Sagonas, K., Winblad, K.: Queue delegation locking (2014),
http://www.it.uu.se/research/group/languages/software/qd_lock_lib

7. Lozi, J.-P., David, F., Thomas, G., Lawall, J., Muller, G.: Remote core locking: Migrating
critical-section execution to improve the performance of multithreaded applications. In: Pro-
ceedings of the 2012 USENIX Annual Technical Conference, Berkeley, CA, USA, pp. 65–76.
USENIX Association (2012)

8. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

9. Oyama, Y., Taura, K., Yonezawa, A.: Executing parallel programs with synchronization bot-
tlenecks efficiently. In: Proceedings of the International Workshop on Parallel and Distributed
Computing for Symbolic and Irregular Applications, pp. 182–204. World Scientific (1999)

10. Sridharan, S., Keck, B., Murphy, R., Chandra, S., Kogge, P.: Thread migration to improve
synchronization performance. In: Workshop on Operating System Interference in High Per-
formance Applications (2006)

11. Suleman, M.A., Mutlu, O., Qureshi, M.K., Patt, Y.N.: Accelerating critical section exe-
cution with asymmetric multi-core architectures. In: Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating Systems,
pp. 253–264. ACM, New York (2009)

http://www.it.uu.se/research/group/languages/software/qd_lock_lib

A Generic Strategy for Multi-stage Stencils

Mauro Bianco and Benjamin Cumming

Swiss National Supercomputing Centre (CSCS)

Abstract. Stencil computations on regular grids are widely used in sci-
entific simulations. Optimization techniques for such stencil computa-
tions typically exploit temporal locality across time steps. More complex
stencil applications, like those in meteorology and seismic simulations,
cannot easily take advantage of these techniques, since the number of
physical fields and computation stages to consider at each time step
flush all data present in the cache at the beginning of the next time step.
In this paper we present a technique for improving performance of such
computations, based only on spatial tiling, which is implemented as a
generic algorithm.

More specifically, we investigate how to take advantage of producer-
consumer relations of stencil loops, in a single time step, to improve
memory hierarchy utilization. This approach makes it possible to bal-
ance computation and communication to improve resource usage. We
implement our methods using generic programming constructs of C++,
which we compare with hand-tuned implementations of the stencils. The
results show that this technique can improve both single-threaded and
multi-threaded performance to closely match that of hand-tuned imple-
mentations, with the convenience of a high-level specification.

1 Introduction

Stencil computations are an important algorithmic motif in scientific computing.
When applied on regular grids, stencil computation is essentially a set of nested
for loops in which the body of the innermost loop computes a function using
grid values at fixed offsets from the coordinates specified by the loop variables.
Stencil computations are often used in the solution of (partial) differential equa-
tions with explicit temporal integration. Such applications use a time loop which
applies the same stencils on each iteration. Scientific simulations often employ
3D stencils because they map better to real world cases. From an algorithmic
point of view, the 3D stencil computations typically used in scientific comput-
ing pose specific challenges when optimizing the use of memory hierarchy [10].
The literature focusing on this kind of algorithms is abundant, and very clever
techniques have been developed to improve their performance.

Many of these optimization strategies take advantage of the fact that, for sim-
ple differential equations at least, temporal locality may be exploited across time
steps (among others, [4,9,12,6,13]). However, for more complicated applications,
such as meteorological simulations, the number of stencil functions applied in
each time step is very high. In such applications, it is not possible, or very hard,

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 584–595, 2014.
c© Springer International Publishing Switzerland 2014

A Generic Strategy for Multi-stage Stencils 585

for (i=bi−b10; i<ei+e10; ++i)
for (j=bj−b12; j<ej+e11; ++j)
for (k=bk−b12; k<ek+e12; ++k)
t [i][j][k] = in[i+2][j][k]...

for (i=bi; i<ei; ++i)
for (j=bj; j<ej; ++j)
for (k=bk; k<ek; ++k)
out[i][j][k] = t[i−1][j][k−1]...

(a)

struct stencil operator {
template <class S1, class S2>
void
operator()(S1 &v, S2 const& u) const
{

v() = 1.0/36.0 ∗(6∗u()
− u(1,0,0) − u(−1,0,0)
− u(0,1,0) − u(0,−1,0)
− u(0,0,1) − u(0,0,−1));

} };
(b)

Fig. 1. (a) Example of a typical structure of a stencil application. (b) Example of a
GSCL stencil operator implementation for a 7-point Laplacian.

to retain data in cache between time steps, due to the complicated dependencies
between the different stencil stages in each time step.

However, it is possible to exploit temporal locality in such applications. Here
we investigate temporal locality in the producer-consumer relations between con-
secutive stencil loops. A trivial example of this is illustrated in Figure 1.a, where
the output of the first stencil loops, stored in t is used in the second loop.

In this paper, we refer to a nested loop as a stencil stage, and a sequence
of such stages as a multi-stage stencil computation. An example stencil from
the numerical weather forecasting code COSMO (Consortium for Small-scale
Modeling) [5] is the horizontal diffusion (HD) stencil, which applies a fourth-
order dispersion operator to an input field, and writes the result to an output
field. The horizontal diffusion stencil can be expressed using four stages: the first
computes the Laplacian of the input field, then two independent stages that use
the Laplacian values to compute orthogonal fluxes in the horizontal plane, and
a final stage that combines the fluxes to compute the output.

In our work we distinguish between data that is the output of a multi-stage
stencil, and temporary data that is produced and consumed in intermediate
stages of a multi-stage stencil. For instance, the Laplacian and fluxes in the hor-
izontal diffusion stencil are only consumed by the stages inside the stencil, so
they can be discarded after the output has be computed. For such data fields
that are only consumed in the stencil where they are computed, we take ad-
vantage of blocking techniques that allow us to balance computation intensity
and memory bandwidth. We call the stencil stages that produce intermediate
output intermediate stages, and in this paper we focus on multi-stage stencil
computations with at least one intermediate stage.

We will describe an algorithm that each thread in a shared memory parallel
program, uses to trade computation intensity and communication bandwidth
of multi-stage stencils, and show how this improves both the performance and
scalability of the multi-stage stencil computation. We present our solution imple-
mented in context of the Generic Stencil Computing Library (GSCL) [2], which
is a generic C++ library for specifying stencil computations on different architec-
tures, including multicore processors, graphic accelerators, up to large parallel

586 M. Bianco and B. Cumming

machines. The library expresses computations as stencil operators applied to
some data fields according to iteration spaces, which specify data dependencies.
An example of a stencil operator can be found in Figure 1.b. We show that our
technique is capable of matching the performance of hand-tuned versions, while
retaining ease of use through the generic interface of GSCL. Being generic, our
solution also is suitable for being implemented in other contexts, such as a DSL.

2 Related Work

Stencil computations are typically bandwidth limited. As such, much of the re-
search in this field has focused on optimizations that reduce global memory
bandwidth by taking advantage of cache hierarchies. In [4,9,12] the optimiza-
tion of simple stencil computations inside time loops was investigated. Similar
stencils were studied in [6,13] in the context of cache obliviousness. The most
complicated stencil computation investigated in the aforementioned papers is
Jacobi iteration with two grids, while real applications like climate modeling or
earthquake simulations [11,5] have between 5 to 15 grids. It is not clear to what
extent the reasoning behind many optimizations for simpler stencils might be
directly ported to real-world use cases. A similar problem is addressed in [10],
in which, however, the Authors discuss solutions for other cases.

In this paper we use GSCL which is a C++ template library, as opposed to [3],
which employes a DSL, and [8] which heavily uses macros. This gives us the ability
to reach good expressivity in design and a robust implementation. In [7,3] Authors
use auto-tuning techniques, which we are planning to investigate in future papers,
but are not the aim of current work. More specific compiler approaches, such as
[1], are also out of our scope, but try to solve similar problems.

3 Tiling and Buffering

In this section we describe how each thread in a multithread stencil execution can
optimize the trade-off between computation intensity and memory bandwidth
in order to improve execution time.

These computations are specified in GSCL by using functional stencils, or
f stencils. Functional stencils specify that the value needed at the point of eval-
uation depends on a stencil operator computed at a given offset, specified through
relative coordinates. The syntax is as follows: f stencil <F, i, j ,k>(a,b ,...)
where i , j and k are coordinates relative to the current point of evaluation where
F is to be computed, and (a,b ,...) is the list of arguments to be passed to F.

Figure 2 shows an implementation of the stencil operator simpleHD that
computes a simplified version of the Horizontal Diffusion (HD) stencil from the
COSMO weather forecasting code. Computing HD first requires the computation
of a Laplacian (lap), then two fluxes (fluxx and fluxy). Finally, the simpleHD
computes the output values. The figure also illustrates the call graph.

Functional stencils employ a functional specification of the stencil operation
instead of the imperative approach illustrated in Figure 1.a. Loop bounds are

A Generic Strategy for Multi-stage Stencils 587

lap

struct lap {
template <typename up t>
double operator()(up t const& up) {
return −4.∗u()
+ up(1,0,0) + up(−1,0,0)
+ up(0,1,0) − up(0,−1,0);

}};
((0,0,0),(1,0,0))

���������
((0,0,0),(0,1,0))

���������

fluxx

struct fluxx {
template <typename U>
double operator()(U const& u) {
double fx ;
fx = f stencil <lap,1,0,0>()(u)−

f stencil <lap,0,0,0>()(u);
if (fx∗(u(1,0,0)−u()>0)) fx = 0.;
return fx ;

}};

fluxy

struct fluxy {
template <typename U>
double operator()(U const& u) {
double fy ;
fy = f stencil <lap,0,1,0>()(u)

f stencil <lap,0,0,0>()(u);
if (fy∗(u(0,1,0)−u())>0) fy = 0.;
return fy ;

}};

((-1,0,0),(0,0,0))
���������

((0,-1,0),(0,0,0))
���������

simpleHD

struct simpleHD {
template <typename out t, typename up t, typename c t>
void operator()(out t & out, up t const & up, c t const & c) {
out() = up() − c() ∗
(f stencil <fluxx,0,0,0>()(up) − f stencil <fluxx,−1,0,0>()(up) +
f stencil <fluxy,0,0,0>()(up) − f stencil <fluxy,0,−1,0>()(up));

}};

Fig. 2. The illustration of the GSCL implementation of the HD multi-stage stencil

determined automatically from the output dimensions, removing the burden of
manually adjusting the loop limits b10, b11, e10, etc.. When executed as func-
tions, functional stencils reduce memory transactions in memory-bound stencil
computations by computing intermediate fields on the fly, at the expense of in-
creasing the number of arithmetic operations. Hence, as the depth and arity
of the call tree increases, the use of functional stencils can make the computa-
tion compute-bound with possible poor performance. However, the functional
flavor of the algorithm specification allows the implementation to choose to
buffer intermediate results in order to trade memory pressure with computa-
tion redundancy, thus transforming calls to functional stencils into reads from
pre-computed buffers.

3.1 The Algorithm

The algorithm for executing a multi-stage stencil has two phases. The first is an
analysis phase that computes the sizes of the intermediate buffers, the second is
the computation of the stencil itself.

588 M. Bianco and B. Cumming

Algorithm: Analysis
Input: Sets Eu, set V of operators
Output: Graph G = (V,E, φ)
E ← ∅;
for u, v ∈ V do

φuv ← MBR{p : (u, v, p) ∈ Eu};
Insert (u, v) in E;

end
for v ∈ V do

Φv ← Empty rectangle;
end
s ← Source of G;
Update Φ(s,G);

Algorithm: Update Φ
Input: Current node u, graph G
Output: Updated Φv values
for v such that (u, v) ∈ E do

Φv ← MBR(Φv, Φu ⊕ φuv);
Update Φ(v,G);

end

Algorithm 1. Algorithms for determining the buffer sizes of the nodes of the
call graph

We start with a set V of stencil operators that call other operators as func-
tional stencils. For each stencil operator u ∈ V we have the set Eu = {(v, p)},
where v is a stencil operator called as a functional stencil by u at position p
relative to current evaluation point of u, where p is a tuple of (integer) relative
coordinates.

We can obtain a weighted direct graph G = (V,E, φ) such that E = {(u, v) :
(v, p) ∈ Eu for some p}, and the weight φuv represent the minimum bounding
rectangle (MBR) of the points in {p : (v, p) ∈ Eu}, the set of all the offsets at
which u calls v. A rectangle is a pair of tuples with minimum and maximum
coordinates among the points in the set. We indicate a rectangle as (pb, pt) to
indicate the coordinates of the “bottom” (typically with non positive coordi-
nates) and the “top” corners (typically with non negative coordinates) of the
rectangle. The structure of the graph G for the HD stencil is shown in Figure 2
along with the weights. We are interested in computations where graph G is
acyclic (a DAG) (an operator cannot call a predecessor in the graph) and with
a single source node that we indicate as s.

After having obtained the DAG G, we need to compute the extent (a rectan-
gle) at which each of the nodes v ∈ V is needed during the computation and we
call it Φv. To do this, we first set Φs = (0,0) as an empty rectangle, centered at
the origin, representing the point of evaluation. Next we traverse the graph in
pre-order. When node u is visited we update the values Φv, of nodes v adjacent to
u, to the MBR including the rectangles Φv and Φu ⊕φuv, where the sum for two
rectangles (pb, pt) and (qb, qt) is defined as (pb, pt)⊕ (qb, qt) = (pb + qb, pt + qt).
When Φv is updated for the first time, it is set to Φu ⊕ φuv , which are defined
since G is traversed in pre-order. Algorithm 1 shows the pseudo-code for this
procedure.

Proof: We now offer an informal proof that the node v is never invoked outside
of the bounding box Φv computed using Algorithm 1. If we assume that all the
φuv are correct, then if v was needed at a coordinate outside Φv, a predecessor u

A Generic Strategy for Multi-stage Stencils 589

of v would have to be accessed outside of Φu. Likewise, if u is not the source we
can apply the same reasoning backward. When we reach the source it means that
it is accessed outside the point of evaluation, which is against the hypotheses.
We can also see that if there are no conditional branches that can falsify this
statement in particular cases, the edges of the rectangles are always accessed, so
the bounding is tight.

There may be values in the rectangles that are not needed. However, if the
call tree is wide enough, the additional storage overheads are compensated for
by the use of simple affine expressions to access data. The final objective is to
tile the computation with blocks of size BI × BJ × BK . Before doing so, given
Φv = (pb, pt), we associate a buffer with each stencil operator in G, where the
buffer bu has dimension (BI − pbi + pti)× (BJ − pbj + ptj)× (BK − pbk + ptk) with
origin set to −pb so that accesses to the halo region are valid.

To balance the computation/communication ratio, nodes in the DAG can be
marked be either buffered or to computed on the fly. Execution of the stencil
then proceeds as a post order visit on the DAG G, so first the adjacency list of
a node is evaluated and then the node itself. If a node is marked to compute
values in a buffer, it is executed, otherwise nothing is done, and the node will
be invoked as a functional stencil in subsequent stages.

3.2 Implementation

The algorithm described in the previous subsection is modified for implemen-
tation in GSCL because some of the required information is computed during
compilation. Since C++ does not allow introspection, the structure of the un-
weighted version of the DAG G has to be provided to GSCL in the form of a call
graph object. The object type encodes the topology of the graph as a list of lev-
els corresponding to the topological sort of the DAG to guarantee the producer
consumer relations of the computation. The interface requires the first level to
be a procedure, i.e. it behaves as a regular GSCL stencil operator that writes
the results into some of the output arguments. The other levels can either be
functions, or a list of functions that are independent, all of which will be
called as functional stencils. Additionally, since GSCL cannot know which ar-
guments will be passed to the functional stencils, an argument mapping is also
needed. For the simple HD stencil in Figure 2, the call-graph type is

typedef call graph type <procedure<simpleHD>,
independent<function<fluxx,arg map<1> >,

function<fluxy,arg map<1> > >,
function<lap,arg map<1> > > cg type;

We would like to emphasize that, although our implementation uses C++,
the technique is more general. For instance a specialized compiler could collect
the information about the call graph from the code without user intervention.

To execute the multi-stage stencil, an object of type call graph type, which
is the implementation of call graph object mentioned before, can then be passed
to a do all ms, i.e., a special iteration space that process call graph types,
where the suffix ms stands for multi-stage. After some transformations to adapt

590 M. Bianco and B. Cumming

HD

Flx Fly

Lap

C
a
ll

C
a
ll

C
a
ll

C
a
ll

HD

Flx Fly

Lap

R
ead

R
e
a
d

R
e
a
d

R
ead

HD

Flx Fly

C
a
ll

C
a
ll

Lap

R
ead

R
ead

Flx Fly

Lap

C
a
ll

C
a
ll

HD

R
e
a
d

R
e
a
d

(a) (b) (c) (d)

Fig. 3. Graphical representation of the different implementations that GSCL provides
for the HD stencil. Circles are procedure/function nodes, while rectangles are node
buffers.

the call graph, do all ms computes the rectangles φ and Φ for determining
the sizes of the blocks by simulating the computation passing to the operators
test stencils to collect the proper information.
To mark nodes to compute on the fly and other to buffer, two compile time

constant parameters are given as do all ms<low, high>(...), where low and
high indicates where to turn buffering on and off, respectively. This mecha-
nism allows the programmer to specify different thresholds for different com-
putations in the same program, and incurs no runtime overhead by virtue of
being performed at compile time. Figure 3 shows different implementations for
the horizontal diffusion (HD) stencil. If the thresholds for turning on and off
the buffering define an empty interval, the implementation turns all of the func-
tional stencils into function calls to compute values on the fly (Figure 3.a). If
the thresholds include all levels then all functional stencil calls read results from
previously computed blocks (Figure 3.b). We can specify that levels 1 and 2 are
to be buffered, and have the fluxes computed on the fly as in Figure 3.c, or that
levels 0 and 1 are to be buffered, and get the behavior shown in Figure 3.d.

At this point the execution of the multi-stage by stencil computation is per-
formed through a post-order visit of the call-graph, which is inlined and has
virtually no runtime overhead. The OpenMP implementation of GSCL, first
partitions the global iteration space, then each thread applies the multi-stage
stencil on its partition.

3.3 Analysis

The versions of simpleHD obtainable by GSCL, and depicted in Figure 3, plus
the base version that does not use loop tiling, have different computation to main
memory access ratios. By analyzing the code in Figure 2, it is not difficult to
see that the a base version, that does not use f stencils, perform 18 operations
per output value. For the tiling, in this example the operation count does not
depend on Bk (no halo in the third dimension). By picking Bi = Bj = 8, we
obtain block sizes that provide good cache usage. In this case the version that
computes everything on the fly, corresponding to Figure 3.a, needs 61 operations

A Generic Strategy for Multi-stage Stencils 591

1 2 4 8
0

100

200

300

400

500

600

700

800

900

Number of threads

T
im

e
(m

s)

Nabla4 1024x1024x100 intel vs gnu

intel buffered
intel no buffered
gnu buffered
gnu not buffered
GSCL not buffered
GSCL buffered
GSCL base

(a)

1 2 4 8
1

2

3

4

5

6

7

8

Number of threads

S
ca

la
bi

lit
y

Nabla4 1024x1024x100 intel vs gnu

intel buffered
intel no buffered
gnu buffered
gnu not buffered
GSCL not buffered
GSCL buffered
GSCL base

(b)

Fig. 4. Comparison of execution times and scalability of hand-coded implementations
of ∇4 (Intel C++ and GNU C++ compilers) and GSCL (only GNU)

per output value. When we buffer all the intermediate results, Figure 3.b, we
obtain 21.8 operations per output value, which is higher that the base version
since the computation on the tiles is redundant. The cases of Figure 3.c and
Figure 3.d have respectively 28.8 and 36.5 operations per output value.

Assuming that the block sizes are small enough to keep all the intermediate
storage in cache, the characteristics of memory accesses of the GSCL implemen-
tations, other than the base, are similar thanks to the loop tiling. Counting the
number of operations is then enough to give an indication of the ratio between
computation and main memory requests, whose rate is limited by the physi-
cal bandwidth. We would expect the versions that buffer only the Laplacian
to perform better than the version the buffer the fluxes, since the computation
intensity is quite high for the latter version and because two buffers have to be
kept in cache instead of one, thus increasing the cache pressure. In general the
performance of the actual computation depends on the arity and depth of the
call three and it not easy to predict a priori which implementation is the best.

For the base version we draw a somewhat different conclusion. As the problem
size increases we should see a gap between this and the tiled versions as the
intermediate fields for the base version become to large to reside in cache.

4 Results

In this Section we show and discuss some performance results obtained with our
algorithm. We test on the cores of a single socket in this paper to avoid NUMA
effects, and with the understanding that GSCL typically has one MPI process
per NUMA domain. Testing was performed on an eight-core Intel Sandybridge
processor (Xeon E5-2670) running at 2.60GHz, without hyper-threading. Each
core of the chip has 32KB of L1 cache, with all 8 cores sharing 256KB of L2
on-chip cache and 20MB of L3 off-chip cache. Version 4.7.1 of the GNU C++
compiler and version 13.0.1 of the Intel C++ compiler were used. The benchmark

592 M. Bianco and B. Cumming

code is designed to run a test multiple times and to flush the caches at the
beginning of each iteration, so as to test the hypothesis that no data is held in
cache at the beginning the iterations. To obtain stable measurements we show
the minimum execution times of several iterations. However, we note that the
execution times exhibit little noise on average. We also instrumented the code
with PAPI counters to measure vectorization and cache behaviors.

4.1 Fourth-Order Dispersion

We first show the results for a fourth-order dispersion operator ∇4, also referred
to as nabla4, which can be implemented by twice applying a Laplacian operator
to an input field. The base version uses two separate do alls and an explicit
temporary storage area.

To validate performance, we implemented hand-tuned versions of compute-on-
the-fly and buffered implementations. They were developed in a distinct source
files, since the modularity is reduced in these versions. It should be noted that
the hand-tuned versions are not generic at all and their code is much longer
than GSCL code. It is made of several loop nests (for tiling and iterating within
blocks), plus pointer arithmetic, and specific #pragmas for the compiler1.

In Figure 4.a we show the execution times of ∇4 for different number of
threads (one per core on the chip) and a fairly large input size (in the con-
text of COSMO). The versions not labelled with “GSCL” are hand-tuned ver-
sions. The GNU compiler did not perform well when no buffering is employed in
GSCL, that is, when we compute all values needed by ∇4 on the fly. In this case
the GNU compiler is unable to exploit vectorization, and because this version
is the most computationally intense, the penalty for not using vector instruc-
tion is the highest. On the other hand this results in almost ideal scalability. As
we can see, the base implementation scales poorly due to bandwidth memory
limitations do to lack of loop-tiling (Figure 4.b).

For this input size, GSCL performs comparably to hand tuned versions. On
smaller inputs GSCL is slightly slower but still competitive (results not showed
for space constraints). The compute-on-the-fly hand-tuned version is quite fast
compared to the corresponding GNU compiled version. This is because unlike
the GNU compiler, the Intel compiler can vectorize this computation very well,
which is important for this computationally intensive case.

4.2 SimpleHD

In this section we discuss the performance of the simpleHD example we ana-
lyzed throughout the paper. simpleHD implementation corresponds to Figure 2
which allows us to test with turning on and off buffering. First, we show how
performance varies as we tune the levels for turning buffering on and off. Fig-
ure 5 shows a comparison of the base GSCL version against the four different

1 For a fair comparison of compiler generated code, explicit prefetching and intrinsics
were not used in the hand-tuned codes.

A Generic Strategy for Multi-stage Stencils 593

1 2 4 8
0

0.5

1

1.5

2

2.5

3

3.5

4
SimpleHD GSCL vs hand−tuned (64x64x60)

Number of threads

T
im

e
(m

s)

Base version
No buffering
Buffering all (0−2)
Buffering first level (0−1)
Buffering second level (1−2)
Intel buffered (1−2)

(a)

1 2 4 8
0

200

400

600

800

1000

1200

1400

1600
SimpleHD GSCL vs hand−tuned (1024x1024x100)

Number of threads

T
im

e
(m

s)

Base version
No buffering
Buffering all (0−2)
Buffering first level (0−1)
Buffering second level (1−2)
Intel buffered (1−2)

(b)

1 2 4 8
1

2

3

4

5

6

7

Number of threads

S
ca

la
bi

lit
y

SimpleHD 64x64x60 intel vs GSCL/gnu

intel buffered 1−2
GSCL not buffered
GSCL buffered 1−2
GSCL base

(c)

1 2 4 8
1

2

3

4

5

6

7

8

Number of threads

S
ca

la
bi

lit
y

SimpleHD 1024x1024x100 intel vs GSCL/gnu

intel buffered 1−2
GSCL not buffered
GSCL buffered 1−2
GSCL base

(d)

Fig. 5. Comparison of hand-tuned implementation and different thresholds to trig-
ger buffering on and off in the simpleHD example. The versions are indicated by the
thresholds used to turn on buffering. (a) and (b) shows times, (c) and (d) scaling.

combinations shown in Figure 3. When we turned off buffering at all levels the
performance was low on a single thread. This is mostly due to the inability of the
GNU compiler to employ vectorization in this compute bound case, as can be
seem in Table 1 entry for “GSCL-none”, which is the version that does not em-
ploy buffering. As the number of threads and problem size increases (Figure 5.a
and .b) the performance increases, getting better than the base version, due to
better memory use. This observation is also evident in Figure 5.c and .d, which
shows scaling with thread count for the implementations.

As expected from the analysis in Section 3.3, the performance of buffering
all the nodes (threshold from 0 to 2, dubbed 0-2) was similar to buffering the
computation of the fluxes while computing the Laplacian on the fly (threshold
from 0 to 1, so dubbed 0-1). Buffering the Laplacian and computing the fluxes
on the fly (dubbed 1-2) gave the best performance for both the small and large
meshes. As the number of threads increased, the advantage of on the fly com-
putation increased since it is less bandwidth-eager. The execution time for the

594 M. Bianco and B. Cumming

Table 1. Floating point operations issued and cache misses for different number of
for each implementation of the simpleHD stencil, 8 threads. The total is the total
operations amount of scalar floating point operations performed in each case. The last
column is the ratio between accessed to main memory with those that fail in L1 cache.

Version Scalar SSE-128 AVX-256 Tot. ops L1 misses L3 misses L1/L3 ratio

GSCL-Base 91 0 505 2111 212.174 44.97 0.212

GSCL-none 5455 0 0 5455 106.252 2.012 0.0189

GSCL-0-2 0 0 654 2616 250.056 7.203 0.0288

GSCL-0-1 0 0 1134 4536 153.379 4.235 0.0276

GSCL-1-2 0 0 785 3154 190.338 3.789 0.0199

Intel-1-2 0 426 575 3152 180.408 5.771 0.0319

base version on one thread is 8.63× 10−1s, while the “1-2” version is 4× 10−1s,
which is 2.15 times faster. On 8 threads the ratio is 3.8× 10−1/9.5× 10−2 $ 4.

In Figure 5 we also compare the performance of GSCL implementation with
Intel compiled hand-tuned version (Intel buffered 1-2). The performance of these
two equivalent algorithms are very similar, even though the source codes are com-
pletely different. This can also be seen clearly in Table 1 which shows that the
operation counts for “Intel-1-2” and “GSCL-1-2” are in the range of the noise
of the performance counters, despite the two implementations having a different
mixture of 128 bit and 256 bit vector instructions. This indicates that the GSCL
implementation does not loose performance by employing sophisticated generic
programming techniques, thus ensuring that cost of abstraction in GSCL is neg-
ligible. In the same table it can be noted that, while the base implementation
has very poor cache performance, since 21% of the accesses that fails to L1 reach
main memory. The other implementations shows ratios of 2-3%. It is interesting
to note that GSCL-none has the best ratio, since there the computation does
not use buffers at all, while GSCL-1-2 exhibits the best ration between cache
accesses and operation counts, which explains why Intel-1-2, even though with
a similar operation count, is slower than the GSCL one.

5 Conclusions

We presented a generic method to optimize complex stencil applications by ex-
pressing the computation using a functional approach to fuse otherwise distinct
loops, and buffer intermediate results for best memory hierarchy exploitation.
The implementation can be tuned by selecting for which levels to use buffer-
ing and for which to compute on the fly, thus trading computation for memory
bandwidth. We shown that we can achieve the performance of hand tuned im-
plementations of the same computations.

In future we also plan to employ auto-tuning techniques to select tile sizes
and to select which nodes to buffer. For the latter case it is possible to work at
the finer granularity of single nodes instead of levels.

A Generic Strategy for Multi-stage Stencils 595

References

1. Bandishti, V., Pananilath, I., Bondhugula, U.: Tiling stencil computations to maxi-
mize parallelism. In: Proc. of the 2012 ACM/IEEE Conference on Supercomputing,
SC 2012, pp. 40:1–40:11. IEEE Computer Society Press, Los Alamitos (2012)

2. Bianco, M., Varetto, U.: A generic library for stencil computations. CoRR,
abs/1207.1746 (2012)

3. Christen, M., Schenk, O., Cui, Y.: Patus for convenient high-performance stencils:
Evaluation in earthquake simulations. In: SC, p. 11 (2012)

4. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Rev. 51, 129–159 (2009)

5. Doms, G., Schätter, U.: A description of the nonhydrostatic regional model lm,
part i, dynamics and numerics (2002)

6. Frigo, M., Strumpen, V.: Cache oblivious stencil computations. In: Proc. of the
19th Annual International Conference on Supercomputing, ICS 2005, pp. 361–366.
ACM, New York (2005)

7. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework
for parallel multicore stencil computations. In: IPDPS, IPPS 2010, pp. 1–12 (2010)

8. Maruyama, N., Nomura, T., Sato, K., Matsuoka, S.: Physis: An implicitly parallel
programming model for stencil computations on large-scale gpu-accelerated super-
computers. In: Proc. of 2011 ACM/IEEE Conference on Supercomputing, SC 2011,
pp. 11:1–11:12. ACM, New York (2011)

9. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-d blocking opti-
mization for stencil computations on modern cpus and gpus. In: Proc. of the 2010
ACM/IEEE Conference on Supercomputing, SC 2010, pp. 1–13. IEEE Computer
Society, Washington, DC (2010)

10. Rivera, G., Tseng, C.-W.: Tiling optimizations for 3D scientific computations. In:
Proc. of the 2000 ACM/IEEE Conference on Supercomputing, SC 2000. IEEE
Computer Society, Washington, DC (2000)

11. Rojas, O., Dunham, E.M., Day, S.M., Dalguer, L.A., Castillo, J.E.: Finite dif-
ference modelling of rupture propagation with strong velocity-weakening friction.
Geophysical Journal International 179(3), 1831–1858 (2009)

12. Shimokawabe, T., Aoki, T., Takaki, T., Endo, T., Yamanaka, A., Maruyama, N.,
Nukada, A., Matsuoka, S.: Peta-scale phase-field simulation for dendritic solidifica-
tion on the tsubame 2.0 supercomputer. In: Proc. of 2011 ACM/IEEE Conference
on Supercomputing, SC 2011, pp. 3:1–3:11. ACM, New York (2011)

13. Strzodka, R., Shaheen, M., Pajak, D., Seidel, H.-P.: Cache oblivious parallelograms
in iterative stencil computations. In: Proc. of the 24th ACM International Confer-
ence on Supercomputing, ICS 2010, pp. 49–59. ACM, New York (2010)

Evaluation of OpenMP Task Scheduling
Algorithms for Large NUMA Architectures

Jérôme Clet-Ortega, Patrick Carribault, and Marc Pérache

CEA, DAM, DIF F-91297, Arpajon, France
{jerome.clet-ortega,patrick.carribault,marc.perache}@cea.fr

Abstract. Current generation of high performance computing platforms
tends to hold a large number of cores. Therefore applications have to ex-
pose a fine-grain parallelism to be more efficient. Since version 3.0, the
OpenMP standard proposes a way to express such parallelism through
tasks. Because the task scheduling strategy is implementation defined,
each runtime can have a different behavior and efficiency. Notwithstand-
ing, the hierarchical characteristic of current parallel computing
systems is rarely considered. This might come down to a loss of per-
formance on large multicore NUMA systems. This paper studies multi-
ple task scheduling algorithms with a configurable scheduler. It relies on
a topology-aware tree-based representation of the computing platform
to orchestrate the execution and the load-balacing of OpenMP tasks.
High-end users can select the task-list granularity according to the tree
structure and choose the most convenient work-stealing strategy. One
of these strategies takes into account data locality with the help of the
hierarchical view. It performs well with unbalanced codes, from BOTS
benchmarks, in comparison to Intel and GNU OpenMP runtimes on
16-core and 128-core systems.

1 Introduction

Conceiving parallel algorithms is getting more and more intricate in accordance
with the evolution of computer architectures. Multi-core and many-core systems
are widespread in the high performance computing landscape. The number of
computing units per node massively increase and the future processor design
announced by constructors, for example Intel Xeon Phi [6], continues this up-
ward trend. In order to help the parallel application programmer in getting the
best performance from the hardware, work has been conducted to integrate in-
side programming model implementations several mechanisms [1,2,3] that take
into account the memory hierarchy of the underlying node. The programming
models themselves evolve to offer features fitted with current processors struc-
ture. One could cite the adjonction of task parallelism to the OpenMP de facto
standard [4] (in the 3.0 version) that allow the programmer to express a fine-
grained parallelism. Currently, most of the OpenMP implementations support
task programming, like in GNU OpenMP [5] or Intel OpenMP [7]. Thus,
each of them relies on a particular task management system which directly af-
fects the application performance, according to the system architecture. Indeed,

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 596–607, 2014.
c© Springer International Publishing Switzerland 2014

Evaluation of OpenMP Task Scheduling Algorithms 597

C. Terboven and al. [8] point out that the topology needs to be taken into ac-
count, especially on NUMA architectures. In this article, we propose to draw a
list of parameters that control task scheduling and evaluate the different config-
urations with representative applications over a highly hierarchical system. In
this way, we characterize the models of task-based applications and we map each
category to the right OpenMP task scheduling configuration. We implemented
our work inside the MPC framework [9,21], which now includes an OpenMP
3.0 implementation.

This paper is structured as follows. The next section presents some related
work on task scheduling. Section 3 introduces the task scheduling parameters
(topology-driven task-list granularity and work-stealing policy) and the design
of our customizable OpenMP task runtime. Evaluation results of the differ-
ent combinations provided by our proposal are presented in section 4. The last
section sums up these results and deals with future work.

2 Related Work

To extract the most relevant runtime parameters shaping the performance of task
scheduling, we first focus on several up-to-date task implementations. One of the
most common impementation is the GNU OpenMP runtime (libGOMP) em-
bedded within the GNU compiler collection. For the task scheduling, it allocates
a single list per OpenMP team. Each access to this global list (creation of a de-
ferred task or regular task scheduling) is synchronized with a mutex. Therefore,
when a large amount of threads execute tasks, it quickly becomes a memory
bottleneck.

The other major implementation, Intel OpenMP Runtime Library, attaches
a task list to each OpenMP thread of every team. Each time a thread creates a
task that will not be executed immediatly, that task is placed inside the thread’s
deque (double-ended queue). A random stealing strategy between deques is set
up for load balancing purpose. This implementation design is used by several
other approaches: OpenUH, X-KAAPI and OMPi. The first one, OpenUH, is
a branch of the Open64 compiler suite providing OpenMP tasking feature [10].
Inspired by the Cilk scheduler [11], the tasks are created in a breadth-first
way and executed in depth-first manner. It also uses a cut-off (on the number
of total tasks created and the depth in the task graph) to avoid task overload
which could happen with recursive algorithm like Fibonacci sequence computing.
Based on the runtime system for data-flow parallel applications X-KAAPI [15],
LibKOMP [16] implements the OpenMP task model. Load balancing is real-
ized with a work-stealing technic, inspired by Cilk. They also propose several
extensions to the standard to deal with task data dependencies now present
in OpenMP 4.0. Nevertheless, in this article we do not deal with this part of
the standard which add some interesting constraints to task scheduling. Finally,
OMPi [17] is an OpenMP 3.0 infrastructure for C language, including a source-
to-source compiler and a runtime library. In order to implement a breadth-first
algorithm, it uses a circular deque per thread to manage deferred tasks. Load

598 J. Clet-Ortega, P. Carribault, and M. Pérache

balancing is managed with a lock-free work-stealing algorithm where each thread
thief traverses other thread queues.

The ROSE compiler infrastructure [12] exposes an approach beyond per-
thread list and random stealing. Its OpenMP task scheduling implementa-
tion [13] relies on Qthreads user-level thread runtime library [14]. It targets
multi-core systems through a hierachical scheduling strategy. They point out
a strategy which regroups threads in shepherds using one LIFO task queue
per shepherd. A work-stealing mechanism between shepherds maintains the load
balancing.

Finally, other approaches deal with task list placement and topology-driven
work-stealing. Thus, the ForestGOMP software [2] proposes work-stealing
technics according to the memory hierarchy. However this takes place when
dealing with nested parallelism and the stealing objects are threads and their
data. Beside OpenMP runtimes, StarPU [18] is well-known in HPC domain
and is based on data-flow dependencies to schedule tasks. A set of parameters is
available to define the kind of task list (FIFO, LIFO, deque) and its granularity
(one per thread or a single global one).

From this overview of task schedulers and their internal mechanisms, we decide
to build an environment in which we could play with different parameters like
the granularity of task lists and the work stealing policy.

3 Task Scheduling Control

OpenMP tasking support implies for a runtime developer to take some sig-
nificant decisions concerning the implementation, especially the type of datas-
tructure for task management (list, stack, deque, . . .) which bears directly on
application performance. Indeed, the task paradigm often leads OpenMP ap-
plications to generate a large amount of tasks. That means the runtime has
to minimize the overhead of the numerous operations linked to task managing:
creation, browsing, sharing and/or stealing, . . . Additionally, the runtime has to
control the load balancing, through a work stealing mechanism in most cases.

This section details some relevant runtime parameters shaping the perfor-
mance of task scheduling and the design of our customizable OpenMP task
scheduling engine. It gives us the possibility to evaluate multiple configurations
inspired from the existing runtimes described in the previous section. The next
section will illustrate such configurations with experimental results.

3.1 Task List Granularity

The omnipresence of multicore architectures in the High Performance Computing
landscape constrains the application and runtime developers to take care of the
underlying hardware topology. Some work on OpenMP task scheduling [2,13,8]
has shown that the difficulty comes from mapping of task execution scheme with
the memory hierarchy of the system. The first relevant parameter is therefore
the placement of task lists according to the hardware topology.

Evaluation of OpenMP Task Scheduling Algorithms 599

We rely on the hwloc software package [19], used in several parallel runtimes
and MPI implementations, to discover the entire topological structure of the
system. It allows us to build a topology tree for OpenMP teams based on a
restricted view of the original one: it ignores the levels that do not bring any
structure information (one-to-one links). Thus this tree holds all the groups of
threads defined according to the memory hierarchy, as in the ForestGOMP
runtime system with its hierarchical scheduler. For example, on a dual-socket
eight-core Intel Sandy Bridge EP, each core owns a L1 and a L2 cache memory
and the L3 cache is shared between the eight cores of a socket. Each socket
is linked with a memory bank, constituting a NUMA node. Thus, there are
eight levels but only three are relevant in the hierarchy structure. The first one
concerns the processing units, the cores, the L1 and L2 cache memories. The
second one regroups the L3 cache and the NUMA node levels. The last one is
the whole machine.

With this representation, the user can decide at which level the task lists are
allocated and accessed by the OpenMP threads. This parameter allows to check
the impact of access contention to the list(s) and data locality, noticed as a main
challenge [8]. Thus we extend the shepherds concept of S.L. Olivier and al. [13]
to the whole hierarchical levels of a computing node.

3.2 Stealing Strategies

The second parameter identified in Section 2 is the stealing strategy. Indeed, since
the development of Cilk [11], the work-stealing algorithm is the most studied
one for dynamic load balancing purpose. It provides pretty good performance
on average and is implemented inside a large majority of task schedulers. When
it comes to starvation for a thread, it becomes a thief looking for work inside
other task pools. Most of the time the victim is randomly chosen: it often avoids
contention for multiple thieves at the same time and is a quick decision algorithm
which matters at such critical point. However, this strategy does not take into
account the memory position of the stolen data according to the binding of the
thief thread. On a SMT system or a small scale system, that does not really
matter. When executing this algorithm on a large multiprocessor and multicore
machine, the impact over the performance may not be negligible anymore. So,
for this second parameter, we designed several policies for the selection of the
victim. This can be divided into three categories.

The first category of stealing strategy is based on random-victim choice. We
can extract two approaches: Random and Random Order. The first one looks
for a randomly-chosen victim and the second one generates a random-ordered
sequence of all task lists to look for. The second category exploits the hierarchical
aspect of the underlying topology. The Hierarchical strategy starts from the
closest list in the hierarchical order determined with the physical architecture
structure to choose a list to steal. For example, in case of one task list per thread,
a thread whose list is empty will start to steal a task from the lists of threads
running on the cores of the same processor, before looking further. Another
hierarchical approach is called Round Robin: it browses the lists for a task to

600 J. Clet-Ortega, P. Carribault, and M. Pérache

steal according to a static global topology ordering. A starving thread would
look inside the first neighbor of its own list, then the second, and so on. The
first neighbor is likely to be close according to the hardware topology but may
not be the closest one. The advantage of this approach is the low overhead to
choose the victim. The final category is based on a per-list statistic: the Producer
algorithm selects the list which contains the largest number of tasks enqueued
and the Producer Order strategy builds a sequence of task lists according to this
indicator.

3.3 Implementation

To evaluate the impact of the 2 parameters (task-list granularity and stealing
strategy), we implemented a customizable OpenMP task scheduling engine.
This work has been realized inside the unified parallel-runtime framework called
MPC [9], by extending the current OpenMP library to conform to the OpenMP
3.0 standard. The MPCOMP library uses a tree-based representation of the
computing platform to schedule OpenMP threads. We relied on this tree to
develop our task scheduling engine. Task lists are allocated on the appropriate
NUMA node thanks to this structure and stealing strategies functions use it to
retrieve tasks to execute. The compilation step, which turns OpenMP directives
into runtime calls, is performed by a patched version of the GNU C compiler.
Finally, we could control at user level the behavior of the scheduler by specifying
the number of task lists and choosing the work stealing policy.

4 Evaluation

This section reports the results of our experiments on the BOTS benchmarks
suite to evaluate our different strategies in comparison to two other OpenMP
implementations: the Intel OpenMP Runtime Library coming with version
13.1.3 of the Intel C compiler and the GNU OpenMP library with the version
4.7 of the GNU C compiler.

4.1 Experiments Platforms

Our experiments were conducted on a 128-core node of the Curie supercom-
puter (GENCI) and composed of 16 eight-core Intel Nehalem-EX processors
at 2.27 GHz and associated to 512 GB of memory (32 GB per NUMA node).
This structure comes from the association of 4 motherboards inter-connected
through a Bull network. Each processor exposes three levels of cache memory:
32 KB of L1 and 256 KB of L2 cache owned by each core and 24 MB of L3
shared by eight cores.

In our implementation in MPC, the hierarchical representation of the sys-
tem, used for OpenMP thread scheduling, is a four-level tree. The root (level 0)
corresponds to the whole computational node, the next level (1) to the mother-
board, the next one (level 2) to the socket and L3 cache memory and the leaves

Evaluation of OpenMP Task Scheduling Algorithms 601

(level 3) represent the cores with their L1 and L2 cache memories. That means
the task-list granularity (first parameter) could be defined among four values: a
single one for whole system (1 list), one list per motherboard (4 lists), one list
per socket (16 lists) and one list per core (128 lists).

4.2 Results

The results come from the execution of the Barcelona OpenMP Tasks Suite
(BOTS). These benchmarks, inspired from real-life applications, evaluate the
performance of OpenMP tasks runtimes. Several versions of each benchmark are
available and described in [20]. The next array presents the main characteristics
of those benchmarks we took interested in. Thus, some kernels use a single thread
to produce all the tasks (with a single construct) whereas for others, all threads
generate a certain amount of tasks. Three of them use tasks that may generate
tasks (nesting). Finally, only the SparseLU benchmark exhibits an irregular
parallelism.

Application Creation pattern Task type Load-balancing #Tasks

Alignment Single & Multiple Final Regular ≈ 50K
FFT Multiple Nested Regular ≈ 10M
Fibonacci Multiple Nested Regular ≈ 860M
Sort Single Nested Regular ≈ 2M
Sparse LU Single & Multiple Final Irregular ≈ 40K

One has to specify that each compiler provides different sequential perfor-
mance. For example, the modified version of libGOMP used for MPCOMP
is 4.4 and the version used for comparisons is 4.7. Because of this difference,
the MPCOMP version is on average 30-35 % less effective than libGOMP on
serial execution of these benchmarks. There is a similar impact with the Intel
compiler which generates most of the time a faster serial code on the target
Intel-based architecture.

4.3 Alignment

Alignment is an application where the data locality really matters. Indeed, the
quantity of write operations to non-private memory is very low as presented in
[20]. The great majority of stores are to the private memory of the task.

Figures 1 and 2 present the speed-up obtained on 128 cores with 128 OpenMP
threads for two versions: multiple producers and single producer. Regarding the
first parameter, the task scheduling with a single global list, as for libGOMP,
is the worst solution whereas giving one list per thread, like Intel OpenMP,
seems to be more efficient. For the second parameter (work-stealing approaches),
all strategies deliver more or less the same performance. Gaps between strategies
execution time are just a bit less perceptible with the single construct version.

602 J. Clet-Ortega, P. Carribault, and M. Pérache

Intel GOMP Rand. Rand. Ord. Hierar. Rou. Rob. Prod. Prod. Ord.

80

90

100

110

120

Sp
ee

du
p

1 list 4 lists 16 lists 128 lists

Fig. 1. Speedup for Alignment multiple producer benchmark with 128 threads

Intel GOMP Rand. Rand. Ord. Hierar. Rou. Rob. Prod. Prod. Ord.

20

40

60

80

100

120

Sp
ee

du
p

1 list 4 lists 16 lists 128 lists

Fig. 2. Speedup for Alignment single producer benchmark with 128 threads

Overall, a hierarchical strategy seem to give the best performance (either hier-
archical or round robin).

Of interest, for both single and multiple producers versions, MPCOMP per-
forms worse than Intel OpenMP and even than libGOMP in serial: the run
takes 2,791 seconds for MPCOMP whereas Intel OpenMP performs it in
1,312 seconds and libGOMP in 2,105 seconds. The performance follow the same
trend with 8, 16, 32, 64 threads. When it reaches the number of 128 threads,
MPCOMP distinguishes itself and outperforms libGOMP. For a well balanced
code, like the multiple producer version, Intel OpenMP still reaches better per-
formance. However with the single construct, the benchmark is unbalanced and
MPCOMP outperforms Intel OpenMP. The best results comes from the Hi-
erarchical stealing policy, always with one task list per thread. This is consistent
with the fact that hierarchical strategy favors local data accesses for the benefit
of this benchmark.

Evaluation of OpenMP Task Scheduling Algorithms 603

4.4 FFT

The FFT benchmark computes the Fast Fourier Transform of a vector of n com-
plex values. Intel OpenMP gave the best results in this benchmark even if the
speedup is not really significant (10 on a 128 cores). For its own part, libGOMP
does not scale and performs really worse than Intel OpenMP (approximately
50 times longer). Among several policies given by MPCOMP, the ones using a
single list per core show the best performance, leading to an execution time 10
times faster but still 5 times longer than Intel OpenMP. Moreover all other
policies deliver a consequent deterioration of the execution time. One may no-
tice that, with 32 threads, the best approach uses one list per socket and the
producer strategy for work-stealing.

There are a really large number of tasks to manage for the runtime. In or-
der to limit the impact of the overhead for managing so many elements, GCC
use a static threshold on the number of tasks generated at one time.1 We also
choose this solution. However the parallelism of the application is limited by
this threshold. This may explain the performance difference between the Intel
runtime and the libGOMP and MPCOMP implementations.

4.5 Fibonacci

This application benchmark generates a large number of fine grained OpenMP
task to compute the nth Fibonacci number thanks to a recursive algorithm. For
our run we use the parameter n = 42.

Intel GOMP Rand. Rand. Ord. Hierar. Rou. Rob. Prod. Prod. Ord.

0

10

20

30

40

Sp
ee

du
p

1 list 4 lists 16 lists 128 lists

Fig. 3. Speedup for Fibonacci benchmark with 128 threads

Figure 3 shows the results for this benchmark. Among all strategies, only
the ones with a low overhead like Random, Round Robin and Producer , deliver
a good speedup, even better than Intel OpenMP. Indeed, in this Fibonacci
1 Actually, the threshold is defined to 64 times the number of threads.

604 J. Clet-Ortega, P. Carribault, and M. Pérache

algorithm, the duration of executing a task code is so tiny that the steal decision
step becomes more critical. A way to reduce the overhead might be to steal more
than one task. It would nevertheless require a study to determine the amount
of tasks to steal, like in libKOMP or in the OpenMP runtime developed over
the Rose compiler. As for libGOMP, there are so many accesses to the global
list during the whole run that it didn’t finished in a reasonnable duration.

4.6 Sort

The Sort benchmark sorts a random permutation of n numbers with a fast par-
allel sorting variation of the classical mergesort. As seen in Figure 4, the best
speed-up for MPCOMP corresponds to the one list per thread granularity (first
parameter). Regarding the second parameter (stealing strategy), the Random
policy is the most performant. This can be explained by the fact that this ap-
plication is well balanced with nested tasks. Therefore, the strategy with the
lowest overhead performs better. This is confirmed by the Intel OpenMP per-
formance which goes a little further probably because of some additional runtime
optimizations.

4.7 SparseLU

The Sparse LU application computes a LU matrix factorization over sparse
matrices. We focus on the multiple producer version. A group of submatrices is
assigned to each thread and, due to the sparseness of the matrix, some of them
may not be allocated which explains the unbalance of the algorithm. Intel
OpenMP performs really well here with an execution time of 25.52 seconds
with 128 threads whereas libGOMP does not finish in a reasonable time. As for
MPCOMP strategies, the one using one list per motherboard and a hierarchical
stealing is the best approach with a speedup equal to 27 corresponding to a run

Intel GOMP Rand. Rand. Ord. Hierar. Rou. Rob. Prod. Prod. Ord.

1

2

3

4

5

Sp
ee

du
p

1 list 4 lists 16 lists 128 lists

Fig. 4. Speedup for Sort benchmark with 128 threads

Evaluation of OpenMP Task Scheduling Algorithms 605

of 32.78 seconds. Even though the speedup of Intel OpenMP is far better
(near 110), one has to notice that it comes from a long serial execution time
for Intel OpenMP, equal to 2 993 seconds, in comparison to libGOMP with
1 005 seconds or to MPCOMP with 985 seconds.

Thus, a work-stealing strategy that takes care of data locality is the recom-
mended one. Indeed, this benchmark presents a large percentage of accesses to
shared data. Moreover, unlike the previous algorithms which employ nesting
task creation, those sharings do not happen between tasks and their children.
So there is less likely for an OpenMP thread to get tasks that will work on the
same data.

4.8 Analysis

This experimental section shows that the two parameters highlighted in this
paper for task scheduling are relevant. For the first parameter (task-list gran-
ularity), one list per core seems to be the best suitable configuration in most
cases. Even if this result might be surprising on such manycore architecture (2
NUMA levels and 16 sockets), allocating one specific list per OpenMP thread in
the team allows to reach decent performance. However, this study does not fo-
cus on memory consumption, but this aspect might become important on future
generations of manycore architectures. In such situation, the solution of one list
per thread may not be possible anymore depending on the amount of memory
used by the application data.

Regarding the second parameter (work-stealing strategy), the performance
really depends on the characteristics of the benchmark. Even if our implemen-
tation of each strategy can be optimized, the overhead to decide the target list
to steal is crucial. For example, in the Fibonacci benchmark, each task is tiny.
It explains why a low-overhead strategy, like random, performs well. Neverthe-
less, the round robin approach is able to reach high performance in such cases
because it allows an approximate hierarchical traversal with a lower overhead.
For benchmarks with tasks containing a larger amount of work, strategies with a
higher overhead (hierarchical and producer) can be considered. The hierarchical
approach allows to select the target list with respect to the data locality: this is
an important parameters on such manycore architectures.

5 Conclusion and Future Work

High-Performance Computing platforms are getting embarassingly parallel for
application developers. They need to split up their algorithm structure to of-
fer enough parallel work to the massive number of cores forming the current
and future architectures. The evolution of the parallel programming models,
like OpenMP with the task support, allows them to express their problem in a
finer-grained parallelism. Nevertheless, the hierarchical structure of the under-
lying system is barely considered in most of the OpenMP task schedulers. On
large NUMA nodes it can be really penalizing due to the overhead of distant

606 J. Clet-Ortega, P. Carribault, and M. Pérache

memory accesses over local ones. We proposed in this paper an evaluation of
two key parameters for task scheduling. We designed a configurable task sched-
uler which allows us to control: (i) the granularity of task list, according to
the hardware topology, and (ii) the work-stealing strategy. Thus, we compared
those technic combinations through the execution of Barcelona OpenMP Task
Suite. We noticed that the approach chosen by the Intel OpenMP Runtime
Library is suitable for the first parameter (list granularity) and sometimes for
the second too. However the design adopted by LibGOMP cannot scale on a
large NUMA node for several applications. Finally, we show that hierarchical
work-stealing strategies can lead to better performance in specific cases.

For future work, this study would benefit from using the same compiler to
avoid performance difference for the computational part of the applications.
Thus, we are actually working on the support of both Intel C compiler and
recent GCC compiler in the MPC framework for further fair comparisons. Re-
garding the current key parameters, our approaches may be optimized and tested
on more applications to derive a static/dynamic cost model to choose the right
strategy. Finally, some new parameters could be taken into account to refine this
study. For example, the cut-off value can be used to artificially stop the paral-
lelism extraction and reduce the runtime overhead. The memory consumption is
another aspect that could be of interest for a task runtime. Indeed, this metric
may become more important on next-generation of manycore processors (e.g.,
Intel Xeon Phi) with an hybrid programming model like MPI+OpenMP.

References

1. Ma, T., Bosilca, G., Bouteiller, A., Goglin, B., Squyres, J.M., Dongarra, J.J.: Kernel
Assisted Collective Intra-node MPI Communication among Multi-Core and Many-
Core CPUs. In: International Conference on Parallel Processing (ICPP), pp. 532–
541 (2011)

2. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.-A., Namyst, R.: Forest-
GOMP: An efficient OpenMP environment for NUMA architectures. International
Journal on Parallel Programming, 418–439 (2010)

3. Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., Chapman, B.: High
performance computing using MPI and OpenMP on multi-core parallel systems.
Parallel Computing, 562–575 (2011)

4. The OpenMP API specification for parallel programming, http://www.openmp.org
5. An OpenMP implementation for GCC, http://gcc.gnu.org/projects/gomp
6. Intel Xeon Phi Coprocessor - The Architecture. http://software.intel.com/

en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
7. Intel OpenMP Runtime Library, https://www.openmprtl.org
8. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Assessing OpenMP Tasking Im-

plementations on NUMA Architectures. In: Chapman, B.M., Massaioli, F., Müller,
M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 182–195. Springer,
Heidelberg (2012)

9. Pérache, M., Jourdren, H., Namyst, R.: MPC: A unified parallel runtime for clusters
of NUMA machines. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 78–88. Springer, Heidelberg (2008)

http://www.openmp.org
http://gcc.gnu.org/projects/gomp
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://www.openmprtl.org

Evaluation of OpenMP Task Scheduling Algorithms 607

10. Addison, C., LaGrone, J., Huang, L., Chapman, B.: OpenMP 3.0 tasking imple-
mentation in OpenUH. Open64 Workshop at CGO (2009)

11. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An Efficient Multithreaded Runtime System. Journal of Parallel and
Distributed Computing, 207–216 (1995)

12. Liao, C., Quinlan, D.J., Panas, T., de Supinski, B.R.: A ROSE-Based OpenMP
3.0 research compiler supporting multiple runtime libraries. In: Sato, M., Hanawa,
T., Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS,
vol. 6132, pp. 15–28. Springer, Heidelberg (2010)

13. Olivier, S., Porterfield, A., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP task
scheduling strategies for multicore NUMA systems. International Journal of High
Performance Computing Applications, 110–124 (2012)

14. Wheeler, K.B., Murphy, R.C., Thain, D.: Qthreads: An API for programming with
millions of lightweight threads. In: IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2008, pp. 1–8 (2008)

15. Gautier, T., Ferreira Lima, J.V., Maillard, N., Raffin, B.: XKaapi: A RuntimeSystem
for Data-Flow Task Programming on Heterogeneous Architectures. In: IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pp. 1299–1308
(2013)

16. Broquedis, F., Gautier, T., Danjean, V.: libKOMP, an Efficient OpenMP Run-
time System for Both Fork-Join and Data Flow Paradigms. In: Chapman, B.M.,
Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312,
pp. 102–115. Springer, Heidelberg (2012)

17. Agathos, S.N., Kallimanis, N.D., Dimakopoulos, V.V.: Speeding up OpenMP task-
ing. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012.
LNCS, vol. 7484, pp. 650–661. Springer, Heidelberg (2012)

18. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: A unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009)

19. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G.,
Thibault, S., Namyst, R.: Hwloc: a Generic Framework for Managing Hardware
Affinities in HPC Applications. In: The 18th Euromicro International Conference
on Parallel, Distributed and Network-Based Computing, PDP, pp. 180–186 (2010)

20. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in OpenMP. In: Proceedings of the 2009 International Conference on Parallel Pro-
cessing, pp. 124–131 (2009)

21. Mahéo, A., Koliaï, S., Carribault, P., Pérache, M., Jalby, W.: Adaptive OpenMP
for Large NUMA Nodes. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro,
M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 254–257. Springer, Heidelberg (2012)

Power-Aware Replica Placement in Tree

Networks with Multiple Servers per Client

Guillaume Aupy1, Anne Benoit1, Matthieu Journault1, and Yves Robert1,2

1 École Normale Supérieure de Lyon, CNRS & INRIA, France
{guillaume.aupy,anne.benoit,yves.robert}@ens-lyon.fr

2 University of Tennessee Knoxville, USA

Abstract. In this paper, we revisit the well-studied problem of replica
placement in tree networks. Rather than minimizing the number of servers
needed to serve all client requests, we aim at minimizing the total power
consumed by these servers. In addition, we use the most general (and
powerful) server assignment policy, where the requests of a client can be
served by multiple servers located in the (unique) path from this client to
the root of the tree. We consider multi-modal servers that can operate at
a set of discrete speeds, using the dynamic voltage and frequency scaling
(DVFS) technique. The optimization problem is to determine an opti-
mal location of the servers in the tree, as well as the speed at which each
server is operated. A major result is the NP-completeness of this prob-
lem, to be contrasted with the minimization of the number of servers,
which has polynomial complexity. Another important contribution is the
formulation of a Mixed Integer Linear Program (MILP) for the problem,
together with the design of several polynomial-time heuristics. We assess
the efficiency of these heuristics by simulation. For mid-size instances
(up to 30 nodes in the tree), we evaluate their absolute performance
by comparison with the optimal solution (obtained via the MILP). The
most efficient heuristics provide satisfactory results, within 20% of the
optimal solution.

1 Introduction

In this paper, we revisit the well-studied problem of replica placement in tree
networks. Replica placement in tree networks is an important problem [8,20,3],
with a broad spectrum of applications, such as electronic, ISP, or VOD service
delivery (see [12,8,14] and additional references in [20]). The problem is the fol-
lowing: one is given a tree-shaped network where clients are periodically issuing
requests to be satisfied by servers. The clients are known (both their position
in the tree and their number of requests per time unit), while the number and
location of the replicas (also called servers) are to be determined. Clients are
leaves of the tree, and requests can be served by one or several internal nodes.
Note that the distribution tree (clients and nodes) is fixed in the approach.

Initially, there is no replica; when a node is equipped with a replica, it can
process a number of requests, up to its capacity limit. Nodes equipped with a

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 608–619, 2014.
c© Springer International Publishing Switzerland 2014

Power-Aware Replica Placement in Tree Networks 609

replica, also called servers, can only serve clients located in their subtree (so
that the root, if equipped with a replica, can serve any client); this restriction
is usually adopted to enforce the hierarchical nature of the target application
platforms, where a node has knowledge only of its parent and children in the
tree. More precisely, there are three classical policies to serve the requests of a
client [3]: (i) Closest : All requests of a client must be served by the first server
located in the path from this client to the root; (ii) Single: All requests of a
client must be served by a single server, located anywhere in the path from this
client to the root; and (iii) Multiple: The requests of a client can be served by
several servers, all located in the path from this client to the root. For instance
in the Multiple policy, half the requests of a client can be served by one server,
and the other half by another server located higher in this path. In this paper,
we study the Multiple policy, because it is the most flexible, hence it will lead
to the most efficient solution in terms of both the number of servers and total
consumed power.

The classical optimization objective in the literature is the number of servers
needed to serve all requests. However, minimizing the total power consumed by
the servers has recently become a very important objective, both for economic
and environmental reasons [16]. To help reduce power dissipation, multi-modal
servers are used: each server has a discrete number of predefined speeds, which
correspond to different voltages that the server can be subjected to. State-of-
the-art processors can only be operated with a restricted number of voltage
levels, hence with a few speeds [13,11]. The power consumption is the sum of a
static part (the cost for a server to be on and operated) and a dynamic part.
This dynamic part is a strictly convex function of the server speed, so that
the execution of a given amount of work costs more power if a server runs at
a higher speed [11]. More precisely, a server operated at speed s dissipates s3

watts [6,5,18]. Faster speeds allow servers to handle more requests per time unit,
but at the price of a much higher (supra-linear) power consumption.

A major contribution of this paper is to show that minimizing power con-
sumption is an NP-complete problem, even if the servers are already placed
in the network (and without static power). This is to be contrasted with the
polynomial complexity of minimizing the number or servers [3]. Another major
contribution is the design of a set of heuristics to minimize power consumption.
These heuristics work in two steps: (i) server placement and (ii) request assign-
ment. The placement step relies on an interesting theoretical result: given a fixed
set of servers that should all be used, and assuming continuous speeds, it is pos-
sible to optimally assign the requests to these servers in polynomial time. We can
therefore easily derive a greedy algorithm to place the servers in the continuous
case, because for a given placement, we can directly compute the corresponding
optimal power consumption. Of course, assuming continuous speeds is not re-
alistic, but it is a handy simplification of the problem: with continuous speeds,
once requests are assigned to servers, each server can operate just at the right
speed, namely the sum of its requests, so that selecting the server speeds is im-
mediate. With discrete speeds, the problem is more challenging and may well

610 G. Aupy et al.

lead to re-assign the requests, for a given placement of servers. To see this, start
from the solution with continuous speeds (including the greedy placement and
optimal request assignment). Let r be the number of requests processed by a
given server N in the solution with continuous speeds. With discrete speeds, we
have to use the smallest speed s that is larger than r, thereby losing a lot of
power if the difference s − r is large. If it is the case, we can try and re-assign
some requests to another server N ′ located upper in the path from N to the
tree root. There would then remain only s′ requests to be served by N , where s′

is the largest speed that is smaller than r: this saves power locally by avoiding
the large s − r gap, but we have to re-assign r − s′ requests to another server,
and this has a cost that should be balanced with the local gain. Such trade-off
decisions are exactly those taken in the request assignment step of the heuristics.

To the best of our knowledge, this paper is the first to propose heuristics
for power minimization with multiple servers, hence we cannot use any heuristic
from the literature as reference. However, we have derived a Mixed Integer Linear
Program (MILP) to compute the optimal solution to the power minimization
problem. Using this linear program has (potentially) exponential cost, but it
enables us to assess the absolute performance of the heuristics, at least for small-
size problems.

Related Work. Many papers considering the replica placement problem deal
with general graphs, while we focus in this work on tree networks. In the problem
with a general graph network, it is already difficult to decide which spanning
tree to use, in order to optimize some global objective function. A survey of work
targeting performance issues can be found in [15]. Recently, some work start to
tackle energy-related problems. For instance, in [19], the authors discuss thermal
and power-aware task scheduling and data placement heuristics, in the context
of a Hadoop system. All problems are NP-hard, and there is no tree structure
but rather a set of racks, and a set of data nodes per rack.

For tree networks, a large effort has been spent to optimize the performance
of replica placements, assuming that the spanning tree was given, or that the
network had a tree structure initially. Most work has focused on the Closest
policy, where a client has to be served by the closest server on the path towards
the root of the tree, see for instance [8,14]. Kalpakis et al. [12] studied a variant
with bi-directional links, and therefore the tree structure may not be respected
anymore, and a client may be served by a node that is not its ancestor in the
tree. While the problem with a tree structure has polynomial complexity, the
bi-directional problem becomes NP-complete.

Following this line of work, we had investigated in our previous work [4]
the complexity of the power-aware replica placement problem with the Closest
policy, and proved that the problem becomes NP-complete when the objective
is to minimize the total power consumption. We considered servers with several
distinct possible speeds, and a server operating at a given speed consumes a
power composed of a static part and a dynamic part proportional to the cube
of the speed. We keep the same model in this paper, because it is a classical

Power-Aware Replica Placement in Tree Networks 611

model extensively used when considering dynamic voltage and frequency scaling
(DVFS) technique [6,5,18].

The Multiple policy is more flexible than Closest because it loosens place-
ment rules: the requests of a client can be processed by several servers located
anywhere in the path from the client to the root. As for the Closest policy, the
problem of minimizing the cost of the replica placement can be solved in polyno-
mial time [3]. However, we are not aware of any other work aiming at optimizing
the power consumption on tree networks for this Multiple policy.

Paper Organization. The rest of the paper is organized as follows. Section 2 is
devoted to a precise statement of the framework. Section 3 assesses the complex-
ity of the power minimization problem, through an intricate NP-completeness
proof. This section also provides the MILP to compute the optimal solution.
Section 4 introduces several heuristics to solve the problem. The placement step
is an incremental greedy procedure, whose evaluation is based on the optimal
solution for request assignment with fixed servers, when assuming continuous
speeds. Section 5 reports experimental results and comparisons of the heuristics,
together with their absolute performance evaluation: the distance to the opti-
mal solution is computed through the linear program for instances with up to
30 servers.

2 Framework

Replica Placement Problem. We consider a distribution tree whose nodes
are partitioned into a set of clients C, and a set of N nodes, N . The clients are
leaf nodes of the tree, while N is the set of internal nodes. Each client i ∈ C (leaf
of the tree) is sending ri requests per time unit to a database object. Internal
nodes equipped with a replica (also called servers) can process requests from
clients in their subtree. If a server j ∈ N is operated at speed sj , then it can
process up to sj requests per time unit. Both the ri’s and the sj ’s are assumed
to take rational values. Note that it would be easy to allow client-nodes that
play both the rule of a client and of a node (possibly a server), by dividing such
a node into an internal node and a leaf in the tree.

For each client i ∈ C and each node j ∈ N , ri,j is the number of requests from
client i processed by server j. We must have

∑
j∈N ri,j = ri for all i ∈ C, i.e.,

all requests are processed. Furthermore, a server cannot process more requests
than its assigned speed, i.e., wj =

∑
i∈C ri,j ≤ sj for all j ∈ N , where wj is the

load of server j. The set of replicas is defined as R = {j ∈ N| ∃i ∈ C , ri,j > 0} .
Power Consumption Model. We (realistically) consider discrete speeds.
Servers may operate only at a set {s1, . . . , sK} of different (rational) speeds,
depending upon the number of requests that they have to process per time unit.
We assume that 0 ≤ s1 ≤ · · · ≤ sK , and therefore no server can handle more than
sK requests. A server with a load w will therefore operate at speed sk, where
sk−1 < w ≤ sk (letting s0 = −1 for the limit case). The power consumption of
a server j ∈ R operated at speed s(j) obeys the classical model,

P(j) = Pstatic + s(j)3,

612 G. Aupy et al.

and the total power consumption P(R) of the solution is the sum of the power
consumption of all server nodes:

P(R) =
∑
j∈R

P(j) =
∑
j∈R

(Pstatic + s(j)3) = |R| × Pstatic +
∑
j∈R

s(j)3, (1)

where |R| is the total number of servers in the solution.

Optimization Problems. The main optimization problem is the Discrete

problem: given a distribution tree (with a number of requests per client), de-
cide where to place the servers, and how to distribute client requests among
them (which can also be seen as assigning the speed of each server), in order to
minimize the total power consumption.

We also consider the sub-problem where the servers are already placed in
the tree, Discrete-Placed. The goal is then only to decide how to distribute
requests among servers, hence at which speed to operate each server, in order to
minimize total power consumption.

3 Complexity Results

Theorem 1. The Discrete and Discrete-Placed problems are NP-complete,
even with Pstatic = 0.

We provide a sketch of the proof here; the detailed proof is very long and
technical and can be found in the companion research report [1]. The reduction
comes from 2-Partition [10], and the tree consists of a root with n children. There
is a server on each node, hence the proof works for both problems. Each child
node has a number of requests that is very different from the other children, but
depends on the ai from 2-Partition. The server has therefore the choice between
only two speeds among those belonging to the set of possible speeds: either it
takes the lower speed and let ai requests go up in the tree (but the root node
can only accommodate

∑
ai/2 requests), or it takes the upper speed but the loss

in power also is linear in terms of the ai. The problem then amounts to select
which servers run at their lower speed, and it is equivalent to 2-Partition.

Theorem 2. The following Mixed Integer Linear Program (MILP) character-
izes the Discrete problem, where the unknown variables are the xj,k’s (Boolean
variables) and the yi,j’s (rational variables), for j ∈ N , 1 ≤ k ≤ K and i ∈ C:

Minimize
∑

j∈N
∑

1≤k≤K xj,k(Pstatic + s3k) subject to

(i)
∑

j∈N yi,j = ri, i ∈ C
(ii)

∑
1≤k≤K xj,k ≤ 1, j ∈ N

(iii)
∑

i∈C yi,j ≤
∑

1≤k≤K xj,ksk, j ∈ N

(2)

Proof. The constants are the ri’s for i ∈ C, and the sk’s for 1 ≤ k ≤ K, and we
consider the following variables:

Power-Aware Replica Placement in Tree Networks 613

– xj,k is a boolean variable equal to 1 if j is a server operated at speed sk, for
j ∈ N and 1 ≤ k ≤ K; xj,k = 0 otherwise.

– yi,j is a rational variable equal to ri,j , the number of requests of client i ∈ C
processed by server j ∈ N ; if j is not an ancestor of i in the tree, we directly
set yi,j = 0.

Then the constraints are:
– For all i ∈ C, all requests of client i are processed: ∀i ∈ C,

∑
j∈N yi,j = ri;

– Each server is assigned at most one speed: ∀j ∈ N ,
∑

1≤k≤K xj,k ≤ 1; note
that a node j is equipped with a server if and only if

∑
1≤k≤K xj,k = 1;

– The processing capacity of any server cannot be exceeded: ∀j ∈ N ,
∑

i∈C yi,j
≤
∑

1≤k≤K xj,ksk.

Finally, we minimize the total power consumption. Overall, there are |C|+ 2|N |
constraints and |N | × (|K|+ |C|) variables in this MILP.

4 Heuristics

In this section, we propose some polynomial-time heuristics for the Discrete

problem. We start by outlining the general principles that have guided their
design before exposing the details for each heuristic.

As already mentioned in Section 1, the heuristics work in two steps: (i) server
placement and (ii) request assignment. The placement step of the heuristics relies
on the following result, whose proof is long and technical (see the companion
research report [1] for full details):

Proposition 1. Given a fixed set of servers deployed on a tree of size t =
|C|+ |N | and assuming continuous speeds, the optimal assignment Alg-Cont-

Placed of requests to servers that uses all these servers and minimizes power
consumption can be determined in time O(t2).

The placement step works incrementally: to compute a solution with k servers,
the heuristic starts from a solution with k−1 servers, and then greedily tests the
addition of one additional server. It uses Proposition 1 to compute the optimal
assignment of requests with this additional server, computes the corresponding
power, and returns the best solution over all possible choices for the additional
server. This placement step assumes continuous speeds, hence the loads assigned
by Alg-Cont-Placed to each server do not take the set of actual speeds into
account. The second step of the heuristics involves determining a discrete speed
for each server, which usually leads to re-assigning some requests, as explained
in Section 1. While the first step of the heuristics is common to all heuristics, we
outline below three different methods to perform this request assignment step.

We provide three different heuristics to determine the actual speed of each
server. In the first heuristic, Greedy, we assign the smallest speed equal to or
greater than the load given by Alg-Cont-Placed to each server. While simple,

Greedy provides a
(
1 + maxi(si+1−si)

smin

)3
-approximation for the problem with

614 G. Aupy et al.

the placement given by Alg-Cont-Placed, where smin is the smallest speed
available (smin = s1). Finally, we point out that if there is no speed greater than
the value determined by Alg-Cont-Placed for some server, then there does
not exist a solution for this (given) placement (see [1] for further details).

The next two heuristics, Speed and Excess, improve the Greedy heuristic
by trying to modify the load of each server, via request re-assignment. The goal
is to decrease the speed of some servers. More precisely, in the procedure, which
is called Equilibrate and detailed in [1], if a server is not loaded up to its full
capacity (meaning its load is equal to its capacity), then the heuristics take some
load out of its children until this server reaches its capacity. The capacity of a
server is defined as the maximum between its actual speed and the maximum
speed of its children, hence we transfer even more load to this server if one of its
children has a higher speed (and thus we should be able to reduce the speed of at
least one child). This may happen if we have decreased the speed of the current
node in a previous step of the algorithm, but not the speed of its children.

The main difference between the two heuristics Speed and Excess lies in the
selection of the children whose load is taken out:
– In the Speed heuristic, we favor the children whose servers have the largest

speeds. To break ties if two children of a given server have the same speed,
we favor the one with the smallest load. The idea is that the gain in power
will be more important if we can decrease the execution speed of a server
with a large speed (favor large speeds); and if there is a tie, there is more
chance to decrease the speed of a server if its load is small.

– On the contrary, in the Excess heuristic, we favor children with small excess.
The excess of a server is defined as the difference between its load and the
largest speed below it. The idea is that we will be able to decrease the speed
of more servers if we favor small excess. Finally, when two children have the
same excess, we favor the one with the largest load.

Recall that K is the number of speeds and t = |C| + |N |. The complexity
of the Greedy heuristic is O(t2), the most costly part being the call to Alg-

Cont-Placed. For the Equilibrate procedure, and hence for the Speed and
Excess heuristics, the complexity becomes O(Kt2 log t) [1].

5 Simulations

In this section, we report extensive simulations to assess the performance of the
heuristics presented in Section 4. All the source code, together with scripts to
obtain additional results that were omitted due to lack of space, are publicly
available [2]. The heuristics have been coded using the programming language
OCaml, while the MILP computing the optimal solution is generated using the
C language and solved using IBM Cplex [9].

In order to evaluate the heuristics, we have generated more than 100 random
trees for each simulation. To simplify the generation, each internal node in the
tree has a unique client leaf, which is assigned a random rational number of
requests between 0 and 100. For processor speeds, unless stated otherwise, we use

Power-Aware Replica Placement in Tree Networks 615

five speeds spaced as those of the Intel Xscale, following [7,17]: we suppose that
the largest speed can process 150 requests, and the ratio of the different speeds
to the largest speed is then: (0.15, 0.4, 0.6, 0.8, 1). In [7,17], the static power is
equal to the power consumed in the lowest speed, which here corresponds to
(0.15 ∗ 150)3 ≈ 11, 000.

We have conducted four different sets of simulations to assess the impact of
the number of nodes, of static power, of the number of available speeds and of
the total load of requests. Note that for the first and the last sets of simulations,
additional plots with more values of static power can be found in the companion
research report [1].

Impact of the Number of Nodes. In the first set of simulations, we study
the impact of the number of nodes on power consumption: in Figure 1, we plot
the ratio of the power returned by the heuristics over the power of the optimal
solution, with a static power of 5,000, 20,000, and 100,000 respectively. Note that
Figure 1d is different from the others and provides results at larger scale: there
we plot the ratio of the power returned by Speed and Excess over the power
consumption of Greedy, with a static power of 50,000, but for a larger number

Greedy Speed Excess

5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of Nodes

P
/
P
o
p
t

(a) Pstatic = 5, 000

5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of Nodes

P
/
P
o
p
t

(b) Pstatic = 20, 000

5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of Nodes

P
/
P
o
p
t

(c) Pstatic = 100, 000

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Nodes

P
/
P
G

r
e
e
d
y

(d) Pstatic = 50, 000, up to 200 nodes

Fig. 1. Study of the impact of the number of nodes, for random requests between 0
and 100, average on 100 tests

616 G. Aupy et al.

of nodes (up to 200 nodes). While one could expect that the performance of
the heuristics would decrease for larger trees, it seems that Speed and Excess

reach a plateau after ≈ 15 nodes, and that on average the maximum waste is
between 20 and 25%. Furthermore, when the static power is higher (100,000),
this maximum waste is even below 20%. This observed plateau is very likely
correlated to the set of speeds and to the static power. This plateau makes
sense in practice if we assume that the first step (the placement step) of the
heuristics is not too far from the optimal solution because the Greedy heuristic
is an approximation algorithm. Speed and Excess are just improvements of
the Greedy heuristic. It would be interesting to see how much they improve
the approximation factor, though probably complicated. Note that in Figure 1d,
we see that Speed and Excess are still consistently better than Greedy even
with a larger number of nodes, with a power consumption of around 80% of the
power consumption for Greedy.

Impact of the Static Power. In the second set of simulations, we have studied
the impact of the static power on total power consumption. In Figure 2a, we plot
the ratio of the power returned by the heuristics over the power of the optimal
solution, with a static power varying between 0 and 200,000 for trees of 20 nodes.
Note that the higher the static power, the better the results. Indeed, at some
point, what matters most is the number of servers placed, and not the allocation
of requests, hence Greedy gets closer to the optimal solution as well.

Impact of the Number of Speeds. In this third set of simulations, we have
studied the impact of the number of speeds on power consumption. For this set
of simulations, we do not use Intel speeds anymore, but instead speeds that are
equally distributed between 0 and 150. In Figure 2b, we plot the ratio of the
power returned by the heuristics over the power of the optimal solution, with a
static power of 50,000, for trees of 20 nodes, with the number of speeds varying
from one (150) and ten (15, 30, 45, 60, 75, 90, 105, 120, 135, 150). When there is

Greedy Speed Excess

0 50,000 100,000 150,000 200,000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Pstatic

P
/
P
o
p
t

(a) Impact of the static power

1 2 3 4 5 6 7 8 9 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of Speeds

P
/
P
o
p
t

(b) Impact of the number of speeds,
with Pstatic = 50, 000

Fig. 2. Study of the impact of the static power and of the number of speeds, for trees
of 20 nodes, for random requests between 0 and 100, average on 100 tests

Power-Aware Replica Placement in Tree Networks 617

only one speed, obviously the results are as good as they can be and only depend
on the allocation heuristic. Then starting from three speeds, we observe that the
more speeds, the better the results. This was expected since the more speeds we
have, the closer we can get to the optimal solution computed by Alg-Cont-

Placed, and the better the results. The fact that the results are better with
two speeds than three can be explained by the fact that with only two speeds,
it is still easier to find the optimal speed (hence a lower ratio than with three
speeds), but a mistake is very expensive, hence a result that is not as good as with
four speeds. A final remark: when speeds are equally distributed, the (proven)
approximation ratio of the Greedy heuristic is 8. However in Figure 2b, we see
that the ratio never goes above 1.8.

Impact of the Total Load of the Tree.Finally, in the last set of simulations, we
have studied the impact of the total load of the tree on the power consumption. In
Figure 3, we plot the ratio of the power returned by the heuristics over the power
of the optimal solution, for trees of 20 nodes, and for a static power of 5,000 and
100,000 respectively. Overall, the total number of requests does not impact the
performance of the heuristics: the average ratio stays constant with the total load
of the tree, for all values of static power (see additional plots in [1]).

Greedy Speed

800 900 1,000 1,100 1,200
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

of requests

P
/
P
o
p
t

(a) Pstatic = 5, 000

Excess

700 800 900 1,000 1,100 1,200 1,300
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

of requests

P
/
P
o
p
t

(b) Pstatic = 100, 000

Fig. 3. Study of the impact of the total load, for trees of 20 nodes, for random requests
between 0 and 100, average on 100 tests

Summary of Simulation Results. To conclude on the different studies, the
first observation is somewhat expected: there is a huge gap between the Greedy

heuristic, and the Speed and Excess heuristics: there is a degradation w.r.t.
the optimal of 50 to 70% when using the Greedy heuristic with 10 to 30 nodes,
while it is only approximately 20% (or less with larger static power) when using
the Speed or Excess heuristic. The difference between the Speed and Excess

heuristics is negligible, although it should be noted that on average, the Speed

heuristic performs slightly (≈ 1%) better than the Excess heuristic. Further-
more, it seems that what matters most for the competitiveness of the heuristics

618 G. Aupy et al.

is the set of speeds and the static power Pstatic. In particular, the number of
speeds is very important: the closer the speeds are to each other, the better the
results. Above a certain number of nodes (≈ 15), the ratio of the results of the
heuristics over the optimal solution seems to reach a threshold (independently
of the load and the static power), but the value of this threshold depends on the
set of speeds and on the static power. Higher static power lowers the value of
the threshold: at some point, what matters most is the number of servers, even
if they are all at maximum speed. Similarly, the smaller the gap between two
consecutive speeds, then the closer we can get to the optimal solution computed
by Alg-Cont-Placed, and the better the results.

6 Conclusion

In this paper, we have revisited the well-known replica problem in tree networks
under power constraints, in the most flexible scenario where requests of a client
can be split between multiple servers. While the problem of minimizing the
number of servers has polynomial complexity, we have proved that the problem
of minimizing the power consumption is NP-complete, even if the servers are
already placed in the tree. We assume that the server speeds can be modified
using dynamic voltage and frequency scaling, depending upon the number of
requests to be processed, and that a set of discrete speeds is available. Therefore,
the core of the difficulty lies in assigning requests to servers in order to optimize
the speeds given to each server. Building upon the optimal solution with already
placed servers and continuous speeds, we have designed efficient polynomial-
time heuristics to solve the general optimization problem (deciding where to
place servers and how to assign requests).

In order to assess the performance of the heuristics, we have also provided a
mixed integer linear program (MILP) that returns the optimal solution of the
problem for small instances (up to 30 nodes in the tree). The heuristics are
always quite close to the optimal solution, and the sophisticated versions that
readjust the request assignment to better fit server speeds prove to be valuable
improvements of the basic greedy solution.

For future work, it would be very interesting to prove a competitive ratio for
the heuristics that we have designed. However, this is quite a challenging work
for arbitrary trees, and one may try to design approximation algorithms only for
special tree structures, e.g. binary trees.

Acknowledgements. This work was supported in part by the French Research
Agency (ANR) through the Rescue project. Anne Benoit and Yves Robert are
with Institut Universitaire de France.

References

1. Aupy, G., Benoit, A., Journault, M., Robert, Y.: Power-aware replica placement
in tree networks with multiple servers per client. Research Report 8474, INRIA
(February 2014), http://graal.ens-lyon.fr/~abenoit/

http://graal.ens-lyon.fr/~abenoit/

Power-Aware Replica Placement in Tree Networks 619

2. Aupy, G., Journault, M.: Source code for the simulations,
https://github.com/Gaupy/replica

3. Benoit, A., Rehn-Sonigo, V., Robert, Y.: Replica placement and access policies in
tree networks. IEEE Trans. Parallel and Distributed Systems 19(12), 1614–1627
(2008)

4. Benoit, A., Renaud-Goud, P., Robert, Y.: Power-aware replica placement and up-
date strategies in tree networks. In: Proceedings of the 25th IEEE Int. Parallel and
Distributed Processing Symposium, IPDPS 2011 (May 2011)

5. Chandrakasan, A.P., Sinha, A.: Jouletrack: A web based tool for software energy
profiling. In: Design Automation Conference. IEEE, pp. 220–225 (2001)

6. Chen, J.J., Kuo, T.W.: Multiprocessor energy-efficient scheduling for real-time
tasks. In: Proceedings of Int. Conf. on Parallel Proc (ICPP), pp. 13–20. IEEE
(2005)

7. Chen, J.J.: Expected energy consumption minimization in DVS systems with
discrete frequencies. In: Proc. of SAC 2008, Symp. on Applied Computing,
pp. 1720–1725 (2008)

8. Cidon, I., Kutten, S., Soffer, R.: Optimal allocation of electronic content. Computer
Networks 40, 205–218 (2002)

9. Cplex: ILOG CPLEX: High-performance software for mathematical programming
and optimization, http://www.ilog.com/products/cplex/

10. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979)

11. Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T., Takahashi, D.: Profile-
based optimization of power performance by using dynamic voltage scaling on a
PC cluster. In: The IEEE Int. Parallel and Distributed Processing Symposium
Proceedings of IPDPS (2006)

12. Kalpakis, K., Dasgupta, K., Wolfson, O.: Optimal placement of replicas in trees
with read, write, and storage costs. IEEE Trans. Parallel and Distributed Sys-
tems 12(6), 628–637 (2001)

13. Larabel, M.: Intel EIST SpeedStep
14. Liu, P., Lin, Y.F., Wu, J.J.: Optimal placement of replicas in data grid environ-

ments with locality assurance. In: Int. Conf. on Parallel and Distr. Syst. (2006)
15. Loukopoulos, T., Ahmad, I., Papadias, D.: An overview of data replication on the

Internet. In: Proc. Int. Symp. on Parallel Architectures, Algorithms and Networks
ISPAN 2002. IEEE Computer Society Press (2002)

16. Mills, M.P.: The internet begins with coal. Environment and Climate News (1999)
17. Niu, L.: Energy Efficient Scheduling for Real-Time Embedded Systems with QoS

Guarantee. In: Proc. of RTCSA, the 16th Int. Conf. on Embedded and Real-Time
Computing Systems and App., 163 –172 (August 2010)

18. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theory of Computing Systems 43, 67–80 (2008)

19. Shi, B., Srivastava, A.: Thermal and Power-Aware Task Scheduling and Data Place-
ment for Storage Centric Datacenters. In: Ranka, S., Ahmad, I. (eds.) Handbook
of Energy-Aware and Green Computing, vol. 1, CRC Press (2012)

20. Wu, J.J., Lin, Y.F., Liu, P.: Optimal replica placement in hierarchical Data Grids
with locality assurance. J. Parallel and Distributed Computing 68(12), 1517–1538
(2008)

https://github.com/Gaupy/replica
http://www.ilog.com/products/cplex/

On Constructing DAG-Schedules with Large AREAs

Scott T. Roche, Arnold L. Rosenberg, and Rajmohan Rajaraman

Northeastern University,
College of Computer and Information Science,

Boston, MA 02115, USA
{rraj,str,rsnbrg}@ccs.neu.edu

Abstract. The Area of a schedule Σ for a DAG G measures the rate at which
Σ renders G’s nodes eligible for execution. Specifically, AREA(Σ) is the av-
erage number of nodes that are eligible for execution as Σ executes G node
by node. Extensive simulations suggest that, for many distributions of proces-
sor availability and power, schedules having larger Areas execute DAGs faster on
platforms that are dynamically heterogeneous: their processors change power and
availability status in unpredictable ways and at unpredictable times. While Area-
maximal schedules exist for every DAG, efficient generators of such schedules
are known only for well-structured DAGs. We prove that the general problem of
crafting Area-maximal schedules is NP-complete, hence likely computationally
intractable. This situation motivates the development of heuristics for producing
DAG-schedules that have large Areas. We build on the Sidney decomposition of
a DAG to develop a polynomial-time heuristic, SIDNEY, whose schedules have
quite large Areas. (1) Simulations on DAGs having random structure indicate that
SIDNEY’s schedules have Areas: (a) at least 85% of maximal; (b) at least 1.25
times larger than those produced by previous heuristics. (2) Simulations on DAGs
having the structure of random “LEGO R©” DAGs indicate that SIDNEY’s sched-
ules have Areas that are at least 1.5 times larger than those produced by previous
heuristics. The “85%” result emerges from an LP-based formulation of the Area-
maximization problem. (3) Our results on random DAGs are roughly matched by
a second heuristic that emerges directly from the LP formulation.

1 Introduction

The problem. Many modern computing platforms—notably clouds [31,32], desktop
grids [3], and volunteer-computing projects [9,16]—exhibit extreme levels of dynamic
heterogeneity. The availability and relative powers of the platforms’ computing re-
sources can change at unexpected times and in unexpected ways. Scheduling a com-
putation for efficient execution on such a platform can be quite challenging, particu-
larly when there are dependencies among the computation’s constituent chores1 (jobs,
tasks, etc.); as is traditional, we model such computations as DAGs (directed acyclic
graphs). The Area of a schedule Σ for a DAG G measures the rate at which schedule
Σ renders nodes eligible for execution: the larger the better. Specifically, AREA(Σ)
is the average number of nodes of G that are eligible as Σ executes G node by node.

1 We use the granularity-neutral term “chore” to avoid nuances of coarseness.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 620–631, 2014.
c© Springer International Publishing Switzerland 2014

DAG-Schedules with Large AREAs 621

The motivating intuition is that increasing the likelihood of having nodes eligible for
execution increases the opportunities for concurrency and decreases the likelihood of a
computation’s stalling for lack of eligible work. Although this is just intuition—the def-
inition of Area does not mention any properties of the computing platform—extensive
simulations ([5,6,13,20]) suggest that, for many distributions of processor availability
and power, schedules having larger Areas execute DAGs faster on dynamically hetero-
geneous platforms. The current paper is motivated by the fact that, while all DAGs admit
Area-maximizing schedules, we know how to derive such schedules efficiently only for
a variety of specific families of DAGs [5,8].

Our Contributions. Our first main result establishes the NP-completeness (hence,
likely computational intractability) of the AREA-MAX problem: the problem of gen-
erating Area-maximizing schedules for general DAGs (Sect. 3). While our search for
approximation schemes for AREA-MAX, i.e., algorithms whose DAG-schedules have
Areas within a fixed bound of maximal, has thus far been unsuccessful, it has not been
fruitless. Our second main result is a polynomial-time heuristic, SIDNEY, for producing
DAG-schedules, which is based on the Sidney decomposition of a DAG [27]. Simula-
tion experiments suggest that SIDNEY’s schedules have quite large Areas (Sect. 4.1).
Simulations on DAGs having:

1. random structure suggest that SIDNEY’s schedules have Areas: (a) at least 85% of
maximal; (b) at least 1.25 times larger than those of previous heuristics’ schedules.

2. the structure of random LEGO R©-DAGs [6] suggest that SIDNEY’s schedules have
Areas at least 1.5 times larger than those of previous heuristics’ schedules.

Our third main result is a new formulation of AREA-MAX as a Linear Program (LP)
(Sect. 4.2). (i) The Area-value produced by the (unrounded) LP for a DAG G provides
an upper bound on the maximum Area achievable by any schedule for G. We thereby
observe the “85%” result just mentioned for SIDNEY. (ii) The LP formulation yields a
second new polynomial-time heuristic, LP for AREA-MAX. While LP’s schedules essen-
tially match SIDNEY’s schedules’ random-DAG Areas, the heuristic promises to yield
valuable information about the structure of Area-maximizing schedules; see Sect. 4.2.

Related Work. How to minimize the completion times of computations on parallel com-
puting platforms has been studied since such platforms emerged [26]. Most variants of
this problem provide nontrivial computational challenges, especially in the presence of
interchore dependencies that constrain execution order, as when computations are mod-
eled as DAGs. Despite differences in detail, virtually all strategies for scheduling DAGs
rely on knowing, possibly in a stochastic sense ([33]), (almost) exact chore execution-
times; therefore, dynamically heterogeneous platforms resist standard scheduling strate-
gies. Many attempts have been made to adapt earlier DAG-scheduling heuristics, such as
HEFT [29] and FCP [24], to the new platforms, but none adequately addresses the range
of challenges posed by dynamic heterogeneity. Among the bold approaches to schedul-
ing for dynamic heterogeneity are the partial-order schedules of [23], which strive for
temporal flexibility that is fixed only at run time. A similar delay-of-commitment ap-
proach is advocated in [2,14]. Yet other sources propose strategies wherein a precom-
puted schedule is reorganized at run time in response to changes in processors’ powers
[19,33]; in [22], e.g., planned checkpoints allow dynamic response to unexpected volatil-
ity. The scheduling strategy underlying our study was the IC-scheduling paradigm of

622 S.T. Roche, A.L. Rosenberg, and R. Rajaraman

[25,21]. This strategy advocates ignoring the (unknowable) characteristics of the host
platform and, instead, deploying a DAG’s chores in an order that maximizes the rate
of producing more chores that are eligible for deployment—to increase the likelihood
of having work to allocate to available processors; simulation experiments in [13,20]
validate this intuition. But an unrecoverable flaw in IC-scheduling is that many DAGs
do not admit optimal schedules under the paradigm [21] (although many computation-
ally significant DAGs do [7]). This flaw led to the development of Area-maximizing
DAG-scheduling [5], whose study we continue here. One sees in [5] that (a) every DAG

admits an Area-maximizing schedule and (b) Area-maximizing schedules and optimal
IC-schedules coincide for any DAG that admits both. Since efficient generators of Area-
maximizing schedules are not known for general DAGs, a heuristic was developed in [6]
that converts a DAG G to a series-parallel version σ(G) and then obtains a schedule for G
by “filtering” an Area-maximizing schedule for σ(G) (using an algorithm in [8]). Sim-
ulation experiments suggest that Area-maximizing DAG-scheduling has computational
benefits similar to those of IC-scheduling, although to a moderated degree [6]. An in-
teresting comparison of two dynamic approaches to DAG-scheduling appears in [15]:
replicated allocation of chores vs. deadline-triggered reallocation. Other sources have
analyzed the reliability of scheduling DAGs under execution-time uncertainty [11,18].
Finally, one finds in [1] a framework for minimizing makespan when processors asyn-
chronously execute DAGs having unit-time chores.

2 Computation-DAGs and Their Schedules

A. Basics. A (computation-)DAG G has a set N G ofNG nodes, each representing a chore
in a computation, and a set AG of AG arcs, each representing an interchore dependency.
For (u → v) ∈ AG : • chore v cannot be executed until chore u is; • u is a parent of v;
v is a child of u in G; • ancestorhood is inherited from parenthood; • a parentless node
is a source; a childless node is a sink; • G is bipartite of type (X → Y) if NG can be
partitioned into X and Y , and each arc (u → v) has u ∈ X and v ∈ Y .

DAG-schedules and quality. When one executes a DAG G, a node v becomes eligible
(for execution) after all of its parents have been executed. We do not allow recompu-
tation of nodes, so a node loses eligible status once it is executed. In compensation,
executing node v may render new nodes eligible—when v is their last-executed parent.
A schedule Σ for G is a rule for selecting which eligible node to execute at each step
of an execution of G; Σ is, thus, a topological sort of G, i.e., a linear ordering of N G in
which all of each node v’s children appear after v. We measure the quality of schedule
Σ via the rate at which its successive node-executions produce new eligible nodes—the
more, the better. One cannot always execute nodes so that the number of eligible nodes
on G is maximized at every step of a computation [21], so we seek schedules that max-
imize the average number of eligible nodes on G (over all steps of the computation). A
schedule that achieves this goal is said to be AREA-maximizing, in the following sense.

B. AREA-maximizing schedules. The AREA metric. For any schedule Σ for a DAG

G and any integer T ∈ [0..NG], we denote by EΣ(T) the number of nodes that are
eligible at step T when Σ executes G.2 Σ’s eligibility profile is the (NG + 1)-tuple

2 We measure time in an event-driven manner, as the number of nodes executed to that point.

DAG-Schedules with Large AREAs 623

Π(Σ) = 〈EΣ(0), . . . , EΣ(NG)〉. Σ’s Area is the sum3

AREA(Σ) = EΣ(0) + EΣ(1) + · · ·+ EΣ(NG). (1)

We seek an AREA-maximizing schedule (A-M schedule) for G: a schedule Σ� such that

AREA(Σ�) = max
Σ a schedule for G

AREA(Σ)
def
= AREA(G).

We refer to the quest for A-M schedules as the AREA-MAX problem.

C. Two simplifications of the problem. We cite from [5].
1. Every DAG admits an A-M schedule that executes all sinks only after all nonsinks.
2. Say that G has n nonsinks, N nonsources, s sources, and S sinks. If schedule Σ exe-
cutes all nonsinks before any sinks, then we can maximize AREA(Σ) by maximizing

Area(Σ)
def
=

n∑
i=0

EΣ(i) = AREA(Σ) −
(
S

2

)
. (2)

Letting eΣ(t) be the number of nodes that are rendered eligible by Σ’s tth node-
execution, we note that

area(Σ)
def
=

n∑
t=0

t∑
j=1

eΣ(j) = n · eΣ(1) + (n− 1) · eΣ(2) + · · ·+ 1 · eΣ(n) (3)

is the only portion of Area(Σ) that actually depends on choices made by Σ.
We henceforth study a connection between AREA-MAX and the Minimum Weighted-

Completion-Time problem for DAGs, MWCT. Building on [30], we prove that AREA-
MAX is NP-Complete (Sect. 3); inspired by [17], we develop new heuristics that produce
schedules with large-Areas (Sect. 4.1); we test the heuristics’ schedules in Sect. 5.

3 The NP-Completeness of AREA Maximization

Clearly, the (decision version of the) AREA-MAX problem lies within the class NP. One
just “guesses” a topological sort for a DAG and calculates the Area of the resulting
schedule. We show now that AREA-MAX is also NP-hard, via reduction from the 0-1
Minimum Weighted-Completion-Time problem for a class of bipartite DAGs. This prob-
lem, which we refer to as (0, 1)-MWCT, is defined as follows. One is given a bipartite
DAG G with source-set S and sink-set T . Every source u ∈ S has computation time
Cu = 1 and weight wu = 0; every sink v ∈ T has computation time Cv = 0 and
weight wv = 1. Under this model, the makespan of G is not changed when we execute
any (eligible) sink; so, for definiteness, we execute a sink “greedily,” as soon as it be-
comes eligible. We can, therefore, view a schedule as an ordering of G’s s sources. The
weighted completion time for G associated with schedule Σ is

WΣ
def
=

s∑
j=1

wjCj = 1 · eΣ(1) + 2 · eΣ(2) + · · ·+ s · eΣ(s). (4)

3 The term Area arises by analogy with the approximation of integrals by Riemann sums.

624 S.T. Roche, A.L. Rosenberg, and R. Rajaraman

(0, 1)-MWCT is the NP-Complete problem [30]: find a schedule Σ with minimal WΣ .
This is a 1|prec|

∑
wjCj problem: there is a single processor (1) with interjob prece-

dences (prec) that strives to minimize
∑

wjCj . We reduce (0, 1)-MWCT to AREA-MAX.

Lemma 1. Any AREA-maximizing schedule Σ for the 0-1 bipartite DAG G minimizes
G’s weighted completion time; hence, it solves the 1|prec|

∑
wjCj problem for G.

Proof. Say that G has s sources and S sinks. Adding Eqs. (3) and (4), we find that

Area(Σ)+WΣ = (S+1)s−
(
s+ 1

2

)
+(s+1)

s∑
k=1

eΣ(k) = (S+1)s−
(
s+ 1

2

)
+(s+1)S,

since each of G’s S sinks becomes eligible exactly once. It follows that any AREA-
maximizing schedule minimizes weighted completion time.

4 Two New DAG-Scheduling Heuristics

4.1 A DAG-Scheduling Heuristic Based on the Sidney Decomposition

We now develop the SIDNEY DAG-scheduling heuristic, which transforms a DAG G into
a DAG G′ such that: finding an A-M schedule for G is equivalent to finding a schedule
for G′ that minimizes the MWCT,

∑
v∈NG′ wvCv . We reduce AREA-MAX to MWCT and

invoke a known approximation algorithm for MWCT to derive the SIDNEY scheduler.
(This complements Sect. 3’s reduction of an NP-hard case of MWCT to AREA-MAX.)

We construct the 0-1 version G0,1 of a DAG G as follows. The nodes of G0,1 are
obtained by splitting each node v ∈ NG into two nodes, v0 and v1. We give each node
of G0,1 that has a 0 subscript (the zero-nodes) a processing time of 0 and a weight of 1:
symbolically, pv0 = 0 and wv0 = 1; we give each node of G0,1 that has a 1 subscript
(the one-nodes) a processing time of 1 and a weight of 0: wv1 = 0 and pv1 = 1. Finally,
we give G0,1 an arc (u1 → v0) for each (u → v) ∈ AG and an arc (u0 → u1) for each
u ∈ NG (i.e., for each pair u0, u1 ∈ NG0,1

). Schedule Σ′ for G0,1 is a 0-1 version of
schedule Σ for G if Σ′ executes G0,1’s one-nodes in an order consistent with Σ’s order
of executing G’s nodes; i.e., if Σ executes G’s nodes in the order v1, . . . , vN , then Σ′

executes G0,1’s nodes in the order v1,1, . . . , vN,1.

Lemma 2. Let G be any DAG and G0,1 its 0-1 version. If Σ is an A-M schedule for G,
then any 0-1 version of Σ minimizes WCT for G0,1.

Proof. Every zero-node v0 has pv0 = 0, so any MWCT schedule for G0,1 will execute
v0 as soon as it is eligible. Hence, the WCT for a 0-1 version of a schedule Σ for G is:

WΣ′ =
∑
i∈NG

wi · max
j a parent of i

C(j) =
∑
i∈NG

wi · E(i), (5)

where C(k) (resp., E(k)) denotes the step when node k completes execution (resp.,
becomes eligible). By similar reasoning:

AREA(Σ) =
∑
i∈NG

(
(C(i) − 1)− E(i)

)
=

(
n+ 1

2

)
−
∑
i∈NG

E(i). (6)

DAG-Schedules with Large AREAs 625

It follows from eqs. (5, 6) that if one could replace Σ′ by a schedule Σ′′ for G0,1 that
has WΣ′′ < WΣ′ , then there would be a schedule Σ̂ for G such that AREA(Σ̂) >

AREA(Σ). But the existence of Σ̂ would contradict Σ’s assumed AREA-maximality.

The duality between AREA(G) and WCT (G0,1) gives us access to an approxi-
mation algorithm for MWCT that we sketch here; details appear in [4,27]. The algo-
rithm decomposes a DAG G whose nodes v each has a processing time pv and a weight
wv . The rank of v ∈ NG is rv = pv/wv; by extension, the rank of S ⊆ NG is
r(S) =

∑
v∈S pv/wv . Following [4], a sub-DAG G′ of G is precedence-closed if every

ancestor of each v ∈ NG′ is also in N G′ . G∗ denotes precedence-closed subgraph of G
of minimum rank. Finally, a segment in a schedule Σ is a consecutively-scheduled set
of nodes. One can generalize Smith’s rule for DAGs [28] as follows.

Lemma 3 ([4,27]). There exists an WCT-minimizing schedule Σ for any DAG G in
which an optimal schedule for G∗ occurs as an initial segment of Σ.

Thus, in an optimal scheduleΣ forG, an optimal ordering of the nodes of the minimum-
rank precedence-closed subgraph G∗ appears as the first segment of Σ. A polynomial-
time algorithm A is developed in [4], which recursively finds N G∗ (plus the residual
graph G \ G∗); then schedules the nodes within each set in a feasible schedule. Build-
ing on the Sidney decomposition of G, A produces a schedule for G whose WCT is no
greater than double the optimal WCT forG. In detail: Rather than specifically looking for
the minimum-rank precedence-closed sub-DAG G∗, algorithm A finds a sub-DAG whose
rank is ≤ a given positive constant λ (specified as an input). It accomplishes this by con-
structing an associated capacitated graph Gλ, with the following properties:

– The nodes of Gλ consist of the nodes of G along with a source s and a sink t.
– The arcs of Gλ are: {(s → t), (i → t)|i ∈ N (G)}

⋃
{(i → j)|j is an ancestor of i}.

We associate a capacity c(e) with every arc e, as follows:

c(e) =

⎧⎪⎨⎪⎩
pi, if e = e(i, t)

λwi, if e = (s, i)

∞, otherwise

Finding subgraph G∗ is thus reduced to finding a (s, t)-minimum cut for Gλ with cut
value ≤ λw(G). Lemma 3 in [4] guarantees that if (A,B) is such a cut, then the rank
of A \ {s} is ≤ λ, and A \ {s} is precedence-closed in G. Hence, one can find G∗ by
performing a binary search on λ, and then recurse on the residual DAG G\G∗ until all of
G has been decomposed. Alternatively, one can use an algorithm such as that in [10] to
find all points λ in a single max-flow computation (making use of a variable of the push-
relabel algorithm), thereby decomposing G in a single pass. This alternative provides
an efficient running time of O(min (n2/3,m1/2)m log(n2/m) logU), where n = NG ,
m = AG , and U is the maximum (finite) capacity, which is ≤ n in our case. Thus, for
sparse DAGs (m = O(n)), the running time is O(n5/3 log2 n), while for dense DAGs
(m = Θ(n2)), the running time is O(n5/2 log2 n).

Our final ingredient in devising SIDNEY is the DYNAMIC-GREEDY heuristic, which
maintains a MAX-priority queue of the eligible nodes, (partially) ordered by yield.

626 S.T. Roche, A.L. Rosenberg, and R. Rajaraman

The yield of an eligible node v ∈ NG at step t of Σ’s execution of G is the number of nodes that
would be rendered eligible if Σ were to execute v at that step.
At each step, DYNAMIC-GREEDY selects a maximal-yield node for execution. When a
node completes executing, all newly eligible nodes are inserted into the priority queue,
in random order. (The heuristic thus makes an optimal choice for this step—but ignores
future ramifications of this choice.)

We can now specify the SIDNEY heuristic for computing large-AREA DAG-schedules.

The SIDNEY heuristic
Given a DAG G:
1. Construct the associated 0-1 DAG G0,1.
2. Use a max-flow computation to perform a Sidney decomposition of G0,1.
3. Let S1, . . . , Sk be the node-sets computed in the Sidney decomposition:

(a) Remove all 0-nodes from each task-set Si.
(b) For each task-set Si, use the DYNAMIC-GREEDY heuristic to produce a sched-

ule Σi for the nodes in Si.
4. Output schedule Σ = Σ1Σ2 . . . Σk, the concatenation of the k subschedules.

4.2 A DAG-Scheduling Heuristic Based on Linear Programming

We exploit the structure of AREA-MAX to formulate the problem as a Linear Program
(LP). Our formulation serves two purposes: (1) the (unrounded) solution to the LP for a
DAG G bounds Area(G) from above; (2) rounding the solution to yield integer values,
provides a valid schedule for G. This (solve LP)-(then round) procedure comprises the
LP heuristic LP for scheduling DAGs. Of course, obtaining optimal integer solutions to
an LP is the NP-hard ILP problem, but the ILPs that arise in AREA-maximization may
be computationally simpler; at least, they give us access to approximate solutions via
the unrestricted (non-integer) form of the LP. Our LP-formulation of AREA-MAX for an
n-node DAG employs three classes of indicator (i.e., 0-1 valued) variables, each of size
roughly n2. For i ∈ [1..n] and t ∈ [0..n]:

Variable Interpretation
xi,t Task/node i is executed at step t of schedule Σ.
yi,t Task/node i is eligible at step t of schedule Σ.
zi,t Task/node i has been executed prior to step t of schedule Σ.

The AREA-MAX problem can be formulated as follows.

Maximize
n∑

t=0

n∑
i=0

yi,t subject to:

C1
∑n

t=0 xi,t = 1 ∀ i ∈ NG
C2

∑n
i=0 xi,t = 1 ∀ t ∈ [0..n]

C3 zi,T =
∑

t<T xi,t ∀ i ∈ NG , T ∈ [1..n]
C4 yi,T = 1− zi,T ∀ i ∈ (Sources of G), T ∈ [1..n]
C5 yi,T ≤ zj,T − zi,T ∀ T ∈ [0..n], j ∈ (ancestors of i)
C6 zi,T+1 ≤ zj,T ∀ T ∈ [0..n], j ∈ (ancestors of i)
C7 xi,t, yi,t, zi,t ∈ {0, 1} ∀ i ∈ NG , t ∈ [0..n]

DAG-Schedules with Large AREAs 627

The various constraints play the following roles: C1 and C2 ensure, resp., that each
node/task is completed and that no processor is ever idle; C3 ensures that the cumulative-
execution variable z tallies all work done on each node prior to time T ; C4 ensures that
the eligibility of a source node is 1 minus (the work completed in prior time steps); C5
ensures that for each precedence constraint (j must be executed before i), the eligibil-
ity of a node is bounded by (the work already done on it) minus (the work already done
on its ancestors); C6 ensures that for each constraint (j must be executed before i), the
work done on node i is no greater than the work done on all of its ancestors.

We create an LP from this ILP by replacing the integrality constraints C7 by:

[0 ≤ yi,t ≤ 1 for all i, t] and [0 ≤ xi,t ≤ 1 for all i, t]

The major difference between the ILP and LP formularion of AREA-MAX is that the
latter allows fractional execution (and eligibility) of tasks—which is equivalent to al-
lowing preemption in schedules. The LP thus provides an upper bound for the optimal
value of AREA(G). It also naturally yields the following DAG-scheduling heuristic.

The LP heuristic LP on a DAG G:
1. Construct the LP from G; solve it.
2. For each i ∈ NG , calculate a completion time Ci as the first time step T such that∑T

t=0 xi,t = 1
3. Sort the set of completion times {Ci}ni=0, breaking ties arbitrarily.
4. The resulting ordering of NG is schedule Σ for G.

5 Simulation Experiments

5.1 Experimental Procedure

Overview. To test the Area-quality of heuristics SIDNEY and LP, we generated synthetic
DAGs that share structural characteristics with a variety of “real” computation-DAGs,
especially those encountered in scientific computing. We constructed schedules for each
DAG using three heuristics: SIDNEY (Sect. 4.1) and the two “best” known heuristics
(described below) as determined by experiments in [6]. We compared the Areas of
the three schedules for each DAG. For some small DAGs (having ≤ 100 nodes), we
also considered the Areas of the schedules produced by LP (Sect.4.2). Although LP is
polynomial-time, its current implementation is prohibitively computationally intense
on even moderate-size DAGs. We continue to seek better implementations of the LP
computation since its specification for a DAG G exactly reflects AREA(G).
The tested DAGs. We generated random DAGs from the following families.

1. Random n-node DAGs. We randomly ordered n nodes into a sequence 1, 2, . . . , n,
designating the last five nodes as sinks. Then, for each node i ∈ [1..n − 5], we
randomly selected five children, j1 > i, . . . , j5 > i and generated arcs (i → jk).

2. Random n-node LEGO R©-DAGs. We tested LEGO R©-DAGs as defined in [21]. These
are built from a repertoire of Bipartite Building Block DAGs (BBBs), that represent
(parallel) steps in a computation. As in [21] (q.v.), we employed BBBs that reflect
a single: expansive step (as in an out-tree), reductive step (as in an in-tree), group

628 S.T. Roche, A.L. Rosenberg, and R. Rajaraman

step (as in computations exemplified by convolutions or parallel-prefix operations).
We selected BBBs, randomized according to both size and structure, and composed
them to create multi-step, multi-level computations; we continued this process until
a DAG reached the desired size range. We created two classes of LEGO R©-DAGs:
one used BBBs with sizes drawn from a uniform distribution in the range [2..20];
the other used BBBs with sizes drawn from a harmonic distribution that produced
BBBs of expected size 10.

The tested heuristics. We used three schedulers to generate schedules:

1. The SIDNEY scheduler of Sect. 4.1.
2. The AOSPD scheduler [8]. This heuristic takes a DAG G and invokes an algorithm

from [12] to convert G to a series-parallel DAG σ(G) (while retaining much of
G’s parallel structure); if G is already a series-parallel DAG, then σ(G) = G. AOSPD

then generates an Area-maximizing schedule for σ(G), using an algorithm from [8].
Experiments in [6] show that AOSPD produces schedules with quite large Areas.

3. The DYNAMIC GREEDY scheduler (Sect. 4.1). This heuristic achieves the second-
best Area performance, after AOSPD, in the experiments in [6,8].

Methodology. For each n ∈ {100, 200, 300, 500}, we generated 100 n-node DAGs of
random structure. We also generated 100 random LEGO R©-DAGs of each approximate
size n = 200k where k ∈ [1..20], using both the uniform and harmonic distributions.
For each generated DAG, we had each of our three heuristics generate a schedule, and
we computed the Areas of the resulting schedules.

5.2 Experimental Results

The SIDNEY heuristic. The plots in Fig. 1(a) illustrate that, for the DAG-classes and
-sizes tested, the Areas of the schedules generated by SIDNEY far exceed those of the
schedules generated by both AOSPD and DYNAMIC GREEDY.

1. The advantage of SIDNEY is particularly remarkable with both classes of LEGO R©-
DAGs. For these DAGs, SIDNEY’s schedules have Areas 2.3 times greater than
DYNAMIC-GREEDY’s and nearly 1.5 times greater than AOSPD’s. These factors are
heartening because of LEGO R©-DAGs’ structural similarity with “real” DAGs.

2. SIDNEY exhibited a notable Area-advantage over the other heuristics when exe-
cuting random DAGs, albeit by a smaller factor, 1.3. We can not yet interpret this
decreased advantage, but it may relate to random DAGs’ often-pathological struc-
ture (e.g., their often high expansion). We note that AOSPD also displays negligible
Area-advantage over DYNAMIC-GREEDY for random DAGs.

The preceding suggests that SIDNEY finds large-Area schedules for a broader class of
DAGs than do the regimens studied in [8,6].

The LP heuristic. The results with LP lead us to classify it as an “auxiliary” scheduler:

The cons. We know of no LP solvers that can efficiently handle even moderate size
DAGs—and our LPs are enormous. For example, 400-node DAGs yield LPs with
≈ 5× 105 variables and ≈ 106 (mostly non-sparse) constraints. We therefore were
able to generate LP schedules for only small random DAGs (≤ 100 nodes).

DAG-Schedules with Large AREAs 629

(a)

100 150 200 250 300 350 400 450 500
Size of random DAG

0

5000

10000

15000

20000

25000

30000

A
R

E
A

Random DAGs

AOSPD

Sidney

Dynamic Greedy

0 500 1000 1500 2000 2500 3000 3500 4000
Size of LEGO DAG

0

200000

400000

600000

800000

1000000

1200000

1400000

A
R

E
A

LEGO DAGs -- Uniform BBB

AOSPD

Sidney

Dynamic Greedy

0 500 1000 1500 2000 2500 3000 3500 4000
Size of LEGO DAG

0

200000

400000

600000

800000

1000000

1200000

1400000

A
R

E
A

LEGO DAGs -- Harmonic BBB

AOSPD

Sidney

Dynamic Greedy

(b)
40 50 60 70 80 90 100

Size of random DAG

200

400

600

800

1000

1200

1400

1600

1800

2000

A
R

E
A

Sidney

LP-based schedule

LP Objective Value

Fig. 1. (a) Area-qualities of our schedulers on tested DAGs. (b) LP vs. SIDNEY on random DAGs.

The pros. LP’s schedules compete well experimentally with SIDNEY’s in terms of
Area. Both produced roughly the same mean Areas for the same DAGs (Fig. 1(a)).

Using LP as an “auxiliary” scheduler for small DAGs could be beneficial:

We conjecture that SIDNEY would produce higher-Area schedules if sub-DAGs
were scheduled via LP rather than DYNAMIC-GREEDY.

Testing this conjecture is high on our to-do list. At least as important is the direct appli-
cation of the LP formulation of AREA-MAX:

The objective value of an LP for a DAG G provides a (possibly unachievable)
upper bound on Area(G), the maximum possible Area of any schedule for G.

Perspective. Fig. 1(b) indicates that on the tested DAGs: (a) SIDNEY ony slightly out-
performs LP; (b) both heuristics produce schedules whose Areas achieve an average of
85% of the true value of Area(G).

6 Conclusion

The past. The Area metric for DAG-schedules is a step toward achieving high per-
formance on dynamically heterogeneous platforms. The basic properties of the metric

630 S.T. Roche, A.L. Rosenberg, and R. Rajaraman

were derived in [5], along with evidence, via simulations, of performance benefits in
schedules that have high Areas. This evidence, coupled with the complexity of Area-
maximal scheduling, motivated the the efficient AOSPD heuristic which (1) produces
schedules with large Areas and (2) retains much of the performance benefit of Area-
optimal schedules [8,6]. The present. We extend earlier studies by: (1) showing that
Area-optimal scheduling is NP-complete in general (Sect. 3); (2) introducing two new
polynomial-time Area-oriented heuristics (Sect. 4); (3) showing via simulations that
both heuristics’ schedules have Areas significantly larger than those produced by ear-
lier heuristics (Sect. 5). The future. We are pursuing three avenues for extending this
work: (1) searching for good approximation algorithms for Area-optimal scheduling;
(2) seeking to improve our new heuristics, in terms of both efficiency and Area; (3)
beginning to study the performance benefits of our heuristics.

Acknowledgments. This research was supported in part by US NSF Grant CSR-
1217981. The authors thank G. Cordasco, T. Estrada, G. Malewicz, and M. Taufer for
helpful conversations.

References

1. Bender, M.A., Phillips, C.A.: Scheduling DAGS on asynchronous processors. In: 19th ACM
Symp. on Parallel Algorithms and Architectures, pp. 35–45 (2007)

2. Boutammine, S.-S., Millot, D., Parrot, C.: An Adaptive Scheduling Method for Grid Com-
puting. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128,
pp. 188–197. Springer, Heidelberg (2006)

3. Casanova, H., Dufossé, F., Robert, Y., Vivien, F.: Scheduling parallel iterative applications
on volatile resources. In: 25th IEEE Int’l Parallel and Distributed Processing Symp. (2011)

4. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum of weighted
completion times on a single machine. Discrete Applied Math. 98, 29–38 (1999)

5. Cordasco, G., De Chiara, R., Rosenberg, A.L.: On scheduling DAGS for volatile comput-
ing platforms: Area-maximizing schedules. J. Parallel and Distr. Computing 72, 1347–1360
(2012)

6. Cordasco, G., De Chiara, R., Rosenberg, A.L.: An AREA-oriented heuristic for scheduling
DAGS on volatile computing platforms (2013) (submitted for publication), See also As-
sessing the Computational Benefits of AREA-Oriented DAG-Scheduling. In: Jeannot, E.,
Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 180–192. Springer,
Heidelberg (2011)

7. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Applying IC-scheduling theory to some fa-
miliar computations. In: Wkshp. on Large-Scale, Volatile Desktop Grids (2007)

8. Cordasco, G., Rosenberg, A.L.: On scheduling series-parallel DAGS to maximize AREA.
In: Int’l J. Foundations of Computer Science (to appear, 2014)

9. Estrada, T., Taufer, M., Reed, K.: Modeling job lifespan delays in volunteer computing
projects. In: 9th IEEE Int’l Symp. on Cluster, Cloud, and Grid Computing (2009)

10. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and
applications. SIAM J. Comput. 18, 30–55

11. Georgiou, C., Kowalski, D.R.: Performing dynamically injected tasks on processes prone to
crashes and restarts. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 165–180. Springer,
Heidelberg (2011)

DAG-Schedules with Large AREAs 631

12. González-Escribano, A., van Gemund, A., Cardeñoso-Payo, V.: Mapping unstructured ap-
plications into nested parallelism. In: High Performance Computing for Computational Sci.
(2002)

13. Hall, R., Rosenberg, A.L., Venkataramani, A.: A comparison of DAG -scheduling strategies
for Internet-based computing. In: 21st IEEE Int’l Parallel and Distr. Processing Symp. (2007)

14. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.: Quincy: Fair
scheduling for distributed computing clusters. In: ACM Symp. on Operating Systs. Principles
(2009)

15. Kondo, D., Casanova, H., Wing, E., Berman, F.: Models and scheduling mechanisms for
global computing applications. In: 16th Int’l Parallel and Distr. Processing Symp. (2002)

16. Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: SETI@home: massively
distributed computing for SETI. In: Dubois, P.F. (ed.) Computing in Science and Engineer-
ing. IEEE Computer Soc. Press (2000)

17. Lawler, E.L.: Sequencing jobs to minimize total weighted completion time subject to prece-
dence constraints. Annals of Discrete Math. 2, 75–90 (1978)

18. Lombardi, M.: Robust scheduling of task graphs under execution time uncertainty. IEEE
Trans. Computers 62, 98–111 (2013)

19. Millot, D.: Scheduling on unspecified heterogeneous distributed resources. In: IEEE Int’l
Symp. on Parallel and Distributed Processing: Wkshps. and PhD Forum, pp.45–56 (2011)

20. Malewicz, G., Foster, I., Rosenberg, A.L., Wilde, M.: A tool for prioritizing DAGMan jobs
and its evaluation. J. Grid Computing 5, 197–212 (2007)

21. Malewicz, G., Rosenberg, A.L., Yurkewych, M.: Toward a theory for scheduling sc DAGs in
Internet-based computing. IEEE Trans. Comput. 55, 757–768 (2006)

22. Nurmi, D., Wolski, R., Brevik, J.: Model-based checkpoint scheduling for volatile resource
environments. In: Cluster 2005 (2005)

23. Policella, N.: Scheduling with uncertainty: A proactive approach using partial order sched-
ules. AI Communications 18, 165–167 (2005)

24. Radulescu, A., van Gemund, A.J.C.: On the complexity of list scheduling algorithms for
distributed memory systems. In: 13th Int’l Conf. on Supercomputing, pp.68–75 (1999)

25. Rosenberg, A.L.: On scheduling mesh-structured computations for Internet-based comput-
ing. IEEE Trans. Comput. 53, 1176–1186 (2004)

26. Sarkar, V.: Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press,
Cambridge (1989)

27. Sidney, J.B.: Decomposition algorithms for single-machine sequencing with precedence re-
lations and deferral costs. Operations Res. 23(2), 283–298 (1975)

28. Smith, W.: Various optimizers for single-stage production. Naval Res. Logistics Quart. 3,
59–66 (1956)

29. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel and Distr. Systs. 13, 260–274
(2002)

30. Woeginger, G.J.: On the approximability of average completion time scheduling under prece-
dence constraints. Discr. Appl. Math. 131, 237–252 (2003)

31. Yao, S., Lee, H.-H.S.: Using mathematical modeling in provisioning a heterogeneous cloud
computing environment., pp. 55–62. IEEE Computer (August 2011)

32. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapReduce perfor-
mance in heterogeneous environments. In: 7th USENIX Symp. on Operating System Design
and Implementation (2008)

33. Zheng, W.: A monte-carlo approach for full-ahead stochastic DAG-scheduling. In: 26th IEEE
Int’l Parallel and Distributed Processing Symp.: Wkshps. and PhD Forum, pp. 99–112 (2012)

Software Defined Multicasting for MPI Collective
Operation Offloading with the NetFPGA

Omer Arap1, Geoffrey Brown2, Bryce Himebaugh2, and Martin Swany1

1 Center for Research in Extreme Scale Technologies,
Indiana University, Bloomington, IN 47405, USA

{omerarap,swany}@crest.iu.edu
2 School of Informatics and Computing,

Indiana University, Bloomington, IN 47405, USA
{geobrown,bhimebau}@cs.indiana.edu

Abstract. Collective operations play a key role in the performance of many high
performance computing applications and are central to the widely used Message
Passing Interface (MPI) programming model. In this paper we explore the use of
programmable networking devices to accelerate the implementation of collective
operations by offloading functionality to the underlying network. In our work we
utilize a networked FPGA in conjunction with commercial OpenFlow switches
supporting multicast. The union of hardware configurable network interfaces with
Software Defined Networking (SDN) provides a significant opportunity to im-
prove the performance of MPI applications that rely heavily on collective opera-
tions. The programmable interfaces implement collective operations in hardware
using OpenFlow supported multicast. In our 8-node cluster, we observed up to
12% reduction in MPI Allreduce latency in dynamic schemes employing SDN;
and up to 22% reduction in static topologies. The results suggest more benefits if
our approach is deployed in larger settings with low latency switches.

Keywords: SDN, OpenFlow, MPI, NetFPGA, MPI Allreduce, MPI Barrier.

1 Introduction

This work introduces a powerful new capability in high performance computing (HPC)
environments based on the widely-used Message Passing Interface (MPI) [4]. Many
MPI-based applications depend heavily on collective operations, which encapsulate
multi-process communication and operation patterns in ways that are amenable to op-
timization. By enabling reconfiguration of the network based on the selected collective
algorithm utilizing Software Defined Networking (SDN) capabilities, and incorporating
MPI functionality in programmable network elements based on Field Programmable
Gate Arrays (FPGA), we can improve performance and reduce overhead for this impor-
tant class of parallel program functionality.

The MPI collectives can be implemented in various ways and major MPI suites [6]
[5] [3], select the specific collective algorithm based upon runtime parameters such as
message size, number of processes, underlying topology etc. Each algorithm constructs
a virtual topology between the processes. If the underlying physical topology does not

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 632–643, 2014.
c© Springer International Publishing Switzerland 2014

Software Defined Multicasting for MPI Collective Operation Offloading 633

overlap with the selected algorithm’s virtual topology, the performance of the collective
operation may suffer. Determining the underlying topology in advance and choosing
the best fitting collective algorithm has been studied in the past [13]. In addition, for
the specific topologies more efficient algorithms have been proposed [21]. In contrast,
in this work we configure the network according to the chosen algorithm in the runtime
benefiting SDN capabilities. We benefit from software defined multicast rules rather
than specific protocol’s static multicasting capabilities to enhance the performance of
collective operations.

Collective operations involving implicit synchronization mostly benefit from our
multicasting architecture when the release phase of the algorithm is executed. In tree
based algorithms, the root process receives the data from its children and it produces
the final outcome along with generating release message. Multicasting reduces extra
copies of the same data packets for different recipients after the release is issued by the
root. We also have a modified version of the recursive doubling algorithm [10] which
significantly benefits from the underlying network’s multicasting capabilities.

Specialized interconnects have been extensively considered in HPC environments
and indeed HPC has driven interconnect technology at times. The NetFPGA platform
[17] has a significant code-base and provides the fine-grained programmability with
hardware logic performance compared to the non-FPGA interconnects. We study col-
lective operation offloading utilizing the NetFPGA platform. The NetFPGA platform is
mainly used for prototyping networking devices such as switches and routers that are
are broadly deployed in the core of the network. Therefore, the platform builders did
not focus on optimizing the communication between the host and the NetFPGA; and it
does not have features such as zero-copy, early memory registration, interrupt coalesc-
ing that are commonly provided in modern HPC interconnects. Therefore, our goal in
this work is enhancing the collective operation after it is offloaded to the network.

The remainder of this paper is organized as follows: Section 2 presents background
information and related work. Section 3 outlines the implementation details and archi-
tectural design. Section 4 presents the method of evaluation and performance results.
Section 5 provides discussion about future work and concludes the paper.

2 Background and Related Work

The NetFPGA is an open-source network interface device and software ecosystem de-
veloped at Stanford University. Field-Programmable Gate Arrays (FPGA) are hardware
devices that implement programmable logic. An FPGA consists of reconfigurable logic
blocks that are programmed with a high-level description language (HDL) such as Ver-
ilog and VHDL. The NetFPGA platform has been used extensively for network ex-
perimentation [12, 18, 19, 22]. The hardware design and supporting software are open
source. The NetFPGA project provides a framework consisting of an OS driver, reusable
hardware modules, and designs for reference projects.

The first generation of the NetFPGA has four 1Gb/second Ethernet ports. Recently, a
new version of the NetFPGA, the NetFPGA 10G [9], was released with four 10Gb/sec-
ond Ethernet ports and a more capable FPGA component. Due to the increased perfor-
mance requirements for operating four 10G ports at line rate, much of the infrastructure

634 O. Arap et al.

for the 1G platform must be substantially reworked. Those efforts are ongoing and mak-
ing rapid progress toward providing the same functionality and stability as the previous
iteration.

SDN is emerging as a powerful new paradigm in network architecture that enables
fine-grained programming of the network’s “forwarding plane”. SDN is implemented
by the burgeoning OpenFlow protocol, and indeed the development and adaption of
OpenFlow drove the shift toward thinking of network hardware behavior being defined
by software rather than protocols. OpenFlow enables software definition of switching
hardware forwarding decisions, which can operate at the speed of the hardware. Re-
searchers are interested in OpenFlow as it is possible to implement new approaches to
networking on real hardware without suffering the overheads of software routers.

There is not much published work related to HPC employing SDN. However, it is
becoming very popular in the HPC community and there are efforts incorporating SDN
into the HPC. Kawai [15] provides brief discussion about HPC and SDN and claims that
there is a high potential in SDN to support HPC community. [16] presents MPI Bcast
implementation using an SDN framework. Our work is distinct from this work in several
respects. We provide a generic environment to implement any MPI collective operations
with flexibility of reconfiguration of network in the runtime based on the selected algo-
rithms. In contrast, they study MPI Bcast using a single multicast scheme which does
not even require SDN. While this work only focuses on software level optimizations on
MPI Bcast, we provide collective operation offload, which significantly increases the
performance of any collective operation.

Collective operation offload has been studied in the past on various platforms. Out
of many, CORE-Direct [1] technology by Mellanox is very popular nowadays among
its industry competitors. The CORE-Direct feature was first presented by Graham et
al. [11] demonstrating how task lists could be generated to implement offloaded ver-
sions of collective operations. Moreover, Kandalla et al. [14] studied non-blocking
MPI Allreduce on an InfiniBand cluster employing this collective offload mechanism.
They created a task list for the non-blocking MPI Allreduce operation by performing
an offloaded version of the recursive doubling algorithm. This function employs ex-
plicit wait tasks between stages. Our work provides a modified version of recursive
doubling algorithm which removes the wait operation between stages to utilize multi-
casting feature of underlying network [10]. One disadvantage of the CORE-Direct is
that it can only support binary operations of scalar values. Offloaded reductions on vec-
tor data requires more advanced hardware support which we provide in our NetFPGA
implementation.

Mamidala et al. [20] studied MPI Barrier and MPI Allreduce on InfiniBand cluster
utilizing hardware level multicast. They also focus on the cases where there are pro-
cesses reaching the collective point later than other processes on tree based schemes.
Their adaptive algorithm does not have static root, and when there is a late process the
preassigned root passes the token to the skew process and it becomes the new root and
finally generates the release message. Our work shares similar motivation but differs
from this work in various aspects. We utilize multicasting in tree-based schemes but
also for recursive doubling. Further, our approach has the potential to be extended to
other algorithms. Our multicasting scheme also is not static and with the help of SDN

Software Defined Multicasting for MPI Collective Operation Offloading 635

we create multicasting rules and addresses based on the collective algorithm. In ad-
dition, we do not rely on single multicast address. We generate forwarding rules and
multicast addresses for each single rank that may have different roles in the overall
algorithm.

3 Architecture and Implementation Details

In this section we present our experimental architecture and provide more information
about supported collective operations and associated algorithms. We conclude with a
detailed micro-architecture discussion about each component.

3.1 Overall Architecture

Our experimental architecture consists of the following major components: MPI pro-
cesses on the host(s) communicating through NetFPGA based network interfaces, con-
nected by an OpenFlow switch, which is controlled by an OpenFlow controller. MPI
Communicators define the subset of the processes in an MPI job that participate in the
collective operation.MPI COMM WORLD is the communicator that includes all the ranks
in the MPI job.

When a new communicator is created, initialization code is also executed. The ini-
tialization code sets up the environment in the network for the offloading of collective
operations associated with that communicator. When a collective operation is run on
that specific communicator, the NetFPGAs, in conjunction with the OpenFlow switches,
identify which algorithm will be used to perform the specific collective.

The OpenFlow controller installs a rule in the switch in order to recognize initializa-
tion requests. These requests get forwarded to the controller. An MPI process generates
an initialization UDP packet and sends it to the NetFPGA. The NetFPGA updates some
packet fields so that the OpenFlow switch distinguishes this packet from regular Ether-
net traffic and forwards it to the controller. The controller creates custom multicasting
rules and addresses after it receives the initialization request from all ranks in the com-
municator. The generated multicast addresses are sent to the NetFPGAs and stored for
further processing of the collective algorithm. The controller installs the forwarding
rules whose actions are based on the multicast address and incoming port. We call this
software defined multicasting which is different than the static multicasting defined by
a specific networking protocol.

3.2 Solution Space

Currently, our implementation supports MPI Barrier and MPI Allreduce operations.
MPI Barrier is a synchronization mechanism for participating processes to ensure that
all processes have reached the barrier point in their execution. MPI Allreduce combines
the values of all processes by applying the reduction operation, and finally all processes
receive the same result. While MPI supports many reduction operations on diverse data
types, our current NetFPGA implementation is restricted to MPI SUM, MPI MIN and
MPI MAX over MPI INT and MPI DOUBLE data. The remaining discussion is limited
to MPI Allreduce of which MPI Barrier can be considered a special case.

636 O. Arap et al.

3.3 Micro-architecture

In this section, we provide details of the major components of our design.

3.3.1 NetFPGA Processing
The NetFPGA is the major component of our architecture. Our NetFPGA configura-
tion for MPI leverages the existing NetFPGA code base; our MPI module resides in the
user data path defined by the NetFPGA architecture. Figure 1 shows the block diagram
of the MPI module in the user data path. The MPI Preprocessor submodule detects if
the received packet is an MPI packet and retrieves necessary information from the MPI
header. Parsed MPI header fields are latched in the MPI Info Fifo and based on these
MPI header fields, the module uses the appropriate network-level state machine. Not all
the components of the module are utilized for every collective operation. We integrated
a pipelined version of the double precision floating point unit (FPU) [2]. We only uti-
lize this core when the data type is MPI DOUBLE and the operation is MPI SUM and
the collective operation is MPI Allreduce. The MPI module itself employs two state
machines: a word-level state machine and a packet-level state machine. The word-level
state machine is to make changes in the packet fields or data being streamed through
the NetFPGA. The packet-level state machine employs the logic of the collective al-
gorithm and state transitions are based on the packet types it receives. For reduction
based collectives such as MPI Allreduce, we need packet buffers to store the result of
the reduction operation of the previous state. When new data arrives and the state of the
collective operation is in a state that requires reduction, the state machine applies the
reduction operation on received data and previously stored data in the packet buffers.

Fig. 1. Block diagram of MPI Verilog module embedded in user data path

3.3.2 Controller
We selected OpenDaylight [7] as our controller implementation platform. Our imple-
mentation is built on top of a learning switch module that is available with the distribu-
tion. At boot time, the controller inserts a specific rule for communicator initialization.
When each rank calls MPI Init or a new communicator is created, the communicator
initialization routine generates a UDP packet with the specific port number so that the
NetFPGA can distinguish it from regular Ethernet traffic. When the NetFPGA recog-
nizes that packet type, it updates the MAC header’s source field with the UDP port
number and forwards it to the switch. Because of the rule installed in the boot time, the
switch is configured for that address and forwards the received packet to the controller.

Software Defined Multicasting for MPI Collective Operation Offloading 637

The controller parses the packet and extracts the information about the communicator.
If it is the first packet for that communicator it creates a dictionary entry to store the in-
formation about this communicator. The controller also maps the ranks to the incoming
ports. When each rank in that communicator makes the call, the controller generates
the multicast addresses and forwarding rules according to the algorithm associated with
this communicator.

3.3.3 Multicast Addresses
Each algorithm implicitly defines a collection of ranks, and how a specific rank commu-
nicates. For example, for the ring algorithm, rank i only sends a packet to rank i+1. In
the case of binary tree scheme, the root rank sends packets to its children, while an inter-
nal rank sends packets to both its children and parent. A leaf rank only sends packets to
its parents. For the recursive doubling pattern, a rank communicates with log2 P num-
ber of other ranks. Therefore, based on the algorithm and rank’s role, each NetFPGA
needs different set of multicast addresses according to the state it is in. The controller
generates those addresses for each ranks NetFPGA and installs the forwarding rules on
the OpenFlow switch.

When a collective operation is offloaded to the network, the host is not involved until
the final outcome is generated. Because OpenFlow switches forward based upon L2/L3
headers and all communication occurs between programmed NICs, we have the free-
dom to generate our own L2/L3 multicast protocol. To support multicast, we generate
multicast addresses as MAC addresses.

The 48-bit MAC address is divided into two parts. The first part is the base ad-
dress which is the Comm ID, specific identifier of the communicator. The second part
provides an encoding of neighbor ranks of a specific rank for a specific stage of an algo-
rithm. For the ring algorithm, it is trivial since each rank only sends packet to the next
rank. So, the multicasts address would be {Comm ID:00:00:00:01} for each NetFPGA.
For the binary tree, it is also deterministic. Only the last three bits are used and the first
bit is for sending a packet to the left child, the second bit is for sending a packet to
right child and the third bit is for sending a packet to the parent rank. Because there is
no state in the scheme where a rank sends packets to both its children and its parent,
there is no need to generate an address and rule for that behavior. Therefore, the con-
troller generates {Comm ID:00:00:00:03} address for sending packets to the children
and {Comm ID:00:00:00:04} for sending packets to its parent.

Unlike tree based patterns, the traditional recursive doubling algorithm does not uti-
lize multicasting; ranks exchange messages with a single other rank during each step.
However, the algorithm assumes every rank arrives at the collective point in their ex-
ecution at essentially the same time. This is almost impossible as we showed in [10].
Therefore, ranks need to deal with unexpected messages if they arrive at the collective
operation point later than other ranks in the communicator. To recover from that kind
of situation we could apply multicasting to the recursive doubling algorithm with the
support of message tagging. Indeed, message tagging is not even necessary for the col-
lectives that do not involve any reduction operation on the data such as MPI Allgather
and MPI Barrier. The communication pattern is equivalent to that of the release state
of a binomial tree if there is a single late rank. Figure 2.a depicts the schedule of the
message when each rank reaches collective point at the same time and runs a perfect

638 O. Arap et al.

Fig. 2. Recursive doubling pattern: a. Perfect recursive doubling b. One late rank c. Corresponding
binomial tree

recursive doubling. On the other hand, in Figure 2.b, rank 0 is the late process arriv-
ing at the collective after all the other ranks are finished exchanging messages between
each other and Figure 2.c presents how the ranks would be dynamically organized as a
binomial tree if that scenario occurs. The multicast addresses generated for this scheme
requires deeper analysis, which we provide in the next section.

3.3.4 Multicast Rule Space
The number of forwarding rules installed is important because of the limited rule ca-
pacity of the OpenFlow switch. We need to determine how many forwarding rules a
scheme requires. The analysis is trivial for ring algorithm where there is no actual mul-
ticasting but simple forwarding between the ranks. Each rank is connected to the next
rank, so if the number of processes is P we need to install P of rules.

In the case of a full complete binary tree, if the depth of the tree is d, there are at
most 2d leaf ranks that need only one rule to send messages to their parents. There
are at most 2d − 2 internal ranks which need 2 separate rules for sending message to
their parents and children. The root rank only needs a rule to send a message to its
children. So, the total number of rules for the full complete binary tree would be at most
2d + 2 ∗ (2d − 2) + 1 which is 3 ∗ 2d − 3. The maximum number of nodes in a full
complete binary tree, P , can be at most 2d+1 − 1. So the total rules need to be installed
on the switch would be at most 3 ∗ P+1

2 − 2.
For the recursive doubling, in the traditional algorithm each rank communicates with

a single rank in each stage and the total number of ranks it communicates is log2 P .
Since there are P processes the total number of rules would be P ∗ log2 P . How-
ever, with our modified algorithm each rank has the ability to send multicast messages
to ranks. There are log2 P ranks a rank can send messages to. Therefore, there are
2log2P − 1 possible multicast addresses. Indeed, we do not need to create all those ad-
dresses since a rank can only send multicast message to the ranks that are consecutive
in the stages of the recursive doubling algorithm. For example, if the communicator

Software Defined Multicasting for MPI Collective Operation Offloading 639

size is 8, rank 0 communicates with rank 1,2 and 4. According to our modified al-
gorithm, a rank can only send messages to consecutive ranks. So, there is no need to
have a multicast address to send multicast message to rank 1 and 4 at the same time.
As explained in the previous section, the ranks that a given rank sends messages to
are encoded. A bit position represents the stage and the rank to be communicated in
that stage. Thus, for rank 0, bit position 0 indicates if it is sending a packet to rank
1, bit position 1 indicates if it is sending a packet to rank 2 and the bit position 2
indicates if it is sending a packet to rank 4. Since there are log2P bit slots for an ad-
dress, there are log2P possible address if the consecutive rank size is 1, log2P − 1
if the consecutive rank size is 2, log2P − 2 if the consecutive rank size is 3 and
so on. So, the total would be log2P∗(log2P+1)

2 . Since this is the number of addresses
generated for each process, the total number of rules to be installed in the OpenFlow
switch would be P ∗ log2P∗(log2P+1)

2 . For an 8-process setting, these are going to be
the multicast addresses for the recursive doubling algorithm: {Comm ID:00:00:00:01},
{Comm ID:00:00:00:02}, {Comm ID:00:00:00:04}, {Comm ID:00:00:00:03},
{Comm ID:00:00:00:06}, {Comm ID:00:00:00:07}.

4 Evaluation

In this section, we present performance improvements of multicasting with SDN on
the recursive doubling algorithm and provide the details of the methodology of our
empirical study. Then, we present latency measurements of MPI Allreduce employing
the recursive doubling algorithm focusing on various aspects of offloaded operation.
We did not provide separate results for MPI Barrier since it can be considered a special
case of MPI Allreduce with data size 0. We also do not present results for the ring and
binary tree implementations since there is no multicasting benefit provided by the ring
topology and static multicasting would also achieve the same benefit for the binary tree
scheme. Finally, we provide estimated results for the newest generation NetFPGA-10G.

Our experimental setup consists of a Pronto-3290 OpenFlow enabled switch, 8 NetF-
PGAs in hosts with Intel(R) Core i5-2400 at 3.10GHz CPUs, 4GB RAM, and dual Gi-
gabit Ethernet NICs. We also present performance results for static network topolo-
gies where the NetFPGAs were directly connected to the each other. In this paper,
we present micro-benchmark results obtained running a modified version of the OSU
Micro-Benchmark Suite [8] for MPI Allreduce.

Even though we could estimate the time spent after the collective operation is of-
floaded to the network, in our design the NetFPGA has a feature to measure the time
for the collective operation after it is offloaded. It records the time when it receives the
offload request from the host. When it reaches a release state, it attaches the elapsed time
to the overall collective result for that specific host. Our modification to the benchmark
utilizes this feature and isolates the host’s operating system overhead and the network’s
processing time. In addition, based on the use of generated multicast addresses, the
NetFPGA keeps track of the message transfers saved for each collective operation and
notifies the host process along with the collective result.

Figure 3 shows the percentage savings for number of messages generated by the
ranks running the recursive doubling algorithm. When a rank sends a message with

640 O. Arap et al.

Fig. 3. Percentage savings of generated messages by all ranks compared to the traditional recur-
sive doubling algorithm

multicast address that sends a message to 2 different ranks, we record that as a benefit
of 1 message. The NetFPGA accumulates those savings and reports it to the host pro-
cess. Our modified benchmark sums up all the savings of each rank and calculate final
percentage saving. For the recursive doubling scheme there are nlog2n messages being
exchanged between ranks if there were no multicasting. For an 8-node setting if there is
a single late rank, instead of 24 messages, there are 20 messages generated and it results
in 16.67% savings. There are various scenarios where the saving is even more. Increase
in the communicator size would also increase the probability of multicasting. The re-
cursive doubling scheme does not benefit from multicasting when each rank reaches the
collective point at the same time and messages are received in each stage at the same
epoch. In our previous work [10], we demonstrated that it is very unlikely to occur in
larger settings.

The static network configuration in which the NetFPGAs connect directly to the each
other provides more benefit. The point-to-point latency is less because of the absence
of the OpenFlow switch processing overhead. An increase in the point-to-point latency
reduces the probability of unexpected messages, which would increase the chance of

(a) 4-Node (b) 8-Node

Fig. 4. Average MPI Allreduce latency introduced by the NetFPGA network for recursive dou-
bling algorithm on MPI DOUBLE applying MPI MIN operation

Software Defined Multicasting for MPI Collective Operation Offloading 641

perfect recursive doubling. Because the packet processing time is a portion of the point-
to-point latency, it is evident that an increase in the message size results in an increase
of the probability to observe perfect recursive doubling behavior.

As we state in previous sections, we did not focus on optimizing the NIC’s host in-
terface. Therefore, the latency results presented are significantly higher than modern
interconnects. Figure 4 presents results after the collective operation is offloaded to the
network and Figure 5 provides results for overall latency including the host overhead
for offloading the collective to the NIC. When the NetFPGAs are directly connected,
it provides promising results. The newest generation NetFPGA has great potential to
improve those results. When we utilize the OpenFlow switch to make our design dy-
namic, we pay the price of switching cost. The OpenFlow switch in our scheme seems
to be the bottleneck and is not a low latency switch. The latency is more than double
for short messages. When the message size increases for MPI Allreduce the difference
is reduced but is still significant.

We provide estimated results for the new generation NetFPGA-10G in Figure 6b
based on the single packet processing times. Figure 6a also presents single packet pro-
cessing times for various message sizes. When the size of the message increases, the

(a) 4-Node (b) 8-Node

Fig. 5. Average MPI Allreduce latency on host processes for recursive doubling algorithm on on
MPI DOUBLE applying MPI MIN operation

(a) Single packet processing times (b) Binary Tree

Fig. 6. Single packet processing times for various message sizes and estimated results for
NetFPGA-10G based on single packet processing times

642 O. Arap et al.

NetFPGA-10G network provides significant performance benefits. In addition, when
the message size increases, the OpenFlow switch’s overhead ratio against the NetF-
PGA’s processing time also decreases.

5 Conclusion and Future Work

In this paper, we presented an experimental study showing how MPI collective opera-
tions can benefit from SDN using software defined multicasting in conjunction with
a highly programmable NIC, the NetFPGA. When the collective operations are of-
floaded to the underlying network, the network has an opportunity to utilize multicast-
ing scheme independent of the host’s L2/L3 protocols. We also designed our multicast-
ing scheme based on the collective operation algorithm. The SDN controller configures
the network and creates custom forwarding rules for the offloaded collective operation
in the runtime.

SDN is a new paradigm that is not widely utilized in HPC community. This is our
first attempt to utilize OpenFlow switches in an HPC cluster. We believe there is great
potential for further research in this area. This approach provides not only performance
benefits for various parallel applications but also supports potential algorithmic im-
provements. We plan to investigate other reduction-based collective operations such as
MPI Reduce and MPI Scan which do not have to involve implicit synchronization, un-
like the collectives presented in this work. In addition, we plan to adapt our collective
offload implementation to the NetFPGA-10G which can compete with modern HPC
interconnects in terms of performance.

References

1. CORE-Direct The Most Advanced Technology for MPI/SHMEM Collectives Offloads,
http://www.mellanox.com/related-docs/
whitepapers/TB CORE-Direct.pdf

2. double fpu verilog: Overview: OpenCores,
http://opencores.org/project,double_fpu

3. Intel MPI Library Reference Manual for Linux OS,
http://software.intel.com/sites/products/documentation/hpc/
ics/impi/41/lin/Reference Manual/I MPI ADJUST Family.htm

4. MPI: A Message-Passing Interface Standard,
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

5. MPICH : High-Performance Portable MPI, http://www.mpich.org
6. Open MPI: Open Source High Performance Computing, http://www.open-mpi.org
7. OpenDaylight — A Linux Foundation Collaborative Project, www.opendaylight.org/
8. OSU Micro-Benchmarks 4.0,

http://mvapich.cse.ohio-state.edu/benchmarks/
9. Antichi, G., Shahbaz, M., Giordano, S., Moore, A.: From 1G to 10G: Code Reuse in Action.

In: The First Edition Workshop, p. 31. ACM Press, New York (2013)
10. Arap, O., Swany, M., Brown, G., Himebaugh, B.: Adaptive Recursive Doubling Algorithm

for Collective Communication Operations. In: Submitted to 2014 IEEE International Con-
ference on Cluster Computing, CLUSTER (2014)

http://www.mellanox.com/related-docs/whitepapers/TB_CORE-Direct.pdf
http://www.mellanox.com/related-docs/whitepapers/TB_CORE-Direct.pdf
http://opencores.org/project,double_fpu
http://software.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/I_MPI_ADJUST_Family.htm
http://software.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/I_MPI_ADJUST_Family.htm
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpich.org
http://www.open-mpi.org
www.opendaylight.org/
http://mvapich.cse.ohio-state.edu/benchmarks/

Software Defined Multicasting for MPI Collective Operation Offloading 643

11. Graham, R., Poole, S., Shamis, P., Bloch, G., Bloch, G., Chapman, H., Kagan, M., Shahar, A.,
Rabinovitz, I., Shainer, G.: ConnectX-2 InfiniBand Management Queues: First Investigation
of the New Support for Network Offloaded Collective Operations. In: 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing (CCGrid), vol. 2, pp. 53–62
(2010)

12. Hanay, Y., Dwaraki, A., Wolf, T.: High-Performance Implementation of in-Network Traffic
Pacing. In: 2011 IEEE 12th International Conference on High Performance Switching and
Routing (HPSR), pp. 9–15 (2011)

13. Kandalla, K., Subramoni, H., Vishnu, A., Panda, D.K.: Designing Topology-aware Collective
Communication Algorithms for Large Scale Infiniband Clusters: Case Studies with Scatter
and Gather. In: 2010 IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), pp. 1–8. IEEE (2010)

14. Kandalla, K., Yang, U., Keasler, J., Kolev, T., Moody, A., Subramoni, H., Tomko, K., Vienne,
J., De Supinski, B., Panda, D.: Designing Non-blocking Allreduce with Collective Offload
on InfiniBand Clusters: A Case Study with Conjugate Gradient Solvers. In: 2012 IEEE 26th
International on Parallel Distributed Processing Symposium (IPDPS), pp. 1156–1167 (2012)

15. Kawai, E.: Can SDN Help HPC? In: 2012 IEEE/IPSJ 12th International Symposium on Ap-
plications and the Internet (SAINT), pp. 210–210 (July 2012)

16. Dashdavaa, K., Date, S., Yamanaka, H., Kawai, E., Watashiba, Y., Ichikawa, K., Abe, H.,
Shimojo, S.: Architecture of a high-speed mpi bcast leveraging software-defined network. In:
an Mey, D., et al (eds.) Euro-Par 2013 Workshops. LNCS, vol. 8374, pp. 885–894. Springer,
Heidelberg (2014)

17. Lockwood, J., McKeown, N., Watson, G., Gibb, G., Hartke, P., Naous, J., Raghuraman,
R., Luo, J.: NetFPGA - An Open Platform for Gigabit-rate Network Switching and Rout-
ing. In: IEEE International Conference on Microelectronic Systems Education, MSE 2007,
pp. 160–161. IEEE (2007)

18. Lombardo, A., Panarello, C., Reforgiato, D., Santagati, E., Schembra, G.: A Module for
Packet Hijacking in NetFPGA Platform. In: 2011 14th Euromicro Conference on Digital
System Design (DSD), pp. 283–286 (2011)

19. Lombardo, A., Reforgiato, D., Schembra, G.: An Accelerated and Energy-Efficient Traffic
Monitor Using the NetFPGA. In: Proceedings of the 19th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, pp. 277–277. ACM (2011)

20. Mamidala, A., Liu, J., Panda, D.: Efficient Barrier and Allreduce on Infiniband Clusters Us-
ing Multicast and Adaptive Algorithms. In: 2004 IEEE International Conference on Cluster
Computing, pp. 135–144 (September 2004)

21. Sack, P., Gropp, W.: Faster Topology-aware Collective Algorithms Through Non-minimal
Communication. In: ACM SIGPLAN Notices, vol. 47, pp. 45–54. ACM (2012)

22. Salmon, G., Ghobadi, M., Ganjali, Y., Labrecque, M., Steffan, J.G.: NetFPGA-based Precise
Traffic Generation. In: Proc. of NetFPGA Developers Workshop 2009 (2009)

MapReduce over Lustre:
Can RDMA-Based Approach Benefit? �

Md. Wasi-ur-Rahman, Xiaoyi Lu, Nusrat Sharmin Islam,
Raghunath Rajachandrasekar, and Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering,
The Ohio State University

{rahmanmd,luxi,islamn,rajachan,panda}@cse.ohio-state.edu

Abstract. Recently, MapReduce is getting deployed over many High Perfor-
mance Computing (HPC) clusters. Different studies reveal that by leveraging
the benefits of high-performance interconnects like InfiniBand in these clusters,
faster MapReduce job execution can be obtained by using additional performance
enhancing features. Although RDMA-enhanced MapReduce has been proven to
provide faster solutions over Hadoop distributed file system, efficiencies over par-
allel file systems used in HPC clusters are yet to be discovered. In this paper, we
present a complete methodology for evaluating MapReduce over Lustre file sys-
tem to provide insights about the interactions of different system components in
HPC clusters. Our performance evaluation shows that RDMA-enhanced MapRe-
duce can achieve significant benefits in terms of execution time (49% in a 128-
node HPC cluster) and resource utilization, compared to the default architecture.
To the best of our knowledge, this is the first attempt to evaluate RDMA-enhanced
MapReduce over Lustre file system on HPC clusters.

Keywords: MapReduce, RDMA, Lustre, HPC Clusters.

1 Introduction

The explosive growth of ‘Big Data’ has caused many industrial firms to adopt HPC
technologies to meet the requirements of huge amount of data to be processed and
stored. According to the IDC study [6] in 2013, 67% of HPC sites were running High-
Performance Data Analysis (HPDA) workloads. Hadoop MapReduce [21] and Hadoop
Distributed File System (HDFS) [16] are increasingly being used on modern HPC clus-
ters [17,4] to process HPDA workloads.

The default Hadoop design mainly focuses on the commodity servers which are typ-
ically equipped with low-bandwidth interconnects. These clusters often have multiple
large-capacity local HDDs to achieve better data-locality for MapReduce jobs. In con-
trast, modern HPC clusters [17,4] have quite different execution environments, where

� This research is supported in part by National Science Foundation grants #OCI-1148371,
#CCF-1213084 and #CNS-1347189. It used the Extreme Science and Engineering Discov-
ery Environment (XSEDE), which is supported by National Science Foundation grant number
OCI-1053575.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 644–655, 2014.
c© Springer International Publishing Switzerland 2014

MapReduce over Lustre: Can RDMA-Based Approach Benefit? 645

high-speed interconnects, like InfiniBand, 10 Gigabit Ethernet (10 GigE), and high per-
formance but smaller capacity local disks are commonly used. In addition, a global file
system, like Lustre [24], is often shared by all the compute nodes to meet the storage re-
quirements of HPC applications. If we directly run default Hadoop on HPC clusters, it is
hard to achieve optimal performance; because, recent studies [14,23,8,13,10,2,5] have
shown that default Hadoop components can not leverage HPC cluster features, like Re-
mote Direct Memory Access (RDMA) enabled high performance interconnects, high-
throughput and large capacity parallel file systems, etc. efficiently. InfiniBand is the
most popular RDMA-enabled high-performance interconnect in TOP500 [22], while
Lustre [24] is widely deployed on modern HPC clusters.

1.1 Motivation and Related Studies

The use of Lustre, in particular, with the MapReduce architecture has attracted signifi-
cant attention within the Big Data community. The evaluations in [9,2,15] argue for the
use of Lustre as the back-end file system for Apache Hadoop MapReduce in HPC clus-
ters. On the other hand, recent studies [14,13] show that by leveraging the benefits of
RDMA, the overall performance of Hadoop MapReduce can be significantly improved
with many additional design features. Both default and RDMA-enhanced designs of
MapReduce have been well studied and evaluated with default and RDMA-enhanced
HDFS designs.

Table 1. Existing Performance Studies on MapReduce Designs

Apache HDFS RDMA HDFS Lustre
Apache MapReduce [21,16] [8] [2,15,9]
RDMA MapReduce [14,23,13] [11] N/A (this paper)

Table 1 summarizes the existing studies on different combinations of MapReduce
designs with different file systems. As shown here, the benefits of RDMA-enhanced
MapReduce over Lustre are not yet discovered. In this regard, an obvious question
arises: Can RDMA-based Approaches Benefit MapReduce over Lustre?

1.2 Contributions

This paper addresses this issue by comparing our RDMA-enhanced MapReduce [14]
solution with default MapReduce over Lustre. The primary contributions of this paper
are as follows:

1. A demonstration of the potential of RDMA-enhanced MapReduce over Lustre de-
ployments on leadership-class HPC systems,

2. A comprehensive methodology, to evaluate MapReduce solutions over parallel file
systems provisioned on such HPC systems, and to understand the behavior of
Hadoop on HPC resources, and

3. A thorough evaluation of both default and RDMA-enhanced designs of MapRe-
duce, to give insights into the benefits of RDMA in terms of scalability, perfor-
mance, and resource utilization efficiency.

646 M.W. Rahman et al.

In our performance evaluations, we observe 49% benefit in job execution time for
the Sort benchmark with an increasing cluster size of up to 128 nodes in Cluster TACC-
Stampede. On SDSC-Gordon, a 43% benefit in job execution time is observed in com-
parison to the default architecture, on evaluations up to 64 nodes. To the best of our
knowledge, this is the first paper to show the benefits of RDMA-enhanced MapReduce
over Lustre in production HPC clusters.

2 Evaluation Methodology

In this section, we discuss our evaluation methodology in detail.

2.1 Evaluation Platforms

Most of the modern HPC clusters follow a hybrid topological solution of traditional
Beowulf architecture [19,20] with separate I/O service nodes. The architecture of these
clusters opens the possibility of keeping lean compute nodes with lightweight operat-
ing system and limited storage capacity [3], connected to a sub-cluster of dedicated I/O
nodes with enhanced parallel file systems, such as Lustre, to provide fast and scalable
solutions. Figure 1(a) shows such a deployment where dedicated I/O nodes are reserved
as Metadata Servers (MDS) and Object Storage Targets (OST) for Lustre, that are con-
nected to the client compute nodes through high performance interconnects, typically
InfiniBand or 10 GigE. Each of the compute nodes has small local storage as well as
Lustre client to read/write data to Lustre. When a MapReduce framework is configured
to run in such a cluster, TaskTrackers and Map/Reduce Tasks are launched in compute
nodes. These processes use the local storage for temporary data and Lustre for persistent
storage. Typically, a MapReduce application can be CPU-, I/O-, and/or network-bound
as it goes through different stages involving any or a combination of these operations.
Thus, we propose an evaluation methodology that considers application behavior for all
system and configuration settings.

2.2 Dimensions in Methodology

To propose an evaluation methodology for such deployment, we emphasize three broad
dimensions, shown in Figure 1(b).

Different HPC Clusters: Popular clusters used in the HPC community vary based on
the number of system, network, and I/O resources available which brings variations in
application performance behavior. Also, difference in configuration and problem size
add further variability on performance for MapReduce jobs over any file system. In this
paper, we choose three clusters with MapReduce over Lustre deployment. Among these,
TACC-Stampede [17] is one of the largest supercomputing system based on 6,400+
Dell PowerEdge server nodes. According to TOP500 [22] list in November 2013, this
cluster is listed as the 7th fastest supercomputer worldwide with a delivered performance
of 5,168.1 TFlops. SDSC-Gordon [4], ranked 129th in the same list, is another large
HPC cluster that we use for our evaluation. We choose these clusters to bring enough
variations in our experimental setup. For example, these two clusters differ in Lustre

MapReduce over Lustre: Can RDMA-Based Approach Benefit? 647

(a) MapReduce over Lustre on modern HPC clusters

Benchmarks
and Workloads (Micro,

Macro,
Real-time)Different HPC

Clusters (scaling up
data size,

cluster size)
Resource Utilization

(CPU, Network,
Memory, I/O)

(b) Different dimensions in methodology

Fig. 1. Evaluation basis and dimensions

interconnect (10 GigE in SDSC-Gordon and InfiniBand FDR in TACC-Stampede) as
well as interconnect for compute nodes (InfiniBand QDR vs FDR). The third cluster
we choose has InfiniBand QDR as the interconnect for both Lustre and compute nodes.

Benchmarks and Workloads: We select a set of benchmarks and workloads to facil-
itate variations in workload characteristics. We categorize the benchmarks into three
different types: micro-benchmarks, macro-benchmarks, and real-world workloads. For
micro-benchmark, we select the Sort, as this is one of the simplest and most popular
MapReduce benchmarks with minimal user-defined map() and reduce() function-
ality. For macro-benchmarks, we select five different benchmarks from Purdue MapRe-
duce Benchmark Suite (PUMA) [12,1] based on the benchmark characteristics. In
particular, we consider the ratio of the data volume that gets shuffled to the data volume
in computation and choose two shuffle-intensive (Adjacency List and Self Join) and two
compute-intensive (Word Count and Inverted Index) benchmarks to introduce enough
variation in our evaluation. However, we also pick Sequence Count benchmark that
qualifies for both as it has both computation and shuffle over large volume of data. We
also choose the Statistical Workload Injector for MapReduce (SWIM) [18] that provides
real-world workload from production clusters in Facebook. This workload consists of
many short-duration MapReduce jobs that run one after another in an overlapped man-
ner to mimic the workload characteristics in the data center environment.

Resource Utilization: Resource utilization determines the ability of a framework to
provide fast and scalable solutions. In this purpose, we select the following parameters.

CPU Usage: For most MapReduce applications, map() and reduce() phases
consume most of the CPU cycles, as these are user-defined functions that directly oper-
ate on the data. To provide more CPU cycles to these functions, the underlying frame-
work must keep the CPU free most of the time during its execution. Hence, it is critical
to understand CPU utilization patterns for any MapReduce framework.

Memory Usage: Most of the modern HPC clusters provide large amount of memory
on each machine that can be utilized during execution of MapReduce or any Big Data
applications to achieve faster job execution throughput. Although default MapReduce
relies heavily on both disk and memory usage, faster solutions are possible by utilizing
memory space more than disk. In this perspective, this parameter is crucial.

648 M.W. Rahman et al.

Network Throughput: With traditional network interfaces, the shuffle phase acts as
the bottleneck in the job execution pipeline due to their limited network bandwidth.
However, due to the presence of modern high performance interconnects in the HPC
clusters, the bottleneck in shuffle phase turns into the question of how efficiently the
available network bandwidth can be utilized by the MapReduce framework so that all
the other phases can benefit from faster data communication. With the profiling of this
parameter, differences of the underlying protocol stacks can also be discovered which
may help to realize the better network stack for such applications in HPC clusters.

I/O Usage: In Big Data applications, I/O usage is fundamental as the input and output
of the problem space are usually provided from and written to underlying file systems,
the storage of which is backed by HDDs, SSDs, or both. However, abundant use of
disks may cause slowness in the pipeline which reduces the performance of MapReduce
applications. In this perspective, I/O usage parameter is useful to visualize whether a
particular MapReduce framework can observe benefits by reducing significant number
of I/O operations. For any MapReduce framework, the initial read and final write phases
are obligatory. Thus, only the local I/O operations during shuffle phase are those that
can be reduced to have an impact in the overall job execution. In our evaluation, we
measure the IOPS (I/O per second) for the local disk.

2.3 Evaluation Methods

To measure different parameters mentioned in Section 2.2, we use Linux performance
monitoring tool, sar, provided as a part of the sysstat package. sar can be used
to measure real-time data for CPU, memory, and I/O usage. We measure all of the met-
rics on the entire cluster to monitor all the concurrent tasks for overall performance.
The sampling rate we use is two seconds. For reporting CPU usage, we use an arith-
metic average over all CPUs’ usage obtained from different machines in the cluster.
For memory and I/O usage, similar methods are followed by measuring the parameters,
free memory (kbmemfree) and transaction per second (tps), respectively. For network
throughput measurement, we profile the shuffle stage to report the amount of data trans-
fer at each point of time. We sum the total data transfer at the second granularity and
average over all data transfers in the cluster. This resembles the overall data transfer
capability in the shuffle phase of the corresponding framework.

3 Performance Evaluation

In this section, we discuss experimental setups and detailed performance evaluations.
Table 2 summarizes our three clusters’ configurations. The Lustre deployments at

OSU and TACC-Stampede are accessible through the InfiniBand interconnect, while
that at SDSC-Gordon uses a 10 GigE transport. We used hadoop-0.20.2 and Java 1.7
for our experiments. As InfiniBand software stacks provide a driver for implementing
the IP layer, we evaluate the default MapReduce over this layer. This is indicated as
“IPoIB” (IP-over-InfiniBand) in the subsequent graphs. The “RDMA” legends in the
graphs represent RDMA-enhanced MapReduce architecture [14] which uses native IB
for communication. QDR and FDR are mentioned as 32Gbps and 56Gbps, respectively.

MapReduce over Lustre: Can RDMA-Based Approach Benefit? 649

Table 2. Experimental setups used in this paper

Cluster OSU SDSC-Gordon TACC-Stampede
Nodes (cores) 25 (200) 65 (1040) 129 (2064)

Processor Intel Xeon E5640 Intel EM64T Xeon E5 Intel Sandy Bridge E5-2680
dual quad-core (2.67 GHz) dual octa-core (2.7 GHz) dual octa-core (2.6 GHz)

Memory 12/24 GB per node 64 GB per node 32 GB per node
Local disk single 160 GB HDD per node single 80 GB HDD per node single 80 GB HDD per node

Lustre 12 TB 4 PB 14 PB
OS Red Hat Enterprise Linux Server 6.4 CentOS 6.4 (Final) CentOS 6.3 (Final)

Interconnect InfiniBand QDR (32Gbps) InfiniBand QDR (32Gbps) InfiniBand FDR (56Gbps)
(compute nodes)

Interconnect (Lustre) InfiniBand QDR (32Gbps) 10GigE InfiniBand FDR (56Gbps)

3.1 Tuning of Lustre Stripe Size

The total number of launched map tasks in a MapReduce job execution depends on the
file system block size as each map reads one block of data. Tuning the block size can
get a good trade-off point between I/O and parallel task execution. For MapReduce over
Lustre, the Lustre stripe size is set to the block size to ensure that each block resides in
single OST, rather than a multiple number of OSTs. We use the Sort micro-benchmark
with different stripe sizes for both default architecture and RDMA-enhanced design.
For these experiments, we have used a cluster size of four with a data size of 20 GB.
A stripe size of 64 MB is proved to be optimum for IPoIB in Cluster OSU. However,
for RDMA-enhanced design, 256 MB stripe size obtains the best performance in terms
of job completion. For SDSC-Gordon, both IPoIB and RDMA have an optimum stripe
size of 256 MB. In Cluster TACC-Stampede, stripe size is tuned to a value of 128 MB
for IPoIB. For RDMA, performance is mostly similar across different stripe sizes start-
ing from 64 MB to 512 MB. We pick 256 MB as the optimum stripe size for RDMA-
enhanced design in TACC-Stampede. For the remaining experiments, we have used the
optimum Lustre stripe size obtained from these tunings.

3.2 Comparison of Progress in Different Phases

We measure the execution progress with respect to time for map and reduce phases and
compare the results in Figure 2. We show these results for Cluster TACC-Stampede and
SDSC-Gordon.

Figure 2(a) shows the map execution progress for 20 GB Sort in a cluster size of
four. Here, we can see that, map phase in RDMA-enhanced design finishes a little early
compared to that of default architecture. This is because RDMA-based shuffle allows
more CPU cycles to be available for map() execution. Also, the difference of map
progress between Cluster TACC-Stampede and SDSC-Gordon occurs because of the
difference in local disk write throughput between these two clusters (shown later in
Figure 8(c) and Figure 8(b)). For the reduce progress shown in Figure 2(b), we see that
the RDMA-enhanced approach is much faster in progress in both the clusters compared
to the default architecture because of its design features. However, the difference in
progress between the two clusters, TACC-Stampede and SDSC-Gordon, is primarily
due to the difference in the underlying Lustre write throughput. We perform write ex-
periments with IOzone [7] benchmark to measure throughput of Lustre file system in

650 M.W. Rahman et al.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

Jo
b

E
xe

cu
tio

n(
%

)

Time (s)

Stampede (IPoIB)
Stampede (RDMA)

Gordon (IPoIB)
Gordon (RDMA)

(a) Map progress

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

Jo
b

E
xe

cu
tio

n(
%

)

Time (s)

Stampede (IPoIB)
Stampede (RDMA)

Gordon (IPoIB)
Gordon (RDMA)

(b) Reduce progress

 0

 20

 40

 60

 80

 100

 120

 140

 64 128 256 512 1024

T
hr

ou
gh

pu
t (

M
B

ps
)

File size (MB)

Gordon
Stampede

(c) Lustre throughput

Fig. 2. Map and reduce phase progress comparison in different clusters

both clusters. As shown in Figure 2(c), SDSC-Gordon Lustre deployment has much im-
proved throughput (90 MBps average) compared to that (6.5 MBps average) of TACC-
Stampede.

3.3 Evaluation of Micro-benchmark

In these experiments, we measure the job execution time for both architectures and
compare them with varying cluster and data sizes.

 0

 50

 100

 150

 200

 250

 300

 350

 400

5 10 15 20

Jo
b
 E

x
ec

u
ti

io
n
 T

im
e

(s
ec

)

Data Size (GB)

34%

IPoIB (32Gbps)
RDMA (32Gbps)

(a) OSU (4 nodes)

 0

 50

 100

 150

 200

60 80 100

Jo
b
 E

x
ec

u
ti

io
n
 T

im
e

(s
ec

)

Data Size (GB)

33%
IPoIB (32Gbps)
RDMA (32Gbps)

(b) SDSC-Gordon (16 nodes)

 0

 200

 400

 600

 800

 1,000

 1,200

300 400 500

Jo
b
 E

x
ec

u
ti

io
n
 T

im
e

(s
ec

)

Data Size (GB)

44%

IPoIB (56Gbps)
RDMA (56Gbps)

(c) TACC-Stampede (32 nodes)

Fig. 3. Sort benchmark evaluation with variation in data size

Figure 3 presents the Sort benchmark evaluation on different clusters based on data
size variation. In Figure 3(a), we present the job execution times in Cluster OSU vary-
ing the data size from 5 GB to 20 GB. For increased data size, we observe a trend of
increase in improvement for RDMA-enhanced design. For 20 GB data size, it has a
performance benefit of 34% compared to IPoIB. For similar experiments in SDSC-
Gordon (Figure 3(b)), we vary data size from 60 GB to 100 GB. For this experiment, the
performance benefit of RDMA-enhanced approach is 33% for 100 GB Sort. In TACC-
Stampede (Figure 3(c)), we vary the data size from 300 GB to 500 GB. Here, we observe
a benefit of 44% for 500 GB Sort.

We also conduct experiments with simultaneous variations in both cluster and data
sizes. We present these results in Figure 4. Here, in Figure 4(a), we increase cluster
size from 4 to 16 with a data size increase of 20 to 80 GB for Cluster OSU. RDMA-
enhanced approach observes a benefit of 49% here for cluster size 16. For similar ex-
periments in SDSC-Gordon, we vary cluster size from 4 to 64 with data size increase of

MapReduce over Lustre: Can RDMA-Based Approach Benefit? 651

 0

 200

 400

 600

 800

 1,000

4 8 16

Jo
b
 E

x
ec

u
ti

io
n
 T

im
e

(s
ec

)

Cluster Size

49%
IPoIB (32Gbps)
RDMA (32Gbps)

(a) OSU

 0

 50

 100

 150

 200

 250

 300

 350

4 8 16 32 64

Jo
b
 E

x
ec

u
ti

io
n
 T

im
e

(s
ec

)

Cluster Size

43%

IPoIB (32Gbps)
RDMA (32Gbps)

(b) SDSC-Gordon

 0

 100

 200

 300

 400

 500

 600

4 8 16 32 64 128

Jo
b
 E

x
ec

u
ti

io
n
 T

im
e

(s
ec

)

Cluster Size

49%

IPoIB (56Gbps)
RDMA (56Gbps)

(c) TACC-Stampede

Fig. 4. Sort benchmark evaluation with variation in cluster and data size

up to 320 GB and observe a performance benefit of 43% for the largest cluster and data
size. For TACC-Stampede (Figure 4(c)), we vary the cluster size up to 128 nodes with
640 GB data size and achieve a performance benefit of 49%. In all these experiments,
we observe a trend of increase in performance benefit for RDMA-enhanced design as
we scale up both the cluster size and the data size. For TACC-Stampede, the benefit is
more compared to SDSC-Gordon because of the InfiniBand FDR interconnect.

3.4 Evaluation of Resource Utilization

In this section, we use profiling analysis to find out different system resource utilization.
We use Sort benchmark to evaluate all the metrics in a cluster size of four.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

C
P

U
 U

til
iz

at
io

n
(%

)

Job Execution (s)

IPoIB (32Gbps)
RDMA (32Gbps)

(a) OSU

 0

 10

 20

 30

 40

 50

 60

 70

 80

 30 60 90 120 150

C
P

U
 U

til
iz

at
io

n
(%

)

Job Execution (s)

IPoIB (32Gbps)
RDMA (32Gbps)

(b) SDSC-Gordon

 0

 10

 20

 30

 40

 50

 60

 70

 80

 50 100 150 200 250 300 350 400 450

C
P

U
 U

til
iz

at
io

n
(%

)

Job Execution (s)

IPoIB (56Gbps)
RDMA (56Gbps)

(c) TACC-Stampede

Fig. 5. Profiling CPU usage

CPU: We present the CPU usage for different clusters in Figure 5. Here, X-axis rep-
resents the job execution in seconds and Y-axis represents the average CPU usage at
each point of time during job execution. We profile CPU idle% on each machine in
the cluster and average across all the CPUs. As shown in Figure 5, in all the clusters,
default architecture is more CPU hungry compared to RDMA-enhanced approach. The
major reason behind this observation is that, RDMA-enhanced communication does
not require remote end’s CPU to perform data transmission. Besides, during the early
stage when all maps are running, the default architecture tries to shuffle the map output
data as much as possible, keeping the ReduceTasks busy and taking longer CPU cycles.
However, in RDMA-enhanced design, during this phase, the ReduceTasks are shuffling
only a small portion of map output data to build up the Priority Queue and thus takes

652 M.W. Rahman et al.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350

M
em

or
y

U
sa

ge
 (

G
B

)

Job Execution (s)

IPoIB (32Gbps)
RDMA (32Gbps)

(a) OSU

 0

 5

 10

 15

 20

 25

 30

 30 60 90 120 150

M
em

or
y

U
sa

ge
 (

G
B

)

Job Execution (s)

IPoIB (32Gbps)
RDMA (32Gbps)

(b) SDSC-Gordon

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300 350 400 450

M
em

or
y

U
sa

ge
 (

G
B

)

Job Execution (s)

IPoIB (56Gbps)
RDMA (56Gbps)

(c) TACC-Stampede

Fig. 6. Profiling memory usage

less CPU cycle. The average reductions in CPU usage for the three clusters in the order
of Figure 5 are 14%, 13%, and 28%, respectively.

Memory: We observe memory usage for both the architectures and present the com-
parisons in Figure 6. The memory requirements during the entire job execution are
similar for both architectures. However, RDMA-enhanced design utilizes free memory
better compared to the default architecture. From the time of initialization, the RDMA-
enhanced design capitalizes on using the available free memory space to achieve faster
job completion and thus reduces the duration of memory consumption for Cluster OSU,
SDSC-Gordon, and TACC-Stampede by 27%, 35%, and 57% respectively.

Network: In Figure 7, we present the comparison of shuffled data transfer during the
job execution. The X-axis represents the job execution progress in seconds and the Y-
axis represents the average data transfer from a single TaskTracker to all ReduceTasks at
each point of time during the job execution. It clearly shows that the default architecture
over IPoIB can not take advantage of network bandwidth as it transfers data during the
entire job execution process with an average throughput of only 24.75 Mbytes/sec in
Cluster TACC-Stampede (shown in Figure 7(c)). This also demonstrates the fact that
the pipeline efficiency in the default architecture is not good enough to handle large
amount of data shuffle at once.

 0

 50

 100

 150

 200

 50 100 150 200 250 300 350

T
ot

al
 S

hu
ffl

ed
 D

at
a

(M
by

te
)

Job Execution (s)

IPoIB (32Gbps)
RDMA (32Gbps)

(a) OSU (IB QDR)

 0

 50

 100

 150

 200

 250

 30 60 90 120 150

T
ot

al
 S

hu
ffl

ed
 D

at
a

(M
by

te
)

Job Execution (s)

IPoIB (32Gbps)
RDMA (32Gbps)

(b) SDSC-Gordon (IB QDR)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 50 100 150 200 250 300 350 400

T
ot

al
 S

hu
ffl

ed
 D

at
a

(M
by

te
)

Job Execution (s)

IPoIB (56Gbps)
RDMA (56Gbps)

(c) TACC-Stampede (IB FDR)

Fig. 7. Profiling network throughput

However, at the early stage of the job execution, ReduceTasks in RDMA-enhanced
design build the Priority Queue with the least amount of data transferred from each
map location. As soon as the map phase completes, it utilizes the network more and

MapReduce over Lustre: Can RDMA-Based Approach Benefit? 653

achieves an average throughput of 77 Mbytes/sec, thus observing 211% improvement
over default architecture. However, the average throughput after the map phase is as
high as 197 Mbytes/sec that clearly reflects how efficiently this architecture utilizes net-
work bandwidth as soon as it gets the opportunity. This also states the fact that, in the
RDMA-enhanced design, the pipeline efficiency after the map phase is good enough to
consider a high network throughput. For Cluster OSU (Figure 7(a)) and SDSC-Gordon
(Figure 7(b)), the absolute values of achievable network bandwidth for both the archi-
tectures are less due to the data rate of the network cards (QDR). However, RDMA-
enhanced design still observes an improvement in average network throughput of 29%
in both of these clusters.

 0

 50

 100

 150

 200

 250

 50 100 150 200 250 300 350 400

IO
P

S

Job Execution (s)

IPoIB (32Gbps)
RDMA (32Gbps)

(a) OSU

 0

 50

 100

 150

 200

 250

 50 100 150

IO
P

S

Job Execution (s)

IPoIB (32Gbps)
RDMA (32Gbps)

(b) SDSC-Gordon

 0

 50

 100

 150

 200

 50 100 150 200 250 300 350 400 450

IO
P

S

Job Execution (s)

IPoIB (56Gbps)
RDMA (56Gbps)

(c) TACC-Stampede

Fig. 8. Profiling I/O operations in local disk

Disk I/O: Figure 8 presents the profiling of local I/O operations. We present the I/O
operations per second (IOPS) against job execution time for both the architectures.
Here, we can see that, because of the in-memory merge operations, RDMA-enhanced
design reduces IOPS to almost zero as soon as map phase completes. The reductions in
IOPS for Clusters OSU, SDSC-Gordon, and TACC-Stampede are 59%, 43%, and 58%,
respectively. The reason for difference in these values is due to the fact that the default
architecture uses local file system for merge operation if the available memory space is
not enough. So, depending on the local memory space and disk throughput, the IOPS
value can vary in different clusters.

3.5 Evaluation of Macro-Benchmarks

For space limitation, we present macro-benchmarks performance comparisons in Clus-
ter TACC-Stampede only. We use a cluster size of 32 for PUMA [12] benchmarks. As
shown in Figure 9(a), we observe 35% improvement for Adjacency List with a data size
of 30 GB. For Sequence Count, the benefit is 36% for 80 GB data size. With compute-
intensive workloads, such as Word Count and Inverted Index, the total shuffled data
volume is not significant [1]. Thus, we observe less benefits in job execution time. For
SWIM [18], shown in Figure 9(b), we evaluate 50 short-duration jobs for which the
data is generated from real-time workloads. We observe an average benefit of 16% in
terms of job execution time with a cluster size of four.

654 M.W. Rahman et al.

0.0

0.2

0.4

0.6

0.8

1.0

AdjList SelfJoin WordCount InvIndex SeqCount

N
o

rm
al

iz
ed

 E
x

ec
u

ti
io

n
 T

im
e

Benchmarks

36%

IPoIB (56Gbps)
RDMA (56Gbps)

(a) PUMA [12]

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
T

im
e

(s
ec

)

Job No.

IPoIB (56Gbps)
RDMA (56Gbps)

(b) SWIM [18]

IPoIB
RDMA

Farther from the center is better

Micro-benchmark
Performance

(up to 44%)

Macro-benchmark
Performance

(up to 36%)

CPU
Efficiency
(up to 28%)

Memory
Efficiency
(up to 57%)

I/O Efficiency
(up to 59%)

Network
Efficiency

(up to 211%)

Scalability
(up to 49% at 128 nodes))

(c) Benefits summary

Fig. 9. Macro benchmark evaluation and summary

3.6 Summary

To summarize, we present a 7-axis hypothetical Figure 9(c) with each dimension repre-
senting one of the evaluation parameters. We assume that values farther from the
center signifies higher benefit in performance for that parameter. As shown here, RDMA-
enhanced design [14] achieves improved performance in each dimension due to its in-
herent design enhancements. Both designs are scalable while RDMA-enhanced design
achieves better performance with scaling up in both cluster and data size.

4 Conclusion and Future Work

In this paper, we propose a methodology to evaluate MapReduce over Lustre file system
in modern HPC clusters. Our performance evaluations based on this methodology show
that RDMA-enhanced MapReduce can achieve significant performance benefits com-
pared to the default architecture in every aspect of system and resource utilization. The
centerpiece of our evaluation demonstrates that RDMA techniques help reduce the job
execution time by 49% on 128 node cluster, in comparison to the default architecture.
As part of the future work, we would like to explore more involved techniques that help
improve the performance of MapReduce over HPC file systems such as Lustre.

References

1. Ahmad, F., Chakradhar, S.T., Raghunathan, A., Vijaykumar, T.N.: Tarazu: Optimizing
MapReduce on Heterogeneous Clusters. In: ASPLOS (2012)

2. Castain, R.H., Kulkarni, O.: MapReduce and Lustre: Running Hadoop in a High Performance
Computing Environment, https://intel.activeevents.com/
sf13/connect/sessionDetail.ww?SESSION ID=1141

3. Engelmann, C., Ong, H., Scott, S.L.: Middleware in modern high performance computing
system architectures. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS
2007, Part II. LNCS, vol. 4488, pp. 784–791. Springer, Heidelberg (2007)

4. Gordon at San Diego Supercomputer Center,
http://www.sdsc.edu/us/resources/gordon/

https://intel.activeevents.com/sf13/connect/sessionDetail.ww?SESSION_ID=1141
https://intel.activeevents.com/sf13/connect/sessionDetail.ww?SESSION_ID=1141
http://www.sdsc.edu/us/resources/gordon/

MapReduce over Lustre: Can RDMA-Based Approach Benefit? 655

5. Huang, J., Ouyang, X., Jose, J., Rahman, M.W., Wang, H., Luo, M., Subramoni, H., Murthy,
C., Panda, D.K.: High-Performance Design of HBase with RDMA over InfiniBand. In:
IPDPS, Shanghai, China (2012)

6. International Data Corporation (IDC): New IDC Worldwide HPC End-User Study Identifies
Latest Trends in High Performance Computing Usage and Spending,
http://www.idc.com/getdoc.jsp?containerId=prUS24409313

7. IOzone: IOzone Filesystem Benchmark, http://www.iozone.org/
8. Islam, N.S., Rahman, M.W., Jose, J., Rajachandrasekar, R., Wang, H., Subramoni, H.,

Murthy, C., Panda, D.K.: High Performance RDMA-based Design of HDFS over InfiniBand.
In: SC (2012)

9. Kulkarni, O.: Hadoop MapReduce over Lustre,
http://www.opensfs.org/wp-content/uploads/
2013/04/LUG2013 Hadoop-Lustre OmkarKulkarni.pdf

10. Lu, X., Islam, N.S., Rahman, M.W., Jose, J., Subramoni, H., Wang, H., Panda, D.K.: High-
Performance Design of Hadoop RPC with RDMA over InfiniBand. In: ICPP, France (2013)

11. OSU NBC Lab: RDMA for Apache Hadoop: High-Performance Design of Apache Hadoop
over RDMA-enabled Interconnects, http://hadoop-rdma.cse.ohio-state.edu

12. Purdue MapReduce Benchmarks Suite (PUMA), http://web.ics.purdue.edu/
13. Rahman, M.W., Islam, N.S., Lu, X., Jose, J., Subramoni, H., Wang, H., Panda, D.K.: High-

Performance RDMA-based Design of Hadoop MapReduce over InfiniBand. In: HPDIC, in
Conjunction with IPDPS, Boston, MA (2013)

14. Rahman, M.W., Lu, X., Islam, N.S., Panda, D.K.: HOMR: A Hybrid Approach to Exploit
Maximum Overlapping in MapReduce over High Performance Interconnects. In: ICS, Mu-
nich, Germany (2014)

15. Rutman, N.: Map/Reduce on Lustre,
http://www.xyratex.com/sites/default/files/
Xyratex white paper MapReduce 1-4.pdf

16. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System. In:
MSST, Incline Village, Nevada (2010)

17. Stampede at TACC,
http://www.tacc.utexas.edu/resources/hpc/stampede

18. Statistical Workload Injector for MapReduce,
https://github.com/SWIMProjectUCB

19. Sterling, T., Lusk, E., Gropp, W.: Beowulf Cluster Computing with Linux. MIT Press, Cam-
bridge (2003)

20. Sterling, T.L., Salmon, J., Becker, D.J., Savarese, D.F.: How to Build a Beowulf: A Guide to
the Implementation and Application of PC Clusters. MIT Press, MA (1999)

21. The Apache Software Foundation: The Apache Hadoop Project,
http://hadoop.apache.org/

22. Top500 Supercomputing System,http://www.top500.org
23. Wang, Y., Que, X., Yu, W., Goldenberg, D., Sehgal, D.: Hadoop Acceleration through Net-

work Levitated Merge. In: SC, Seattle, WA (2011)
24. Xyratex: Lustre, http://wiki.lustre.org/index.php/Main_Page

http://www.idc.com/getdoc.jsp?containerId=prUS24409313
http://www.iozone.org/
http://www.opensfs.org/wp-content/uploads/2013/04/LUG2013_Hadoop-Lustre_OmkarKulkarni.pdf
http://www.opensfs.org/wp-content/uploads/2013/04/LUG2013_Hadoop-Lustre_OmkarKulkarni.pdf
http://hadoop-rdma.cse.ohio-state.edu
http://web.ics.purdue.edu/
http://www.xyratex.com/sites/default/files/Xyratex_white_paper_MapReduce_1-4.pdf
http://www.xyratex.com/sites/default/files/Xyratex_white_paper_MapReduce_1-4.pdf
http://www.tacc.utexas.edu/resources/hpc/stampede
https://github.com/SWIMProjectUCB
http://hadoop.apache.org/
http://www.top500.org
http://wiki.lustre.org/index.php/Main_Page

Random Fields Generation on the GPU
with the Spectral Turning Bands Method

Lars Hunger1,4, Biagio Cosenza2, Stefan Kimeswenger1,3,
and Thomas Fahringer2

1 Institute for Astro- and Particle Physics, University of Innsbruck, Austria
2 Institute of Computer Science, University of Innsbruck, Austria

3 Instituto de Astronomı́a, Universidad Católica del Norte Antofagasta, Chile
4 BrainLinks-BrainTools, University of Freiburg, Germany

Abstract. Random field (RF) generation algorithms are of paramount
importance for many scientific domains, such as astrophysics, geostatis-
tics, computer graphics and many others. Some examples are the genera-
tion of initial conditions for cosmological simulations or hydrodynamical
turbulence driving. In the latter a new random field is needed every time-
step. Current approaches commonly make use of 3D FFT (Fast Fourier
Transform) and require the whole generated field to be stored in mem-
ory. Moreover, they are limited to regular rectilinear meshes and need
an extra processing step to support non-regular meshes.

In this paper, we introduce TBARF (Turning BAnd Random Fields),
a RF generation algorithm based on the turning band method that is
optimized for massively parallel hardware such as GPUs. Our algorithm
replaces the 3D FFT with a lower order, one-dimensional FFT followed
by a projection step, and is further optimized with loop unrolling and
blocking. We show that TBARF can easily generate RF on non-regular
(non uniform) meshes and can afford mesh sizes bigger than the available
GPU memory by using a streaming, out-of-core approach. TBARF is 2 to
5 times faster than the traditional methods when generating RFs with
more than 16M cells. It can also generate RF on non-regular meshes,
and has been successfully applied to two real case scenarios: planetary
nebulae and cosmological simulations.

Keywords: gpu, random field, turning band, fft, astrophysics, non uni-
form mesh, non-regular mesh, gpgpu, spectral methods.

1 Introduction

A Random Field (RF) is a spatial distribution of correlated random values. One
RF point consists of a random value, and its corresponding spatial coordinates.
The correlation function describes how the values of RF points behave depending
on their relative position to each other. For instance, for a correlation function
with high correlation on short ranges, closeby points have very similar values.
This leads to the formation of clusters of points with similar values. The size
distribution of these clusters is described by the power spectrum. The correlation
function and the power spectrum are two different ways to describe a RF. The
power spectrum can be transformed into a corresponding correlation function
and vice versa, according to requirement of the Wiener-Khinchin theorem [27].

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 656–667, 2014.
c© Springer International Publishing Switzerland 2014

TBARF: Random Fields on the GPU 657

RF generation algorithms are of crucial importance for many scientific areas.
They are used to generate initial conditions for cosmological structure formation
simulations like the Millenium simulation [5], to create winds in planetary nebu-
lae simulations (see Sec.6) and for the initialization of N-body simulations [19].
In simulations that use a turbulence driving technique like the one proposed in
[8], a RF has to be generated in each time-step of the Magneto-hydrodynamical
simulation. RFs are also often used in geostatistical research [24] together with
a technique called Kriging for creating topological maps. In other words, RFs
are used when the statistical properties of a scalar field are known and distinct
realizations are to be generated.

We focus on three-dimensional (3D) RF. Traditional approaches to compute
3D RFs make extensive use of 3D Fast Fourier transforms (3D FFT). These 3D
FFT-based methods are limited to regular meshes for generating random fields.

In this paper we introduce TBARF (Turning BAnd Random Fields), a new
random field generation implementation based on the Turning band (TB) method
that has been highly optimized to run on GPUs. The proposed algorithm replaces
the 3D FFT used in a traditional approaches with a two step approach: a faster,
lower dimensional FFT to generate lines (which uses a smaller set of points with
respect to the traditional approach); and a multi-dimensional projection step,
where all of the lines affect each mesh point of the random field. TB RF gener-
ators are not commonly used for generating large RFs since, on the CPU, they
are much slower than a traditional 3D FFT approach. TB methods are slower,
on the CPU, since each grid point is affected by all off the lines, while in the
3DFFT approach the field is generated in one pass. In this work we demonstrate
that TB methods can be highly optimized for GPUs and allow the out-of-core
generation of RF on regular and non-regular meshes.

The contribution of this paper are as follows:

– TBARF, a TB-based RF generation algorithm optimized for GPUs exploit-
ing loop blocking and unrolling;

– Support for the fast generation of RF on irregular meshes;
– Out-of-core streaming computation of a RF which allows the generation of

a very large RF, not possible with the traditional approach on the GPU;
– Practical application of TBARF to two real test cases: planetary nebulae

and cosmological simulations.

2 Related Work

Random field generation. The TB method itself was first proposed in [23]. The
spectral TB method was then first proposed in Mantoglou [3] where a TB method
like TBARF is first described in combination with a spectral line generation
algorithm. A Matlab version of the TB method can be found in Xavier et al. [4].

GPU. Graphics Processing Units (GPUs) are used not only for 3D graphics
rendering but also in general-purpose computing because of their huge computa-
tional power. GPUs’ programmability has significantly improved thanks to high-
level parallel programming languages such as the CUDA [1] and OpenCL [2]. The

658 L. Hunger et al.

GPUs’hugepotential computational power comeswith somedrawbacks:Theavail-
able device memory is limited to few GBs (e.g. 6GB on NVIDIA Tesla K20); it
requires slow host-device communications for big datasets. Moreover, optimizing
code for GPUs means writing algorithms which are better suited for the hardware,
but also exploring low level optimizations. Traditional compiler optimizations such
as loop tiling (blocking) [16] and loopunrolling [14] have been successfully tested on
GPUs [17,15]. However, the search space is quite big [21,18] and highly optimized
codes still requiresmanual, problem-specific exploitationof the optimization space.

FFT. Our work also focuses on one- and multi-dimensional FFT methods. For
small-scale FFTs, if the data can be held entirely on a GPU, the computation
can benefit from the high device memory bandwidth [12,13,10,11]. However, if
the data does not fit the available device memory, the overhead to transfer data
between host memory (i.e. the CPU main memory) and device memory is a
bottleneck [22]. This problem applies whenever the dataset is bigger than the
available device memory, e.g. out-of-core computation or cluster computing [22].

3 The Turning Band Method

Correlation function and power spectrum. The (auto-)correlation function de-
scribes the correlation of two values of a RF depending on their spatial positions.
The power spectrum describes the size distribution of clusters in the RF. For
well behaved correlation functions these two ways of describing a RF are in-
terchangeable. This transformation is not always possible, but TBARF is able
to create a RF from both a spectral density or a correlation function. The TB
method is an asymptotically correct approach of generating multidimensional
RFs which we use for generating 3D RFs. The TBARF algorithm has multiple
steps. First, discrete 1D RFs, i.e. lines, have to be generated. The correlation
function or the power spectrum that the 1D lines have to follow is calculated by

C1D(r) =
d

dr
[r · C3D(r)]

S1D(ω) =
4π
∣∣ω2
∣∣

6
· S3D(ω)

where C3D is the correlation function, S3D the power spectrum of the 3D field
to be generated, r the distance between points and ω the angular frequency
corresponding to a structure of a certain size. To generate these lines according
to a power law power spectrum, we use a simple 1D Fourier transform approach
[25]. For lines with an arbitrary power spectrum we use a pulse train method
[26]. Lines according to a correlation function are generated using a circulant
embedding approach [6].

Number of lines and line directions. The TB method is an approximate method.
The statistical quality depends on the number of lines used to create the multi-
dimensional field. Empirical studies have shown that for a 3D field of any size
1000 lines are sufficient to avert banding artifacts [3,4]. A schematic picture of
the TB method is shown in Fig. 1(right). The lines are laid out along unit vec-
tors (ui), starting at the origin, so that the surface of the unit sphere is covered

TBARF: Random Fields on the GPU 659

Algorithm 1. Turning bands method.

1: S ← computeHaltonSequence()
2: Dir ← computeLineDirection(S)
3: L ← computeLines(Y) // requires 1D FFT
4: for all line ∈ L do
5: for all cell(x, y, z) ∈ domain do
6: lineCoord ← −(x, y, z) ·Dir[line]
7: linePoint ← round(lineCoord× resolutionFactor) + lineLength× 0.5 + 1
8: index = line.index ∗ linelength+ linepoint
9: value = L[index]
10: field[index] = field[index] + value
11: end for
12: end for

as uniformly as possible. We create the unit vectors with the help of a pseudo-
random Halton sequence, which leads to a closer to optimal coverage of the unit
sphere than random vectors. After the direction vectors have been created, we
rotate all vectors together by a random angle around the three major Cartesian
axes. This assures that we do not produce statistical artifacts if we generate a
large number of fields.

Projection step. The last step is the projection in which the 3D RF is generated
(Fig. 1(right)). A point P of the 3D RF is generated by projecting its location
vectorXP onto the line i and adding the corresponding value of this line Li(P) to
the value of the point P . For P , this projection is then repeated for each line. After
doing the projection step for each point, we have generated the full 3D RF.

Fig. 1. In the FFT method (left), components with different frequencies (or wavevec-
tors) are summed up according to their amplitude. This summing is done by performing
the inverse FT. In The TB algorithm (right) the point positions P are projected onto
the lines Xp · ui, and the corresponding values Li(P) are then summed over all lines.

660 L. Hunger et al.

Traditional 3D FFT method. As a comparison, we also show a traditional 3D
Fourier Transform algorithm for creating a RF with a power law power spectrum
and a power law index between -3 and -5. This algorithm is much less versatile
than our TB algorithm. For the input data we choose the amplitude A for each
3D wavevector k according to the desired power spectrum. For each wavevector
we also choose a random phase Φ to be able to generate different realizations of
the RF. We choose the random phases of our input data so that Φ(k) = −Φ(-k),
making sure that the result of the following inverse Fourier transformation is real.
After filling the 3D array with the input data (A · Φ) we only have to perform
a 3D inverse Fourier transformation on the array to get our final field with the
correct power spectrum. With the inverse Fourier transform, contributions with
different wavevectors are summed up according to their amplitude to generate a
real valued field (see Fig. 1(left)). For the power law indexes outside the range -3
to -5, this method does not work because the resulting field will show very strong
generation artifacts. There are more complex 3D FFT methods that can generate
RF according to arbitrary power spectra but that is beyond the scope of this
paper. To compare the results of both methods, we calculate the power spectrum
of the resulting field and compare it with the theoretical power spectrum we
aimed to generate. Both methods generate RFs with the correct power spectrum.

Non-regular (Non-uniform) Fields. One advantage of the TB method is its
ability to generate RF on non-regular meshes. The difference between regular and
non-regular meshes is shown in Fig. 2. The 3D FFT methods can only generate
RF on regular rectangular meshes since FFT works only on equally spaced points.
In the projection step, the TB method can generate RF with arbitrary point po-
sitions. The resolution of the 1D lines has to be chosen high enough so that the
smallest distance between two grid points can be sufficiently resolved. The ability
to create RFs on non-regular meshes makes TBARF a very versatile RF gener-
ator. It can be used to create RF on regular grids with different resolutions like
in Adaptive Mesh Refinement(AMR) or on entirely unstructured grids. Both of
these tasks are much harder to perform with traditional 3D FFT methods.

Fig. 2. Grid Points of a regular (left) and non-regular (right) mesh. In the irregular
mesh the shape of the corresponding Voronoi cell is shown additionally.

4 Parallelization and Optimizations

The TBmethod, as described by Algorithm 1, comprises four main steps: the Hal-
ton sequence (line 1) and line direction generation (line 2), the one-dimensional

TBARF: Random Fields on the GPU 661

field generation (line 3) , and the final projection step (lines 4-11). Step 1 and 2
are fast. Step 3 includes multiple 1D FFT calls with very small sizes, which are
quite fast (cuFFT has an optimized cufftP lanMany function for this). There-
fore, the projection code is the main bottleneck and is where we focus our opti-
mization efforts. In the following section we describe how we map that algorithm,
and in particular the projection phase, onto the GPU hardware.

OpenCL. We use the OpenCL [2] model and terminology: the platform model
comprises of a host connected to one or more devices (e.g. a GPU). Each device
consists of one or more compute units (CUs) which are further divided into
processing elements (PEs). A program running on a device is called kernel, and
represents the parallel part of an OpenCL application. A single OpenCL thread
is called work-item. Several work-items form a work-group. OpenCL provides a
fast local memory which is shared between work-items belonging to the same
work-group. Similarly, OpenCL offers fast local synchronization between work-
items inside the same group. Host and device exchange data through memory
buffers, which are passed as arguments to the kernel before its execution.

Parallelization strategy. Algorithm 1 can be parallelized in two different ways. Fol-
lowing the original sequential formulation, it is possible to run a different OpenCL
work-item for each line (line parallelization). Alternatively, it is possible to apply a
loop interchange between the two for loops, thereforemapping a different OpenCL
work-item to each cell, i.e. cell parallelization. The line parallelization approach
has two drawbacks. First, writing cell values happens concurrently from different
threads, therefore requiring an atomic addition. Unfortunately, atomic addition
for double floating point precision is not included inOpenCL 1.1, but can be imple-
mented by exploiting a 64-bit compare and exchange operation (atom cmpxchg).
However, atomic operations are extremely expensive on GPUs. The second draw-
back is the lower parallelism: while applying our approach to a real dataset, the
number of lines is too low (ranging from 1024 up to 8192) to exploit GPUs’ mas-
sively parallel architecture. On the other hand, cell parallelization exposes a high
level of parallelism and does not require the use atomic operations. We tested the
two parallelizations on a 1283 mesh with 1024 lines of length 2600, where the cell
parallelization was 50 times faster than the line parallelization.

1 kernel void make r e g f i e l d (int n r l i n e s ,
2 int dim x , int dim y , int dim z , int l i n e l e ng th ,
3 g l o b a l double4∗ d i r , g l o b a l double∗ L ,
4 g l o b a l double∗ RF, double r e s f a c t o r) {
5 const s i z e t dim yz = dim y∗dim z ;
6 int g id = g e t g l o b a l i d (0) ;
7 int k = gid / dim yz ;
8 int j = (g id % (f i e l d d im y z)) / f i e l dd im y ;
9 int i = g id − j ∗ dim y − k ∗ dim yz ;

10 double4 id4 = {k , j , i , 0} ;
11 double r f v a l u e = 0 ;
12 for (int l =0; l<n r l i n e s ; l++) {
13 double l i n e c o o r d = − dot (id4 , d i r [l]) ;
14 s i z e t l i n ep o i n t = round (l i n e c o o r d∗ r e s f a c t o r)+l i n e l e n g t h ∗0.5+1;
15 r f v a l u e += L [l ∗ l i n e l e n g t h+l i n e p o i n t] ;
16 }
17 RF[g id] = r f v a l u e ;
18 }

Listing 1.1. Non optimized OpenCL kernel for the cell parallelization projection kernel.

662 L. Hunger et al.

Loop blocking and unrolling. Starting from the cell parallelization, we applied
two loop optimizations to the for loop in line 12 (Listing 1.1). First, we tried
to apply loop blocking (i.e. tiling) by partitioning the loop iteration space into
smaller blocks (matching the work-group size), to ensure data used in a loop
stays in the fast local memory available on the GPU. This technique can be
applied to the line dir vector (line 13) which has coalesced memory accesses.
However, the L array (line 15) is accessed randomly and cannot be prefetched.

We also applied loop unrolling (i.e. unwinding) to the same loop. The goal
of loop unrolling is to reduce the number of iterations and branch penalties, as
well as hiding memory access latencies while reading data from the memory [14].
The latter is particularly important in our case, as the inner loop performs many
random accesses to the (slower) global memory. We applied to the projection
code all the combinations of loop blocking and unrolling, with group size of 64,
128, 256 and 512, and unroll factors of 1, 2, 4 and 8.

Streaming out-of-core field generation. GPU architecture has a limited amount
of memory with respect to the RF size needed in some applications (already 30
GB for an 10243 grid). Especially while working with astrophysical datasets, RFs
commonly exceed the memory available on a single GPU. This is a limitation
for the standard approach based on 3D FFT [22]. Our approach only requires
the lines to be stored on the GPU, and can be further distributed to work over
multiple devices (e.g. on a multi-GPU or cluster of GPUs) or to perform an out-
of-core streaming computation of the field in a single machine. TBARF splits
the field in fragments of 1283 cells to allow out-of-core RF generation.

Non-regular fields The TB method can also be used to generate a non-regular
RF. We applied the same optimizations to a non-regular version of the projection
kernel (note that other parts of the algorithm do not change), and tested different
point distributions.

5 Results

Test settings We ran different versions of the TBARF code on a Intel Core i7
CPU 960 (3.20GHz 4 cores, 8 logical procs) and an NVIDIA GeForce GTX 550
(with 1280MB of OpenCL global memory). All tests were performed with double
precision. OpenCL drivers were Intel OpenCL 1.2 SDK, OpenCL 1.1. CUDA and
CUDA Driver API 5.5 (CC 2.0). We used the libWater CUDA extension [20] to
support both CUDA and OpenCL kernels. For the FFT implementations, we
used FFTW [9] on the CPU and CUFFT [11] for the CUDA version.

TBARF vs traditional approach. We compared the traditional approach based on
3D FFT with our approach running on the GPU and CPU. Figure 3 shows the
performance for different grid sizes and line lengths. For all the tests, we used 1024
lines and line length scaling according to the the grid size (e.g. 5123 cells line length
is 1064).The standard approach on the CPUuses 3DFFTWand supports very big
grid sizes. The erratic behavior of the FFTWapproach can be explained by the dif-
ferent algorithms employed by the FFTW library when the number of points is not
equal to a power of two. The GPU version of the same approach based on cuFFT

TBARF: Random Fields on the GPU 663

Fig. 3. Performance behavior of our out-of-core RF generation on different target ar-
chitectures with varying problem sizes (i.e. the number of cells)

is faster, but it is limited by the amount of memory available on the GPU (up to
32.77 million cells for our test cases). 3D FFT methods require an extra cell per
dimension (i.e. to generate a field of 2563 elements we need a 2573 3D FFT). We
tested TBARF OpenCL on both CPU and GPU, and a CUDA version on the lat-
ter. Each TBARF code was running on its optimized configuration (see next para-
graph). Despite being slower than the 3D cuFFT for small datasets, the TBARF
CUDA version can quickly generate RFs bigger than the available device memory;
on such datasets, it is always faster than the 3D FFTW approach. TBARF CUDA
is about 4 to 6% faster than TBARF OpenCL on the NVIDIA GPU.

Projection kernel optimizations. Table 1 shows the runtimes for the projection
kernel on a uniform mesh generation with 1283 cells. The use of local memory
highly improves performance of GPU kernels, in the projection kernel this op-
timization can only be applied to the relatively small line buffer. Unfortunately
there is no simple way to apply the same optimization to the line array. Applying
both loop unrolling and blocking is not always beneficial for the CPU. On the
GPU, the fastest CUDA configuration uses loop unrolling (factor 4) while the
fastest OpenCL configurations utilize both loop unrolling and blocking.

Non-regular fields. Finally, we tested the non-regular version of the RF genera-
tion algorithm against different mesh structures in order to understand how the
point distribution affects the locality of the memory accesses. The first, named
regular, has exactly the same distribution of the regular, uniform grid used be-
fore. The second uses a jitter sampling approach where each point has a regular
position plus a random offset. The third is a completely random point distribu-
tion, where two close points in the input array may be very distant in space.
Figure 4 shows that regular and jitter distribution are very similar in perfor-
mance. However, the random distribution is noticeably slower than a regular
one (10 to 25% slower) as it exposes poor memory accesses locality.

664 L. Hunger et al.

Table 1. Runtime, averaged over multiple runs, of 32 different optimization configura-
tions of the projection kernel. In bold, the best configurations for each target platform.
Runtimes are in ms.

non optimized blocking

local size 64 128 256 512 64 128 256 512

CL CPU 3600 3594 3590 3603 2966 2945 3038 3329
CL GPU 391 391 396 416 387 386 388 392

CUDA 369 368 369 368 363 365 366 369

loop unrolling

local size 64 128 256 512 64 128 256 512 64 128 256 512
unroll factor 2 2 2 2 4 4 4 4 8 8 8 8

CL CPU 3702 3628 3634 3632 3510 3516 3510 3468 3556 3510 3523 3515
CL GPU 388 387 389 387 386 388 388 393 387 386 389 394

CUDA 368 369 369 371 363 364 366 364 364 364 364 364

loop unrolling and blocking

local size 64 128 256 512 64 128 256 512 64 128 256 512
unroll factor 2 2 2 2 4 4 4 4 8 8 8 8

CL CPU 3248 3130 3121 3121 3098 3105 3064 3048 3113 3079 3051 3023
CL GPU 388 390 400 417 386 388 390 403 386 386 386 391

CUDA 369 372 385 412 367 369 372 381 364 367 366 370

Fig. 4. Non-regular field with three different point distributions

6 Applications

Astrophysics: Planetary Nebulae. The code presented here has already been
implemented to create a wind with density fluctuations in a Planetary Nebulae
clump simulation. To have an inflowing wind entering on one side of the compu-
tation domain we create a RF tube of size 256 x 256 x 5000 with a power law power
spectrum. The size of the tube will be larger for higher resolutions. For this prob-
lem we already use the out-of-core version of TBARF since the whole field is too
large to fit into the main memory. Examples of the fields used can be found in
Fig.5, for these simulations the power law index of the power spectrum is a free

TBARF: Random Fields on the GPU 665

Fig. 5. 2D plane slices through 3D RF used in the Planetary Nebulae simulations. Red
values are positive while blue values are negative. (left) shows a field with a power
spectrum P (k) ∝ k−3.9 that emphasizes larger structures while (right) shows a field
with a power spectrum of P (k) ∝ k−2.0 where larger structures are less prominent.

parameter, so we show RFs for different power law indices. With the optimized
out-of-core CUDA kernel it takes 28241 ms to generate a RF with 256 x 256 x
5000 points using 1024 lines with a linelength of 4350.

Astrophysics: Cosmology Simulations. In the astrophysical community
moving mesh techniques for calculating hydrodynamical simulations have be-
come more popular. The most prominent example is AREPO, the new moving
mesh n-body code by Volker Springel [7]. In these codes hydrodynamic simula-
tions are performed on a non-regular mesh.TBARFs ability to create RFs on a
non-regular mesh is a clear advantage over the traditional 3D FFT methods for
all simulations performed with these moving mesh codes.

TBARF is able to generate RFs that can be used as initial conditions for
cosmological structure formation simulations with AREPO. A realization of such
a RF following a Harrison Zeldovich spectrum is shown in Fig. 6 (left). These new
moving mesh codes can also be used to perform turbulence driven simulations.

Fig. 6. Red values are positive while blue values are negative. (left) shows a 2D slice
through a 3D RF with a power spectrum of P (k) ∝ k1.0 sometimes proposed as the
initial fluctuations (Harrison Zeldovich Spectrum) of cosmological structure formations.

(right) shows a slice through a 3D RF with a power spectrum of P (k) ∝ k6 · e(−k) that
is used for turbulence driving simulations.

666 L. Hunger et al.

These simulations are typically quite large so the ability of TBARF to create
the fields out-of-core is another advantage. A RF is needed in every time-step,
making the RF generation a major contributor to the computational cost of the
whole simulation. Until now the runtime of TB methods prohibited them from
being used in this manner. With the increased performance on the GPU, TB
methods, like TBARF, are now a viable option for turbulence driven simulations
on non-regular meshes. In Fig. 6 (right) we show a slice of a RF that can be used
for this kind of turbulence driven simulations. With the optimized out-of-core
CUDA kernel it takes 22803 ms to generate a RF with 5123 points using 1024
lines with a linelength of 1065.

7 Conclusions

In this paper we demonstrated that TB methods can be significantly sped up by
porting them onto the GPU.We present TBARF, our implementation of the turn-
ing band method. TBARF efficiently generates random fields on both regular and
non-regular meshes on the GPU. We showed that TBARF is able to create ran-
dom fields which are bigger than the available device GPU memory quickly,
thanks to its ability to do out-of-core streaming computation. Traditional meth-
ods based on 3D FFT are limited to the available device memory and can not
generate random fields on non-regular meshes. These advantages make TBARF
much better suited to be used in combination with, for example, moving mesh hy-
drodynamic codes than traditional 3D FFT RF generators. The project source is
available at https://github.com/LarsHunger/TBARF under the LGPL License.

Acknowledgment. This project was funded by the FWF Doctoral School CIM
Computational Modelling under contract W 1227-N16 (DK-plus CIM) and by
the Austrian Research Promotion Agency under contract 834307 (AutoCore).

References

1. NVIDIA: CUDA Compute Unified Device Architecture Reference Manual
2. Khronos OpenCL Working Group: The OpenCL Specification 1.1
3. Mantoglou, A.: Digital Simulation of Multivariate Two- and Three-Dimensional

Stochastic Processes with a Spectral Turning Bands Method. Mathematical Geol-
ogy 19(2), 129–149 (1987)

4. Emery, X., Lantuéjoul, C.: TBSIM: A computer program for conditional simula-
tion of three-dimensional Gaussian random fields via the turning bands method.
Computers & Geosciences 32, 1615–1628 (2006)

5. Springel, V., White, S.D.M., Jenkins, A., Frenk, C.S., Yoshida, N., Gao, L.,
Navarro, J., Thacker, R., Croton, D., Helly, J., Peacock, J.A., Cole, S., Thomas, P.,
Couchman, H., Evrard, A., Colberg, J., Pearce, F.: Simulations of the formation,
evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

6. Dietrich, C.R., Newsam, G.N.: Fast and Exact Simulation of Stationary Gaussian
Processes through Circulant Embedding of the Covariance Matrix. SIAM Journal
on Scientific Computing 18(4), 1088–1107 (1997)

7. Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical sim-
ulations on a moving mesh. Monthly Notices of the Royal Astronomical Soci-
ety 401(2), 791–851 (2010)

https://github.com/LarsHunger/TBARF

TBARF: Random Fields on the GPU 667

8. Stone, J.: Direct Numerical Simulations of Compressible Magnetohydrodynamical
Turbulence Interstellar Turbulence. In: Proceedings of the 2nd Guillermo Haro
Conference, p. 267. Cambridge University Press (1999)

9. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings
of the IEEE 93(2), 216–231 (2005)

10. Volkov, V., Kazian, B.: Fitting FFT onto G80 Architecture Report. University of
California, Berkeley (2008)

11. NVIDIA: CUDA CUFFT Library, Version 2.3 (2009)
12. Govindaraju, N., Lloyd, B., Dotsenko, Y., Smith, B., Manferdelli, J.: High perfor-

mance discrete fourier transforms on graphics processors. In: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis
(SC), pp. 2:1–2:12 (2008)

13. Nukada, A., Matsuoka, S.: Auto-tuning 3-D FFT Library for Cuda GPUs. In: Pro-
ceedings of the Conference on High Performance Computing Networking, Storage
and Analysis (SC), pp. 30:1–30:10 (2009)

14. Sarkar, V.: Optimized Unrolling of Nested Loops. International Journal of Parallel
Programming 2(5), 545–581 (2001)

15. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU compiler for memory opti-
mization and parallelism management In: Proceedings of the 2010 ACM SIGPLAN
PLDI, pp. 86–97 (2010)

16. Wolfe, M.: More Iteration Space Tiling. In: Proceedings of the ACMIEEE Confer-
ence on Supercomputing, pp. 655–664 (1989)

17. Murthy, G.S., Ravishankar, M., Baskaran, M.M., Sadayappan, P.: Optimal Loop
Unrolling For GPGPU Programs. In: IEEE International Symposium on Parallel
& Distributed Processing (IPDPS), pp. 1–11 (2010)

18. Kofler, K., Grasso, I., Cosenza, B., Fahringer, T.: An Automatic Input-Sensitive
Approach for Heterogeneous Task Partitioning. In: Proceedings of the 27th Inter-
national ACM Conference on International Conference on Supercomputing, pp.
149–160 (2013)

19. Kofler, K., Steinhauser, D., Cosenza, B., Grasso, I., Schindler, S., Fahringer, T.: Kd-
tree Based N-Body Simulations with Volume-Mass Heuristic on the GPU. In: Work-
shop on Parallel and Distributed Scientific and Engineering Computing (PDSEC)

20. Grasso, I., Pellegrini, S., Cosenza, B., Fahringer, T.: LibWater: Heterogeneous Dis-
tributed Computing Made Easy. In: Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, pp. 161–172 (2013)

21. Jordan, H., Thoman, P., Durillo, J.J., Pellegrini, S., Gschwandtner, P., Fahringer,
T., Moritsch, H.: A Multi-Objective Auto-Tuning Framework for Parallel Codes.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), pp. 10:1–10:12 (2012)

22. Chen, Y., Cui, X., Mei, H.: Large-scale FFT on GPUClusters. In: Proceedings of the
24th ACM International Conference on Supercomputing (ICS), pp. 315–324 (2010)

23. Matheron, G.: The intrinsic random functions and their application. Adv. Appl.
Prob. 5, 439–468 (1973)

24. Chiles, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. John Wiley
& Sons, New York (1999)

25. Kasdin, N.J., Walter, T.: Discrete Simulation of Power Law noise. In: 46th Pro-
ceedings of the 1992 IEEE Frequency Control Symposium, pp. 274–283 (1992)

26. Carrettoni, M., Cremonesi, O.: Generation of noise time series with arbitrary power
spectrum. Computer Physics Communications 181(12), 1982–1985 (2010)

27. Engelberg, S.: Random signals and noise: A mathematical introduction, p. 130.
CRC Press (2007)

Fast Set Intersection through Run-Time Bitmap
Construction over PForDelta-Compressed Indexes

Xiaocheng Zou1,2, Sriram Lakshminarasimhan3, David A. Boyuka II1,2,
Stephen Ranshous1,2, Houjun Tang1,2, Scott Klasky2, and Nagiza F. Samatova1,2,�

1 North Carolina State University, Raleigh, NC 27695, USA
2 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

3 IBM India Research Lab, Bangalore - 560045, India
samatova@csc.ncsu.edu

Abstract. Set intersection is a fundamental operation for evaluating conjunctive
queries in the context of scientific data analysis. The state-of-the-art approach in
performing set intersection, compressed bitmap indexing, achieves high computa-
tional efficiency because of cheap bitwise operations; however, overall efficiency
is often nullified by the HPC I/O bottleneck, because compressed bitmap indexes
typically exhibit a heavy storage footprint. Conversely, the recently-presented
PForDelta-compressed index has been demonstrated to be storage-lightweight,
but has limited performance for set intersection. Thus, a more effective set inter-
section approach should be efficient in both computation and I/O.

Therefore, we propose a fast set intersection approach that couples the storage
light-weight PForDelta indexing format with computationally-efficient bitmaps
through a specialized on-the-fly conversion. The resultant challenge is to ensure
this conversion process is fast enough to maintain the performance gains from
both PForDelta and the bitmaps. To this end, we contribute two key enhancements
to PForDelta, BitRun and BitExp, which improve bitmap conversion through bulk
bit-setting and a more streamlined PForDelta decoding process, respectively. Our
experimental results show that our integrated PForDelta-bitmap method speeds
up conjunctive queries by up to 7.7x versus the state-of-the-art approach, while
using indexes that require 15%-60% less storage in most cases.

1 Introduction

Set intersection is a fundamental operation for evaluating conjunctive queries in the
context of scientific data analysis, as well as in other fields [1,2]. For example, consider
the following conjunctive query used in detecting atmospheric rivers [3]: “water vapor
> 20mm, length > 2000km and width <1000km, and spatial constraints”. In order
to answer this query (i.e., retrieve the common records satisfying all constraints), it is
necessary to intersect multiple record sets, each of which satisfies an individual query
constraint. Indexes are often used in support of such intersection operations, as they
accelerate the evaluation of the individual constraints.

Compressed bitmap indexing methods are commonly used in scientific data analysis
to support set intersections [4–6]. These methods successfully provide computationally-
efficient set intersections by means of cheap bitwise operations. However, this efficiency

� Corresponding author.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 668–679, 2014.
c© Springer International Publishing Switzerland 2014

Fast Set Intersection through Run-Time Bitmap Construction 669

may be nullified by the I/O bottleneck common in High-Performance Computing (HPC)
environments, as compressed bitmap indexes often have large storage footprints [7].
Thus, effective set intersections in an HPC context require not only efficient computa-
tion, but also low I/O overhead.

Recently, PForDelta-compressed indexes have been demonstrated as a promising al-
ternative to compressed bitmap indexes [8, 9]. By using PForDelta compression [10–
12], a dynamic data-locality-based encoding, these indexes are often able to achieve
multi-fold storage reduction relative to compressed bitmap indexes. However, exist-
ing algorithms for set intersections on PForDelta-compressed indexes are not able to
deliver good compute performance in the context of HPC. For example,“comparison-
based” set intersection methods [13–15] usually require sorted set operands, whereas
a PForDelta-compressed index over scientific data is typically value-partitioned (see
Section 2.2), resulting in a partially-sorted data structure that is expensive to sort on-
the-fly. Likewise, the “skipping” method [2, 16] shares this sorting requirement, and
further assumes that at least one individual constraint is highly selective, a condition
not always met in scientific analysis. Thus, while PForDelta indexes surmount the I/O
bottleneck challenge, existing PForDelta set intersection methods conversely fall short
in computational efficiency.

Therefore, we propose a new set intersection approach based on coupling the PForD-
elta indexing format and bitmaps through a specialized on-the-fly conversion. Our key
insight is that PForDelta indexing and bitmap intersection can bring lightweight I/O and
computational-efficiency benefits to the set intersection operation, respectively.

The challenge is to ensure this conversion process is fast enough to avoid dimin-
ishing the performance gains from this integrated approach. To this end, we contribute
two key enhancements to PForDelta, BitRun and BitExp, that greatly improve bitmap
conversion through bulk bit-setting and a more streamlined PForDelta decoding pro-
cess, respectively. Our experimental results show that our integrated PForDelta-bitmap
approach speeds up conjunctive queries by up to 7.7x versus the state-of-the-art pure
bitmap-based method, while using 15-60% less index storage space in most cases.

2 Related Work and Background

2.1 Set Intersection

Methods for achieving efficient set intersection are a focus in several fields of research.
For scientific data analysis, compressed bitmaps are the state-of-the-art approach for
set intersections. Word-aligned Hybrid (WAH) [4–6], a prominent compressed-bitmap
approach, achieves compression by capturing long runs of 0-bits and 1-bits with fill
words. Each fill word begins with a “fill flag bit,” followed by the fill type (0 or 1)
and count. Bits not part of a run are encoded using literal words, denoted by a “literal
flag bit,” which simply contain the exact bits to encode. During set intersection, words
from multiple bitmaps are “matched up” in a bitwise AND operation. Fill words enable
large segments of bitmap to be processed in bulk, saving a substantial compute time.
However, compressed bitmaps often exhibit heavy storage footprints [7], which is an
impediment in an HPC context due to the ubiquitous I/O bottleneck.

670 X. Zou et al.

In fields such as information retrieval and web search, “comparison-based” set in-
tersection methods are more common [13–15]. Most research on such methods aims to
reduce the asymptotic complexity and/or practical run time of set intersections over un-
compressed, sorted integer lists. Another, similar technique is the “skipping” method [2,
16], which performs set intersection over PForDelta-compressed sets. By leveraging
min/max element metadata in each chunk, this method is able to entirely skip some
compressed chunks, reducing overall decompression cost.

While well-suited for their designed purposes, these set intersection methods do not
translate well to scientific data indexing and querying. First, most are not designed
to operate on compressed indexes (unlike our approach); second, they assume sorted
operand sets, which is not the case for finely-partitioned value-binning indexes (ex-
plained next); third, some additional, method-specific limitations may apply (e.g., the
skipping method depends on high skewness in query constraint selectivities, which does
not hold for many scientific queries). Our methodology aims to overcome these barriers.

2.2 PForDelta-Compressed Indexes

PForDelta-compressed indexing is a recent approach to scientific data indexing. It is
built on value binning, an indexing approach which groups data that have similar values
into histogram bins to produce broader bin values. “Similar” may be defined several
ways, such as bit-level binning [7], interval binning [6], and equality binning [6]. In
this work, we elect to use bit-level binning, which partitions data according to the 16
most significant bits of their floating-point representation (equivalent to roughly 1 to 2
base-10 significant digits in scientific notation). The binning process collects the record
IDs (or RIDs, integer IDs specifying datapoint locations via some linearization) of all
values contained in each bin. These bins of RIDs are then compressed using PForDelta.

PForDelta compression operates on a list of integers (record IDs, in this case) in
a chunk-wise manner. Within each fixed-size chunk, PForDelta computes the deltas
between consecutive integers, then selects a reduced bit-width b (bits-per-element) that
can encode the majority of these deltas. The remaining deltas that can not be encoded
with b bits are termed exceptions, and are stored uncompressed alongside the bit-packed
deltas. Since most delta values may typically be encoded using far fewer bits than the
standard word size, a high compression ratio can be achieved, especially when some
data locality is present in the original RIDs, which translates to many small deltas.

Some refinements to the base PForDelta encoding have been proposed. For exam-
ple, Zhang et al. [11] use a flexible number of bits to encode exceptions, and Yan et
al. [12] use the vacant b-bit-wide slots at the exception positions in the delta list to store
the low bits of exception values. In this work, we leverage the version of PForDelta
used in our previous work [9], as its design is targeted to achieve good compression on
scientific data indexes. Specifically, we use 0 delta values to identify exception posi-
tions, instead of the explicit offset list used in other works. We also incorporate Zhang
et al. [11]’s variable exception bit-width approach. These modifications form a baseline
for our work; we present additional, new PForDelta enhancements in Section 3.

Fast Set Intersection through Run-Time Bitmap Construction 671

SELECT region positions WHERE 5<Temp <35 AND 20<= Pressure < 60

Indexes in
PForDelta format

Set intersection

Region-retrieval Query

1 0 1 0 1 1 1 0 1 1

0 1 1 1 1 0 1 1 1 0

2:Construction

2:Construction

1: Constraint
Evaluation Pressure

Temp

3:Bitwise AND4: Bit-to-RID
Conversion

Conjunctive Query Processing

Fig. 1. Overview of our set intersection approach using PForDelta-compressed indexes fits into
conjunctive query processing

3 Method

To recap, both I/O and computational efficiency barriers must be overcome to achieve
fast set intersection in an HPC context. Our approach is to couple the storage-lightweight
PForDelta indexing format with computationally-efficient bitmaps for set intersections
via on-the-fly PForDelta-to-bitmap conversion. However, to retain the benefits of PForD-
elta and bitmaps, it is critical to ensure the efficiency of the conversion process.

To this end, after reviewing the flow of conjunctive query processing in Section 3.1,
we present two techniques, BitRun (Section 3.2) and BitExp (Section 3.3), that enhance
PForDelta to increase bitmap conversion throughput. BitRun uses a run-length encod-
ing approach to speed up bitmap construction for high-data-locality scientific datasets,
whereas BitExp tunes PForDelta to increase decoding throughput on data that show
moderate locality. Additionally, in Section 3.4, we explain how to apply BitRun and
BitExp simultaneously in a flexible, combined approach.

3.1 The Role of Set Intersection in Conjunctive Query Processing

Figure 1 illustrates an overall flow of conjunctive query processing, which is the context
of our methods. Initially, each scientific dataset is indexed by value binning, which
partitions the record IDs (RIDs) of data elements into a series of bins, each of which
has associated value interval. Each index bins is then compressed using PForDelta,
which compresses the list of RIDs in a chunk-wise manner.

When a conjunctive query arrives, each individual constraint in the conjunction is
evaluated using its respective index, causing a subset of bins to be retrieved. These
retrieved bins serve as the inputs to the set intersection operation, which proceeds in
three steps. First, these retrieved bins for each query constraint are converted to a sin-
gle bitmap (which is also an implicit union operation). Second, the bitmaps built from
these constraints are then intersected via bitwise AND operations, which yield a sin-
gle, final bitmap. Last, the final bitmap is transformed to a list of RIDs (using a lookup
table for speed), which serves as the region result for the original query. Note that, in
this work, we limit our consideration to region-retrieval queries with value constraints

672 X. Zou et al.

aligned to bin boundaries; generic methods for supporting unaligned constraint have
been developed [6], and could easily be applied on top of our approach.

In addressing the key step of PForDelta-to-bitmap conversion, a straightforward ap-
proach is to first decode each retrieved bin, and then scan the resulting RID lists, setting
the appropriate bits in the bitmap. However, this requires making two complete passes
(first to decompress, then to set bits), and mandates retaining the intermediate uncom-
pressed form in memory during this process, leading to poor cache efficiency and high
memory usage. As a refinement, we instead set bits in the bitmap immediately after each
PForDelta chunk is decoded, resulting in memory and cache efficiency. Additionally, to
limit the output bitmap size when the original dataset is large (since each datapoint re-
quires one bit in the bitmap), we perform “data partitioning” during index building to
split the dataset into manageable blocks, preventing bitmaps from becoming unwieldy
during query processing.

However, there is still substantial room for improvement, and thus, we devote our
effort to improving the efficiency of bitmap conversion in the following subsections.

3.2 BitRun: Incorporating Run-length Encoding into PForDelta

A frequently observed phenomenon in scientific simulations is the data locality, in
which data from contiguous time-steps or spatial regions exhibits very close value. Con-
sequently, when the value binning is applied on the datasets, many RIDs in the indexes
show a high degree of consecutiveness.

However, PForDelta is not efficient for building a bitmap from consecutive RIDs, and
so a more specialized encoding within PForDelta is needed to optimize for this case.
To see this, consider the example illustrated in Figure 2, which shows how PForDelta
encodes a chunk of mostly-sequential RIDs. The first step of PForDelta encoding cal-
culates the deltas between consecutive RIDs, producing a list of deltas, most of which
are equal to 1. In the second step, the encoding bit-width is determined to be 1, since
most deltas can be encoded in a single bit. Lastly, the deltas are bit-packed, producing
the packed delta array B and the exception array E .

In the above example, suppose this encoded chunk were converted to a bitmap. This
bitmap would then exhibit a few long sequences of 1-bits and 0-bits. Unfortunately,
during this conversion, each 1-bit in the bitmap is set individually, because each corre-
sponding RID is decoded separately in PForDelta. If we had a more concise encoding
for long sequences of consecutive 1-bits, then these bits could be set in bulk, which is
potentially more efficient.

In response to this, we develop BitRun, a method inspired by run-length encoding,
to speed up bitmap construction by capturing the bit consecutiveness of high-locality
chunks. Within such a chunk, instead of encoding the deltas as before, we encode the
lengths of alternating runs of 1-bits and 0-bits in the expected bitmap. These lengths are
stored in a bit-setting (S) and a bit-clearing (C) array, respectively.

To compute S and C, we could directly scan through the original chunk data, count-
ing the number of consecutive RIDs and measuring gaps between them. However, since

Fast Set Intersection through Run-Time Bitmap Construction 673

Fig. 2. An example of how PForDelta encodes a chunk of mostly-sequential RIDs, and the bitmap
resulting from decoding this chunk. Note how each 1-bit in the expected output bitmap (except the
first in each consecutive run) is encoded with a separate delta value. Also shown is the calculation
of the S and C arrays used in our more-concise BitRun encoding.

PForDelta has already computed the exception (E) and exception position (P) arrays
for the chunk (with length denoted by n), we can instead compute S and C as follows:

for i = 1, . . . , |E| : Ci = Ei − 1, Si =

{
Pi+1 −Pi if i < |E|
n−Pi otherwise

This computation only requires |E| iterations, rather than n. After this, S and C serve as
the encoding output for the chunk (instead of the normal PForDelta chunk output). Since
this S and C computation relies on the intermediate state of PForDelta BitRun only
replaces the last step of PForDelta (delta bit-packing), leaving the other steps identical.

The corresponding decoding algorithm for BitRun recovers the bitmap encoded by
the S and C arrays. It works by starting at the beginning of the bitmap, then alternately
skipping C[i] bits followed by setting the next S[i] bits to 1 for 1 ≤ i ≤ |E|. The bit-
setting step is accomplished using highly-efficient bitmask OR operations. Additionally,
the contiguous 0-bits described by C can merely be skipped, not cleared, because the
bitmap is zero-initialized at the start. Since both 0-bit and 1-bit runs are handled in
bulk, this decoding process is a substantially faster alternative to standard PForDelta
for chunks with b = 1.

3.3 BitExp: Expanding the PForDelta Encoding Bit-Width

In addition to BitRun, which is designed for high chunk data locality, we also develop
BitExp, a complementary approach for the case when chunk data displays less locality.
The key insight of BitExp comes from profiling each PForDelta decoding step. By doing
so, we are able to improve PForDelta decoding throughput, and thus, to improve the
efficiency of the bitmap construction .

We start by looking at the performance of each of the three main steps in PForDelta
decoding: 1) unpack deltas, which expands the packed deltas to a delta array; 2) ex-
ception patch, which patches exceptions back to the delta array; and 3) cumulative
sum, which recovers the original values by summing the deltas. The performance of the

674 X. Zou et al.

cumulative sum step is relatively stable, as the execution time of sum operation is deter-
mined only by the fixed chunk size D. In contrast, the performance of the unpack deltas
and exception patch steps fluctuate. The former depends on the bit-width b, which de-
termines the number of bitwise operations in the step, whereas the latter is affected by
the number of exceptions (|E|), which determines the number of patch operations.

We next measure the performance sensitivity of the unpack deltas and exception
patch steps as b and |E| vary. We accomplish this by collecting PForDelta decoding
performance on compression chunks generated with every combination of b and |E|
varying from 2 to 31 and from 0 to 64, respectively. The range of b is chosen because
b = 1 is already covered by BitRun and PForDelta mandates b < 32, and the range
of |E| covers most realistic encoding cases. We uniformly distribute exceptions in our
compression chunks.

The results are shown in Figure 3. We see that the decompression time is almost
linear with |E| when b is fixed, whereas the decompression time is quite stable regard-
less of b while fixing |E|. Thus, the number of exceptions plays a dominant role in
determining the decoding throughput.

Given this trend, one could maximize decoding throughput by expanding b in
every chunk to eliminate all exceptions; however, this would lead to a large storage in-
crease, increasing I/O time and potentially countering any improved decoding through-
put. Therefore, BitExp opts for another approach: rather than choosing every chunk for
b-expansion, BitExp selects only those chunks where all exceptions can be eliminated
via a small increase in b, leaving other, “harder” chunks untouched. This way, only some
chunks use a larger b, balancing decreased compression ratio and increased decoding
throughput. Specifically, when encoding each chunk, BitExp considers two options: 1)
using a larger b to produce an “exceptionless chunk” (which has a larger compressed
size, but is faster to decode), or 2) retaining the original b and chunk encoding. The
decision is made using a threshold ratio: if the increase in compressed size by using an
exceptionless chunk is below this threshold, b is expanded; otherwise, the original b is
retained. This b-expansion only affects the encoding process, and does not change the
PForDelta format; thus, the usual decoding process is still used, though it now benefits
from improved decoding throughput.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 10 20 30 40 50 60

D
ec

od
in

g
Ti

m
e

(s
ec

on
ds

)

Number of Exceptions (|E|)

b=2 b=15 b=31

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20 25 30

D
ec

od
in

g
Ti

m
e

(s
ec

on
ds

)

Bit-Width (b)

|E|=1 |E|=21 |E|=41 |E|=61

Fig. 3. PForDelta decoding time when varying |E| while keeping b fixed (left), and when varying
b while keeping |E| fixed (right). Reported timings are for decoding 1000 PForDelta chunks.
Trends seen are representative of experiments with other b and |E| parameters.

Fast Set Intersection through Run-Time Bitmap Construction 675

3.4 BitRun-BitExp: Handling Set Intersections across Heterogeneous Datasets

Often, queries over scientific data induce set intersections across datasets with differing
levels of locality. However, neither BitRun nor BitExp can effectively tackle this sce-
nario, as they each target a specify level of data locality. Fortunately, these methods are
both complementary and have compatible output forms (bitmaps). Therefore, by using
BitRun for high-locality datasets and BitExp for low-locality datasets simultaneously, or
even by interleaving BitRun and BitExp in a single dataset on a PForDelta-chunk basis,
we can attain performance beyond what either method can provide alone. We term this
approach “BitRun-BitExp (BRBE).”

4 Results

4.1 Experimental Setup

Computing Environment: All experiments are executed on the “Sith” cluster at Oak
Ridge National Lab. Sith consists of 40 compute nodes, each equipped with four 2.3
GHz 8-core AMD Opteron processors and 64 GB of memory. All data are stored on the
Lustre parallel file system using the default striping parameters.

Index Preparation: We use double-precision floating-point datasets from the S3D
combustion [17] and FLASH astrophysics [18] simulations. Selected datasets have three
locality categories: low, medium, and high. The category indicates the compressibility
of dataset. “High” means the dataset is easy to be compressed, whereas, “low” means
the dataset is hard to be compressed. All selected datasets have 2GB data size. We
construct 5 indexes on each variable: our three index types (BitRun, BitExp, BRBE),
PForDelta index, and FastBit’s WAH compressed bitmap index. The index sizes of these
datasets obtained from these 5 indexes methods are shown in Table 1. Additionally,
these indexes are all binned using ALACRITY-style [8] significant-bit-based method,
which roughly corresponds to binning with between 1 and 2 significant digits in base-10
scientific notation. Since FastBit does not normally support ALACRITY-style binning,
in order to ensure a fair comparison, we emulate this binning strategy using a mapping
technique to produce an equivalent set of bins in FastBit to match those in our methods.
For BitExp and BRBE, we use an expansion threshold ratio of 1.6, as this value gives
reasonable performance based on preliminary experimentation. Finally, BRBE is con-
figured to use BitRun indexes on S3D datasets marked “medium locality” in Table 1,
and BitExp indexes for those marked “low locality.”

Conjunctive Query Processing and Queries: Our conjunctive query processing
(shown in Section 3.1) is built as an extension of the ALACRITY univariate query
processing engine. To clearly evaluate our method, all queries used for evaluation are
region-retrieval queries, and use constraints that are aligned to index bin boundaries as
value-retrieval so that candidate checks are not needed. We use a set of queries in our
experiments: 5 overall selectivities ranging from 0.001% to 10% in powers of 10, using
3 or 4 query constraints. We choose these queries as the scientific queries typically have
multi-variate constraints and relatively low selectivities [19].

676 X. Zou et al.

4.2 Comparison with WAH Bitmap Indexes

We compare our PForDelta-based indexing against WAH-based indexing, in two re-
spects: storage size, and query performance as both of these are important aspects of
set intersection performance.

The index storage footprints shown in Table 1 demonstrate that the storage require-
ment for our main method. The index size of BRBE is substantially lower, ranging
from 15% to 60%, than that of WAH for most datasets, except the high locality one.
We believe several factors are at play here. First, fewer consecutive runs of bits occur
in a WAH index for low locality datasets, leading to significant drops in compression
due to loss of fill word encoding. In contrast, PForDelta is delta-oriented, and thus its
compression degrades more gracefully in the face of slight losses in consecutiveness
of RIDs. Furthermore, BitRun does not exhibit the same penalty as WAH because its
run-length encoding mode is only rarely triggered in low locality datasets, minimizing
any increase in index size.

Complementarily, Figure 4(a) and 4(b) show the comparison of end-to-end query
processing times between a FastBit’s WAH bitmap index and a PForDelta-compressed
index using our method. As FastBit currently does not support performance breakdown,
we show this by comparing the total response time, which includes CPU and I/O time.

We see that BRBE yields query response times that are 2.1x to 7.7x faster than WAH
on this range of queries. We attribute this trend to BRBE’s relatively higher index com-
pression ratio, which leads to less I/O than that induced by WAH. A “flattening-off”
effect is also apparent in WAH’s times for lower selectivities. One possible explana-
tion is the query optimization in WAH (which is also common in database management
systems): when selectivity on some query constraint is very low, a sequential scan is
used instead of the index (for that constraint only), thus avoiding the cost of processing
a large portion of index. With BRBE’s smaller index, however, this strategy does not
appear to be necessary.

4.3 Performance Breakdown of PForDelta-Compressed Index Approaches

We breakdown the end-to-end query processing time to gain further insight of our meth-
ods. In addition to evaluating our three methods (BitRun, BitExp, and BRBE), we also
include methods “RawIndex” and “Simple” as comparison baselines to demonstrate
the benefit of our refinements. The RawIndex method uses a simple, uncompressed

Table 1. Storage footprints of different indexing methods on several scientific datasets

Dataset
Data

Locality
Index Size (as % of Original Data Size)

PForDelta BitRun BitExp BRBE WAH
FLASH gamc High 2.5% 2.0% 2.5% 2.0% 0.3%
FLASH vely Medium 4.4% 5.4% 4.4% 5.7% 6.8%
S3D temp Medium 5.3% 6.7% 5.9% 7.0% 8.8%
S3D uvel Medium 6.6% 10.6% 7.4% 11.0% 15.1%
S3D vvel Low 15.1% 19.2% 17.7% 21.1% 55.0%
S3D wvel Low 15.1% 18.9% 17.6% 20.8% 55.0%

Fast Set Intersection through Run-Time Bitmap Construction 677

 0.5

 1

 2

 4

 8

 16

0.001% 0.01% 0.1% 1% 10%

Ti
m

e
(s

ec
on

ds
)

BRBE
WAH

(a) Queries with 3 variable constraints

 1

 2

 4

 8

 16

 32

0.001% 0.01% 0.1% 1% 10%

Ti
m

e
(s

ec
on

ds
)

BRBE
WAH

(b) Queries with 4 variable constraints

Fig. 4. Comparison of query response times between BRBE and WAH. Results for two-constraint
queries are similar, but are omitted for space considerations.

inverted index, and build an uncompressed bitmap directly from this representation be-
fore performing set intersection. The Simple method instead stores its inverted indexes
in standard PForDelta-compressed form, and fully decompresses retrieved bins before
building the uncompressed bitmap in the same manner as RawIndex. We show results
for RawIndex to illustrate the need for a storage-lightweight approach, and Simple to
demonstrate the need for an efficient PForDeltato-bitmap conversion process.

The performance breakdown includes each component in the query evaluation pro-
cess: “I/O,” “Decode,” “Bitmap Build,” “Bitwise AND,” and “RID Recovery.” “I/O”
measures the time to read the compressed or uncompressed index bins from storage.
We would like to point out there is a relatively stable “I/O” performance throughout
our experiments as we observe the average standard deviation and variance of “I/O”
are 0.1024 and 0.0133, respectively. “Decode” indicates the time to decompress the
compressed index bins (this phase is not present for RawIndex). “Bitmap Build” shows
the time to build the uncompressed bitmap from these bins (this phase is not present
for BitRun, BitExp or BRBE, as they do this in situ during the “Decode” step). Finally,
“Bitwise AND” is the time to intersect the bitmaps from each constraint into the final
output bitmap, and “RID Recovery” measures the last step of extracting RIDs from this
result bitmap (both of these steps are shared by all five methods).

Figures 5(a) and 5(b) show the performance breakdown of each component in the
query evaluation. Performance of the RawIndex and Simple approaches are predictable:
RawIndex’s performance is dominated by long I/O times due to its lack of compression,
whereas Simple suffers from having separate decompression and bitmap construction
steps, demonstrating the need for a more efficient bitmap conversion process.

We see that BitRun, BitExp, and BRBE are consistently faster than RawIndex and
Simple in almost all cases. This is because decoding time is greatly reduced for our
methods, more than offsetting their slightly higher I/O cost. This decoding speedup is
partly because all three of our methods employ a cache-efficient, in-place bitmap con-
struction technique. Additionally, both BitRun and BitExp add their own optimizations
to the decoding process (as described in Sections 3.3 and 3.2).

Between BitRun and BitExp, we see BitRun demonstrates the larger performance
gain, presumably because it exploits the more “lucrative” possibility of setting runs
of bits in bulk. However, BRBE generally performs better than when either BitRun or

678 X. Zou et al.

(a) Queries with 3 variable constraints (b) Queries with 4 variable constraints

Fig. 5. Comparison of query response times among BitRun, BitExp, and BRBE, as well as two
baseline index methods

BitExp is applied alone. This is because BRBE combines the benefits of both its com-
ponent methods, and thus can handle a mix of higher-locality and lower-locality dataset
variables, whereas BitRun or BitExp alone can only effectively handle one of these
cases.

5 Conclusion and Future Work

Set intersection is a critical operation for conjunctive query processing in scientific data
analysis. In this work, we present a fast set intersection approach based on coupling the
storage-lightweight PForDelta indexing format with computationally-efficient bitmaps
via an on-the-fly conversion process. We address the key challenge of minimizing the
bitmap conversion cost through enhancements to PForDelta, which drastically improve
bitmap construction time. Results indicate our method achieve speedups of between
2.1x and 7.7x versus state-of-the-art method while only requiring 15-60% less storage
space.

In the future, we plan to extend this work in two directions: 1) we will evaluate
the end-to-end impact of our method in real scientific applications by integrating our
work in two widely used I/O middlewares: HDF5 and ADIOS; 2) we will consider
parallelizing our method in the GPU environment, in which the massive number of
parallel threads helps to decompress tremendous PForDelta chunks simultaneously.

Acknowledgment. We would like to thank the Leadership Computing Facilities at Ar-
gonne National Laboratory and Oak Ridge National Laboratory for the use of resources.
Oak Ridge National Laboratory is managed by UT-Battelle for the LLC U.S. D.O.E.
under Contract DE-AC05-00OR22725. This work was supported in part by the U.S.
Department of Energy, Office of Science, Advanced Scientific Computing Research
and the U.S. National Science Foundation (Expeditions in Computing and EAGER
programs).

Fast Set Intersection through Run-Time Bitmap Construction 679

References

1. Demaine, E., López-Ortiz, A., Munro, J.: Adaptive set intersections, unions, and differences.
In: Proc. Symposium on Discrete Algorithms, SODA (2000)

2. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Transactions
on Information Systems (1996)

3. Byna, S., Wehner, M., Wu, K., et al.: Detecting atmospheric rivers in large climate datasets.
In: Proc. Workshop on Petascal Data Analytics: Challenges and Opportunities (2011)

4. Wu, K., Otoo, E., Shoshani, A.: Compressing bitmap indexes for faster search operations. In:
Proc. Scientific and Statistical Database Management, SSDM (2002)

5. Wu, K., Otoo, E., Shoshani, A.: On the performance of bitmap indices for high cardinality
attributes. In: Proc. Very Large Data Bases (VLDB), vol. 30 (2004)

6. Wu, K.: FastBit: An efficient indexing technology for accelerating data-intensive science.
Journal of Physics: Conference Series (2005)

7. Jenkins, J., et al.: Analytics-driven lossless data compression for rapid in-situ indexing, stor-
ing, and querying. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012,
Part II. LNCS, vol. 7447, pp. 16–30. Springer, Heidelberg (2012)

8. Jenkins, J., et al.: Alacrity: Analytics-driven lossless data compression for rapid in-situ index-
ing, storing, and querying. In: Hameurlain, A., Küng, J., Wagner, R., Liddle, S.W., Schewe,
K.-D., Zhou, X. (eds.) TLDKS X. LNCS, vol. 8220, pp. 95–114. Springer, Heidelberg (2013)

9. Lakshminarasimhan, S., Boyuka II, D., et al.: Scalable in situ scientific data encoding for
analytical query processing. In: Proc. High-performance Parallel and Distributed Computing
HPDC 2013 (2013)

10. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache compression.
In: Proc. International Conference on Data Engineering, ICDE (2006)

11. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in search
engines. In: Proc. World Wide Web, WWW (2008)

12. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized
document ordering. In: Proc. World Wide Web, WWW (2009)

13. Barbay, J., López-Ortiz, A., Lu, T.: Faster adaptive set intersections for text searching.
In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 146–157. Springer,
Heidelberg (2006)

14. Baeza-Yates, R.: A fast set intersection algorithm for sorted sequences. In: Sahinalp, S.C.,
Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 400–408.
Springer, Heidelberg (2004)

15. Chatchaval, J., Boonjing, V., Chanvarasuth, P.: A skipping SvS intersection algorithm. In:
Proc. International Conference on Computing, Engineering and Information, ICC (2009)

16. Jonassen, S., Bratsberg, S.E.: Efficient compressed inverted index skipping for disjunctive
text-queries. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch,
V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 530–542. Springer, Heidelberg (2011)

17. Chen, J., Choudhary, A., Supinski, B., et al.: Terascale direct numerical simulations of tur-
bulent combustion using S3D. Computational Science & Discovery (2009)

18. Fryxell, B., Olson, K., Ricker, P., et al.: FLASH: An adaptive mesh hydrodynamics code for
modeling astrophysical thermonuclear flashes. The Astrophysical Journal Supplement Series
(2000)

19. Sinha, R.R., Winslett, M.: Multi-resolution bitmap indexes for scientific data. ACM Trans-
actions on Database Systems, TODS (2007)

Hybrid CPU/GPU Acceleration of Detection

of 2-SNP Epistatic Interactions in GWAS

Jorge González-Domı́nguez1, Bertil Schmidt1,
Jan Christian Kässens2, and Lars Wienbrandt2

1 Parallel and Distributed Architectures Group,
Johannes Gutenberg University - Mainz, Germany
{j.gonzalez,bertil.schmidt}@uni-mainz.de

2 Department of Computer Science,
Christian-Albrechts-University of Kiel, Kiel, Germany

{jka,lwi}@informatik.uni-kiel.de

Abstract. High-throughput genotyping technologies allow the collection
of up to a fewmillion geneticmarkers (such as SNPs) of an individualwithin
a few minutes of time. Detecting epistasis, such as 2-SNP interactions, in
Genome-WideAssociation Studies is an important but time consuming op-
eration since statistical computations have to be performed for each pair of
measured markers. In this work we present EpistSearch, a parallelized tool
that, following the log-linear model approach, uses a novel filter to deter-
mine the interactions between all SNP-pairs. Our tool is parallelized using
a hybrid combination of Pthreads and CUDA in order to take advantage
of CPU/GPU architectures. Experimental results with simulated and real
datasets show that EpistSearch outperforms previous approaches, either
using GPUs or only CPU cores. For instance, an exhaustive analysis of a
real-world dataset with 500,000 SNPs and 5,000 individuals requires less
than 42 minutes on a machine with 6 CPU cores and a GTX Titan GPU.

Keywords: Bioinformatics, GWAS, Epistasis, Pthreads, CUDA.

1 Introduction

High-throughput genotyping technologies allow the collection of hundreds of
thousands to a few million genetic markers, such as Single Nucleotide Polymor-
phisms (SNPs) of an individual within a few minutes of time. In Genome-Wide
Association Studies (GWAS) these genotypes are typically measured for several
thousand individuals and then linked to a given phenotype of each individual,
such as the presence (case) or absence (control) of an associated disease. In clas-
sical single-locus GWAS each genetic marker is then analyzed individually in
order to identify markers that are significantly different for cases and controls.
Unfortunately, this approach is generally not powerful enough to model com-
plex traits for which the detection of joint genetic effects (epistasis) needs to be
considered [1,2]. In 2-way statistical epistasis each pair of measured markers is
therefore tested in order to discover interactions between SNP-pairs that explain
the given phenotype.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 680–691, 2014.
c© Springer International Publishing Switzerland 2014

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions 681

Consequently, a number of algorithms and tools have been developed to ad-
dress the problem of detecting epistasis in recent years using one or several
statistical tests over all SNP-pairs [3]. The main goal of these approaches is to
find SNP-pairs whose joint values show a statistically significant difference com-
pared to the individual SNP values. One of the most popular approaches uses
statistical regression methods [4,5]. These tests are very precise but the pair-wise
analyses are very computationally-expensive. As an example, it is necessary to
apply the statistical tests to 125 billion pairs when analyzing a moderately-sized
dataset consisting of half million SNPs [6,7].

Many recent approaches are filtration-based; i.e. they firstly apply a compu-
tationally faster filter and subsequently perform the full statistical analysis only
to the SNP-pairs not discarded by the preliminary filter. SNPHarvester [8] uses
path algorithms to identify several groups of SNPs associated to the same disease.
Then, it applies the statistical method only to the pairs generated within each
group. SNPRuler [9] narrows the search space through a learning approach based
on predictive rule learning. BOOST [10] introduces the Kirkwood Superposition
Approximation (KSA) as preliminary filter. This last tool was taken as basis for
our work because it is currently widely used by biologists (see e.g. [11,12,13]).
Furthermore, it is faster than previous approaches not only for CPU but also for
GPU computation (GBOOST [14]).

As the development of epistasis tools has attracted extensive research inter-
ests, even more recent work that try to improve precision using different sta-
tistical methods has arisen. iLOCi [15] uses a statistical method based on the
difference of the dependency of controls and cases, but our preliminary bench-
marking demonstrated that it is much slower than BOOST. GWIS [16], which
presents a GPU implementation of a method based on ROC-curves, could not
be tested since merely a web interface is publicly available. Thus, these tools and
their statistical methods are not as commonly used by biologists as BOOST and
GBOOST. In this paper we present EpistSearch. In order to further improve the
speed of this approach our tool introduces a novel preliminary filter and takes
advantage of heterogeneous CPU/GPU architectures through inter-task hybrid
parallelism to perform fast epistasis search in GWAS datasets.

The rest of the paper is organized as follows. Section 2 describes the BOOST
method that is adapted by our tool. Our novel preliminary KSASA filter is
presented in Section 3. Section 4 describes our hybrid parallelization approach.
Runtime performance is evaluated and compared in Section 5 using both simu-
lated and real-world datasets. Section 6 concludes the paper.

2 Background

2.1 Contingency Tables

We work with datasets of biallelic genetic markers where major alleles are de-
noted with capital letters and minor alleles with lowercase letters. Therefore,
for each SNP there are three genotypes {AA,Aa,aa}, which are numerically rep-
resented as {0,1,2}. The number of SNPs and individuals are denoted as M

682 J. González-Domı́nguez et al.

Table 1. Example of contingency table

Cases SNP2=0 SNP2=1 SNP2=2 Controls SNP2=0 SNP2=1 SNP2=2

SNP1=0 n000 n010 n020 SNP1=0 n001 n011 n021

SNP1=1 n100 n110 n120 SNP1=1 n101 n111 n121

SNP1=2 n200 n210 n220 SNP1=2 n201 n211 n221

and N , respectively. The individuals are categorized as cases (value 0) and con-
trols (value 1). The filters that select the SNP-pairs that present interaction use
a 3x3x2 contingency table per pair. As seen in the example of Table 1, each
cell ijk stores the count of individuals categorized as k (case or control) with
the value of the first SNP as i, and the second SNP as j. We can also fill the
contingency table with probabilities: πijk = nijk/N .

2.2 Log-Linear Models and the KSA Filter

The purpose of a 2-SNP statistical epistasis tool is to identify SNP-pairs whose
joint values are significantly different from the joint values expected from the in-
dividual SNP values. In [10] Wan et al. prove that the search for interaction with
regression models can be simplified using log-linear models. They define interac-
tion from the perspective of the log-linear models as the information contained
in the joint distribution but not in its lower-order factorization. This definition
led to measure interaction as L̂S − L̂H , where L̂S and L̂H represent the max-
imum log-likelihood of the saturated and the homogeneous association models,
respectively. It can be calculated from the values of the contingency table as:

N
∑
ijk

[
π̂ijk log

(
π̂ijk

p̂ijk

)]
where π̂ijk is the joint distribution obtained under the saturated model and
p̂ijk the distribution obtained under the homogeneous association model. They
establish that all pairs with log-linear measure higher than certain threshold T
present epistasis. Although this log-linear model is affordable, it still requires
a lot of computation as p̂ijk has to be computed through iterative methods.
This is the reason why BOOST applies a simpler filter based on the Kirkwood
Superposition Approximation (KSA). The authors proved the following upper
bound:

L̂S − L̂H ≤ L̂S − L̂KSA

L̂S − L̂KSA = N
∑
ijk

[
π̂ijk log

(
π̂ijk

p̂kijk

)]

p̂kijk =
1

η

πij.πi.kπ.jk

πi..π.j.π..k

η =
∑
ijk

πij.πi.kπ.jk

πi..π.j.π..k

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions 683

The equations above show that the KSA value can be directly calculated from
the cells of the contingency table without iterative methods. Therefore, BOOST
and GBOOST accelerate their analyses using the KSA filter (L̂S − L̂KSA). From
now, we call the value of L̂S − L̂KSA for a specific SNP-pair its “KSA value”. As
the KSA value is an upper bound of the log-linear measure, these tools calculate
it for all SNP-pairs and discard those with a KSA value lower than T . Finally,
they only apply the log-linear filter to the remaining pairs. For simplicity, we
refer to [10] to find the proofs and further explanation of the KSA and log-linear
filters.

3 KSA’s Superposition Approximation (KSASA)

Although the KSA filter does not need iterative methods, a relatively large
amount of numerical computations still have to be performed on each pair.
Thus, we have designed a novel simpler filter called KSA Superposition Ap-
proximation (KSASA). EpistSearch applies the KSASA filter (upper bound for
KSA) to all SNP-pairs, discarding all that have a value below the threshold, and
only calculating the KSA and log-linear values for the other. The pseudo-code
of EpistSearch is summarized in Algorithm 1.

foreach SNP-pair P do
v = KSASA V alue(P)
if v > T then

v = KSA V alue(P)
if v > T then

v = LogLinear V alue(P)
if v > T then

Print P in the output file as pair with epistasis
end

end

end

end

Algorithm 1. Pseudo-code of EpistSearch

In order to prove that KSASA is an upper bound for KSA, let E and O
denote the counts of expected (control) and observed (case) studies, then the
total variation distance and the total spread are:

δ(E,O) =
1

2

∑
x

|Ex −Ox| =
1

2

∑
ij

|πij1 − πij0|

Dspread(E,O) =
∑
x

(Ex −Ox)
2
=
∑
ij

(πij1 − πij0)
2

Following a similar approach as for the design of the log-linear and KSA filters,
we use the discrete Kullback-Leibler divergence as measure:

DKL(E,O) =
∑
x

Ex log

(
Ex

Ox

)
=
∑
ij

πij1 log

(
πij1

πij0

)

684 J. González-Domı́nguez et al.

This Kullback-Leibler divergence between the empirical distributions of the
input classes is much faster to calculate than the KSA value. However, we need
to prove that it is an upper bound of the KSA value in order to be used as
prefilter:

L̂S − L̂H ≤ L̂S − L̂KSA ≤ N ∗DKL(E,O)

This inequality reduces to prove that the Kullback-Leibler divergence be-
tween the maximum likelihood estimate of the joint distribution obtained from
a homogeneous association model and the maximum likelihood estimate of the
joint distribution obtained from the Kirkwood superposition approximation is
bounded by the Kullback-Leibler divergence of the empirical distributions of the
input classes: ∑

ijk

[
π̂ijk log

(
π̂ijk

p̂kijk

)]
≤ c

∑
ij

πij1 log

(
πij1

πij0

)
Reducing the inequality further we obtain:∑

ijk

nijk

N

[
log

(
nijk

N

)
+ log (η)− log

(
nij.ni.kn.jk

ni..n.j.n..k

)]
≤

c
∑

ij

[
nij1

n..1
log

(
nij1

n..1

)
− nij0

n..0
log

(
nij0

n..0

)]
Since it can be shown that the last inequality holds1, N ·DKL(E,O) is a valid

upper bound that can be used as our KSASA prefilter.

4 Parallelization Approach

4.1 Optimization of the Calculation of Contingency Tables

A boolean representation of genotype data is employed in BOOST in order to
calculate the values of the 18 cells of the contingency tables in a fast manner.
EpistSearch optimizes this approach further by reducing the number of explicitly
calculated cells to only 8 (shown without “-” in the Table 2). When loading the
datasets, the sums of the AA and aa biallelic values are calculated per SNP. This
information is also provided to the filters and can then be used to calculate the
remaining cells of the table if necessary. As the sums are only calculated once
per SNP, this approach is faster than calculating the values of 10 additional cells
per SNP-pair.

4.2 Inter-Task Hybrid CPU-GPU Parallelism

Although a heterogeneous CPU-GPU architecture is the common platform for
GPU-based applications, the CPU usually performs tasks that are inherently
sequential or have a low computational intensity. Therefore, GPU applications

1 Because of the page limitation the detailed proof is omitted in this paper.

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions 685

Table 2. Values of the contingency table explicitly calculated by EpistSearch

Cases SNP2=0 SNP2=1 SNP2=2 Controls SNP2=0 SNP2=1 SNP2=2

SNP1=0 n000 - n020 SNP1=0 n001 - n021

SNP1=1 - - - SNP1=1 - - -
SNP1=2 n200 - n220 SNP1=2 n201 - n221

usually waste most of the computational power of CPU multicores. For instance,
GBOOST [14] applies intra-task parallelism where the GPU computes the KSA
filter for all pairs and the CPU computes only the log-linear filter of the pairs
that were not discarded. As the percentage of pairs that pass the KSA filter
is usually very low, the CPU is often idle. On the contrary, EpistSearch applies
inter-task parallelism so that the CPU and GPU threads perform the whole com-
putation but for different SNP-pairs. This hybrid parallelism has already been
shown to be effective in biological sequence database search [17] and next gener-
ation sequencing read alignment [18]. Furthermore, the CPU computation is also
parallelized with the POSIX Threads Programming technology (Pthreads) [19]
to take advantage of CPU multicore platforms.

4.3 CUDA Implementation

We use the CUDA programming model [20] for the GPU implementation of
EpistSearch. A single kernel that performs the whole analysis of a set of SNP-
pairs is developed. The overall approach works as follows:

1. The whole information of the SNPs is transferred to the device memory
through pinned copies at the beginning of the execution.

2. The CUDA kernel that analyzes the interaction of a subset of pairs is
launched several times. In the kernel each thread creates the contingency
table of a number of SNP-pairs independently and performs the necessary
filters.

The execution finishes when all pairs have been processed. When assigning
the GPU resources to the different parts of the code, we gave the highest priority
to the KSASA filter, as it is executed for all SNP-pairs. Therefore, this filter is
implemented using registers and it does not directly accesses the device memory.

The current implementation of EpistSearch can only work with datasets that
fit into the device memory. The largest currently available WTCCC dataset con-
tains about 500,000 SNPs from 5,000 individuals. This can be stored in around
600MB of memory, which is available in almost any modern GPU. For example,
a Tesla K40 GPU, with 12GB of memory, would be able to analyze datasets with
more than 5 million SNPs from 25,000 individuals. This should be sufficient to
analyze most large-scale datasets in the near future.

Depending on the results of the KSASA filter, GPU threads that test pairs dis-
carded by this preliminary filter would be idle while other threads are performing
the KSA and Log-Linear filters. For instance, in a scenario where the probabil-
ity of a SNP-pair passing the KSASA filter is 0.01, 99% of threads would finish

686 J. González-Domı́nguez et al.

their computation in the kernel after the KSASA filter, but they would have to
wait for the remaining 1%. As mentioned in Section 4.2, GBOOST addresses
this thread divergence problem by performing the calculation of the KSA and
log-linear values on the CPU. Although this approach eliminates CUDA thread
divergence, it significantly decreases performance if many SNP-pairs pass the
first filter. An alternative solution would be the division of the computation in
two different kernels: the first one for the generation of the contingency tables
and the KSASA filter (performed for all SNP-pairs), and the second kernel for
the KSA and log-linear filters. However, the overhead of copying the contingency
tables of pairs that pass the KSASA filter between kernels would cause a signif-
icant performance overhead. Therefore, EpistSearch maintains only one kernel
with all the computation but, in order to reduce thread divergence, each thread
evaluates 64 SNP-pairs every time the kernel is launched.

5 Performance Evaluation

The performance of EpistSearch has been evaluated by looking for interactions
between SNP-pairs in several simulated datasets and one real dataset. All the
experiments have been conducted on a system with a hex-core Intel Core i7
Sandy Bridge 3.20GHz CPU with 12MB cache, and two different NVIDIA Kepler
GPUs, whose specifications are shown in Table 3. The runtime of EpistSearch
is compared to BOOST and GBOOST using the same dataset and threshold.
Note that EpistSearch and (G)BOOST produce the same output for all the
experiments. Thus, the accuracy of EpistSearch and (G)BOOST is identical,
and therefore we just compare the runtime performance.

Table 3. Specifications of the two GPUs used for the experimental evaluation

Name Number of SMs Number of cores Core frequency Memory size

GTX 650Ti 4 768 980MHz 2GB
GTX Titan 14 2688 875.5MHz 6GB

Our first evaluation uses only CPU cores and 6 different simulated datasets
generated with the genomeSIMLA tool [21]. All the datasets are based on the
same penetrance table (epi1 model in the supplementary material of [10]), but
vary in terms of the number of SNPs and individuals.

Table 4 shows the percentage of pairs that pass the KSASA and log-linear
filters for each dataset explored on the CPU. The percentage for the KSA fil-
ter is not included because it is always very similar to the reported log-linear
percentage. It can be seen that the KSASA filter discards much less SNP-pairs
than the KSA and log-linear filters. The percentages vary from 8.88% to 25.46%
(almost 3x) and from 0.0006% to 0.017% (more than 28x) in the KSASA and log-
linear filters, respectively. Thus, we can assert that the evaluation is performed
in very different scenarios. Figure 1 shows the execution times of BOOST and

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions 687

Table 4. Percentage of pairs that pass the KSASA and log-linear filters in the CPU
experiments

Num. Inds. → 800 1600 3200
Num. SNPs → 10K 40K 10K 40K 10K 40K

KSASA 18.84 15.95 12.17 8.88 25.46 14.27

log-linear 11 × 10−4 6 × 10−4 27 × 10−4 8 × 10−4 170 × 10−4 19 × 10−4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

800 1,600 3,200

E
xe

cu
tio

n
T

im
e

(m
in

)

Number of Individuals

10K SNPs

(2.20)

(11.25)

(2.03)

(11.05)

(1.75)

(9.59)

BOOST
EpistSearch-1Th
EpistSearch-6Th

 0

 10

 20

 30

 40

 50

 60

800 1,600 3,200
E

xe
cu

tio
n

T
im

e
(m

in
)

Number of Individuals

40K SNPs

(2.29)

(10.92)

(2.07)

(10.90)

(1.79)

(10.07)

BOOST
EpistSearch-1Th
EpistSearch-6Th

Fig. 1. Execution times of BOOST and EpistSearch (with 1 and 6 threads) in the
CPU. Speedups compared to BOOST are shown in brackets.

EpistSearch when running only on the multicore CPU part of the test platform.
Additionally, it shows the speedups for each EpistSearch execution (in parenthe-
sis) compared to BOOST. As BOOST does not have support for parallelism it
can only exploit one of the cores. For EpistSearch we present results using only
one core and the whole hex-core processor. EpistSearch significantly outperforms
BOOST even when using only one core: it is more than 2x faster for all exper-
iments with 800 and 1600 individuals and more than 1.7x faster in any case.
Moreover, the Pthreads implementation achieves a speedup of around 5x for all
experiments when using the 6 cores ($ 85% of parallel efficiency). Therefore,
EpistSearch finishes the analyses of the datasets between 9.5x and 11.3x faster
than BOOST on the studied hex-core machine.

The characteristics of the datasets used for the evaluation of the GPU-based
code are shown in Table 5. Due to the power of the GPUs, we use larger datasets.
Furthermore, the variability of the percentage of SNP-pairs that pass each filter
is even higher than in the CPU experiments: from 6.13% to 52.02% (8.5x) for
the KSASA filter and from 0.0006% to 0.4% (667x) for the log-linear filter.
Figures 2 and 3 compare the performance of GBOOST and EpistSearch working
with the GTX 650Ti and GTX Titan GPU, respectively. Regarding EpistSearch,
we provide the runtimes for GPU-only as well as for hybrid CPU/GPU execution.
The results indicate the following trends:

– EpistSearch is always faster than GBOOST, either using the 6 CPU cores or
not, and independently of the characteristics of the dataset and the GPU.

– In cases where a high percentage of pairs present interaction the improvement
of performance achieved by EpistSearch is the most significant. For instance,
in the experiment with 40K SNPs and 25,600 individuals EpistSearch is more

688 J. González-Domı́nguez et al.

Table 5. Percentage of pairs that pass the KSASA and log-linear filters in the GPU
experiments

Num. Inds. → 6400 12800 25600
Num. SNPs → 40K 160K 40K 160K 40K 160K

KSASA 20.27 6.13 35.49 7.03 52.02 9.35

log-linear 110 × 10−4 6 × 10−4 800 × 10−4 7 × 10−4 4000 × 10−4 12 × 10−4

 0
 1
 2
 3
 4
 5
 6
 7
 8

6,400 12,800 25,600

E
xe

cu
tio

n
T

im
e

(m
in

)

Number of Individuals

40K SNPs

(1.42) (1.54)
(1.83) (1.96)

(2.94) (3.12)

GBOOST
EpistSearch

EpistSearch-6Th

 0
 10
 20
 30
 40
 50
 60
 70

6,400 12,800 25,600
E

xe
cu

tio
n

T
im

e
(m

in
)

Number of Individuals

160K SNPs

(1.54) (1.65)

(1.84) (1.95)

(2.07) (2.20)

GBOOST
EpistSearch

EpistSearch-6Th

Fig. 2. Execution times of GBOOST and EpistSearch (with and without 6 additional
CPU threads) on the GTX 650 Ti GPU. Speedups compared to GBOOST are shown
in brackets.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

6,400 12,800 25,600

E
xe

cu
tio

n
T

im
e

(m
in

)

Number of Individuals

40K SNPs

(1.48) (1.48)
(2.09) (2.13)

(5.27) (5.34)

GBOOST
EpistSearch

EpistSearch-6Th

 0

 5

 10

 15

 20

 25

6,400 12,800 25,600

E
xe

cu
tio

n
T

im
e

(m
in

)

Number of Individuals

160K SNPs

(1.60) (1.62)
(1.82) (1.83)

(1.95) (1.96)

GBOOST
EpistSearch

EpistSearch-6Th

Fig. 3. Execution times of GBOOST and EpistSearch (with and without 6 additional
CPU threads) on the GTX Titan GPU. Speedups compared to GBOOST are shown
in brackets.

than 3x and 5x faster than GBOOST on the GTX 650 Ti and the GTX Titan
GPUs, respectively.

– The speedup obtained by our tool compared to GBOOST in the other cases
is always between 1.4x and 2.2x on both GPUs.

– EpistSearch runs between 2.8x and 3.2x faster on the GTX Titan than on
the GTX 650 Ti GPU, while the improvement of GBOOST is only between
1.7x and 3.0x. It means that EpistSearch shows better scalability on larger
number of SMs.

– The hybrid GPU/CPU combination consistently improves performance com-
pared to the GPU-only execution. However, the improvement is relatively
small (around 1.1x faster for the GTX 650 Ti GPU and 1.03x faster for the

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions 689

GTX Titan GPUs) since the speedups of the GPU compared to the CPU
are relatively high (40x for GTX 650 Ti and 122x for GTX Titan).

Finally, we have also applied EpistSearch and GBOOST to analyze a real-
world dataset obtained from the WTCCC project. This datasets contains valu-
able information with cases of seven common human diseases: bipolar disorder,
coronary artery disease, “Crohn disease”, hypertension, rheumatoid arthritis,
type 1 diabetes and type 2 diabetes. The project provides information about
3,000 shared controls and 2,000 cases per disease. Table 6 compares the run-
time of EpistSearch, GBOOST and other two GPU-based tools (EpiGPU [22]
and SHEsisEPI [23]) when analyzing the bipolar disorder disease (500,000 SNPs
and 5,000 individuals) on different GPUs. Some results are obtained from the
publications of the corresponding authors. Besides the execution time, we also
show performance in terms of millions of evaluated SNP-pairs per second. Again,
EpistSearch is faster than GBOOST on all GPUs. Although results for EpiGPU
and SHEsisEPI must be treated carefully since the comparison is done over differ-
ent architectures, we can infer that they are significantly slower than EpistSearch
(as mentioned in Section 1, even slower than GBOOST).

Table 6. Performance comparison of different tools when looking for epistasis in a
dataset with 500,000 SNPs and 5,000 samples. Results obtained from the publications
of the corresponding authors are marked with (*).

Tool Architecture Time Speed (106 tests per second)

EpistSearch GTX Titan + 6 Intel Core i7 42 m 49.81
EpistSearch GTX Titan 43 m 49.04
GBOOST GTX Titan 1 h 01 m 34.23
EpistSearch GTX 650Ti + 6 Intel Core i7 1 h 48 m 19.29
EpistSearch GTX 650Ti 1 h 57 m 17.81
GBOOST GTX 650Ti 2 h 41 m 12.97
GBOOST* GTX 285 2 h 43 m 12.81
EpiGPU* GTX 580 2 h 55 m 11.90

SHEsisEPI* GTX 285 27 h 1.29

6 Conclusions

We have presented EpistSearch, a tool to search for epistasis between SNP-pairs
in a fast manner taking advantage of CPU and GPU parallelism. The results
produced by this tool can help to find genetic expressions for multiple common
human diseases. Similar to BOOST and its GPU variant (GBOOST), which are
currently two of the fastest and most popular available tools, EpistSearch is based
on a definition of interaction via logistic regression models. Although our tool
outputs the same list of pairs with epistasis than BOOST for all the experiments
included in this paper (thus, providing the same accuracy), EpistSearch has been
optimized by calculating less elements of the contingency tables and by applying
a novel preliminary filter. Therefore, EpistSearch uses a three-stage approach
where only the simplest (but less precise) filter is applied to all the SNP-pairs.

690 J. González-Domı́nguez et al.

The most precise and most computationally expensive filters are only applied
to the pairs that were not discarded by the preliminary test. In addition, an
inter-task hybrid CPU-GPU parallelism has been implemented using Pthreads
and CUDA in order to concurrently work on both multicore CPUs and GPUs.

We have also compared the performance of EpistSearch to BOOST and
GBOOST on a hex-core modern machine with two available GPUs using sim-
ulated and real datasets. This experimental evaluation shows that EpistSearch
is consistently faster in all the experiments, even though the characteristics of
the input datasets are very different. For CPU computation, our tool obtains a
speedup higher than 2x compared to BOOST using the same resources (only one
CPU core) and it is able to accelerate the computation up to 11.3x by exploiting
the 6 cores of the machine. Moreover, depending on the characteristics of the
dataset of SNPs, EpistSearch obtains a speedup of more than 3x and 5x on a
GTX 650 Ti and a GTX Titan GPU, respectively.

As future work, we will extend EpistSearch so it can work with a larger
number of SNPs, even if they do not fit in the GPU memory. Furthermore, we
will develop a multiGPU version.

References

1. Maher, B.: Personal Genomes: the Case of the Missing Heritability. Na-
ture 456(7218), 18–21 (2008)

2. Moore, J.H., Asselbergs, F.W., Williams, S.M.: Bioinformatics Challenges for
Genome-Wide Association Studies. Bioinformatics 26(4), 445–455 (2010)

3. Cordell, H.J.: Detecting Gene-Gene Interactions that Underlie Human Diseases.
Nature Reviews Genetics 10(6), 392–404 (2009)

4. Zhao, J., Jin, L.: Test for Interaction Between Two Unlinked Loci. The American
Journal of Human Genetics 78(1), 15–27 (2006)

5. Purcell, S., et al.: PLINK: a Tool Set for Whole-Genome Association and
Population-Based Linkage Anlyses. The American Journal of Human Genet-
ics 81(3), 559–575 (2007)

6. Wellcome Trust Case Control Consortium, http://www.wtccc.org.uk/ (last visit:
January 2014)

7. Wellcome Trust Case Control Consortium: Genome-Wide Association Study
of 14,000 Cases of Seven Common Diseases and 3,000 Shared Controls. Na-
ture 447(7145), 661–678 (2007)

8. Yang, C., He, Z., Wan, X., Yang, Q., Xue, H., Yu, W.: SNPHarvester: a Filtering-
Based Approach for Detecting Epistatic Interaction in Genome-Wide Association
Studies. Bioinformatics 25(4), 504–511 (2009)

9. Wan, X., Yang, C., Yang, Q., Xue, H., Tang, N.L., Yu, W.: Predictive Rule In-
ference for epistatic Interaction Detection in Genome-Wide Association Studies.
Bioinformatics 26(1), 30–37 (2010)

10. Wan, X., Yang, C., Yang, Q., Xue, H., Tang, N.L., Yu, W.: BOOST: A Fast Ap-
proach to Detecting Gene-Gene Interactions in Genome-Wide Case-Control Stud-
ies. The American Journal of Human Genetics 87(3), 325–340 (2010)

11. Bi, J., Gelernter, J., Sun, J., Kranzler, H.R.: Comparing the Utility of Homoge-
neous Subtypes of Cocaine Use and Related Behaviors with DSM-IV Cocaine De-
pendence as Traits for Genetic Association Analysis. American Journal of Medical
Genetics 165(2), 148–156 (2014)

http://www.wtccc.org.uk/

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions 691

12. Chu, M., et al.: A Genome-Wide Gene-Gene Interaction Analysis Identifies an
Epistatic Gene Pair for Lung Cancer Susceptibility in Han Chinese. Cancinogene-
sis 32(3), 572–577 (2014)

13. Milne, R.L., et al.: A Large-Scale Assessment of Two-Way SNP Interactions in
Breast Cancer Susceptibility Using 46,450 Cases and 42,461 Controls from the
Breast Cancer Association Consortium. Human Molecular Genetics 23(7), 1934–
1946 (2014)

14. Yung, L.S., Yang, C., Wan, X., Yu, W.: GBOOST: A GPU-Based Tool for Detect-
ing Gene-Gene Interactions in Genome-Wide Case Control Studies. Bioinformat-
ics 27(9), 1309–1310 (2011)

15. Piriyapongsa, J., Ngamphiw, C., Intarapanich, A., Kulawonganunchai, S., Assawa-
makin, A., Bootchai, C., Shaw, P.J., Tongsima, S.: iLOCi: a SNP Interaction Pri-
orization Technique for Detecting Epistasis in Genome-Wide Association Studies.
BMC Genomics 13(suppl. 7) (2012)

16. Goudey, B., Rawlinson, D., Wang, Q., Shi, F., Ferra, H., Campbell, R.M., Stern, L.,
Inouye, M.T., Ong, C.S., Kowalczyk, A.: GWIS - Model-Free, Fast and Exhaustive
Search for Epistatic Interactions in Case-Control GWAS. BMC Genomics 14(suppl.
3) (2012)

17. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: Accelerating Smith-
Waterman Protein Database Search by Coupling CPU and GPU SIMD Instruc-
tions. BMC Bioinformatics 14(177) (2013)

18. Liu, Y., Schmidt, B.: CUSHAW2-GPU: Empowering Faster Gapped Short-Read
Alignment Using GPU Computing. IEEE Design & Test of Computers (in press)

19. POSIX Threads Programming,
https://computing.llnl.gov/tutorials/pthreads/ (last visit: January 2014)

20. NVIDIA Developer CUDA Zone,
https://developer.nvidia.com/category/zone/cuda-zone (last visit: January
2014)

21. genomeSIMLA Webpage, http://chgr.mc.vanderbilt.edu/
genomeSIMLA/genomeSIMLA/Introduction.html (last visit: January 2014)

22. Hemani, G., Theocharidis, A., Wei, W., Haley, C.: EpiGPU: Exhaustive Pair-
wise Epistasis Scans Parallelized on Customer Level Graphic Cards. Bioinformat-
ics 27(11), 1462–1465 (2011)

23. Hu, X., Liu, Q., Zhang, Z., Li, Z., Wang, S., He, L., Shi, Y.: SHEsisEpi, a GPU-
Enhanced Genome-Wide SNP-SNP Interaction Scanning Algorithm, Efficiently Re-
veals the Risk Genetic Epistasis in Bipolar Disorder. Cell Research 20(7), 854–857
(2010)

https://computing.llnl.gov/tutorials/pthreads/
https://developer.nvidia.com/category/zone/cuda-zone
http://chgr.mc.vanderbilt.edu/genomeSIMLA/genomeSIMLA/Introduction.html
http://chgr.mc.vanderbilt.edu/genomeSIMLA/genomeSIMLA/Introduction.html

IFM: A Scalable High Resolution Flood
Modeling Framework

Swati Singhal1, Sandhya Aneja2, Frank Liu1, Lucas Villa Real1,
and Thomas George1

1 IBM Research
2 Universiti Brunei Darussalam, Brunei Darussalam

Abstract. Accurate and timely flood forecasts are essential for effective
management of flood disasters, which has become increasingly frequent
over the last decade. Obtaining such forecasts requires high resolution in-
tegrated weather and flood models with computational costs optimized
to provide sufficient lead time. Existing overland flood modeling soft-
ware packages do not readily scale to topography grids of large size and
only permit coarse resolution modeling of large regions. In this paper, we
present a highly scalable, integrated flood forecasting system called IFM
that runs on both shared and distributed memory architectures, effec-
tively allowing the computation of domains with billions of cells. In order
to optimize IFM for large areas, we focus on the computationally expen-
sive overland routing engine. We describe a parallelization scheme and
novel strategies to partition irregular domains to minimize load imbal-
ance in the presence of memory constraints that results in 40% reduction
in time compared to best uniform partitioning. We demonstrate the scal-
ability of the proposed approach for up to 8192 processors on large scale
real-world domains. Our model can provide a 48-hour flood forecast on
a watershed of 656 million cells in under 5 minutes.

1 Introduction

Operational flood forecasting is becoming increasingly important due to the
changing global climate and frequent incidence of flood disasters [1]. The most
common causes for flooding are sudden precipitation in urban areas with poor
drainage or seasonal storms resulting in persistent rainfall, which results in over-
flowing water bodies. Hence, in recent years there has been a strong focus on two
stage mechanisms to predict flooding events. The first stage employs a weather
model to predict precipitation. The second stage uses these predictions as input
to an overland flood model, which computes surface runoff and routes the flow
taking into account surface characteristics such as variation in land use type and
topography. In such a system, the weather forecasting is performed using fine
resolution atmospheric models that discretize the partial differential equations
representing evolution of atmospheric flows in time [12], while the overland flows
are simulated via equations based on conservation of mass and momentum with
the vertical effects simplified to yield the 2-D shallow water equation [14].

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 692–703, 2014.
c© Springer International Publishing Switzerland 2014

IFM: A Scalable High Resolution Flood Modeling Framework 693

Advances in scaling high resolution weather models using contemporary HPC
systems have made it feasible to obtain highly accurate fine-grained forecasts
for large geographical regions [4, 5]. Unfortunately, most of the existing flood
modeling packages [13], [2] primarily focus on usability and are designed for
hydrologists to work on medium size desktop machines, which does not permit
scaling to large size fine resolution domains for which weather forecasts are
available. The domains considered in this paper for operational flood forecasting
include a grid with 1 km horizontal resolution for the precipitation estimates
and 1m LiDAR [9] topography data from the city of Rio de Janeiro – the latter
consisting of 2.4 billion cells. With existing flood modeling software it is not
feasible to perform modeling on such a large grid due to the large memory
requirements and running times. On the other hand, efficient parallelization of
the modeling requires a load-balanced partitioning of the domain, which is non-
trivial due to domain irregularity and processor memory constraints.

Contributions:

– We describe an integrated flood forecasting system that readily handles grid
sizes up to a billion cells and also incorporates high resolution meso-scale
weather forecasts and other fine resolution topographical information for a
target region with minimal human effort. To the best of our knowledge, this is
the first high resolution operational flood forecasting with such capabilities.

– We propose and implement a distributed memory (MPI) parallelization
strategy for diffusive water routing algorithms. Our approach is based on
statistical modeling of the true workload using observed computational times
and a novel iterative partitioning scheme, which improves load balance while
taking into account memory constraints on individual processors.

– We evaluate the serial version and the various parallelization strategies on
HPC systems for up to 8192 processors on real world domains and demon-
strate that a large domain of 656 million cells can be solved under 5 minutes.

The rest of the paper is organized as follows: Section 2 discusses related work
on parallelization of flood routing engines. Section 3 provides an overview of our
integrated flood modeling framework. Section 4 discusses our distributed memory
parallelization strategy whereas Section 5 introduces the various approaches to
domain partitioning. Section 6 describes empirical evaluation of our approach
on real world domains. Concluding remarks are presented in Section 7.

2 Related Work

Prior approaches on scaling water routing in flood modeling employ multipro-
cessor distributed architecture and divide the computation either via functional
or domain decomposition.

Methods based on functional decomposition involve parallelization of nested
loops to process the grid cells more efficiently. Neal et al. [7] explored the in-
trinsic parallelism in the functions that looped around the floodplain cells of a
domain via OpenMP and demonstrated a speedup up to 5.8× relative to the

694 S. Singhal et al.

serial algorithm for 8 cores with domain sizes varying from 3,000 to 3 million
cells. The key limiting factors for the parallel speedup were the serial time and
processor load imbalances. For the scale of problems we are interested in, such a
simple shared memory implementation would not suffice due to scalability limits.

The second class of methods employ domain decomposition, where the grid
to be simulated is split into smaller domains that are processed in parallel. The
main challenge here is to is figure out a partitioning that achieves load balance.
This task is particularly difficult due to three main reasons: (a) irregularity of
domain, (b) dependence of computation costs on not only static properties of the
domain, but also on dynamic attributes (e.g., wet cells in the neighborhood make
the routing computation much more expensive than that of dry neighborhoods),
and (c) memory constraints of individual processors. For our work, we adopt the
domain decomposition approach due to its better scalability.

There is a large body of literature [8,10,16] on using domain decomposition to
improve scalability of hydrological models via message-passing interfaces. These
modeling approaches involve partitioning into regular rectangular shaped sub-
domains primarily due to the huge software changes required to handle irregular
shaped sub-domains. In particular, Yu [16] presents an approach to parallelize a
two-dimensional model by spatially dividing the target region into sub-regions
of equal size and dimension according to the number of available processors.
Empirical performance evaluation of that approach on a large domain (232,000
cells) indicates a maximum speedup of 1.75×, 1.98× and 2.71× for MPI simu-
lations using 2, 4, and 8 nodes, respectively, with associated efficiencies of 0.87,
0.50 and 0.33. A recent work [11] presents a hybrid MPI-OpenMP version that
incorporates a master-slave model of MPI workload balancing for independent
watersheds and OpenMP based shared memory parallelization within each basin.
With this hybrid approach, the speedup was reported to be 13× on a 16 core ma-
chine. While this approach works on moderate sized systems with large shared
memory, it does not scale to large watersheds due to memory limitations at a
single processor and load imbalance due to a wide range of basin sizes.

3 Integrated Flood Modeling System

The Integrated Flood Model (IFM) is a hydrological model developed at IBM
Research aimed at providing high resolution flood forecasts. IFM consists of two
main components, a soil and an overland routing model, shown in Figure 1.
Precipitation forecasts are provided by a state of the art weather model. The
soil model estimates the surface-runoff based on the incoming precipitation,
soil, and land use properties. These runoff estimates are input to the overland
flood routing engine, which calculates the water in-flows and out-flows on a two-
dimensional grid based on topological characteristics. The remnant water-flow
from a simulation step is then fed back to the soil model to more accurately
determine the water height in the next simulation step. In the serialized imple-
mentation of IFM, the overland routing dominates the execution time. Hence,
we mainly focus on parallelizing the overland routing component described next.

IFM: A Scalable High Resolution Flood Modeling Framework 695

Fig. 1. IBM Integrated Flood & Weather Modeling
System

Fig. 2. Rio domain delimited
by a bounding box

Overland Flood Routing. Overland water movement in IFM is implemented
as diffusive routing, which allows the distribution of lateral inflow in both space
and time [6] with significant reduction in computation cost. To be specific, the
inflow in the X direction for the ith cell denoted by OLRX [i] is given by the
Manning formula [15] as OLRX [i] = 1

N [j]

√
|S[i, j]| ∗ Δd ∗ H [j]

η
, where the jth

cell adjoins the ith cell along the X-direction, H [j] denotes the water height or
surface-runoff of the jth cell estimated by the soil model, N [j] is the Manning’s
friction coefficient determined by land use data, η = 5/3 is based on the laminar
and mixed laminar-turbulent conditions of the flow, Δd is the distance between
the two cells and the terrain slope S[i, j] indicates a net dip towards the jth

cell (i.e., S[i, j] > 0). This slope itself is calculated as S[i, j] = 1
Δd (H [i] + h[i]−

H [j]− h[j]), where h[i] denotes the natural elevation of the ith cell. The above
routing is implemented on a 2D grid along both X and Y directions. First, the
flow rate is calculated in the X direction (row-wise), letting the fluid flow from
cell i to its neighbors or the other way round. Then, the flow rate is calculated in
the Y direction (column-wise) to determine the in-flow in Y direction OLRY [i]
and the resulting in-flows are used to re-estimate the water height H [i].

4 Distributed Memory Parallelization

In this section, we describe a distributed memory MPI implementation that par-
titions the domain into disjoint sub areas to be assigned to individual processors.
To achieve effective parallelization, we need to address two main challenges:

Partitioning Irregular Shaped Domains. Watersheds tend to be highly
irregular in shape as shown in Figure 2. Direct domain decomposition of such
grids into possibly irregular sub-regions is non-trivial and the software changes
required to support it are enormous. On the other hand, mapping to a regular
grid results in grid cells that are not required for simulation and leads to wasted
computation and extra book-keeping. Further, balancing the grid point count
alone might result in heavy load imbalance among the processors. The processor
memory limits also narrow the space of feasible partitionings.

Handling CommonBoundaries. Even though the disjoint areas are processed
independently, the parallel processing of the domains requires communication of

696 S. Singhal et al.

the shared boundary cells (halo region) after every time step to synchronize among
the different processors.

In our current work, we adopt a simple partitioning approach that divides the
bounding rectangular grid of the irregular real world domain into tiles (possibly
of different sizes), one for each processor. In Section 5, we discuss strategies to
identify such a rectangular partitioning that optimizes load balance and mini-
mizes communication costs in the presence of processor memory constraints.

The regularity of the tile structure allows the common boundaries to be read-
ily handled. To avoid loading the entire dataset on a single processor, processor
0 streams each row of the mask file to identify the valid cells. Once the parti-
tions are decided, processor 0 sends their coordinates and the neighbors at each
boundary with their respective extent of overlap. The rest of the processes wait
to receive their partition information. Afterwards, each process loads the sub-
domain based on the received data using a collective parallel I/O operation [3].

To process the partitions in parallel, we define a halo region of fixed width
around each partition to store all the required information from neighbors during
a simulation. Since the water flow in the domain is simulated from bottom to top
and left to right, the top and right halo regions are used for runoff computations
while left and bottom halo regions are simply used to pass information. The sim-
ulation starts by exchanging static information, e.g., the elevation and Manning’s
coefficients. In every iteration, the water heights are first updated based on the
amount of runoff received from the left and bottom neighbors. After this step,
computation is performed using the updated height values. However, processing
of top and right boundaries is deferred and performed only after receiving the
updated height values from the top and right neighbors. Note that since the tiles
are not all of the same size, there can be multiple neighbors in each direction.

5 Domain Partitioning Approaches

Desiderata. Our primary objective is to identify a partitioning of the bounding
grid of an irregular region into rectangular tiles that minimizes the net simulation
time. This requires balancing workload across nodes while keeping communica-
tion costs low. Due to the nature of the computations in overland routing, the
workload assigned to a node largely depends on the number of valid grid points
assigned to it, i.e., all the points in the original irregular domain. Hence, it is
highly likely that achieving load balance will require non-uniform tile sizes. Com-
munication costs borne by a node, on the other hand, depend on the number of
tiles adjoining the assigned tile and are minimized when the tile boundaries are
aligned as in the case of a uniform partitioning. In addition to the load balance
and communication reduction, it is also critical that the rectangular tile assigned
to each node does not exceed its memory limit.

Partition Representation. Let mx×my be the size of the bounding rectangu-
lar grid and N the number of processor nodes. Common partitioning strategies
include: (a) 1-D decomposition where the N processors are arranged in a chain
and the resulting tiles are row or column-wise slices of the original domain, (b)

IFM: A Scalable High Resolution Flood Modeling Framework 697

2-D decomposition where the processors themselves are arranged in a Nx ×Ny

grid and the original domain is divided into Nx ×Ny tiles slicing along one di-
mension and then another for better alignment of tiles. In non-uniform slicing,
it is preferable to divide along the longer dimension of the domain grid. Without
loss of generality, we assume that the tile construction involves a vertical slicing
followed by a horizontal slicing of each of the vertical slices. Given a processor
grid Nx ×Ny (1-D case corresponds to Nx = N and Ny = 1), the partitioning

can then be represented in terms of the vertical boundaries {x(i), [i]Nx
1 } and

horizontal boundaries {y(i, j) [j]
Ny

1 , [i]Nx
1 }. In the 2-D decomposition case, it

is preferable to choose the processor grid dimensions Nx and Ny to the closest
two factors of N , i.e., nearly equal to each other, for better distribution of com-
munication costs. To ensure a balanced aspect ratio for each individual tile, the
factors Nx and Ny can be assigned to the X-Y dimensions so that the larger
domain dimension corresponds to the larger of Nx and Ny. In each of the above
cases, the decomposition could be based either on ensuring that the tiles are
nearly equal in size (i.e., number of total grid points) which reduces communica-
tion costs or nearly equal in workload (i.e., roughly proportional to the number
of valid grid points). These correspond to different variants: (a) 1D-uniform, (b)
1D-nonuniform, (c) 2D-uniform, and (d) 2D-nonuniform. The first three variants
are relatively simple, but less likely to achieve load balance and more prone to
violate processor memory constraints. For the flood modeling, since computa-
tion tends to cost more than communication, the last variant is likely to perform
better in terms of net simulation time on large grids. Determining its optimal
partition, however, especially in the face of memory constraints, is non-trivial.

5.1 Two Dimensional Non-uniform Partitioning

We now focus on 2-D partitioning where the workload needs to be balanced
while satisfying memory constraints. Although it is natural to assume that the
workload depends only on valid cells, empirical observations point to a significant
variation in computation time among tiles with nearly identical valid cells, as
shown in Table 1. Hence, we assume the workload to be a linear function of the
number of valid and invalid cells. Let Cv(x, y), Ca(x, y) and Cw(x, y) denote
the number of valid grid points, the total number of cells, and the workload in
the sub-grid with corners [(0, 0), (x, 0), (0, y), (x, y)] inclusive of the boundaries.
Then, the assumption on the workload translates to Cw(x, y) = Cv(x, y) +
α(Ca(x, y) − Cv(x, y)), where 0 ≤ α < 1 is the weighting factor for invalid
cells. The optimal value for α can be chosen based on empirically observed
computation times (α = 0 equals to focusing on valid cells alone). Experiments
in Section 6 are based on choosing α = 1/73, which was computed from empirical
data.

The total workload of the grid is given by Cw
tot = Cw(mx,my) and the

workload up to and including the xth column is Cw(x,my). Let W (i, j) de-
note the workload in the jth horizontal tile of ith vertical slice. Using the nota-
tion for tile boundaries, this can be computed as W (i, j) = Cw(x(i), y(i, j)) −
Cw(x(i), y(i, j−1))−Cw(x(i−1), y(i, j))+Cw(x(i−1), y(i, j−1)). The number of

698 S. Singhal et al.

Table 1. Computation times of partitions with comparable number of valid cells

Invalid cells Valid cells Time (sec.)
Partition 1 2,457,186 79,998 622.92
Partition 2 840,252 80,708 566.58
Partition 3 418,072 80,808 541.46

valid cells V (i, j) can be similarly obtained while the total number of cells T (i, j)
can be computed more efficiently as T (i, j) = (x(i)−x(i−1))∗(y(i, j)−y(i, j−1)).

In the absence of memory constraints, the ideal 2D partitioning corresponds
to the case where W (i, j) = Cw

tot/(Nx × Ny), ∀i, j. Such a perfect partitioning
is, often, not feasible since the tiles need to be rectangular. However, one can
obtain a nearly equal distribution via a two step approach, where in the first step,
the vertical slices are each chosen to approximately contain workload equal to
Cw

tot/Nx and each of these slices is further horizontally partitioned into tiles that
roughly contain 1/Ny of the workload in entire slice. The ith vertical boundary
x(i) is picked so that it is the smallest column index such that the workload over

all rows and up to the x(i)th column exceeds
iCw

tot

Nx
, i.e.,

Cw(x(i) − 1,my) <
iCw

tot

Nx
≤ Cw(x(i),my), [i]Nx

1 . (1)

Similarly, for each vertical slice i, we pick the jth horizontal boundary y(i, j)
with the smallest row index such that the workload on all the slice columns and
up to the y(i, j)th row exceeds j

Ny
fraction of the total workload in that slice.

The above two-step slicing approach results in a fairly equitable partitioning
of workload, but the resulting tiles might not fit into the memory available at
a single node of a distributed memory cluster, in which case the partitioning
cannot be used for simulation. When there are memory constraints that place
an upper bound Tmax on the tile size (i.e., total number of cells, not just valid
ones) that can be accommodated at each node, some of the processors will need
to be assigned tiles with total size close to Tmax, but much smaller number of
valid cells. Typically, these would correspond to ocean and land portions outside
of the targeted watersheds. To make up for the lighter workload of the maximal
tile nodes, it is necessary to increase the workload for all the other nodes in a
balanced fashion. Figuring out the optimal partitioning for this scenario is hard
since the tiles need to be contiguous and one cannot estimate the number of
maximal size tiles and the desired workload distribution in a single step.

Typically, the first stage of vertical slicing results in vertical slices with width
much smaller than Tmax. Hence, for ease of presentation, we consider partitioning
taking into account the tile size limit Tmax only in the second stage of horizon-
tal slicing.1 To eliminate inefficiencies, we only consider the grid allocation and
workload contributions from the set of rows R(i) that have at least one valid
cell in the chosen vertical slice. Algorithm 1 provides details of the horizontal

1 When Tmax is small, the first stage of horizontal slicing can also be adapted in a
similar fashion as in Algorithm 1 to account for memory constraints.

IFM: A Scalable High Resolution Flood Modeling Framework 699

partitioning developed for the ith vertical slice. The key idea in this approach is
to perform multiple iterations scanning the vertical slice and in each iteration,
construct tiles from one end to another while dynamically re-estimating an eq-
uitable distribution of remaining workload among the remaining processors. In
the very first iteration, the dynamic estimation of workload share depends only
on allocations till that point, whereas in the later iterations, we also incorporate
information from the previous iteration on the number of maximal size tiles and
the workload covered in those tiles.

Let W (i) = W denote the total workload of the ith vertical slice (based on the
rows in R(i)) and Lmax the maximum allowed tile length based on Tmax and the

width of the ith slice. At any stage in the kth scan, let N
(k)
A denote the number

of nodes that have been assigned tiles and W
(k)
A denote the already allocated

workload. In the first iteration, the best one can do is to assume that the rest
of the workload is going to equally shared among yet to be allocated nodes and
the desired workload for the next tile is given by

WA
eq =

W −W
(k)
A

Ny −N
(k)
A

.

If the next tile length required to cover workload of Weq is greater than Lmax,
then the tile length is chosen to be exactly Lmax. In such a case, the workload
to be shouldered by the remaining processors goes up even further resulting in
a high load imbalance. Further, the last tile itself may reach the maximal size
with additional unassigned workload due to an early under allocation.

To address this issue, we perform additional rounds of assignment where a more
balancedworkload share is computed incorporating information from the previous

iteration. Let N
(k)
M and W

(k)
M denote the number of nodes that attain maximum

tile size and the net workload assigned to them in the kth iteration (or up to that

point in case of current iteration), Let N
(k)
E and W

(k)
E denote the minimum num-

ber of tiles required to cover the unassigned region at the end and the associated
workload for the kth iteration. In the earlier stages in the (k + 1)th iteration, it

would be reasonable to assume that among the remaining (Ny −N
(k)
A) nodes, ap-

proximately (N
(k)
M −N

(k+1)
M +N

(k)
E) would have to be assigned maximal size tiles

roughly accounting for W
(k)
M − W

(k+1)
M + W

(k)
E of the workload. Keeping this in

view, a better estimate of the workload to be shared is given by

WB
eq =

W −W
(k+1)
A −W

(k)
M +W

(k+1)
M −W

(k)
E

Ny −N
(k+1)
A −N

(k)
M +N

(k+1)
M −N

(k)
E

.

This estimate tends to overload the processors aggressively from the very
beginning and might result in relatively no less or no work for the last few
processors. Often, WB

eq is higher than WA
eq, but to address scenarios with com-

plicated arrangement of sparse workload regions, we consider the maximum of
the two choices. When Tmax is large enough to allow a feasible partitioning, it
can be shown that the above algorithm converges to a solution (not necessarily

optimal) in a finite number of rounds since W
(k)
E decreases after each iteration.

700 S. Singhal et al.

Algorithm 1. Two-dimensional partitioning with memory constraints
Input: Vertical slice with column indices x(i) and x(i− 1), Workload matrix Cw computed over
rows in R(i) with at least one valid cell, Max. tile size Tmax, Processors along Y dimension Ny ,
Max. iterations Kmax
Output: Partitioning of the slice into horizontal tiles y(i, j), [j]

Ny
1

Method: k ← 1;

Max. tile length Lmax ← ceil(Tmax
x(i)−x(i−1)

)

Last valid row ymax ← max(R(i))

Total workload of ith slice, W ← Cw(x(i),my) − Cw(x(i− 1),my);

while (k ≤ 2) or ((k <= Kmax) and (W
(k−1)
E > 0)) do

(N
(k)
A ,W

(k)
A , N

(k)
M ,W

((k)
M , y[i, 0]) ← (0, 0, 0, 0, 0)

for j = 1 to Ny do

WA
eq ← W−W

(1)
A

Ny−N
(1)
A

if (k > 1) then

WB
eq =

W−W
(k)
A

−W
(k−1)
M

+W
(k)
M

−W
(k−1)
E

Ny−N
(k)
A

−N
(k−1)
M

+N
(k)
M

−N
(k−1)
E

WA
eq = max(0,WA

eq,W
B
eq)

ytmp ← arg miny = {y|Cw(x(i), y) − Cw(x(i− 1), y) > W
(k)
A + WA

eq}
if (ytmp − 1 < min(y(i, j − 1) + Lmax, ymax)) then

y(i, j) ← ytmp − 1
else

y(i, j) ← min(y(i, j − 1) + Lmax, ymax)

N
(k)
M ← N

(k)
M + 1

W
(k)
M ← W

(k)
M + W (i, j)

N
(k)
A ← N

(k)
A + 1

W
(k)
A ← W

(k)
A + W (i, j)

N
(k)
E ← ceil(

|R(i)
⋂{y(i,Ny),··· ,my}|

Lmax)

W
(k)
E ← W − W

(k)
A

6 Empirical Evaluation

6.1 Experimental Setup

Hardware & Software Configurations. For our experiments, we used an
IBM Blue Gene BG/P computer that has four 850 MHz embedded PowerPC
450 cores with a peak floating point throughput of 13.6 GF/node. For compiling
the software, we used IBM XLC compilers on BG/P with -O3 optimization. In
order to handle various platform independent binary files as input and output,
we incorporated Network Common Data Format (NetCDF) support for I/O. A
version of NetCDF dubbed PnetCDF [3] that is built on top of MPI-IO provides
an easy to use interface to perform parallel I/O on large scale supercomputers
and was, therefore, integrated into IFM for all I/O.

Experiments were performed on two real world domains (Brunei and Rio)
using multiple partitioning schemes, with details given in Table 2. For the Brunei
domain, a topography grid with spatial resolution of 90m and 1688×1318 cells
(of which 72% are valid) was used. The Rio domain was processed with a grid
of 1-meter resolution derived from LiDAR, with 46% of its 18369×35726 cells
being valid.

IFM: A Scalable High Resolution Flood Modeling Framework 701

Table 2. Details of the partitioning schemes

Partitioning Scheme Description
1D-N Uniform 1D split along longer dimension
1D-VM 1D split that balances #valid cells under memory constraints
2D-N Uniform 2D split that balances #total cells
2D-VM 2D split that balances #valid cells under memory constraints
2D-WVM 2D split that balances workload assumed to be linear function of

#valid and #invalid cells with α = 1/73 (see Section 5.1)

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

Partition Times

1D-N

2D-N

1D-VM

2D-VM

2D-WVM

Fig. 3. Partitioning times for varying
number of processors

0

200

400

600

800

1000

1200

1D-N 2D-N 1D-VM 2D-VM 2D-WVM

T
i
m
e

(
s
e
c
o
n
d
s
)

Computation Time

PartitionTime

Fig. 4. Partition vs total times on 4096
processors (Rio domain)

6.2 Results

We now present results of empirical evaluation of our partitioning strategies.

Partitioning Costs. Figure 3 shows the partitioning costs for the various
schemes with increasing number of processors. As the number of processors grow,
a modest increment in partitioning costs is seen. Figure 4 shows the split up of
partitioning and total computation times for a 48 hour forecast for the Rio
domain based on 1440 simulation steps. The näıve partitioning schemes take
negligible time. However, the computation times for 2D-N partitioning scheme
is almost double that of the best case (2D-WVM). These figures indicate that
it is worthwhile to spend the extra partitioning time since it is a one time cost
that can be amortized while simulating larger number of timesteps. (and which
can be cached to save computation time in future runs)

Effect on Load Balancing. Table 3 shows the load balance achieved by the
various partitioning schemes. 2D-N has the highest load imbalance (116.34%)
and our weighted 2D-WVM partitioning scheme has the lowest load imbal-
ance (6.36%), which is also significantly superior to the unweighted version 2D-
VM(32%). Improving the load balance results in a 40% reduction in total time
over the best näıve partitioning scheme, which is 1D-N for the Rio domain.

Scaling of MPI Implementation. We now present the results of experimen-
tation with the various partitioning schemes for varying number of processors.
Figure 5a shows the scaling behavior for Brunei domain for 8 – 512 processors.
The 1D-N scheme outperforms the 2D-N scheme for almost all the processor

702 S. Singhal et al.

Table 3. Cell distribution for partitions with maximum times and the percentage
imbalance with respect to average time across all processors (Rio domain)

Scheme Invalid Cells Valid Cells Max Time(s) Avg. Time (s) %Imbalance
1D-N 35357 129964 860.20 495.77 73.51
2D-N 0 160433 1061.27 490.57 116.34
1D-V 39937 125384 815.50 486.44 67.65
2D-VM 2440289 81151 642.28 486.43 32
2D-WVM 0 75775 520.86 489.72 6.36

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

1D-N

2D-N

1D-VM

2D-VM

2D-WVM

(a) Times for the Brunei domain

10
2

10
3

10
4

10
2

10
3

10
4

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

1D-N

2D-N

1D-VM

2D-VM

2D-WVM

(b) Times for the Rio domain

Fig. 5. Log-log plot of scaling behavior with increasing number of processors

configurations. Since this domain has a high number of valid cells in comparison
to the total number (72%), 2D-N partitioning does almost as well as 2D-VM and
2D-WVM schemes for 512 processors. This is because only a small fraction of
processors are not completely explored and there is only a slight load imbalance
even for the 2D-N scheme. Overall we observe a 15–27% improvement in perfor-
mance for the 2D-WVM scheme in comparison to a näıve 2D decomposition for
this range of processors. Figure 5b shows the scaling behavior for all the parti-
tioning schemes for the Rio domain. Here, the 1D-N näıve partitioning scheme
consistently outperforms the 2D-N scheme for up to 8192 processors. This can
be due to the fact that very few processors are kept idle at times due to the dis-
tribution of valid and invalid cells in the Rio domain. However, we do see signs
of flattening of the curves beyond 4096 for all the schemes except 2D-WVM.

7 Conclusion

Operational flood forecasting is an important problem requiring a scalable high
resolution integrated modeling solution. Our current work presents such an inte-
grated modeling system IFM comprising soil model, and a water routing engine.
In particular, we focus on the routing process, which is the most compute in-
tensive and propose a distributed memory parallelization scheme to scale it up
to large grid sizes. We also present novel partitioning techniques to minimize
load imbalance subject to memory constraints. Empirical evaluation of our pro-
posed approach on large scale real-world domains demonstrates that it scales

IFM: A Scalable High Resolution Flood Modeling Framework 703

well up to 8192 processors, and can enable a number of applications and ser-
vices to be built around flood forecasts that are delivered in a timely fashion.
Though inspired by the constraints of the flood-modeling problem, the proposed
2D-WVM partitioning scheme presents two key ideas that are likely to have
broad applicability in other areas (e.g., computational seismology) that involve
irregular and/or heterogeneous domains and resources constraints: (a) iterative
refinement of partitioning by using information from previous iteration(s) on
partitions that achieve the constraints (b) statistical modeling of the true work-
load of a partition in terms of the constituent grid cell properties.

References

1. 10 costliest floods worldwide ordered by overall losses, http://www.munichre.com/
app pages/www/res/pdf/NatCatService/significant natural catastrophes/

2012/NatCatSERVICE significant floods eco en.pdf

2. Gill, M.A.: Flood routing by the Muskingum method. Journal of Hydrology 36(34),
353–363 (1978)

3. Li, J., Liao, W.K., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham,
R., Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: A High-Performance
Scientific I/O Interface. In: SC (2003)

4. Malakar, P., et al.: A divide and conquer strategy for scaling weather simulations
with multiple regions of interest. In: SC 2012, pp. 37:1–37:11 (2012)

5. Michalakes, J., et al.: WRF Nature Run. In: SC (2007)
6. Moussa, R., Bocquillon, C.: Algorithms for solving the diffusive wave flood routing

equation. Hydrological Processes 10(1), 105–123 (1996)
7. Neal, J., Fewtrell, T., Trigg, M.: Parallelisation of storage cell flood models using

OpenMP. Environmental Modelling & Software 24(7), 872–877 (2009)
8. Neal, J.C., Fewtrell, T.J., Bates, P.D., Wright, N.G.: A comparison of three paral-

lelisation methods for 2D flood inundation models. Environ. Model. Softw. 25(4),
398–411 (2010)

9. Priestnall, G., Jaafar, J., Duncan, A.: Extracting urban features from LiDAR dig-
ital surface models. Computers, Environment and Urban Systems 24(2) (2000)

10. Sanders, B.F., Schubert, J.E., Detwiler, R.L.: ParBreZo: A parallel, unstructured
grid, Godunov-type, shallow-water code for high-resolution flood inundation mod-
eling at the regional scale. Advances in Water Resources 33(12), 1456–1467 (2010)

11. Singhal, S., Villa Real, L., George, T., Aneja, S., Sabharwal, Y.: A hybrid paral-
lelization approach for high resolution operational flood forecasting. In: HiPC 2013
(2013)

12. Skamarock, W.C., et al.: A description of the Advanced Research WRF version 3.
Tech. Rep. TN-475, NCAR (2008)

13. Todini, E.: The ARNO rainfall runoff model. J. Hydrology 175(14), 339–382 (1996)
14. Vreugdenhil, C.: Numerical Methods for Shallow-Water Flow. NATO Asi Series.

Series C, Mathematical and Physical Science. Springer (1994)
15. Yen, B.: Channel Flow Resistance: Centennial of Manning’s Formula. Water Re-

sources Pub. (1992)
16. Yu, D.: Parallelization of a two-dimensional flood inundation model based on do-

main decomposition. Environmental Modelling & Software 25(8), 935–945 (2010)

http://www.munichre.com/app_pages/www/res/pdf/NatCatService/significant_natural_catastrophes/2012/NatCatSERVICE_significant_floods_eco_en.pdf
http://www.munichre.com/app_pages/www/res/pdf/NatCatService/significant_natural_catastrophes/2012/NatCatSERVICE_significant_floods_eco_en.pdf
http://www.munichre.com/app_pages/www/res/pdf/NatCatService/significant_natural_catastrophes/2012/NatCatSERVICE_significant_floods_eco_en.pdf

High Performance Pseudo-analytical Simulation

of Multi-Object Adaptive Optics over
Multi-GPU Systems

Ahmad Abdelfattah1, Eric Gendron2, Damien Gratadour2, David Keyes1,
Hatem Ltaief1, Arnaud Sevin2, and Fabrice Vidal2

1 Extreme Computing Research Center, Division of Computer, Electrical, and
Mathematical Sciences and Engineering, KAUST, Thuwal, KSA

{Ahmad.Ahmad,David.Keyes,Hatem.Ltaief}@kaust.edu.sa
2 LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris Diderot

{Eric.Gendron,Damien.Gratadour,Arnaud.Sevin,Fabrice.Vidal}@obspm.fr

Abstract. Multi-object adaptive optics (MOAO) is a novel adaptive
optics (AO) technique dedicated to the special case of wide-field multi-
object spectrographs (MOS). It applies dedicated wavefront corrections
to numerous independent tiny patches spread over a large field of view
(FOV). The control of each deformable mirror (DM) is done individu-
ally using a tomographic reconstruction of the phase based on measure-
ments from a number of wavefront sensors (WFS) pointing at natural
and artificial guide stars in the field. The output of this study helps
the design of a new instrument called MOSAIC, a multi-object spectro-
graph proposed for the European Extremely Large Telescope (E-ELT)1.
We have developed a novel hybrid pseudo-analytical simulation scheme
that allows us to accurately simulate in detail the tomographic problem.
The main challenge resides in the computation of the tomographic re-
constructor, which involves pseudo-inversion of a large dense symmetric
matrix. The pseudo-inverse is computed using an eigenvalue decomposi-
tion, based on the divide and conquer algorithm, on multicore systems
with multi-GPUs. Thanks to a new symmetric matrix-vector product
(SYMV) multi-GPU kernel, our overall implementation scores signifi-
cant speedups over standard numerical libraries on multicore, like Intel
MKL, and up to 60% speedups over the standard MAGMA implementa-
tion on 8 Kepler K20c GPUs. At 40,000 unknowns, this appears to be the
largest-scale tomographic AO matrix solver submitted to computation,
to date, to our knowledge and opens new research directions for extreme
scale AO simulations.

1 Introduction

Astronomical programs characterizing high redshift galaxies to study their for-
mation and evolution, require to observe a large number of objects in parallel in

1 http://www.eso.org/public/teles-instr/e-elt

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 704–715, 2014.
c© Springer International Publishing Switzerland 2014

http://www.eso.org/public/teles-instr/e-elt

High Performance Pseudo-analytical Simulation of MOAO 705

the largest field possible to achieve a sufficient statistic for a reasonable observ-
ing time. This is the principle of multi-object spectroscopy. Moreover, it is also
necessary to resolve these galaxies so as to perform integral field spectroscopy
on their structures. The required resolution should be much better than atmo-
spherical seeing, typically 50 to 100 milli-arcseconds, and therefore requires the
implementation of adaptive optics (AO), an instrumental technique for the com-
pensation of dynamically evolving aberrations in an optical system (i.e., due to
atmospheric turbulence in the case of a ground based telescope). One of the
instruments proposed for the future European Extremely Large Telescope (E-
ELT) is MOSAIC [8], a multi-object integral field (multi-IFU) spectrograph for
the analysis of distant galaxies, a merger of the EAGLE and OPTIMOS-EVE
phase A projects [5,15]. It must be equipped with a specific AO concept, called
multi-object AO (MOAO).

In this paper, we present an efficient approach for simulating the behavior
of a MOAO system on extremely large telescopes, based on a novel hybrid,
pseudo-analytical simulation scheme, somewhere in between the end-to-end and
purely analytical approaches, that allows us to simulate in detail the tomographic
problem as well as noise and aliasing with a high fidelity. The advantage of this
pseudo-analytical approach is its accuracy, as compared to a pure Fourier ap-
proach (as developed for instance in [16]), since it is using the same reconstructor
as the one that would be used on sky, while being extremely fast as compared
to a standard end-to-end approach. The main challenge resides in the computa-
tion of the tomographic reconstructor which is split in three phases: 1) the eigen
decomposition of a large dense symmetric matrix (typically 40 000× 40 000 el-
ements, or greater) corresponding to the covariance matrix of the turbulence
using a divide-and-conquer algorithm, 2) the explicit pseudo-inversion compu-
tation of the covariance matrix and 3) the computation of the tomographic
reconstructor using matrix-matrix multiplication kernel. Thanks to their high
memory bandwidth and their compute-intensive capabilities (high ratio floating-
point operations per memory byte loaded i.e., the so-called surface to volume
effect), hardware accelerators, such as GPUs, are natural candidates for such
workloads. Our contributions are twofold. We have further optimized the exist-
ing multi-GPU symmetric eigensolver [21] from the Matrix Algebra on GPU and
Multicore Architectures library [2] (MAGMA) by integrating a new symmetric
matrix-vector product (SYMV), which represents one of the main performance
bottlenecks for symmetric eigensolvers due to its memory-bound nature (phase
1). We have also developed a linearly scaling matrix-matrix multiplication kernel
on multi-GPUs (phases 2 and 3).

The remainder of the paper is organized as follows. Section 2 introduces the
novel MOAO approach. Section 3 presents the mathematical model for simulat-
ing the MOAO technique. Section 4 recalls the major computational steps of the
dense symmetric eigensolver. Section 5 describes the parallel implementation of
the overall tomographic reconstructor which includes an efficient matrix-matrix
multiplication kernel on multi-GPUs. Section 6 highlights the performance re-
sults on multi-GPUs. Also, performance comparisons against the state of the art,

706 A. Abdelfattah et al.

high performance dense linear algebra software libraries are shown on x86 as well
as GPUs i.e., Intel MKL [13], CULA [1] and the standard MAGMA implemen-
tation. Finally, Section 8 summarizes the results of this paper and presents the
ongoing work.

2 The Multi-Object Adaptive Optics Technique

Measuring the wavefront disturbances is achieved, by conventional AO systems,
using a wavefront sensor (WFS), which is of a Shack-Hartmann type for most
of systems currently in operations [6]. The WFS splits optically the telescope
pupil into a number of sub-apertures and makes as many images of a sufficiently
bright stellar guide source in each sub-apertures. The exact position of each
image, influenced by the turbulence, allows to determine the local slope (i.e.,
derivative) of the wavefront in front of each sub-aperture. The WFS measurement
ends up with a vector field, sampled as the sub-aperture pattern, and describing
the wavefront gradient over the pupil area.

The high redshift galaxies are much too faint to provide guide sources for the
wavefront measurement for AO and one should find field stars bright enough
to ensure this measurement. To obtain 100% sky coverage, a critical aspect
for cosmological programs, it is necessary to create artificial guide stars by the
backscattering of a laser beam on the Sodium layer of the atmosphere [10] so as to
deal with the low stars density found in cosmological fields. These artificial stars
are called Laser Guide Stars (LGS) as opposed to Natural GS (NGS). Whatever
type of GS, natural or laser, they can be used to measure the atmospheric
turbulence in directions that are not those directions of interest (those galaxies to
be observed). Tomography algorithms must thus be developed to allow optimal
reconstruction of the turbulent volume and the calculation, by projection on the
different directions of interest, of the correction to be applied.

Moreover, the fields of interest are very large (5 to 10 arc minutes) compared
to the capabilities of conventional AO and a deformable mirror (DM), or even
several, compensating the whole field of view is not an adequate solution. Addi-
tionally, serious problems arise when trying to implement such optical designs.
In fact, only the galaxies must be corrected in this large field, i.e., small patches
of few arcseconds, but not the entire field. In the MOAO concept, a specific
optical train is placed in the direction of each object of interest including a ded-
icated DM to ensure correction. Aligned with the linear approach of wavefront
reconstruction used in classical AO systems, the tomographic reconstructors pro-
posed up to now in the literature are linear operators [7]. The input data is a
vector that concatenates all the measurements taken at a given moment of all
the WFSs staring at NGS and LGS. On output, the multiplication by the tomo-
graphic matrix will produce a vector that will represent either the phase in the
volume (expressed in a suitable basis), or the voltages of a DM.

We have chosen to follow an approach that we have used on the CANARY
experiment [9]: the “Learn & Apply”. The tomographic reconstructor is aimed
at retrieving the wavefront measurements that a virtual sensor would see when

High Performance Pseudo-analytical Simulation of MOAO 707

looking at a source located on the scientific target and called truth sensor (TS).
As finding this reconstructor is an inverse problem, it is searched using a minimal
mean square error (MMSE) approach, relying on priors on turbulence parame-
ters (Kolmogorov assumption, global Fried parameter, C2

n(h) profile, wind speed
profile, etc.) in order to constraint it and provide regularization. This reconstruc-
tor can then be used either to control a real system, or in our case to compute
the reconstruction error using an analytical model for the various terms of the
system error budget. From this reconstructor, we derive numerically the covari-
ance matrix of the tomographic error, including aliasing and propagated noise.
We are then able to simulate the point-spread function (PSF) associated to this
covariance matrix of the residuals. The obtained long exposure PSF is then mul-
tiplied, in the Fourier space, by the product of the optical transfer functions
(OTF) corresponding to bandwidth and fitting errors.

3 Mathematical Model

Because we aim to simulate the image quality attained on the E-ELT using
MOAO, the end product we are looking for is the long-exposure point spread
function (PSF). The latter is the Fourier transform of the optical transfer func-
tion (OTF). Under the hypothesis of stationarity of the phase, it has been shown,
for instance in [19] that the OTF can be written as OTF (ρ/λ) = OTFtel(ρ/λ)
exp(− 1

2Dφ(ρ)), with OTFtel the optical transfer function of the telescope, and
Dφ(ρ) the structure function of the residual phase.

We will assume that the residual errors induced by the AO correction will be
made of three independent terms: 1) a term due to the DM fitting error induced
by the limited number of actuators on the DM, 2) a term due to temporal error,
induced by the finite system bandwidth and 3) a term made of the tomographic
error, the associated aliasing, and the noise propagated from the measurements
through the tomographic reconstructor. A structure function will be associated
to each of these terms, that will be computed from the power spectral density
of the residual phase for the first two items, exactly as proposed in [17,14]. The
computation of the third term is explained below. We will assume that these
3 terms behave as independent processes. Thus, the structure function of the
residual phase can be written as the following sum: Dφ(ρ) = Dfit(ρ) +Dbw(ρ)+
Dtomo(ρ).

While the computation of the first two structure functions:Dfit(ρ) andDbw(ρ)
is not compute intensive, the computation of the last term: Dtomo(ρ) requires a
lot of computing power, especially in the case of the E-ELT, as explained below.
As mentioned in the previous section, in our current design for MOAO, an on-
axis “truth sensor” is used to calibrate the interaction matrix of the system, that
will allow us to control the DM from this virtual WFS measurements minimizing
the calibration errors. If we call t the measurements of the truth sensor and v
the voltages applied on the DM, we can calibrate the interaction matrix D by
soliciting each actuator of the DM one by one : t = D v and we can control
the DM from the TS measurements using v = D† t, where D† is the generalized

708 A. Abdelfattah et al.

inverse of D, possibly with some filtered modes. D† is usually computed by doing
a singular value decomposition (SVD) of D = U · [diag(λi)] · V t. The negligible
singular values are then filtered out and D† can then be calculated as follows:

D† = V · [diag(1/λ1, 1/λ2, · · · , 1/λk)] · U t, (1)

where k is the numerical rank of D. The tomographic error vector e, as it would
be measured by a noiseless truth sensor, would be e = t − Rm, where R is
the tomographic reconstructor used on the system to drive the DM. Given a
particular reconstructor, we can thus compute the covariance matrix Cee of e as
follows:

Cee = Ctt − CtmRt −RCt
tm +RCmmRt. (2)

The structure function of the phase tomographic error Dtomo(ρ) can then be
deduced from the statistical covariance matrix of the DM actuators, Cvv (the
subscript v stands for volts). The matrix Cvv is computed using Cvv = D†CeeD

†t,
with Cee given in Eq. 2 and D† explained in Eq. 1. To compute Cee it is thus
necessary to introduce a given tomographic reconstructor. It has been shown, for
instance in [20], that the Minimum Mean Square Error (MMSE) tomographic
reconstructor can be written as:

R = Ctm.C−1
mm, (3)

where Cmm stands for the covariance matrix between all the measurements of
all the WFS of the instrument, and Ctm is the covariance matrix between the
measurements of the factious truth sensor, and all the other system measure-
ments. In the case of the E-ELT, Cmm is an extremely large matrix (40k x 40k
or greater) and its inversion is thus the most compute intensive part of our
pseudo-analytical model. It must be noted that the inversion of matrix Cmm in
the previous equation is not a strict inversion, as the null space of Cmm may not
be empty. Inverting Cmm may be done using eigen decomposition, and filtering
out the negligible eigenvalues.

4 Dense Symmetric Eigensolver Algorithm

The LAPACK dense symmetric eigensolver (DSYEVD) is composed of three
computational stages. The matrix is first reduced to tridiagonal (DSYTRD)
form using orthogonal transformations based on Householder reflectors, which
guarantees numerical stability. The reflectors are saved in the reduced lower or
upper part of the matrix, depending on which part is considered, since they will
be required at the last stage. The second stage extracts all eigenvalues from the
tridiagonal matrix and optionally computes all eigenvectors using a divide-and-
conquer algorithm (DSTEDC). The third stage corresponds to the back transfor-
mation where all orthogonal transformations from the first stage are applied by
block to the eigenvector matrix (DORMTR). If only eigenvalues are needed, the
routine DYSTRD is called followed by DSTERF, which calculates only the eigen-
values out of the tridiagonal matrix and has an algorithmic complexity of O(n2)

High Performance Pseudo-analytical Simulation of MOAO 709

compared to O(n3) for DSYTRD. One of the main performance bottlenecks of
DSYEVD is DSYTRD due to its expensive panel factorization, which requires
loading into memory the whole unreduced part of the matrix (i.e., the trailing
submatrix) at each single reduction step to perform Level 2 BLAS operations
(memory-bound) i.e., the symmetric matrix-vector product (DSYMV). The up-
date of the trailing submatrix is however compute-intensive and relies on high
performance Level 3 BLAS operations (compute-bound). When all eigenvectors
are additionally needed, DSTEDC and DORMTR are also based on successive
calls to Level 3 BLAS kernels and easily achieve high performance close to the
matrix-matrix multiplication kernel performance (DGEMM) on modern parallel
architectures.

5 Implementation Details

The DSYMV is a memory-bound kernel that represents the main bottleneck
in the DSYEVD algorithm. We present an optimized DSYMV kernel, which
is a variant of a previously version proposed by some of the authors [3]. The
new version has some improvements, such as the elimination of the need to
a workspace for global reduction, and the use of atomic operations to allow
multiple threads working on the same output location. These new optimizations
are suitable for the Kepler architecture2. In contrast with the old design [3],
the DSYMV is BLAS compliant and achieves higher occupancy on the GPU for
relatively small matrices. For the multi-GPU DSYMV, the matrix layout over
the GPUs is decided by the upper level algorithm (DSYTRD). A multi-GPU
version of this algorithm is proposed by MAGMA [21]. The matrix layout is
block-column 1D cyclic distribution. Since we intend to integrate our DSYMV
into MAGMA, we use the same layout.

Once the eigenvalue decomposition is complete, the pseudo inverse of the co-
variance matrix can be computed, C−1

mm = U ·E−1 ·U t, where U is the matrix of
eigenvectors and E is a diagonal matrix containing the eigenvalues. Afterwards,
the tomographic reconstructor can be computed as in Equation 3, where Ctm is
a rectangular matrix of a typical size 3.5k × 40k. It is not trivial, though, to per-
form such operations on huge matrices. One optimization for the pseudo inverse
is to compute the square root of E−1 and multiply it by U . This multiplication is
simplified to scaling the columns of U by the square roots of E−1. The resulting
matrix (say Ū) can then be used to compute C−1

mm, since C−1
mm = Ū · ŪT . We

propose a statically scheduled DGEMM on multi-GPU systems. The proposed
kernel performs the standard BLAS operation, C = αA·B+βC, where A, B, and
C have the dimensions m×k, k×n, and m×n, respectively3. The design is based
on processing matrices with tiles. cuBLAS DGEMM [18] is used to perform the

2 http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
3 NVIDIA’s cuBLAS-XT library provides a similar kernel, but it is not freely available
on multi-GPUs.

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

710 A. Abdelfattah et al.

product at the tile level. It is a highly optimized kernel that achieves approx-
imately 1.1 Tflop/s in double precision on a Kepler GPU. Since the matrices
might not fit into GPUs’ main memory, our implementation is an out-of-core
DGEMM. The tiles are exchanged between CPU and GPU(s) as needed during
computation. The communication overhead should be hidden by useful compu-
tation. Figure 1 shows how the work is assigned among four GPUs, where A and
B are both processed in the non-transposed mode. For simplicity, assume that
m, n, and k can be fully divided into a given tile size. The block rows of A are
assigned to GPUs in a 1D cyclic manner. Each GPU reads a block row of A, tile
by tile, and does all the computation associated with it. A GPU reads B in block
columns, tile by tile, and writes the corresponding result in C (1D cyclic block
row, tile by tile). An important point is the memory consumption per GPU.

Fig. 1. Strategy and memory requirement
for the proposed DGEMM-MGPU

From Figure 1, we can determine
the device memory requirement for
the proposed DGEMM-MGPU, for a
sample matrix whose dimension k fits
into six tiles. Each GPU requires as
many tiles as necessary to store a
block row of A. The implementation
uses double buffers for B and C tiles
in order to overlap communication
with computation. The total memory
requirement (M), in bytes, per GPU
is given by, M = (kT + 4T 2)P, where
P is the precision, expressed in bytes,
and T is the tile size. Only tile sizes
higher than 1000 are considered, to
ensure approximately 1.1 Tflop/s per-
formance per tile. Even with a large
tile size of 5k, the kernel can process

square matrices beyond 100k in double precision (on a K20c GPU), which is
beyond the targeted size here.

6 Experimental Results

The experiments have been conducted on a system equipped with Intel Sandy
Bridge CPU (2 sockets × 8 cores per socket), and accelerated with eight Kepler
K20c GPUs (ECC off), each with 5 GB of memory. We use CUDA Toolkit 5.5 and
Intel MKL (Intel Composer XE 2013) to build MAGMA-1.4.0. CULA R17 does
not distribute DSYEVD and provides only the DSYEV algorithm (symmetric
eigensolver using the QR iteration) on single GPU. All computations are done
in double precision. Results are properly averaged across multiple runs.

Starting with the DSYMV, The proposed kernel outperforms the state-of-the-
art implementations, including MAGMABLAS-1.4.0, cuBLAS-5.5, and CULA-
R17. Figure 2(a) shows the performance of the proposed kernel against the

High Performance Pseudo-analytical Simulation of MOAO 711

(a) DSYMV performance on one GPU. (b) DSYMV performance on 1:8 GPUs.

Fig. 2. DSYMV performance on single and multi-GPUs (Kepler K20c - ECC off)

aforementioned high performance libraries, on a single Kepler K20c GPU. The
Figure shows an asymptotic improvement of 97% against CULA-R17, 56%
against cuBLAS-5.5, and 44% against MAGMABLAS-1.4.0. For small matrix
dimensions (less than 2000), the improvement is up to 2x against the best im-
plementation, which is a crucial result for the DSYTRD algorithm. The per-
formance is about 88% of the sustained peak bandwidth performance. cuBLAS
appears twice in the Figure, since it provides two implementations. In addition
to our multi-GPU implementation, only MAGMABLAS provides the DSYMV
kernel on multi-GPUs. Figure 2(b) shows the performance of both implementa-
tions, on a single node with 8 GPUs. The asymptotic performance speedup over
8 GPUs is up to 40%.

Fig. 3. DSYEVD Execution time using one
GPU against multi-core system.

The dominant part of DSYEVD is
the DSYTRD stage, which is, in turn,
dominated by symmetric matrix-
vector product. Thanks to MAGMA
being open source, we were able to
replace MAGMABLAS DSYMV ker-
nel with the one we propose. For
the single GPU case, we compare
the three libraries offering symmetric
eigenvalue decomposition, Intel MKL,
MAGMA-1.4.0, and CULA-R17. For
MAGMA, we run an additional accel-
erated version (from now on referred
to as accelerated MAGMA) where our
proposed DSYMV is used. All eigen-
values and eigenvectors are computed

here, although our application, in principle, will filter out up to 20% of the
eigenpairs with very low magnitude. Figure 3 shows the execution time of the
DSYEVD algorithm for the aforementioned libraries. GPU accelerated libraries

712 A. Abdelfattah et al.

uses one Kepler K20c GPU (ECC off). The accelerated MAGMA DSYEVD us-
ing our DSYMV kernel is faster than the original MAGMA DSYEVD by 35%.
It achieves 3.4x speedup against MKL, and up to 7.2x against CULA DSYEV.
Figure 4(a) shows the execution time for the DSYEVD-MGPU, where the ac-
celerated MAGMA achieves speedups up to 45%, 60%, and 70%, on 2, 4, and 8
GPUs, respectively. We notice that the original MAGMA routine has a prepro-
cessing step for a workspace, performed every time before the DSYMV-MGPU
routine is called. Since our DSYMV-MGPU routine does not need a workspace,
we save the initialization time in addition to the saving due to the more optimized
routine. Figure 4(b) shows the overhead of computing the eigenvectors over a
run that computes only eigenvalues. Our results still show that the dominant
part in the operation is the DSYTRD part, since the backward transformation
phase is compute-bound and can be done very efficiently on the GPU.

(a) DSYEVD scalability against the num-
ber of GPUs.

(b) Overhead of eigenvector computations
on 8 GPUs.

Fig. 4. DSYEVD execution time analysis

Table 1. Performance (Tflop/s) of
the pseudo inversion

Tile size 4 GPUs 8 GPUs
1000 3.50 5.39
1600 3.60 6.04
2000 3.99 6.36
2500 4.03 7.74
4000 3.52 5.23
5000 4.16 8.05

We also present the performance of the
DGEMM kernel, which is designed specifi-
cally for the application, although it can be
easily modified to serve as general purpose
DGEMM. Communicating tiles between the
CPU and the GPU is done asynchronously, so
that the GPU can process existing tiles while
receiving new ones, and the CPU can do use-
ful work concurrently with the GPU. In this
case, the useful work is scheduling more tiles
to be processed. Figure 1 shows that our static
scheduling strategy may suffer from load im-

balance, which will result in a performance drop. However, for the matrix sizes
of the application, we can achieve performance that is very close to the peak,
if we choose the right tile size. The computation of the pseudo inverse involves
multiplication of two 40k×40k matrices. Using different tile sizes, the perfor-
mance is summarized in Table 1, for 4 and 8 GPUs. It is clear that the larger

High Performance Pseudo-analytical Simulation of MOAO 713

the tile, the better the performance. Tile size 5000 achieves performance that is
very close to the sustained peak.

Finally, we present the overall simulation performance. Thanks to the pro-
posed DSYMV and DGEMM kernels, the accelerated MAGMA finishes the sim-
ulation in 263.49s. This is 60% better than an original MAGMA implementation
(421.10s). It is also 17.5x faster than Intel MKL on 16 core Intel Sandy Bridge
processor (4656.25s). To prove how dominant the DSYEVD is, our results show
that it takes 241.07s on accelerated MAGAM, 399.15s with an original MAGMA,
and 4370.50s using Intel MKL. The other phases are less than 10% of the total
run time, for the accelerated MAGMA case.

7 Related Work

It is noteworthy to mention that there exist other numerical algorithms for dense
symmetric eigensolver, which tries to workaround DSYTRD’s bottlenecks by in-
troducing a two-stage tridiagonal reduction. The original dense matrix is first
reduced to band form using efficient compute-intensive kernels from which a
bulge chasing algorithm is applied to chase down the off-diagonal elements un-
til the final tridiagonal matrix is formed. This allows to cast most of Level 2
BLAS operations into Level 3 BLAS operations and increases significantly the
overall symmetric eigensolver. This two-stage approach has been first introduced
by Bischof et. al [4]. Haidar et. al [11,12] have further improved it on shared-
memory multicore architecture. All aforementioned implementations run only on
multicore and are very challenging to port on GPUs due to the non-conventional
kernels involved in the bulge chasing procedure. The authors presented only per-
formance results based on a MATLAB implementation.

8 Conclusion and Future Work

This paper has presented 1) an efficient implementation of the DSYMV kernel
on multi-GPUs, which is a critical Level 2 BLAS operation for the dense sym-
metric eigensolver DSYEVD and 2) an optimized asynchronous DGEMM kernel
on multi-GPUs. Thanks to both implementations and the multi-object adaptive
optics approach, the overall application accurately solves unprecedented problem
scale in the adaptive optics field (up to our knowledge) and reaches high perfor-
mance on multi-GPUs compared to the standard MAGMA implementation on
8 Kepler K20c GPUs (up to 60% speedup). New research directions for extreme
scale AO simulations can be envisaged by replacing the actual dense symmetric
eigensolver to compute the tomographic reconstructor with the Cholesky-based
symmetric matrix inversion. This would permit to calculate the explicit inverse
directly without intermediary computational steps as well as to port this overall
application to distributed-memory systems with GPUs more easily. This method
would also allow to capture and to better handle the noise propagated from the
measurements through the tomographic reconstructor. In addition, the covari-
ance matrix generation has not been investigated here since the time taken to

714 A. Abdelfattah et al.

compute it is not dominant for the problem sizes studied in the paper. However,
it would have to be considered for large problem sizes, especially when targeting
distributed-memory environment. Future possibilities also include exploitation
of the low rank character of the co-variance matrix and reuse of information
between instances that are currently treated as independent.

Acknowledgment. This work is supported by the ANR grant ANR-12-MONU-
0022 of the French Ministry of Research. We thank NVIDIA for their continuous
support and hardware donations. We also thank the CSCS Swiss National Su-
percomputing Centre for granting us access on their GPU computing platforms.

References

1. CULA Dense Free Edition, http://www.culatools.com/
2. Matrix Algebra on GPU and Multicore Architectures. Innovative Computing Lab-

oratory, University of Tennessee, http://icl.cs.utk.edu/magma/
3. Abdelfattah, A., Dongarra, J., Keyes, D., Ltaief, H.: Optimizing Memory-Bound

SYMV Kernel on GPU Hardware Accelerators. In: Daydé, M., Marques, O., Naka-
jima, K. (eds.) VECPAR. LNCS, vol. 7851, pp. 72–79. Springer, Heidelberg (2013)

4. Bischof, C.H., Lang, B., Sun, X.: Algorithm 807: The SBR Toolbox—software for
successive band reduction. ACM Transactions on Mathematical Software 26(4),
602–616 (2000)

5. Cuby, J.-G., Morris, S., Fusco, T., Lehnert, M., Parr-Burman, P., Rousset, G.,
Amans, J.-P., Beard, S., Bryson, I., Cohen, M., Dipper, N., Evans, C., Ferrari, M.,
Gendron, E., Gimenez, J.-L., Gratadour, D., Hastings, P., Hubert, Z., Hugot, E.,
Jagourel, P., Laporte, P., Lebrun, V., Le Mignant, D., Madec, F., Myers, R., Ne-
ichel, B., Morris, T., Robert, C., Schnetler, H., Swinbank, M., Talbot, G., Taylor,
W., Vidal, F., Vivès, S., Vola, P., Welikala, N., Wells, M.: EAGLE: a MOAO fed
multi-IFU NIR workhorse for E-ELT. In: Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, vol. 7735 (July 2010)

6. Davies, R., Kasper, M.: Adaptive Optics for Astronomy. Annual Review of Astron-
omy and Astrophysics 50, 305–351 (2012)

7. Ellerbroek, B.L., Vogel, C.R.: TOPICAL REVIEW: Inverse problems in astronom-
ical adaptive optics. Inverse Problems 25(6), 063001 (2009)

8. Evans, C., Puech, M., Barbuy, B., Bastian, N., Bonifacio, P., Caffau, E., Cuby, J.-
G., Dalton, G., Davies, B., Dunlop, J., Flores, H., Hammer, F., Kaper, L., Lemasle,
B., Morris, S., Pentericci, L., Petitjean, P., Schaerer, D., Telles, E., Welikala, N.,
Ziegler, B.: ELT-MOS White Paper: Science Overview and Requirements. ArXiv
e-prints (February 2013)

9. Gendron, E., Vidal, F., Brangier, M., Morris, T., Hubert, Z., Basden, A., Rousset,
G., Myers, R., Chemla, F., Longmore, A., Butterley, T., Dipper, N., Dunlop, C.,
Geng, D., Gratadour, D., Henry, D., Laporte, P., Looker, N., Perret, D., Sevin,
A., Talbot, G., Younger, E.: MOAO first on-sky demonstration with CANARY.
Astronomy and Astrophysics 529, L2 (2011)

10. Gratadour, D., Gendron, E., Rousset, G.: Intrinsic limitations of Shack-Hartmann
wavefront sensing on an extended laser guide source. Journal of the Optical Society
of America A 27(26), A260000 (2010)

http://www.culatools.com/
http://icl.cs.utk.edu/magma/

High Performance Pseudo-analytical Simulation of MOAO 715

11. Haidar, A., Ltaief, H., Dongarra, J.: Parallel Reduction to Condensed Forms for
Symmetric Eigenvalue Problems using Aggregated Fine-Grained and Memory-
Aware Kernels. In: Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 2011, pp. 8:1–8:11.
ACM, New York (2011)

12. Haidar, A., Ltaief, H., Dongarra, J.: Toward a High Performance Tile Divide and
Conquer Algorithm for the Dense Symmetric Eigenvalue Problem. SIAM J. Scien-
tific Computing 34(6) (2012)

13. Intel. Math Kernel Library,
http://software.intel.com/en-us/articles/intel-mkl/

14. Jolissaint, L., Christou, J., Wizinowich, P., Tolstoy, E.: Adaptive optics point
spread function reconstruction: lessons learned from on-sky experiment on Al-
tair/Gemini and pathway for future systems. In: Society of Photo-Optical Instru-
mentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instru-
mentation Engineers (SPIE) Conference Series, vol. 7736 (July 2010)

15. Navarro, R., Chemla, F., Bonifacio, P., Flores, H., Guinouard, I., Huet, J.-M.,
Puech, M., Royer, F., Pragt, J.H., Wulterkens, G., Sawyer, E.C., Caldwell, M.E.,
Tosh, I.A.J., Whalley, M.S., Woodhouse, G.F.W., Spanò, P., di Marcantonio,
P., Andersen, M.I., Dalton, G.B., Kaper, L., Hammer, F.: Project overview of
OPTIMOS-EVE: the fibre-fed multi-object spectrograph for the E-ELT. In: Soci-
ety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society
of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7735
(July 2010)

16. Neichel, B., Fusco, T., Conan, J.-M., Petit, C., Rousset, G.: PSD-based simula-
tion algorithm for Wide FoV AO design: application to ELT studies. In: Society
of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7015 (July
2008)

17. Rigaut, F.J., Veran, J.-P., Lai, O.: Analytical model for Shack-Hartmann-based
adaptive optics systems. In: Bonaccini, D., Tyson, R.K. (eds.) Adaptive Optical
System Technologies. Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, vol. 3353, pp. 1038–1048 (September 1998)

18. Tan, G., Li, L., Triechle, S., Phillips, E., Bao, Y., Sun, N.: Fast Implementation
of DGEMM on Fermi GPU. In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2011, pp.
35:1–35:11. ACM, New York (2011)

19. Veran, J.-P., Rigaut, F., Maitre, H., Rouan, D.: Estimation of the adaptive optics
long-exposure point-spread function using control loop data. Journal of the Optical
Society of America A 14, 3057–3069 (1997)

20. Vidal, F., Gendron, E., Rousset, G.: Tomography approach for multi-object adap-
tive optics. Journal of the Optical Society of America A 27(26), A260000 (2010)

21. Yamazaki, I., Dong, T., Solc, R., Tomov, S., Dongarra, J., Schulthess, T.: Tridiag-
onalization of a dense symmetric matrix on multiple GPUs and its application to
symmetric eigenvalue problems. In: Concurrency and Computation: Practice and
Experience (2013)

http://software.intel.com/en-us/articles/intel-mkl/

Parallel Dual Tree Traversal on Multi-core

and Many-core Architectures
for Astrophysical N-body Simulations

Benoit Lange1,2,� and Pierre Fortin2

1 Sorbonne Universités, UPMC Univ Paris 06, ICS, F-75005, Paris, France
2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,

LIP6, F-75005, Paris, France;
CNRS, UMR 7606, LIP6, F-75005, Paris, France

{benoit.lange,pierre.fortin}@lip6.fr

Abstract. In astrophysical N-body simulations, Dehnen’s algorithm,
implemented in the serial falcON code and based on a dual tree traver-
sal, is faster than serial Barnes-Hut tree-codes, but outperformed by
parallel CPU and GPU tree-codes. In this paper, we present a parallel
dual tree traversal, implemented in the pfalcON code, targeting multi-
core CPUs and many-core architectures (Xeon Phi). We focus here on
both performance and portability, while preserving Dehnen’s original al-
gorithm. We first use task parallelism, with either OpenMP or Intel TBB,
for the dual tree traversal. We then rely on the SPMD (single-program,
multiple-data) model for the SIMD vectorization of the near field part
thanks to the Intel SPMD Program Compiler. We compare the pfalcON
performance to related work, and finally obtain performance results that
match one of the best current tree-code implementations on GPU.

Keywords: dual tree traversal, task parallelism, SIMD, SPMD model,
N-body problem.

1 Introduction

TheN -body problem describes the computation of all pairwise interactions among
N bodies (or particles). In astrophysics, suchN -body simulations are essential and
widely used for galactic dynamics studies. The direct computation of all
pairwise interactions amongN bodies leads to a prohibitive O(N2) runtime com-
plexity. Hierarchical methods [2, 5] have therefore been introduced to reduce this
runtime complexity: thanks to an octree data structure, the force field is decom-
posed in a near field part, directly computed, and a far field part approximated
with various expansions. In astrophysics, the Barnes-Hut tree-code is one of the
most used algorithms for serial and parallel CPU executions (see for example
treecode1 in NEMO1 and GADGET-2 [12]). Recently, parallel implementations

� This work undertaken (partially) in the CALSIMLAB framework is supported by
the public grant ANR-11-LABX-0037-01 of the French National Research Agency
(ANR) as part of the “Investissements dAvenir” program (ANR-11-IDEX-0004-02).

1 A Stellar Dynamics Toolbox: http://bima.astro.umd.edu/nemo

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 716–727, 2014.
c© Springer International Publishing Switzerland 2014

http://bima.astro.umd.edu/nemo

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 717

on GPUs (Graphics Processing Units) [3, 4] have also been developed which out-
perform multi-core CPUs. Dehnen’s algorithm [6], implemented in the serial fal-
cON code (Force ALgorithm with Complexity O(N)), is one order of magnitude
faster than serial executions of Barnes-Hut tree-codes [6, 8], mainly thanks to its
dual tree traversal (DTT). But parallel tree-codes implementations, on one or two
multi-core CPUs or on one GPU, then manage to outperform falcON [8]. The par-
allelization of falcON is therefore crucial to exploit its algorithmic asset on current
parallel architectures. But contrary to tree-codes algorithms, this DTT does not
exhibit natural parallelism.

In this paper, we present a parallel dual tree traversal, implemented in the pfal-
cON (parallel falcON) code, that efficiently exploits two levels of parallelism on
one single shared-memory node (we do not consider distributed-memory paral-
lelism here).We first targetmulti-core parallelism on CPUswhose number of cores
is constantly increasing, as well as on new many-core architectures like the Intel
Xeon Phi whose compute power is similar to high end GPUs.We also target SIMD
parallelism because of its increasing importance in the overall CPU performance:
128-bit SSE, 256-bit AVX, and 512-bit Xeon Phi vector units.

Contributions. Our contributions are thus two-fold. Firstly, we use task paral-
lelism for the DTT on both multi-core CPUs and on the Xeon Phi. This requires
a recursive formulation of the falcON code, as well as adequate atomic operations
andmemory barriers in order to obtain an efficient implementation.We detail how
this can be achieved for both OpenMP tasks and Intel TBB (Threading Building
Blocks) tasks, and how we manage to preserve Dehnen’s original algorithm in the
parallel tree traversal. Secondly, we use Intel SPMD Program Compiler (ispc)
and its SPMD (single-program, multiple-data) model for the SIMD vectorization
of the direct computation required for the near field part. We show that such ap-
proach enables us to have one single portable source code for this direct computa-
tion which is very efficient on both SSE and AVX, as well as on Xeon Phi vector
instructions. Best performance is here obtained via a hybrid strategy that effi-
ciently combines scalar and vector code. In the end, we show performance results
that match the GPU Bonsai code which is currently one of the fastest GPU tree-
codes [3].

Related work. An MPI parallelization of Dehnen’s algorithm has been briefly
presented in [10], but is based on a complete rewriting of the algorithm in Fortran
90, not on the highly optimized C++ falcON code. Recently, the exaFMM-dev soft-
ware has included an implementation of Dehnen’s algorithm that also uses task
parallelism for the dual tree traversal [13,14], but in a different way that requires
the rewriting of this traversal. As for SIMD programming, exaFMM-dev uses C++
template metaprogramming for the hand-tuned kernel of the direct computation
part. In the following, we will thus highlight the differences between pfalcON and
exaFMM-dev and compare their performance.

In the rest of this paper, Sect. 2 describes N -body algorithms, especially
Dehnen’s algorithm. In Sect. 3, we detail how we have used task parallelism and
SPMD programming in the pfalcON code. Section 4 presents performance results

718 B. Lange and P. Fortin

BA

R

rA,max

rB,max

(a) MAC is applied to (A,B).

A

B3

B2

B0 B1

(b) If MAC fails, B is split.

A

B0

(c) If MAC(A,B0) fails, A is split.

Task
Task

Task
Task

(d) Tasks spawn when MAC fails.

Fig. 1. Dual tree traversal in Dehnen’s algorithm

and comparisons with other codes. Finally, concluding remarks will be presented
in Sect. 5. More technical details are available in the research report [9].

2 N -body Algorithms

We focus here on galactic simulations and on hierarchical N -body algorithms,
where the 3Dparticle space is hierarchically decomposed thanks to an octree whose
leafs contain at most Ncrit particles.

The Barnes-Hut tree-code algorithm [2] computes the gravitational forces
amongN particles with aO(N lnN) runtime complexity thanks tomonopole (and
possibly quadrupole)moments. For each target body, the octree is here recursively
traversed and “body-cell” or “body-body” interactions are evaluated depending
on a multipole acceptance criterion (MAC). The loop on the target bodies is par-
allel which enables CPU parallel implementations with multi-threading and/or
with MPI [12]. Recently, this inherent parallelism has been efficiently exploited
to develop GPU implementations that run entirely on the GPU [3, 4]. For exam-
ple, the Bonsai code, which relies on monopole and quadrupole moments and on
a specific MAC, enables speedups around 20 on GPU compared to a multi-core
CPU implementation [3].

Dehnen’s algorithm [6] can be considered as a nontraditional fast multipole
method [5], specific to the relatively low precisions required in astrophysics. This
O(N) algorithm indeed relies on “cell-cell” interactions. This requires specific, low
precision local expansions based on cartesian Taylor expansions, and a specific
MAC that can balance (along with the expansion order, which is fixed to 3) the
accuracy and the computation cost. This MAC is defined for two cells (A,B) (see
Fig. 1(a)) as:

rA,max+rB,max

R < θ , where θ is an input parameter (θ = 0.6 by de-
fault) that balances accuracy and computation cost, and rC,max denotes an upper
limit for the distance of any body within the node C from its center of mass [6].

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 719

Once the octree has been built and the multipole moments have been calculated,
the interactions are computed in two steps.

The first step (interaction phase) relies on the dual tree traversal (DTT) pre-
sented in Figs. 1(a),1(b),1(c). If the MAC succeeds between two cells (A,B), their
interactions can be approximated: both local expansions of A and B are updated
thanks to the mutuality of gravity (see Fig. 1(a)). If the MAC fails, the larger cell
(B here) is split and the MAC is applied between A and all the children of B (see
Fig. 1(b), with 8 children in 3D). This is applied recursively, and A can then be
split when the MAC fails with A as the larger cell (see Fig. 1(c)). This thus leads
to a dual recursive traversal of the octree. When the MAC fails for two octree
leafs, or when the number of particles is too low (depending on empirical thresh-
olds [6]), the direct computation is used instead of the expansions. Thanks to this
DTT, Dehnen’s algorithm consistently uses the mutuality of gravity to halve the
computation cost in the near field part as well as in the far field part. After the
interaction phase, the evaluation phase is recursively used to evaluate the local
expansion of each cell for each body within this cell.

All these features have been implemented in the falcON2 code (Force ALgo-
rithm with ComplexityO(N)) which offersO(N) computation times one order of
magnitude smaller than serial executions of Barnes-Hut tree-codes [6, 8].
Moreover, these computation times are much less sensitive to the distribution of
particles: this is very important for astrophysical simulations where the particle
distributions representing galaxies or groups of galaxies are highly non-uniform.

The interaction and evaluation steps correspond together to the most time con-
suming part. The octree construction has a non-negligible computation time, but
it does not have to be performed at every time-step. Moreover, the interaction
step represents around 95% of the total time for both the interaction and evalu-
ation steps, which makes it crucial for the overall performance of falcON. In the
following, we will thus see how the interaction and evaluation steps of Dehnen’s
algorithm can be efficiently parallelized in a new pfalcON code.

3 pfalcON: A Parallel falcON

The dual tree traversal of the interaction step was described as a recursive algo-
rithm in [6], but was implemented using a stack-based approach in the falcON
code. In practice when an interaction fails the MAC, it is pushed in one of the
available stacks according to its type (“cell-cell”, “body-cell”. . .). The stacks are
then regularly popped in a specific order. When using tasks to process interac-
tions, the task runtime will have to store the tasks (i.e. the interactions) in mem-
ory. The original stacks in falcON then become redundant. We have thus removed
these stacks and rewritten falcON as a recursive code (more convenient for task
parallelism), where recursive calls process interactions in the same order as in fal-
cON. This new code will be hereafter referred to as rfalcON.

2 Available in http://carma.astro.umd.edu/nemo/, version 3.6 . We use here the gyr-
falcON full-fledged N-body code (GalaxY simulatoR using falcON).

http://carma.astro.umd.edu/nemo/

720 B. Lange and P. Fortin

Besides, local Taylor expansions are allocated on the fly during the dual tree
traversal in the original falcON code. This enables to save memory by allocating
these expansions only when they are effectively required for each cell. In paral-
lel executions, concurrent memory allocations have to be serialized at the system
level, which can become a performance bottleneck. In rfalcON we thus allocate
these expansions for each non-empty cell during the step which computes mul-
tipole moments. This implies some memory overhead, which is not problematic
since currentN -body simulations on one single node are more limited by the com-
pute power than by the available memory. With such features, rfalcON is slightly
faster than falcON (around 8%) for the interaction step.

3.1 Task Parallelism for the Dual Tree Traversal

Onmulti-core CPUs, loop-based parallelism (like in OpenMP) is suitable for tree-
codes, but clearly not here for the DTT of the rfalcON interaction phase since
there is no explicit parallel loop. Task parallelism, firstly introduced in Cilk and
now available in OpenMP (since version 3.0) and in Intel TBB, is here much more
suitable for such recursive algorithm. Tasks are specified in the source code by the
programmer, and then managed during the execution by a runtime which dynam-
ically schedules these tasks on the available threads. Such dynamic load balancing
is especially useful in astrophysicalN -body simulations where the particle distri-
butions, hence the computation loads, are highly non-uniform.

In pfalcON, each time an interaction fails the MAC, we thus simply create one
task for each of the (up to) eight interactions involving the children of the larger
cell: see Fig. 1(d). However, due to the consistent use of the mutuality of gravity
in Dehnen’s algorithm, a task updates both cells A and B (either local expansions
or particles) when the interaction is effectively computed. Hence different tasks
can update the same cells concurrently which requires synchronization among the
tasks to avoid conflicts. We need here the lightest synchronization mechanism to
have the smallest overhead on the parallel execution. That is why we use here
atomic operations and memory barriers on one specific flag per cell to indicate if
the cell is already being updated or not.

More precisely, we use here one bit (the Most Significant Bit - MSB) in one
32-bit integer variable (named val in the falcON code). Such variable is stored
in each octree cell to describe various features of this cell, and only 25 bits are
currently used. When a task needs to update a given cell, it first has to set this bit
to 1 while checking that the bit was not already set to 1 (by another task): the two
operations must be performed atomically. In case the bit was already set to 1, we
use busy waiting since the cell update is a very fast operation. Another possibility
is to suspend the current task and make the underlying thread treat another task:
no performance gain was obtained in our tests in doing so. When the update is
over, the bit is reset to 0: such write must include a memory barrier to ensure that
(i) the write is performed after the computation and that (ii) subsequent reads are
performed after this write. With OpenMP, we use atomic capture and atomic

update operations.With TBB, the whole field val is declared as an atomic integer
and we use a compare and swap operation to check the bit value and set it to 1.

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 721

In practice, we expect very few concurrent accesses to the same cells (which may
increase the overhead of using atomics operations) since the number of cells in the
octree is many orders of magnitude higher than the number of threads used.

In the exaFMM-dev software [13,14], task parallelism is applied to the DTT dif-
ferently. In order to avoid conflicts, the traversal is strongly rewritten using one
list of children cells for cell A and one list for cell B [13]. These two lists are halved
which results in up to four tasks that must be computed among the four half-lists.
Task barriers are then used to isolate tasks that can be performed in parallel with-
out conflicts. As mentioned in [13], this implies some extra computations since
cells A and B can be opened at the same time, whereas only one cell would have
been opened in the originalDehnen’s algorithm.On the contrary, in pfalcONwe do
not require a rewriting of the DTT and we do not introduce extra computations.

Besides, we also have to control the task computation grain for efficient par-
allel executions. Spawning too small tasks may not enable to offset the task cre-
ation overhead, whereas spawning only large tasks may result in an overall load
imbalance among threads. We thus introduce a threshold (TCT, Task Creation
Threshold) to stop task creation: when there are less than TCT particles in the
two cells A and B (or in the cell A if A = B) no task is created for the remainder
of this traversal (but atomic operations are still required). According to theO(N)
runtime complexity, such linear threshold is indeed well-suited to control the com-
putation grain size. Appropriate TCT values for OpenMP and TBB are around
1000 or 10000. It can be noticed that a similar threshold is used in exaFMM-dev in
order to reduce the number of extra computations introduced by the exaFMM-dev
task parallelism.

As far as the evaluation step is concerned, the task parallelism is straightfor-
ward to implement since there is no conflict among the tasks.We also use a thresh-
old like TCT in order to control the task computation grain.

3.2 Portable and Efficient SIMD Direct Computation

SPMD model. Many works have already been published on the efficient vectoriza-
tion of the direct computation for the near field part (see for example [1, 7, 14]).
We target here both efficiency and portability on various vector instruction sets
(SSE, AVX, Xeon Phi). We thus focus on the SPMD (single-program, multiple-
data) model, where all computations are written as scalar ones and it is up to the
compiler to merge such scalar computations in SIMD instructions. The main ad-
vantages are the ease of programming and the portability: the programmer needs
neither to write the specific SIMD intrinsics for each architecture, nor to know the
vector width, nor to implement data padding with zeroes according to this vector
width. On CPU, such programming model is available in OpenCL (OpenCL im-
plicit vectorization), as well as in the Intel SPMD Program Compiler (ispc) [11].
Compared to OpenCL, ispc has especially the following advantages [11]: (i) ispc
kernel launches are faster and (ii) the same memory space and data structures
can be shared between the C/C++ code and the ispc code. These are very impor-
tant for pfalcON since SIMD computations are performed with small computation
grains (usually a few tens of particles per leaf) and require a tight integration in

722 B. Lange and P. Fortin

the dual tree traversal and in the octree data structure. We will therefore rely here
on the SPMD-on-SIMD model of ispc.

ispc technical features. In ispc, each scalar control flow corresponds to a pro-
gram instance (similar to an OpenCL work-item). The group of program instances
will be merged in one gang (similar to a CUDA warp or to an AMD OpenCL
wave-front) to be processed concurrently with SIMD instructions. The gang size
(denoted gs) of the gang is usually set to one or two time(s) the width of the un-
derlying SIMD vector. Depending on the available instruction level parallelism
and on the register pressure, it can be indeed more efficient (or not) to use twice
the vector width. When the number of items to process is greater than the gang
size, the programmer implements the mapping via an explicit loop over all items
(contrary to CUDA and OpenCL, where warps/wave-fronts are scheduled by the
runtime) [11]. This gives us more control to efficiently and safely implement the
direct computation with the mutuality of gravity.

Direct computation kernels. We first focus on the direct computations between
two different leafs A and B (pair computations). We first determine the leaf with
the greatest number of particles (say A here). Each program instance is then in
charge of one of the first gs particles in A, which leads to a SIMD processing of
these gs particles. Interactions between these gs particles and the first particle of
B are then processed concurrently: the first particle in B is therefore replicated
in the underlying SIMD vector. Force and potential are then updated in A (no
conflict among the program instances), as well as in the first particle of B (with
ispc reductions among the program instances in the gang). This is iterated over
all particles in B. Once all particles in B have been treated, the whole process is
restarted for the next gs particles in A.

We now focus on the direct computations among all particles within one given
leaf (own computations). In this case, we proceed as in [7] by using as much as
possible the (efficient) pair computation along with the mutuality of gravity, and
we start by isolating the first gs particles. Interactions between these first gs parti-
cles and the remaining particles are then computed by the pair computation ker-
nel (with the mutuality of gravity). After this, the interactions among the first
gs particles are then computed (similarly to the pair computation, but without
the mutuality of gravity here). The whole process is restarted with the remaining
particles, whose first gs particles are isolated.

Besides, moving from arrays of structures (AoS - as in the scalar falcON) to
structures of arrays (SoA - more efficient for vector loads and stores) in falcON
would have required very important programming efforts: we therefore keep the
AoS data layout (like in exaFMM-dev for example) and rely on the fact that for di-
rect computations theO(N) memory access times can be rapidly overlapped with
the O(N2) computation times. Moreover, we also use software pipelining in pfal-
cON with double buffering: we process two interactions at the same time, the first
one being computed while data for the next one are being loaded in registers. This
has been implemented in both the scalar pfalcON (referred to as pfalcON-scalar)
and the SIMD code. Finally, we rely on the rsqrt ps intrinsic SIMD function as a

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 723

(a) Own computations with AVX (b) Pair computations with AVX

Fig. 2. Performance of the different kernels for direct computations on AVX instruction
set. For pair computations between cells A and B, only the number of particles NA in
cell A is indicated: for each value of NA, NB ranges from 1 to NA.

floating-point reciprocal square root estimate, followed by one Newton-Raphson
iteration to match floating point single precision.

4 Performance Results

For performance tests, we use three compute servers: SSE-server with two Intel
X5650CPUs (each having 6 SSE cores with 2-way SMT at 2.67GHz) and 48 GB of
memory,AVX-serverwith two Intel E5-2660CPUs (each having 8 AVX cores with
2-way SMT at 2.20 GHz) and 32 GB of memory, and Xeon-Phi which is a 5110P
XeonPhi (60 cores with 4-waySMT at 1.053GHz) used in nativemode as a distant
server. For pfalcON, we use OpenMP (3.1) and TBB (4.1) with GCC (4.7.3), since
GCC specific optimizations are used in falcON, and with ICC (14.0.0) on Xeon-
Phi for the SIMD intrinsics. exaFMM-dev3 is used with ICC andTBB, and Bonsai4

is run on NVIDIA GPUs (C2070 or K20c, both in SSE-server) with CUDA 5.0.
We will use two distributions of 10M particles: an artificial uniform distribution

inside a 3D cube, and a Plummer distribution as a classical (non-uniform) astro-
physical model [8]. All codes compute both forces and potentials, for all particles,
with single precision floating point arithmetic. We also use in each code appropri-
ate softenings for the near field part of the gravity [8].

4.1 SIMD Direct Computation

Figure 2 presents the performance of different direct computation kernels
presented in Sect. 3.2; namely the original scalar implementation in falcON,
pfalcON-scalar and two SIMD versions in pfalcON: with the gang size set to the
underlying vector width (pfalcON-ISPC) or to twice this vector width (pfalcON-
ISPCx2). This last ispc feature is however not yet available on the Xeon Phi,
where we will therefore only use pfalcON-ISPC. The comparison is here performed

3 https://bitbucket.org/rioyokota/exafmm-dev , commit 4bd77a5, 2013-09-12.
4 https://github.com/treecode/Bonsai , version 8d8e4c0d19, 2013-04-21.

https://bitbucket.org/rioyokota/exafmm-dev
https://github.com/treecode/Bonsai

724 B. Lange and P. Fortin

for numbers of particles that fit in the gang size, and on AVX instruction set: simi-
lar results have been obtained on SSE and Xeon Phi (see [9]). We always consider
here 25 flops to compute the forces and potentials between two particles (using
the mutuality of gravity). Results in Fig. 2 implies that, depending on the num-
ber of particles, especially when there is not enough particles to fill the SIMD vec-
tor, it may be better to use our scalar kernel pfalcON-scalar, or the SIMD kernel
of pfalcON-ISPC, instead of the SIMD kernel of pfalcON-ISPCx2. We therefore
propose, and use hereafter, the following hybrid strategy, based on the underlying
vector width (provided by an ispc function call).

For own computations of N particles, we first compute the number of particles
Nm = �N/w × w that correspond to multiples of the vector width w, and the
remainder Nr = N − Nm. Then we apply specific thresholds for each SIMD ar-
chitecture to processNm andNr (with AVX: T1 = 6, T2 = 72; see [9] for SSE and
Phi). For example for Nm, we use: pfalcON-ISPCx2 if T2 ≤ Nm ; pfalcON-ISPC
if T1 ≤ Nm < T2 ; pfalcON-scalar if Nm < T1 .

For pair computations of cells A and B with NA andNB particles (NA ≥ NB),
we first compute Nm,A and Nr,A. We then apply specific thresholds (with AVX:
TS,1 = 8, TB,1 = 2, TS,2 = 32, TB,2 = 13) following this strategy (firstly for Nm,A

and secondly for Nr,A): we use pfalcON-ISPCx2 if Nm,A ≥ 2×V ectorWidth and
Nm,A +NB ≥ TS,2 and NB ≥ TB,2 ; otherwise, we use pfalcON-ISPC if
Nm,A +NB ≥ TS,1 and NB ≥ TB,1 ; otherwise we use pfalcON-scalar.

Figures 3(a),3(b),3(c) show that our ispc hybrid strategy leads on SSE and
AVX to performance that is mainly similar or better than the hand-tuned kernels
of exaFMM-dev [14] for low numbers of particles. For higher numbers of particles,
ispc clearly outperforms exaFMM-dev thanks to a gang size set to twice the vec-
tor width. On the Xeon Phi, we also obtain similar or better performance than
exaFMM-dev, except for the high values ofN with own computations: this is mainly
due to the current lack of pfalcON-ISPCx2 on the Xeon Phi.

Finally, we evaluate in Fig. 3(d) the SIMD performance gain on the overall in-
teraction step: values on top of each bar correspond to the speedups of pfalcON
with ispc over the scalar rfalcON. We optimally choose here the Ncrit value for
each code on each architecture: for rfalcON the optimal Ncrit value is 8, whereas
for the SIMD pfalcON code this is 32 for AVX and Xeon Phi, and 8 for SSE. The
SIMD pfalcON code offers thus performance gains over rfalcON of 5% on one SSE
core, but of up to 24% (resp. 92%) on one AVX (resp. Xeon Phi) core.

4.2 Task Parallelism

Figure 4 presents speedups of pfalcON over the serial rfalcON code. With both
OpenMP and TBB, and for both uniform and non-uniform distributions of par-
ticles, we obtain very good speedups up to 15.8 on AVX-server and up to 60 on
Xeon-Phi. Similar or better parallel efficiencies have been obtained on SSE-server
(speedups up to 13.8, not shown here). Once the overhead of using task and atomic
operations is taken into account (for 1 thread), we indeed obtain linear speedups
on up to 32 physical CPU cores. On the Xeon Phi, using two hardware threads per
core (denoted as 2-way SMT) enables us to improve the speedup from 50 (with 60

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 725

(a) On one SSE core. (b) On one AVX core.

(c) On one Xeon Phi core. (d) Overall interaction step.

Fig. 3. Figs. 3(a),3(b),3(c): performance comparison for direct computations (only up
to 256 particles because of the Ncrit limit within each leaf). For pair computations, we
use the same number of particles in both cells. Fig. 3(d): computation times on one
CPU core for the overall interaction step on the two 10M distributions.

threads) to 60 (with 120 threads on 60 cores). Using two hardware threads is in-
deed required to reach best performance on this architecture, but performance
drops for too many threads (with 4 hardware threads per core - 4-way SMT).
These results show that our task parallelism with atomic operations is very well
suited for multi-core CPUs, and scales well on the Xeon Phi. For the evaluation
step, good speedups (around 12 on AVX-server, and around 32 on Xeon-Phi, not
shown here) are obtained, these speedups being mainly limited by the very small
computation times of this step in our tests.

4.3 Comparison with exaFMM-dev and Bonsai

Finally, we now compare in Fig. 5 the following codes: (i) the original falcON, (ii)
the SIMD pfalcON on AVX-server (GCC+OpenMP with 32 hardware threads)
and on Xeon-Phi (ICC+TBB with 120 hardware threads), (iii) the SIMD
exaFMM-dev code with 1 or 32 threads on AVX-server (ICC+TBB), (iv) and fi-
nally Bonsai on one C2070 GPU and on one K20c GPU. We compare here two
multi-core CPUs (AVX-server TDP: 2 × 95W) with one GPU (maximum power
consumption: 238W for C2070 and 225W for K20c) and with one Xeon Phi (TDP:
225W), since this corresponds to the same power consumption. Optimal Ncrit

726 B. Lange and P. Fortin

(a) On AVX-server. (b) On Xeon-Phi.

Fig. 4. Speedups obtained by pfalcON on multi-core and many-core architectures

(a) 10M uniform. (b) 10M Plummer.

Fig. 5. Computation times (interaction and evaluation steps) for various N-body codes

values are used for falcON, pfalcON and exaFMM-dev, whereas Bonsai uses its
own specific thresholds (Nleaf = 16 and Ncrit = 64, see [3]). As recommanded
for astrophysicalN -body simulations [8], we use θ = 0.6 for falcON, pfalcON and
exaFMM-dev, and θ = 0.75 for Bonsai (default value) whose expansions and MAC
are different [3]. For falcON, pfalcON and exaFMM-dev, we consider here only the
interaction and evaluation steps, and for Bonsai we consider the corresponding
“tree-traverse” step.

Speedups between pfalcON and exaFMM-dev are similar. Since falcON is some-
what faster for serial executions, pfalcON is then also somewhat faster than
exaFMM-dev for parallel executions. As far as the Xeon Phi is concerned, there
is no performance gain compared to the two multi-core CPUs, mainly because
astrophysical N -body simulations offer small computation grains for the direct
computations: there is usually too few particles per leaf to fill at best the vec-
tor units of the Xeon Phi. The Xeon Phi however outperforms the C2070 for the
non-uniform Plummer distribution. Finally, pfalcON on AVX-server outperforms
Bonsai on the C2070GPU. Using the newer K20cGPU, Bonsai outperforms pfal-
cON on AVX-server for the uniform distribution, but the performance results are
much more closer for the more realistic Plummer distribution. Non-uniform dis-
tributions are indeed more challenging for GPU codes, whereas pfalcON on AVX-
server is few sensitive to the particle distribution. Lastly, we emphasize that 50M
distributions can be run on SSE-server and AVX-server, but not on any GPU.

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 727

5 Conclusion and FutureWork

We have presented a parallel version of the dual tree traversal which is the most
challenging and time consuming part in Dehnen’s algorithm. Very good speedups
are obtained, Dehnen’s original algorithm is preserved, no extra computations are
introduced, and the SPMDmodel is shown to be suitable for efficient and portable
SIMD vectorization. Since falcON is faster than serial Barnes-Hut tree-codes, pfal-
cON with such parallel speedups should outperform any parallel tree-code on one
single node with multi-core CPUs. Besides, pfalcON is faster than or almost as fast
as GPU tree-codes like Bonsai for astrophysical distributions, but we emphasize
that GPU tree-codes are limited by the GPU memory, and MPI communications
on multiple nodes with GPU are usually penalized by the PCI bus. The pfalcON
code is available at https://pfalcon.lip6.fr .

Future work will be focused on the other parts of falcON (mainly the octree
construction [13]), on distributed-memory parallelism, and on applying such par-
allel algorithm to other applications than astrophysics.Another (challenging) task
would be to efficiently combine the best algorithm, namely the dual tree traversal,
with the most powerful hardware currently available, namely GPUs.

References

1. Arora, N., Shringarpure, A., Vuduc, R.: Direct n-body kernels for multicore plat-
forms. In: Proc. of the Int. Conf. on Parallel Processing (ICPP), pp. 379–387 (2009)

2. Barnes, J.E., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Na-
ture 324(4), 446–449 (1986)

3. Bédorf, J., Gaburov, E., Zwart, S.P.: A sparse octree gravitational N-body code
that runs entirely on the GPU processor. J. Comp. Phys. 231(7), 2825–2839 (2012)

4. Burtscher, M., Pingali, K.: An Efficient CUDA Implementation of the Tree-Based
Barnes Hut n-Body Algorithm. GPU computing Gems Emerald edition, p. 75 (2011)

5. Cheng, H., Greengard, L., Rokhlin, V.: A Fast Adaptive Multipole Algorithm in
Three Dimensions. Journal of Computational Physics 155, 468–498 (1999)

6. Dehnen,W.: A Hierarchical O(N) Force Calculation Algorithm. J. Comp. Phys. 179,
27–42 (2002)

7. Fortin, P., Lamotte, J.L.: Fast Multipole Method on the Cell B.E.: the Near Field
Part. In: Int. Parallel Computing Conf. (ParCo), vol. 19, pp. 323–330 (2009)

8. Fortin, P., Athanassoula, E., Lambert, J.-C.: Comparisons of different codes for
galactic N-body simulations. Astronomy & Astrophysics 531, A120 (2011)

9. Lange, B., Fortin, P.: Parallel dual tree traversal on multi-core and many-core archi-
tectures for astrophysical N-body simulations, http://hal.upmc.fr/hal-00947130

10. Londrillo, P., Nipoti, C., Ciotti, L.: A parallel implementation of a new fast algo-
rithm for N-body simulations. In: Comp. Astro. in Italy: Methods and Tools (2002)

11. Pharr, M., Mark, W.R.: ispc: A SPMD compiler for high-performance CPU pro-
gramming. In: Innovative Parallel Computing (InPar 2012), pp. 1–13. IEEE (2012)

12. Springel, V.: The cosmological simulation code GADGET-2. Monthly Notices of the
Royal Astronomical Society 364(4), 1105–1134 (2005)

13. Taura, K., Nakashima, J., Yokota, R., Maruyama, N.: A Task Parallel Implemen-
tation of Fast Multipole Methods. In: SC Companion, pp. 617–625 (2012)

14. Yokota, R.: An FMM Based on Dual Tree Traversal for Many-core Architectures.
Journal of Algorithms and Computational Technology 7(3), 301–324 (2013)

https://pfalcon.lip6.fr
http://hal.upmc.fr/hal-00947130

Customizing Driving Directions with GPUs�

Daniel Delling1, Moritz Kobitzsch2, and Renato F. Werneck1

1 Microsoft Research
{dadellin,renatow}@microsoft.com

2 Karlsruhe Institute of Technology
kobitzsch@kit.edu

Abstract. Computing driving directions interactively on continental road net-
works requires preprocessing. This step can be costly, limiting our ability to in-
corporate new optimization functions, including traffic information or personal
preferences. We show how the performance of the state-of-the-art customizable
route planning (CRP) framework is boosted by GPUs, even though it has highly
irregular structure. Our experimental study reveals that our method is an order of
magnitude faster than a highly-optimized parallel CPU implementation, enabling
interactive personalized driving directions on continental scale.

1 Introduction

The past decade has seen intense research on the computation of driving directions in
road networks [2, 20]. This problem can be modeled as computing shortest paths on a
weighted graph and solved by classical algorithms such as Dijkstra’s [4]. For continen-
tal road networks (with tens of millions of arcs), however, queries can take seconds,
which is too slow for interactive applications. To overcome this, modern specialized
algorithms [1, 3, 12, 14] generally work in two phases: a preprocessing stage precom-
putes some auxiliary data, which is then used to answer on-line queries. The fastest
algorithms [1, 3] answer queries in microseconds or less after a few minutes of prepro-
cessing on a standard server.

Such queries are certainly fast enough, but since preprocessing must be rerun when-
ever arc weights change, these methods do not support dynamic scenarios such as
real-time traffic. The recent customizable route planning (CRP) algorithm [7, 10] (see
also [8]) offers a different trade-off by working in three phases. The initial prepro-
cessing phase is metric-independent: it takes as input only the graph topology. The
customization phase takes as input the cost function (metric) and the output of the pre-
vious phase. Finally, queries use the outputs of both phases to compute point-to-point
shortest paths. Queries are just fast enough (milliseconds rather than microseconds) for
interactive applications, but a new cost function can be incorporated in mere seconds
(by running only the customization phase), enabling CRP to handle frequent traffic up-
dates. The algorithm is currently used by Bing Maps to compute driving directions.

We investigate how we can use GPUs to accelerate customization even further. Our
approach is to set up all necessary data structures on the GPU during the metric-
independent preprocessing, such that we only need to invoke a few GPU kernels when

� The second author worked on this project while at Microsoft Research.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 728–739, 2014.
c© Springer International Publishing Switzerland 2014

Customizing Driving Directions with GPUs 729

a metric change occurs. This enables a degree of personalization well beyond what
is available in current systems. Most notably, one could define a cost function at query
time and still obtain driving directions in a fraction of a second. At first sight, computing
driving directions is not a natural application for GPUs. Through careful engineering,
however, we can harness the power of GPUs to make customization not only faster, but
also more energy-efficient than CPU-based (even multicore) implementations.

We are not aware of previous work that uses GPUs to process dynamic continen-
tal road networks effectively. PHAST [6] can efficiently answer one-to-all (rather than
point-to-point) queries on a GPU, but only after heavy CPU-based metric-dependent
preprocessing, and is thus not dynamic. Parallelizing a single shortest-path computation
on sparse and high-diameter graphs (such as road networks) is generally hard [16, 18]
even on multicore CPUs. It is even harder on GPUs [5,17,19], since access patterns and
operations are far from regular. We get around this issue by parallelizing more than a
single shortest-path computation.

2 Preliminaries

The standard representation [2] of a road network is as a directed graph G = (V,A),
where each vertex v ∈V represents an intersection (junction) and each arc a ∈ A repre-
sents a (directed) road segment. A cost function (or metric) � : A → N maps each arc
a ∈ A to a positive cost (or length) reflecting the effort to traverse it. We use a more
realistic model that incorporates turn costs and restrictions. The customization phase
takes as input an expanded graph where vertices correspond to the heads of original
arcs, and arcs are the concatenation of an original turn and an original arc. For queries
and to store the graph in main memory, we use a more compact representation [7, 13].

Each original arc in our application is modeled as a collection of static properties,
such as physical length (in meters), road category (freeway, local road, or ferry, for
example), number of lanes, and speed limit. Similarly, each turn has a type (left turn,
right turn, and so on). A metric decoder is a function that maps these properties to the
cost of traversing the arc or making the turn. We could model special cases (such as
traffic) by storing costs explicitly for some exceptional arcs. We assume all costs are
integral and that the length of any shortest path fits in 32 bits.

A path in the graph is a sequence of arcs of the form (v0,v1), (v1,v2), (v2,v3), . . .,
(vk−1,vk). The cost (or length) of a path is the sum of the costs of its arcs and the
turns between them. The point-to-point shortest path problem takes as input the graph
G = (V,A) and two arcs as and at , and returns the shortest (minimum-length) path that
starts at as and ends at at in G.

Customizable Route Planning. The preprocessing phase of CRP starts by computing a
nested L-level partition. A partition of V is a collection of cells such that each vertex
v ∈V belongs to exactly one cell. A nested L-level partition of V is a family of partitions
such that, for any level i < L and each cell C, there exists a cell C′ on level i+ 1 that
contains C; we say that C is a subcell of C′. (For simplicity, define a level-0 partition
consisting of singletons.) CRP uses the PUNCH [9] graph-partitioning algorithm to
generate an L-level partition top-down, partitioning level L first, then (recursively) each

730 D. Delling, M. Kobitzsch, and R.F. Werneck

Fig. 1. A cell C with the overlays of its two subcells (left), its compact graph (center), and the
abstracted subgraph with entry (filled circles), inner (squares), and exit (hollow circles) vertices

cell thus created. For each level l, PUNCH finds cells with no more than Ul (an input
parameter) vertices and minimizes the number of boundary arcs between cells.

The CRP preprocessing phase also sets up the topology of a multilevel overlay
graph [15]. Figure 1 (left) shows a cell C on some level. Every incoming boundary
arc (u,v) (with u �∈ C and v ∈ C) corresponds to an entry vertex for C, and every outgo-
ing boundary arc (v,w) (with v ∈C and w �∈C) defines an exit vertex for C. The overlay
of a cell is the complete bipartite graph with directed shortcuts (black arrows in the
figure) between its entry (filled circles) and exit (hollow circles) vertices. The overlay
of level l is the union of all cell overlays and boundary arcs (gray arrows) on this level.

The CRP customization phase computes the costs of all shortcut arcs on the over-
lay. It computes, for each cell C, the distances between each entry vertex and each exit
vertex: a shortcut (p,q) in C represents the shortest p–q path restricted to C. The algo-
rithm processes cells bottom-up, starting at level one; when processing a level-l cell C,
it works on the (small) overlay graph for level l − 1. One could simply run Dijkstra’s
algorithm from each entry vertex until all exit vertices are scanned [7], but one can do
better (even on CPUs [10]) using Bellman-Ford [4] or contraction [12]. Sections 3 and
4 detail these approaches and show how they can be effectively realized on the GPU.

A point-to-point CRP query runs bidirectional Dijkstra on the overlay graph, but
only entering cells that contain either the source s or the target t.

3 Search-Based Customization

The main subroutine of the CRP customization phase computes arc lengths of bipartite
graphs. The fastest [10] approach based on graph traversal is based on the classical
Bellman-Ford algorithm. To process a cell C at level i, it first builds a compact graph
GC = (VC,AC) consisting of the shortcuts and boundary arcs on level i− 1 that are in
C, but with the head vertices of the internal boundary arcs (i.e., those not on level i)
removed and their incident arcs concatenated. See Figure 1 (center). Let NC and XC be
the sets of entry and exit vertices of C, respectively. The algorithm maintains, for each
vertex in VC, a distance array with |NC| values; the k-th position for the k-th entry vertex
is initialized with zero, and all others with infinity. Then it runs Bellman-Ford as long
as there is an improvement on any of the distance labels. Eventually, the distance labels
of the exit vertices will reflect their distances from each of the entry vertices.

Customizing Driving Directions with GPUs 731

Basic Algorithm. On small diameter graphs, Bellman-Ford works well on GPUs [5],
but we can make it even more efficient for our purposes. We can classify the vertices in
VC into three categories: entry (NC), exit (XC), and inner (IC). Figure 1 (center) shows
that entry vertices have only outgoing arcs, and exit vertices only incoming arcs. More-
over, there are four types of arcs in AC (illustrated in Figure 1 (right), obtained by rear-
ranging Figure 1 (center)). The init arcs A j

C (dashed gray) link entry to inner vertices,
the inner arcs Ai

C (solid black) connect inner vertices to one another, the collection arcs
Ac

C (dashed black) link inner to exit vertices, and the mapping arcs Am
C (solid gray) link

entry to exit vertices. Note that init and mapping arcs are shortcuts, while each inner
or collection arc is the concatenation of a shortcut and a cut arc (all from level i− 1).
When running on GC, Bellman-Ford touches each mapping and init arc only once, at
which point it sets exactly one distance value at its head vertex. We can exploit this.

For a cell C, let Gi
C = (IC,Ai

C) be its inner graph and V c
C = (XC,Ac

C) be its collection
graph. In general, on level i, we compute the costs of shortcuts on level i (to be stored
in a shortcut array Si) from costs of level-i−1 shortcuts and boundary arcs (stored in a
boundary array B). Our algorithm processes a cell in five phases. The mapping phase
copies the costs of the mapping arcs from Si−1 to Si. The subsequent aggregation phase
computes the costs of the inner arcs from Si−1 and B. The third phase (injection) copies
the init arc costs from Si−1 into the distance array (which now has size |NC| · |IC|). The
fourth phase, search, runs Bellman-Ford on the inner graph, stopping when there is no
improvement. The final collection phase first aggregates the costs of the collection arcs
(as in the aggregation phase); then, for each exit vertex v, it iterates over its incoming
collection arcs to compute the costs of the level-i shortcuts ending at v, updating Si. We
propose two GPU implementations of this approach: global and local.

Global Implementation. The global implementation is orchestrated by the CPU and
invokes multiple kernels per level i. We maintain one global distance array representing
the distance values of all inner vertices of all cells on level i.

For each of the first three phases of customization (mapping, aggregation, and in-
jection), we create a single kernel with one thread for each relevant arc. We support
these threads by maintaining auxiliary arrays with the relevant information in global
memory; thread t reads position t from this array. For aggregation, we arrange the data
in global memory such that threads also write their output to consecutive positions.

More precisely, the mapping phase has one thread per mapping arc: it uses the aux-
iliary array to learn the position it must read from (in Si−1) and write to (in Si). During
the aggregation phase, thread t computes the length of inner arc t; the corresponding
auxiliary array contains the positions in Bi−1 and Si−1 the thread must read from. Sim-
ilarly, injection has one thread per init arc, and its auxiliary array stores a position in
Si−1 (for reading) and another in the distance array (for writing).

The search phase uses one thread per distance value. Recall that we have one dis-
tance per pair (inner vertex, entry vertex). A thread processes all incoming arcs for a
fixed inner vertex v and updates a single distance value (for one entry vertex). The cor-
responding index array contains the vertex ID it has to process, as well as an index (a
number from 0 to |NC|−1) indicating which of its distances to update. This information
can be packed into 32 bits. Also, rather than storing the tail ID, an arc stores the position
of the first distance of its tail; the thread then uses the index as an offset. Since global

732 D. Delling, M. Kobitzsch, and R.F. Werneck

synchronization is required, each Bellman-Ford iteration runs as a single kernel. Each
thread writes to a timestamp array (indexed by cell number) whenever it updates some
value; Bellman-Ford stops after an iteration in which this array does not change.

The collection phase is similar to the search phase, but operates on the exit vertices
and is limited to one round. Moreover, it stores its information directly to Si. To make
these accesses more efficient, shortcuts are ordered by tail in global memory.

Note that our implementation has no write-write conflict. During Bellman-Ford, a
thread may read a position that is being updated by another. Since integers are atomic
and values only improve from one round to the next, this does not affect correctness.

Local Implementation. The local implementation invokes one kernel per level and op-
erates block-wise. For simplicity, we first describe our algorithm assuming it processes
one cell per thread block, then generalize it. Since we no longer have one thread for
each value we deal with, we use a small block header to store relevant information the
threads require. It includes the numbers of all types of arcs (mapping, injection, inner,
and collection) and vertices (inner, entry, and exit). It also has pointers to the positions
in global memory where we store the topology of the inner and collection graphs.

The algorithm starts by reserving space in shared memory for the distance values it
will compute (initialized with ∞). The mapping phase is exactly as before. The aggre-
gation phase is also similar, but stores the values in shared memory; it also copies the
inner graph topology to shared memory. Similarly, injection works as before, but writ-
ing into the distance array in shared memory. The search phase now operates entirely in
shared memory and uses the GPU block-based synchronization between Bellman-Ford
rounds. Note that thread t (within the block) can deduct from the block header both the
vertex it has to work on (�t/|IC|) and the entry vertex number (t mod |IC|). The col-
lection phase first copies the collection graph to shared memory (overwriting the inner
graph, which is no longer needed), aggregating the costs of the collection arcs. It then
performs a single Bellman-Ford round and stores the final distances to global memory.
We use global memory as fallback if any of these phases does not fit in shared memory.

We use 16 bits for indexing; if that is not enough for a given cell, we process the
entire level using the global implementation instead. This happens only very rarely, and
can usually be avoided by optimizations we introduce later.

Since we know in advance how much shared memory each cell occupies, we can
often group multiple cells into the same block. We reorder the cells in GPU memory
to ensure their shortcuts appear consecutively. For regularity, we only group cells that
have the same number of entry vertices. The algorithm works exactly as before: it just
sees the input as a bigger, disconnected graph.

Comparing the local and global approaches, the latter is more space-consuming,
since it needs to store additional data for each distance value in global memory. It
is still a good option when there are few cells or when graphs are too large to fit in
shared memory. We thus use the global implementation on levels with fewer than 100
cells (about 6 times the typical number of multi-processors of current GPUs), or when
the number of collection or inner arcs exceeds 65536, the maximum number the local
approach can index with 16 bits.

We have been assuming that we can use a level-i−1 overlay to compute the overlay
of level i, but this is not true for the first level, when we must operate on the underlying

Customizing Driving Directions with GPUs 733

original graph. We can handle this by adapting the routine that aggregates arc costs.
Mapping and init arcs represent an original graph arc, and all other arcs are a concate-
nation of a turn and an original arc. Therefore, for a mapping or init arc, we store its
physical properties (rather than a position in Si−1); for other arcs, we store the turn type
as well. In all cases, we apply the current metric decoder during aggregation.

An important optimization is to use mezzanine levels [10], partition levels that are
used to accelerate customization, but discarded for queries (to save space). Mezzanine
levels help reduce the size of inner graphs (which are expensive to deal with) by turning
more arcs into init, mapping, or collection arcs (which are accessed a constant number
of times). This reduces the number of Bellman-Ford iterations, our main bottleneck.
Mezzanine levels are not free, though: there is some overhead for mapping the extra
levels, but this is very cheap on the GPU (not so on CPUs [10]). Moreover, they increase
both the number of cells and the space consumption on the GPU. Note, however, that we
can overwrite shortcut weights for mezzanine level i as soon as level i+1 is processed.

4 Contraction-Based Customization

For lower levels of the hierarchy, customization is faster [10] if one uses graph con-
traction instead of graph searches (Dijkstra or Bellman-Ford). We first recap how the
CPU-based approach works on the CPU, then explain how it can be adapted to the GPU.

When processing a cell C on the CPU, we can compute the lengths of the short-
est paths (in GC) from its entry vertices to its exit vertices using the shortcut opera-
tion [12]. Shortcutting an inner vertex v means removing it from the graph and, for each
incoming arc (u,v) and outgoing arc (v,w), creating a shortcut arc (u,w) with length
�(u,w) = �(u,v)+ �(v,w). If (u,w) does not yet exist, we insert it; if it does, we update
its length if the new arc is shorter. By repeatedly applying this operation to all inner ver-
tices in GC, one ends up with a bipartite graph with arcs between entry and exit vertices
of C, where arc lengths represent the corresponding distances (missing arcs represent
infinite distances). Any contraction order leads to the same final topology, but a care-
fully chosen (during preprocessing) order based on nested dissections leads to fewer
operations overall and a faster algorithm [10].

The fundamental operation of contraction is to read the costs of two arcs, add them
up, compare the result with the cost of a third arc, and update its cost if needed. Instead
of using a graph during customization, Delling and Werneck [10] propose simulating
the contraction process during preprocessing to create an instruction array representing
these fundamental operations (microinstructions) compactly as triples (a,b,c), where a
and b are the positions to be read and c the position to write to. These positions refer to
a memory array M and correspond to arc costs. Each cell C has its own instruction and
memory arrays. Moreover, they use an arc instruction array to initialize M.

Building the GPU Microinstructions. Microinstructions provide a natural starting
point for implementing contraction-based customization on the GPU. Although the mi-
croinstruction array can be fairly large, it is only read once (and sequentially), so we
keep it in global memory. Since M is much smaller and has a less rigid access pattern
(each position can be accessed multiple times), we keep it in shared memory. For opti-
mal performance, however, we must address several issues: decreasing the space used

734 D. Delling, M. Kobitzsch, and R.F. Werneck

by microinstructions (for fewer accesses to slower memory), reducing the memory ar-
ray (to keep multiple cells in shared memory at once), and parallelization within a cell
(for efficiency on GPU). We do so by preprocessing and enriching the microinstructions
before copying them to the GPU (the arc instructions can be copied essentially as is).

First, we make the microinstructions more compact. Since each entry in the memory
array M takes 32 bits of shared memory, it can have at most 12 288 positions in the
GPUs we test. These can be addressed with 14 bits, or 42 bits per triple in the instruction
array. For most cells, however, 32 bits are enough. To achieve this, we first ensure that
a< b in each instruction triple (a,b,c) (we swap a and b otherwise), then store the triple
(a,b− a,c− b) using 14, 8, and 9 bits, respectively (we reserve the 32nd bit for later).
This means a can be any position in shared memory, b can refer to positions a+ 1 to
a+ 256, and c can refer to b− 256 to b+ 255. If a cell has at least one instruction that
cannot use this compact representation (with b too far from a or c too far from b), we
use a full 48-bit representation for all of its microinstructions.

To parallelize within a cell, we group independent instructions by layers. Note that
two instructions in a cell are independent if they do not write to the same memory
position. We create these layers by working in rounds, from latest to earliest, greedily
assigning instructions to the latest possible layer (after accounting for the dependencies
between them); we then apply a postprocessing step to make the layers more balanced.

Next, we reduce the memory array. Once a shortcut is eliminated by the contraction
routine, the memory position that stores its cost could be reused for another shortcut,
thus saving on shared memory. We identify such reusage opportunities during prepro-
cessing as follows. We process the layered microinstructions from earliest to latest. We
interpret each entry in a triple (a,b,c) as a shortcut (rather than positions in M, which
is what we are trying to determine). We keep counters of pending reads and writes for
each shortcut and a candidate pool of free memory positions (initially, all but those used
by the arc instructions); when a read counter becomes zero for some shortcut, we add
its position to the pool for potential reuse in future layers. When processing an instruc-
tion (a,b,c) that writes to shortcut c for the first time, we assign c to the free position
that is closest to b; in addition, we use the 32nd bit (mentioned above) to mark this in-
struction, indicating that the GPU must simply write to the target position (ignoring the
value already there) when executing this instruction. As an optimization, if an instruc-
tion (a,b,c) performs the last read from a (or b) and the first to c, we can immediately
assign c to a’s (or b’s) position. If after running this basic algorithm the new instruc-
tions still cannot be represented in compact form (32 bits), we perturb the positions of
the original arcs and retry; this is cheap and helps in some cases. Since the final short-
cuts do not necessarily have consecutive positions in M, we use a map to translate them
to the corresponding (consecutive) positions in S1, the shortcut array on level 1. Note
that we use microinstructions only to compute the shortcuts on the lowest level.

Finally, for better block utilization, we greedily pack cells as long as their combined
memory arrays fit in shared memory. For better memory access patterns, we do not mix
compact and full cells. We prefer to group cells with the same number of layers within
a block, but we may combine blocks with different depth if needed. When we finally
store the instruction array on the GPU, we reorder it to reflect the block assignments:

Customizing Driving Directions with GPUs 735

instructions within the same block are sorted by layer (across cells). Since the GPU
must synchronize between layers, we store layer sizes in the block header.

GPU Execution. With the data structures set up, we compute S1 on the GPU as follows.
We invoke one kernel for the full computation, since synchronization is only needed
within a block. On each block, we first run the arc instructions. The block header stores
the number of arc instructions in each of its cells; each thread can use this information
(and its own ID) to determine where in shared memory to store the result of the arc
instruction it is responsible for. We then execute the microinstructions, layer by layer,
also with one thread per instruction. Finally, we map the costs of the output shortcuts to
S1, using one thread per value. For each block, we store its first position in S1, allowing
each thread to determine (using its own ID) where to write to.

5 Putting Everything Together

During the metric-independent phase of CRP, we set up all necessary data structures on
the GPU, including arc instructions to aggregate the costs of the boundary arcs.

The work flow of the customization phase is as follows. We start by transferring
the current metric decoder (less than a kilobyte) from main to GPU memory. Then we
invoke two streams on the GPU, one computing the lowest level (using either Bellman-
Ford or microinstrutions), and one setting the costs of the boundary arcs of the overlay
graph. When both are done, one stream processes all remaining levels, while another
asynchronously copies shortcut levels to main memory as soon as they are ready. This
hides the time needed for the GPU-CPU data transfer almost completely.

Our implementation can use multiple GPUs in a single machine simply by allocating
all top-level cells (and their subcells) among them so as to balance the (estimated) work.
This approach requires no GPU to GPU communication during customization.

6 Experiments

We implemented all algorithms in C++ and CUDA, and compiled them with Visual
C++ 2012 and CUDA 5.5. We ran most tests on a desktop computer running Windows
8.1. It has an Intel Core-i7 4770 (4 cores, 8 threads, 3.4 GHz, 4x64 KB L1, 4x256 KB
L2, and 8 MB L3 cache) and 32 GiB of 1600-DDR3 RAM. Moreover, it has an ASUS
NVIDIA GTX Titan with 6144 MiB of DDR5 RAM (6 GHz) and 14 multiprocessing
units, each with 192 cores (2688 cores in total). The GPU has a normal clock rate of
837 MHz, but operates at 1 GHz as long as it stays cool enough (which was the case for
all of our experiments).

Our focus is on the overall customization time, the total time from a metric change
to the point we can compute driving directions (on the CPU). Thus, in our GPU setting,
we include the time needed for data transfer (copying the metric decoder to the GPU
and the shortcut costs back). All GPU times are averages over 1000 executions.

Our default input represents the road network of (Western) Europe and was made
available by PTV AG for the 9th DIMACS Implementation Challenge [11]. This graph

736 D. Delling, M. Kobitzsch, and R.F. Werneck

Table 1. Impact of mezzanine levels on customization done by local and global Bellman-Ford

LOCAL BELLMAN-FORD GLOBAL BELLMAN-FORD

TIME ON LEVEL [MS] TOTAL TIME ON LEVEL [MS] TOTAL

Z 0 1 2 3 4 5 [ms] [MiB] 0 1 2 3 4 5 [ms] [MiB]
0 73.8 37.9 23.0 25.5 40.7 — — 2212 157.6 82.1 56.9 45.8 43.7 40.4 477 3679
1 52.2 26.5 14.4 12.6 16.7 65.8 244 2816 94.9 48.9 28.6 25.9 25.6 22.8 295 4363
2 51.9 26.8 14.6 11.3 16.5 50.7 228 3412 99.3 47.9 26.1 23.0 23.7 21.3 289 5559
3 56.0 27.2 14.0 10.6 12.4 38.5 212 3911 114.9 47.7 25.5 20.4 20.0 18.8 297 5913
4 61.7 28.7 15.3 10.6 13.9 42.3 224 4342 133.1 52.0 44.7 21.3 21.2 19.7 344 7318

has |V | = 18 · 106 vertices, |A| = 42 · 106 arcs, and travel times as the cost function.
As in previous work [7], we augment it by U-turn costs of 100 s (other turns are free).
Our default CRP setup has 5 levels, with maximum cell sizes of U1 = 28, U2 = 211,
U3 = 214, U4 = 217, and U5 = 220; it requires about 72 MiB to store all shortcut costs.

Table 1 evaluates the global (GBF) and local (LBF) Bellman-Ford implementations,
as well as how mezzanine levels affect them. As in previous work [7], we always keep
two phantom levels (these are fixed mezzanine levels) of size U−1 = 4 and U0 = 32. We
always use LBF to compute the lowest level (cell size 4); this takes about 50 ms. We then
vary the number of mezzanine levels (Z) between two consecutive levels; maximum
mezzanine cell sizes are set so that their ratios across levels remain roughly constant.
The table reports the times spent on each level (starting from the level below) for 0 ≤
Z ≤ 4. A “—” entry means that LBF could not be executed because at least one cell has
more than 65 535 inner arcs (see Section 3). We also report the total customization time
(including all mezzanine levels) and the space consumption on the GPU.

We observe that mezzanine levels reduce customization times in general. One mez-
zanine level is enough on lower levels, but we can use up to three on higher levels, since
more mezzanine levels can make more inner graphs fit into shared memory. Moreover,
LBF is faster than GBF for all levels but the highest one, on which the number of cells
is small and LBF is unbalanced. GBF consumes more space, mostly due to the distance
array and thread data we need to store in global memory. For the rest of the paper, our
default setting is to use Z = 1 up to level 1 and Z = 3 for higher levels; moreover, we use
GBF for levels with fewer than 100 cells, and LBF otherwise. With this combination,
customization takes 182.0 ms and uses 3034 MiB of GPU memory.

With this default setup, we now evaluate the effect of microinstructions. Figure 2
(left) reports the (relative) increase in customization time and GPU space when we use
microinstructions up to a certain (possibly mezzanine) level, and Bellman-Ford after-
wards. Using microinstructions up to cell size 32 reduces customization times by up to
20% (to 150.4 ms), but increases the overall space consumption by 25% (to 3792 MiB).
Interestingly, using microinstructions for bigger or smaller cells does not help: many
bigger cells cannot use instructions packed into 32 bits, and for smaller cells the over-
head for initializing the memory array by arc instructions is too high. For the remaining
experiments, we use microinstructions to process cells of size up to 32.

Figure 2 (right) reports the speedup when we vary the core clock rate of the GTX
Titan between 900 and 1200 MHz (recall that 1000 is the default) and the memory clock
rate between 5400 and 7200 MHz (the default is 6000). We observed no data errors

Customizing Driving Directions with GPUs 737

maximum size of contracted cells

in
cr

ea
se

 [%
]

0 50 100 150 200 250

−2
0

0
20

40
60

● ●

● ●
●

+

+
+

+

+
+
●

space
time

overclocking [%]

cu
st

om
iz

at
io

n
sp

ee
du

p

90 95 100 105 110 115 120

0.
90

1.
00

1.
10

●
●

●
●

+

+

+

++
●

core clock
memory clock

Fig. 2. Left: Impact of microinstructions on GPU space consumption and customization times for
varying cell sizes. Right: Impact of clock rates on customization times.

when overclocking in these ranges. The results indicate we are computation bound:
increasing the core clock by 20% accelerates customization by almost 17%, whereas
the memory clock rate has very little impact on the overall performance.

Table 2 compares our novel GPU implementation of CRP with the previous (highly
tuned) CPU implementation [10], which uses microinstructions up to cell sizes of 256.
We test various machines and GPU setups: M1-4 is our default machine (Core i7 4770),
M2-12 has two 6-core Intel Xeon X5680 (3.33 GHz, 6x64 KB L1, 6x256 KB L2, and
12 MB shared L3 cache) with 96 GiB of DDR3-1333 RAM, and M2-16 has two 8-core
Intel Xeon E5-2690 (2.9 GHz, 8x64 KB L1, 8x256 KB L2, and 20 MB shared L3 cache)
with 384 GiB of DDR-1066 RAM. (We turn hyperthreading off for M2-12 and M2-16
because it does not help performance in our setting.) Finally, we test different GPU
setups in M1-4: our default Titan, the Titan with core clock rate overclocked by 20%,
two EVGA GTX 780 Ti OC (15 multiprocessors, 2880 CUDA cores, 1.2 GHz core, and
3 GiB of 7 GHz memory), as well as four GTX 780 Ti. (Note that a single GTX 780 Ti
does not have enough memory for our default setup.) Besides customization times, we
report the number of CPU threads used (t), the space occupied by all data structures in
main and GPU memory, the (system-wide) power usage during customization, and the
resulting average energy consumption for a single customization.

The GPU implementation always outperforms the CPU implementation. Using a
single GPU, our algorithm is about 20 times faster than a sequential CPU execution.

Table 2. Key figures for various hardware setups

RATE [GHZ] MEM [MIB] TIME POW ENER.
machine t GPU core mem main GPU [ms] [W] [J]
M1-4 1 Titan 1.0 6.0 484 3791 150.4 248 37.3
M1-4 1 Titan 1.2 6.0 484 3791 129.3 280 36.2
M1-4 2 2x780 Ti 1.2 7.0 484 3800 67.3 574 38.6
M1-4 4 4x780 Ti 1.2 7.0 484 3821 35.8 1045 37.4
M1-4 1 – – – 3119 – 2654.0 54 143.3
M1-4 8 – – – 3119 – 645.0 94 60.6
M2-12 12 – – – 3119 – 371.0 332 123.2
M2-16 16 – – – 3119 – 346.0 401 141.5

738 D. Delling, M. Kobitzsch, and R.F. Werneck

Table 3. Performance of CRP with GPU customization on other inputs

DATA STRUCT. CUSTOM QUERIES

|V | cost setup space[MiB] time space nmb. dist path
source input [×106] func [s] main GPU [ms] [MiB] scans [ms] [ms]
PTV Europe 18.0 distance 1736 484 3821 36.3 72.3 2993 1.30 5.95

Europe 18.0 time 1736 484 3821 35.8 72.3 3050 1.17 3.17
TIGER US 23.9 distance 2005 682 6939 57.9 113.1 3149 1.30 8.05

US 23.9 time 2005 682 6939 56.6 113.1 3006 1.14 5.47
Bing N. America 30.3 default 2767 908 8590 68.4 139.1 3387 1.12 3.98

Europe 47.9 default 3618 1128 6707 62.8 124.1 3661 1.35 4.03

Increasing the number of GPUs linearly decreases customization times; with 4 GPUs,
we are still 10 times faster than the best CPU setup (on 16 cores). Moreover, GPU
customization is 2 to 3 times more energy-efficient, which is consistent with previous
observations on related problems [6]. We also note that, since we store microinstruc-
tions on the GPU, the memory footprint on the CPU is reduced significantly.

Finally, we test more benchmark instances. Besides PTV Europe, we use TIGER
USA from the 9th DIMACS Implementation Challenge, both with two cost functions:
driving times (enriched by 100s U-turns) and distances. We also evaluate instances from
Bing Maps, which build on Navteq data and include actual turn costs and restrictions;
the proprietary “default” metric correlates well with driving times. We use the 4xGTX
780 Ti setup. Table 3 reports, besides customization times and CPU/GPU space con-
sumption, the overall time spent (using all CPU cores) in the metric-independent phase
(partitioning, microinstruction generation, and setting up the GPU data structures). For
reference, it also reports the average performance for 10 000 random queries, given by
the number of vertices scanned and the times to find the distance and a full description
of the path (including the distance). Note that we do not cache path unpacking [10],
thus capturing the average time to execute the first query after a metric change.

We can apply a metric change on every input in less than 70 ms, which is 10–12 times
faster than on all 12 cores of M2-12 [10]. Preprocessing takes an hour or less, which
is fast enough to incorporate topology changes in a timely manner. About 90% of that
time is spent partitioning the graph; setting up our GPU data structures only takes a few
minutes. On our Bing instances, computing (on the CPU) the first path after a metric
changes takes about 4 ms, still considerably less time than customization.

7 Final Remarks

We have shown how to use GPUs to quickly incorporate a new cost function when com-
puting shortest path on road networks. Although computing shortest paths on arbitrary
graphs is not a natural fit for GPUs (given its irregular nature), we can still take ad-
vantage of their architecture by carefully exploiting various features of our application.
Since we work on a graph with fixed topology, we use preprocessing to carefully plan
the computation and prepare GPU-friendly data structures. Instead of operating on the
entire graph at once, we decompose it into small graphs (cells) with low diameter, which

Customizing Driving Directions with GPUs 739

usually fit in shared memory and can be processed in parallel. Finally, cost functions
are described compactly, saving on communication overhead.

References

1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for
shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35.
Springer, Heidelberg (2012)

2. Bast, H., Delling, D., Goldberg, A.V., Müller–Hannemann, M., Pajor, T., Sanders, P., Wagner,
D., Werneck, R.F.: Route planning in transportation networks. MSR-TR-2014-4 (2014)

3. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with transit nodes.
Science 316(5824), 566 (2007)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press
(2009)

5. Davidson, A.A., Baxter, S., Garland, M., Owens, J.D.: Work-efficient parallel GPU methods
for single-source shortest paths. In: IPDPS. IEEE (2014)

6. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-accelerated
shortest path trees. Journal of Parallel and Distributed Computing 73(7), 940–952 (2013)

7. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning. In:
Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer,
Heidelberg (2011)

8. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning in road
networks (2013) (submitted for publication)

9. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural
cuts. In: IPDPS, pp. 1135–1146. IEEE (2011)

10. Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci, V., Deme-
trescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 30–42.
Springer, Heidelberg (2013)

11. Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Problem: Ninth
DIMACS Implementation Challenge, DIMACS Book 74. AMS (2009)

12. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks
using contraction hierarchies. Transportation Science 46(3), 388–404 (2012)

13. Geisberger, R., Vetter, C.: Efficient routing in road networks with turn costs. In: Pardalos,
P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 100–111. Springer, Heidelberg
(2011)

14. Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast point-to-point shortest path com-
putations with arc-flags. In: Demetrescu, et al. (eds.) [11], pp. 41–72

15. Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for shortest-path
queries. ACM Journal of Experimental Algorithmics 13(2.5), 1–26 (2008)

16. Madduri, K., Bader, D.A., Berry, J.W., Crobak, J.R.: Parallel shortest path algorithms for
solving large-scale instances. In: Demetrescu, et al. (eds.) [11], pp. 249–290

17. Martı́n, P.J., Torres, R., Gavilanes, A.: CUDA solutions for the SSSP problem. In: Allen, G.,
Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009,
Part I. LNCS, vol. 5544, pp. 904–913. Springer, Heidelberg (2009)

18. Meyer, U., Sanders, P.: Δ -stepping: A parallelizable shortest path algorithm. Journal of Al-
gorithms 49(1), 114–152 (2003)

19. Ortega-Arranz, H., Torres, Y., Llanos, D., Gonzalez-Escribano, A.: A new GPU-based ap-
proach to the shortest path problem. In: HPCS, pp. 505–511 (2013)

20. Sommer, C.: Shortest-path queries in static networks. ACM Comp. Surveys 46(4) (2014)

GPU Accelerated Range Trees with Applications

Manoj Kumar Maramreddy and Kishore Kothapalli

International Institute of Information Technology, Hyderabad,
Gachibowli, Hyderabad, India, 500 032

Abstract. Range searching is a primal problem in computational ge-
ometry with applications to database systems, mobile computing, geo-
graphical information systems, and the like. Defined simply, the problem
is to preprocess a given a set of points in a d-dimensional space so that
the points that lie inside an orthogonal query rectangle can be efficiently
reported.

Many practical applications of range trees require one to process a
massive amount of points and a massive number of queries. In this con-
text, we propose an efficient parallel implementation of range trees on
manycore architectures such as GPUs. We extend our implementation to
query processing. While queries can be batched together to exploit inter-
query parallelism, we also utilize intra-query parallelism. This inter- and
intra-query parallelism greatly reduces the per query latency thereby in-
creasing the throughput. On an input of 1 M points in a 2-dimensional
space, our implementation on a single Nvidia GTX 580 GPU for con-
structing a range tree shows an improvement of 12X over a 12-threaded
CPU implementation. We also achieve an average throughput of 10 M
queries per second for answering 4 M queries on a range tree containing
1 M points on a Nvidia GTX 580 GPU. We extend our implementation
to an application where we seek to report the set of maximal points in a
given orthogonal query rectangle.

1 Introduction

Manycore accelerators such as GPUs have occupied a prominent place in the the-
ory and practice of parallel computing. This is aided in part by their ubiquitous
nature, low cost, and importantly compute power. Several programming models
and utility libraries such as CUDA [12], Thrust (See http://thrust.github.io/),
and OpenAcc (See http://www.openacc-standard.org/) are being currently sup-
ported for writing general purpose programs on GPUs. It is possible to arrive
at very efficient implementations of general purpose computations using such
programming support [11,2].

On the other hand, there is very little work on how to efficiently build and
operate on data structures on architectures such as GPUs. Hierarchical data
structures such as trees and multi-dimensional data structures render the nature
of the problem more difficult. In fact, there are very few such reported instances
in the literature. Some early work in this direction by Lefohn et al. [10] proposes

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 740–751, 2014.
c© Springer International Publishing Switzerland 2014

GPU Accelerated Range Trees with Applications 741

a template library that can be used to build data structures and also identify
common themes across existing GPU based data structures. It is to be noted
that very few of the existing data structures deal with hierarchical ones [3,6].

We posit that it is possible to build hierarchical data structures on GPUs
by introducing novel techniques that improve the way the data structures are
built and accessed. Given the plethora of programming support available for
programming GPUs, we show that it is also possible to build such data structures
with a minimal programming effort. Our work indicates that one should make
use of available primitives such as sort, merge, and scan.

As a case-study, we consider data structures for multi-dimensional datasets
such as the range tree. A d-dimensional range tree is a data structure that
can store a set of points in a d-dimensional space so that operations such as
searching on d-dimensional datasets is efficiently supported. A d-dimensional
range tree for storing n points requires a space of O(n logd−1 n) and involves
creating a nested set of d trees. In a sequential setting, this construction can
be done efficiently in time O(n logd−1 n), and the data structure can be stored
using pointers. However, creating and accessing pointer based data structures
is difficult in many-threaded settings. Hence, one has to identify alternate ways
to represent the data structure while keeping access to the data structure as
efficient as possible. Fortunately, the nested trees that arise in the range tree are
all full binary trees, i.e., for n nodes where n is a power of 2, these trees have
exactly logn levels. We use this fact, along with additional novel considerations
to represent a d-dimensional range tree. For building a 2-dimensional range tree
on an input dataset of 220 points we achieve a speed up of 12X compared to the
12-threaded CPU implementation.

We also show that accessing the range tree in our representation is also efficient
by considering two canonical applications. One of the prominent applications of
range trees is range searching. In range searching, one is interested in reporting
the points that lie in a given orthogonal query rectangle. An orthogonal query
rectangle is a rectangle whose sides are parallel to the axes of the d-dimensional
space. Such a query finds applications in several areas such as database systems,
geographical information systems, mobile computing, CAD tools and the like
[1]. In this case, it is easy to notice that there is natural inter-query parallelism.
However, we also modify the querying algorithm to exploit also intra-query par-
allelism. The combination of the two help us in increasing the query throughput.

The second application we consider is that of reporting the set of maximal
points that lie in a given orthogonal query rectangle. A point P = (x1, x2, · · · , xd)
is said to be maximal if no point P ′ = (x′

1, x
′
2, · · ·x′

d) exists with xi < x′
i for

1 ≤ i ≤ d. The set of maximal points, also called as skyline points offer a good
summarization of the points. For this problem also, we exploit intra-query par-
allelism and by introducing a standard primitive called the All-Nearest-Larger-
Values (ANLV) [7]. This primitive that we develop as part of this work can be of
independent interest to the parallel computing community.

742 M.K. Maramreddy and K. Kothapalli

For both of our applications, on trees with 210 points and 1 M queries, our im-
plementation on an NVidia GTX 580 GPU achieves around 7x more throughput
compared to a 12-threaded implementation on an Intel i7 X980 CPU.

1.1 Related Work

Efficient constructions of hierarchical data structures on modern architectures is
an emerging research theme. Construction of B+ trees is studied in [5], and of
KD-trees in [6]. Kim et al [9] had proposed solutions for implementing R-trees on
GPUs. They propose solutions to avoid irregular memory access and improved
efficiency. A Massively Parallel Three-phase Scanning (MPTS) algorithm for R-
tree traversal for processing multi-dimensional range queries is proposed in [9].
Both of the works focuses on R-tree search algorithms, but not on constructing
the trees in parallel. To the best of our knowledge this is the first attempt to
implement range trees on GPUs. We provide solutions for both efficient con-
struction and accessing of range trees on GPUs.

2 Preliminaries

For ease of exposition, we describe the 2-dimensional range tree in the following.
In this case, we assume that each point has a x-coordinate and a y-coordinate.
In a 2-dimensional range tree, we start with a primary tree that is a balanced
binary search tree T built on x-coordinate of points in P . Each internal node in
the primary tree can be the median of the canonical subset of v. Further, every
node v in T contains a pointer to a secondary tree that is a binary search tree on
y-coordinate of the canonical subset of v. The space required for a 2-dimensional
range tree is O(n log n). An example is shown in Figure 1. The time required for
constructing a 2-dimensional range tree is O(n log n). Points stored in the leaves
of a subtree rooted at an internal node v are called the canonical subset of v and
v is called the canonical node of the subset.

(0,1) (1,0) (2,6) (3,5) (4,2) (5,3) (6,7) (7,4)

0 2 4 7

40

2

(4,2) (5,3)

2

2

Primary tree Secondary tree at an internal node

(7,4) (6,7)

4

Fig. 1. A 2-dimensional range tree. Each node in the primary tree has a corresponding
secondary tree.

GPU Accelerated Range Trees with Applications 743

2.1 Range Querying

We first describe a 1-dimensional range query. To report the points in a 1-
dimensional query [a, b] we proceed as follows. We first search for a and b in the
1-dimensional range tree. Let u and v be the leaves where this search ends. The
points in the interval [a, b] are the points stored in the leaves in between u and
v and possibly the points stored at u and v. Let rsplit be the node where the
search paths to u and v separate. Starting from rsplit we then follow the search
path to u. At each node where the path goes left we report all the leaves in the
right subtree. Similarly, we follow the path to v and report all the points in the
left subtree when the path goes right.

For a 2-dimensional query [a, b]× [c, d], we first perform a 1-dimensional query
[a, b] on primary tree. At each node where the search path to u goes left we do
a 1-dimensional range query on y-coordinate in the secondary tree associated at
the right child of the node. Similarly, at each node where the search path to v
goes right we do a 1-dimensional range query on y-coordinate in the secondary
tree associated at the left child of the node.

3 A Parallel Range Tree

In this section we describe our new implementation of a multi-dimensional range
tree. We argue that our new representation is efficient on GPU architectures
in the way that it is represented and accessed in parallel. In a standard two-
dimensional range tree (cf. Section 2), every node in the primary and secondary
tree contains left and right child pointers. Porting this representation of range
tree directly on to the GPU platform is not efficient due to the below mentioned
reasons.

– Accessing multiple levels of pointer indirection will lead to massively in-
creased memory access latency and will break the little cache coherency
available on the GPU.

– The irregular tree traversals cause thread divergence when implemented on
GPUs. Also, one needs to regularize the work done by each thread in order
to achieve maximum efficiency.

– Copying a complex structure such as range trees, consisting of nested point-
ers, on to GPU requires a deep copy functionality for which there is no
available API. Copying back the same structure poses the same problem in
reverse.

For addressing the above mentioned challenges, we use an array based rep-
resentation of complete range tree. We flatten-out the hierarchical structure of
the range tree into a structure containing two 1-dimensional arrays, one storing
x-coordinates and other storing y-coordinates. We first store the primary tree in
an array, followed by the secondary trees from bottom up approach. We label
the nodes in the tree in inorder starting from ’0’. Rather than storing inorder
traversal of the complete tree, we only store the leaves of primary and secondary
trees. By using bitwise representation of the nodes it is possible to dynamically

744 M.K. Maramreddy and K. Kothapalli

Table 1. Conversion formulas between array representation and standard range tree

converting array index i to corresponding index j
of the leaf in primary tree

j = 2× i + 1

converting internal node(range tree) index i to ar-
ray index j

j = i/2 − 1

computing offset of secondary tree at node i of
primary tree

h = log2(i&− i)

offset = h× n + i× 2(h+1) × (i&− i)

compute the offset of secondary trees and corresponding internal nodes of the
trees. Formula for converting indices from array representation to virtual range
tree is given in table 1. An example of this representation is given in Figure 2.
The point set used is same as in Figure 1.

This simple structure also helps in building the range tree using existing
primitives such as sorting and merging. The representation not only helps us
in regularizing the work done by threads while processing the queries but also
avoids the increased memory access latency that might arise due to multiple
levels of pointer indirection. We use the bit representation to exploit intra-query
parallelism as explained in Section 4. Further, our representation requires the
same space asymptotically as the standard representation. Finally, though we
perform our experiments in a two dimensional space, the same representation
can be extended to higher dimensions.

 1 0 3 2 4 5 7 6 1 0 3 2 4 5 7 6 1 0 4 5 7 3 2 6
 0 1 5 6 2 3 4 7 0 1 5 6 2 3 4 7 0 1 2 3 4 5 6 7

 1 0 3 2 4 5 7 6
 0 1 5 6 2 3 4 7

x:
y:

x:
y:

Point set, P = {(0,1), (1,0), (2,6), (3,5), (4,2), (5,3), (6,7), (7,4)}

} Primary tree

}
Secondary
trees

 0 1 2 3 4 5 6 7

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fig. 2. In the new representation only leaves of each tree (primary & secondary) are
stored in an array. The trees are stored contiguously. The offset of secondary trees and
the corresponding internal nodes can be dynamically computed.

3.1 Implementation Details

Our array based representation of range trees helps us in using existing prim-
itives for construction. In the following, we show the steps for constructing a
2-dimensional range tree.

1. Sort the points on their x-coordinates. Sorting is a well studied problem on
GPUs. For this purpose, we use sort by key implementation provided by
Thrust library.

GPU Accelerated Range Trees with Applications 745

2. Merge the points recursively on their y-coordinates and store the merged re-
sult in each iteration. The merged result at each iteration in fact represents
secondary trees from bottom to top. Though thrust provides a merge imple-
mentation, we use a more recent merge sort implementation (kernelMerge)
provided by Baxter (See http://nvlabs.github.io/moderngpu/).

Algorithm 1. BUILDRANGETREE(P)

1: Input. Set of points in a two dimensional plane P := {p1, p2, ..., pn}.
2: Output. A 2d Range tree T .
3: T [1...n] ← sort by key(P)
4: numPasses ← log(n)
5: for pass = 0, numPasses do
6: coop = 2(pass+1)

7: source = T [n× pass...n× (pass+ 1)]
8: dest = T [n× (pass+ 1) + 1...n × (pass+ 1) + n]
9: kernelMerge(source, dest, coop)

3.2 Results and Performance Analysis

Platform: All our experiments are performed on a machine with Intel core
i7 X980 CPU and Nvidia Geforce GTX 580 GPU. The Intel core i7 X980 is a
3.33-GHz six-core CPU with Intel’s hyper-threading technology. It can work on
12 streams at once. It has a 12MB L3 cache. GTX 580 has 512 CUDA cores.
For all our experiments we used OpenMP specification 3.0 and the CUDA 5.0
programming model for programming multi-core CPUs and Nvidia many-core
GPUs respectively.

Dataset: For input data we have randomly generated points from a uniform dis-
tribution. We perform our experiments on data sets with small trees containing
few thousand points to large trees with over 1 M points.

Our simplified structure of range tree enables us to achieve faster construction
times using existing primitives such as sorting and merging. With minimal pro-
graming effort we are able to achieve faster construction times. Figure 3 shows
the speed up of constructing a range tree on GPU over a multi-core CPU imple-
mentation. It is evident from the graph that our implementation can easily scale
to huge datasets. For constructing a range tree on a dataset with 1 M points,
we achieve a speed up of 12X on GPU over 12-threaded CPU implementation.

4 Application I: Range Searching

The problem of range searching is to report the set of points that lie in a given
orthogonal query rectangle. An orthogonal query rectangle has its sides paral-
lel to the axes of the underlying space. An orthogonal rectangle can then be

746 M.K. Maramreddy and K. Kothapalli

 5

 10

 15

 20

 25

 12 14 16 18 20 22

Sp
ee

d
up

log(#points)

Fig. 3. Speedup of building range tree on GPU vs 12-threaded CPU implementation

represented by considering the cross product of ranges in each dimension. In
particular, in a 2-dimensional setting, the rectangle [a, b] × [c, d] refers to the
rectangle consisting of points whose x-coordinates are in [a, b] and y-coordinates
are in [c, d]. Given a range tree for n points in a 2-dimensional space and a range
query q of the form [a, b] × [c, d], the algorithm to process the query has the
following three main steps (cf. Section 2).

1. Finds the nodes that are closest to a and b in the primary tree
2. Find the canonical nodes in the primary tree, and
3. Find the result by repeating the above steps in the secondary tree for each

canonical node of the primary tree
4. Transfer results to host CPU

In the following, we show how each of the above steps can be also performed
in parallel for a given query. This helps us extract intra-query parallelism apart
from the standard inter-query parallelism1.

1. Binary Search on Primary tree: In the first phase, we binary search for
a and b in the primary tree. We assign a search key per thread. In order to
avoid conditional branching of threads we store our sorted array in level-order
rather than in-order. This technique was used in [11] to avoid conditional
branching of threads.

Let u and v are the indices of the nodes where the binary search for a and
b in the primary tree ends. The split node rsplit is computed by taking xor

of u and v. The number of canonical nodes can be obtained by counting the
number of set bits. The result of the binary search and the split nodes are
saved and passed as input to Phase-2.

2. Find canonical nodes: In the second phase, we compute the indices of the
canonical nodes in parallel. While the standard range search implementation
is bounded by sequential search for canonical nodes, we present a method to
find all the canonical nodes in parallel. In order to get the total number of

1 Detailed pseudocode is available at
http://cstar.iiit.ac.in/~kkishore/rangetree.pdf

http://cstar. iiit.ac.in/~kkishore/rangetree.pdf

GPU Accelerated Range Trees with Applications 747

canonical nodes for the batch of queries we perform a parallel reduce on the
number of canonical nodes for each query obtained from Phase-I.

The inorder labeling of the nodes in the tree provides information about
the path traced from root to that node. A ′0′ bit at ith position from right
indicates the path has traversed left and a ′1′ bit indicates the path has
traversed right. Using this path information and the corresponding split node
obtained in Phase-I, we give a technique to compute the canonical nodes in
parallel.

In the path from split node to u, a ′0′ bit indicates the presence of a
canonical node. Similarly, for the right path to v a ′1′ bit indicates the
presence of a canonical node.

3. Binary Search on Secondary tree: For every canonical node found in
Phase-2, we perform binary search for c and d in the corresponding secondary
tree. The output of the binary search for each canonical node is stored.

4. Reporting results: The number of output points generated per query can
be of the order of O(n). Copying back such huge data to the host CPU con-
sumes a significant amount of time. We alleviate this problem substantially
by reporting only the left and right indices of our search in secondary trees.
A sequential scan of these ranges on the host would output the points on
the host side. This greatly reduces the amount of data to be transfered to
O(log n) per query. In order to further hide the copy time we process our
queries in batches so that the copy time of output of the ith batch can be
completely hidden by computation of the (i− 1)th batch.

4.1 Performance Analysis

Dataset: To generate the queries, we study three different datasets. These
datasets are dictated by the number of canonical nodes that each query re-
sults in. Since the number of canonical nodes in each query directly impacts the
work done in Phase II and III of our querying algorithm, this study helps us
understand the efficacy of our implementation. It is easy to note that in a range
tree containing n points, the average number of canonical nodes in a query whose
range is generated uniformly at random is O(log n/2). Based on this average, we
study the following query datasets.

1. Short-range Queries: We define a query as a short-range query if the
number of canonical nodes for the query is between zero and logn/2.

2. Medium-range Queries: A medium-ranged query has canonical nodes
between logn/2 and 3 logn/4.

3. Long-range Queries: Any query with canonical nodes greater than
3 log(n)/4 is defined as a long-range query.

Throughput: In our experiments, we consider trees with 210 points as small trees
and trees with 220 points as large trees. The throughput graph for the three
datasets is show in Figure 4. We see from Figure 4 that our algorithm scales

748 M.K. Maramreddy and K. Kothapalli

 0

 50

 100

 150

 200

 10 12 14 16 18 20 22 24

th
ro

u
gh

p
u

t(
in

 m
ill

io
n

 q
u

er
ie

s
p

er
 s

ec
)

log(#queries)

throughput GPU - short range queries
throughput GPU - medium range queries

throughput GPU - large range queries
throughput CPU - small range queries

throughput CPU - medium range queries
throughput CPU - large range queries

(a) Throughput graph on Small trees

 0

 5

 10

 15

 20

 25

 30

 10 12 14 16 18 20 22 24

th
ro

u
gh

p
u

t(
in

 m
ill

io
n

 q
u

er
ie

s
p

er
 s

ec
)

log(#queries)

throughput GPU - short range queries
throughput GPU - medium range queries

throughput GPU - large range queries
throughput CPU - small range queries

throughput CPU - medium range queries
throughput CPU - large range queries

(b) Throughput graph on Large trees

Fig. 4. Throughput of GPU range searching vs. a 6-core CPU

for both small trees and large trees and also over the three query datasets. This
suggests that a batch of queries that come with a mix of short-range to long range
queries can also be processed without any further rearrangement of the queries.
We do notice a higher throughput for the Short-range Query dataset compared
to other datasets. This is due to the fact that as the number of canonical nodes
is small in that dataset, the amount of computation spent in phase 2 and 3 is
minimal.

Batch Size: We finally study the impact of batch size on our implementation.
Recall from Section 4, Phase IV of our querying algorithm can be made to
overlap with Phases I-III of the querying algorithm a scenario, finding the right
value for the batch size is crucial. In Figure 5 we show the throughput achieved
by our algorithm as a function of the batch size. As can be intuitively observed,
the throughput increases with increasing batch size up to a certain point. This
is due to the fact that the time spent in Phase IV can be completely hidden by
the time spent in Phase I-III, except for the time spent in Phase IV for the last
batch. However, as we increase the batch size further, the increase in time spent
in Phase IV will decrease the throughput achieved. From Figure 5, we notice
that for a dataset of 216 points and 216 queries, a batch size of 213 is ideal.

5 Application II: Reporting Maximal Points in an
Orthogonal Query

A traditional range search query focuses on returning all the points inside a given
range. But when dealing with large datasets, the resulting number of points
may be huge and hence it is impractical to return the entire result. One such
scenario may be server returning results to mobile devices where bandwidth and
screen resolution are constrained. In such scenarios, it is beneficial to return a
summary of the result. Maximal points offer a good summary of the results [1].
Using range trees, a sequential algorithm to report the set of maximal points in

GPU Accelerated Range Trees with Applications 749

 7

 8

 9

 10

 11

 12

 13

 14

 15

 10 11 12 13 14 15 16t
h
r
o
u
g
h
p
u
t
(
i
n

m
i
l
l
i
o
n

q
u
e
r
i
e
s

p
e
r

s
e
c
)

log(#batchsize)

throughput

Fig. 5. Variation of query throughput with batch size for a dataset of 216 points and
216 queries

a given orthogonal query region is proposed in [4]. In this section, we use our
GPU-based construction of a range tree to provide a parallel solution to problem
of reporting the maximal points in a given orthogonal query region.

(2,6)

 (0,1)
c

b

d

a

(3,5)

(5,3)

(4,2)

(6,7)

(7,4)

(1,0)

(a) Skyline points in-
side a rectangle

 (0,1) (1,0) (2,6) (3,5) (4,2) (5,3) (6,7) (7,4)

0 2 4 7

40

2

(5,3)

2

Primary tree

Secondary tree at
an internal node

 (7,4) (6,7)

(4,2)

(5,3)

(6,7)

(7,4)

(b) In the associated structure we only store the skyline of the
points rooted at that internal node

Fig. 6. An application of range trees to find maximal points inside a query rectangle

In order to efficiently report the maximal points, also called as the skyline
points, or simply the skyline, inside a given range, we preprocess the input point
set into a data structure. This data structure is similar to range tree we described
in Section 3 with a difference that we store the maximal points of the canonical
subset of points at each internal node of the secondary tree. This solution is
described in detail in [8].

The algorithm for reporting skyline points inside an orthogonal range query
is similar to that of range searching described in Section 4. At the end of Phase-
3, we get a skyline corresponding to each canonical node in the primary tree.

750 M.K. Maramreddy and K. Kothapalli

Merging these canonical-skylines produces the final skyline inside the query
range. Below we explain the steps required to merge the skylines.

1. Filtering overshadowed skylines: A skyline Si is said to be overshadowed
by skyline Sj if the maximum y-coordinate of points in Sj is greater than
maximum y-coordinate of points in Si. All canonical-skylines may not con-
tribute to the final merged output as they may be overshadowed by a skyline
to their right. We filter such skylines prior to merging them as follows.

Let Ymax = {y1, y2, ...yk} be maximum y-coordinates of the points in
each of the canonical-skylines. For filtering the skylines we perform an All
Nearest Larger Value (ANLV) to the left on Ymax. The problem of ANLV is
defined as follows. Given an array A of n elements, for each element A[i],
find the element closest to the left of i that is greater than A[i]. ANLV is a well
studied problem in parallel algorithms [7]. For solving this problem, we use
the algorithm from [7]. For every canonical-skyline we find a target skyline
to be merged with. An example of the problem is illustrated in Figure 7.

2. Merging skylines: Assuming Si and Sj are the two skylines to be merged
where Si lies left of Sj . Let yi be the maximum y-coordinates of the points
in Sj. In order to merge Si and Sj we find the merge point by searching
for yi in Si. For all the canonical-skylines that are not filtered in the above
step we find the merge point by searching their maximum y-coordinate in
the corresponding target skyline.

3. Reporting results: By traversing the skylines from right to left through
the merge points, we can obtain the final skyline. But since this operation is
sequential in nature, we perform the traversal on the host CPU. The set of
canonical-skylines that are not filtered and their corresponding merge points
are returned as a result set from GPU to host CPU.

(a) We compute ANLV on the maximum y-
coordinates of points in skylines

(b) Final skyline is obtained by merging in-
dividual skylines

Fig. 7. Finding skyline inside an orthogonal range query

5.1 Performance Results

For the experiments, we generate random queries from a uniform distribution.
The throughput graph is show in Figure 8. As can be seen, our implementation
offers a good speed-up over a corresponding multi-core CPU.

GPU Accelerated Range Trees with Applications 751

 0

 2

 4

 6

 8

 10

 12

 14

 10 12 14 16 18 20 22 24

th
ro

u
gh

p
u

t(
in

 m
ill

io
n

 q
u

er
ie

s
p

er
 s

ec
)

log(#queries)

throughput GPU (height=10)
throughput CPU (height=10)

(a) Small trees

 0

 1

 2

 3

 4

 5

 6

 10 12 14 16 18 20 22 24

th
ro

u
gh

p
u

t(
in

 m
ill

io
n

 q
u

er
ie

s
p

er
 s

ec
)

log(#queries)

throughput GPU (height=20)
throughput CPU (height=20)

(b) Large trees

Fig. 8. Throughput graph of GPU vs 6-core CPU

6 Conclusions

In this paper, we show that hierarchical data structures can be efficiently con-
structed on modern parallel architectures. Our method involves identifying effi-
cient ways to store and represent the data structure without compromising on
the access efficiency of the representation. As a case-study, we considered the
range tree along with two applications of the same.

References

1. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Ad-
vances in Discrete and Computational Geometry, vol. 223, pp. 1–56

2. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda. Tech-
nical report, NVIDIA Technical Report NVR-2008-004 (2008)

3. Coombe, G., Harris, M.J., Lastra, A.: Radiosity on graphics hardware. In: Pro-
ceedings of the 2004 Conference on Graphics Interface, pp. 161–168 (2004)

4. Das, A.S., Gupta, P., Srinathan, K.: On Finding Skyline Points for Range Queries
in Plane. In: CCCG (2011)

5. Fix, J., Wilkes, A., Skadron, K.: Accelerating Braided B+ Tree Searches on a GPU
with CUD. In: Proc. ISCA Workshops (2011)

6. Foley, T., Sugerman, J.: Kd-tree acceleration structures for a gpu raytracer. In:
Proc. Graphics Hardware, pp. 15–22 (2005)

7. Jaja, J.: An Introduction To Parallel Algorithms. Addison-Wesley (2004)
8. Kalavagattu, A.K., Agarwal, J., Das, A.S., Kothapalli, K.: Counting Range Max-

ima Points in Plane. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp.
263–273. Springer, Heidelberg (2012)

9. Kim, J., Kim, S.-G., Nam, B.: Parallel multi-dimensional range query processing
with R-trees on GPU. J. Par. Dist. Comp. 73(8), 1195–1207 (2013)

10. Lefohn, A.E., Sengupta, S., Kniss, J., Strzodka, R., Owens, J.D.: Glift: Generic, Effi-
cient,Random-accessGPUDataStructures.ACMTrans.Graph. 25(1), 60–99 (2006)

11. Leischner, N., Osipov, V., Sanders, P.: GPU sample sort. In: IEEE International
Parallel and Distributed Processing Symposium, IPDPS (2010)

12. NVidia Corporation, Cuda: Compute Unified Device Architecture programming
guide. Technical report, Nvidia. Tech. Rep. (2007)

Scalable On-Board Multi-GPU Simulation

of Long-Range Molecular Dynamics

Marcos Novalbos1, Jaime González2, Miguel A. Otaduy1,
Roberto Martinez-Benito2, and Alberto Sanchez1

1 Universidad Rey Juan Carlos, Madrid, Spain
{marcos.novalbos,miguel.otaduy,alberto.sanchez}@urjc.es

2 Plebiotic S.L., Madrid, Spain
{jaime.gonzalez,roberto.martinez}@plebiotic.com

Abstract. Molecular dynamics simulations allow us to study the be-
havior of complex biomolecular systems by modeling the pairwise inter-
action forces between all atoms. Molecular systems are subject to slowly
decaying electrostatic potentials, which turn molecular dynamics into an
n-body problem. In this paper, we present a parallel and scalable solution
to compute long-range molecular forces, based on the multilevel summa-
tion method (MSM). We first demonstrate an optimization of MSM that
replaces 3D convolutions with FFTs, and we achieve a single-GPU per-
formance comparable to the particle mesh Ewald (PME) method, the
de facto standard for long-range molecular force computation. But most
importantly, we propose a distributed MSM that avoids the scalability
difficulties of PME. Our distributed solution is based on a spatial par-
titioning of the MSM multilevel grid, together with massively parallel
algorithms for interface update and synchronization. We demonstrate
the scalability of our approach on an on-board multi-GPU platform.

1 Introduction

Molecular dynamics consists of studying the behavior of molecular systems by
modeling the motion of individual atoms due to inter-atom forces. Molecular
dynamics simulations enable the prediction of the shape and arrangement of
molecular systems that cannot be directly observed or measured, and it has
demonstrated its impact on applications of drug and nanodevice design [16].

However, molecular dynamics is a computationally expensive problem, due to
both high temporal and high spatial resolution. The trajectories and arrange-
ments of molecules over temporal scales in the order of 1μs are dictated by vibra-
tions taking place at scales as fine as 1fs = 10−15s; therefore, effective analysis
requires the computation of many simulation steps. At the same time, mean-
ingful molecular systems are often composed of even millions of atoms. Most
importantly, the motion of atoms is affected by distant electrostatic potentials,
which makes molecular dynamics an n-body problem with quadratic cost.

Typical solutions to molecular dynamics separate short-range forces, which
are computed exactly, from long-range ones, and approximate such long-range

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 752–763, 2014.
c© Springer International Publishing Switzerland 2014

Scalable On-Board Multi-GPU Simulation 753

forces. The Particle Mesh Ewald (PME) method [3] is probably the most popular
approximation to long-range molecular forces, and it discretizes atom charges on
a grid, computes a grid-based potential using a FFT, and finally interpolates the
potential back to the atoms. Its cost is dominated by the FFT, which yields an
asymptotic complexity O(N logN).

Molecular dynamics computations can be further accelerated through parallel
algorithms, including massive parallelization on GPUs [8,15], or even multi-GPU
parallelization [11]. The PME method is suited for single GPU parallelization,
but not for distributed computation, thus limiting the scalability of long-range
molecular dynamics.

In this paper, we propose a scalable solution to long-range forces in molecular
dynamics using on-board multi-GPU architectures. Our solution to long-range
molecular dynamics is based on the Multilevel Summation Method (MSM), pro-
posed by Izaguirre et al. [10] for the solution to general n-body problems, and
parallelized on a single GPU by Hardy et al. [5] for molecular dynamics.

In section 3 we outline the overall molecular dynamics simulation algorithm
and we overview MSM. We also propose an optimization of the original MSM,
based on the summations of potentials on each level using an FFT. As a result
of this optimization, the performance of MSM on a single GPU turns out to be
comparable to that of PME.

But most importantly, MSM is better suited for a distributed implementation.
In section 4, we present a distributed multi-GPU on-board version of MSM, and
we discuss its implementation. Our distributed MSM deals efficiently with pe-
riodic boundary conditions and with the synchronization of interfaces between
computing nodes. All interface-related computations are designed as massively
parallel algorithms running on each GPU independently, and data is transferred
between pairs of GPUs directly. With our solution, it is possible to execute molec-
ular dynamics analysis on large molecular systems (with over one million atoms
in our examples), and the performance of molecular dynamics is not limited by
the compute bounds of a single GPU.

2 Related Work

There are many approaches to improve the quadratic cost of long-range molec-
ular dynamics, either using approximate solutions or parallel implementations
(See [14] for a survey). Massively parallel solutions on GPUs have also been
proposed, although GPUs are mostly used as co-processors [15].

As mentioned in the introduction, PME [3] is the most popular method to
compute long-range molecular forces. Lattice Ewald methods solve the long-
range potential on a grid using an FFT. Regular PME uses spectral differentia-
tion and a total of four FFTs per time step, while Smooth PME (SPME) [4] uses
B-spline interpolation reducing the number of FFTs to two. PME is widely used
in parallel molecular dynamics frameworks such as NAMD [15], GROMACS [9]
or ACEMD [8]. PME can be massively parallelized on a single GPU, but it is
difficult to distribute over multiple GPUs due to the all-to-all communication

754 M. Novalbos et al.

needed by the FFT. However Nukada et al. [12] propose a scalable multi-GPU
3DFFT to minimize all-to-all comunications. Cerutti et al. [2] proposed Multi-
Level Ewald (MLE) as an approximation to SPME by decomposing the global
FFT into a series of independent FFTs over separate regions of a molecular
system, but they did not conduct scalability analysis.

Other long-range force approximation are based on multigrid algorithms.
Multigrid approaches utilize multiple grid levels with different spatial resolutions
to compute long-range potentials with O(N) cost. In molecular dynamics, multi-
grid methods have been demonstrated to be superior to other methods [17], such
as the Fast Multipole Method (FMM) [19], because they achieve better scalability
while keeping acceptable error levels. The Meshed ContinuumMethod (MCM) [1]
and MSM [6] are the two most relevant multigrid methods for long-range force
computation. MCM uses density functions to sample the particles onto a grid and
calculates the potential by solving a Poisson equation in a multigrid fashion. On
the other hand, MSM calculates the potential directly on a grid by using several
length scales. The scales are spread over a hierarchy of grids, and the potential of
coarse levels is successively corrected by contributions from finer levels up to the
finest grid, which yields the final potential. This approach exhibits higher options
for scalability than PME or other multigrid algorithms. MSM has been massively
parallelized on a single GPU [5], although its performance is notably worse than
PME. With our optimized MSM, even its single-GPU performance is comparable
to PME.

Multigrid methods have been used extensively in a variety of scientific fields,
but molecular dynamics suffers the added difficulty of dealing with periodic
boundary conditions. Izaguirre and Matthey [10] developed an MPI-based par-
allel multigrid summation on clusters and shared-memory computers for n-body
problems. Our approach presents a solution for long-range molecular dynamics
on board multi-GPU platforms, and our improvements could be extended to
other types of n-body problems.

3 Optimized MSM

3.1 Overview of Molecular Dynamics

In computer simulations of molecular dynamics, atoms are modeled as parti-
cles in a virtual 3D spatial coordinate system. Their motion is computed by
solving Newtonian mechanics under the action of three types of forces: bonded
forces, non-bonded short-range forces (composed of Van der Waals forces and
electrostatic interactions between atoms closer than a cutoff radius Rc), and
non-bonded long-range forces (consisting of electrostatic interactions between
atoms separated by a distance greater than Rc). The simulation time is divided
into steps of very small size, in the order of 1fs = 10−15s. Given atom positions
Xi and velocities Vi at time Ti, the simulation algorithm evaluates the inter-
action forces and integrates them to obtain positions Xi+1 and velocities Vi+1

at time Ti+1. In biological systems, the molecules of interest are surrounded by

Scalable On-Board Multi-GPU Simulation 755

water molecules, and periodic boundary conditions are imposed on the simula-
tion volume, i.e., the simulation volume is implicitly replicated infinite times.
A more comprehensive description of the basics of molecular dynamics can be
found in [16].

Most of the time in a molecular dynamics simulation is spent calculating
non-bonded forces. In the remaining of this paper, we address only non-bonded
long-range forces, and we rely on an existing on-board multi-GPU algorithm for
bonded and non-bonded short-range forces [11].

3.2 The Multilevel Summation Method

For a particle system with charges {q1, . . . qN} at positions {r1, . . . rN}, the elec-
trostatic potential energy is

U(r1, ...rN) =
1

2

N∑
i=1

N∑
j=1,j �=i

qi qj
||ri − rj ||

. (1)

Its exact computation has O(N2) complexity.
MSM is a fast algorithm for computing an approximation to the electro-

static interactions with just O(N) computational work. MSM splits the poten-
tial into short-range and long-range components. The short-range component
is computed as a direct particle-particle interaction while the long-range one is
approximated through a hierarchy of grids.

For the long-range component, the method first distributes atom charges onto
the finest grid. This process is called anterpolation. A nodal basis function φ(r)
with local support about each grid point is used to distribute charges. Once
all atom charges are distributed onto the finest grid, charges are distributed
onto the next coarser grid, using the same basis functions. This process is called
restriction, and it is repeated until the coarsest grid is reached.

On each level, the method computes direct sums of nearby grid charges up to
a radius of �2Rc/h0 grid points, where h0 is the resolution of the finest grid.
Hardy and Skeel [6] indicate that a resolution h0 between 1Å and 3Å is sufficient
for molecular dynamics simulations. Note that the resolution is halved on each
coarser grid, hence direct sums cover twice the distance with the same number
of points. The direct sum of pairwise charge potentials is analogous to the one
for short-range non-bonded forces, with the exception that grid distances are
fixed and can be computed as preprocessing, hence the computation is simply
an accumulation of weighted grid charges.

A GPU optimized version of the direct sum was developed by Hardy et al [5].
The weighted grid is stored in constant memory and charges in shared memory.
A sliding window technique is used to achieve an efficient reading. Hardy’s algo-
rithm computes the finest levels on GPU, while the coarsest levels are computed
on CPU. Our method runs the whole simulation on an on-board multi-GPU
architecture by allocating a portion of the system to each GPU and using a
boundary interface to communicate updates directly between portions.

756 M. Novalbos et al.

Once direct sums are computed on each level, potentials are interpolated
from coarse to finer levels, and contributions from all levels are accumulated.
This process is called prolongation. Finally, potentials from the finest grid are
interpolated on the atoms.

Algorithm 1 highlights the differences between our distributed MSM and the
original algorithm. See also [6] for a thorough description of the method. Note
that the direct sums are independent of each other, and the direct sum on a cer-
tain level and the restriction to the coarser level can be executed asynchronously.

3.3 FFT-Based Sums

To perform the direct sum part on each level, the original MSM applies a 3D
convolution over all grid points using a kernel with 2 �2Rc/h + 1 points in
each dimension [6]. However, Hardy shows that the direct sum part is the most
computationally expensive part. We substitute this convolution with a product
in frequency domain. Specifically, we compute grid potentials in three steps:

1. Forward FFT of the grids of charges and kernel weights.
2. Complex point-wise product of the two resulting vectors
3. Inverse FFT to obtain the potentials.

The grids of charges and kernel weights should have identical dimensions; there-
fore, we extend the kernel. Note that the kernel is constant, hence we only
compute its FFT once per level as a preprocess.

Even though the FFT has O(N logN) complexity as opposed to O(N) com-
plexity of the convolution, in practice large kernels yield a steep linear complexity
for the convolution approach. For very large molecules, the logN factor of the
FFT would dominate, but with our distributed MSM presented next in Section
4, FFTs are computed on each partition separately, hence N is bounded. We
have compared the performance of efficient GPU implementations of massively
parallel MSM using the convolution and FFT approaches, and the FFT ap-
proach enjoys a speed-up of almost 10×. Table 1 shows timing comparisons for
two molecular systems. The examples were executed on an Intel Core i7 CPU
860 at 2.80GHz with a NVIDIA GTX Titan GPU and CUDA Toolkit 5.5. FFTs
were computed using NVIDIA’s highly efficient cuFFT library [13].

The cutoff distance Rc has a great impact on both error and performance. Er-
ror is lower for higher cutoffs, and this can be observed from the fact that a larger
cutoff distance increases the kernel size as well. For our performance analysis, we
used a cutoff radius of 9.0 Å, which is a standard value for molecular dynamics
simulations. Assuming a fixed grid size, the resolution of the grid h, which is au-
tomatically set for each level and each axis, determines the overall performance
and accuracy. Smaller values of h for the same number of levels implies higher
accuracy, but this also translates into a larger kernel size 2 �2Rc/h0 + 1, hence
adding to the computational cost. The table shows the grid resolution on each
axis (in Å), as well as the kernel size.

Table 1 also compares the performance of MSM and PME under the same
grid resolutions. We implemented an efficient GPU version of the Smooth PME

Scalable On-Board Multi-GPU Simulation 757

Table 1. Performance comparison for long-range force computation on two molecular
systems, using regular MSM with 3D convolution, our optimized MSM based on FFTs,
and PME. Timings correspond to one simulation step and are given in ms. All cases
were executed using a 64× 64× 64 grid.

#Atoms hx,y,z Kernel size tMSM tMSMFFT tPME

256,436 {1.88,1.87,2.65} 9x9x6 31.901 4.79 5.095

90,849 {1.56,1.56,1.56} 11x11x11 43.694 5.09 2.22

(SPME) algorithm [4], following the optimizations described by Harvey and De
Fabrities [7]. We also implemented the previously mentioned GPU version of
the MSM algorithm proposed by Hardy. With our FFT-based optimization, the
performance of MSM becomes comparable to that of PME.

4 Distributed MSM

We propose a distributed MSM (DMSM) that partitions a molecular system and
the multilevel grid of MSM among multiple GPUs. As a computing element, each
GPU handles in a parallel manner the computation and update of its correspond-
ing portion of the molecular system, as well as the communications with other
GPUs. In this section, we first describe the partition of the molecular system,
then the handling of periodic boundary conditions across all MSM levels, and
finally our parallel algorithms for interface update and synchronization.

4.1 Multigrid Partitions

Following the observations drawn in [11] for short-range molecular forces, we
partition a molecular system linearly along its longest axis, as this approach
reduces the cost to communicate data between partitions. Then, for DMSM, we
partition each level of the MSM grid into regular portions using planes orthogonal
to the longest axis. Each GPU device stores a portion of the grid at each level,
including two types of grid points: i) interior grid points owned by the GPU
itself. ii) interface grid points owned by neighboring GPUs.

The size of the interface corresponds to the half-width of the convolution
kernel, i.e., �2Rc/h points to the left and right of the interior ones, as shown in
Figure 1. The interface stores replicas of the grid points of neighboring partitions,
which are arranged in device memory just like interior points, to allow seamless
data access. The interface is used both to provide access to charges of neighboring
partitions and to store partial potentials corresponding to those same partitions.
Note that, due to the use of a linear partitioning strategy, the neighboring nodes
along the shorter directions are the result of periodic boundary conditions, and
they do not need to be stored as interface points as they are readily available as
interior points.

The partitions are made only once at the beginning of the simulation. At
runtime, interface values need to be communicated when needed as part of re-
striction, direct sum of potentials, and prolongation.

758 M. Novalbos et al.

4.2 Periodic Boundary Conditions on Multiple GPUs

As outlined in Section 3.1, molecular dynamics are performed on infinite sys-
tems formed by replicating periodically images of the molecular system under
study along all three spatial directions [18]. Periodic replication is also applied
to the MSM grid; therefore, on the boundary of the molecular system interfaces
represent images of grid points on the opposite sides, as shown in Figure 1.

Fig. 1. Partition of the multilevel grid under periodic boundaries. Left: All grid points
on each level, distributed into 3 GPU devices. Right: Data structure of GPU device 0
(blue) on all levels, showing: its interior grid points, interface points for an interface of
size 3, and buffers to communicate partial sums to other devices. Interface points due
to periodic boundary conditions are shown striped. Arrows indicate sums of interface
values to the output buffers. With interfaces of size 3, in levels 1 and 2 several interface
points contribute to the same buffer location, and in level 2 there are even interior
points that map to interface points.

In higher levels of the multilevel grid, where the total number of grid points
along the longest axis is similar to the convolution kernel size, periodic bound-
aries complicate the management of interface points. Two main complications
may occur, shown in Figure 1: the same point may map to two or more inter-
face points, and even interior points may map to interface points. To deal with
interface handling, each GPU device stores the following data on each level:

– Begin and end indices of neighbor partitions, to know what part of the
interface belongs to each GPU device.

– Periodic begin and end indices of the interfaces of neighbor partitions, to
know what interior points constitute interfaces for other GPU devices.

Since the multilevel grid is static during the simulation, the auxiliary indices
of neighbor partitions are created and shared between GPUs once as a prepro-
cessing step. Once each GPU knows the indices of its neighbors, it creates the
incoming and outgoing data buffers to share interface data, and sets static map-
pings that allow efficient read/write operations with these buffers as shown in
Figure 1.

Scalable On-Board Multi-GPU Simulation 759

4.3 Parallel Update and Synchronization of Interfaces

Algorithm 1 DMSM method main loop.

1: procedure computeDMSM

2: n = nlevels
3: q0 ← Anterpolation()
4: ∗ accumulateInteriorCopies(q0)
5: ∗ updateInterfaces(q0)
6: for i = 0 . . . n− 2 do
7: V i ← DirectSum(qi)
8: qi+1 ← Restriction(qi)
9: ∗ updateInterfaces(qi+1)
10: end for
11: V n−1 ← DirectSum(qn−1)
12: ∗ accumulateInteriorCopies(V n−1)
13: ∗ updateInterfaces(V n−1)
14: for i = n− 2 . . . 0 do
15: V i ← Prolongation(V i+1)
16: ∗ accumulateInteriorCopies(V i)
17: ∗ updateInterfaces(V i)
18: end for
19: Interpolation(V 0)
20: end procedure

Our DMSM algorithm needs to update and synchronize interfaces at multiple
stages of the original MSM algorithm. There are two synchronization operations:

1. accumulateInteriorCopies: In the charge anterpolation, the coarsest direct
sum and prolongation steps, values are accumulated onto the interface grid
points in each GPU device. These interface points are local copies of interior
points of other GPUs, hence the values stored on interface points need to be
accumulated onto their true owners. This operation is executed in 3 steps.
First, the values from the interface points are accumulated into the output
buffers. Second, the buffers are transferred to their destination GPUs. And
third, the receiver GPUs accumulate the incoming values into their interior
grid points. Thanks to the preprocessing of mappings described previously,
the accumulation to the output buffers is executed efficiently in a massively
parallel manner on each GPU. Periodic boundary conditions are also handled
efficiently, and the accumulation of multiple copies of the same point is dealt
with during the accumulation to output buffers, prior to data transfer.

2. updateInterfaces: Once interior grid values are set, it may be necessary to
update their copies in other GPUs, i.e., the interface grid points of other
GPUs. Data is transferred between pairs of GPUs directly. This step is nec-
essary after charge anterpolation, after restriction, after the direct sum of
potentials, and after prolongation.

760 M. Novalbos et al.

Algorithm 1 shows our DMSM algorithm, highlighting in blue and with a star
the steps that augment the original MSM algorithm. We distinguish charge val-
ues q from potential values V , which are used as arguments of the accumulate
InteriorCopies and updateInterfaces procedures when appropriate. Super-
scripts indicate grid levels. With our DMSM algorithm, all operations to set
up, transfer, and collect data packages are highly parallelized, thus minimizing
the cost of communications and maximizing scalability.

5 Evaluation

This section analyzes the scalability of our proposal. We carried out our experi-
ments on a machine outfitted with Ubuntu GNU/Linux Precise Pangolin 12.04,
two Intel Xeon Quad Core 2.40GHz CPUs with hyperthreading, 32 GB of RAM
and four NVidia GTX580 GPUs connected to PCIe 2.0 slots in an Intel 5520
IOH Chipset of a Tyan S7025 motherboard.

(a) 400K (b) 1VT4 in water (c) 2x1VT4 in water

Fig. 2. Benchmark molecules

Given our testbed architecture, we have tested the scalability of our proposal
by measuring computation and transmission times for 1, 2, and 4 partitions
running on different GPUs. We have used three molecular systems as benchmarks
(see Figure 2), all three with a large number of atoms:

– 400K (399,150 atoms) is a well-balanced system of 133,050 molecules of water
designed synthetically.

– 1VT4 (645,933, atoms) is a multi-molecular holoenzyme complex assembled
around the adaptor protein dApaf-1/DARK/HAC-1.

– 2x1VT4 (1,256,718 atoms) is a complex system formed by two 1VT4 molecules.

5.1 Scalability Analysis

Figure 3a shows the speedup and running times for the three molecules using our
proposal with the settings shown in Table 3b. Note that running times have been

Scalable On-Board Multi-GPU Simulation 761

measured using a GTX580 GPU, being affected by NVidia’s CUDA AtomicAdd()
operation, whose implementation depends on the hardware architecture. We also
show the results obtained with the CPU implementation of PME in NAMD, one
of the most used tools for molecular dynamics, as a baseline for comparison. The
results show that our method benefits from larger molecules. The reason is that
anterpolation, whose workload is easier to share among GPUs, dominates the
cost of updates in this case.

The scalability of the system is limited because of interface updates between
GPUs. Figure 3c shows the data transfers between GPUs to update their in-
terfaces for the 2x1VT4 molecule for a single step of DMSM. We have selected
2x1VT4 due to its higher complexity and data size, with more than 1.2 Million
atoms. The figure indicates that, as expected, the data size of interface cells grows
linearly, since each new partition adds a constant data transfer that depends on
the grid resolution h and its corresponding interface size. Furthermore, the aver-
age data size transfered per GPU is similar to the data needed in a single-GPU
implementation in order to account for periodic boundary conditions, as shown
in Figure 3c.

Finally, Figure 3d shows how the total simulation time split between compu-
tation and interface updates for the 2x1VT4 molecule, to analyze the importance
of the transferred data size. With up to 4 partitions, the cost is dominated by

(a) Running time and speedup

Molecule hx,y,z

400K {2.57,2.57,2.57}
1VT4 {1.86,1.86,0.93}
2x1VT4 {1.89,1.87,1.78}

(b) Evaluation Settings (c) Interface size (2x1VT4) (d) Simulation
cost (2x1VT4)

Fig. 3. Scalability Analysis

762 M. Novalbos et al.

computations, with interface transfers adding up to only a low percentage. In
this way, the speedup grows almost linearly with each additional GPU. All in
all, the results show that our proposal presents very good scalability in on-board
multi-GPU platforms.

6 Conclusions and Future Work

This article presents a scalable parallel algorithm to execute long-rangemolecular
dynamics using on-board multi-GPU architectures. The approach extends and
optimizes the Multilevel Summation Method, takes advantage of direct GPU-
GPU communications, and introduces massively parallel algorithms to update
and synchronize the interfaces of spatial partitions on GPUs.

We first improve the performance of MSM by using an FFT instead of 3D
convolution in the computation of direct sums on individual GPUs. The paper
demonstrates the benefits of our approach in contrast to the original MSM and
the well known long-range molecular dynamics algorithm PME. We then show
how to perform a spatial partitioning of the multilevel grid, dividing atom data
between GPUs, and designing massively parallel algorithms to minimize com-
munications and efficiently update and synchronize interfaces. Our experiments
allow us to conclude that our on-board multi-GPU molecular dynamics approach
presents very good behavior in terms of performance and scalability.

There are pending tasks to be considered for future work. One of the main
drawbacks is that MSM adds a certain overhead at coarse levels, where the
number of points to be computed are close to the number of GPUs, and periodic
boundaries wrap around the whole molecular system, introducing many-to-many
communications. To alleviate the negative consequences on scalability, we plan
to redesign the algorithm on coarse levels to run on a single GPU once the work
load is manageable. Finally, we are planning to join bonded, non-bonded short-
range, and non-bonded long-range forces in a single integrated solution to run
on a cluster environment, taking advantage of its scalability features.

Acknowledgments. The authors thank Roldán Mart́ınez from Plebiotic for
his helpful advice.

References

1. Bolten, M.: Multigrid methods for structured grids and their application in particle
simulation. Dr., Univ. Wuppertal, Jülich (2008)

2. Cerutti, D.S., Case, D.A.: Multi-level ewald: A hybrid multigrid / fast fourier
transform approach to the electrostatic particle-mesh problem. J. Chem. Theory
Comput. 6(2), 443–458 (2010)

3. Darden, T., York, D., Pedersen, L.: Particle mesh ewald: An nlog(n) method for
ewald sums in large systems. The Journal of Chemical Physics 98(12), 10089–10092
(1993)

Scalable On-Board Multi-GPU Simulation 763

4. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.:
A smooth particle mesh ewald method. The Journal of Chemical Physics 103(19),
8577–8593 (1995)

5. Hardy, D.J., Stone, J.E., Schulten, K.: Multilevel summation of electrostatic po-
tentials using graphics processing units. Parallel Computing 35(3), 164–177 (2009);
revolutionary Technologies for Acceleration of Emerging Petascale Applications

6. Hardy, D.J., Skeel, R.D.: Multilevel summation for the fast evaluation of forces
for the simulation of biomolecules. University of Illinois at Urbana-Champaign,
Champaign (2006)

7. Harvey, M.J., De Fabritiis, G.: An implementation of the smooth particle mesh
ewald method on gpu hardware. Journal of Chemical Theory and Computa-
tion 5(9), 2371–2377 (2009), http://pubs.acs.org/doi/abs/10.1021/ct900275y

8. Harvey, M.J., Giupponi, G., Fabritiis, G.D.: ACEMD: Accelerating Biomolecular
Dynamics in the Microsecond Time Scale. Journal of Chemical Theory and Com-
putation 5(6), 1632–1639 (2009)

9. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: Algorithms
for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal
of Chemical Theory and Computation 4(3), 435–447 (2008)

10. Izaguirre, J.A., Hampton, S.S., Matthey, T.: Parallel multigrid summation for the
n-body problem. J. Parallel Distrib. Comput. 65(8), 949–962 (2005)

11. Novalbos, M., Gonzalez, J., Otaduy, M.A., Lopez-Medrano, A., Sanchez, A.: On-
board multi-gpu molecular dynamics. In: Wolf, F., Mohr, B., an Mey, D. (eds.)
Euro-Par 2013. LNCS, vol. 8097, pp. 862–873. Springer, Heidelberg (2013)

12. Nukada, A., Sato, K., Matsuoka, S.: Scalable multi-GPU 3-D FFT for TSUBAME
2.0 Supercomputer. In: Proceedings of the International Conf. on High Performance
Computing, Networking, Storage and Analysis (SC 2012), pp. 44:1–44:10 (2012)

13. NVidia: CUFFT:: CUDA Toolkit Documentation,
http://docs.nvidia.com/cuda/cufft/ (accessed January 2014)

14. Rachinger, C.: Scalable Computation of Long-Range Potentials for Molecular Dy-
namics. Master’s thesis, KTH, Numerical Analysis, NA (2013)

15. Rodrigues, C.I., Hardy, D.J., Stone, J.E., Schulten, K., Hwu, W.M.W.: Gpu acceler-
ation of cutoff pair potentials for molecular modeling applications. In: Proceedings
of the 5th Conference on Computing Frontiers, CF 2008, pp. 273–282 (2008)

16. Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide.
Springer-Verlag New York, Inc., Secaucus (2002)

17. Skeel, R.D., Tezcan, I., Hardy, D.J.: Multiple grid methods for classical molecular
dynamics. Journal of Computational Chemistry 23(6), 673–684 (2002)

18. de Souza, O.N., Ornstein, R.L.: Effect of periodic box size on aqueous molecu-
lar dynamics simulation of a dna dodecamer with particle-mesh ewald method.
Biophys. J. 72(6), 2395–2397 (1997)

19. Yokota, R., Bardhan, J.P., Knepley, M.G., Barba, L., Hamada, T.: Biomolecu-
lar electrostatics using a fast multipole BEM on up to 512 GPUs and a billion
unknowns. Computer Physics Communications 182(6), 1272–1283 (2011)

http://pubs.acs.org/doi/abs/10.1021/ct900275y
http://docs.nvidia.com/cuda/cufft/

Resolution of Linear Algebra for the Discrete
Logarithm Problem Using GPU and Multi-core

Architectures

Hamza Jeljeli

CARAMEL project-team, LORIA, INRIA / CNRS / Université de Lorraine,
Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

Hamza.Jeljeli@loria.fr

Abstract. In cryptanalysis, solving the discrete logarithm problem
(DLP) is key to assessing the security of many public-key cryptosys-
tems. The index-calculus methods, that attack the DLP in multiplica-
tive subgroups of finite fields, require solving large sparse systems of
linear equations modulo large primes. This article deals with how we
can run this computation on GPU- and multi-core-based clusters, fea-
turing InfiniBand networking. More specifically, we present the sparse
linear algebra algorithms that are proposed in the literature, in partic-
ular the block Wiedemann algorithm. We discuss the parallelization of
the central matrix–vector product operation from both algorithmic and
practical points of view, and illustrate how our approach has contributed
to the recent record-sized DLP computation in GF(2809).

Keywords: Discrete logarithm problem, sparse linear algebra, parallel
computing, GPU acceleration, multi-core processors, InfiniBand.

1 Introduction
The security of several public-key cryptosystems and protocols relies on the
hardness of the computation of the discrete logarithm problem (DLP) in a given
cyclic group [20]. To name but a few, we can mention the Diffie–Hellman key
exchange protocol [11], the ElGamal encryption system [13] or the pairing-based
cryptography [12].

In this context, a family of algorithms, known as index-calculus methods,
is used to attack the DLP on finite fields. The majority of these algorithms
propose to solve it in time sub-exponential in the size of the finite field. While
a stream of recent algorithmic improvements for fields of small characteristic,
including a quasi-polynomial algorithm [7], have produced several record-sized
computations [23], the sub-exponential methods appear to be most competitive
for fields of prime extension degree, at least so far.

Index calculus algorithms require solving large sparse systems of linear equa-
tions over finite fields. It is important to mention that, most considerations and
methods in the case of numerical computations do not apply here. Several papers
have focused on efficient implementations of sparse linear algebra over finite fields.
For instance, Schmidt et al. [24] treated linear algebra over GF(2) for integer fac-
torization; Boyer et al. [9] worked on the case of small finite rings and fields.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 764–775, 2014.
c© Springer International Publishing Switzerland 2014

Hamza.Jeljeli@loria.fr

Resolution of Linear Algebra for the Discrete Logarithm Problem 765

Problem Statement. Let GF(q) be the field in which the DLP is to be solved.
The linear algebra is performed modulo a large prime � that divides q − 1. We
consider � between 160 and 650 bits, along with an N -by-N sparse matrix A
defined over Z/�Z. The size N ranges from hundreds of thousands to millions.
Each row of A contains O

(
(logN)2

)
non-zero coefficients. The very first columns

of A are relatively dense, then the column density decreases gradually. The row
density does not change significantly (cf. Figure 2). The so-called linear algebra
step in the DLP computation consists in finding a non-trivial vector w ∈ (Z/�Z)N

such that Aw = 0.
We assume that we have access to one or several high-performance computing

clusters, containing multi-core CPUs and/or GPUs, interconnected by fast com-
munication links (typically InfiniBand). We want to optimize the use of these
resources in order to solve the linear algebra problem efficiently. In particular,
we aim to minimize the overall wall-clock time for solving the problem. First, at
an algorithmic level, we study how these heavy computations can be distributed
into smaller parallel subtasks. Then, we focus on more practical concerns, for
instance the communication within these different subtasks.

Organization. This article is organized as follows: Section 2 gives an overview
of the relevant algorithms for sparse linear algebra, while we discuss the par-
allelization of the matrix–vector product operation and focus on the communi-
cation concerns in Section 3. Finally, Section 4 details how our implementation
has been used in concrete DLP computations with different hardware setups.

2 Algorithms for Sparse Linear Algebra
To solve systems of linear equations, two families of algorithms are available:
direct methods, such as Gaussian elimination or LU/QR decompositions, and
iterative methods, such as the conjugate gradient method and, in the context of
linear algebra over finite fields, the Lanczos [19] and Wiedemann [27] algorithms.

The first set of algorithms requires O (Nω) field operations, where ω is, for
implementation concerns, 2.81 at best using the Strassen algorithm for matrix
multiplication [25]. However, these methods tend to densify the matrix, which
quickly raises storage issues. The second set of algorithms does not modify the
matrix and requires O (N) sparse-matrix–vector products (SpMVs). As long as
an SpMV can be performed faster than O

(
Nω−1

)
field operations, the itera-

tive methods are asymptotically faster. This condition is reasonable, since the
complexity of an SpMV is O (Nγ), where γ is the average number of non-zero co-
efficients per row. From both storage and complexity points of view, the iterative
methods appear to be more suited to sparse linear algebra.

Still, in our case, despite the fact that the matrix is extremely sparse, the
cost of an iterative solver remains high because the matrix is very large. The
exact nature of the computation calls for no less than N iterations, or a number
proportional to N depending on some fine points. The approach following is
applied to tackle that problem. First, a structured Gaussian elimination (SGE)
is run as a preprocessing step so as to reduce the size of the matrix [21]; then an
iterative solver is used. Although the Gaussian elimination increases the average

766 H. Jeljeli

row weight, it nevertheless allows us to decrease the cost of the iterative solver
and to reduce the amount of required memory, which is a major implementation
concern as will be seen in the following. It is important that we stop the SGE
when the projected cost of the iterative solver starts to increase again or when
memory requirements are small enough so as to fit on the hardware at hand [8].

The Lanczos and Wiedemann algorithms are the most commonly used it-
erative algorithms in the context of finite fields linear algebra. The Lanczos
algorithm is known to have a better complexity than the Wiedemann algorithm.
However, the block extension of Wiedemann algorithm (a.k.a block Wiedemann)
offers the opportunity to split the computation into several independent sub-
tasks, which is an important practical advantage [18,3].

The Wiedemann algorithm and block Wiedemann algorithms return both a
vector w of the kernel of A. This vector is non-trivial with high probability. In
practice, a single run of the solver is sufficient to find an appropriate solution.

Wiedemann Algorithm. The starting point of the Wiedemann algorithm is to
choose two random vectors x, y ∈ (Z/�Z)N . The algorithm is organized in three
steps [27], for which we use monikers borrowed from the CADO-NFS software
implementation [5].
– The first step computes the first 2N terms of the linearly recurrent sequence

(ai)i∈N
∈ (Z/�Z)N, where ai =

txAiy. This step is usually called Krylov .
– Then, thanks to the Berlekamp–Massey algorithm, we compute the minimal

polynomial of the sequence, which is the polynomial F (X) =
∑d

i=0 fiX
i of

lowest degree d such that
∑d

i=0 fiak+i = 0 for all k ≥ 0. The degree d is
close to N . We commonly call this step Lingen .

– The last step, called Mksol , finally computes w = F (A)y.
The Wiedemann algorithm requires 3N SpMVs for the Krylov and Mksol

steps and O (N logN) field operations for the Lingen step.

Block Wiedemann Algorithm. Wiedemann algorithm is fully sequential. In
[17,10], Coppersmith et al. presented a block variant that provides parallelism.
The block Wiedemann algorithm replaces the vector y ∈ (Z/�Z)N by a block
of n vectors y(0), . . . , y(n−1), each in (Z/�Z)N , and similarly uses a block of m
vectors for x. The sequence of scalars ai is thus replaced by a sequence of m-by-n
matrices. There is a complete freedom in the choice of the blocking parameters
(m,n). For the efficiency of the Lingen run, m is chosen to be equal to 2n [5].
– The Krylov step now computes the first

⌈
N
n

⌉
+
⌈
N
m

⌉
terms of the sequence

(ai)i∈N
. Notice that the j-th column of the m-by-n matrix txAiy depends

only on the j-th column of the block vector y. Thus, the computation of(
txAiy

)
i∈N

can be distributed into n parallel tasks, each computing(
txAiy(j)

)
i∈N

. These tasks need no synchronization nor communication, ex-
cept at the end when all their results are combined.

– The Lingen step seeks a linear generator for the previous sequence. The com-
plexity of this step becomes O

(
nω−1N logN

)
with m = 2n = o (logN) [26].

The output of Lingen is composed of n generators F (0), . . . , F (n−1), each of
them a polynomial over Z/�Z of degree less than

⌈
N
n

⌉
.

Resolution of Linear Algebra for the Discrete Logarithm Problem 767

– The Mksol step computes the following element of the null-space of A: w =∑n
j=1 F

(j)(A)y(j). Similarly to the Krylov phase, the computation can be
distributed into n independent computations.

In the rest of the paper, we focus on the Krylov and Mksol steps, as they
dominate the overall cost and can benefit from parallel hardware. For the Lingen
computation, we use the CADO-NFS software [5].

3 The Matrix–Vector Product
The Lingen step complexity depends roughly quadratically on the blocking pa-
rameter n. Therefore, we can not increase too much the blocking parameters
(n,m). We observe also that the block Wiedemann algorithm does not distribute
the matrix–vector product, so it does not reduce the amount of required mem-
ory per node. Thus, the parallelism provided by the block Wiedemann algorithm
is soon limited. We need to explore how to carry out a Krylov/Mksol task on
more than one computation node. Typically, this is related to performing each
matrix–vector product in parallel on many computation nodes. In this section,
we study how to accelerate this major operation on parallel hardware.

We assume that we have a set of identical computing nodes organized accord-
ing to a 2D rectangular grid and interconnected by a network. Each node is
identified by its coordinates (i, j) in the grid. At this level, we ignore the nature
of the nodes. The nodes could be cores within a machine, independent machines
or GPUs. The matrix A is split into square parts of equal size, such that each
node (i, j) gets the part Ai,j .

3.1 Communication/Computation Scheme
An SpMV iteration takes an input vector u and computes v = Au. At the
beginning of an iteration, a node (i, j) holds the sub-matrix Aij and the j-th
fragment uj of the input vector u. The nodes collaborate together to compute the
output vector, which will be the input vector to the next iteration. To be able to
run the next iteration, the node Aij only needs to know the j-th fragment vj of
the output vector v. More specifically, the parallel SpMV product is performed
as follows.
1. Each node (i, j) computes the partial SpMV Aijuj.
2. Each diagonal node (i, i) collects and sums the partial results from the nodes

of the row i. The sum corresponds to the i-th fragment of v.
3. Each diagonal node (i, i) broadcasts its fragment vj to the nodes of the

column i.
In Figure 1, we give an example of a run for 4 parallel nodes with a 2 × 2

split of the matrix. In this figure, the 4 nodes are, represented in gray, numbered
from 0 to 3. On the left-hand side, we indicate how the matrix A and the input
vector u are distributed among the nodes. We detail on the right-hand side the
intermediate data present on each node after each step.

The communication scheme suffers from the fact that only one node per row
collects the partial products. A parallelization of the Reduction/Broadcast oper-
ations is possible, typically using the ReduceScatter/AllGather operations. This

768 H. Jeljeli

A00
0 A01

1

A10
2 A11

3

u0
0
2

u1
1
3

v0

v1

u0 u1 u0 u1

SpMV
partial

SpMV
partial

partial
SpMV

partial
SpMV

0
(0, 0)

1
(0, 1)

2
(1, 0)

3
(1, 1)

A00u0 A01u1 A10u0 A11u1

+

+
v0 v1

v0 v1 v0 v1

Initial state

SpMV

Reduction

Broadcast

Fig. 1. Computation/Communication scheme for a 2× 2 split of A

should yield to a significant speedup of the communication delay. However, the
output of the iteration will be permuted, i.e., the fragments of v will not be
distributed as were those of u in the beginning of the iteration. In summary, it
remains an improvement that can be explored.

3.2 Balancing the Workload

The particular distribution of the non-zero coefficients is such that the nodes
will get unbalanced workloads, and the nodes working on the denser parts will
take more time than those working on the sparser ones. For the particular kind
of input, this unbalance problem can fortunately be solved efficiently. To fix this
problem, we apply permutations of the rows and columns, so that the distribu-
tion of non-zero coefficients for each sub-matrix is close to that of the matrix A,
as shown in Figure 2. One possibility to obtain this permutation is to sort the
columns by their weight and distribute them evenly among the nodes, then pro-
ceed likewise with the rows. This is made possible by the fact that the standard
deviation of the row weight is much smaller than that of the column weight.

3.3 The Partial SpMV
The matrix is stored in a sparse format, adapted from the Compressed Sparse
Row (CSR) format for the particular distribution of the non-zero coefficients.

We chose to implement the arithmetic operations in Z/�Z using the Residue
Number System (RNS). The use of this representation for finite field arithmetic
provides a fine grained parallelism, which can be exploited by Single Instruction,
Multiple Data (SIMD) architectures.

In the remainder of the article, we consider the partial matrix–vector product
as a black box, that is, a subroutine which, on inputs A and u returns the product
Au. We give more details about how this subroutine is implemented in [14].

Resolution of Linear Algebra for the Discrete Logarithm Problem 769

Fig. 2. Distribution of non-zero coefficients for initial and balanced matrices

3.4 Communication Concerns

We now focus on how to share data between the computing nodes, in the cases
of CPU nodes and GPU nodes.

CPU Communications. The case of CPU-only setups is quite straightforward,
as we use the MPI operation MPI_Reduce to collect and combine on a diagonal
node the results of nodes belonging to the same row, and MPI_Bcast to broadcast
the combined results to the nodes of each column. In the following subsections,
we assume that we execute the application over a cluster of GPUs and we discuss
the data movement. We restrict to NVIDIA graphics hardware. Distributing an
SpMV on several GPUs requires considering two possible (and not mutually
exclusive) cases: the first one where a single CPU node harbors two or more
GPUs, and the second one where the GPUs are in different CPU nodes.

Intra-node GPU Communications. We are in the case of sharing data be-
tween two GPUs within the same CPU node. In order to do so, CUDA, the
parallel programming model for NVIDIA GPUs [1] offers three possibilities:
– Staging through CPU: the communication has to involve the host CPU.

Thus, it is composed of two transfers, a device-to-host copy (D2H) then a
host-to-device copy (H2D).

– Device-to-device copy (D2D): from the programmer’s perspective, it is a
direct copy of the GPU buffers. Although the transfer still passes through
the host memory, the copy is fully pipelined.

– Peer-to-Peer Direct Access (P2P DMA): using this feature, the devices can
share data independently of the CPU. P2P DMA requires to enable peer
access for each GPU, which is supported by recent hardware.

The P2P DMA feature should decrease the host overhead and thus accelerate
the memory copies. To verify it, we ran benchmarks to compare the bandwidth
and latency of each approach (cf. Figure 3). The experiment is performed using
two NVIDIA GeForce GTX 680 cards. The benchmarks measure the run time
for sending messages of increasing size from one GPU to the other. The latencies
for the first two options are 19.7μs and 19.4μs, respectively, and only 14μs when
the P2P DMA is enabled. The peak bandwidths are 6.1 GB/s for the explicit
host staging transfer, 7.3 GB/s for the device to device transfer, and 10.4 GB/s
for the P2P DMA transfer.

770 H. Jeljeli

10−1 100 101 102 103 104 105 106
0

2

4

6

8

10

12

14

Buffer size (kB)

B
an

dw
id

th
(G

B
/s

)

D2H + H2D
D2D

D2D (P2P DMA)
GPU0 GPU1

Chipset

Host Memory

PCIe PCIe

Fig. 3. Benchmarking Intra-node GPU communications

Inter-node GPU Communications. Now, we are interested in the case of
sharing data between GPUs installed in different CPU nodes. The trivial option
in this case is to perform the transfer in three steps: a data copy from device
to host using CUDA routines, then use MPI to copy data between hosts, and
finally a CUDA copy from host to device on the destination node (cf. Figure 4).

It is however possible to overcome the host staging using the Cuda-aware
MPI feature which combines MPI and CUDA. It allows one to address GPU
buffers directly in the MPI routines (cf. Figure 5). From the programmer’s point
of view, a data transfer boils down to one call to an MPI routine. With Cuda-
aware MPI, the data transfers are fully pipelined, while without the feature, the
transfers between hosts and those between the device and the host are pipelined
separately. The Cuda-aware MPI feature is incorporated in several widely used
MPI libraries and considerably improves the data movement latencies.

GPU0 GPU1IB IB

Chipset Chipset

Host0 Memory Host1 Memory

CUDA
buffer

CUDA
buffer

CPU
buffer

CPU
buffer

PCIe PCIe
IB

GPU to
CPU copy

CPU to CPU transfer CPU to
GPU copy

Fig. 4. Data copy from GPU0 to GPU1 without Cuda-aware MPI

In Figure 6, we report the results of bandwidth benchmarks for inter-node
GPU-to-GPU communications. We ran the experiment using two NVIDIA GTX
680 installed in two nodes connected with QDR InfiniBand. We use CUDA 5.0
and Open MPI 1.7.3. In addition to benchmarks for the two ways of communica-
tion, we added the Host-to-Host (H2H) communication results as a reference, for

Resolution of Linear Algebra for the Discrete Logarithm Problem 771

Fig. 5. Data copy from GPU0 to GPU1 with Cuda-aware MPI

which we measured the data movement from one CPU buffer to another CPU
buffer using the regular MPI routines.

The latency of a plain Device-to-Device transfer is 11μs. It becomes 9μs if the
feature Cuda-aware MPI is used. The latency of the Host-to-Host transfer is 1 μs.
WithoutCuda-awareMPI, thebandwidth isboundedby2.3GB/s.TheCuda-aware
MPI feature allows to reach the Host-to-Host peak bandwidth, which is 3.7 GB/s.

10−1 100 101 102 103 104 105 106

0

1

2

3

4

5

6

Buffer size (kB)

B
an

dw
id

th
(G

B
/s

)

D2D (without Cuda-aware MPI)
D2D (with Cuda-aware MPI)

H2H

Fig. 6. Benchmarking Inter-node GPU communications

Another feature that further optimizes data transfers is GPU Direct. The
GPU Direct offers lower latency for moving data compared to transfers staged
through the host. However, its bandwidth is significantly limited. We could not
deploy this feature in our application, as it is supported only by the recent Tesla
and Quadro cards. A comparison of the performance of this feature with the
transfers staged through host can be found in [22].

4 Examples of Computations

4.1 DLP in GF(2809)× Using FFS
The function field sieve (FFS) [2] is an index-calculus algorithm designed to
attack the DLP in the multiplicative subgroup of a finite field GF(pn), where the

772 H. Jeljeli

characteristic p is a small prime. Barbulescu et al. announced in [6] the solving
of the DLP in the 202-bit prime order subgroup of GF(2809)× using FFS. This
computation is the largest DLP computation in a binary field extension of prime
degree. The previous record was the computation of a DLP in GF(2613)× [16].
Matrix. In this computation, the linear algebra step is performed in Z/�Z where
� is 202 bits long. The relation collection phase produced an initial matrix of
78.8M rows. A preliminary structured Gaussian elimination reduced the matrix
to 3,602,667 rows and columns, with an average of 100 non-zero coefficients per
row. Each non-zero coefficient of A fits in a single machine word. Around 90%
of them are ±1 [8], [6].
Linear Algebra Setup. At the time of the computation, we had access to a
4-node cluster, with 2.4 GHz Intel Xeon E5620 Westmere processors connected
with InfiniBand network at 40 Gb/s. Each node is equipped with 2 NVIDIA
Tesla M2050 graphics processors.

The total memory required to handle the matrix along with the input and
output vectors is 3.16 GB. Since the available memory on one card is only
3 GB, the block Widemann configuration (n = 8,m = 16), for which a se-
quence

(
txAiy(j)

)
i∈N

can be computed on a single device, is not feasible. We
have to compute each sequence on more than one device; the configuration (n =
4,m = 8) with a 2 × 1 split of the matrix and the configuration (n = 2,m = 4)
with a 2 × 2 split of the matrix are possible. Theoretically, the former appears
to be the most convenient, since only two GPUs connected to the same node
communicate, while, with the latter, 4 GPUs interconnected with the network
are required to communicate.

In the following table, we detail a comparison between these two configurations.
The comparison shows how the inter-node GPU communication for the second
configuration slows down the overall computation time. We also present bench-
marks related to a smaller matrix, for which the three configurations are possible
and a bigger matrix, for which only the (n = 2,m = 4) configuration is feasible.

Matrix size Possible blocking SpMV + comm. Overall Ratio com.
(required memory) parameters delays per iteration comp. time /iteration

3.6M × 3.6M (n = 4,m = 8) 142 + 27 ms 4.5 days 16%
(3.2 GB) (n = 2,m = 4) 72 + 41 ms 6 days 37%

3M × 3M
(n = 8,m = 16) 228 + 0 ms 2.5 days 0%

(2.7 GB)
(n = 4,m = 8) 115 + 23 ms 3 days 17%
(n = 2,m = 4) 58 + 35 ms 4.1 days 38%

6M × 6M
(n = 2,m = 4) 123 + 69 ms 16.7 days 36%

(5.4 GB)

With the (n = 4,m = 8) blocking parameters, an iteration takes 169 ms on
each node, including 27 ms for the GPU communications. The initial sequence
computation required 2.6 days in parallel on the 4 nodes. The linear generator
computation was carried out in parallel using 16 threads running on 16 CPU
cores. It required 2 hours. Finally, computing the kernel vector required 1.8 days
in parallel on the 4 GPU nodes. The overall computation took a total wall-clock
time of about 4.5 days.

Resolution of Linear Algebra for the Discrete Logarithm Problem 773

4.2 DLP in a 596-bit Prime Field Using NFS

To compute discrete logarithms in a prime field GF(p), the Number Field Sieve
(NFS) algorithm is used [15]. The last NFS record was accomplished by T. Klein-
jung et al. [4] for a 530-bit (160-decimal-digit) prime p using NFS. We are currently
running an NFS-based computation to attack the DLP in a 596-bit (180-decimal-
digit) prime field. The linear algebra step is defined over a 595-bit prime �.

Matrix. The matrix contains 179M rows at the end of the relation collection.
The preliminary structured Gaussian elimination reduced the number of rows
to 7,287,476, with an average weight of 150 non-zero coefficients per row. The
matrices issued from NFS computations contain a small number (5, here) of
dense columns, whose elements live in Z/�Z. The rest of the matrix is similar
to an FFS matrix in terms of distribution and coefficient size. Taking this dense
part into account adds a non-negligible cost when compared to FFS matrices.

GPU Setup. For this computation, we have access to 8 NVIDIA GeForce GTX
680 graphics processors, plugged into a 4-node cluster of Intel Xeon E5-2609 pro-
cessors running at 2.4 GHz, and connected with QDR Infiniband network. Each
graphics card has 4 GB of memory. The total memory required to carry out the
SpMV on one GPU is 9.8 GB. Thus, 4 GPUs should work on a single sequence,
i.e., at most two sequences can be computed in parallel, and the blocking param-
eters are (n = 2,m = 4). An iteration takes 615 ms on each group of 4 GPUs,
with 195 ms for the GPU-to-GPU communications. The overall computation
should take a total wall-clock time of about 65 days.

CPU Setup. Another option was tried, using our CPU implementation on a
768-core cluster. The cluster contains 48 nodes connected with FDR Infiniband.
Each node hosts two 2-GHZ 8-core Intel Xeon E5-2650 processors. With this
setup, we propose an 8×8 split of the matrix, so that 64 MPI processes running on
4 nodes work together to carry out a matrix–vector product, each process running
on one core. This yields to a (n = 12,m = 24) block Wiedemann configuration.
The processes are distributed so that the processes running on the same node
are contiguous. This allows to accelerate the reduction/broadcast operations,
since data sharing between threads belonging to the same node is performed on
shared memory, not across the network. A speedup of 2.4 on the communication
delay is observed when comparing with the default MPI processes mapping.

In the following table, we compare the GPU and CPU setups. We observe
that starting from a certain matrix size and with these setups, the multi-core
acceleration prevails over the GPU one. For comparison, we add a setup, where
we have a cluster similar to the 48-node multi-core cluster, but containing two
NVIDIA GeForce GTX 680 on each node. This setup is not speculative, the
GPU setup obtained with 8 GPUs scales perfectly to 96 GPUs, thanks to the
cost-free distribution of block Wiedemann algorithm.

With the CPU setup, an iteration is performed in 2.1 s by the 64 parallel threads,
including 0.4 ms for communications. The Krylov phase required 22 in the 768-
core cluster, which is equivalent to 46-core years. The Lingen phase required 15

774 H. Jeljeli

hours running on 144 cores. The Mksol phase took 16 days in the 768-core cluster
(i.e. 34-core years). The overall computation required around 80-core years.

Matrix size
Setup

Blocking SpMV+com. Overall Ratio
(Memory) parameters delays [ms] comp. time com.

7.3M × 7.3M

8 GPUs (n = 2,m = 4)
420 + 195 65 days 32%

(9.8 GB)

on 4 nodes 4 GPUs ↔ 1 subtask
768 cores (n = 12,m = 24)

1700 + 400 39 days 19%
on 48 nodes 64 cores ↔ 1 subtask

96 GPUs (n = 24, m = 48)
420 + 195 5.5 days 32%

on 48 nodes 4 GPUs ↔ 1 subtask

5 Conclusion

In this article, we presented how the block solvers, in our case block Wiedemann
algorithm, distribute heavy computations without an additional overhead. We
discussed a further parallelization of the matrix-vector product and detailed
how we can efficiently run this computation in a cluster of GPUs or CPUs. In
the examples that we ran, we did not combine the two architectures on the
same computation. However, our final implementation can be run on a hybrid
GPU/Multi-core architecture.

Acknowledgments. The author is grateful to Jérémie Detrey and Emmanuel
Thomé. This work would not be possible without their support. We also thank
the reviewers for their valuable comments.

References

1. CUDA Programming Guide Version 5.5 (2013),
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

2. Adleman, L.M.: The function field sieve. In: Huang, M.-D.A., Adleman, L.M. (eds.)
ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)

3. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 1–12. Springer, Heidelberg (2007), http://eprint.iacr.org/

4. Bahr, F., Franke, J., Kleinjung, T.: Discrete logarithms in GF(p) - 160 digits, Email
to the NMBRTHRY mailing list (February 2007),
http://perso.univ-rennes1.fr/reynald.lercier/file/BFK07.txt

5. Bai, S., Filbois, A., Gaudry, P., Kruppa, A., Morain, F., Thomé, E., Zimmermann,
P.: CADO-NFS, Crible Algébrique: Distribution, Optimisation - Number Field
Sieve, http://cado-nfs.gforge.inria.fr/

6. Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé, E., Videau,
M., Zimmermann, P.: Discrete logarithm in GF(2809) with FFS. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 221–238. Springer, Heidelberg (2014)

7. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm for
discrete logarithm in finite fields of small characteristic. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer, Heidelberg
(2014)

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://eprint.iacr.org/
http://perso.univ-rennes1.fr/reynald.lercier/file/BFK07.txt
http://cado-nfs.gforge.inria.fr/

Resolution of Linear Algebra for the Discrete Logarithm Problem 775

8. Bouvier, C.: The filtering step of discrete logarithm and integer factorization algo-
rithms, p. 22 (2013) (Preprint)

9. Boyer, B., Dumas, J.G., Giorgi, P.: Exact sparse matrix-vector multiplication on
GPU’s and multicore architectures. CoRR, abs/1004.3719 (2010)

10. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Math. Comput. 62(205), 333–350 (1994)

11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

12. Dutta, R., Barua, R., Sarkar, P.: Pairing-based cryptographic protocols: a survey.
Cryptology ePrint Archive, Report 2004/064 (2004)

13. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

14. Jeljeli, H.: Accelerating iterative SpMV for Discrete Logarithm Problem using
GPUs, p. 11 (2013) (Preprint), http://hal.inria.fr/hal-00734975

15. Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields. a comparison with the Gaussian integer method. Math-
ematics of Computation 72(242), 953–967 (2003)

16. Joux, A., Lercier, R.: Discrete logarithms in GF(2607) and GF(2613). E-mail to the
NMBRTHRY mailing list (September 2005),
http://listserv.nodak.edu/archives/nmbrthry.html

17. Kaltofen, E.: Analysis of Coppersmith’s block Wiedemann algorithm for the par-
allel solution of sparse linear systems. Mathematics of Computation (1995)

18. Kleinjung, T., et al.: Factorization of a 768-bit rsa modulus. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010),
http://eprint.iacr.org/

19. C. Lanczos. Solution of systems of linear equations by minimized iterations. J.
Res. Natl. Bur. Stand, 49:33–53, 1952.

20. Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic sig-
nificance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) Advances in Cryptology -
EUROCRYPT 1984. LNCS, vol. 209, pp. 224–314. Springer, Heidelberg (1985)

21. Pomerance, C., Smith, J.W.: Reduction of huge, sparse matrices over finite fields
via created catastrophes. Experiment. Math. 1, 89–94 (1992)

22. Potluri, S., Hamidouche, K., Venkatesh, A., Bureddy, D., Panda, D.K.: Efficient
inter-node mpi communication using gpudirect rdma for infiniband clusters with
nvidia gpus. In: ICPP, pp. 80–89. IEEE (2013)

23. Zumbragel, J., Granger, R., Kleinjung, T.: Discrete logarithms in GF(29234). E-
mail to the NMBRTHRY mailing list (January 2014),
http://listserv.nodak.edu/archives/nmbrthry.html

24. Schmidt, B., Aribowo, H., Dang, H.-V.: Iterative sparse matrix-vector multiplica-
tion for integer factorization on GPUs. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 413–424. Springer, Heidelberg
(2011)

25. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4),
354–356 (1969)

26. Thomé, E.: Subquadratic computation of vector generating polynomials and im-
provement of the block Wiedemann algorithm. Journal of Symbolic Computa-
tion 33(5), 757–775 (2002)

27. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theor. 32(1), 54–62 (1986)

http://hal.inria.fr/hal-00734975
http://listserv.nodak.edu/archives/nmbrthry.html
http://eprint.iacr.org/
http://listserv.nodak.edu/archives/nmbrthry.html

Toward OpenCL Automatic Multi-Device

Support

Sylvain Henry1, Alexandre Denis2, Denis Barthou3, Marie-Christine Counilh3,
and Raymond Namyst3

1 Exascale Computing Research Laboratory, France
sylvain.henry@exascale-computing.eu
2 Inria Bordeaux – Sud-Ouest, France

alexandre.denis@inria.fr
3 Univ. of Bordeaux, France

denis.barthou@inria.fr, {counilh,raymond.namyst}@labri.fr

Abstract. To fully tap into the potential of today heterogeneous ma-
chines, offloading parts of an application on accelerators is no longer
sufficient. The real challenge is to build systems where the application
would permanently spread across the entire machine, that is, where par-
allel tasks would be dynamically scheduled over the full set of available
processing units. In this paper we present SOCL, an OpenCL imple-
mentation that improves and simplifies the programming experience on
heterogeneous architectures. SOCL enables applications to dynamically
dispatch computation kernels over processing devices so as to maximize
their utilization. OpenCL applications can incrementally make use of
light extensions to automatically schedule kernels in a controlled man-
ner on multi-device architectures. We demonstrate the relevance of our
approach by experimenting with several OpenCL applications on a range
of heterogeneous architectures. We show that performance portability is
enhanced by using SOCL extensions.

1 Introduction

Heterogeneous architectures are becoming ubiquitous in high-performance com-
puting centers as well as in embedded systems [1]. The number of top supercom-
puters using accelerators such as GPU or Xeon Phi keeps growing. As a result,
for an increasing part of the HPC community, the challenge has shifted from
exploiting hierarchical multicore machines to exploiting heterogeneous multi-
core architectures. The Open Computing Language (OpenCL) [2] is part of this
effort. It is a specification for heterogeneous parallel programming, providing
a portable programming language together with a unified interface to interact
with the different processing devices. In OpenCL, programmers explicitly define
code fragments (kernels) to be executed on particular devices. Kernel execu-
tions, synchronizations, and data transfers are then explicitly triggered by the
host and dependencies are enforced by user-defined events. OpenCL applications
are portable over a wide range of supported platforms. However, performance

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 776–787, 2014.
c© Springer International Publishing Switzerland 2014

Toward OpenCL Automatic Multi-Device Support 777

portability is still difficult to achieve because high performance kernels have to be
adapted in term of (i) parallelism, (ii) granularity and (iii) memory working set
to the target device architecture. Adapting parallelism requires that the implicit
kernel dependence graph built by the programmer exposes enough parallelism
to feed all computing devices. This effort has to be achieved by the user. As each
task has to be mapped to a particular device in OpenCL, load-balancing strate-
gies for heterogeneous architectures have also to be hand-tuned. Load-balancing
issues for heterogeneous platforms are clearly a limiting performance factor for
OpenCL codes. Likewise, adapting granularity is a strong scalability require-
ment, and since different devices may have very different memory hierarchies,
granularity and working sets have also a high impact on performance. While
OpenCL kernels are compiled at load-time, their granularity are determined by
the user. Adapting granularity thus results in writing as many kernels as there
are different devices. Performance comes therefore at the expense of portability,
reducing the competitive edge of OpenCL compared to other parallel languages.

Our contribution lies in the design, implementation and validation of new
OpenCL mechanisms that tackle load-balancing issues on heterogeneous de-
vices. Kernels submitted by users are automatically scheduled on devices by
our OpenCL runtime system. It handles load-balancing issues and maintains the
coherency of data across all devices by performing appropriate data transfers be-
tween them. These mechanisms have been implemented in our unified OpenCL
platform, named SOCL. We show that existing OpenCL codes, where devices
and memory transfers are managed manually can be migrated incrementally to
automatic scheduling and memory management with SOCL. With little impact
on the code, making OpenCL codes use SOCL implementation is a way to adapt
transparently to multi-device architectures.

The remainder of this paper is organized as follows: we present SOCL, our
unified OpenCL platform in Sect. 2, and its implementation in Sect. 3; in Sect. 4,
we evaluate the performance of SOCL; in Sect. 5, we compare our work with
existing related works; finally we draw conclusions in the last section.

2 Dynamic Adaptation of Parallelism to Heterogeneous
Architectures

We aim at bringing dynamic architecture adaptation features into an OpenCL
framework called SOCL. In this section we show how OpenCL applications can
benefit from the following advantages: (1) a unified OpenCL platform, (2) an
automatic memory management over all devices, and (3) an automatic command
scheduler.

2.1 SOCL: A Unified OpenCL Platform

The OpenCL specification defines a programming interface (API) for the host
to submit commands to computing devices, and a programming language called
OpenCL C language for writing the kernels — the tasks to execute on the

778 S. Henry et al.

...Vendor A
OpenCL

Vendor Z
OpenCLSOCL

Installable Client Driver (libOpenCL)

Application

Installable Client Driver (libOpenCL)

...Vendor A
OpenCL

Vendor Z
OpenCLSOCL

Fig. 1. SOCL unified platform uses OpenCL implementations from other vendors and
can be used as any other implementation using the ICD. Thus, SOCL is both an
OpenCL implementation and an OpenCL (client) application.

devices. Kernels can be dynamically compiled during the execution of the appli-
cation for any available accelerator device that supports OpenCL.

To handle the case where multiple OpenCL devices from different vendors are
available on a given machine, each vendor provides an implementation of the
OpenCL specification, called a platform. The Installable Client Driver (ICD) ex-
poses all platforms available for an application. Devices that need to be synchro-
nized, to share or exchange data can be grouped into context entities. However
OpenCL is restrictive about interaction between devices: devices in a context
must all belong to the same platform. Thus it prevents synchronization com-
mands between devices from different vendors — as is often found on heteroge-
neous architectures.

As an answer to this issue we propose a unified platform provided by SOCL.
It can be used like any other OpenCL implementation with the OpenCL host
API. As the ICD extension is supported, it can be installed side-by-side with
other OpenCL implementations and applications can dynamically choose to use
it or not among available OpenCL platforms, as depicted in Fig. 1.

A distinctive feature of SOCL is that it wraps all entities of the other plat-
forms into entities of its own unified platform. SOCL implements everything
needed to make this unified platform support every OpenCL mechanism defined
in the specification. Hence, applications using SOCL unified platform can create
contexts mixing devices that were initially in different platforms. In particular,
it is possible to use command queues, context and events for tasks to schedule
on different devices.

2.2 Automatic Memory Management

SOCL provides a global virtual memory encompassing every device memory and
part of the host memory with a relaxed consistency model. Every buffer can be
accessed by any command (kernel execution, transfer, etc.) on any device because
the runtime system ensures that a valid copy of the buffer is present in the device
memory before executing the command, performing appropriate data transfers
beforehand if required. Moreover it ensures that two commands accessing the

Toward OpenCL Automatic Multi-Device Support 779

GPU GPU CPU

clEnqueue*

Context 0
Context 1

(a) Explicit mapping with
OpenCL contexts

GPU GPU CPU

clEnqueue*

Context 0
Context 1

(b) Explicit or automatic
mapping with SOCL
scheduling contexts

Fig. 2. (a) Command queues are attached to single devices (b) Context queues are
attached to contexts and SOCL automatically schedules commands on devices in the
context

same buffer are not executed simultaneously if one of them is writing, while a
buffer can be concurrently accessed for reading. Finally, as commands can be
enqueued in advance (into command queues), SOCL can anticipate some data
transfers for commands whose dependencies have not yet completed.

In addition to device memories, SOCL uses host memory space to store buffers
that have to be evicted from a device memory to make some room for other
buffers as well as to perform indirect data transfers between device memories.
When buffers are created using host memory mapping (CL MEM USE HOST PTR

flag), the host memory space is aggregated to the SOCL managed host memory
and must not be used directly anymore (i.e., without using OpenCL API) by the
application. Temporarily direct access to a buffer in the managed host memory
can be obtained using OpenCL buffer mapping in host address space facilities
(clEnqueueMapBuffer).

Using the CL MEM USE HOST PTR flag is the preferred way to create initialized
buffers with SOCL as it avoids any superfluous data transfer. Nevertheless other
mechanisms such as explicitly writing into a buffer (i.e., WriteBuffer command)
or writing into a buffer mapped in host address space are fully supported.

2.3 Automatic Command Scheduler

In OpenCL applications, commands such as kernel executions, memory transfers
or synchronizations are submitted to a command queue attached to a single
device. Synchronization between commands from different queues is possible
using event entities. Events give a fine control of the dependencies between
commands. As such they subsume command queue ordering and barriers. Each
command can trigger an event when the command completes, and depends on
a list of events triggered by other commands. Events can only be defined and
used within the same context.

We propose to attach command queues to contexts, independently of any par-
ticular device, as illustrated on Fig. 2. It enables the runtime system to sched-
ule commands submitted to these queues onto any device of the context. This
extends the notion of context to what we call scheduling contexts, and these

780 S. Henry et al.

Listing 1.1. Context queue creation example. Scheduling and load-balancing of com-
mands submitted in these queues are automatically handled by SOCL.

cl_context ctx1 = clCreateContextFromType(NULL ,
CL_DEVICE_TYPE_GPU | CL_DEVICE_TYPE_ACCELERATOR, NULL , NULL , NULL);

cl_context ctx2 = clCreateContextFromType(NULL ,
CL_DEVICE_TYPE_CPU | CL_DEVICE_TYPE_ACCELERATOR, NULL , NULL , NULL);

cl_command_queue cq1 = clCreateCommandQueue(ctx1 , NULL , 0,
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, NULL);

cl_command_queue cq2 = clCreateCommandQueue(ctx2 , NULL , 0,
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, NULL);

Listing 1.2. Context properties are used to select the scheduling policy.

cl_context_properties properties[] = { CL_CONTEXT_SCHEDULER_SOCL, "heft", 0 };
cl_context ctx =
clCreateContextFromType(properties , CL_DEVICE_TYPE_CPU, NULL , NULL , NULL);

command queues are named context queues. Thanks to context queues, program-
mer may rely on automatic task placement by the runtime system, rather than
to decide placement manually. On another hand, it does not forbid manual place-
ment if programmer wants so for optimization purposes. Several contexts may be
created to ease application development, e.g., programmer may create a context
queue with all accelerators for data parallel tasks (GPU, Xeon Phi) and another
context queue for code with more control (CPU, Xeon Phi). Listing 1.1 shows an
example of code with two scheduling contexts and two context queues. Note that
command queues are created with a NULL device since they are context queues.

The runtime scheduling strategy has to take into account various device prop-
erties such as: memory capacity, so as not to saturate a device memory; affinity
between tasks, i.e., schedule tasks on the same device as their input buffer already
is; performance of devices, i.e., schedule tasks on the most efficient device for the
task. A predefined set of scheduling strategies assigning commands to devices is
available for SOCL, brought by StarPU. They can be selected through context
properties. For instance, the code in Listing 1.2 selects the heft scheduling pol-
icy, implementing the Heterogeneous Earliest Finish Time heuristic [3], based on
estimated tasks and transfers durations. Other heuristics are available, such as
eager where every device picks a task in a shared queue when it becomes idle,
and additional strategies can be user-defined if need be.

3 SOCL Implementation

SOCL currently implements the whole OpenCL 1.0 specification (except imag-
ing), and parts of newer specifications. SOCL relies on StarPU [4] run-
time system. Namely, SOCL is an OpenCL frontend for StarPU with unified
platform, and is distributed as open-source software together with StarPU.
StarPU uses a task-based programming model with explicit dependencies; SOCL

Toward OpenCL Automatic Multi-Device Support 781

extends StarPU memory management and event mechanism in order to handle
all OpenCL specification.

When a kernel is created using OpenCL, the SOCL implementation automat-
ically handles the allocation and configuration of a StarPU kernel. When an
OpenCL kernel is enqueued for execution, a StarPU task is created and config-
ured to be executed on appropriate devices (all the devices of the target context
or a selected device). OpenCL provides two mechanisms to order task executions:
events, i.e., explicit dependencies, and synchronization on command queues. Im-
plicit dependencies between kernels placed in an in-order command queue are
converted by SOCL into explicit dependencies for StarPU. Similarly, barriers
are also translated into explicit dependencies between tasks separated by these
synchronizations.

To implement OpenCL buffer allocation, SOCL triggers the allocation of
StarPU data, of the ”variable” flavor, following StarPU terminology. To im-
plement OpenCL buffer initialization mechanisms, SOCL circumvents StarPU
limitations. Indeed, StarPU only provides a registering mechanism similar to
OpenCL buffer allocation when the CL USE HOST PTR is set. All the other al-
location modes in OpenCL have been implemented within SOCL. Moreover,
data transfers between host memory and buffers are not supported directly by
StarPU, where transfers are the consequence of data dependence between tasks.
In SOCL, the implementation of ReadBuffer and WriteBuffer commands for
instance resorts to StarPU tasks with no computational part but dependent on
the data to transfer.

4 Performance Evaluation

In this section, we present performance figures to show the benefits of our ap-
proach. Three OpenCL benchmarks are considered: Black-Scholes, LuxRender
and HDR Tone Mapping. Experiments are conducted on the following hardware
platforms: hannibal— Intel Xeon X5550 2.67GHz with 24GB, 3 Nvidia Quadro
FX 5800; alaric — Intel Xeon E5-2650 2.00GHz with 32GB, 2 AMD Radeon
HD 7900; averell — Intel Xeon E5-2650 2.00GHz with 64GB, 2 Nvidia Tesla
M2075. The software comprises Linux 3.2, AMD APP 2.7, Intel OpenCL SDK
1.5 and Nvidia CUDA 4.0.1.

4.1 Black-Scholes

The Black-Scholes model is used by some option market participants to estimate
option prices. Given three arrays of n values, it computes two new arrays of n
values. The code is easily parallelized in any number of blocks of any size. We use
the kernel provided by Nvidia OpenCL SDK, using float values for each array.

Figures 3a, 3b and 3c present performance obtained on hannibal with blocks
of fixed size of 1 million, 5 millions and 25 millions options, comparing Intel
OpenCL, Nvidia OpenCL, and SOCL. Intel and Nvidia OpenCL tests have been
performed using a static round-robin distribution of the blocks on devices. Since

782 S. Henry et al.

10 25 50 100 150 200 250 300 500

Intel
NVidia
SOCL

Blocks

G
O

pt
io

ns
/s

0.
0

0.
2

0.
4

0.
6

(a) 1M options/block

10 25 50 100 150 200 250

Intel
NVidia
SOCL

Blocks

G
O

pt
io

ns
/s

0.
0

0.
2

0.
4

0.
6

(b) 5M options/block

10 25 50 100 150

Intel
NVidia
SOCL

Blocks

G
O

pt
io

ns
/s

0.
0

0.
2

0.
4

0.
6

(c) 25M options/block

5 10 20 30 40 50 60 70 80 90 100

Intel
NVidia
SOCL

Blocks

G
O

pt
io

ns
/s

0
5

10
15

(d) total 25M options, 10 iterations

Fig. 3. Performance of Black-Scholes algorithm with blocks containing 1M (a), 5M (b)
and 25M options (c). Performance of 10 iterations with a total of 25M options (d).

Nvidia OpenCL implementation is restricted to GPU memory, it fails in case
the problem does not fit graphic card memory, which explains why some results
are missing for Nvidia. SOCL tests were obtained with automatic scheduling
mode, able to schedule tasks on any device (GPU or CPU). On this example,
SOCL automatic scheduling always reaches better performance than round-robin
approach, nearly doubling performance in the case of 1M options (for 100 blocks).
This is due to the fact that both computing devices (CPU and GPU) are used,
while Nvidia and Intel OpenCL implementations use only one type of device.

Figure 3d shows results obtained on 10 iterations on the same data set using
the same kernel, with a total option count of 25 millions. It illustrates the benefits
of automatic memory management associated with scheduling, when there is
some temporal locality. The test was conducted on averell. The heft algorithm
clearly outperforms the other approaches in this case, and avoids unnecessary
memory transfers. Indeed, this algorithm takes into account memories into which
data are stored to schedule tasks. This advantage comes with very little impact
on the original OpenCL code, since it only requires to define a scheduling strategy
for the context, and to remove device information in the definition of command
queues.

Overall, this example shows the benefits of a unifying platform, able to use
both CPU and GPUs with an efficient dynamic memory management allowing
large computations to be performed on GPUs, contrary to Nvidia OpenCL im-
plementation. It exhibits a performance gain up to 85% without data reuse and
way higher in case of data reuse.

Toward OpenCL Automatic Multi-Device Support 783

CPU CPU
1 GPU

CPU
2 GPUs

2 GPUs 1 GPU

AMD APP
Intel SDK
SOCL

S
am

pl
es

/s
ec

 (
av

er
ag

e
in

 m
ill

io
ns

)

0

1

2

3

4

(a) Results on alaric

CPU CPU
1 GPU

CPU
2 GPUs

2 GPUs 1 GPU

Nvidia OpenCL
Intel SDK
SOCL

S
am

pl
es

/s
ec

 (
av

er
ag

e
in

 m
ill

io
ns

)

0.0

0.5

1.0

1.5

2.0

2.5

(b) Results on averell

Fig. 4. LuxRender benchmark results (average number of samples rendered per second)

4.2 LuxRender

LuxRender [5] is a rendering engine that simulates the flow of light using phys-
ical equations and produces realistic images. LuxRays is a part of LuxRender
that deals with ray intersection using OpenCL to benefit from accelerator de-
vices. SLG2 (SmallLuxGPU2) is an application that performs rendering using
LuxRays and returns some performance metrics. SLG2 can only use a single
OpenCL platform at a time. As such, it is a good example of an application that
could benefit from SOCL property of grouping every available device in a single
OpenCL platform.

For this experiment, we use the existing SLG2 OpenCL code unmodified, and
run on Nvidia, AMD, Intel OpenCL and SOCL with the example “luxball” scene
with default parameters. We use batch mode and run rendering for 120 seconds.
We disable CPU compute threads to avoid conflicts with OpenCL CPU devices.

The average amount of samples computed per second for each OpenCL plat-
form is shown in Fig. 4. When a single device is used (CPU or GPU), SOCL intro-
duces only a small overhead compared to the direct use of the vendor OpenCL.
However in the case of a single AMD GPU, SOCL outperforms the vendor im-
plementation, presumably thanks to a better data pre-fetching strategy.

On alaric, CPU is better handled with the Intel OpenCL implementation
than with AMD OpenCL. The best performance is obtained with the SOCL plat-
form using 2 GPUs and the CPU, combining the use of the AMD implementation
for the GPUs and the Intel for the CPU. On averell, the best performance is
also obtained with SOCL when it uses both Nvidia and Intel implementations.

This test shows that an OpenCL application designed for using a single
OpenCL platform can directly benefit from using the SOCL unified platform
without any change in its code.

4.3 HDR Tone Mapping

HDR Tone Mapping is an image processing technique to render a high dynamic
range image on a device with a limited dynamic range. Intel has implemented [6]

784 S. Henry et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Intel
1CPU

Nvidia
1GPU

SOCL
1CPU

SOCL
1GPU

SOCL
3GPUs

SOCL
1CPU+1GPU

SOCL
1CPU+3GPUs

Nvidia
3GPUs

Sp
ee

du
p

HDR Tone Mapping - Hannibal - Image size 1600*12000 - 20 frames

dyn. adjustement
1 kernel

2 kernels
3 kernels
4 kernels
5 kernels

Fig. 5. Speed-ups for HDR Tone Mapping on hannibal, relative to SOCL/ 1 GPU.

this technique in OpenCL. Their code features multi-device support, both CPU
and GPU, given that both devices are in the same platform (Intel GPU and
CPU). Each frame is split to balance load between CPU and GPU, the split-
ting ratio being dynamically computed based on processing times measured for
previous frames.

We have modified the code to run more than two kernels, with an equal
amount of data between kernels, in order to let SOCL perform kernel schedul-
ing using the heft scheduler. Kernels are submitted to SOCL command queue
attached to context with out-of-order execution. The number of kernels can be
greater than the number of devices.

Our benchmark consists in rendering 20 frames for an image of size 1600 ×
12000. The results are shown in Fig. 5. Original code with dynamic load bal-
ancing is referred to as “dynamic adjustment”. Since our test machine has an
Nvidia GPU, not Intel, the original dynamic adjustment code runs on CPU (In-
tel platform) or GPU only (Nvidia platform). It can use CPU+GPU through
our SOCL platform which unifies both devices on a single virtual platform, and
gives only a small performance boost compared to CPU or GPU only. The mod-
ified code running on SOCL gets similar performance to the original code on
GPU and CPU+GPU. It is slower on CPU alone, which is explained by the fact
that SOCL considers CPU as a regular OpenCL device and performs memory
transfers that could be optimized out in a future version. When all 3 GPUs
are used by SOCL, we get a speed-up of 2.6 with the modified code, and Nvidia
OpenCL gets a speed-up of 1.5; the difference may be explained by StarPU man-
aging data transfers better than the application code. For CPU+3 GPUs, SOCL
performance is roughly the same since CPU is slow on this example; thanks to
SOCL scheduler, adding a slow CPU to device set does not degrade performance.

This benchmark demonstrates that SOCL is able to efficiently aggregate per-
formance of multiple OpenCL devices. Contrary to original Intel code, it is able
to aggregate performance of devices from multiple platforms, and more than two
devices. Moreover, it handles kernel scheduling and load balancing in a generic
fashion in the runtime system, rather than hard-coded in the application. The
speed-ups we obtain are convincing.

Toward OpenCL Automatic Multi-Device Support 785

5 Related Works

About unifying OpenCL devices. IBM OpenCL Common Runtime [7] provides
a unified OpenCL platform consisting of all devices provided by other available
implementations, like SOCL does. However OpenCL Common Runtime does not
provide automatic scheduling. Multicoreware GMAC (Global Memory for Ac-
celerator) [8] allows OpenCL applications to use a single address space for both
GPU and CPU kernels. However, it defines its own API on contrary to SOCL.
Kim et al. [9] propose an OpenCL framework that considers all available GPUs
as a single GPU. It partitions the work-groups among the different devices, so
that all devices have the same amount of work. Their approach does not handle
heterogeneity among GPUs, nor a hybrid architecture with CPUs and GPUs,
and the workload distribution is static. Besides, data dependences between tasks
are not considered since work-groups are all independent. De La Lama et al.[10]
propose a compound OpenCL device in order to statically divide the work of
one kernel among the different devices. Maestro[11] is a unifying framework for
OpenCL, providing scheduling strategies to hide communication latencies with
computation. Maestro proposes one unifying device for heterogeneous hardware.
Automatic load balance is achieved thanks to an autotuned performance model,
obtained through benchmarking at install-time. This mechanism also help to
adapt the size of the data chunks given as parameters to kernels. On contrary
to SOCL, Maestro assumes the kernels can be tuned at compile-time, while
SOCL applies dynamic scheduling strategy at runtime which is more flexible.
SnuCL [12] is an OpenCL framework for clusters of CPUs and GPUs. The SnuCL
runtime does not offer automatic scheduling between CPUs and GPUs, on con-
trary to SOCL and the scheduling is performed by the programmer. Moreover,
SnuCL does not handle multi-device on the same node. The approach of SnuCL
(multiple nodes, one device per node) is complementary to SOCL (single node,
mutliple devices).

About automatic scheduling on heterogeneous architectures. Grewe and
O’Boyle [13] propose a static approach to load partitioning and scheduling. At
runtime, the decision to schedule code uses a predictive model based on deci-
sion trees built at compile time from microbenchmarks. However, the case of
multiple GPU is not directly handled, and the decision to schedule a code to a
device does not take into account memory affinity considerations. Besides, some
recent works use OpenCL as the target language for other high-level languages
(for instance, CAPS HMPP [14] and PGI [15]). Grewe et al. [16] propose to use
OpenMP parallel programs to program heterogeneous CPU/GPU architectures,
based on their previous work on static predictive model. The work proposed
here for SOCL could be used in these contexts. Finally, several previous works
have proposed dedicated API and runtimes for the automatic scheduling on het-
erogeneous architectures. StarPU [4] is a runtime system that provides both a
global virtual memory and automatic kernel scheduling on heterogeneous ar-
chitectures. SOCL currently relies on it internally and provides the additional
OpenCL implementation layer that was not available initially in StarPU which

786 S. Henry et al.

only supports its own programming interface. Qilin, StarSS and Kaapi [17,18,19]
are other examples of runtimes for heterogeneous architectures, that do not rely
on the standard OpenCL programming interface but on special APIs or code an-
notations. Boyer et al.[20] propose a dynamic load balancing approach, based on
an adaptive chunking of data over the heterogeneous devices and the scheduling
of the kernels. The technique proposed focuses on how to adapt the execution of
one kernel on multiple devices. SOCL offers a wider range of applications made
of multiple kernels, scheduled using dependencies.

6 Conclusion and Future Work

The OpenCL language is a rosetta stone to program heterogeneous parallel com-
puting platforms. It is portable across a range of different devices and make them
usable through a unified interface. However it lacks mechanisms to make multiple
devices usable seamlessly.

In this paper we have presented several extensions to OpenCL to simplify
programming of applications on heterogeneous architectures. We have proposed
the SOCL platform, able to make OpenCL mechanisms usable equally with all
devices regardless of their initial platform. In addition, SOCL offers a mechanism
to automatically schedule commands on devices belonging to a context.

The unified platform proposed in SOCL means that OpenCL applications do
not have to worry about data transfers and kernel scheduling. These operations
are automatically performed. It requires only minor changes to existing OpenCL
code to use context queues rather than explicit device queues. This brings sig-
nificant performance gain on multi-GPU, multi-core machines, compared to so-
lutions using only the GPUs. Moreover, we have shown that automatic memory
management in SOCL enabled large computations to be performed on GPUs,
on contrary to other OpenCL implementations.

As future work, we currently study a preliminary strategy to adapt dynami-
cally the granularity of kernels, in order to adapt to the heterogeneity. The user
explicitly gives a function to divide work; the runtime calls it whenever it needs
more parallelism to feed devices. Preliminary results are promising but need fur-
ther exploration about strategies to choose the best suited granularity for given
devices.

References

1. HSA Foundation: Heterogeneous System Architecture (2012),
http://hsafoundation.com

2. Khronos OpenCL Working Group: The OpenCL Specification, Version 1.2 (2011)
3. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity

task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260–274 (2002)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009)

http://hsafoundation.com

Toward OpenCL Automatic Multi-Device Support 787

5. LuxRender: GPL physically based renderer (2013), http://www.luxrender.net
6. Intel: Hybrid HDR tone mapping for post processing multi-device version (2013),

http://software.intel.com/en-us/vcsource/samples/

hdr-tone-mapping-multi-device

7. IBM: OpenCL Common Runtime for Linux on x86 Architecture (version 0.1)
(2011)

8. Multicoreware, Inc.: GMAC: Global Memory for Accelerator, TM: Task Manager
(2011), http://www.multicorewareinc.com

9. Kim, J., Kim, H., Lee, J.H., Lee, J.: Achieving a single compute device image in
opencl for multiple gpus. In: Proceedings of the 16th ACM Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP 2011, pp. 277–288. ACM, New
York (2011)

10. de La Lama, C., Toharia, P., Bosque, J., Robles, O.: Static multi-device load bal-
ancing for opencl. In: 2012 IEEE 10th International Symposium on Parallel and
Distributed Processing with Applications (ISPA), pp. 675–682 (2012)

11. Spafford, K., Meredith, J., Vetter, J.: Maestro: data orchestration and tuning for
OpenCL devices. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010,
Part II. LNCS, vol. 6272, pp. 275–286. Springer, Heidelberg (2010)

12. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: SnuCL: an OpenCL framework for
heterogeneous CPU/GPU clusters. In: Proceedings of the 26th ACM International
Conference on Supercomputing, ICS 2012, pp. 341–352. ACM, New York (2012)

13. Grewe, D., O’Boyle, M.F.P.: A Static Task Partitioning Approach for Heteroge-
neous Systems Using OpenCL. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp.
286–305. Springer, Heidelberg (2011)

14. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A hybrid Multi-core Parallel Program-
ming Environment (2007)

15. Wolfe, M.: Implementing the PGI accelerator model. In: GPGPU (2010)
16. Grewe, D., Wang, Z., O’Boyle, M.F.: Portable mapping of data parallel programs

to opencl for heterogeneous systems. In: ACM/IEEE International Symposium on
Code Generation and Optimization, Shenzen, China (February 2013)

17. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 42, pp. 45–55. ACM, New
York (2009)

18. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ort́ı, E.S.:
An Extension of the StarSs Programming Model for Platforms with Multiple GPUs.
In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 851–
862. Springer, Heidelberg (2009)

19. Gautier, T., Besseron, X., Pigeon, L.: KAAPI: A thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: Proceedings of the
2007 International Workshop on Parallel Symbolic Computation, PASCO 2007,
pp. 15–23. ACM, New York (2007)

20. Boyer, M., Skadron, K., Che, S., Jayasena, N.: Load balancing in a changing world:
Dealing with heterogeneity and performance variability. In: IEEE Computing Fron-
tiers Conference (2013)

http://www.luxrender.net
http://software.intel.com/en-us/vcsource/samples/hdr-tone-mapping-multi-device
http://software.intel.com/en-us/vcsource/samples/hdr-tone-mapping-multi-device
http://www.multicorewareinc.com

Concurrent Kernel Execution on Xeon Phi

within Parallel Heterogeneous Workloads

Florian Wende1, Thomas Steinke1, and Frank Cordes2

1 Zuse Institute Berlin, Takustraße 7, D-14195 Berlin, Germany
{wende,steinke}@zib.de

2 GETLIG&TAR GbR, Bachstelzenstraße 33A, D-14612 Falkensee, Germany
cordes@getlig.com

Abstract. Computations with a sufficient amount of parallelism and
workload size may take advantage of many-core coprocessors. In con-
trast, small-scale workloads usually suffer from a poor utilization of the
coprocessor resources. For parallel applications with small but many com-
putational kernels a concurrent processing on a shared coprocessor may
be a viable solution. We evaluate the Xeon Phi offload models Intel LEO
and OpenMP4 within multi-threaded and multi-process host applica-
tions with concurrent coprocessor offloading. Limitations of OpenMP4
regarding data persistence across function calls, e.g. when used within
libraries, can slow down the application. We propose an offload-proxy
approach for OpenMP4 to recover the performance in these cases. For
concurrent kernel execution, we demonstrate the performance of the dif-
ferent offload models and our offload-proxy by using synthetic kernels
and a parallel hybrid CPU/Xeon Phi molecular simulation application.

1 Introduction

Throughout the different kinds of applications from science and economy per-
formance gains by up to one order of magnitude are demonstrated by using co-
processors like GPGPUs (General Purpose Graphics Processing Units) or Intel’s
Xeon Phi instead of traditional multi-core CPUs when the problem is large-scale
and highly regular [1,2]. In contrast, small-scale computations usually suffer from
a poor utilization of the coprocessor device as a whole. A usual means to achieve
acceptable utilization in these cases is executing many such computations in a
concurrent manner. This can be done either by merging multiple small compute
kernels into a larger “super kernel,” or by offloading multiple small kernels for a
“concurrent kernel execution” on the coprocessor.

Our work addresses application scenarios of the said type with offloads to
the Xeon Phi (“Phi” for short hereafter) from within multi-threaded and multi-
process workloads. Our contributions are:

1. A performance evaluation of concurrent offloading to Xeon Phi using Intel’s
Language Extension for Offload (LEO) and OpenMP4.

2. We study the impact of thread placements on Xeon Phi: Multiple concurrent
offloads should not perturb each other.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 788–799, 2014.
c© Springer International Publishing Switzerland 2014

Concurrent Kernel Execution on Xeon Phi 789

3. We demonstrate how multiple simultaneous offload data transfers between
host and Xeon Phi can affect the overall program performance.

4. For OpenMP4, we propose an offload-proxy pattern to enable data persis-
tence across different function scopes.

In Section 2 we discuss related work. Section 3 is on the Xeon Phi copro-
cessor and it briefly introduces the Intel LEO and OpenMP4 offload program-
ming model. In Section 4 we use synthetic kernels to get information about the
achievable performance in the case of compute and memory bound computa-
tions. Section 5 focuses on a real-world application implementing a simulation
of a small molecule solvated within a nanodroplet. The application serves as a
representative of a parallel heterogeneous workload. Section 6 concludes.

2 Related Work

The offload model and runtime system for the Intel Xeon Phi coprocessor is
detailed by Newburn et al. [3].

Johnson et al. [4] explore the support for, what the authors call, Many-Task
Computing (MTC) on the Xeon Phi platform. The authors’ framework GeMTC
is interfaced to Intel’s SCIF communication API. It is based on a client server
architecture with persistent threads or processes on the Phi. The authors inves-
tigate the overhead associated with the task offload itself. With 90% efficiency
their approach outperforms OpenMP’s offload mechanism.

Somehow related to our real-world application, Pennycook et al. [5] analyze
the miniMD benchmark (Sandia) on Xeon Phi. The authors present a variety
of optimizations, e.g. taking advantage of the Phi’s SIMD units. They achieve
performance improvements of about a factor 4 – 5 depending on the problem
size and the cut-off value. With their minimal size of 32,000 atoms, the authors
consider problem sizes that are more than one order of magnitude above what
is addressed by our real-world application.

Prior to Xeon Phi, concurrent kernel execution [6] has been known from Nvidia
GPGPUs of the Fermi architecture and later. A major drawback of Fermi is
false-serialization of concurrent kernels as a result of the GPU is fed by just one
task queue [7]. Current Nvidia GPGPUs provide 32 hardware queues (Hyper-Q)
to improve concurrent kernel execution. Investigations on using Hyper-Q from
within parallel workloads on the host can be found in [8]. However, a comparison
of Xeon Phi offloading with its GPGPU counterpart is not part of this work.

3 Intel Xeon Phi Offload Programming

The Xeon Phi coprocessor is based on Intel’s Many Integrated Core (MIC) ar-
chitecture. It presently holds up to 61 64-bit compute cores [9], each of which
with fully-coherent L1 and L2 cache, a 512-bit SIMD vector unit, and 4-way
hardware multi-threading. Current Xeon Phis are used as coprocessors to a dis-
tinguished host system, where communication with the host is over PCIexpress

790 F. Wende, T. Steinke, and F. Cordes

(PCIe). The Phi runs its own Linux OS, enabling for a flexible integration into
cluster- and supercomputer setups.

From the programmers point of view there are two approaches to involve the
Phi into computations: (i) native program execution with support for message
passing, e.g. via MPI, and (ii) offload execution with the Phi as a coprocessor
to the CPU. While native execution on Xeon Phi requires the entire application
be parallelizable, the offload model is the common means to involve the Phi into
codes with both serial and parallel sections. In this work, we therefore focus on
the offload model and compare against native executions only where meaningful.

Intel LEO and OpenMP4. The Intel Language Extension for Offload (LEO)
is a non-shared memory offload model for the Intel Xeon Phi coprocessor [9]. It
provides a set of directives to the programmer that allow to mark code regions
within a host program to be executed on the coprocessor if present. Since host
and coprocessor are physically separate compute devices, memory transfers be-
tween the two are necessary in order to provide data for and get results of the
computation(s). The models are appropriate for dealing with flat data structures
that can be moved bitwise between host and coprocessor. For array-based data
structures the copy direction, and the amount of elements to be moved need to
be specified in the offload clauses – the actual copy process is implicit.

Figure 1 gives a code snippet that adds two vectors a and b into c using LEO
and OpenMP4 – Xeon Phi device 0 is used. a and b are moved from the host to
the coprocessor, and c is copied back after the computation. Except for different
directives and clauses OpenMP4 is compatible with LEO.

Persistent Data on the Coprocessor. The execution of the offload regions
in Fig. 1 go along with the (de)allocation of memory buffers on the coprocessor
and the actual data transfers into/from these buffers before and after the offload
computation. Repeated offloading with intensive data transfers thus can result
in non-negligible overhead and hence reduced overall performance.

Both LEO and OpenMP4 allow for the allocation of memory on the copro-
cessor, retaining and reusing it across multiple offload regions within the same
thread (process) context, and releasing it after the computation [9,10]. Enabling
data persistence in LEO is done via the alloc if(cond) and the free if(cond)

clause – memory is allocated or freed only if cond is true respectively 1. In the
OpenMP4 model, keeping data on the coprocessor across multiple offloads is pos-
sible within omp target data regions only. Offload regions that are enclosed by

float a[size],b[size],c[size];
// Offload using Intel LEO:
#pragma offload target(mic:0)\

in(a[0:size]) in(b[0:size])\

{ c[0:size]=a[0:size]+b[0:size]; }

// Offload using OpenMP4:
#pragma omp target device(0)\

map(to:a[0:size]) map(to:b[0:size])\

{ c[0:size]=a[0:size]+b[0:size]; }
out(c[0:size]) map(from:c[0:size])

Fig. 1. Vector addition using the LEO and the OpenMP4 offload model, respectively

Concurrent Kernel Execution on Xeon Phi 791

a target data region inherit memory allocations associated with variables listed
in the surrounding target data directive clauses.

Figure 2 illustrates the use of persistent memory on the coprocessor: A© Allo-
cate memory and transfer data from host to coprocessor without freeing it. B©
Reuse data for computation and copy content of b to the host. C© same as B©,
but memory is freed eventually. For OpenMP4 the regions marked X©, Y©, Z©
correspond to A©, B©, C©. Note the target update construct in Y©, where data
is moved from the coprocessor to the host within the target data region.

Although both models allow for persistent data on the coprocessor, LEO is
more flexible since memory allocated via alloc if(1) can be used anywhere in
the same thread (process) context. As OpenMP4’s target data region cannot
extend across different function scopes, function calls need to be enclosed by it
and variables representing persistent data have to be explicitly passed through.
Using OpenMP4 offload e.g. within libraries thus requires the user of the library
to create the target data region within its code. Contrary to design principles,
the user gets involved into the library’s memory management on the coprocessor.

OpenMP4 Offload within Libraries Using an Offload-Proxy. One solu-
tion to the target data problem when using OpenMP4 offload within libraries
is using an offload-proxy that is instantiated by the library itself. The proxy
creates a target data region, enters it, and remains within that region. Library
calls create tasks and use a signaling mechanism to wake up the proxy and make
it execute the tasks. When finished a task the proxy signals back to the caller.

A similar offload-proxy approach has been already evaluated by the authors
in the context of concurrent kernel execution on Nvidia Fermi GPGPUs [7]. Al-
though using the proxy pattern requires code modifications – when not included
into the library design from the first – the following benefits can be noted: (i) it
implements asynchronicity regarding coprocessor offloads, and (ii) for OpenMP4
it enables data persistence across different function scopes. The latter is also rel-
evant for the integration of OpenMP4 offloading into C++ class designs.

Intel LEO OpenMP4

float a[size],b[size];
a[0:size]=1.0; b[0:size]=0.0;
#pragma offload_transfer target(mic:0)\

in(a[0:size]:alloc_if(1) free_if(0))\
in(b[0:size]:alloc_if(1) free_if(0))

// do something on host
#pragma offload target(mic:0)\

nocopy(a[0:size]:alloc_if(0) free_if(0))\
out(b[0:size]:alloc_if(0) free_if(0))
{ b[0:size]+=3.0*a[0:size]; }

// do something with b[] on host
#pragma offload target(mic:0)\

nocopy(a..free_if(1)) out(b..free_if(1))
{ b[0:size]+=5.0*a[0:size]; }

// do something with b[] on host

float a[size],b[size];
a[0:size]=1.0; b[0:size]=0.0;
#pragma omp target data device(0)\

map(to:a[0:size]) map(b[0:size])
{

// do something on host
#pragma omp target device(0) map(a,b)

{ b[0:size]+=3.0*a[0:size]; }

// do something with b[] on host
#pragma omp target device(0) map(a,b)

{ b[0:size]+=5.0*a[0:size]; }

// do something with b[] on host

#pragma omp target update device(0)\
from(b[0:size])

} // b[0:size] is copied to the host

A

B

C

X

Y

Z

Fig. 2. Persistent data on the coprocessor using LEO and OpenMP4. White, gray- and
light-gray-shaded regions have the same meaning in the two models.

792 F. Wende, T. Steinke, and F. Cordes

4 Synthetic Benchmarks

In this section we assess the performance that can be achieved with LEO and
OpenMP4 (+proxy), where multiple concurrent host threads (processes) offload
(i) a compute bound, and (ii) a memory bound kernel to the coprocessor each. On
the coprocessor itself OpenMP is used within the kernels. As representatives for
(i) and (ii) we decided for the Intel MKL SGEMM and the STREAM Copy and
Triad benchmark. Our intention is for multiple concurrent “small-scale” setups to
determine the fraction of the performance achievable compared to “large-scale”
setups, and to find out meaningful thread placements on the coprocessor.

Hardware and Software Setup. We use a compute node hosting two Xeon
E5-2670 octa-core CPUs (Hyper-Threading enabled), 64GB RAM, and two Intel
Xeon Phi 7120P connected to the host via PCIe x16. Each Phi has 61 physical
(244 logical) cores, and 16GB ECC RAM – for benchmarking we use 60 physical
cores (one core is reserved for the Phi’s OS) and have ECC enabled. The host runs
a CentOS 6.3 Linux with kernel 2.6.32-279. We use the Intel MPSS 2.1.6720-19,
Intel compilers 14.0.3 (C++) and 14.0.1 (Fortran), and Intel MPI 4.1.1.036.

Benchmarking Setup and Methodology. For both SGEMM and STREAM
we vary the number of OpenMP threads and MPI processes on the host between
p = 1, . . . , 60. Each host thread (process) offloads a set of SGEMM kernels – we
call SGEMM directly on the Phi – or a STREAM kernels to the coprocessor by
means of LEO respectively OpenMP4. Each offload uses x = 1, . . . , 4 OpenMP
threads on the Phi for computation. The benchmarks are written as libraries to
allow for portability and ease of integration.

A single benchmark run consists of N = 50 successive offloads per thread
(process) using respective library calls. To determine the performance of a single
benchmark run, we measure the execution time of all offloads and use this value
to estimate the compute performance in case (i), and the bandwidth in case (ii).
The benchmark runs are repeated 10 times for each setup.

For each offload we take start and end times {t si,k} and {t ei,k} (i = 1, . . . , N
and k = 1, . . . , p) of the offload (including all overheads and data transfers),
and {τ s

i,k} and {τ e
i,k} for kernel execution on Xeon Phi – time stamps are taken

with clock gettime(CLOCK REALTIME,..). We approximate the degree of con-
currency Ct across all p host threads (processes) as follows: Let t s = max{t s1,k},
t e = min{t eN,k}, Δt = t e− t s, and Δti,k = t ei,k− t si,k. With Wt = {Δti,k : t si,k ≥
t s ∧ t ei,k ≤ t e}, we have 1 ≤ 1

Δt

∑
ω∈Wt

ω ≤ p. Hence, Ct ≈ 1
p−1

(
1
Δt

∑
ω∈Wt

ω −
1
)
∈ [0, 1]. A similar expression holds for the thread concurrency Cτ on the Phi.
If computations perfectly overlap, and if the offloading overhead is negligible

then Cτ ≤ Ct ≈ 1. If memory transfers before and/or after the actual computa-
tion take place, Ct can be significantly larger than Cτ .

Thread Affinity on the Coprocessor. Since the Xeon Phi runs a Linux oper-
ating system, assigning threads to specific compute cores can be done by means

Concurrent Kernel Execution on Xeon Phi 793

of cpu-set masks directly within the offload kernel using the Linux scheduler in-
terface. For our setups we use up to 60 threads (processes) on the host, each with
a thread group of size up to 4 on Xeon Phi. We establish a “scatter-compact”
thread pinning with “scatter” on the level of the groups and “compact” within
the groups. The creation of the per-thread cpu-set mask is illustrated in Fig. 3
– on Xeon Phi the 0th and the last 3 logical cores are reserved for the Phi’s OS.

#pragma omp parallel num_threads(4) // groupId=0..59
{

CPU_SET(1+(4*groupId+omp_get_thread_num())%(4*60),&cpuMask);

sched_setaffinity(0,sizeof(cpu_set_t),&cpuMask);
}

cpu_set_t cpuMask; CPU_ZERO(&cpuMask);
Host Thread or

Process 0
Thread or
Process 59

...

Core0 Core 59
Group0 Group59

...Xeon
Phi

Fig. 3. Setting the thread affinity via sched setaffinity() on Xeon Phi 7-series de-
vices. The pinning model considered is “scatter-compact” (see text).

In many cases this low-level approach can be replaced by setting specific envi-
ronment variables: e.g. OMP PLACES=threads|cores results in successive logical
respectively entire physical cores are assigned to OpenMP threads within multi-
threaded offload kernels in the order the threads are created. We found using
KMP AFFINITY in multi-offload setups places OpenMP threads within different
offload kernels on the same cores, resulting in oversubscription, potentially caus-
ing performance degradation.

Intel MKL SGEMM Benchmark. We consider two different benchmarking
modes: all data is copied to Xeon Phi at the beginning, and is reused throughout
all computations (M1) without any additional data transfers between host and
Phi, and (M2) with data transfers containing 25%, 50%, and 100% of the problem
size – 100% means two matrices are copied to the Phi, and one is copied back to
the host. Benchmark results using matrices of size 10242are illustrated in Fig. 4.
Selected results for matrices of size 2562, 5122, and 20482 are given in Tab. 1.

With OMP PLACES=threads and 1 thread per offload only 15 cores of the Phi
are used if p = 60, whereas with OMP PLACES=cores one thread resides on every
physical core. The difference in the performance can be seen in sub-plots a) and

Table 1. Selected SGEMM performance results for runs using 60 host threads (pro-
cesses) with 4 threads on the Xeon Phi each. Matrices have size 2562, 5122, 20482.

OpenMP on Host MPI on Host
Intel MKL SGEMM 2562 5122 20482 2562 5122 20482

(M1) Performance [GFlops/s] 396±2 1226±4 1577±2 328±5 1157±5 1564±2
Concurrency Ct|Cτ 0.92|0.92 0.93|0.93 0.93|0.93 0.90|0.88 0.91|0.90 0.95|0.94

(M2) Performance [GFlops/s] 94±2 440±3 798±7 234±1 677±2 1452±10
Concurrency Ct|Cτ 0.94|0.10 0.93|0.29 0.94|0.48 0.85|0.34 0.89|0.46 0.92|0.88

794 F. Wende, T. Steinke, and F. Cordes

Number of Threads (Processes) p on Host

1Thread
2Threads
3Threads
4Threads

a) OMP_PLACES=threads b) OMP_PLACES=cores

c) ''scatter_compact'' d) ''scatter_compact''

0

500

1000

1500

0

500

1000

1500

GF
lop

s/s
GF

lop
s/s

0 20 40 60 0 20 40 60

Different Thread Affinities, No Data Transfer (M1) Different Sized Data Transfers, 4 Threads/Offload (M2)

100%
50%
25%

Number of Threads (Processes) p on Host

0

500

1000

1500

0

500

1000

1500

GF
lop

s/s
GF

lop
s/s

0 20 40 60 0 20 40 60

e) LEO f) OpenMP4

g) OpenMP4+Proxy h) OpenMP4+Proxy
or LEO

host: OpenMP host: OpenMP

host: OpenMP host: MPI

host: OpenMP host: OpenMP

host: OpenMP host: MPI

Fig. 4. Performance for p concurrent SGEMM offload computations on Xeon Phi. Left-
hand side: Different thread affinities and numbers of threads used per offload. Right-
hand side: Impact of data transfers between host and coprocessor. Threads (processes)
are created either by means of OpenMP or MPI (right bottom corner of the sub-plots).

b). Increasing the number of threads per offload from 1 to 2, 3, and 4 results
in significant performance gains, supporting the point that at least 2 threads
per physical Xeon Phi core should be used [9]. However, in b) the 4-thread
performance is behind that in a). We found using OMP PLACES=threads|cores

for concurrent offloads does not guarantee for a particular host thread (process)
that its OpenMP threads on Xeon Phi are assigned cores with contiguous logical
core IDs. We observed that it is more likely for b) to have all threads of the same
group on different cores than it is for a). We assume the performance discrepancy
between a) and b) in Fig. 4 is caused by unfortunate thread placements.

Sub-plots c) and d) show the performance obtained with by-hand thread pin-
ning using the “scatter-compact” scheme. The 1-thread performance is identical
to b). In the 4-thread case, the performance is measurably larger than in a),
since all 4 threads within the same group execute on the same physical core.
Cache-optimized kernels can benefit from sharing the L1-cache in this case. A
comparison of c) and d) shows that MPI- and OpenMP-based executions perform
almost equivalent for large matrices. We achieve ≈65% efficiency in these cases
– the Xeon Phi 7120P provides about 2.4TFlops/s single precision peak per-
formance. Native Xeon Phi executions of SGEMM with larger matrices achieve
about 86% efficiency [2]. The performance shown in sub-plots a) – d) is inde-
pendent of whether LEO or OpenMP4 is used for the offload.

The right-hand side sub-plots display the performance impact of data transfers
between successive offload computations. If the entire problem size is transferred,
for all executions with multi-threading on the host the performance breaks down
significantly. Although each host thread has a corresponding Xeon Phi thread
linked by a COIPipeline (Coprocessor Offload Infrastructure) for kernel invoca-
tions and data transfers [3], concurrency across multiple pipelines suffers from
the current COI implementation uses just one DMA channel. As a consequence,
data transfers are serialized, possibly causing kernel executions be serialized too

Concurrent Kernel Execution on Xeon Phi 795

OMP_PLACES=threads
OMP_PLACES=cores
''scatter-compact''

Copy (64MB), x=1...4 OpenMP Threads/Offload Triad (64MB), x=1...4 OpenMP Threads/Offload

Number of Threads (Processes) p on Host

0

50

100

150

0

50

100

150

GB
yte

/s
GB

yte
/s

20 40 60 0 20 40 60
Number of Threads (Processes) p on Host

0

50

100

150

0

50

100

150

GB
yte

/s
GB

yte
/s

0 20 40 60 0 20 40 600

x=1 x=2

x=3 x=4

x=1 x=2

x=3 x=4

Fig. 5. STREAM copy and triad benchmark for different numbers p of concurrent host
threads (processes) and x = 1, . . . , 4 OpenMP threads on the Xeon Phi

(see the decrease of the in-kernel concurrency Cτ for (M2) in Tab. 1). When
using MPI the number of DMA channels equals the number of MPI ranks. The
performance compared to no data transfers thus decreases only a little.

Sub-plot f) shows reduced performance when using OpenMP4 within libraries
with frequent data transfers between host and Phi. Our offload-proxy approach
recovers the performance achievable with LEO to almost 100% (Fig. 4, g).

STREAM Benchmark. The STREAM copy benchmark refers to b[0:size]=
a[0:size], while the STREAM triad is c[0:size]=a[0:size]+q*b[0:size].
We aim to measure the streaming performance that can be achieved when access-
ing main memory from within concurrent memory bound kernels. The stream-
ing performance for different thread affinities and different numbers of OpenMP
threads is shown in Fig. 5 – array size: 64MB. Host threads were created us-
ing OpenMP. For kernel offloading Intel LEO was used. Performance results for
OpenMP4 and MPI are almost identical as the host just initiates the offloads.

Using OMP PLACES=cores the Phi’s physical cores are populated faster than
with OMP PLACES=threads. Hence, the streaming performance is higher for both
copy and triad. The “scatter-compact” thread pinning scheme gives the same
performance as OMP PLACES=cores if a single thread is used per offload. With
60 host threads (processes) and two OpenMP threads per offload, the streaming
performance starts to saturate at about 162GB/s, which is close to the value of
174GB/s (ECC enabled) for native Phi execution of STREAM triad by 93% [2].

5 Strong Scaling for Simulations of Small Molecules

The program package GLAT (Global Local Adaptive Thermodynamics)
overcomes the problem of critical slowing down of conventional thermodynam-
ical simulations by decomposing the conformational space into metastable sub-
regions, which can be investigated almost independently. The current paper

796 F. Wende, T. Steinke, and F. Cordes

addresses a typical question of pharmaceutical or biochemical applications: The
prediction of solvation for a conformational ensemble.

Even small drug-like molecules with < 50 atoms can exhibit more than 100
metastable states. The sampling of such molecules in water environment requires
the explicit modeling of a solvation shell, containing at least one order of mag-
nitude more atoms than the “internal molecule.” To achieve strong scaling for
simulations on these small molecules, GLAT performs almost independent Hy-
brid Monte Carlo (HMC) samplings of the water solvation for many metastable
states concurrently. HMC is a combination of short term Molecular Dynamics
(MD) followed by a Monte Carlo (MC) weighting of the generated conforma-
tions with respect to the total energy. The calculation of the contributions of
the solvent to energy and forces, is transferred to Xeon Phi. The data for the
water environment remains on the Phi, whereas the forces of the water on the
internal molecule, as well as the potential/kinetic energy of the water are sent
back to the host for the HMC step.

Figure 6 illustrates the workflow of a simulation within one metastable state:
First the simulation is initialized with coordinates, velocities, and force-field pa-
rameters of the internal molecule in a given metastable conformation. Followed
by an automatic modeling and minimization of the water environment, the re-
sult is a water droplet containing the molecule of interest. Then the water data
as well as the positions of the internal molecule are transferred to the Phi where
the calculation of the covalent contributions and the forces of the water on the
internal molecule is started. Meanwhile the host carries out the force calculation
of the internal molecule with itself. At the following barrier the host receives the
forces on the internal molecule, completes the MD step, and copies the updated
coordinates of the internal molecule to the Phi, whereas the coprocessor calcu-
lates the water-water interactions and performs the MD step for the water. Since
the whole simulation is embedded into an HMC scheme, the host performs some
statistical weightings after a sequence of ≈ 10 MD steps. The HMC sampling
is repeated for a given water environment several times until about 103 MD
steps are reached. The final convergence check will either finish the simulation
or restart it with another randomly created water environment.

- The GLAT core is written in Fortran, whereas the coprocessor portion of
the code is encapsulated into a C++ library. We introduced the possibility to
fall back to the CPU when calling the library. For both Xeon Phi and CPU,
kernels have been optimized using SIMD intrinsics.

Initialization
+

Minimization
of Water

Environment

Water-IntMol
async

IntMol-IntMol

Water-Water
async

Complete

H Phi: Positions Water+IntMol
H Phi: Force Constants

Phi H: Forces on IntMol

Water MD-Step

Force Computation
IntMol

MD-Step
H Phi: Positions IntMol
Phi H: EnergiesWait for Xeon Phi

+ MC
every ~10
MD-Steps

Conver-

HMC Iterations (~~103 MD Steps)

Xeon Phi
Host

gence
Check

Fig. 6. Workflow of GLAT. The schematic displays an entire simulation cycle.

Concurrent Kernel Execution on Xeon Phi 797

Benchmarking Setup and Methodology. We consider three different sized
problems: An internal molecule consisting of 27 atoms embedded into a water
droplet containing 101 (P1), 302 (P2), and 505 (P3) molecules. As a performance
measure we determine the number of particle-particle interactions per second for
(A) the MD loop only, and (B) an entire simulation cycle including the water
minimization, the HMC step, and the final convergence check. Runtimes for 2000
iteration steps are measured using clock gettime(CLOCK REALTIME,..).

For each setup we use OpenMP4, with and without our offload-proxy approach
(Sec. 3), and Intel LEO for coprocessor offloading. Concurrency on the host is
achieved by means of multiple OpenMP threads and/or MPI processes, each of
which creating a Markov chain throughout the HMC sampling, and offloading
kernels to the Phi to speed up force computations.

The system used for benchmarking is described in Sec. 4. It provides 16 phys-
ical respectively 32 logical CPU cores. When using a single Xeon Phi, we create
1 . . . 16 concurrent host threads (processes). On Xeon Phi we use 15 OpenMP
threads per offload computation for a total of up to 240 threads – we use 60 out
of 61 physical cores (see Sec. 4). Computations with two Xeon Phis use either
2 . . . 32 MPI ranks on the host, or two multi-threaded MPI ranks with up to 16
OpenMP threads per rank. When redirecting the offload to the host – CPU-only
computation –, two OpenMP threads are used for kernel execution.

Benchmarking Results. The benchmarking results are displayed in Fig. 7.
For each sub-plot the left hand side graphics are for the MD loop only, whereas
the right hand side ones are for an entire simulation cycle – the performance on
the right thus is lower. In all cases larger values are better.

Throughout all sub-plots the OpenMP4 performance, when not using our
offload-proxy approach, is significantly behind the others due to data transfers
(Sec. 3). The performance loss can be compensated to a certain extent with our
proxy approach. However, it is below the one obtained with LEO as our offload-
proxy performs busy-waiting during the OpenMP4 offloads, and hence consumes
CPU resources on the host. Since best performance values can be achieved with
LEO, the implementation of the entire simulation uses LEO. The right hand side
sub-plots in Fig. 7 thus do not contain data for OpenMP4.

Using MPI on the host can result in measurable performance gains over using
OpenMP if problems are small, e.g. (P1) and (P2). With OpenMP concurrent
data transfers suffer from just one DMA channel is used by the current COI
implementation, causing serialization of data movements between Xeon Phi and
host. In case of small problem sizes, where kernel execution times are of the same
order as the associated data transfer times and the offload overhead, serialization
of data transfers implicitly serializes kernel executions (Tab. 1).

Executions using two Xeon Phis achieve almost twice the overall performance
compared to single-Phi executions if the setup becomes large – e.g. (P3). Best
performance in these cases can be obtained with a hybrid MPI/OpenMP ap-
proach on the host. However, with significantly more than 16 host threads (pro-
cesses) concurrency on the host, and hence on the Phi, suffers from contention
due to oversubscription of CPU resources. It thus would be meaningful to extend

798 F. Wende, T. Steinke, and F. Cordes

(P1)

10
9 Int

er
ac

tio
ns

/s

Number of Threads or Processes p on Host

2 Xeon Phi 7120P1 Xeon Phi 7120P

0

1

2

0 8 16 0 8 16

0

2

4

6

0

5

10

15

0
6

12
18
24

0

3

6

9

0

1

2

3

0 16 32 0 16 32

MD-Loop Entire Cycle

Xeon E5-2670 (2 Socket)
Xeon Phi: OpenMP+LEO
Xeon Phi: OpenMP4
Xeon Phi: MPI+LEO
Xeon Phi: OpenMP4+

Xeon Phi: 2MPI Ranks+

MD-Loop Entire Cycle

MD-Loop Entire Cycle

MD-Loop Entire Cycle

MD-Loop Entire Cycle MD-Loop Entire Cycle

27 Atoms+
101 Water
Molecules

(P2)
27 Atoms+
302 Water
Molecules

(P3)
27 Atoms+
505 Water
Molecules

Offload-Proxy

1...16 OpenMP Threads
per Rank+LEO

Fig. 7. Particle-particle interaction rates obtained with GLAT for three different sized
problems (P1) – (P3) (see the text). Each host thread (process) offloads computations
to Xeon Phi via OpenMP4 or LEO. Note the different scales. Larger values are better.

the computation across more than one compute node. Since the current offload
models can use coprocessors within the same node only, hybrid approaches like
MPI+X are necessary in this case. For GLAT the offloads to Xeon Phi are in-
dependent of each other and thus not affected by MPI traffic.

Since GLAT draws on a legacy Fortran code base containing a non-negligible
amount of sections that are not highly parallel, comparing our results against
native Xeon Phi execution of GLAT (as a whole) would suffer from insufficient
performance of its serial parts and the low performance of the internal-molecule
kernels.

6 Summary and Conclusion

In this work we investigated the performance of multi-threaded/-process appli-
cations with concurrent offloading of many small-scale computational kernels to
Xeon Phi. We evaluated the two offload models Intel LEO and OpenMP4 in-
cluding our offload-proxy approach. For a small synthetic compute bound kernel
performing an SGEMM computation, we achieved a high degree of concurrency
with up to 60 host threads (processes) offloading to the Phi. For scenarios with-
out data transfers LEO and OpenMP4 perform equally. We observed deficiencies
in the OpenMP4 offload model regarding data persistence across different func-
tion scopes, limiting its usability within libraries offloading computations to a
coprocessor. To partly compensate for this issue, we proposed and evaluated an
offload-proxy approach. For a real-world application implementing a simulation

Concurrent Kernel Execution on Xeon Phi 799

of drug-like molecules solvated within a nanodroplet, we demonstrated its via-
bility. By using OpenMP4 respectively LEO offloading to Xeon Phi speedups of
about a factor 2 – 3 over an optimized and parallelized CPU implementation
could be achieved.

Acknowledgments. The Intel Xeon Phi nodes are kindly donated by Intel.
The authors would like to thank Michael Klemm and Chris J. Newburn (both
Intel Corp.) for in-depth discussions of Xeon Phi specifics. This work was partly
supported by the Deutsche Forschungsgemeinschaft (DFG), Priority Program
“Software for Exascale Computing” (SPP-EXA), DFG-SPP 1648, project FFMK
(Fast Fault-tolerant Microkernel), and by Intel Corp. within the “Intel Parallel
Computing Centers” initiative.

References

1. Hwu, W.M.W.: GPU Computing Gems Jade Edition, 1st edn. Morgan Kaufmann
Publishers Inc., San Francisco (2011)

2. Intel Corporation: Intel Xeon Phi Product Family Performance, rev. 1.0. (Decem-
ber 2012), http://www.intel.com/performance

3. Newburn, C.J., Dmitriev, S., Narayanaswamy, R., Wiegert, J., Murty, R., Chin-
chilla, F., Deodhar, R., McGuire, R.: Offload Compiler Runtime for the Intel Xeon
Phi Coprocessor. In: IPDPS Workshops, pp. 1213–1225. IEEE Computer Society
(2013)

4. Johnson, J., Krieder, S.J., Grimmer, B., Wozniak, J.M., Wilde, M., Raicu, I.: Un-
derstanding the Costs of Many-Task Computing Workloads on Intel Xeon Phi Co-
processors. In: 2nd Greater Chicago Area System Research Workshop (GCASR).
Northwestern University, Evanston (2013)

5. Pennycook, S.J., Hughes, C.J., Smelyanskiy, M., Jarvis, S.A.: Exploring SIMD for
Molecular Dynamics Using Intel Xeon Processors and Intel Xeon Phi Coprocessors.
In: IEEE International Parallel & Distributed Processing Symposium, pp. 1085–
1097. IEEE Computer Society, Los Alamitos (2013)

6. Wang, L., Huang, M., El-Ghazawi, T.: Towards Efficient GPU Sharing on Multicore
Processors. In: Proceedings of the 2nd International Workshop on Performance
Modeling, Benchmarking and Simulation of HPC Systems, PMBS 2011, pp. 23–
24. ACM, New York (2011)

7. Wende, F., Cordes, F., Steinke, T.: On Improving the Performance of Multi-
threaded CUDA Applications with Concurrent Kernel Execution by Kernel Re-
ordering. In: Proceedings of the 2012 Symposium on Application Accelerators in
High Performance Computing, SAAHPC 2012, pp. 74–83. IEEE Computer Society,
Washington, DC (2012)

8. Wende, F., Cordes, F., Steinke, T.: Multi-threaded Kernel Offloading to GPGPU
using Hyper-Q on Kepler Architecture. Technical Report 14-19, ZIB, Takustr. 7,
14195 Berlin (June 2014)

9. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Program-
ming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

10. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.0. 4.0 edn. (July 2013), http://www.openmp.org

http://www.intel.com/performance
http://www.openmp.org

Writing Self-adaptive Codes
for Heterogeneous Systems

Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Depto. de Electrónica e Sistemas, Universidade da Coruña, Spain
{jorge.fernandez.fabeiro,diego.andrade,basilio.fraguela,doallo}@udc.es

Abstract. Heterogeneous systems are becoming increasingly common.
Relatedly, the popularity of OpenCL is growing, as it provides a unified
mean to program a wide variety of devices including GPUs or multicore
CPUs. More recently, the Heterogeneous Programming Library (HPL)
targets the same variety of systems as OpenCL, intending to improve
their programmability. The main drawback of such unified approaches
is the lack of performance portability, as codes written using OpenCL
or HPL may obtain a good performance in a given device but a poor
performance in a different one. HPL allows to generate different versions
of kernels at run-time by combining C++ and the HPL embedded lan-
guage. This paper explores the development of self-adaptive kernels that
exploit this characteristic so that their code depends on configuration pa-
rameters that are tuned using a genetic algorithm through an iterative
optimization process. The results show that these self-adaptive kernels
are faster than those generated by hand following heuristics.

1 Introduction

One of the most important problems that hamper the wider use of heterogeneous
systems is the current poor portability of the codes for these devices. The truly
portable programming of heterogeneous system needs: (1) a unified program-
ming language for any kind of device and, (2) a method to achieve performance
portability. OpenCL [1] solves the first challenge as it enables the programming
of a wide variety of devices. The second requirement, performance portability,
has been widely addressed in the bibliography. For example, the framework [2]
separates functionality from implementation details using specialized functions
that allow to explore a great variety of implementations and to select the opti-
mal one for a certain platform. VForce [3] provides performance portability in a
transparent way across different kinds of accelerators to programs written in a
domain-specific language focused on image and signal processing.

Performance portability can also be achieved through iterative processes. For
example, [4] uses iterative compilation to select the optimal parameters for GPU
codes according to a set of pre-defined, parametrized templates for linear alge-
bra problems. An auto-tuning approach that selects the best execution plan for
the SkePU skeleton programming framework in multi-GPU systems based on

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 800–811, 2014.
c© Springer International Publishing Switzerland 2014

Writing Self-adaptive Codes for Heterogeneous Systems 801

predictions is presented in [5]. The PARTANS framework [6], which is specifi-
cally designed to express stencil computations in multi-GPU systems, includes
auto-tuning mechanisms to optimize this kind of computations.

Focusing on OpenCL, uCLbench [7] characterizes the properties of the device
and the OpenCL implementation where the code is intended to run, seeking
to guide programmers in the hand-tuning of their codes. The main changes
required to port the performance of OpenCL codes that have been tuned for
GPUs to CPUs are discussed in [8][9]. GLOpenCL [10] is a development frame-
work consisting of a compiler and a runtime library that supports OpenCL on
different types of multicores. OCLoptimizer [11] searches optimal unroll factors
for OpenCL kernels based on compiler directives and a configuration file. Fi-
nally, Dolbeau et al [12] discuss the performance that the same OpenCL code
achieves on different platforms. They use the CAPS compiler to generate auto-
tuned OpenCL code.

The Heterogeneous Programming Library (HPL) [13] is a C++ framework
that improves the programmability of heterogeneous systems by combining spe-
cial data types and an embedded language to write kernels, which express the
parallelized computations to run in the devices. HPL is a unified approach for
programming heterogeneous systems as it uses as backend OpenCL, so that its
kernels can run on any device. It also provides appropriate tools to provide per-
formance portability, as the combination of its embedded language and C++ to
write the kernels enables run-time code generation (RTCG), which can be used
to write self-adaptive generic kernels. While other tools enable RTCG using sim-
ilar mechanisms [14][15], they only target regular CPUs, and therefore they have
sought other purposes. This way, this paper explores the development of kernels
with portable performance by combining C++ and the HPL embedded language
to generate parametrized generic kernels. The configuration parameters of each
kernel change certain aspects of how its code is optimized, and they are adjusted
using a genetic algorithm through an iterative process. The performance of the
kernel generated using each combination of values of its parameters is evaluated
by executing the code. The configuration parameters select the optimal unroll
factors for some loops, the optimal granularity for the work performed by each
instance of the kernel, the base version of the algorithm used, and which data
structures are stored in local memory. The performance results, focused on a
matrix product code, show that our approach generates kernels that can be up
to 4.67 times faster than kernels generated following heuristics.

The rest of the paper is organized as follows. Section 2 briefly introduces
the HPL library. Section 3 explains how RTCG can be used in HPL to write
parametrized generic kernels. Section 4 explains the method derived to select
the optimal values for the configuration parameters of the kernel using iterative
optimization. Section 5 shows the experimental results and Section 6 concludes.

2 The Heterogeneous Programming Library

The Heterogeneous Programming Library (HPL), which is publicly available at
http://hpl.des.udc.es, intends to improve the programmability of

802 J.F. Fabeiro et al.

heterogeneous systems while providing portability through an approach where
the computational kernels that exploit heterogeneous parallelism are written in
a language embedded in C++. This characteristic enables run-time code gener-
ation (RTCG), which is a powerful tool to provide performance portability, as
we will see through this paper. HPL provides portability because OpenCL is the
intermediate representation (IR) it currently generates, thus this library targets
the same range of devices supported by OpenCL.

The HPL library supports the same programming model as CUDA and OpenCL.
Its hardware model is composed by a host equipped with a standard CPU and
memory, with a number of computing devices attached. The host runs the sequen-
tial parts of the code, while the devices run the parallel parts. Each device has pro-
cessors that execute SPMD parallel code on data present in the memory of their
device. As in OpenCL or CUDA, we can create groups of threads that can be syn-
chronized through barriers and share a small scratchpad memory.

The memory model distinguishes the same kinds memory as OpenCL (global,
local, constant and private) and with the same properties. As kernels can only
work with data available in the devices, data must be transferred between host
and devices, but this process is totally automated by the library.

Several instances of each kernel, or work-items using OpenCL terminology, can
be executed in parallel, each instance being univocally identified. The number
of instances of the kernels and their identifiers are defined by a global domain of
non-negative integers with up to 3 dimensions. This way, instances are identified
inside this domain with tuples of global ids. In turn, these instances can be
associated in groups. With this purpose, we can define local domains as equal
portions of the global domain. Instances are identified inside its group using
tuples of local ids. Now, Section 2.1 explains how to program using HPL.

2.1 Programming Using HPL

The library provides three main components to the programmers:

– A template class Array to define both the variables to be transferred between
the host and the devices, and the variables that are local to the kernels.

– The kernels, which are functions written in a language embedded in C++.
This embedded language is an API in C++ consisting of data types, func-
tions, macros and predefined variables.

– An API that will be used by the code to inspect the devices available in a
given platform and to order the execution of the kernels.

All the kernel variables must have type Array<type, n [, memFlag]>, which
represents an n-dimensional array of elements of a C++ type, or a scalar for
n=0. Scalars and vectors can also be defined with special data types like Int,
Float, Int4, Float8, etc. The optional memFlag can specify one of the kinds of
memory supported (Global, Local, Constant or Private). The arrays passed
as parameters to the kernels must be declared in the host using the same type.
These variables are initially stored in the host memory, but when they are used as

Writing Self-adaptive Codes for Heterogeneous Systems 803

Listing 1.1. SAXPY HPL code
void saxpy(Array <float ,1> y, Array <float ,1> x, Float a) {

y[idx] = a * x[idx] + y[idx];
}

int main(int argc , char *argv) {
Float a;
Array <float , 1> x (1000) , y(1000);
//x, y and a are filled in with data (not shown)
eval(saxpy). global (1000). local (10)(y, x, a);

}

kernel parameters they are automatically transferred to the device. The outputs
are also automatically transferred to the host when needed.

HPL kernels also require that their control flow structures are written using
special keywords. The embedded language uses the same constructs as C++ but
their name finishes with an underscore (if , for , . . .). Also, the arguments to
for loops are separated by commas instead of semicolons. The library provides an
API based on predefined variables to obtain the global, local and group identifiers
as well as the sizes of the domains and numbers of groups. For example, idx
provides the global id of the first dimension, while szx provides the globalsize
of that dimension. If we add the l prefix to these keywords we obtain their local
counterparts and if we replace the letter x with y or z, we obtain the same values
for the second and the third dimensions respectively.

Kernels are written as regular functions or functors that use these elements
and whose parameters are passed by value if they are scalars, and by reference
otherwise. The saxpy routine in Listing 1.1 implements using this language the
SAXPY (Single-precision real Alpha X Plus Y) vector BLAS routine, which
computes Y = a×X +Y . In this kernel, each instance idx computes a different
position of the result y[idx].

Regarding the host interface, its most important component is the function
eval, which requests the execution of the kernel f with the syntax eval(f)(arg1,
arg2, ...). The execution of the kernel can be parametrized by inserting spec-
ifications, in the form of methods, between eval and the argument list. For ex-
ample, the global and the local sizes can be specified using methods called global
and local respectively. This way, the saxpy routine is invoked in Listing 1.1 with
a global domain of 1000 elements and a local domain of 10 elements.

3 Performance Portability in HPL

HPL generates the internal representation (IR) of its kernels by running them as
regular code in the host when an eval requests their execution for the first time.
Subsequent requests just reuse the IR generated the first time, which is stored in
an internal cache, unless this cache is erased in order to force the regeneration of
the IR. The HPL macros and data types capture all the expressions in which they
are involved during the execution of the kernel in the host, allowing the runtime

804 J.F. Fabeiro et al.

to generate the associated IR. However, regular C++ sentences found within
the kernel are simply executed and they do not appear in the resulting IR. This
characteristic enables RTCG, which can be used, for example, to choose between
different versions of the same code, or to parametrize the generation of code. The
method proposed in this paper combines RTCG and generic kernels to generate
different versions of the same kernel based on different input parameters. In this
context, generic kernels are those written for generic values of some parameter,
such as the granularity, which can be adjusted at run-time.

First, we describe the strategy we have followed to parameterize the kernels.
We have defined the HPL kernels using functors, so that for each kernel we
define a class with the name of the kernel that defines the operator(). The
arguments and the body of this method are the arguments and the body of the
kernel, respectively. The parameters that will be used to parametrize the kernel
at runtime, are defined as properties of this class, thus, they can be accessed
from the operator() method. Besides, they can be set from the host before the
generation of the kernel code is initiated by an eval invocation.

Based on a set of parameters, we have used RTCG and generic kernels to
generate codes that at the same time: (1) apply the unrolling technique to one
or several loops using a given unroll factor, (2) select the best granularity of
the computation performed by each instance of the kernel, (3) select the most
suitable variant of an algorithm depending on the device that will be used and
(4) decide which data structures are stored in local memory. The methods used
to introduce these features in the kernels are now explained in turn.

Unrolling: Loop unrolling is a popular optimization technique whose main
benefits are that it unveils instruction level parallelism, minimizes branch penalty
and reduces the number of control instructions executed. Loop unrolling using
arbitrary unroll factors can be introduced in HPL kernels using RTCG. The C++
code will be used in conjunction with the embedded language to generate the
unrolled loops. Let us see an example starting from the matrix-vector product
(MxV) code shown in Listing 1.2. This code defines the HPL kernel in lines 2-6.
Each instance of the kernel processes one row from the input matrix, thus a
single loop is required to multiply each element of the row by the corresponding
element of the input vector.

Listing 1.3 shows an unrolled version of the kernel. The loop between lines
4-7 is an unrolled version of the original loop, thus, its stride is now the unroll
factor (uf). The body of the loop is replicated uf times by a native C++ loop
(lines 5-6). As the number of iterations of the loop N may not be a multiple of
uf, to prevent out of range array accesses, the loop limit is N-uf. If there are
some iterations left after that loop, they are processed without unrolling by the
code in lines 8-9. The value for the unroll factor is passed to the kernel from the
main procedure by setting the appropriate attribute of the class that defines the
kernel (line 15).

Granurality: HPL creates one instance (or thread in HPL terminology) of
the kernel for each point of the global domain. The optimal amount of work
performed by each thread must be tuned for each platform in order to maximize

Writing Self-adaptive Codes for Heterogeneous Systems 805

Listing 1.2. MxV code: original version
1 class MxV {
2 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y) {
3 Int k;
4 for_(k=0, k<N, k++)
5 y[idx] += (a[idx][k] * x[k]);
6 }
7 };
8 int main (...) {
9 // Declare and initialize ax ,xv and yv Arrays

10 MxV matvec
11 eval(matvec). global (M)(av , xv , yv);
12 }

Listing 1.3. MxV code: unrolled version
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y) {
3 Int k;
4 for_(k=0, k <= (N - uf), k += uf) {
5 for(aux =0; aux <uf; aux++)
6 y[idx] += (a[idx][k+aux] * x[k+aux]);
7 }
8 for_(k,k<N,k++)
9 y[idx] += (a[idx][k] * x[k]);

10 }
11 }
12 int main (...) {
13 ...
14 MxV matvec
15 matvec .set_uf (unrolling_factor);
16 eval(matvec). global (M)(av , xv , yv);
17 }

the performance. For example, CPUs tend to be more effective using threads with
larger workloads than GPUs. It is interesting to be able to tune that granularity
at run-time depending on the type of device we are using. We can do that in
HPL by changing the number of points in the global domain. For example, in
our MxV code, the number of threads created is equal to the number of rows
of the input matrix, thus, each thread processes one row of this matrix. If we
reduce the number of threads, each thread should process several rows from the
input matrix. This modification requires that the code is rewritten for a generic
grain size, the grain size being in this case the number of rows of the input
matrix processed by each thread. In our proposal, the rows are distributed using
a block-cyclic policy, thus, grains of bszx rows are assigned cyclically to the
threads available. The optimal value of bszx is found for each device. In the
MxV code, this block size will not have a big influence in the performance, but
in other problems some values of bszs may benefit locality or coalescing, so, they
will have a big impact in the performance.

In order to implement this distribution of the rows, the MxV kernel code must
be changed to add two outer loops that process the blocks of bszx rows assigned

806 J.F. Fabeiro et al.

Listing 1.4. MxV code: auto-adjustable granularity version
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y) {
3 Int ii , i, ilim , k;
4 for_(ii = idx*bszx , ii < M, ii += szx* bszx)
5 for_(i = ii ,i < min(xx+bszx , M), i++)
6 for_(k = 0, k < N, k++)
7 y[i] += a[i][k] * x[k];
8 }
9 }

10 int main (...) {
11 ...
12 int szx = <# threads of the global domain >;
13 int bszx = <block size >;
14 ...
15 eval(matvec). device (dev). global (szx)(av , xv , yv);
16 }

Listing 1.5. MxV code: algorithm version selection
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y) {
3 if (device == CPU) {
4 // Version better suited to CPUs
5 } else {
6 // Version better suited to other devices
7 }
8 }
9 }

to each thread. Loop headers in lines 4-5 of Code 1.4 select the appropriate set
of rows to be processed by each thread following the block-cyclic policy. The
resulting kernel does not use RTCG but it is written in a generic way, so that if
different values are provided for the size of the global domain and the block size,
the granularity of the work performed by each thread is automatically adjusted
at run-time.

Algorithm selection: The type of device used for a kernel execution is
known at run-time. HPL can use this information to choose between different
versions of the same algorithm, or portions of the algorithm, using RTCG. For
example, a version that exploits local memory is good for GPUs but it may
introduce unnecessary synchronization points in CPUs. The best strategy to
divide the work among the threads varies depending on the type of device.
RTCG can be used to select the appropriate base version or implementations of
portions of the algorithm at run-time. Figure 1.5 shows the skeleton of a MxV
vector kernel where a different variant of the algorithm is selected depending on
the type of device. In the same vein, the size of the problem can advise the usage
of different base versions of the algorithm.

Local memory: The usage of local memory is crucial for some devices like
GPUs. We propose a technique to dynamically adjust the usage of local memory
in HPL kernels. The idea is to write kernels where one or several data structures

Writing Self-adaptive Codes for Heterogeneous Systems 807

Listing 1.6. MxV code: local memory usage
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y,
3 Array <float ,1,Local > lx) {
4 Int k;
5 if(copyX) {
6 for_(k=lidx , k<N, k+= lszx)
7 lx[k] = x[k];
8 barrier (LOCAL);
9 }

10 for_(k=0, k<N, k++)
11 y[idx] += a[idx][k] * (copyX ? (Float)lx[k] : (Float)x[k]);
12 }
13 }
14 int main (...) {
15 ...
16 eval(matvec). device (dev). global (M). local(localsize_x)(av , xv , yv , lxv);
17 }

may optionally be stored in local memory or not. For example, in the MxV code,
we can choose vector x for this purpose. A boolean parameter copyX will be set
in the host to indicate whether we want to place that array in local memory.
Listing 1.6 contains the MxV kernel modified to implement this behavior. The
kernel uses RTCG to make the copy of x to local memory if copyX is activated,
see lines 5-9. When the computation is done, the global array x or its local copy
will be used depending on the value of the copyX parameter in line 11.

4 HPL Portable Kernels through Iterative Optimization

The search of the optimal parameters for the kernel is performed using an it-
erative optimization process guided by a Genetic Algorithm (GA). Concretely,
we have built the iterative search on top of the sequential version of the GAlib
genetic algorithm package [16]. The chromosomes of our GA, which are poten-
tial solutions to our problem, have one gene per configuration parameter of the
kernel. The initial population of the algorithm is composed of a configurable
number of individuals that have been fixed by experimentation. The individuals
and chromosomes of the initial population are randomly generated. Each indi-
vidual generates a different version of the kernel using the values selected for
each configuration parameter. These versions are evaluated using their fitness
function, which is its execution time.

The minimum execution time obtained by a member of the population is
used to decide whether the search must finish. The condition for this is that
the fitness function (the execution time) has not improved for five generations.
When this happens, the chromosomes that provided the best solution are used
to generate the optimal kernel. If the condition has not been reached, a new
generation of individuals is generated. This generation is created starting from
the best individuals of the previous generation, and using mechanisms such as
crossover and mutations. The process is repeated until the fitness function has
not improved for five generations.

808 J.F. Fabeiro et al.

5 Experimental Results

The techniques just described have been applied to implement a self-adaptive
version of a matrix multiplication (C = A×B) that has been tested on a CPU
socket of two Intel Xeon E5-2660 Sandy Bridge with eight 2.2Ghz cores and
hyper-threading (8 × 2 threads per processor, for a total of 32) and 64 GB of
RAM, an Intel Xeon Phi 5110P Accelerator with sixty 1.053GHz cores with
8 GB of RAM, and an NVIDIA Tesla Kepler K20m GPU with 5 GB GDDR5.
The Intel OpenCL 2013 R3 was used for the CPU and the accelerator, and the
NVIDIA CUDA 5.0.35 toolkit for the GPU.

At the top level, our kernel chooses between two base versions of the algorithm
in which matrices are processed following a block-cyclic approach. One version
is more suitable for CPUs and the Xeon Phi, as it uses neither local memory nor
cooperation among threads and each thread works on blocks of sizes specified by
the user at runtime. The other version, where the work is distributed among the
threads in tiles of a given size, and the data of each one of the input matrices used
by each thread group can be copied or not to local memory, so that local domain
sizes play an important role, better fits GPUs for this algorithm. Both versions
also allow to adjust the size of the global domain of the execution as well as the
degree of unroll of the innermost loop at runtime. Table 1 lists the configuration
parameters of the kernel that are adjusted by the GA through the iterative
process, and their baseline values. The N/A labels indicate the combinations
in which the parameter is not applicable to the device, whose type is obtained
at run-time. The baseline of the experiments is the parametrized HPL code. In
this baseline, the global domain has been chosen following policies adequate to
each platform and the usage of local memory is disabled. This way, the CPU
baseline uses a global domain of (8,4) threads, as there are 32 threads available
in the socket, and a consecutive block distribution. The baseline of the Xeon Phi
and the GPU version has a global workspace with the shape of the destination
matrix (so each kernel instance computes a single item) and it directly reads the
input matrices from global memory. Furthermore, in all the baselines the size
of the local workspace was automatically selected by the OpenCL driver, and
no innermost loop unrolling was applied. The usage of an HPL baseline over an
OpenCL implementation allow us to measure the impact of the tuning of the
parameters.

Table 2 shows for each one of the platforms and for three matrix sizes the
execution time of the baseline HPL version of the kernel, the execution time of
the version tuned using our tool, the speedup of this version with respect to the
baseline, and the execution time of the tool itself. Although HPL has very small
overheads with respect to native OpenCL [13], we have exclusively measured
the runtime of the underlying OpenCL kernel generated to provide maximum
accuracy. We can see that speedups of between 1.01 and 4.67 were achieved in all
the platforms over hand-tuned baselines, justifying the interest of this approach.
The high execution time of the tools is due to the fact that the search process is
guided by the execution time. This time could be reduced if the search is guided,
or at least pruned, using analytical models [17,18].

Writing Self-adaptive Codes for Heterogeneous Systems 809

Table 1. Parameters adjusted by the genetic algorithm and their baseline values, where
c and r are the number of columns and rows of the destination matrix C, respectively.
N/A=not applicable.

Name(s) Description Baseline
CPU ACC GPU

uf Unroll factor 1
szx, szy Global size of both dimensions (8,4) (c,r) (c,r)
lszx, lszy Local size of both dimensions Auto
bszx, bszy Block size of the block-cyclic distribution (c/szx,r/szy) N/A
T Tile size for the copies of A and/or B N/A -
CopyA, CopyB Copy or not arrays A and B respectively N/A false

Table 2. Execution times and speedups achieved by generated kernels

Device Size Baseline time (s) Kernel time (s) Speedup Tool time (s)

CPU
1024 0.176 0.092 1.91 207
2048 1.252 0.706 1.77 627
4096 114.369 24.478 4.67 20651

ACC
1024 0.034 0.031 1.09 1534
2048 0.246 0.243 1.01 2598
4096 2.207 2.129 1.03 4479

GPU
1024 0.016 0.013 1.24 198
2048 0.167 0.108 1.54 490
4096 1.509 0.996 1.52 2241

Table 3 shows the optimal values found for each test case. The wide variety of
solutions indicates the difficulty of finding a priori heuristics to choose the best
parameters, making search necessary. In fact, some results are counterintuitive.
For example, large numbers of workitems, much larger than the number of cores
available, yielded always the best performance in the CPU and the Xeon Phi.
The reasons are probably that in these devices the OpenCL framework coarsens
multiple kernel instances into a single task ([19] indicates a work group is the
smallest task scheduled on a software thread in the Xeon Phi), and that it
may use several software threads per hardware thread in order to achieve the
best performance. In fact this selection matches for example the manufacturer
recommendation for the Xeon Phi [19], which was also followed to choose its
baseline parameters. Still, the tool is able to further tune the parameters to
increase the performance of the code in this platform. Similarly, copying the
input matrices to the local memory not always achieved the best performance in
the GPU, as we can see in the experiment with the 2048×2048 matrix. It is also
interesting that adjusting isolatedly some of the parameters to their optimum
value in the original kernels can actually generate slowdowns, which justifies
the need to take into account all the parameters simultaneously in the search
process.

810 J.F. Fabeiro et al.

Table 3. Optimal values selected for each generated kernel

Device Size Optimal values
szx, szy lszx, lszy bszx, bszy T CopyA, CopyB uf

CPU
1024 (1024,8) (8,4) (1,256) - - 2
2048 (1024,8) (8,8) (1,1024) - - 8
4096 (1024,256) (1024,1) (1,4) - - 4

ACC
1024 (1024,1024) (64,1) (1,1) - - 2
2048 (2048,2048) (64,1) (1,1) - - 1
4096 (4096,4096) (32,1) (1,1) - - 1

GPU
1024 (128,1024) (16,16) - 16 true, true 4
2048 (2048,256) (32,16) - 4 false, true 4
4096 (2048,1024) (16,32) - 4 true, true 1

6 Conclusions

Performance portability is an open problem in heterogeneous systems. This work
proposes a set of techniques to generate codes that self-adapt to different devices
at run-time. Our approach generates HPL kernels that can be tuned through a
set of parameters whose optimal values are searched following an iterative pro-
cess based on a genetic algorithm. The results show that our strategy generates
versions of the kernels up to 4.67 faster than baselines based on heuristics. Such
improvement is observed in a CPU, whereas the improvements achieved in a
Xeon Phi and a GPU reach 9% and 54%, respectively. We plan to explore the
application of more optimization techniques using our approach and to enhance
the search process with effective heuristics or analytical models.

Acknowledgements. This work was supported by the Xunta de Galicia under
the Consolidation Program of Competitive Reference Groups (Ref. GRC2013/055)
and by the Spanish Ministry of Science and Innovation (Ref. TIN2010-16735),
both of them cofunded by FEDER funds of the European Union.

References

1. Munshi, A., Gaster, B., Mattson, T.G., Fung, J.: OpenCL Programming Guide.
Addison-Wesley Professional (2011)

2. Wernsing, J.R., Stitt, G.: Elastic computing: a framework for transparent, portable,
and adaptive multi-core heterogeneous computing. SIGPLAN Not. 45(4), 115–124
(2010)

3. Moore, N., Leeser, M., Smith King, L.: VForce: An environment for portable appli-
cations on high performance systems with accelerators. J. Parallel Distrib. Com-
put. 72(9), 1144–1156 (2012)

4. Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., Dongarra, J.: From
CUDA to OpenCL: Towards a performance-portable solution for multi-platform
GPU programming. Parallel Comput. 38(8), 391–407 (2012)

Writing Self-adaptive Codes for Heterogeneous Systems 811

5. Dastgeer, U., Enmyren, J., Kessler, C.W.: Auto-tuning SkePU: a multi-backend
skeleton programming framework for multi-GPU systems. In: Proc. 4th Intl. Work-
shop on Multicore Software Engineering, IWMSE 2011, pp. 25–32 (2011)

6. Lutz, T., Fensch, C., Cole, M.: PARTANS: An autotuning framework for stencil
computation on multi-GPU systems. ACM Trans. Archit. Code Optim. 9(4), 59:1–
59:24 (2013)

7. Thoman, P., Kofler, K., Studt, H., Thomson, J., Fahringer, T.: Automatic OpenCL
device characterization: Guiding optimized kernel design. In: Jeannot, E., Namyst,
R., Roman, J. (eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 438–452.
Springer, Heidelberg (2011)

8. Lan, Q., Xun, C., Wen, M., Su, H., Liu, L., Zhang, C.: Improving performance of
GPU specific OpenCL program on CPUs. In: Proc. 13th Intl. Conf. on Paral. and
Distrib. Computing, Applications and Technologies (PDCAT 2012), pp. 356–360
(2012)

9. Shen, J., Fang, J., Sips, H., Varbanescu, A.: Performance traps in OpenCL for
CPUs. In: Proc. 21st Euromicro Intl. Conf. on Parallel, Distributed and Network-
Based Processing (PDP 2013), pp. 38–45 (2013)

10. Daloukas, K., Antonopoulos, C.D., Bellas, N.: GLOpenCL: OpenCL support on
hardware- and software-managed cache multicores. In: Proc. 6th Intl. Conf. on
High Performance and Embedded Architectures and Compilers, pp. 15–24 (2011)

11. Fabeiro, J.F., Andrade, D., Fraguela, B.B.: OCLoptimizer: An iterative optimiza-
tion tool for OpenCL. In: Proc. Intl. Conf. on Computational Science, ICCS 2013,
pp. 1322–1331 (2013)

12. Dolbeau, R., Bodin, F., de Verdiere, C.: One OpenCL to rule them all? (2013)
13. Viñas, M., Bozkus, Z., Fraguela, B.B.: Exploiting heterogeneous parallelism with

the Heterogeneous Programming Library. J. Parallel Distrib. Comput. 73(12),
1627–1638 (2013)

14. Beckmann, O., Houghton, A., Mellor, M.R., Kelly, P.H.J.: Runtime code generation
in C++ as a foundation for domain-specific optimisation. In: Lengauer, C., Batory,
D., Blum, A., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS,
vol. 3016, pp. 291–306. Springer, Heidelberg (2004)

15. Newburn, C., So, B., Liu, Z., McCool, M., Ghuloum, A., Toit, S.D., Wang, Z.G., Du,
Z., Chen, Y., Wu, G., Guo, P., Liu, Z., Zhang, D.: Intel’s array building blocks: A
retargetable, dynamic compiler and embedded language. In: 9th IEEE/ACM Intl.
Symp. on Code Generation and Optimization (CGO 2011), pp. 224–235 (2011)

16. Wall, M.: GAlib: A C++ Library of Genetic Algorithm Components (1996)
17. Fraguela, B.B., Carmueja, M.G., Andrade, D.: Optimal tile size selection guided by

analytical models. In: Procs. of Parallel Computing (ParCo), pp. 565–572 (2005)
18. Fraguela, B.B., Voronenko, Y., Püschel, M.: Automatic tuning of discrete fourier

transforms driven by analytical modeling. In: Proc. of Intl. Conf. on Parallel Ar-
chitectures and Compilation Techniques, pp. 271–280 (2009)

19. Intel Corp.: OpenCL design and programming guide for the Intel Xeon Phi
coprocessor (2014),
http://software.intel.com/en-us/articles/opencl-design-and-programming-
guide-for-the-intel-xeon-phi-coprocessor (accessed May 29, 2014)

http://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
http://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor

A Pattern-Based Comparison of OpenACC
and OpenMP for Accelerator Computing

Sandra Wienke1,2, Christian Terboven1,2, James C. Beyer3, and Matthias S. Müller1,2

1 IT Center, RWTH Aachen University, 52074 Aachen, Germany
2 JARA – High-Performance Computing, Schinkelstr. 2, 52062 Aachen, Germany

{wienke,terboven,mueller}@itc.rwth-aachen.de
3 Cray Inc., 380 Jackson Street, Suite 210 St. Paul, MN, USA

beyerj@cray.com

Abstract. Nowadays, HPC systems frequently emerge as clusters of commod-
ity processors with attached accelerators. Moving from tedious low-level accel-
erator programming to increased development productivity, the directive-based
programming models OpenACC and OpenMP are promising candidates. While
OpenACC was completed about two years ago, OpenMP just recently added sup-
port for accelerator programming. To assist developers in their decision-making
which approach to take, we compare both models with respect to their programma-
bility. Besides investigating their expressiveness by putting their constructs side
by side, we focus on the evaluation of their power based on structured parallel
programming patterns (aka algorithmic skeletons). These patterns describe the
basic entities of parallel algorithms of which we cover the patterns map, sten-
cil, reduction, fork-join, superscalar sequence, nesting and geometric decompo-
sition. Architectural targets of this work are NVIDIA-type accelerators (GPUs)
and specialties of Intel-type accelerators (Xeon Phis). Additionally, we assess the
prospects of OpenACC and OpenMP concerning future development in soft- and
hardware design.

Keywords: OpenACC, OpenMP 4, GPU, Xeon Phi, programmability, parallel
patterns.

1 Introduction

Heterogeneity and specialized accelerating hardware add a further level of complexity
to parallel programming. Although, accelerator programming with low-level APIs like
CUDA or OpenCL opens up opportunities for performance tuning, it also challenges the
software design or may lead to error-prone tasks or even hardware-specific implemen-
tations. By attempting to overcome these difficulties, directive-based models for accel-
erator programming gained more interest, lately. Up to now, the most prominent one is
OpenACC [13] that was released as industry standard in November 2011 and incorpo-
rates two years of maturity now. While OpenMP [14] has been the de-facto standard for
programming multi-core CPUs for over ten years, it also covers high-level accelerator
programming since version 4.0 (July 2013). Having two well-promoted directive-based
models for accelerators around, developers are currently wondering which program-
ming model to chose. Emerging questions relate to the power of the programming para-
digm, opportunities for performance and the long-term perspective of the usage of the
programming model and its mapping to future hardware architectures.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 812–823, 2014.
c© Springer International Publishing Switzerland 2014

A Pattern-Based Comparison of OpenACC and OpenMP for Accelerator Computing 813

In this paper, we discuss answers to most of these questions to assist developers in
their decision-making process between OpenACC and OpenMP. We examine the pro-
grammability and potency of the two models by comparing both the available constructs
side by side and the expressiveness taking a pattern-based approach, following the clas-
sification by McCool et al [12]. Covered patterns are map, stencil, reduction, fork-
join, superscalar sequence, nesting and geometric decomposition. Implementations are
illustrated for NVIDIA-type accelerators (GPGPUs) and occasionally for Intel-type ac-
celerators (Intel Xeon Phis). From these, we derive similarities and differences in pro-
grammability. A comparison of performance measurements is currently not possible
since OpenACC/ OpenMP implementations for the same device hardware do not exist.

The paper is structured as follows: Section 2 covers related work. In Section 3, we
give an overview on available accelerator directives in OpenACC and OpenMP and
show fundamental differences in their expressiveness. The pattern-based comparison is
carried out in Section 4 and examines the fit for certain algorithmic tasks. Finally, we
conclude our findings in Section 5 and discuss future perspectives of both models.

2 Related Work

Over the years, numerous approaches to characterize parallel algorithms have been un-
dertaken. An early work [5] classifies algorithms into skeletons. A pattern language for
parallel programming that uses design patterns and makes up four design spaces is de-
fined by Mattson et al [11]. A famous categorization is given by Berkley’s dwarfs (or
motifs) [1] that characterize workloads for the evaluations of parallel architectures, for
instance, dense/ sparse linear algebra, (un-)structured grids or n-body applications. We
chose a lower level of abstraction by applying parallel patterns for structured program-
ming defined by McCool et al [12]. While few works applied different categorizations
of parallel algorithms to accelerator paradigms (e.g. [4]), we are the first to our knowl-
edge that use the novel characterization by McCool et al. The relative low abstraction
level and the applicability to scientific programming makes this characterization specif-
ically suitable to compare parallel programming paradigms.

Various directive-based paradigms fed into the current OpenACC and OpenMP
standards. Some of these approaches (PGI Accelerator, hiCUDA, HMPP, OpenMPC, R-
Stream) have been compared to OpenACC (CAPS, PGI, accULL) in [6,15,9]. Ground-
work for OpenMP for accelerators [3] was done by our author Beyer (et al).

While few works deal with OpenMP for accelerators so far, much research has
been carried out on OpenACC in the last years. However, most of it focuses on per-
formance evaluations rather than on programmability—as we do. In [7], the authors
compare the performance of Cray’s, PGI’s and HMPP’s OpenACC implementation to
a low-level CUDA version using two micro-benchmarks and one real-world code. Our
previous work [17] covers performance results on two real-world applications com-
paring OpenCL with Cray’s OpenACC and the PGI Accelerator Model. Performance
investigations also cover different architectures such as Intel Xeon Phi and NVIDIA
GPUs [16]. Some of these works [17,9,6] also include programmability aspects with
respect to learning curve, code size, development effort or adaptability. For evaluating
expressiveness, we follow a more general approach and exhibit a structured comparison

814 S. Wienke et al.

by well-defined parallel patterns. With respect to the OpenMP accelerator model, only
few investigations have been published yet at all. The research implementation HOMP
is introduced in [10] for NVIDIA GPUs. The authors compare performance of HOMP
to PGI’s and HMPP’s OpenACC versions. To the best of our knowledge, we provide
the first comparison of programmability between OpenACC and OpenMP for acceler-
ator programming (basing on Beyer’s webinar [2]). Wolfe [19] makes rather skeptical
comments on the extension of accelerator offload regions to OpenMP. We contribute our
own view that bases on experiences in academia, industry and our work in the OpenMP/
OpenACC committees on the prospects of both standards in Section 5.

3 Overview on OpenACC and OpenMP for Accelerators

OpenMP has been the de-facto standard for shared-memory multi-core programming
since about ten years. Additionally, the OpenMP language committee has been work-
ing on the integration of accelerator support since 2009, which resulted in the target
construct as part of OpenMP 4.0. In between, the independent sub group of Cray, CAPS,
PGI, and NVIDIA released their own industry standard as OpenACC in 2011. OpenMP
aims to extend known concepts from multi-core programming to accelerators and al-
lows heterogeneous programming with just one paradigm, while OpenACC was mo-
tivated by GPGPU users being tired of low-level APIs. OpenACC’s specification 2.0
from June 2013 contains advances and feedback gathered from the last two years. Simi-
larly, the OpenMP language committee is already working on improving the accelerator
support for the next (minor) standard update.

Both models build on a host-directed execution model in which the host offloads data
and compute-intensive loops to an accelerator (or as fallback to the host itself). An ab-
stract machine model is presented in [20, p. 5]. Both models also exhibit a weak device
memory model so that memory coherence between operations executed by different
threads is not assured. The memory entities between host and device are presumed to
be separate. However, the devices may share memory with the host [13, p. 9f.] [14, p.
17ff.]. OpenACC and OpeMP both contain constructs, clauses, runtime library routines
and environment variables to control the workflow and express parallelism. A direct
comparison of important features is given in Table 1.

4 Pattern-Based Comparison

Patterns are the basic structural entities of algorithms and represent common control
flows and data organizations in applications. We apply these parallel patterns as defined
by McCool et al to accelerator programming models and focus on these special accel-
erator features rather than on the base language characteristics of C/C++ or Fortran. By
parallel patterns, we show concepts and differences of the programmability and potency
of OpenACC and OpenMP.

4.1 Map

The elementary map pattern is the foundation of numerous algorithms (e.g. Monte Carlo
sampling) and other patterns. It represents a parallel version of a serial iterating loop of

A Pattern-Based Comparison of OpenACC and OpenMP for Accelerator Computing 815

Table 1. Comparison of constructs and clauses of OpenACC and OpenMP

OpenACC OpenMP Remark

parallel target offload of computational work to the device (synchronously)
parallel teams, parallel creation of in parallel running threads
kernels compiler may find parallelism in associated block automatically
data target data structured data management between host & device
loop distribute, do,

for, simd
worksharing across the parallel units

host data interoperability with low-level languages like CUDA
cache move object closer to the execution units in the memory hierarchy
update target update data movement between host & device within data environment
declare declare target declaration of global, file static or extern objects used inside a par-

allel region
routine declare target declaration of functions called inside a parallel region
enter data unstructured data management to the device
exit data unstructured data management from the device

tasks creation of explicit tasks for task parallelism
async(int) task depend asynchronous execution with dependencies
wait synchronization of streams
async wait asynchronous waiting on a specific stream
parallel in
parallel

parallel in
parallel or team

nested parallelism on the device

tile strip-mining of data collections
device type device-specific tuning of clauses
atomic atomic atomic operations

sections,
critical, barrier,
master, single

non-iterative workshare, critical sections, synchronization, control
flow for single thread

which all iterations of the body are independent and the number of iterations is known
in advance. This pattern maps in parallel the different elements of the input data within
the index space to an output collection using a so-called elemental function.

The elemental function f of the map example in Listings 1.1–1.4 describes a naive
scaled matrix transpose: B = p·A T with p ∈ R, A ∈ R

n×m, B ∈ R
m×n. OpenACC

and OpenMP both support the map pattern. Listings 1.1 and 1.2 show implementations
for NVIDIA-type accelerators that leverage the GPU’s two levels of parallelism. While
the parallel construct in OpenACC directly starts the parallel execution on the de-
vice, an additional target construct must be specified in OpenMP to differentiate
between host and device execution. OpenMP is also verbose on the different hierar-
chies of parallelism: on a GPU, the teams distribute spreads the work of the
outer loop in independent chunks onto the compute units (as defined in [8, p. 23f.]).
Here, teams creates a parallel teams region; distribute indicates the workshare.
It does not contain an implicit barrier at its end and must be closely nested in or com-
bined with teams. Then, the parallel for distributes the work of the inner loop
across the processing elements [8, p. 23f.] within a compute unit. With OpenACC, the
loop directive is sufficient for worksharing, but should be extended by an efficient loop

816 S. Wienke et al.

Listing 1.1. Map with two levels of paral-
lelism in OpenACC (GPU)

1 #pragma acc routine seq
2 double f(double p, double aij) {
3 return (p * aij);
4 }
5

6 // [..]
7 #pragma acc parallel
8 #pragma acc loop gang
9 for(i=0; i<n; i++) {

10 #pragma acc loop vector
11 for(j=0; j<m; j++) {
12 b[j][i] = f(5.0,a[i][j]);
13 } }

Listing 1.2. Map with two levels of paral-
lelism in OpenMP (GPU)

1 #pragma omp declare target
2 double f(double p, double aij) {
3 return (p * aij);
4 }
5 #pragma omp end declare target
6 // [..]
7 #pragma omp target
8 #pragma omp teams distribute
9 for(i=0; i<n; i++) {

10 #pragma omp parallel for
11 for(j=0; j<m; j++) {
12 b[j][i] = f(5.0,a[i][j]);
13 } }

Listing 1.3. Map in OpenACC (Phi)

1

2 #pragma acc routine seq
3 double f(double, double);
4

5 // [..]
6 #pragma acc parallel
7 #pragma acc loop gang vector
8 for(i=0; i<n; i++) {
9 for(j=0; j<m; j++) {

10 b[j][i] = f(5.0,a[i][j]);
11 } }

Listing 1.4. Map in OpenMP (Phi)

1 #pragma omp declare target
2 #pragma omp declare simd
3 double f(double, double);
4 #pragma omp end declare
5 // [..]
6 #pragma omp target
7 #pragma omp parallel for simd
8 for(i=0; i<n; i++) {
9 for(j=0; j<m; j++) {

10 b[j][i] = f(5.0,a[i][j]);
11 } }

scheduling clause. Here, loop gang and loop vector equal the work distribution
of the OpenMP example. Additionally, OpenACC provides the “magical” kernels
directive that delegates the responsibility of finding parallelism to the compiler.

Closely related to the map pattern is the elemental function that is implemented as
function call. OpenACC (2.0) supports function calls by the routine construct which
needs the declaration of a parallelism level (gang, worker, vector, seq). A seq
clause is used in the example to denote that the function does not express any parallelism
itself, as it is already sufficiently exploited at the loop level. In turn, OpenMP has a
more flexible way by denoting the declare target directive without specifying
the parallelism. Thus, the function can be called from different contexts. Contrary, the
absence of this hint might prevent some optimizations. In the following, we express the
elemental function of the fundamental map pattern in formulas for better reading.

The same implementations will also work on an Intel Xeon Phi as OpenACC and
OpenMP guarantee portability. However, performance portability may be implementa-
tion dependent. A more appropriate approach applies another level of parallelism (no
hierarchy) and emphasizes vectorization (compare Listings 1.3 and 1.4). The mapping
of work onto the threads on the Phi is employed by loop gang and parallel for.
Vectorization is requested by vector and simd clauses, respectively.

A Pattern-Based Comparison of OpenACC and OpenMP for Accelerator Computing 817

Listing 1.5. Stencil in OpenACC (GPU)

1 #pragma acc parallel
2 #pragma acc loop tile(64,4) gang vector
3 for(i=1; i<n-1; i++) {
4 for(j=1; j<m-1; j++) {
5

6 #pragma acc cache(a[i-1:3][j-1:3])
7

8 anew[i][j] = (a[i-1][j] + a[i+1][j] +\
a[i][j-1]+ a[i][j+1]) * 0.25;

9 }
10 }

Listing 1.6. Stencil in OpenMP (GPU)

1 #pragma omp target
2 #pragma omp teams distribute collapse(2)
3 for(i=1; i<n-1; i+=64) {
4 for(j=1; j<m-1; j+=4) {
5 #pragma parallel for collapse(2)
6 for(k=i; k<min(n-1,i+64); k++){
7 for(l=j; l<min(m-1,j+4); l++){
8 anew[k][l] = (a[k-1][l] + \

a[k+1][l] + a[k][l-1] + \
a[k][l+1]) * 0.25;

9 } } } }

4.2 Stencil

The elemental function of the stencil pattern allows several input elements that can be
accessed in a regular way, i.e. with fixed offsets. This structure of neighboring input
elements enables data reuse and cache optimizations. To fit data into the software- or
hardware-managed cache (especially) for multi-dimensional stencils, the ’layer condi-
tion’ must be fulfilled. A common solution is the spatial blocking of data that is also
known as strip-mining.

In Listings 1.5 and 1.6, a small part of a Jacobi solver for the Laplace equation is
presented, omitting the matrix swap and the convergence iteration. The presented two-
dimensional stencil can be tiled into blocks using OpenACC. The tile clause hides
loop splitting and collapsing. This is illustrated in the OpenMP example since tiling
must be explicitly expressed in OpenMP. Here, distribute teams collapse(2)
combines the index space of the outer two loops for distribution to the compute units of
a GPU and parallel for collapse(2) for distribution across the processing
elements within the compute units. In addition to blocking, OpenACC provides the
cache-ing capability (line 6) to let the developer specify that sub arrays should be
fetched into the highest-level memory for data reuse. OpenMP does not yet support
leveraging the on-chip caches explicitly. Summarizing, both models do not have built-
in functions for stencils, but OpenACC provides some features for optimization.

4.3 Reduction

Another pattern that is often required in linear algebra is the reduction pattern. It com-
bines every element of an input data set into a single element using a certain reduction
operation (combiner function). For parallelization, the combiner function must be asso-
ciative to support reordering of operations.

OpenACC and OpenMP allow directly to compute reductions with a clause. Re-
ductions are supported at worksharing levels and parallel regions (parallel,teams).
Listings 1.7 and 1.8 present an example for reductions on different levels of paral-
lelism, i.e. a matrix vector multiply extended with a checksum computation: b = A ·x,
checksum =

∑n
i=1 bi with b ∈ R

n, x ∈ R
m, A ∈ R

n×m and bi ∈ R. The reduc-
tion value of the scalar tmp is already needed right after the inner loop to compute the
checksum. For vector parallelism in OpenACC (line 5), it is necessary that the vari-
able also appears in a private clause to get it updated right at the exit of the loop and

818 S. Wienke et al.

Listing 1.7. Reduction in OpenACC (GPU)

1 #pragma acc parallel private(tmp)
2 #pragma acc loop gang \

reduction(+:checksum)
3 for(i=0; i<n; i++) {
4 tmp = 0;
5 #pragma acc loop vector reduction(+:tmp)
6 for(j=0; j<m; j++) {
7 tmp += A[i][j] * x[j];
8 }
9 b[i] = tmp;

10 checksum += tmp;
11 }

Listing 1.8. Reduction in OpenMP (GPU)

1 #pragma omp target
2 #pragma omp teams distribute private(tmp)\

reduction(+:checksum)
3 for(i=0; i<n; i++) {
4 tmp = 0;
5 #pragma omp parallel for reduction(+:tmp)
6 for(j=0; j<m; j++) {
7 tmp += A[i][j] * x[j];
8 }
9 b[i] = tmp;

10 checksum += tmp;
11 }

Listing 1.9. Fork-join in OpenMP (Phi)

1 #pragma omp declare target
2 int fib(int n) {
3 int x, y;
4 if (n < 2) {return n;}
5 #pragma omp task shared(x)
6 x = fib(n - 1);
7 #pragma omp task shared(y)
8 y = fib(n - 2);
9 #pragma omp taskwait

10 return (x+y);
11 }
12 #pragma omp end declare target
13 // [..]
14 #pragma omp target
15 #pragma omp parallel
16 #pragma omp single
17 result=fib(n);

Listing 1.10. Unstructured data lifetime in
OpenACC (GPU)

1 class CArray {
2 public:
3 CArray(int n) {
4 a = new double[n];
5 #pragma acc enter data create(a[0:n])
6 }
7 ˜CArray() {
8 #pragma acc exit data delete(a[0:n])
9 delete(a);

10 }
11 void fillArray(int n) {
12 #pragma acc parallel loop
13 for(int i=0; i<n; i++) { a[i]=i; }
14 }
15 private:
16 double *a;
17 };

not only at the end of the parallel region. Correspondingly, the checksum variable is
put properly in the reduction at the gang parallelism (line 2). For OpenMP, there are
corresponding rules.

As an advantage, OpenMP supports user-defined reductions, especially useful on
structured data types, which is currently not possible with OpenACC. Furthermore, the
OpenMP simd construct also supports reduction operations.

4.4 Fork-Join

The fork-join pattern directs the workflow to be split (forked) into multiple parallel
and independent flows and get merged (joined) later again. OpenACC and OpenMP
both support parallel regions on the device that actually fork control into mul-
tiple threads and later return to a single master thread (compare Section 4.1). How-
ever, worksharing constructs in parallel regions only support data parallel execution
across threads. OpenMP additionally provides task parallel execution on the device via
sections or tasks. It enables parallel execution of instances with different compu-
tational work and efficient load balance. The fork-join pattern can also be applied for
recursive algorithms such as divide-and-conquer. A simple recursive application is the

A Pattern-Based Comparison of OpenACC and OpenMP for Accelerator Computing 819

Listing 1.11. Superscalar sequence in
OpenACC (GPU)

1

2

3

4

5 #pragma acc parallel loop async(1)
6

7 // F = f(A)
8

9

10 #pragma acc parallel loop async(2)
11 // G = g(B)
12 #pragma acc wait(1,2) async(3)
13

14

15 #pragma acc parallel loop async(3)
16 // H = h(F,G)
17 #pragma acc wait(1)
18 // S = s(F)
19 #pragma acc wait
20

Listing 1.12. Superscalar sequence in
OpenMP (GPU)

1 #pragma omp parallel
2 #pragma omp single
3 {
4 #pragma omp task depend(inout:F)
5 #pragma omp target teams distribute \

parallel for
6 // F = f(A)
7 #pragma omp task depend(inout:G)
8 #pragma omp target teams distribute \

parallel for
9 // G = g(B)

10 #pragma omp task depend(in:F,G) \
depend(inout:H)

11 #pragma omp target teams distribute \
parallel for

12 // H = h(F,G)
13 #pragma omp task depend(in:F)
14 // S = s(F)
15 #pragma omp taskwait
16 }

computation of Fibonacci numbers in Listing 1.9. This algorithm forks for each recur-
sive call a new task and joins them by using the taskwait directive. This conceptual
behavior can be approximated by host-directed nested parallel constructs in OpenACC.

4.5 Superscalar Sequence

The superscalar sequence pattern describes the parallelization of the serial sequence
which executes an ordered list of tasks. In a superscalar sequence, the specific order
can be lifted by parallel execution as long as all data dependencies are satisfied. On
multi-core processors with attached accelerators, the superscalar sequence can also be
interpreted as heterogeneous or hybrid parallelization for the combination of host and
device using asynchronous execution.

To denote data dependencies, OpenACC follows a streaming concept that is known
from CUDA programming. As seen in Listing 1.11, the streams are expressed by async
clauses that take a positive integer as stream label. Data that contains dependencies
must be put into the same stream (same integer) for sequential ordering. Tasks that
can be executed in parallel should be in different streams. The wait construct and
clause help with the synchronization across different streams. For OpenMP, the tasking
model can be applied with the extension of data dependency capabilities. Tasks that do
not depend on each other can be employed in parallel. In Listing 1.12, all tasks (ex-
cept the last one listed) start a target region for execution on the device. Other than in
OpenACC, the OpenMP host thread that picks up the scheduled task has to wait until
the task has been completed to return to the thread pool to execute further tasks.

4.6 Nesting

The nesting pattern is a compositional pattern for creating hierarchies. They are needed
for a modular code structure and the incorporation of libraries. Here, we look

820 S. Wienke et al.

Listing 1.13. Update in OpenACC (GPU)

1 void stencilOnAcc(double **a, double **\
anew, int n, int m) {

2 #pragma acc parallel present \
(a[1:n-2][0:m], anew[1:n-2][0:m])

3 #pragma acc loop
4 // stencil computation
5 }
6 // [..]
7 #pragma acc data create(Anew[0:n][0:m]) \

copyin(A[0:n][0:m]) if(test)
8 {
9

10 while (iter < iter_max) {
11 stencilOnAcc(A,Anew,n,m);
12 #pragma acc update host(Anew[1:n-2][0:m])
13

14 swapOnHost(A,Anew,n,m);
15 #pragma acc update device(A[1:n-2][0:m])
16

17 iter++;
18 } }

Listing 1.14. Update in OpenMP (GPU)

1 void stencilOnAcc(double **a, double ** \
anew, int n, int m) {

2 #pragma omp target map(tofrom: \
a[1:n-2][0:m], anew[1:n-2][0:m])

3 #pragma omp teams distribute parallel for
4 // stencil computation
5 }
6 // [..]
7 #pragma omp target data \

map(alloc:Anew[0:n][0:m]) \
map(to:A[0:n][0:m]) if(test)

8 {
9 while (iter < iter_max) {

10 stencilOnAcc(A,Anew,n,m);
11 #pragma omp target update \

from(Anew[1:n-2][0:m])
12 swapOnHost(A,Anew,n,m);
13 #pragma omp target update \

to(A[1:n-2][0:m])
14 iter++;
15 } }

especially at nested parallelism. In OpenACC, a modular composition can be explored
by the ability of nesting parallel regions or kernels into each other. For OpenMP,
some restrictions are imposed to with target and teams constructs: both are not al-
lowed to be nested in themselves. Only parallel directives can be applied inside of
target/teams/parallel directives.

4.7 Parallel Update

While various parallel data management patterns are defined by McCool et al, no spe-
cific pattern displays the data relationship between a host and an accelerator. Therefore,
we extend the parallel patterns by defining a parallel update pattern. The parallel up-
date pattern does not have a pendant in serial execution, as it exposes capabilities to
synchronize data between host and device.

Both programming models support basic parallel update methods like data clauses,
data regions and update constructs. The usage of these patterns is illustrated in List-
ings 1.13 and 1.14 that show a simplified iterative Jacobi solver with stencil computa-
tions. Data movement is controlled by data clauses next to the parallel, kernels
or target construct, which take a variable list and a map type determining the data
transfer direction or creation/deletion. Basic OpenACC map types are create, copy,
copyin and copyout. OpenMP provides alloc, tofrom, to and from, respec-
tively, in combination with the map clause. The variable list must only denote arrays
or pointers, as scalar variables are transfered automatically. Statically-allocated arrays
can be automatically recognized and moved by the compiler. Thus, we did not have to
specify them in previous examples. In contrast, the size of dynamically-allocated mem-
ory must be manually denoted in the form of array sections or sub arrays (e.g. line 12)
representing rectangular or contiguous memory (depending on the construct, base pro-
gramming language and vendor implementation). Besides data clauses, OpenACC and
OpenMP also support data regions (data, target data) which decouple the data
movement from computational regions. The same data map types apply. Hitherto un-

A Pattern-Based Comparison of OpenACC and OpenMP for Accelerator Computing 821

Listing 1.15. Partition in OpenACC (GPU)

1 // determine idDev, stIdx & #rows per dev
2 acc_set_device_num(idDev, \

acc_device_nvidia);
3 #pragma acc parallel loop copy(x[stIdx:\

rows][0:n],y[stIdx:rows][0:n])
4 // y = a * x (on distributed rows)

Listing 1.16. Partition in OpenMP (GPU)

1 // determine idDev, stIdx & #rows per dev
2

3 #pragma omp target device(idDev) map(x[\
stIdx:rows][0:n],y[stIdx:rows][0:n])

4 #pragma omp teams distribute parallel for
5 // y = a * x (on distributed rows)

mentioned are the present checks employed for data on the device. OpenACC provides
present or copy (and similar) clauses that test the existence of data on the device
and moves the data if necessary. The OpenMP runtime implies this check for all data
transfers. OpenACC also allows to explicitly express that a variable is and must be al-
ready present in a given data context (see line 2). If the variable is not accessible on
the device (if(test) evaluates to false), the runtime will throw an error. OpenMP ap-
plications must specify the map clause with inclusive present check. Thus, the program
continues executing. The update directive allows solely data movement between host
and device and can be used flexibly within the corresponding data environment.

Additionally, both models enable an automatic deep copy of flat objects to the device,
i.e. structs and classes with static member types. With OpenACC’s data API, a manual
deep copy of pointer structures is further possible, but tedious. The concept is called
unstructured data lifetime and can also be expressed by directives. In Listing 1.10,
enter data create allocates memory on the device as soon as the constructor
of class CArray is called. Respectively, enter data delete in the destructor de-
stroys the data on the device. Copy clauses are also possible. An OpenMP counterpart
does not exist, momentarily.

4.8 Geometric Decomposition

Data reorganization is a necessary pattern for many algorithms. The geometric decom-
position pattern divides the data collections into sub domains. For parallel execution on
independent data sections, the sub domains should be non-overlapping at best. If this is
the case and the sub domains are uniform in size, we call this the partition pattern.

The partition pattern is illustrated by a vector scaling in Listings 1.15 and 1.16:
y = α · x with x,y ∈ R

n, α ∈ R. Using OpenACC or OpenMP, data subdivision can
take place between host and accelerator or between multiple accelerators. The decom-
position between host and device can be employed using asynchronous call capabilities
covered in Section 4.5. The distribution across multiple accelerators of the same type
can be applied by API calls (OpenACC: line 2) or clauses (OpenMP: line 3), respec-
tively, specifying a certain device ID.

The distribution across multiple accelerators of different types (e.g. GPU, Xeon
Phi) is only supported by OpenACC. OpenACC provides API calls for setting the cur-
rent device type (acc set device type(type)) and additionally device type
clauses that enable device-specific clause tuning for computational work.

5 Conclusion

In the context of structured parallel patterns, we compared the power of OpenACC
and OpenMP for accelerators. A summary table is provided in [18]. We conclude that

822 S. Wienke et al.

OpenACC is one step ahead of OpenMP, momentarily. Although OpenACC does not di-
rectly support the fork-join pattern, it provides more features concerning the remaining
patterns. Contrary, the OpenMP model provides more general concepts such as sections
and task parallelism today. Thus, if developers want to start directive-based program-
ming on GPGPUs now, we recommend to use OpenACC. A port to OpenMP 4.0 can be
easily carried out, any time, if only features from OpenACC 1.0 were used. Similarly
to OpenACC, OpenMP aims to quickly add missing functionality.

Assessing the long-term perspective of both models, the question is whether they
will co-exist, converge or diverge. Based on our work in the OpenACC and OpenMP
accelerator committees, we assume that they will continue to live independently be-
cause of business interests. However, if users advocate for a certain model, vendors
cannot neglect their need. While accelerator capabilities of OpenMP, that target a broad
user base, might always lag behind OpenACC’s, OpenMP might have the advantage in
the long term: It is widely excepted in the user community and supported by numerous
vendors for broad portability. Additionally, it provides a unified model for program-
ming accelerators and CPUs. On the other hand, the effort for a complete OpenMP 4.0
implementation is significant, possibly preventing full support of all OpenMP concepts
in offload regions.

A further uncertainty is the development of future architectures. It is likely that ac-
celerators will get closer to the host processor and/ or might share the same memory.
Not forgetting, Amdahl’s law still holds. Then, the offload model of OpenACC and
OpenMP might lose importance and hosts with large-scaling capabilities might be su-
perior. While in principle OpenACC can also be compiled for the host, OpenMP is
already well-known for a productive usage on CPUs. Thus, OpenMP might take the
lead with its non-offload parallel features then.

At the end, developers look out for one productive parallel programming model
that also delivers performance. While directive-based models might deliver lower per-
formance than low-level approaches, performance differences between equivalent ap-
proaches in OpenACC and OpenMP are not expected, if compared on the same target
architecture. The only dissimilarity might occur if the general concept differs, for in-
stance, as with asynchronous streams and asynchronous tasks. Unfortunately, we could
not investigate performance measurements so far since current OpenACC implementa-
tions only exist for GPUs and an OpenMP 4.0 implementation with device offloading
capabilities is only existent for Intel’s Xeon Phi. These performance examinations are
left for future work. Further investigations will also cover a pattern-based comparison
between low-level and directive-based accelerator models.

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson,
D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The Landscape of Parallel Com-
puting Research: A View from Berkeley. Tech. Rep. UCB/EECS-2006-183 (2006)

2. Beyer, J.C.: OpenACC 2.0 vs OpenMP 4.0 Programming Comparison. GTC Express Webi-
nars, ID GTCE058 (2013)

3. Beyer, J.C., Stotzer, E.J., Hart, A., de Supinski, B.R.: OpenMP for Accelerators. In: Chap-
man, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665,
pp. 108–121. Springer, Heidelberg (2011)

A Pattern-Based Comparison of OpenACC and OpenMP for Accelerator Computing 823

4. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Lee, S.H., Skadron, K.: Rodinia: A
benchmark suite for heterogeneous computing. In: IEEE International Symposium on Work-
load Characterization, IISWC 2009, pp. 44–54 (2009)

5. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT
Press, Cambridge (1991)

6. Ghosh, S., Liao, T., Calandra, H., Chapman, B.: Experiences with OpenMP, PGI, HMPP and
OpenACC Directives on ISO/TTI Kernels. In: High Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion, pp. 691–700 (2012)

7. Hoshino, T., Maruyama, N., Matsuoka, S., Takaki, R.: CUDA vs OpenACC: Performance
Case Studies with Kernel Benchmarks and a Memory-Bound CFD Application. In: 13th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp.
136–143 (2013)

8. Khronos OpenCL Working Group: The OpenCL Specification, v2.0 (2014)
9. Lee, S., Vetter, J.S.: Early Evaluation of Directive-based GPU Programming Models for Pro-

ductive Exascale Computing. In: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, pp. 23:1–23:11. IEEE Computer
Society Press, Los Alamitos (2012)

10. Liao, C., Yan, Y., de Supinski, B.R., Quinlan, D.J., Chapman, B.: Early Experiences with the
OpenMP Accelerator Model. In: Rendell, A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP
2013. LNCS, vol. 8122, pp. 84–98. Springer, Heidelberg (2013)

11. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st edn.
Addison-Wesley Professional (2004)

12. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns for Effi-
cient Computation, 1st edn. Morgan Kaufmann (2012)

13. OpenACC-Standard.org: The OpenACC Application Programming Interface, v2.0 (2013)
14. OpenMP ARB: OpenMP Application Program Interface, v. 4.0 (2013)
15. Reyes, R., Lopez, I., Fumero, J., De Sande, F.: Directive-based Programming for GPUs:

A Comparative Study. In: 2012 IEEE 14th International Conference on High Performance
Computing and Communication 2012 IEEE 9th International Conference on Embedded Soft-
ware and Systems (HPCC-ICESS), pp. 410–417 (2012)

16. Wang, Y., Qin, Q., See, S.C.W., Lin, J.: Performance Portability Evaluation for OpenACC on
Intel Knights Corner and Nvidia Kepler. HPC China (2013)

17. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC – First Experiences with Real-
World Applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par
2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012)

18. Wienke, S., Terboven, C., Beyer, J.C., Müller, M.S.: A Pattern-Based Comparison of
OpenACC and OpenMP for Accelerator Computing, slides (2014),
https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/
public/Shared%20Documents/WienkeEtAl OpenACC-OpenMP-
PatternComparison.pdf

19. Wolfe, M.: Compilers and More: Accelerated Programming. HPC Wire (2013)
20. Wolfe, M.: Programming Heterogeneous X64+GPU Systems Using OpenACC. IEEE

Comupter Society Webinar (2013)

https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/WienkeEtAl_OpenACC-OpenMP-PatternComparison.pdf
https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/WienkeEtAl_OpenACC-OpenMP-PatternComparison.pdf
https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/WienkeEtAl_OpenACC-OpenMP-PatternComparison.pdf

Author Index

Abdelfattah, Ahmad 704
Abella, Jaume 111
Aguilar, Xavier 1
Aldea, Sergio 234
Ananthakrishnan, Srinath Krishna 13
Andrade, Diego 800
Aneja, Sandhya 692
Arap, Omer 632
Atkinson, Malcolm 282
Atoofian, Ehsan 354
Aupy, Guillaume 608

Bagnères, Lénäıc 222
Bai, Zhaojun 524
Bampis, Evripidis 198
Barthou, Denis 174, 776
Bastoul, Cédric 222
Benoit, Anne 608
Bertier, Marin 330
Beyer, James C. 812
Bianco, Mauro 584
Blanquer, Ignacio 548
Bleuse, Raphaël 560
Blewitt, William 463
Boyuka II, David A. 246, 668
Bramas, Berenger 511
Brown, Geoffrey 632
Buyya, Rajkumar 306

Cachopo, João 150
Cai, Xing 210
Calheiros, Rodrigo N. 306
Campbell, Roy 124
Carribault, Patrick 596
Carrington, Laura 63, 124
Cazorla, Francisco J. 111
Chapman, Barbara 366
Chau, Vincent 198
Chen, Dong 210
Cheng, Long 258
Ciciani, Bruno 475
Clet-Ortega, Jérôme 596
Cohen, Johanne 186
Cordeiro, Daniel 186

Cordes, Frank 788
Corradi, Antonio 294
Cosenza, Biagio 656
Coulaud, Olivier 511
Coullon, Hélène 439
Counilh, Marie-Christine 776
Cumming, Benjamin 584

De Cesaris, Davide 294
de Laat, Cees 162
Delling, Daniel 728
Denis, Alexandre 776
Desprez, Frédéric 330
Dikaiakos, Marios D. 38
Doallo, Ramón 800
Dumas, Jean-Guillaume 499
Dumitru, Cosmin 162
Durillo, Juan J. 87, 318

Einziger, Gil 391
Estebanez, Alvaro 234

Fabeiro, Jorge F. 800
Fahringer, Thomas 87, 656
Ferdaus, Md Hasanul 306
Filgueira, Rosa 282
Fortin, Pierre 716
Fraguela, Basilio B. 800
Friedman, Roy 391
Fürlinger, Karl 1

Gamst, Anthony 63
Gansterer, Wilfried N. 403
Gautier, Thierry 499, 560
Gendron, Eric 704
George, Thomas 692
Gogolenko, Sergiy 524
González, Jaime 752
González-Domı́nguez, Jorge 680
Gonzalez-Escribano, Arturo 234
Gratadour, Damien 704
Grosso, Paola 162
Gschwandtner, Philipp 87
Guerrieri, Alessio 270

826 Author Index

Henry, Sylvain 776
Hernandez, Oscar 366
Himebaugh, Bryce 632
Hong, Cheol-Ho 99
Huang, Dafei 210
Hunger, Lars 656

Islam, Nusrat Sharmin 644

Jana, Siddhartha 366
Jeannot, Emmanuel 174
Jelasity, Márk 379
Jeljeli, Hamza 764
Jenkins, John 246
Jiang, Jie 26
Jose, Jithin 342
Journault, Matthieu 608
Jundt, Adam 124

Kambadur, Melanie 75
Kantor, Yoav 391
Kässens, Jan Christian 680
Katrinis, Kostas 294
Keyes, David 704
Kim, Beom-Joon 99
Kim, Martha A. 75
Kim, Young-Pil 99
Kimeswenger, Stefan 656
Kimpe, Dries 246
Klaftenegger, David 572
Klasky, Scott 246, 668
Klusáček, Dalibor 138
Knobloch, Michael 26
Kobitzsch, Moritz 728
Kojima, Isao 282
Kothapalli, Kishore 740
Kotoulas, Spyros 258, 294
Kumbhare, Alok 451

Lakshminarasimhan, Sriram 668
Lange, Benoit 716
Laure, Erwin 1
Laurenzano, Michael A. 63, 124
Lebre, Adrien 330
Legrand, Arnaud 50
Letsios, Dimitrios 198
Li, Xiaoye Sherry 487
Lima, João V.F. 560
Limet, Sébastien 439
Liu, Frank 692

Liu, Qixiao 111
Livesey, Daria 415
Llanos, Diego R. 234
Loidl, Hans-Wolfgang 415
Loulloudes, Nicholas 38
Ltaief, Hatem 704
Lu, Xiaoyi 342, 644
Lucarelli, Giorgio 198

Maier, Patrick 415
Maillard, Nicolas 427
Manzak, Ali 354
Maramreddy, Manoj Kumar 740
Martinez-Benito, Roberto 752
Méhaut, Jean-François 50
Milis, Ioannis 198
Mohr, Bernd 26
Montresor, Alberto 270
Mor, Stefano 427
Moreto, Miquel 111
Morgan, Graham 463
Mounié, Grégory 560
Mueller, Frank 13
Müller, Matthias S. 812
Murshed, Manzur 306

Nagarkar, Soonil 451
Namyst, Raymond 776
Novalbos, Marcos 752
Nyers, Lehel 379

Oprescu, Ana-Maria 162
Otaduy, Miguel A. 752

Pallis, George 38
Panda, Dhabaleswar K. (DK) 342, 644
Park, Hyunchan 99
Pastor, Jonathan 330
Pérache, Marc 596
Peraza, Joshua 124
Pernet, Clément 499
Philippen, Peter 26
Poole, Stephen 366
Prasanna, Viktor 451
Prikopa, Karl E. 403
Prodan, Radu 318

Qiao, Yuran 210
Quaglia, Francesco 475
Quesnel, Flavien 330

Author Index 827

Raghavendra, Cauligi 451
Rahman, Md. Wasi-ur- 644
Rajachandrasekar, Raghunath 644
Rajaraman, Rajmohan 620
Ranshous, Stephen 246, 668
Raphael, Pedro Luis F. 186
Ravi, Santosh 451
Real, Lucas Villa 692
Rito, Hugo 150
Robert, Yves 608
Roch, Jean-Louis 427
Roche, Scott T. 620
Romano, Paolo 475
Romero, Eloy 548
Ropars, Thomas 536
Rosenberg, Arnold L. 620
Rughetti, Diego 475

Sagonas, Konstantinos 572
Samatova, Nagiza F. 246, 668
Sanchez, Alberto 752
Sao, Piyush 487
Scalettar, Richard 524
Schiper, André 536
Schmidt, Bertil 680
Schulz, Martin 63
Sevin, Arnaud 704
Shahmirzadi, Omid 536
Sharp, Craig 463
Shi, Rong 342
Simmhan, Yogesh 451
Singhal, Swati 692
Sofokleous, Chrystalla 38
Soriano, Antonio 548
Stanisic, Luka 50
Steinke, Thomas 788
Straková, Hana 403
Sultan, Ziad 499
Swany, Martin 632
Sylvand, Guillaume 511

Tang, Houjun 246, 668
Tang, Kui 75
Tanimura, Yusuke 282
Tedeschi, Cédric 330
Terboven, Christian 812
Theodoropoulos, Georgios 258
Thibault, Samuel 50
Tiwari, Ananta 63, 124
Tomás, Andrés 548
Tóth, Šimon 138
Trihinas, Demetris 38
Trinder, Phil 415
Trystram, Denis 560

Valero, Mateo 111
van der Mei, Rob 162
Velegrakis, Yannis 270
Vidal, Fabrice 704
Videau, Brice 50
Vuduc, Richard 487

Ward, Tomas E. 258
Ward Jr., William A. 124
Wen, Mei 210
Wende, Florian 788
Werneck, Renato F. 728
Wickramaarachchi, Charith 451
Wienbrandt, Lars 680
Wienke, Sandra 812
Winblad, Kjell 572
Wu, Nan 210

Xun, Changqing 210

Yoo, Chuck 99

Zhang, Chunyuan 210
Zhang, Jie 342
Živković, Miroslav 162
Zois, Georgios 198
Zou, Xiaocheng 246, 668

	Preface
	Organization
	Euro-Par 2014 Invited Talks
	Euro-Par 2014 Topics Overview
	Table of Contents
	Support Tools Environments
	MPI Trace Compression Using Event Flow Graphs

	1 Introduction
	2 MPI Event Flow Graphs
	2.1 Reconstructing Traces from Event Flow Graphs
	2.2 Compressing Edges in Branch Nodes
	2.3 Implementation in IPM

	3 Experiments
	3.1 Overhead
	3.2 Compression Ratios

	4 Related Work
	5 Future Work
	6 Conclusion
	References

	ScalaJack: Customized Scalable Tracing with In-situ Data Analysis

	1 Introduction
	2 Background
	3 Design and Implementation
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Performance Measurement and Analysis of Transactional Memory and Speculative Execution on IBM Blue Gene/Q

	1 Introduction
	2 Related Work
	3 Tool Implementation
	3.1 IBM TM/SE Monitoring API
	3.2 Instrumenting TM/SE Programs
	3.3 Measuring TM and SE Programs

	4 Experimental Evaluation
	4.1 Update Kernel
	4.2 MP2C

	5 Conclusion and Future Work
	References

	c-Eclipse: An Open-Source Management Framework for Cloud Applications

	1 Introduction
	2 Related Work
	3 c-Eclipse Overview
	3.1 c-Eclipse Features
	3.2 TOSCA Specification for Cloud Applications
	3.3 c-Eclipse Framework Architecture
	3.4 c-Eclipse User Interface

	4 Elasticity Specification in c-Eclipse
	5 Use-Case
	6 Conclusion and Future Work
	References

	Modeling and Simulation of a Dynamic Task-Based Runtime System for Heterogeneous Multi-core Architectures

	1 Introduction
	2 Related Work
	3 Porting StarPU over SimGrid
	4 Experimental Setting
	5 Modeling Runtime System
	6 Modeling Communication in Hybrid Systems
	7 Modeling Computation
	8 Prediction Accuracy in a Wide Range of Settings
	9 Conclusion and Future Work
	References

	Performance Prediction and Evaluation
	Modeling the Impact of Reduced Memory Bandwidth on HPC Applications

	1 Introduction
	2 Predicting Performance Sensitivity
	2.1 Model Validation System
	2.2 Model Methodology
	2.3 Computational Characterization

	3 Results
	3.1 Model Training
	3.2 Model Evaluation on Real Applications
	3.3 Algorithm Selection

	4 Related Work
	5 Conclusion
	References

	ParaShares: Finding the Important Basic Blocks in Multithreaded Programs

	1 Introduction
	2 ParaShares
	2.1 The Basic Concept
	2.2 A First Look at Real Applications
	2.3 Benefits of Fine Granularity

	3 Collecting and Analyzing ParaShares
	3.1 The Collection Framework
	3.2 ParaShare Robustness
	3.3 Impact of ParaShare Weights

	4 ParaShares in Real Applications
	4.1 How Top Blocks Differ
	4.2 Performance Tuning

	5 Conclusions
	References

	Multi-Objective Auto-Tuning with Insieme:Optimization and Trade-Off Analysis for Time,Energy and Resource Usage

	1 Introduction
	2 Insieme Compiler
	2.1 Auto-Tuning Infrastructure
	2.2 Optimizers

	3 Experiment Design
	3.1 Objectives
	3.2 Benchmarks and Target Platform
	3.3 Configuration of the Optimizers
	3.4 Comparison Criteria

	4 Experimental Results
	4.1 RS-GDE3 Evaluation
	4.2 Energy-Time Trade-Off as a Function of Resource Usage
	4.3 Comparison of RS-GDE3 with NSGA-II

	5 Related Work
	6 Conclusion
	References

	Performance Prediction and Evaluation of Parallel Applications in KVM, Xen,and VMware

	1 Introduction
	2 Background
	2.1 Scheduling Policy

	3 Performance Prediction
	3.1 VM Scheduling Model and Policy
	3.2 Execution Time of a Single Phase
	3.3 Execution Time of a Parallel Program

	4 Performance Evaluation
	4.1 Experimental Setup and Method
	4.2 Prediction for a Single Phase
	4.3 Prediction for a Parallel Program

	5 Related Work
	6 Conclusion
	References

	DReAM: Per-Task DRAM Energy Metering in Multicore Systems

	1 Introduction
	2 Background and Related Work
	3 Metering Per-Task Energy Consumption
	3.1 Memory Model
	3.2 Memory Energy Consumption
	3.3 Per-Task Energy Metering for Close-Page Policy
	3.4 Ideal Per-Task Energy Metering Model

	4 DReAM, A Practical Approach to Per-Task Energy Metering

	5 Evaluation
	5.1 Experimental Setup
	5.2 DReAM Energy Estimation

	6 Conclusions
	References

	Characterizing the Performance-Energy Tradeoff of Small ARM Cores in HPC Computation

	1 Introduction
	2 Related Work
	2.1 ARM in High Performance Computing
	2.2 HPC Application Performance Modeling

	3 Analysis and Measurement Methodology
	3.1 Performance Measurement
	3.2 Attributing Power to a Workload
	3.3 Program Static Analysis Tools

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance and Energy Characterization
	4.3 Attributing Energy Characteristics to Static Program Features
	4.4 Implications for 64-Bit ARM

	5 Conclusion
	References

	Scheduling and Load Balancing
	On Interactions among Scheduling Policies:Finding Efficient Queue Setup Using High-Resolution Simulations

	1 Introduction
	2 Main Components of a Resource Management System
	2.1 Ordering Policy
	2.2 Scheduling Policy
	2.3 Queue Configuration

	3 Configuration of MetaCentrum Resource Manager
	3.1 Historical Setup
	3.2 Problems with Historic Setup

	4 Proposed Modifications of the Scheduling Scheme
	4.1 Conservative Extension
	4.2 Complex Extension

	5 Experimental Evaluation
	5.1 Simulation Environment
	5.2 Simulation Results

	6 Conclusion and Future Work
	References

	ProPS: A Progressively Pessimistic Scheduler for Software Transactional Memory

	1 Introduction
	2 Why We Need Better Transaction Scheduling
	3 A Progressively Pessimistic Scheduling Policy
	4 The ProPS Implementation
	5 Experimental Results
	5.1 STMBench7 Benchmark: Short Transactions
	5.2 STMBench7 Benchmark: Mixed Transactional Workload
	5.3 STAMP Benchmark Suite

	6 Conclusions
	References

	A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks Scheduling on Clouds

	1 Introduction
	2 Related Work
	3 System Model

	3.1 A Mean Value Analysis Approach

	4 Evaluation and Discussion
	5 Conclusions and Future work
	References

	SPAGHETtI: Scheduling/Placement Approachfor Task-Graphs on HETerogeneous archItecture
	1 Introduction
	2 Related Work
	3 Models and Definitions
	4 The SPAGHETtI Algorithm
	4.1 Minimizing Makespan
	4.2 Mapping Tasks to Architectures
	4.3 Determining the Number of Resources for Each Architecture

	5 Exploring Tradeoffs for Heterogeneous Machines
	6 Experimental Results
	7 Conclusion
	References

	Energy-Aware Multi-Organization Scheduling Problem

	1 Introduction
	1.1 Related Work
	1.2 Contributions and Outline of this Paper

	2 Problem Description and Notations
	3 Complexity Analysis
	3.1 The Cost of Having Selfish Organizations
	3.2 Computational Complexity

	4 Heuristics
	4.1 Heuristics for N = 2 Organizations
	4.2 Heuristic for N Organizations

	5 Experimental Evaluation
	6 Concluding Remarks
	References

	Energy Efficient Scheduling of MapReduce Jobs
	1 Introduction
	2 Problem Statement and Notation
	3 A Linear Programming Approach
	3.1 Linear Programming Relaxation
	3.2 The Algorithm

	4 A Convex Programming Approach
	4.1 The Convex Program
	4.2 Experimental Evaluation of Scheduling Policies

	5 Conclusions
	References

	High Performance Architectures and Compilers
	Automated Transformation of GPU-Specific OpenCL Kernels Targeting Performance Portability on Multi-Core/Many-Core CPUs

	1 Introduction
	2 Related Work
	3 A Linear Descriptor of Array Access
	4 Transforming GPU-Specific OpenCL Kernels
	4.1 Analysis-Based Coalescing
	4.2 Post Optimizations

	5 Performance Evaluation
	6 Conclusion
	References

	Switchable Scheduling for Runtime Adaptation of Optimization

	1 Introduction
	2 Background
	3 Switchable Scheduling
	3.1 Switching Domain Computation
	3.2 Multi-Version Code Generation
	3.3 Runtime

	4 Selecting Pertinent Versions
	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	A New GCC Plugin-Based Compiler Passto Add Support for Thread-Level Speculation into OpenMP

	1 Introduction
	2 Thread-Level Speculation in a Nutshell
	3 New OpenMP Clause: speculative
	4 Parsing the New speculative Clause

	5 Plugin-Based Compiler Pass Description
	5.1 Interface with the TLS Runtime Library
	5.2 Handling Complex Statements
	5.3 Using the Plugin to Compile the User Code

	6 Validation
	7 Relative Performance and Programmability
	8 Related Work
	9 Conclusions
	References

	Parallel and Distributed Data Management
	Improving Read Performance with Online Access Pattern Analysis and Prefetching

	1 Introduction
	2 Background
	2.1 Structured Access Pattern
	2.2 Unstructured Access Pattern

	3 Method
	3.1 Online Access Pattern Analysis
	3.2 Structured Access Pattern Analysis
	3.3 Unstructured Access Pattern Analysis
	3.4 Trace Storage with Low Memory Footprint
	3.5 Informed Prefetching

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Structured Access Pattern Performance
	4.3 Unstructured Access Pattern Performance
	4.4 Overhead of Trace Collection and Access Pattern Analysis
	4.5 Accuracy of Access Pattern Detection

	5 Related Work
	6 Conclusion
	References

	Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures

	1 Introduction
	2 Related Work
	2.1 Related Work on Joins

	2.2 Details on the State-of-the-Art

	3 Our Approach
	3.1 Semijoin for Outer Joins
	3.2 REQC Algorithm

	4 Implementation
	4.1 Pre-partitioning of Skew Tuples
	4.2 Parallel Join Processing

	5 Evaluation
	5.1 Runtime
	5.2 Network Communication and Load Balancing
	5.3 Scalability

	6 Conclusions
	References

	Top-k Item Identification on Dynamic and Distributed Datasets

	1 Introduction
	2 Problem Statement
	3 Gossip-Based top-k Discovery
	4 Protocol Convergence Analysis
	5 Results
	6 Related Work
	7 Conclusions
	References

	Applying Selectively Parallel I/O Compression to Parallel Storage Systems

	1 Introduction
	2 Related Work
	2.1 The Papio Parallel File System
	2.2 Applying Compression to File Systems

	3 Selecting the Compression Algorithm
	4 Adding Compression to Papio
	4.1 Sequential Compression Strategy
	4.2 Parallel Compression Strategy
	4.3 Selectively Parallel IO Compression Strategy

	5 Adding Decompression to Papio
	6 Evaluation
	7 Conclusions and Future Work
	References

	Ultra-Fast Load Balancing of Distributed Key-Value Stores through Network-Assisted Lookups

	1 Introduction
	2 Related Art and Motivation
	3 NAL Architecture
	4 Load Balancing Algorithm
	5 Evaluation
	6 Conclusions
	References

	Grid, Cluster and Cloud Computing
	Virtual Machine Consolidation in Cloud Data Centers Using ACO Metaheuristic

	1 Introduction
	2 Related Works
	3 Virtual Machine Consolidation
	3.1 Modeling VM Consolidation as Multi-dimensional Vector Packing Problem

	3.2 Modeling Multi-dimensional Resource Utilization Based on Vector Algebra

	3.3 Modeling Resource Utilization and Wastage
	3.4 Modeling Power Consumption

	4 Proposed Solution

	4.1 Adaptation of ACO Metaheuristic for VM Consolidation
	4.2 AVVMC Algorithm

	5 Performance Evaluation
	6 Conclusions and Future Work
	References

	Workflow Scheduling on Federated Clouds
	1 Introduction
	2 Related Work
	3 Model
	3.1 Architecture
	3.2 Workflow Model
	3.3 Resource Model
	3.4 Makespan
	3.5 Financial Cost

	4 Cloud-Aware MOHEFT Algorithm
	5 Experimental Setup
	5.1 Workflow Applications
	5.2 Resources

	6 Experimental Results
	6.1 Type-1 Workflows
	6.2 Type-2 Workflows
	6.3 POV-Ray

	7 Conclusions and Future Work
	References

	Locality-Aware Cooperation for VM Scheduling in Distributed Clouds

	1 Introduction
	2 Background
	2.1 DVMS
	2.2 Overlay Networks and Locality

	3 Contributions
	3.1 Locality-Aware Overlay Network
	3.2 PeerActor: A Building Block to Abstract Overlay Networks

	4 Experiments
	4.1 Experimental Protocol
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	Can Inter-VM Shmem Benefit MPI Applicationson SR-IOV Based Virtualized Infiniband Clusters?

	1 Introduction
	2 Background
	3 Prototype Design and Evaluation Methodology
	3.1 Prototype Design
	3.2 Evaluation Dimensions

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Point to Point Communication Performance
	4.3 Collective Communication Performance
	4.4 Application Performance
	4.5 Virtual Machine Scalability
	4.6 Performance Overhead

	5 Related Work
	6 Conclusion and Future Work
	References

	Green High Performance Computing
	Power-Aware L1 and L2 Caches for GPGPUs
	1 Introduction
	2 Background
	3 Motivation
	4 Reducing Power of L1 and L2 Caches
	4.1 Static Power Reduction Using Drowsy Cells
	4.2 Reducing Dynamic Power Using Active Mask

	5 Methodology and Results
	5.1 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Power Consumption Due to Data Movementin Distributed Programming Models
	1 Introduction and Related Work
	2 Factors Affecting Power and Energy Profile of RemoteData Transfers
	2.1 Choice of Transport Layer and the Associated Interconnect
	2.2 Design of Data-Transfer Protocols
	2.3 Power versus Latency

	3 Experimental Setup
	4 Empirical Observation and Analysis
	4.1 Using TCP over Ethernet
	4.2 Using OpenIB/OFED Stack over InfiniBand
	4.3 Summary: Achievable Energy-Efficiency during Data Transfers

	5 Conclusion
	References

	Distributed Systems and Algorithms
	Spanning Tree or Gossip for Aggregation:A Comparative Study
	1 Introduction
	2 System Model
	3 The Protocols in Our Comparison
	3.1 GAP (General Aggregation Protocol)
	3.2 Adaptive Gossip Protocols
	3.3 Common Properties

	4 Experimental Setup and Methodology
	4.1 Network Size as the Aggregation Problem of Choice
	4.2 Network Topologies
	4.3 Failure and Churn Scenarios
	4.4 EvaluationMethodology and Metrics

	5 Results
	5.1 The Achilles Heel of Gossip
	5.2 The Achilles Heel of Spanning Trees and Bookkeeping Gossip Protocols
	5.3 The k-Out Topology
	5.4 The Barabasi-Albert Topology

	6 Discussion and Conclusions
	References

	Shades: Expediting Kademlia’s Lookup Process
	1 Introduction
	2 Shades
	2.1 Caching Mechanism
	2.2 Routing
	2.3 Congestion Control

	3 Related Work
	4 Performance Measurements
	4.1 Methodology and Setup
	4.2 Metrics and Definitions
	4.3 Number of Colors
	4.4 Comparison to Other Caching Mechanisms
	4.5 Load Distribution

	5 Discussion
	References

	Analysis and Comparison of Truly Distributed Solvers for Linear Least Squares Problemson Wireless Sensor Networks

	1 Introduction
	2 Existing Distributed Least Squares Solver
	2.1 Centralised Approaches or Global Communication
	2.2 Clustered Approaches
	2.3 Truly Distributed Approaches

	3 A Push-Sum-Based Least Squares Solver
	4 Communication Cost of Distributed LS Solvers
	5 Experiments
	6 Conclusion
	References

	Parallel and Distributed Programming
	High-Performance Computer Algebra:A Hecke Algebra Case Study
	1 Introduction
	2 Algorithm for Finding Invariant Bilinear Forms

	3 The SymGridPar2 Framework
	4 Parallel Algorithm for Finding Invariant Bilinear Forms

	5 Evaluation of Parallel Performance
	6 Related Work
	7 Conclusion
	References

	Generic Deterministic Random Number Generation in Dynamic-Multithreaded Platforms

	1 Introduction
	2 Sequential DRNGs and Generic Interface
	3 Parallel DRNGs and Analysis
	3.1 Work-Efficiency
	3.2 Analysis
	3.3 Work-Optimality

	4 Performance Results

	5 Concluding Remarks
	References

	Implementation and Performance Analysis of SkelGIS for Network Mesh-Based Simulations

	1 Introduction
	2 The Compressed Sparse Row Format
	3 A Distributed Data Structure for DAGs
	4 SkelGIS Implementation for Network Simulations
	5 Experiments
	6 Related Work
	7 Conclusion
	References

	GoFFish: A Sub-graph Centric Framework for Large-Scale Graph Analytics

	1 Introduction
	2 Background and Related Work

	3 Sub-graph Centric Programming Abstraction
	4 Architecture
	5 Evaluation of Sub-graph Centric Algorithms on GoFFish
	6 Discussion and Conclusions
	References

	Resolving Semantic Conflicts in Word Based Software Transactional Memory

	1 Introduction
	2 Implementation
	2.1 Overview
	2.2 Sessions
	2.3 Session Locks

	3 Related Work
	4 Evaluation
	4.1 Transaction Throughput
	4.2 Maximum Transaction Retries

	5 Conclusion
	References

	Automatic Tuning of the Parallelism Degree in Hardware Transactional Memory

	1 Introduction
	2 Related Work
	3 Concurrency Regulation Approaches: STM vs HTM
	4 A Classification Based Approach
	5 Experimental Results
	6 Conclusions
	References

	Parallel Numerical Algorithms
	A Distributed CPU-GPU Sparse Direct Solver
	1 Introduction
	2 Related Work
	3 Overview of SuperLU_DIST
	4 New Intranode Enhancements
	5 Experiments and Results
	6 Conclusions and Future Work
	References

	Parallel Computation of Echelon Forms
	1 Introduction
	2 Preliminaries
	2.1 Auxiliary Sequential Routines
	2.2 Parallel Programming Models
	2.3 Parallel Matrix Multiplication

	3 Eliminations with No Rank Deficiency
	3.1 Modular Reductions
	3.2 Parallel Experiments

	4 Elimination with Rank Deficiencies
	4.1 Pivoting Strategies

	5 Conclusion
	References

	Time-Domain BEM for the Wave Equation:Optimization and Hybrid Parallelization

	1 Introduction
	2 Formulation
	3 Summation Algorithm
	3.1 Summation Ordering
	3.2 Slice Structure
	3.3 Slice Computation

	4 Parallelization Strategies
	4.1 Distributed Memory Parallelization
	4.2 Shared Memory Parallelization

	5 Numerical and Performance Studies
	5.1 Experimental Setup
	5.2 Multi-vectors/Vector Product
	5.3 Scalability

	6 Conclusion
	References

	Structured Orthogonal Inversionof Block p-Cyclic Matrices on Multicores with GPU Accelerators

	1 Introduction
	2 Previous Work
	3 Basic Algorithms
	4 Parallel Implementation on Multicore with GPU Accelerators

	5 Experimental Results and Analysis
	6 Conclusions and Further Directions
	References

	Multicore and Manycore Programming
	High-Throughput Maps on Message-Passing Manycore Architectures:Partitioning versus Replication

	1 Introduction
	2 Assumptions and Goal
	3 Algorithms
	3.1 Partitioning
	3.2 Replication

	4 Performance Modeling
	4.1 Methodology
	4.2 Validation

	5 Evaluation
	5.1 Comparison on Different Platforms
	5.2 Discussion

	6 Related Work
	7 Conclusion
	References

	A Fast Sparse Block Circulant Matrix Vector Product

	1 Introduction
	2 Circulant Matrix Product Approach
	3 Multi-Core CPU Implementation
	3.1 Custom Product for Circulant Block Sparse Matrices
	3.2 Using a SpMM Kernel in a Numerical Library Software

	4 Circulant Sparse Product Implementation on GPU
	5 Conclusions and Future Work
	References

	Scheduling Data Flow Program in XKaapi:A New Affinity Based Algorithm for Heterogeneous Architectures

	1 Introduction
	2 Scheduling Framework in XKaapi
	2.1 Execution Flow
	2.2 Pop, Push, Steal and Activate Operations
	2.3 Performance Model

	3 Scheduling Strategies
	3.1 HEFT within XKaapi
	3.2 Dual Approximation and Affinity

	4 Experiments
	4.1 Experimental Setup: Platform and Benchmarks
	4.2 Impact of the Affinity Control Parameter α
	4.3 Comparison of Scheduling Strategies

	5 Related Works
	6 Conclusion
	References

	Delegation Locking Libraries for Improved Performance of Multithreaded Programs

	1 Introduction
	2 Queue Delegation Locking
	3 C Library

	4 C++Library
	5 Queue Delegation Locking for the Erlang Term Storage

	5.1 Porting
	5.2 Performance Evaluation

	6 Related Synchronization Algorithms
	7 Discussion
	8 Future Work and Concluding Remarks
	References

	A Generic Strategy for Multi-stage Stencils
	1 Introduction
	2 Related Work
	3 Tiling and Buffering
	3.1 The Algorithm
	3.2 Implementation
	3.3 Analysis

	4 Results
	4.1 Fourth-Order Dispersion
	4.2 SimpleHD

	5 Conclusions
	References

	Evaluation of OpenMP Task Scheduling Algorithms for Large NUMA Architectures

	1 Introduction
	2 Related Work
	3 Task Scheduling Control
	3.1 Task List Granularity
	3.2 Stealing Strategies
	3.3 Implementation

	4 Evaluation
	4.1 Experiments Platforms
	4.2 Results
	4.3 Alignment
	4.4 FFT
	4.5 Fibonacci
	4.6 Sort
	4.7 SparseLU
	4.8 Analysis

	5 Conclusion and Future Work
	References

	Theory and Algorithms for Parallel Computation
	Power-Aware Replica Placement in Tree Networks with Multiple Servers per Client

	1 Introduction
	2 Framework
	3 Complexity Results
	4 Heuristics
	5 Simulations
	6 Conclusion
	References

	On Constructing DAG-Schedules with Large AREAs
	1 Introduction
	2 Computation-DAGs and Their Schedules
	3 TheNP-Completeness of AREA Maximization
	4 Two New DAG-Scheduling Heuristics
	4.1 A DAG-Scheduling Heuristic Based on the Sidney Decomposition
	4.2 A DAG-Scheduling Heuristic Based on Linear Programming

	5 Simulation Experiments
	5.1 Experimental Procedure
	5.2 Experimental Results

	6 Conclusion
	References

	High Performance Networks and Communication
	Software Defined Multicasting for MPI Collective Operation Offloading with the NetFPGA

	1 Introduction
	2 Background and Related Work

	3 Architecture and Implementation Details
	3.1 Overall Architecture
	3.2 Solution Space
	3.3 Micro-architecture

	4 Evaluation
	5 Conclusion and Future Work
	References

	Map Reduce over Lustre:Can RDMA-Based Approach Benefit?

	1 Introduction
	1.1 Motivation and Related Studies
	1.2 Contributions

	2 Evaluation Methodology
	2.1 Evaluation Platforms
	2.2 Dimensions in Methodology
	2.3 Evaluation Methods

	3 Performance Evaluation
	3.1 Tuning of Lustre Stripe Size
	3.2 Comparison of Progress in Different Phases
	3.3 Evaluation of Micro-benchmark
	3.4 Evaluation of Resource Utilization
	3.5 Evaluation of Macro-Benchmarks
	3.6 Summary

	4 Conclusion and Future Work
	References

	High-Performance and Scientic Applications
	Random Fields Generation on the GPU with the Spectral Turning Bands Method

	1 Introduction
	2 Related Work
	3 The Turning Band Method
	4 Parallelization and Optimizations
	5 Results
	6 Applications
	7 Conclusions
	References

	Fast Set Intersection through Run-Time Bitmap Construction over PForDelta-Compressed Indexes

	1 Introduction
	2 Related Work and Background
	2.1 Set Intersection
	2.2 PForDelta-Compressed Indexes

	3 Method
	3.1 The Role of Set Intersection in Conjunctive Query Processing
	3.2 BitRun: Incorporating Run-length Encoding into PForDelta
	3.3 BitExp: Expanding the PForDelta Encoding Bit-Width
	3.4 BitRun-BitExp: Handling Set Intersections across Heterogeneous Datasets

	4 Results
	4.1 Experimental Setup
	4.2 Comparison with WAH Bitmap Indexes

	4.3 Performance Breakdown of PForDelta-Compressed Index Approaches

	5 Conclusion and Future Work
	References

	Hybrid CPU/GPU Acceleration of Detectionof 2-SNP Epistatic Interactions in GWAS

	1 Introduction
	2 Background
	2.1 Contingency Tables
	2.2 Log-Linear Models and the KSA Filter

	3 KSA’s Superposition Approximation (KSASA)
	4 Parallelization Approach
	4.1 Optimization of the Calculation of Contingency Tables
	4.2 Inter-Task Hybrid CPU-GPU Parallelism
	4.3 CUDA Implementation

	5 Performance Evaluation
	6 Conclusions
	References

	IFM: A Scalable High Resolution Flood Modeling
Framework
	1 Introduction
	2 Related Work
	3 Integrated Flood Modeling System
	4 Distributed Memory Parallelization
	5 Domain Partitioning Approaches
	5.1 Two Dimensional Non-uniform Partitioning

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Conclusion
	References

	High Performance Pseudo-analytical Simulation of Multi-Object Adaptive Optics over Multi-GPU Systems

	1 Introduction
	2 The Multi-Object Adaptive Optics Technique
	3 Mathematical Model

	4 Dense Symmetric Eigensolver Algorithm
	5 Implementation Details
	6 Experimental Results
	7 Related Work
	8 Conclusion and Future Work
	References

	Parallel Dual Tree Traversal on Multi-core and Many-core Architectures for Astrophysical N-body Simulations

	1 Introduction
	2 N-body Algorithms
	3 pfalcON: A Parallel falcON
	3.1 Task Parallelism for the Dual Tree Traversal
	3.2 Portable and Efficient SIMD Direct Computation

	4 Performance Results

	4.1 SIMD Direct Computation
	4.2 Task Parallelism
	4.3 Comparison with exaFMM-dev and Bonsai

	5 Conclusion and Future Work

	References

	GPU and Accelerator Computing
	Customizing Driving Directions with GPUs
	1 Introduction
	2 Preliminaries
	3 Search-Based Customization
	4 Contraction-Based Customization
	5 Putting Everything Together
	6 Experiments
	7 Final Remarks

	References

	GPU Accelerated Range Trees with Applications
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Range Querying

	3 A Parallel Range Tree
	3.1 Implementation Details
	3.2 Results and Performance Analysis

	4 Application I: Range Searching
	4.1 Performance Analysis

	5 Application II: Reporting Maximal Points in an Orthogonal Query

	5.1 Performance Results

	6 Conclusions
	References

	Scalable On-Board Multi-GPU Simulation of Long-
Range Molecular Dynamics
	1 Introduction
	2 Related Work
	3 Optimized MSM
	3.1 Overview of Molecular Dynamics
	3.2 The Multilevel Summation Method
	3.3 FFT-Based Sums

	4 Distributed MSM
	4.1 Multigrid Partitions
	4.2 Periodic Boundary Conditions on Multiple GPUs
	4.3 Parallel Update and Synchronization of Interfaces

	5 Evaluation
	5.1 Scalability Analysis

	6 Conclusions and Future Work
	References

	Resolution of Linear Algebra for the Discrete Logarithm Problem Using GPU and Multi-core Architectures

	1 Introduction
	2 Algorithms for Sparse Linear Algebra
	3 The Matrix–Vector Product
	3.1 Communication/Computation Scheme
	3.2 Balancing the Workload
	3.3 The Partial SpMV
	3.4 Communication Concerns

	4 Examples of Computations
	4.1 DLP in GF(2809)× Using FFS
	4.2 DLP in a 596-bit Prime Field Using NFS

	5 Conclusion
	References

	Toward OpenCL Automatic Multi-Device Support

	1 Introduction
	2 Dynamic Adaptation of Parallelism to Heterogeneous Architectures

	2.1 SOCL: A Unified OpenCL Platform
	2.2 Automatic Memory Management
	2.3 Automatic Command Scheduler

	3 SOCL Implementation

	4 Performance Evaluation
	4.1 Black-Scholes
	4.2 LuxRender
	4.3 HDR Tone Mapping

	5 Related Works
	6 Conclusion and Future Work
	References

	Concurrent Kernel Execution on Xeon Phiwith in Parallel Heterogeneous Workloads

	1 Introduction
	2 Related Work
	3 Intel Xeon Phi Offload Programming
	4 Synthetic Benchmarks
	5 Strong Scaling for Simulations of Small Molecules
	6 Summary and Conclusion
	References

	Writing Self-adaptive Codesfor Heterogeneous Systems

	1 Introduction
	2 The Heterogeneous Programming Library
	2.1 Programming Using HPL

	3 Performance Portability in HPL
	4 HPL Portable Kernels through Iterative Optimization
	5 Experimental Results
	6 Conclusions
	References

	A Pattern-Based Comparison of OpenACC and OpenMP for Accelerator Computing

	1 Introduction
	2 Related Work
	3 Overview on OpenACC and OpenMP for Accelerators
	4 Pattern-Based Comparison
	4.1 Map

	4.2 Stencil
	4.3 Reduction
	4.4 Fork-Join
	4.5 Superscalar Sequence
	4.6 Nesting
	4.7 Parallel Update
	4.8 Geometric Decomposition

	5 Conclusion
	References

	Author Index

