Fernando Silva Inés Dutra

Vitor Santos Costa (Eds.)

ARCoSS

Euro-Par 2014
Parallel Processing

20th International Conference
Porto, Portugal, August 25-29, 2014
Proceedings

LNCS 8632

Euro - Par

Lecture Notes in Computer Science 8632

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA

Alfred Kobsa, USA Friedemann Mattern, Switzerland
John C. Mitchell, USA Moni Naor, Israel

Oscar Nierstrasz, Switzerland C. Pandu Rangan, India
Bernhard Steffen, Germany Doug Tygar, USA

Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Fernando Silva Inés Dutra
Vitor Santos Costa (Eds.)

Euro-Par 2014
Parallel Processing

20th International Conference
Porto, Portugal, August 25-29, 2014
Proceedings

@ Springer

Volume Editors

Fernando Silva

Inés Dutra

Vitor Santos Costa

Universidade do Porto
CRACS/INESC-TEC and FCUP

Rua do Campo Alegre, 1021
4169-007 Porto, Portugal

E-mail: {fds, ines, vsc}@dcc.fc.up.pt

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-319-09872-2 e-ISBN 978-3-319-09873-9
DOI 10.1007/978-3-319-09873-9

Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945461

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Euro-Par is an annual series of international conferences dedicated to the pro-
motion and advancement of all aspects of parallel and distributed computing. It
covers a wide spectrum of topics from algorithms and theory to software technol-
ogy and hardware-related issues, with application areas ranging from scientific
to mobile and cloud computing. Euro-Par provides a forum for the introduc-
tion, presentation, and discussion of the latest scientific and technical advances,
extending the frontier of both the state of the art and the state of the practice.

The main audience of Euro-Par are the researchers in academic institutions,
government laboratories, and industrial organizations. Euro-Par’s objective is to
be the primary choice of such professionals for the presentation of new results in
their specific areas. As a wide-spectrum conference, Euro-Par fosters the synergy
of different topics in parallel and distributed computing. Of special interest are
applications that demonstrate the effectiveness of the main Euro-Par topics.

In addition, Euro-Par conferences provide a platform for a number of accom-
panying technical workshops. Thus, smaller and emerging communities can meet
and develop more focused topics or as yet less established topics.

Euro-Par 2014 was the 20*" conference in the Euro-Par series, and was orga-
nized in Porto, Portugal, by the University of Porto, Faculty of Sciences, Com-
puter Science Department and the Center for Research in Advanced Computing
of INESC-TEC. Previous Euro-Par conferences took place in Stockholm, Lyon,
Passau, Southampton, Toulouse, Munich, Manchester, Paderborn, Klagenfurt,
Pisa, Lisbon, Dresden, Rennes, Las Palmas, Delft, Ischia, Bordeaux, Rhodes,
and Aachen. Next year, the conference will be held in Vienna, Austria. More
information on the Euro-Par conference series and organization is available on
the website at http://www.europar.org.

Euro-Par 2014 covered 15 topics. The paper review process for each topic was
managed and supervised by a committee of at least four people: a global chair,
a local chair, and two members. Topics with a high number of submissions were
managed by larger committees. The final decisions on the acceptance or rejection
of the submitted papers were made at a meeting of the conference co-chairs and
local chairs of the topics.

The call for papers attracted 267 full-paper submissions, representing 45
countries. A total of 1,070 review reports were collected, giving an average of
4.0 review reports per paper. The Program Committee members hailed from
22 different countries. We selected 68 papers to be presented at the conference
and included in the conference proceedings, representing 29 countries from all
continents, and resulting in an acceptance rate of 25.5%.

VI Preface

Euro-Par 2014 was very pleased to present three invited speakers of high
international reputation, who discussed important developments in very inter-
esting areas of parallel and distributed computing;:

1. Pawl Watson (Newcastle University, UK)
2. Henri Bal (Vrije Universiteit, The Netherlands)
3. Ricardo Bianchini (Rutgers University and Microsoft, USA)

As part of Euro-Par 2014, two tutorials and 18 workshops were held prior to
the main conference. The two tutorials were:

1. Heterogeneous Memory Models, by Benedict R. Gaster (Qualcomm, Inc.)
2. High-Performance Parallel Graph Analytics, by Keshav Pingali (UT Austin)
and Manoj Kumar (IBM)

The 18 workshops were:

1. 12th International Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Platforms (HeteroPar)
2. 5th Workshop on High Performance Bioinformatics and Biomedicine (HiBB)
3. Second Workshop on Parallel and Distributed Agent-Based Simulations (PAD-
ABS)
4. Second Workshop on Runtime and Operating Systems for the Many Core
Era (ROME)
5. Tth Workshop on Unconventional High-Performance Computing (UCHPC)
6. 9th Workshop on Virtualization in High-Performance Cloud Computing
(VHPC)
7. First Workshop on Applications of Parallel Computation in Industry and
Engineering (APCIE)
8. Third Workshop on Big Data Management in Clouds (BigDataCloud)
9. Workshop on Software for Exascale Computing - Project Workshop
(SPPEXA)
10. Second Workshop on Dependability and Interoperability in Heterogeneous
Clouds (DIHC)
11. Second Workshop on Federative and Interoperable Cloud Infrastructures
(FedICT)
12. Third Workshop on On-Chip Memory Hierarchies and Interconnects: Orga-
nization, Management and Implementation (OMHI)
13. Second Workshop on Large-Scale Distributed Virtual Environments on Clouds
and P2P (LSDVE)
14. 7th Workshop on Resiliency in High-Performance Computing with Clouds,
Grids, and Clusters (Resilience)
15. First International Workshop on Reproducibility in Parallel Computing (REP-
PAR)
16. First Workshop on Techniques and Applications for Sustainable Ultrascale
Computing Systems (TASUS)
17. 7th International Workshop on Multi-/Manycore Computing Systems
(MuCoCoS)

Preface VII

18. 7th Workshop on Productivity and Performance — Tools for HPC Application
Development (PROPER)

Workshop papers will be published in a separate proceedings volume.

The 20** Euro-Par conference in Porto would not have been possible without
the support of many individuals and organizations. We owe special thanks to the
authors of all the submitted papers, the members of the topic committees, and
the reviewers in all topics for their contributions to the success of the conference.
A special word of thanks should go to the global and local chairs, who were
always available and did excellent work in managing the reviewing process with
a tight deadline. We would also like to express our gratitude to the members of
the Organizing Committee. Moreover, we are indebted to the members of the
Euro-Par Steering Committee for their trust, guidance, and support. Finally, a
number of institutional and industrial sponsors contributed to the organization
of the conference. Their names and logos appear on the Euro-Par 2014 website
http://europar2014.dcc.fc.up.pt.

It was a pleasure and an honor to organize and host Euro-Par 2014 in Porto.
We hope that all participants enjoyed the technical program and the social events
organized during the conference, as well as the city of Porto.

August 2014 Fernando Silva
Inés Dutra
Vitor Santos Costa

Organization

Euro-Par Steering Committee

Chair

Christian Lengauer

Vice-Chair
Luc Bougé

European Representatives

Marco Danelutto
Emmanuel Jeannot
Christos Kaklamanis
Paul Kelly

Thomas Ludwig
Emilio Luque
Tomas Margalef
Wolfgang Nagel
Rizos Sakellariou
Henk Sips

Domenico Talia
Felix Wolf

Honorary Members

Ron Perrott
Karl Dieter Reinartz

Observers

Fernando Silva
Jesper Larsson Traff

University of Passau, Germany

ENS Rennes, France

University of Pisa, Italy
LaBRI-Inria, Bordeaux, France
Computer Technology Institute, Greece
Imperial College, UK
University of Hamburg, Germany
Autonomous University of Barcelona, Spain
Autonomous University of Barcelona, Spain
Dresden University of Technology, Germany
University of Manchester, UK
Delft University of Technology,

The Netherlands
University of Calabria, Italy
GRS and RWTH Aachen University, Germany

Oxford e-Research Centre, UK
University of Erlangen-Nuremberg, Germany

University of Porto, Portugal
Vienna University of Technology, Austria

Euro-Par 2013 Organization

Conference Co-chairs

Fernando Silva
Inés Dutra
Vitor Santos Costa

University of Porto, Portugal
University of Porto, Portugal
University of Porto, Portugal

X Organization

Local Organizing Committee

Joana Dumas University of Porto, Portugal
Alexandra Ferreira University of Porto, Portugal
Luis Lopes University of Porto, Portugal
Pedro Ribeiro University of Porto, Portugal
Ricardo Rocha University of Porto, Portugal

Program Committee

Topic 1: Support Tools and Environments
Chair
Thilo Kielmann Vrije Universiteit Amsterdam, The Netherlands

Local Chair

José C. Cunha New University of Lisbon, Portugal
Members

Anthony Danalis University of Tennessee at Knoxville, USA
Bernd Freisleben University of Marburg, Germany

Tomas Margalef Universitat Autonoma de Barcelona, Spain

Topic 2: Performance Prediction and Evaluation
Chair
Alexey Lastovetsky University College Dublin, Ireland

Local Chair

Francisco F. Rivera University of Santiago de Compostela, Spain
Members

David E. Singh University Carlos I of Madrid, Spain
Dimitrios S. Nikolopoulos Queen’s University of Belfast, UK

Leonel Sousa IST-University of Lisbon, Portugal

Petr Tuma Charles University, Czech Republic
Wolfgang Nagel Dresden University of Technology, Germany

Topic 3: Scheduling and Load Balancing
Chair

Helen Karatza Aristotle University of Thessaloniki, Greece

Local Chair

Jorge Barbosa

Members

Alexandru Tosup

Andrzej Goscinski
Cevdet Aykanat
Frédéric Suter
Nick Bessis
Ramin Yahyapour

Organization XI

University of Porto, Portugal

Delft University of Technology,

The Netherlands
Deakin University, Australia
Bilkent University, Ankara, Turkey
IN2P3 Computing Center, CNRS, France
The University of Derby, UK
Gottingen University, Germany

Topic 4: High-Performance Architectures and Compilers

Chair
Sally A. McKee

Local Chair

Joao Paiva Cardoso

Members
Changhee Jung
Magnus Sjalander
Rui Hou

Soner Onder

Chalmers University of Technology, Sweden

University of Porto, Portugal

Virginia Tech, USA

Florida State University, USA

Institute of Computing Technology, China
Michigan Technological University, USA

Topic 5: Parallel and Distributed Data Management

Chair
Josep L. Larriba-Pey

Local Chair

Paolo Romano

Members

David Dominguez-Sal
Kai-Uwe Sattler
Patrick Martin
Yang-Sae Moon

Polytechnic University of Catalonia, Spain

IST-University of Lisbon, Portugal

Sparsity Technologies, Spain

Technical University of Ilmenau, Germany
Queen’s University, Kingston, Canada
Kangwon National University, Korea

XII Organization

Topic 6: Grid, Cluster and Cloud Computing
Chair

Uwe Schwiegelshohn Universitat Dortmund, Germany

Local Chair

Hervé Paulino New University of Lisbon, Portugal
Members

Domenico Talia University of Calabria, Italy

Maria S. Pérez-Hernandez Universidad Politécnica de Madrid, Spain
Olivier Beaumont Inria, France

Rizos Sakellariou University of Manchester, UK

Satoshi Matsuoka Tokyo Institute of Technology, Japan
Vijay Saraswat IBM, USA

Topic 7: Green High-Performance Computing

Chair

Martin Schulz Lawrence Livermoore National Laboratory,
USA

Local Chair

Luis Lopes University of Porto, Portugal

Members

Enrique S. Quintana Orti Universidad Jaime I, Castellon, Spain

Koji Inoue Kyushu Institute of Technology, Japan

Topic 8: Distributed Systems and Algorithms
Chair

Pascal Felber Université de Neuchatel, Switzerland

Local Chair

Luis Veiga IST-University of Lisbon, Portugal
Members

Corentin Travers ENSEIRB-MATMECA, France
Fabio Kon University of Sao Paulo, Brazil
Paul Grace University of Southampton, UK

Vincent Gramoli University of Sydney, Australia

Organization XIII

Topic 9: Parallel and Distributed Programming

Chair
Henri Bal

Local Chair

Joao Luis Sobral

Members

Ana Varbanescu
Christian Perez
Fabrice Huet
Marco Danelutto
Peter Kilpatrick

Vrije Universiteit Amsterdam, The Netherlands

University of Minho, Portugal

University of Amesterdam, The Netherlands
Inria, ENS-Lyon, France

University of Nice Sophia Antipolis, France
University of Pisa, Italy

Queen’s University Belfast, UK

Topic 10: Parallel Numerical Algorithms

Chair

Laura Grigori

Local Chair
Rui Ralha

Members

Daniel Kressner
Rob Bisseling

Inria Paris, France

University of Minho, Portugal

EPFL, Switzerland
Utrecht University, The Netherlands

Topic 11: Multicore and Manycore Programming

Chair
Raymond Namyst

Local Chair
Ricardo Rocha

Members

Christoph Kessler
Elisabeth Larsson
Frank Mueller
Jean-Francois Méhaut
Jesper Traff

Marco Aldinucci
Mitsuhisa Sato

University of Bordeaux 1, France

University of Porto, Portugal

University of Linkoping, Sweden
Uppsala University, Sweden

North Carolina State University, USA
Grenoble University, France

Vienna University of Technology, Austria
University of Turin, Italy

University of Tsukuba, Japan

X1V Organization

Topic 12: Theory and Algorithms for Parallel Computation
Chair

Andrea Pietracaprina University of Padova, Italy

Local Chair

Pedro Ribeiro University of Porto, Portugal
Members

Kieran Herley University College Cork, Ireland
Sergei Vassilvitskii Google, USA

Topic 13: High-Performance Networks and Communication
Chair

José Flich Universidad Politécnica de Valencia, Spain

Local Chair

Filipe Aratjo University of Coimbra, Portugal
Members

Cyriel Minkenberg IBM Research - Zurich, Switzerland
Maurizio Palesi Kore University, Italy

Tor Skeie University of Oslo and Simula Research

Laboratory, Norway

Topic 14: High-Performance and Scientific Applications
Chair

Francisco Brasileiro Universidade Federal de Campina Grande,
Brazil

Local Chair

Pedro Medeiros New University of Lisbon, Portugal
Members

Adélia Sequeira IST-University of Lisbon, Portugal
Gilles Fedak University of Lyon, France

Walfredo Cirne Google, USA

Organization XV

Topic 15: GPU and Accelerator Computing

Chair
Paul Kelly

Local Chair

Joao Lourengo

Members

Alexander Heinecke
Anton Lokhmotov
Christian Plessl
Didem Unat

Dora Blanco Heras
Lee Howes

Naoya Maruyama
Pedro Gonnet

Imperial College London, UK

New University of Lisbon, Portugal

Technische Universitat Miinchen, Germany
ARM, UK

University of Paderborn, Germany
Lawrence Berkeley Lab, USA

University of Santiago de Compostela, Spain
Qualcomm, USA

Tokyo Institute of Technology, Japan
Durham University, UK

Euro-Par 2014 Reviewers

Euro-Par is very grateful to all reviewers for their kind cooperation and effort to
achieve an average of four reviews per paper, producing a total of 1,070 reviews.

Abdou Guermouche
Abdullah Gharaibeh
Adélia Sequeira
Afshin Zafari
Agostino Forestiero
Aidan Chalk
Akihiro Nomura
Albert-Jan Yzelman
Alberto Lluch Lafuente
Alberto Sanchez
Alejandro Rico
Aleksandar Ilic

Alex Ramirez
Alexander Folling
Alexander Heinecke
Alexandra Carpen-Amarie
Alexandre Denis
Alexandru Costan
Alexandru Iosup
Alexey Lastovetsky
Aline Paes

Altino Sampaio

Alvaro Aguilera

Alysson Bessani

Amina Guermouche
Ana Lucia Varbanescu
Ana-Maria Oprescu
Anastassios Nanos
Andra Hugo

Andrea Pietracaprina
Andreas Agne

Andrew Stephen McGough
Andrzej Goscinski
Angelo Furfaro

Angelos Papatriantafyllou
Anita Sobe

Anna Sikora

Anthony Danalis

Anton Lokhmotov
Antonin Steinhauser
Antonio Espinosa
Antonio Garcia-Loureiro

XVI Organization

Arash Rezaei
Arlindo Conceigao
Armanda Rodrigues
Arnau Prat

Ata Turk

Ayal Zaks

B. Barla Cambazoglu
Barry Rountree
Basilio B. Fraguela
Benjamin Herta
Bernd Freisleben
Bing Tang

Bo Li

Bo Wu

Bogdan Nicolae
Bogdan Prisacari
Bora Ucar

Brice Goglin

Brice Videau
Bruno Ciciani
Bruno Medeiros
Bunjamin Memishi
Carlee Joe-Wong
Carlo Mastroianni
Carmela Comito
Cecilia Gomes
Ceriel Jacobs
Cevdet Aykanat
Changhee Jung
Chao Li

Christian Perez
Christian Plessl
Christiane Pousa
Christoph Kessler
Christos Kartsaklis
Claudia Misale
Clemens Grelck
Corentin Travers
Cosmin Dumitru
Cyriel Minkenberg
César De Rose
Daniel Cordeiro
Daniel Franco
Daniel Kressner
Darko Petrovic

David Dominguez-Sal
David E. Singh
David Fiala

Davide Frey

Denis Barthou
Didem Unat

Diego Didona

Diego Rodriguez Martinez
Diego Rughetti
Diego Souza

Dimitar Lukarski
Dimitrios S. Nikolopoulos
Diogo Telmo Neves
Domenico Talia
Dominik Goeddeke
Donald E. Porter
Dong Li

Dora Blanco Heras
Eduardo Cesar
Edwin Yaqub
Elisabeth Brunet
Elisabeth Larsson
Elizeu Santos-Neto
Emilio Francesquini
Emilio Padrén
Emilio Tuosto
Emmanuel Jeannot
Enrique S. Quintana-Orti
Eoghan O’Neill

Eric Aubanel

Erwan Le Merrer
Eugenio Cesario
Fabio Kon

Fabio Luporini

Fabio Tordini

Fabrice Dupros
Fabrice Huet
Fabricio Silva
Fabrizio Marozzo
Farhad Mehdipour
Farhana Zulkernine
Felix Garcia Carballeira
Ferdinando Fioretto
Fernando Birra
Fernando Ramos

Feroz Zahid

Filipe Araujo
Flavien Quesnel
Florian Rathgeber
Flavio Cruz
Francesco Versaci
Francis Russell
Francisco Argiiello
Francisco Brasileiro
Francisco D. Igual
Francisco F. Rivera
Francisco Gaspar
Frank Mueller
Francois Broquedis
Francgois Gindraud
Francgois Trahay
Frangoise Baude
Frédéric Suter
Gabriel Marin
Gavin Vaz

Ge Song

George Rokos
George Terzopoulos
George Tzenakis
German Rodriguez
Gheorghe-Teodor Bercea
Gilles Fedak
Giorgis Georgakoudis
Giuliano Mega
Gokcen Kestor
Gorkem Asilioglu
Guangyu Sun
Guilherme Peretti Pezzi
Haipeng Jia

Haiwu He

Hans Vandierendonck
Hartwig Anzt
Heike McCraw
Heinrich Riebler
Heithem Abbes
Helen Karatza
Henri Bal

Henrique Domingos
Hervé Paulino
Hinde Bouziane

Organization

Hitoshi Sato

Holger Brunst
Holger Mickler
Hubertus Franke
Hakan Sundell
Idafen Santana-Pérez
Ilia Pietri

Toannis A. Moschakis
Ismail El Helw

Ivan Tanasic
Ivanilton Polato

Ivor Spence

Jairo Panetta

Jan Westerholm
Javier Celaya

Javier Garcia Blas
Jean-Francois Méhaut
Jean-Marc Pierson
Jens Doleschal

Jens Domke

Jens Gustedt

Jesper Traff

Jestus Montes
Jiayuan Meng

Jie Shen

Jing Liu

Jizeng Wei

Joan Sorribes

Joana Corte-Real
John Earnest

John Shalf

Jonathan Rouzaud-Cornabas
Jorge Barbosa

Jose E. Roman
Josep Jorba

Josep L. Larriba-Pey
Joseph Hellerstein
Joseph Schuchart
José C. Cunha

José Carlos Cabaleiro
José Flich

José Germano

José Luis Gonzalez Garcia
José Salavert Torres
José Simao

XVII

XVIII Organization

Joao A. Silva

Joao Barreto

Joao Leitao

Joao Lourengo
Joao Luis Sobral
Joao P. Vilela

Joao Paiva

Joao Paiva Cardoso
Joao Santos

Joao Silva,

Juan Angel Lorenzo del Castillo

Juan C. Pichel

Juan Carlos Moure
Julien Bigot

Julien Forget

Julio Anjos

Julita Corbalan

Jun Wang

Justine Rochas

Jorg Keller

Kadir Akbudak
Kai-Uwe Sattler
Kamer Kaya
Karthikeyan P. Saravanan
Kaveh Razavi

Kees Verstoep
Keiichiro Fukazawa
Kenneth O’Brien
Kento Sato

Kien Le

Kieran Herley

Kiril Dichev

Kirk Cameron
Kiyokuni Kawachiya
Koichi Shirahata
Koji Inoue
Konstantina Mitropoulou
Kuan Lu

Landry Chetsa

Lars Schaefers
Laura Grigori

Laure Gonnord
Lauro Beltrao Costa
Leandro Fontoura-Cupertino
Leandro Marinho

Lee Howes

Leonel Sousa

Lidia Kuan

Lilia Ziane Khodja
Lionel Eyraud-Dubois
Lubomir Bulej
Luigi Nardi

Lukas Marek

Luis Assuncao

Luis Lopes

Luis Veiga
Madhukar Korupolu
Magnus Grandin
Magnus Sjalander
Maik Srba

Manuel F. Dolz
Marcelo Pasin
Marco Aldinucci
Marco Danelutto
Marco Lackovic
Marcus Carvalho
Marcus Hilbrich
Maria Barreda
Maria Clicia Castro
Maria Couceiro
Martin Décky
Martin Kreichgauer
Martin Schulz
Martin Tillenius

Maria S. Pérez-Hernandez

Massimo Torquati

Mastoureh Hassannezhad

Mats Brorsson
Matthias Hofmann
Matthieu Dorier
Mauricio Hanzich
Maurizio Drocco
Maurizio Palesi
Merijn Verstraaten
Michael Haidl
Michael Kluge
Michael Wagner
Miguel Areias
Mihai Capota
Mike Rainey

Miquel Angel Senar
Mircea Moca
Mitsuhisa Sato
Mohammed Tohid
Muhammad Aboelfotoh
Murray Cole
Marcio Castro
Naghmeh Ivaki
Naoya Maruyama
Narayan Desai
Neha Gholkar

Nick Bessis

Nicolai Stawinoga
Nicolas Loriant
Nicolds Guil Mata
Nikola Rajovic
Nishanth Balasubramanian
Nuno Diegues
Nuno Neves

Nuno Oliveira
Nuno Preguica
Nuno Sebastiao
Oleg Lodygensky
Oleksandra Kulankhina
Oliver Schmitt
Olivier Aumage
Olivier Beaumont
Onkar Patil

Ozcan Ozturk
Pablo Quesada Barriuso
Pak Markthub
Paolo Romano
Paolo Trunfio
Pascal Felber
Patrick Carribault
Patrick Martin
Paul Grace

Paul Kelly

Paul Renaud-Goud
Paul Watson

Paulo Ferreira
Paulo Lopes

Paulo Sérgio

Pavol Bauer

Pedro Alonso

Organization

Pedro Gonnet
Pedro Medeiros
Pedro Miguens
Pedro Ribeiro
Peter Chronz
Peter Kilpatrick
Peter Libic

Petr Tuma

Philip Church
Pierre Fortin
Pierre Sutra
Pieter Hijma
Porfidio Herndndez
Radu Prodan
Rafael Mayo Gual
Rahul Gayatri
Ramin Yahyapour
Ramon Bertran
Ramon Nou
Raphael De Camargo
Raphael Poss
Raquel Lopes
Raul Barbosa
Raymond Namyst
Renan Fischer e Silva
Renato Ferreira
Ricardo Bianchini
Ricardo Dias
Ricardo Rocha
Richard Grunzke
Rio Yokota

Rizos Sakellariou
Rob Bisseling
Robert Dew
Robert Schoene
Roberto Gioiosa
Roberto Palmieri
Roy Bakker

Rui Camacho

Rui Gongalves
Rui Hou

Rui Ralha

Rui Ramalho

Rui Silva

Rutger Hofman

XIX

XX Organization

Saadeldin Moustafa
Sai Narasimhamurthy
Sally A. McKee
Salvatore Venticinque
Samuel Thibault
Sandro Fiore

Sascha Hunold

Satoshi Matsuoka
Scott Beamer
Sebastiano Peluso
Seher Acer

Sergei Gorlatch

Sergei Vassilvitskii
Sergio Bernales

Shadi Ibrahim

Shady Khalifa

Shava Smallen

Shinichi Miura
Shrinivas Anand Panchamukhi
Siamak Azodolmolky
Sima Soltani

Soner Onder

Souley Madougou
Srinath Krishna Ananthakrishnan
Stefan Vijzelaar
Stefania Costache
Stephan Baumann
Stephan Schlagkamp
Stephen Olivier

Stoyan Garbatov
Stylianos Zikos
Subramanian Ramachandran
Sunpyo Hong

Sven van Haastregt
Svetislav Momcilovic
Sérgio Duarte

Sérgio Esteves
Takayuki Aoki

Tamito Kajiyama
Theofrastos Mantadelis

Thilo Kielmann
Thomas Hérault
Thomas Ropars
Tobias Beisel
Tobias Graf
Tobias Hilbrich
Tobias Kenter
Tomas Margalef
Tomaés F. Pena
Toni Cortes

Tor Skeie

Tugrul Dayar
Uwe Schwiegelshohn
Valerio Schiavoni

Vania Marangozova-Martin

Victor Garcia
Victor Goulart
Victor Muntés-Mulero
Vijay Saraswat
Vincent Gramoli
Vincent Weaver
Vitor Duarte
Vladimir Rychkov
Vojtéch Horky
Wagner Meira Jr.
Walfredo Cirne
Wang Yu

Wei Wu

Wesley Bland
Wolfgang Nagel
Xavier Emery
Xjaojun Ruan

Xing Pan

Yang-Sae Moon

Yao Zhang
Yasutaka Wada
Yehia Elshater

Yong Guo

Zafeirios Papazachos
Ziming Zhong

Euro-Par 2014 Invited Talks

Cloud Computing for Healthcare
Paul Watson, Newcastle University, UK

Cloud Computing has the potential to revolutionise healthcare. The expansion
of wireless internet, coupled with a massive growth in cheap, mobile sensors
offers opportunities to deliver personalised, high-quality healthcare cheaply to
people in their own homes. Clouds have an important role to play in realising
this potential, as it requires the ability to store and analyse the vast amounts of
data that these sensors collect. This presents both problems and opportunities:
new scalable, parallel algorithms and platforms are needed to analyse the sensor
data, while there are important advantages to be gained by combining the data
from a population of users in order to better understand medical conditions and
how best to treat them.

The talk will be illustrated with examples from our projects in this area,
including the use of sensors to understand older people’s activity in order to
provide personalised treatment; and also on the analysis of gaming data to help
people recover from strokes.

Going Dutch: How to Share a Dedicated Distributed
Infrastructure for Computer Science Research

Henri E. Bal, Vrije Universiteit, The Netherlands

The Distributed ASCI Supercomputer (DAS) is a dedicated distributed infras-
tructure for Dutch Computer Science research. During its 17 year history, DAS
witnessed and supported many waves in distributed computing, including wide-
area computing (DAS-1), grids and peer-to-peer (DAS-2), e-Science and optical
grids (DAS-3), and heterogeneous computing (DAS-4). Unlike many other test
beds, the different clusters of DAS are set up by a single organization (the ASCI
research school) with one clear vision for each system generation. DAS is designed
specifically for Computer Science research, especially for interactive distributed
experiments in areas like programming systems, resource management, and net-
works. With the advent of the fifth generation system, DAS-5, in 2015, DAS has
literary become mature and indispensable for Dutch Computer Science.

This presentation first looks back at the impact DAS has had. Despite its
relatively modest size and cost, DAS has been used for over 100 PhD theses and
for numerous award winning experiments. It enabled large amounts of research
funding and it played a key role in huge projects like VL-e and (currently)
COMMIT. It also served as a stepping stone for applications like astronomy,

XXII Euro-Par 2014 Invited Talks

multimedia analysis, web-scale reasoning, and climate modelling, each of which
won competitions with DAS. Next, the presentation will discuss several ongoing
projects in more detail, including programming environments for heterogeneous
accelerator-based systems and for big data applications. Here, DAS allows unique
and controlled experiments on a variety of hardware. Finally, the presentation
tries to draw general conclusions for Computer Science.

Greening Datacenters: Past, Present, and Future

Ricardo Bianchini, Rutgers University and Microsoft, USA

Datacenters host the server infrastructure that powers organizations of many
sizes, from universities and enterprises to large Internet services. Collectively,
datacenters consume a massive amount of power, representing a financial bur-
den for datacenter operators, an infrastructure burden on power utilities, and
an environmental burden on society. However, this problem could be worse if it
were not for several advances made over the last decade, especially in the design
of large-scale datacenters. In this talk, I will overview the architecture of these
datacenters, discuss the main advances made to date, and suggest research di-
rections for the future. Interestingly, some of these directions can benefit directly
from the expertise in the parallel computing community.

Euro-Par 2014 Topics Overview

Topic 1: Support Tools and Environments

T. Kielmann, J.C. Cunha, A. Danalis, B. Freisleben, T. Margalef

This topic aims to bring together designers, developers, and users to share their
concerns, ideas, and solutions towards more effective tools and environments
for parallel and distributed computing. Current challenges are concerned with
improved solutions for ease of use, programmability, correctness, reliability, scal-
ability, portability, performance and energy efficiency for current and emerging
parallel and distributed computing systems.

This year, a diversity of papers was submitted to this topic, proposing inter-
esting and valuable research contributions. As a result of the reviewing process,
4 papers were accepted for publication. Globally, the accepted papers discuss
foundations, design and implementation issues concerning tool development, and
present reports of their practical evaluation via concrete applications and bench-
marks.

The paper by Aguilar, Furlinger, and Laure, proposes the use of event flow
graphs for monitoring MPI applications, as a compromise to balance the lower
overhead of profiling tools with the more complete information available from
tracers. The paper by Ananthakrishnan and Mueller, presents the ScalaJack
tool, by combining customized instrumentation and in-situ data analysis, relying
on aspect-orientation techniques for easing code instrumentation, analysis, and
code refactoring. The paper by Jiang, Philippen, Knobloch and Mohr, describes
extensions to a toolset for instrumenting, measuring and analyzing the perfor-
mance of parallel programs based on Transactional Memory and Speculative
Execution (TM/SE) directives for the IBM BlueGene/Q. The paper by Sofok-
leous, Loulloudes, Trihinas, Pallis, and Dikaiakos, presents a tool for integrated
development of cloud applications, by addressing critical issues of open cloud
standard specification, application migration across different cloud providers,
and application elasticity.

We would like to thank all the authors who submitted papers to this topic,
and the external reviewers, for their contribution to the success of the conference.
We also thank the overall coordination and valuable support that was provided
by the conference chairs.

XXIV Euro-Par 2014 Topics Overview

Topic 2: Performance Prediction and Evaluation

A. Lastovetsky, F.F. Rivera, D.E. Singh, D.S. Nikolopoulos, L. Sousa,
P. Tuma, W. Nagel

In recent years many novel methodologies and tools have been developed for
evaluation, design, and model reduction of both existing and emerging parallel
and distributed systems. At the same time, the scope of performance
evaluation has constantly broadened to include the evaluation of reliability, ro-
bustness, energy consumption, and scalability in addition to traditional system
functionalities. The aim of this topic, Performance Prediction and Evaluation, is
to bring together system designers and researchers involved with the qualitative
and quantitative evaluation and modelling of large-scale parallel and distributed
applications and systems (e.g., Grids, Cloud computing environments, multi-core
and hybrid architectures, and extreme-scale platforms). Authors were invited to
submit novel research in all areas of performance prediction and evaluation, and
to help bring together current theory and practice.

Heterogeneity, complexity and scale of the new generation of parallel systems,
such as hybrid multicore/multi-accelerator nodes, large-scale heterogeneous clus-
ters, Clouds, etc., coupled with the complexity and scale of applications make this
topic particularly timely and challenging. This year, twenty three papers were
submitted to the topic. Each paper was reviewed by four reviewers and seven
papers were selected for presentation. In general, the quality of the submitted
papers was high, and many new ideas, methods, and evaluations were presented.
The accepted papers cover a wide range of hot topics and altogether give a good
view on the challenges currently addressed by the research community.

The paper “DReAM: Per-Task DRAM Energy Metering in Multicore Sys-
tems” by Qixiao et al., introduces a new model to capture memory energy-
consumption per task in a scenario where multiple tasks, possibly for different
applications/users, are running on the multicore platform. They present a novel
approach for measuring memory energy consumption on a per-task basis.

In the paper “Characterizing the Performance-Energy Tradeoff of Small ARM
Cores in HPC Computation” by Michael A. Laurenzano et. al., an evaluation
of energy and performance for HPC codes running on ARM vs. Intel cores is
presented. They present an energy estimation model based on the instruction
mix and memory operations obtained through static binary analysis. The pa-
per is a measurement report on the performance and power consumption, in
which different workloads from different computational kernels compared ARM
processors (Cortex A9 and A15) to an Intel Sandy Bridge CPU.

The paper “ParaShares: Finding the Important Basic Blocks in Multithreaded
Programs” by Melanie Kambadur and others presents ParaShare, a tool that
identifies the basic blocks representing the most time-consuming part of the par-
allel program. A new metric to score and rank all basic blocks in the program
based on their share of parallel execution is introduced. This work also illustrates
how the tool can help to identify code whose optimization can bring significant
execution time improvement.

Euro-Par 2014 Topics Overview XXV

The paper “Modeling the Impact of Reduced Memory Bandwidth on HPC
Applications” by Ananta Tiwari and others presents a methodology for predict-
ing the performance degradation of the code when the main memory bandwidth
is reduced. Machine learning strategies are used to obtain the models. An instru-
mentation tool developed by the authors is used to obtain data. The accuracy
of the method was measured on a number of large scale HPC applications.

Philipp Gschwandtner and others in their paper “Multi-Objective Auto-
Tuning with Insieme: Optimization and Trade-O Analysis for Time, Energy and
Resource Usage” present a multi-objective autotuner, which tries to optimize
three conflicting criteria - execution time, resources, and energy consumption.
Detailed analysis and several hints to improve the design of multi-objective au-
totuners and code optimization are provided.

The paper “Modeling and Simulation of a Dynamic Task-Based Runtime
System for Heterogeneous Multi-Core Architectures” by Luka Stanisic et al.,
presents a simulator of a dynamic runtime system (StarPU) for heterogeneous
multi-core architectures on top of a simulation toolkit such as SimGrid. It is used
to simulate different linear-algebra applications on hybrid computing systems.
This proposal is an example of how to predict the performance of applications
on hybrid CPU+GPU systems in a short simulation time.

Finally, the paper “Performance Prediction and Evaluation of Parallel Ap-
plications in KVM, Xen, and Vmware” by Choel-Ho Hong and others, presents
and evaluates a performance model of parallel applications on three virtualized
platforms: VMware, Xen, and KVM. This model predicts the duration of the
compute and synchronization phases considering the specific scheduling policies
of each hypervisor. Using this, it predicts the application overall execution time.
The model is based on the assumption that the parallel application consists of
computation and synchronization phases.

We would like to take this opportunity to thank all the authors that submitted
their work to this topic and the reviewers for their detailed and constructive
reports. We are also grateful to the Euro-Par Organizing Committee for their
guidance and help.

Topic 3: Scheduling and Load Balancing

H. Karatza, J. Barbosa, R. Yahyapour, N. Bessis, F. Suter, A. Goscinski,
A. Tosup, C. Aykanat

The scheduling and load balancing topic targets in general the optimization of
computing resources in several aspect of computation. From the mapping prob-
lem of assigning tasks to resources in order to minimize execution time, new
approaches concerning energy efficiency become more predominant in today’s
scheduling research. With the wide range of platforms from high-end infrastruc-
tures, with multi-core machines and accelerators, to the highly dynamic cloud
infrastructures, new challenges are imposed on resources management.

In “On Interactions Among Scheduling Policies: Finding Efficient Queue
Setup Using High-Resolution Simulations”, the authors address the issue of

XXVI Euro-Par 2014 Topics Overview

effectively designing and implementing a scheduling system in a real produc-
tion supercomputer center, and they show that choosing the right scheduling
algorithm is a key aspect when designing and implementing a scheduling sys-
tem.

In “ProPS: A Progressively Pessimistic Scheduler for Software Transactional
Memory”, the authors propose a fine-grain scheduler that monitors concurrency
levels between pairs of atomic operations and that dynamically reduces the num-
ber of transactions that may start concurrently.

In “A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks Schedul-
ing on Clouds” the authors present a method that minimizes the execution cost
while meeting the makespan for data-intensive applications when data is stored
outside the cloud so that task’s running time is not known a priori.

In “Energy-Aware Multi-Organization Scheduling Problem”, the authors
model the multi-organization problem as an energy-aware scheduling approach
and provide efficient heuristics for a static scenario where all jobs are ready at
time zero.

In “Energy Efficient Scheduling of MapReduce Jobs”, the authors present
a linear programming relaxation technique that guarantees a polynomial time
constant-factor approximation to the problem of power-aware map-reduce schedul-
ing in the context of CPU speed scaling. In “SPAGHETtI: Scheduling/Placement
Approach for task-Graphs on HETerogeneous architecture”, the authors propose
a static scheduling algorithm for heterogeneous HPC systems whose complexity
is a function of the type of architectures rather than the number of processors.

Finally, we would like to thank all the contributing authors for their work,
as well as the reviewers that helped in the selection process.

Topic 4: High Performance Architectures and Compilers

S.A. McKee, J.M.P. Cardoso, C. Jung, M. Sjilander, R. Hou, S. Onder

The topic High Performance Architectures and Compilers deals with architecture
design and compilation for high performance systems. The areas of interest range
from microprocessors to large-scale parallel machines (including multi-/many-
core, possibly heterogeneous, architectures); from general-purpose to specialized
hardware platforms (e.g., graphic coprocessors, low-power embedded systems);
and from hardware design to compiler technology. On the compilation side, topics
of interest include programmer productivity issues, concurrent and/or sequential
language aspects, program analysis, program transformation, automatic discov-
ery and/or management of parallelism at all levels, and the interaction between
the compiler and the rest of the system. On the architecture side, the scope
spans system architectures, processor micro-architecture, memory hierarchy, and
multi-threading, and the impact of emerging trends.

In the 2014 Euro-Par edition of this topic, the selected papers are mainly
focused on optimizations to dynamically adapt to computational contexts, tech-
niques to transform GPU specific OpenCL programs to Many Core CPUs, and

Euro-Par 2014 Topics Overview — XXVII

OpenMP extensions to specify thread-level speculation and their integration in
GCC.

Topic 5. Parallel and distributed Data Management

J.L. Larriba-Pey, P. Romano, D. Dominguez-Sal, K.U. Sattler, P. Martin, Y.S.
Moon

Parallel and distributed management of data are fuelled by the need to develop
complex services based on the analysis of ever growing volumes of data. In those
cases, there are many situations where a complex hierarchy of requirements imply
new approaches and techniques to perform locally parallel or geographically
distributed operations to explore those data efficiently.

The scientific committee of Topic 5 has selected 5 papers for their high quality
and interesting proposals they made. The proposals they make are varied and
deal from the management of distributed relational and key-value stores, to
reducing the I/O activity by either balancing the load or dinamically compressing
the files of the storage system, to mining the top-k most frequent data items.
In all, the papers accepted are varied and provide very good insights of the
important issues in present management of data.

In particular, paper “Robust and Efficient Large-Large Table Outer Joins
on Distributed Infrastructures” proposes a new algorithm to compute the outer
join of datasets with large skew in a distributed relational environment. Paper
“Ultra-fast Load Balancing of Distributed Key-Value Stores through Network-
assisted Lookups” presents a load balancing technique based on hashing for key-
value stores that exploits the flexible IP infrastructures of nowadays computers.
Paper “Improving Read Performance with Online Access Pattern Analysis and
Prefetching” proposes a novel on-line and real-time analyser that allows to reduce
the patterns of the read I/O activity, reducing the overhead and storage capacity
needs. Paper “Applying selectively parallel I/O compression to parallel storage
systems” presents a new dynamic mechanism to decide whether to compress
the size of the files in a storage system, reducing their I/O time. Finally, paper
“Top-k Item Identification on Dynamic and Distributed Datasets” proposes a
gossip protocol to select the top-k most frequent items in a distributed system
with single copy of the data.

The chairs of Topic 5 want to thank the members of the committee for their
valuable contributions to the review process and the work they did in managing
the whole process in a timely fashion and ensuring very high quality.

Topic 6: Grid, Cluster and Cloud Computing

U. Schwiegelshohn, H. Paulino, O. Beaumont, S. Matsuoka, R. Sakellariou,
D. Talia, M.S. Pérez-Herndndez, and V. Saraswat

Since the operating costs of computing systems are steadily increasing and large
computer systems have the potential to increase efficiency in comparison to

XXVIII Euro-Par 2014 Topics Overview

smaller local installations users are increasingly interested in remotely executing
their parallel applications on such systems. In particularly, the use of virtualiza-
tion has led to a substantial increase of flexibility for these systems. But there
are still many open questions that must be addressed by research. For instance,
the separation of users and systems due to virtualization produces a new form
of market economy requiring business models and service guarantees. Therefore,
we need new tools that support monitoring of these guarantees and provide
accounting. Also user friendly environments are expected to support users in
porting existing applications on these systems and help them to develop appli-
cations that efficiently exploit the vast amount of parallelism offered by these
systems.

Due to the increasing importance of energy expenses, users and systems ad-
ministrators are interested in methods to improve system and application man-
agement without significantly affecting the quality of service. With respect to
this management challenge, it is important to develop methods that allow bridg-
ing the above mentioned separation of user and system. Therefore, Topic 6 is
devoted to the use and the management of large computer systems. It is the
objective of our topic to propose and evaluate new approaches that allow the
efficient execution of parallel computing tasks on these systems and therefore to
help developers of parallel programs to exploit the vast computing power of these
resources without compromising efficiency. In EuroPar 2014, Topic 6 particularly
covers workflow management for complex applications, resource management is-
sues, communication in large computer systems, and cooperation between dif-
ferent installations to increase efficiency.

All submitted papers were reviewed by at least 4 reviewers, with 4 papers
being selected for inclusion in the program. We are convinced that the contri-
butions of these papers will help us further advance the use of these computer
systems for a wide variety of applications.

We would especially like to thank our colleagues, who being experts in the
field helped in the reviewing process.

Topic 7: Green High Performance Computing

M. Schulz, L. Lopes, E.S. Quintana Orti, K. Inou

Optimizing power and energy consumption has been identified as one of the most
critical issues on our way to exascale. Computations will have to be orders of
magnitude more energy efficient than in today’s architectures; applications will
have to work with fixed total system power caps put in place to not exceed the
limited power available; and systems will have to mitigate the impact of power
swings during changing workloads. To achieve efficient execution of applications
under these constraints, we require new approaches in all aspects of power-aware
computing.

Given the importance of the topic, it was introduced for the first time in
the program of the conference with the goal of providing a forum to bring to-
gether researchers in this developing field. The contributions received focused

Euro-Par 2014 Topics Overview XXIX

on subjects such as: the analysis of the energy efficiency of specific CPU/GPU,
cache and memory architectures; the impact of power-saving strategies on per-
formance, and; tools to profile energy usage in HPC systems. The two papers
selected for publication describe relevant research on energy efficient cache hi-
erarchy configurations for general purpose GPU computing, and on the impact
of data movement between nodes in the power consumption of a system, as a
function of the way the inter-process communication layer is designed.

Topic 8: Distributed Systems and Algorithms

P. Felber, L. Veiga, P. Grace, V. Gramoli, F. Kon, C. Travers

Parallel computing is increasingly exposed to the development and challenges of
distributed systems, such as the lack of load balancing, asynchrony, long laten-
cies, network partitions, failures, malicious and selfish behavior, disconnected
operations, well-suited computing models and data structures, heterogeneity.
Furthermore, distributed systems are becoming larger, more diverse and more
dynamic (changing topology, highly dynamic number of participants).

This topic provides a forum for research and practice, of interest to both
academia and industry, about distributed systems, distributed computing, dis-
tributed algorithms, and parallel processing on distributed systems.

All submitted papers received at least four reviews, resulting in three papers
being accepted for the conference.

The paper Spanning Tree or Gossip for Aggregation: a Comparative Study
by Lehel Nyers and Mark Jelasity proposes a study assessing the two com-
peting paradigms typically used for distributed aggregation queries: tree-based
and gossip-based algorithms. It addresses common stereotypes, e.g. about the
fragility of trees and slowness of gossip, and encourages researchers to consider
more carefully the best topologies for each particular problem or situation.

The paper Shades: Expediting Kademlia’s Lookup Process by Gil Einziger
and Roy Friedman addresses how to further the Kademlia DHT. It proposes
a new caching and augmented routing mechanism, designed to improve lookup
performance and better load balance. This is achieved by combining a local
cache keeping the most frequently requested items and an additional routing
mechanism based on partitioning nodes and items into colors.

Finally, the paper Analysis and Comparison of Truly Distributed Solvers for
Linear Least Squares Problems on Wireless Sensor Networks by Karl E. Prikopa,
Hana Strakova and Wilfried N. Gansterer proposes a new such solver, adapted
from a matrix factorization method, that requires fewer messages per node to
reach high accuracy, with an analytical and experimental comparison of the
communication cost of various solvers

We would like to take the opportunity of thanking the authors who submitted
a contribution, as well as the Euro-Par Organizing Committee and the external
referees who provided highly useful comments. Their efforts have made this
conference and this topic possible.

XXX Euro-Par 2014 Topics Overview

Topic 9: Parallel and Distributed Programming

H. Bal, J.L. Sobral, A. Varbanescu, C. Perez, F. Huet, M. Danelutto,
P. Kilpatrick

Developing parallel or distributed applications is a difficult task and it requires
adequate programming abstractions and models, efficient design tools, high per-
formance languages and libraries, and experimental validation. This topic pro-
vides a forum for presentation of new results and practical experience in this
domain. It emphasizes research that facilitates the design and development of
high-performance, correct, portable, and scalable parallel programs.

All papers of this topic received 4 reviews that were further discussed among
all 7 PC members in a tele-conference meeting. As a result, six strong papers
were accepted for the conference, covering important topics such us software
and hardware transactional memory, graph analytics, mesh-based simulations,
algebraic computations, and random number generation.

Topic 10: Parallel Numerical Algorithms

R.H. Bisseling, L. Grigori, D. Kressner, R.M.S. Ralha

Getting progress in many society-relevant issues relies on the usage of numerical
simulations. These numerical simulations very often use sophisticated numeri-
cal algorithms and massively parallel computers. Thus the design of robust and
scalable parallel algorithms is an important research topic, and this track is com-
posed of four papers that consider several such important numerical algorithms.
They include solving linear systems of equations, computing the echelon form of
a matrix as used for example in algebraic cryptanalysis, time-domain BEM for
the wave equation, or exploiting structure to design efficient computational ker-
nels. Both academic and industrial applications can benefit from the algorithms
described in these papers.

The paper A distributed CPU-GPU sparse direct solver by Piyush Sao, Richard
Vuduc, and Xiaoye Sherry Li, presents a hybrid implementation of the sparse LU
factorization which can be used to solve very large sparse linear systems of equa-
tions. The hybrid implementation is based on MPI, OpenMP, and Cuda, and it is
performed in the context of SuperLU DIST, a widely used solver implementing
the sparse LU factorization for distributed memory computers. SuperLU DIST
is based on static pivoting and right looking sparse LU factorization. In this con-
text, the paper shows that aggregation of data and pipeline execution to overlap
computation with communication are important ingredients for obtaining an
overall efficient hybrid implementation of the sparse LU factorization.

The paper Parallel Computation of FEchelon Forms by Jean-Guillaume
Dumas, Thierry Gautier, Clement Pernet, and Ziad Sultan, presents parallel
algorithms for computing echelon forms over a finite field on shared memory ar-
chitectures. This problem is relevant in a variety of applications, including alge-
braic cryptanalysisy. Several algorithms are discussed in this paper, which exploit

Euro-Par 2014 Topics Overview XXXI

different partitionings of the matrix, one-dimensional or two-dimensional, block
algorithms or recursive algorithms, as well as the usage of fast matrix multi-
plication Strassen-Winograd algorithm. Several strategies are also developed to
balance tiling with delaying modular reductions. Well designed performance ex-
periments compare these different algorithms and outline the role of the different
optimizations for obtaining a very efficient parallel implementation.

In the paper Structured Orthogonal Inversion of Block p-cyclic Matrices on
Multicores with GPU Accelerators, Sergiy Gogolenko, Zhaojun Bai, and Richard
Scalettar consider the problem of computing the inverse of block p-cyclic ma-
trices on multicores and GPUs. Such an operation arises in quantum Monte
Carlo algorithms. Given that in this case Gaussian elimination with partial piv-
oting encounters numerical instability, the authors present an algorithm based
on a block structured orthogonal factorization, with a judicious distribution of
the work between CPUs and GPGPUs using a quantitative performance model.
Performance results show that the method is very efficient on hybrid architec-
tures.

In the paper Time-domain BEM for Wave Equation: Optimization and Hy-
brid Parallelization, Berenger Bramas, Olivier Coulaud, and Guillaume Sylvand
focus on efficient implementation of an existing time-domain boundary element
method to simulate wave propagation. The code developed is part of an indus-
trial computational work-flow at the Airbus Group Innovation and intends to
replace an older code. The most intensive computational kernel of the algorithm
is, for each time step, the sum of a number of sparse matrix-vector products. Un-
like previous works, that consider the parallelization of individual sparse-matrix
products, the central idea here is to exploit the particular sparsity pattern of the
matrices to compute several of such products simultaneously. The experimental
results are promising.

Topic 11: Multicore and Manycore Programming

R. Namyst, R. Rocha, C. Kessler, E. Larsson, F. Mueller, J.F. Méhaut, J. Trdff,
M. Aldinucci, M. Sato

Modern homogeneous and heterogeneous multicore and manycore architectures
are now part of the high-end and mainstream computing scene. The complexity
of these new architectures created several programming challenges and achiev-
ing performance on these systems is a difficult task. This topic seeks to explore
productive programming of multicore, many integrated cores, and hybrid sys-
tems with accelerators. It focuses on novel research and solutions in the form of
programming models, languages, compilers, libraries, runtime systems and anal-
ysis tools to increase the programmability of multicore, manycore, and hybrid
systems, in the context of general-purpose parallel computing and HPC.

The quality of submissions was very high. Papers have been selected based
on the recommendations of at least four reviewers. The six accepted papers
address a representative set of issues related to the multicore and manycore
programming.

XXXII Euro-Par 2014 Topics Overview

The paper High-Throughput Maps on Message-Passing Manycore Architec-
tures: Partitioning versus Replication’” by Omid Shahmirzadi, Thomas Ropars
and Andre Schiper discusses the challenges in implementing scalable data struc-
tures for message-passing manycores.

The paper A Fast Sparse Block Circulant Matriz Vector Product by Eloy
Romero, Andrés Tomads, Antonio Soriano and Ignacio Blanquer exploits the
problem of calculating a sparse matrix vector product where the sparse matrix
is block circulant.

The paper Scheduling data flow program in XKaapi: A new affinity-based
algorithm for heterogemeous architectures by Raphaél Bleuse, Thierry Gautier,
Joao V. F. Lima, Gregory Mounie and Denis Trystram proposes a generic mech-
anism to automatically optimize the scheduling between CPUs and GPUs on
modern multicore GPU-based architectures.

The paper Delegation Locking Libraries for Improved Performance of Multi-
threaded Programs by David Klaftenegger, Konstantinos Sagonas and Kjell Win-
blad proposes libraries for C and C++ that provide an interface for delegation
locks as an alternative to traditional locking.

The paper A Generic Strategi for Multi-Stage Stencil Applications by Mauro
Bianco and Benjamin Cumming introduces a buffering technique which takes
into account intermediate results in the multi-stage procedure to improve mem-
ory hierarchy utilization in stencil applications.

The paper Ewvaluation of OpenMP Task Scheduling Algorithms for Large
NUMA Architectures by Jerome Clet-Ortega, Patrick Carribault and Marc Per-
ache presents a configurable OpenMP task scheduler for studying and analyzing
work-stealing scheduling algorithms for large NUMA architectures.

We are grateful to the authors of all submitted papers for their contribution
and interest in this topic and to the program committee members and sub-
reviewers for their dedicated time and knowledge in evaluating and ranking so
many submissions.

Topic 12: Theory and Algorithms for Parallel Computation

A. Pietracaprina, P. Ribeiro, K. Herley, S. Vassilvitskii

Parallelism permeates all types of current computing systems, from single CPU
machines, to large server farms, supercomputers, clouds, and even Internet-based
volunteer computing infrastructures. The effective use of parallelism depends
crucially on the availability of faithful, yet tractable, computational models for
algorithm design and analysis, and of efficient algorithmic strategies for solv-
ing key computational problems on prominent classes of platforms. This topic
presents novel contributions that explore foundational issues, models, and algo-
rithms relevant for both traditional and emerging parallel computing scenarios.
All submitted papers were reviewed by the four members of the topic’s
committee, and two excellent papers were accepted for presentation at the con-
ference. One paper, “Power-Aware Replica Placement in Tree Networks with
Multiple Servers per Client” by Guillaume Aupy, Anne Benoit, Matthieu Jour-

Euro-Par 2014 Topics Overview XXXIII

nault and Yves Robert, studies some variants of the replica placement problem
on trees, whose objective is to minimize power consumption. The other pa-
per, “On Constructing DAG-Schedules with Large AREAs” by Scott T. Roche,
Arnold L. Rosenberg and Rajmohan Rajaraman, explores the construction of
schedules for computational DAGs which maximize the AREA metric, that is,
the rate at which the schedules make nodes eligible for execution. In both papers,
the authors prove the NP-completeness of the decision versions of the problems
under consideration, and provide polynomial-time heuristics, whose efficiency is
tested experimentally.

Topic 13: High Performance Networks and Communication

J. Flich, F. Araujo, C. Minkenberg, M. Palesi, T. Skeie

The topic on High-performance networks and communications is devoted to
communication issues in scalable compute and storage systems, such as tightly
coupled parallel computers, clusters, and networks of workstations, including hi-
erarchical and hybrid designs featuring several levels of possibly different inter-
connects. All aspects of communication in modern compute and storage systems
are of interest, including advances in the design, implementation, and evalua-
tion of interconnection networks, network interfaces, system and storage area
networks, on-chip interconnects, communication protocols and interfaces, rout-
ing and communication algorithms, and communication aspects of parallel and
distributed algorithms.

In this edition, all received papers went through a rigorous selection process
with at least four reviews. Two papers were selected for final inclusion in the
program. One of the papers deals with programmable networking devices to
accelerate the implementation of collective operations, by offloading function-
ality to the underlying network, while the other one deals with RDMA-based
MapReduce, when used over the popular parallel file system “Lustre”.

Topic 14: High Performance and Scientific Applications

F. Brasileiro, Pedro Medeiros, A. Sequeira, G. Fedak, W. Cirne

The availability of an abundance of computing resources worldwide has sub-
stantially impacted the way that research is nowadays conducted both in the
industry and in the academy. The new ways of doing science, rooted on the un-
precedented processing, communication and storage infrastructure that became
available to researchers encompass activities such as computational modelling
and simulation, processing of large amounts of data, often geographically spread,
and the visualisation of complex datasets. The constant technological advances
that make computers faster and storage more plentiful are not enough to cope
with the increased demand generated by more accurate and complex modelling,
and an ever increasing quantity of data being generated. There is thus a growing

XXXIV Euro-Par 2014 Topics Overview

need for a range of high performance applications which can use parallel compute
systems effectively, and which have efficient data I/O strategies.

In this track, six papers were selected for presentation at the conference.
These papers made valuable contributions for the advance of the state of the
art in developing scalable applications for parallel and distributed systems in a
variety of domains, including optics, astrophysics, genotyping, and flood fore-
cast, as well as algorithms that can be used in different applications, such as
random fields generation, and set intersection. One common characteristic of al-
most all these works is the use of GPGPU for increasing performance. In the pa-
per “High-Performance Pseudo-analytical Simulation of Multi-object Adaptive
Optics over Multi-GPU Systems”, Zou et al. developed a novel hybrid pseudo-
analytical simulation scheme that allows the accurate and detailed simulation
of the tomographic problem. Gonzélez-Dominguez et al., in “Hybrid CPU/GPU
Acceleration of Detection of 2-SNP Epistatic Interactions in GWAS” present
EpistSearch, a parallelized tool that uses a novel filter to determine the in-
teractions between all Single Nucleotide Polymorphism pairs of an individual.
Lange and Fortin, in “Parallel dual tree transversal on multi-core and many-
core architectures for astrophysical N-body simulations” present a parallel dual
tree traversal algorithm targeting multi-core CPUs and many-core architectures.
The paper “IFM: A Scalable High Resolution Flood Modelling Framework”,
by Singhal el al. presents a highly scalable, integrated flood forecasting system
called IFM, that includes a weather model, a soil model, and an overland wa-
ter routing model. In the paper “Random Fields Generation on the GPU with
the Spectral Turning Bands Method”, Hunger et al. introduce a random field
generation algorithm based on the turning band method that is optimized for
massively parallel hardware such as GPUs. The paper “Fast Set Intersection
through Run-Time Bitmap Construction over PForDelta-compressed Indexes”
by Klasky and Samatova proposed, implemented and evaluated a fast set in-
tersection approach that couples the storage light-weight PForDelta indexing
format with computationally-efficient bitmaps, through a specialized on-the-fly
conversion.

Of course the program that we were able to assemble was only possible be-
cause of the many high quality contributions that were submitted to the topic.
We take this opportunity to thank all the authors for their submissions. We are
also indebted to our fellow members of the technical program committee, and
the external reviewers, for their judicious assessment of the submissions. Finally,
we would also like to acknowledge the invaluable support that has been provided
by the conference chairs and the steering committee.

Topic 15: GPU and Accelerator Computing

P. Kelly, J. Lourengo, A. Heinecke, A. Lokhmotov, C. Plessl, D. Unat,
D. Blanco Heras, L. Howes, N. Maruyama, P. Gonnet

This topic provides a forum for the presentation of the latest research results and
practical experience in GPU and Accelerator Computing. Accelerators of various

Euro-Par 2014 Topics Overview XXXV

kinds offer massive performance and power advantages for suitable applications,
at every scale from embedded and mobile to supercomputers and datacenters.
Examples include graphics processors (GPUs), “manycore” devices, such as In-
tel’s Xeon Phi and other platforms with large numbers of simple cores, as well as
more custom devices, customizable FPGA-based systems and streaming dataflow
architectures.

The research challenge for this topic is to explore new technologies for realis-
ing this potential. We encouraged submissions in all areas related to accelerators:
architecture, languages, compilers, libraries, runtime, debugging and profiling
tools, algorithms. Papers demonstrating deep engagement with applications and
algorithms were particularly welcome, aiming to identify broader insights on the
problems of optimization (for performance and power), programmability, per-
formance portability, support for and integration with legacy code.

We thank the many helpful referees, who provided at least four reports on
each of the submitted papers. After vigorous, good-natured and pleasurable de-
bate among the program committee members, eight were accepted. So: thank
you to the PC members, and to everyone who helped with the refereeing.

The quality of submissions was uniformly high, and without exception, the
papers we were unable to accept this time represent sound work which we would
encourage the authors to submit next year in more mature form. Thus, thank
you also to the authors!

Euro-Par’s tight page limit makes it a forum for work which is focussed on
interesting new ideas, rather than extensive experimental evaluation of more
established material. We believe this makes for a lively programme of presen-
tations, and we are confident there will be plenty of interesting questions and
discussion.

Table of Contents

Support Tools Environments

MPI Trace Compression Using Event Flow Graphs
Xavier Aguilar, Karl Furlinger, and Erwin Laure

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis.
Srinath Krishna Ananthakrishnan and Frank Mueller

Performance Measurement and Analysis of Transactional Memory and
Speculative Execution on IBM Blue Gene/Q
Jie Jiang, Peter Philippen, Michael Knobloch, and Bernd Mohr

c-Eclipse: An Open-Source Management Framework for Cloud

ADPLCAtIONS . . . oot
Chrystalla Sofokleous, Nicholas Loulloudes, Demetris Trihinas,
George Pallis, and Marios D. Dikaiakos

Modeling and Simulation of a Dynamic Task-Based Runtime System

for Heterogeneous Multi-core Architectures...............
Luka Stanisic, Samuel Thibault, Arnaud Legrand, Brice Videau, and
Jean-Francgois Méhaut

Performance Prediction and Evaluation

Modeling the Impact of Reduced Memory Bandwidth on HPC
APPHCAtIONS . . oot
Ananta Tiwari, Anthony Gamst, Michael A. Laurenzano,
Martin Schulz, and Laura Carrington

ParaShares: Finding the Important Basic Blocks in Multithreaded
Programs
Melanie Kambadur, Kui Tang, and Martha A. Kim

Multi-Objective Auto-Tuning with Insieme: Optimization and
Trade-Off Analysis for Time, Energy and Resource Usage
Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer

Performance Prediction and Evaluation of Parallel Applications in
KVM, Xen, and VMWare,
Cheol-Ho Hong, Beom-Joon Kim, Young-Pil Kim,
Hyunchan Park, and Chuck Yoo

13

26

38

50

63

75

87

99

XXXVIII Table of Contents

DReAM: Per-Task DRAM Energy Metering in Multicore Systems
Qiziao Liu, Miquel Moreto, Jaume Abella,
Francisco J. Cazorla, and Mateo Valero

Characterizing the Performance-Energy Tradeoff of Small ARM Cores
in HPC Computation. i
Michael A. Laurenzano, Ananta Tiwari, Adam Jundt,
Joshua Peraza, William A. Ward Jr., Roy Campbell, and

Laura Carrington

Scheduling and Load Balancing

On Interactions among Scheduling Policies: Finding Efficient Queue
Setup Using High-Resolution Simulations
Dalibor Klusdcek and Simon Toth

ProPS: A Progressively Pessimistic Scheduler for Software Transactional
MEIOTY .« o vttt et e
Hugo Rito and Jodao Cachopo

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks
Scheduling on Cloudst
Cosmin Dumitru, Ana-Maria Oprescu, Miroslav Zivkovid,
Rob van der Mei, Paola Grosso, and Cees de Laat

SPAGHET4I: Scheduling/Placement Approach for Task-Graphs on
HETerogeneous archltecture....... i ..
Denis Barthou and Emmanuel Jeannot

Energy-Aware Multi-Organization Scheduling Problem
Johanne Cohen, Daniel Cordeiro, and Pedro Luis F. Raphael

Energy Efficient Scheduling of MapReduce Jobs......................
Evripidis Bampis, Vincent Chau, Dimitrios Letsios,
Giorgio Lucarelli, Ioannis Milis, and Georgios Zois

High Performance Architectures and Compilers

Automated Transformation of GPU-Specific OpenCL Kernels Targeting

Performance Portability on Multi-Core/Many-Core CPUs
Dafei Huang, Mei Wen, Changqing Xun, Dong Chen, Xing Cai,
Yuran Qiao, Nan Wu, and Chunyuan Zhang

Switchable Scheduling for Runtime Adaptation of Optimization........
Lénaic Bagneres and Cédric Bastoul

Table of Contents XXXIX

A New GCC Plugin-Based Compiler Pass to Add Support for
Thread-Level Speculation into OpenMP
Sergio Aldea, Alvaro Estebanez, Diego R. Llanos, and
Arturo Gonzalez-FEscribano

Parallel and Distributed Data Management

Improving Read Performance with Online Access Pattern Analysis and
Prefetching.
Houjun Tang, Xiaocheng Zou, John Jenkins,
David A. Boyuka II, Stephen Ranshous, Dries Kimpe,
Scott Klasky, and Nagiza F. Samatova

Robust and Efficient Large-Large Table Outer Joins on Distributed
Infrastructures.
Long Cheng, Spyros Kotoulas, Tomas E. Ward, and
Georgios Theodoropoulos

Top-k Item Identification on Dynamic and Distributed Datasets
Alessio Guerrieri, Alberto Montresor, and Yannis Velegrakis

Applying Selectively Parallel I/O Compression to Parallel Storage
SYSEEINS . . ottt
Rosa Filgueira, Malcolm Atkinson, Yusuke Tanimura, and
Isao Kojima

Ultra-Fast Load Balancing of Distributed Key-Value Stores through

Network-Assisted LoOKUDPSo
Davide De Cesaris, Kostas Katrinis, Spyros Kotoulas, and
Antonio Corradi

Grid, Cluster and Cloud Computing

Virtual Machine Consolidation in Cloud Data Centers Using ACO
MetaheuristiC. . ..ot
Md Hasanul Ferdaus, Manzur Murshed, Rodrigo N. Calheiros, and

Rajkumar Buyya

Workflow Scheduling on Federated Clouds...........................
Juan J. Durillo and Radu Prodan

Locality-Aware Cooperation for VM Scheduling in Distributed

CloUds ..ot
Jonathan Pastor, Marin Bertier, Frédéric Desprez, Adrien Lebre,
Flavien Quesnel, and Cédric Tedeschi

XL Table of Contents

Can Inter-VM Shmem Benefit MPI Applications on SR-IOV Based
Virtualized Infiniband Clusters?
Jie Zhang, Xiaoyi Lu, Jithin Jose, Rong Shi, and
Dhabaleswar K. (DK) Panda

Green High Performance Computing

Power-Aware L1 and Ly Caches for GPGPUS
Ehsan Atoofian and Ali Manzak

Power Consumption Due to Data Movement in Distributed
Programming Models.
Siddhartha Jana, Oscar Hernandez, Stephen Poole, and
Barbara Chapman

Distributed Systems and Algorithms

Spanning Tree or Gossip for Aggregation: A Comparative Study
Lehel Nyers and Mark Jelasity

Shades: Expediting Kademlia’s Lookup Process
Gil Finziger, Roy Friedman, and Yoav Kantor

Analysis and Comparison of Truly Distributed Solvers for Linear Least
Squares Problems on Wireless Sensor Networks
Karl E. Prikopa, Hana Strakovd, and Wilfried N. Gansterer

Parallel and Distributed Programming

High-Performance Computer Algebra: A Hecke Algebra Case Study
Patrick Maier, Daria Livesey, Hans-Wolfgang Loidl, and
Phil Trinder

Generic Deterministic Random Number Generation in
Dynamic-Multithreaded Platforms
Stefano Mor, Jean-Louis Roch, and Nicolas Maillard

Implementation and Performance Analysis of SkelGIS for Network

Mesh-Based Simulations

Hélene Coullon and Sébastien Limet

GoFFish: A Sub-graph Centric Framework for Large-Scale Graph

Analytics . ..o

Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi,
Soonil Nagarkar, Santosh Ravi, Cauligi Raghavendra, and
Viktor Prasanna

342

415

Table of Contents XLI

Resolving Semantic Conflicts in Word Based Software Transactional
MEIMOTY ..ottt 463
Craig Sharp, William Blewitt, and Graham Morgan

Automatic Tuning of the Parallelism Degree in Hardware Transactional
MEMOTY ..ottt 475
Diego Rughetti, Paolo Romano, Francesco Quaglia, and
Bruno Ciciani

Parallel Numerical Algorithms

A Distributed CPU-GPU Sparse Direct Solver 487
Piyush Sao, Richard Vuduc, and Xiaoye Sherry Li

Parallel Computation of Echelon Forms 499
Jean-Guillaume Dumas, Thierry Gautier, Clément Pernet, and
Ziad Sultan

Time-Domain BEM for the Wave Equation: Optimization and Hybrid
Parallelization 511
Berenger Bramas, Olivier Coulaud, and Guillaume Sylvand

Structured Orthogonal Inversion of Block p-Cyclic Matrices on
Multicores with GPU Accelerators 524
Sergiy Gogolenko, Zhaojun Bai, and Richard Scalettar

Multicore and Manycore Programming

High-Throughput Maps on Message-Passing Manycore Architectures:
Partitioning versus Replication 536
Omid Shahmirzadi, Thomas Ropars, and André Schiper

A Fast Sparse Block Circulant Matrix Vector Product 548
Eloy Romero, Andrés Tomds, Antonio Soriano, and
Ignacio Blanquer

Scheduling Data Flow Program in XKaapi: A New Affinity Based

Algorithm for Heterogeneous Architectures 560
Raphaél Bleuse, Thierry Gautier, Joao V.F. Lima,
Grégory Mounié, and Denis Trystram

Delegation Locking Libraries for Improved Performance of
Multithreaded Programs i 572
David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad

A Generic Strategy for Multi-stage Stencils. 584
Mauro Bianco and Benjamin Cumming

XLII Table of Contents

Evaluation of OpenMP Task Scheduling Algorithms for Large NUMA
Architectureso
Jérome Clet-Ortega, Patrick Carribault, and Marc Pérache

Theory and Algorithms for Parallel Computation

Power-Aware Replica Placement in Tree Networks with Multiple
Servers per Client i
Guillaume Aupy, Anne Benoit, Matthieu Journault, and Yves Robert

On Constructing DAG-Schedules with Large AREAs
Scott T. Roche, Arnold L. Rosenberg, and Rajmohan Rajaraman

High Performance Networks and Communication

Software Defined Multicasting for MPI Collective Operation Offloading
with the NetFPGA
Omer Arap, Geoffrey Brown, Bryce Himebaugh, and Martin Swany

MapReduce over Lustre: Can RDMA-Based Approach Benefit?
Md. Wasi-ur-Rahman, Xiaoyi Lu, Nusrat Sharmin Islam,
Raghunath Rajachandrasekar, and Dhabaleswar K. (DK) Panda

High-Performance and Scientic Applications

Random Fields Generation on the GPU with the Spectral Turning
Bands Method
Lars Hunger, Biagio Cosenza, Stefan Kimeswenger, and
Thomas Fahringer

Fast Set Intersection through Run-Time Bitmap Construction over
PForDelta-Compressed Indexes
Xiaocheng Zou, Sriram Lakshminarasimhan,
David A. Boyuka II, Stephen Ranshous, Houjun Tang,
Scott Klasky, and Nagiza F. Samatova

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic
Interactions in GWAS
Jorge Gonzdlez-Dominguez, Bertil Schmidt,
Jan Christian Kdssens, and Lars Wienbrandt

IFM: A Scalable High Resolution Flood Modeling Framework
Swati Singhal, Sandhya Aneja, Frank Liu, Lucas Villa Real, and
Thomas George

644

Table of Contents XLIII

High Performance Pseudo-analytical Simulation of Multi-Object

Adaptive Optics over Multi-GPU Systems................ 704
Ahmad Abdelfattah, Eric Gendron, Damien Gratadour,
David Keyes, Hatem Ltaief, Arnaud Sevin, and Fabrice Vidal

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures
for Astrophysical N-body Simulations.......... 716
Benoit Lange and Pierre Fortin

GPU and Accelerator Computing

Customizing Driving Directions with GPUs 728
Daniel Delling, Moritz Kobitzsch, and Renato F. Werneck

GPU Accelerated Range Trees with Applications..................... 740
Manoj Kumar Maramreddy and Kishore Kothapalli

Scalable On-Board Multi-GPU Simulation of Long-Range Molecular
Dynamics 752
Marcos Nowalbos, Jaime Gonzdlez, Miguel A. Otaduy,
Roberto Martinez-Benito, and Alberto Sanchez

Resolution of Linear Algebra for the Discrete Logarithm Problem Using
GPU and Multi-core Architecturesoo ... 764
Hamza Jeljeli

Toward OpenCL Automatic Multi-Device Support 776
Sylvain Henry, Alexandre Denis, Denis Barthou,
Marie-Christine Counilh, and Raymond Namyst

Concurrent Kernel Execution on Xeon Phi within Parallel
Heterogeneous Workloads i 788
Florian Wende, Thomas Steinke, and Frank Cordes

Writing Self-adaptive Codes for Heterogeneous Systems 800
Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and
Ramdén Doallo

A Pattern-Based Comparison of OpenACC and OpenMP for

Accelerator Computingo.uiuiii i 812
Sandra Wienke, Christian Terboven, James C. Beyer, and
Matthias S. Muiiller

Author Index 825

MPI Trace Compression
Using Event Flow Graphs

Xavier Aguilar!, Karl Fiirlinger?, and Erwin Laure!

! KTH Royal Institute of Technology,

High Performance Computing and Visualization Department (HPCViz)
and Swedish e-Science Research Center (SeRC),
Lindstedvagen 5, 10044 Stockholm, Sweden
? Ludwig-Maximilians-Universitit (LMU) Munich,
Computer Science Department, MNM Team,
Oettingenstr. 67, 80538 Munich, Germany

Abstract. Understanding how parallel applications behave is crucial for
using high-performance computing (HPC) resources efficiently. However,
the task of performance analysis is becoming increasingly difficult due
to the growing complexity of scientific codes and the size of machines.
Even though many tools have been developed over the past years to
help in this task, current approaches either only offer an overview of the
application discarding temporal information, or they generate huge trace
files that are often difficult to handle.

In this paper we propose the use of event flow graphs for monitoring
MPI applications, a new and different approach that balances the low
overhead of profiling tools with the abundance of information available
from tracers. Event flow graphs are captured with very low overhead,
require orders of magnitude less storage than standard trace files, and
can still recover the full sequence of events in the application. We test this
new approach with the NERSC-8/Trinity Benchmark suite and achieve
compression ratios up to 119x.

Keywords: MPI event flow graphs, trace compression, trace reconstruc-
tion, performance monitoring.

1 Introduction

Current petascale systems provide massive computing power to run scientific
simulations in many disciplines ranging, for example, from weather modeling to
protein structure analysis. However, their efficient use requires optimized ap-
plications with several levels of parallelism, efficient inter-process communica-
tion for complex network topologies and optimized memory access through deep
memory hierarchies. Therefore, tools to characterize and better understand the
performance behavior of applications are an essential part of the HPC landscape.

Performance tools for HPC systems have been widely studied and developed
over the last years. These tools can be divided into two families: profilers and

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 1-12, 2014.
© Springer International Publishing Switzerland 2014

2 X. Aguilar, K. Fiirlinger, and E. Laure

tracers. Profilers generate reports with execution statistics, whereas tracers pro-
duce time-stamped event log files. Profilers are less intrusive and more scalable
than tracers but profilers do not maintain a record of the structure and sequence
of events. In contrast, tracers give the whole picture of what happened during the
run time of an application, but are limited in scalability due to the huge amount
of data they generate. Current tracing methodologies can produce trace files in
the order of gigabytes for only a few minutes of application execution [1]. The
size of the trace files also grows drastically as the number of cores used by an ap-
plication increases. Thus, new scalable methods for performance data collection
maintaining sequence and temporal order of the information are needed.

In this paper, we propose a novel approach for application characterization
using event flow graphs which is designed to combine the advantages of profiling
and tracing. This method has the scalability of profiling without discarding the
temporal ordering of events performed by the application. We have implemented
our solution in the Integrated Performance Monitoring tool (IPM) [2,3], a light-
weight and scalable profiling tool for parallel applications. It uses a hash table in
memory to store performance data and provides rich metrics about MPI-related
events such as MPI timings, communication volume and the communication
topology. IPM is open-source and is available freely from http://www.ipm2.org
under the LGPL license.

The rest of this paper is structured as follows: In Sect. 2 we define and de-
scribe our approach for generating MPI event flow graphs. Section 3 shows some
experimental results using the NERSC-8/Trinity Benchmark Suite. In Sect. 4
we review some of the related work in trace compression. The paper ends with
future work and conclusions in Sect. 5 and Sect. 6, respectively.

2 MPI Event Flow Graphs

In this work, we use and extend the definitions of Fiirlinger et al. [4] for a formal
treatment of performance monitoring events. We start with an MPI application
with n processes (identified by their ranks [0..n — 1]), where each process i is
characterized by a set of events E; C E where F represents all the events that
happened during the run time of the application. An event can be any action
performed by the application, but in this work we restrict ourselves to MPI
operations. In other words, an event is an MPI primitive call.

Each event e has a signature 6(e) that captures the aspects of the events
we are interested in. We can think of the signature as a k-tuple of components
5(e) = (6%(e), 82(e), ..., 6% (e)) which represent relevant metrics, such as the type
of MPI call, communication partner rank, data transfer size, callsite (source
code position), or program region. The mapping from event to signature is not
necessarily injective and therefore statistics are recorded for each different signa-
ture value. Hence, we can conceptually represent the performance behavior of an
MPI process as a table where each row is an event indexed by its signature and
each column is a different statistic (number of occurrences, minimal duration,
maximal duration, etc.).

http://www.ipm2.org

MPI Trace Compression Using Event Flow Graphs 3

In practical terms, the performance behavior is recorded in a hash table in
memory which is implemented in IPM with the event signatures §(e) being used
as the hash keys. The values in this hash table are performance metrics such as
the number of occurrences and different timings (minimum, maximum and total
duration) of each event. This lets us store performance data in the hash keys as
well as in the table entries, thereby reducing the monitoring overhead. Notice
that if we include the event timestamp as a component of the signature, we have
a model for tracing. If the timestamp is omitted, we lose the temporal dimension
of the data and instead have a model for profiling since we cannot know the order
in which the events happened during the application’s run time. However, as we
show in this paper, the temporal ordering of events can nevertheless be fully
recovered by keeping track of a (very short) history of the event signatures.

Consider again an MPI application with n processes and a set of events F; =
{ep, €1, ...,em } belonging to process with rank i. Let d(e) : E; — S; be the
signature function at rank i and s? € S; an initial signature value. Then &'(e)
with

§'(eo) = (s7(eo))
(5’(61‘) = ((5(61‘_1),(5((31’)) ifi>0

represents the signature history for . Then, the directed weighted graph G =
(Ni, Li, w;, s9) with the event signatures forming the set of nodes N; and the
signature history the set of edges L;

Ni = {(5(61)} e; € Ei
L; = {5/((3,’)} e; € E;
wit L N wi(l) = [{e; 8 (e;) =1} leL;

is the event flow graph for the MPI rank i with s{ as the initial node of the
graph. In other words, in the event flow graph the nodes correspond to the MPI
calls performed by the application and the edges correspond to the transitions
between them. The edge weight (w;) or edge count is the number of transitions
between nodes. Figure 1 depicts a simple MPI application and the corresponding
event flow graph for one of its MPI processes, where MPI Init is the initial node
of the graph. Notice that the application has as many graphs as MPI processes.

2.1 Reconstructing Traces from Event Flow Graphs

For the simple example in Fig. 1 we see that the event flow graph completely
captures the behavior of an MPI process. It contains all the events performed
by the process (nodes of the graph) and the transitions between them (edges
between nodes). Therefore, the path N; = {s?,s!...s"} from the initial node s?

to the final node s} of the graph corresponds to the event trace for process with
rank i. The total number of events (length of the path) in the trace is

S wil)+1 V€L

4 X. Aguilar, K. Fiirlinger, and E. Laure

MPI_Init

i

void main(int argc, char *argv[]) { |

MPI_Init(...);
MPI_Comm_size(...); MPI_Comm_size
MPI_Comm_rank(..., &myrank);]

for(1 = O’ 1 < 10’ i++) { MPI_Comm_rank

if (myrank is even) - :|

MPI_Send(...); 1

else
MPI_Recv(...); MPI_Send
MPI_Reduce(...); 10]/)9
} _Reduce
MPI_Finalize();

} 1
MPI_Finalize

Fig. 1. A simple MPI program and the event flow graph generated for an MPI process
with an even rank number

HEH

2
o]

and the number of times that each event e; appears, also known as node cardi-
nality for the node d(e;), is

Z w;(in edges(d(e;)))

In other words, the number of events in the trace is the sum of all edge weights
of the graph plus one and each event appears as many times as the total weight
of its incoming edges.

In this paper we are only concerned with reconstructing the sequence of events
in a trace (time stamps and intervals between events are topics for future work).
It is clear that the trace can be easily reconstructed for simple cases such as linear
graphs and graphs with a single loop such as the one in Fig. 1. However, there
are cases that cannot be reconstructed using flow graphs in this manner. This
occurs for applications with conditional branches within a loop, for example, the
code snippet in Fig. 2. When reconstructing the trace, we cannot know the order
of the calls after the MPI Barrier across loop iterations.

Thus, we extended our model to cover such cases. Firstly, we added a sequence
number to the exit edges of the branch nodes (that is, nodes with more than
one exit edge). This new weight is defined as a 2-tuple < N;N > where the first
element is the sequence number for that edge and the second element is the
edge count as defined above. With this extra data, we always know which edge
was taken in a branch node when traversing the graph. Figure 3 shows this new
extended model.

Secondly, we changed our directed graphs to multidigraphs, that is, directed
graphs with more than one edge between the same two nodes. This new graph

MPI Trace Compression Using Event Flow Graphs 5

for(i =0; i < 10; i++) {

MPI_Barrier(...);
if (i < 5) MPI_Bcast
MPI_Bcast(...); 37 2
else . 5 S
MPT_Gather(...); MP1_Barrier MPLGather MPLReduce
9

MPI_Reduce(...);
}

Fig. 2. Example of a conditional branch within a loop and its corresponding event flow
graph

model can represent applications in which the conditional branches within a loop
vary across loop iterations as depicted in Fig. 3.

MPI_Comm_rank

1,1
MPI_Barrier 1
MPI_Send 11 MPI_Send MPI_Finalize
MPI_Barrier /
MPI _Re CcVv MPI_Comm_rank 1 MPI_Barrier /

1,1
MPI_Barrier 2,1
MPI_Send O
MPI_Finalize MPI_Recy

0 ~NOoO O WN =

Fig. 3. A sequence of MPI operations and the corresponding multidigraph

2.2 Compressing Edges in Branch Nodes

As shown in the previous section, our new event flow graphs are multidigraphs
with sequence numbers in edges that have the same source node. Thereby, we can
always reconstruct the event trace associated with an application without any
loss of temporal order information by traversing the graph edges in ascending
order of their sequence number.

However, creating multiple edges between nodes to record the sequence order
can lead to huge graphs. In fact, our experiments showed that this situation
is quite common among real applications which sometimes have flow graphs
with thousands of edges going out from one node. Nevertheless, those graphs
usually exhibit repetitive patterns in terms of the multiple edges between nodes
as shown in Fig. 4. In that case, the application calls MPI Barrier followed by
MPI Recv 10 times, then it calls MPI Barrier followed by MPI Send 10 times,
afterwards it again calls MPI Barrier followed by MPI Recv 10 times, and so on,
until MPI Recv and MPI Send have each been called 30 times.

As we can see in the figure, the sequence numbers for those edges in the
event flow graph follow different arithmetic progressions, that is, the difference
between two consecutive numbers in the sequence is constant. In such cases, the

6 X. Aguilar, K. Fiirlinger, and E. Laure

1,10

3.10 MPI_Recv

5,10
MPI_Barrier
2’10 1’5’2’10 MPI_Recv
4.10 AN MPI_Barrier 2,6,2,10
MPL Send T
6.10 MPI_Send
a) Nodes with uncompressed b) Nodes with compressed

(a) P P
edges. edges.

Fig. 4. Branch compression of multiple edges between nodes

set of edges can be compressed into a single one as long as their edge count is
the same. Using this approach, the new weight for the compressed edges is a 4-
tuple < N, N, N, N > where the first element is the first number of the sequence,
the second element is the last number of the sequence, the third element is the
stride and the last element of the tuple is the edge count. For instance, the set
of edges [1,10],[3,10],[5,10] in Fig. 4 from the MPI Barrier to the MPI Send
node can be compressed into a single edge with weight < 1,5,2,10 >. Hereby,
we increase the readability of the graphs and reduce the space needed to store
them. For irregular patterns without a clear stride no compression is possible
and individual edges need to be stored.

2.3 Implementation in IPM

We have extended IPM to generate MPI event flow graphs as described in the
previous section. IPM maintains event statistics such as the total duration, the
minimum and maximum time and the number of occurrences for all MPI calls.
These statistics are stored in a hash table using the event signatures described
in Sect. 2 as the hash key for each event.

To record the transitions between events, we introduced a second hash table
that contains pairs of event signatures. This “history” hash table keeps infor-
mation on transition pairs of event signatures (d(e;—1),0(e;)). IPM keeps track
of the last event signature by storing it in a variable and updating it each time
there is a new insertion into the transition hash table. Moreover, IPM also keeps
track of branches within loops by checking if there are two pairs in the transi-
tion hash table (< d(e;), d(ej) >, < d(e;), d(ex) >) where 6(e;) # 6(ex). If that is
so, each element is given a sequence number indicating their arrival order. IPM
also joins elements in the transition hash table to compress the number of edges
between nodes as described in Sect. 2.2. It keeps track of the old branches for
each node. When a branch finishes, IPM checks if the sequence number of the
branch follows an arithmetic progression in relation to any of the older branches
of that particular node. If that is the case and if both branches have the same

MPI Trace Compression Using Event Flow Graphs 7

edge count, the two branches are compressed into a single branch. Upon pro-
gram termination, IPM constructs the event flow graph for each MPI process by
matching pairs of event edges.

3 Experiments

In order to test our approach for trace reconstruction from MPI event flow
graphs, we used the following mini-applications from the NERSC-8/Trinity
Benchmarks suite [5]: AMG, an algebraic multigrid solver for linear systems on
unstructured grids; GTC, a 3D Particle-in-cell code (PIC) with a non-spectral
Poisson solver used for gyrokinetic particle simulation of turbulent transport
in burning plasma; MILC, a code for simulating four dimensional SU(3) lat-
tice gauge theory to study quantum chromodynamics (QCD); SNAP, a proxy
application that models the performance of a modern discrete ordinates neu-
tral particle transport application, PARTISN [6]; MiniDFT, a plane-wave DFT
mini-kernel that computes self-consistent solutions for the Kohn-Sham equations;
MiniFE, a mini-application that implements different kernels representative of
implicit finite-element applications; MiniGhost, a mini-application that imple-
ments a difference stencil across a homogenous three dimensional domain.

The experiments were performed on a Cray XE6 with 2 twelve-core AMD
MagnyCours at 2.1 GHz per node. The nodes are interconnected through a
Cray Gemini Network, each of them having a total of 32 GB DDR3 memory.
The benchmarks were compiled with Intel 12.1.5 and run using the small test
case that is provided for each one of them.

3.1 Overhead

Figure 5 shows for each benchmark the percentage of overhead introduced by
IPM over their total running time (writing the graph files to disk is also included
in the percentage). These experiments were run using strong scaling except for
SNAP, MILC and GTC. As depicted in the figure, the overhead introduced to
generate the event flow graphs is almost negligible, being always below 2%.

3.2 Compression Ratios

Table 1 shows the compression ratio for each benchmark in terms of file size
between our flow graph file and a standard trace file for that application gener-
ated by IPM, in other words, it shows how many times smaller the event flow
graph file is compared to the standard trace file. It is important to be aware
that both files contain exactly the same amount of information for each MPI
call: call name, bytes sent or received, communication partner and callsite. As
our current implementation generates one flow graph per MPI process, the table
shows statistics for the minimum, maximum and average compression ratios for
all processes within each application. The results in the table demonstrate that
the compression depends on the nature of the benchmark. For instance, we have

8 X. Aguilar, K. Fiirlinger, and E. Laure

Minighost ——
MiniFE --%--

Overhead %

0 1 0;] 260 360 460 5‘00 660 760 800
MPI Processes

Fig.5. Percentage of overhead over total running time introduced in the NERSC-

8/Trinity benchmarks when generating their event flow graphs

applications such as SNAP with flow graph files 119 times smaller than the stan-
dard linear trace whereas in other applications such as AMG the compression
ratio is 1.76. In terms of file size, the amount of disk space required to store the
traces for a run with 96 cores of SNAP is 1.1 GB whereas the space required for
the event flow graphs is only 10 MB.

In order to explain this variance in the compression we need to look into some
graph metrics. Table 2 gives statistics for the number of nodes, the number of
links and the average cardinality of nodes in the graphs. Remember that the node
cardinality is the number of instances an event d(e;) happened during the run
time of the application as explained in Sect. 2.1. The figures in the tables show
that low compression ratios are related to graphs with a large number of nodes
with low cardinality such as AMG or MiniDFT. In contrast, graphs consisting
of a few nodes with high node cardinality exhibit very good compression ratios.

As explained in Sect. 3, each event is identified uniquely using a signature
defined by several metrics. Furthermore, each one of these events is eventually
converted into a node in the event flow graph. Therefore, the metrics used as
signature elements have an important role in the cardinality of the graph. In
our experiments, the event signature was composed of the MPI call name, the
MPI rank, the number of bytes associated with the call and the call site. Thus,
it is not surprising that applications with huge graphs (such as AMG) have a
large number of different call sites and message sizes - this was confirmed by our
experiments. The variability in the number of call sites and the sizes of messages
leads to a greater number of signatures, and consequently more nodes in the
resulting graph.

Finally, we performed another set of experiments with some of the NERSC-8
benchmarks and a five-point stencil code computing a wave 2D equation [7] to
measure the increase ratio in file size as we increase the number of simulation
time steps. Figure 6 shows that standard trace files increase linearly with the
number of simulation steps whereas the event flow graph (EFG) files do not.
For most of the benchmarks, the small increment in the graph file size is caused

MPI Trace Compression Using Event Flow Graphs 9

by the addition of new edges to the graphs due to the execution of different
call paths as the number of simulation steps increases. (For GTC the number
of nodes also increases due to a variation in the size of messages.) However,
applications that execute the same loop over time such as the 5-stencil code
have constant event flow graph size irrespective of the number of simulation
steps. For applications like that, the only difference between graphs from runs
with different simulation times is their node cardinality.

MiniGhost EFGs —+—

Table 1. File compression ratios MiniGhost Trace Files -

| 5D-Stencil EFGs -

33 [5D-Stencil Trace Files ~B

s - ik-

Benchmark Ranks Min Max Avg SNAP Trace il -6

3t GTC EFGs - ®-

AMG 96 170 185 176 o GTC Trce Fils ~4-
GTC 64 37.95 47.65 46.60 § 251

MILC 96 38.67 39.44 39.03 >

SNAP 96 75.37 210.88 119.23
MiniDFT 40 3.14 839 4.33 L5t
MiniFE = 144 15.23 2225 19.93
Minighost 96 3.84 5.72 4.85 [\

x1 X 3
Increase ratio in Simulation Steps

Fig. 6. Increase in file size when increasing
simulation steps

Table 2. Number of nodes, edges and cardinality of nodes in the event flow graphs

Num. of nodes Num. of edges Node Cardinality
Benchmark Ranks Min Max Avg Min Max Avg Min Max Avg
AMG 96 4973 15115 9,348.94 5652 17287 10,586.47 4.44 4.83 4.59

GTC 64 114 130 114.50 120 151 121.20 96.52 109.53 109.10
MILC 96 6330 6347 6330.18 97426 97443 97426.18 1653.01 1657.31 1657.27
SNAP 96 22 28 24.77 340 1729 1,120.26 7,007.50 17,805.91 14,149.22

MiniDFT 40 512 1087 690.30 873 5851 1,980.38 12.39 63.01 27.29
MiniFE 144 73 280 161.08 75 282 163.08 33.86 50.35 45.10
Minighost 96 89 95 92.33 91 135 111.04 12.13 13.89 13.13

4 Related Work

Performance tools for HPC systems have been studied and developed for years.
Extrae and Paraver [8,9], and also ScoreP with Vampir [10,11], are tracing
toolsets used to visualize the behavior of MPI applications over time. They
provide lossless traces that include all the events that happened while the ap-
plication was running. However, these traces are huge and their size increases
linearly with the number of MPI processes. Therefore, the use of such toolsets is
limited by scalability constraints. In contrast, our current work with event flow

10 X. Aguilar, K. Fiirlinger, and E. Laure

graphs shows that we can capture the events and their temporal order as tracers
do while storing it in files that are a few orders of magnitude smaller. However,
our approach is still in an early stage and more work is needed to reach the same
level of usability and information granularity as that provided by current tracing
tools, for example, including continuous data such as timestamps or hardware
performance counters in the trace.

Our work is also related to lightweight profiling tools such as mpiP [12] or
Gprof [13]. These tools generate profiles of aggregated information with very low
overhead. Although these tools can provide a good overview of the performance
problems for a particular application, they lack the temporal order of data needed
for in-depth performance analysis. In contrast, IPM can provide temporal order
in the performance data using event flow graphs. Additionally, IPM also provides
standard reports with aggregated statistics.

Scalatrace [14] is a tracing framework that provides on-the-fly lossless trace
compression of MPI communication traces. It implements intra-node compres-
sion describing single loops with RSDs [15] and using techniques such as callpath
compression. Scalatrace also implements inter-node compression at the end of
the run when each process trace is merged into a single one for the whole appli-
cation. Scalatrace comes with a replay mechanism for a later analysis of those
traces. Our work differs from Scalatrace in the sense that we do not compress
series of events, but instead record the behavior of an application using graphs.
We believe this approach has better compression ratios and much less overhead
as discussed in Sect. 3. Furthermore, our approach also makes it possible to
replay traces later for the purposes of performance analysis. Nevertheless, our
current implementation still lacks inter-node compression, generating one file per
process. This is subject to future work though.

Krishnamoorthy et al. use SEQUITUR to compress traces creating context-
free grammars from the sequence of MPI calls [16]. In order to achieve better
compression, the trace is not compressed at an event level, but instead every call
argument is compressed in a different stream. This loses any program structure
in the resulting trace and makes it unreadable. In contrast, our approach keeps
the program structure, thus allowing us to easily visualize the traces.

Kniipfer et al. use Complete Call Graphs (CCGs) to compress post-mortem
traces according to the call stack [17]. This approach builds a call graph and re-
places similar repeated sub-trees with a reference to a single instance. Therefore,
CCGs can be very useful for trace analysis tools, reducing their memory footprint
and allowing them to deal with bigger traces. However, this method does not elim-
inate the burden of generating large traces while the application runs.

Flow graphs have been widely used in other areas of computer science such as
code generation and analysis. In those contexts, compilers generate flow graphs
from their intermediate representation (IR) where nodes are code blocks and
edges are branches that a program may take. Our work differs in the sense that
the nodes in our graphs are communication events instead of code blocks. In
addition, the edges of our event flow graphs are not possible branches but rather
transitions that actually happened during the execution.

MPI Trace Compression Using Event Flow Graphs 11

5 Future Work

Using event flow graphs in the analysis of MPI parallel applications opens up
many possibilities such as developing new tools to visualize, navigate and interact
with graphs. Possible visualization features could be graph coloring depending
on different metrics or highlighting differences among graphs to detect load im-
balance among processes. The graph approach also allows the use of different
algorithms and techniques for automatic graph analysis, for instance, detecting
loops in the graph and time spent in those loops. Furthermore, these new per-
formance tools could provide trace reconstruction features for just some sections
of the graph or a couple of iterations of a graph cycle.

Our current implementation of the event flow graphs in IPM does not keep
any time information on call duration in the graph. Thus, trace reconstruction
with timestamps is not possible yet. Therefore, we are looking into methods
for trace reconstruction that include time information. Furthermore, we want to
apply those methods for the reconstruction of any continuous data in the trace,
for example, hardware performance counters.

Finally, another aspect we want to explore in the future is inter-node trace
compression across ranks. Our current version always generates one flow graph
per process. However, it is usual in parallel application that a set of processes
has similar or identical behavior. In such cases, the graphs generated by those
processes will be similar as well, and thus, they can be compressed into a single
graph that could be used to describe that whole set of processes with similar
execution.

6 Conclusion

Performance analysis through tracing is the best method to understand the be-
havior of applications. However, tracing techniques have scalability limitations
due to the amount of information that is generated. In this paper we have pre-
sented a disruptive approach for performance tracing of MPI parallel applica-
tions using event flow graphs. This new method combines the scalability and
low overhead of profiling methods with the lossless information capabilities of
tracing tools. We evaluated our implementation using several mini-applications
from the NERSC-8/Trinity Benchmark Suite. The experiments showed promis-
ing results, achieving file compression ratios up to 119 with overheads below 2%.
Furthermore, the use of applications with longer simulations would allow even
better compression ratios because the same paths in the application are executed
more times. Although our work is still at an early stage, we believe it has strong
potential to be a way towards developing performance analysis tools that are
effective at an exascale level.

References

1. Labarta, J., Gimenez, J., Martinez, E., Gonzalez, P., Servat, H., Llort, G., Aguilar,
X.: Scalability of visualization and tracing tools. In: Proc. 11th Parallel Computing
Conf. (ParCo 2005), pp. 869-876 (2005)

12

10.

11.

12.

13.

14.

15.

16.

17.

X. Aguilar, K. Fiirlinger, and E. Laure

. Fuerlinger, K., Wright, N.J., Skinner, D.: Effective performance measurement at
petascale using ipm. In: 2010 IEEE 16th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 373-380. IEEE (2010)

Aguilar, X., Fiirlinger, K., Laure, E.: Online performance data introspection with
ipm. In: The 15th IEEE International Conference on High Performance Computing
and Communications (2013) (to be published)

Firlinger, K., Skinner, D.: Capturing and visualizing event flow graphs of mpi
applications. In: Lin, H.-X., Alexander, M., Forsell, M., Kniipfer, A., Prodan, R.,
Sousa, L., Streit, A. (eds.) Euro-Par 2009 Workshops 2009. LNCS, vol. 6043, pp.
218-227. Springer, Heidelberg (2010)

NERSC-8 / Trinity Benchmarks WWW site, http://www.nersc.gov/systems/
trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/

Alcouffe, R.E., Baker, R.S., Dahl, J.A., Turner, S.A., Ward, R.: Partisn: A time-
dependent, parallel neutral particle transport code system. Los Alamos National
Laboratory, LA-UR-05-3925 (May 2005)

MPICH wiki, http://wiki.mpich.org/mpich/images/1/17/Wave2d.cpp.txt
Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and
analyze parallel code. In: Proceedings of WoTUG-18: Transputer and Occam De-
velopments, vol. 44, pp. 17-31 (1995)

Servat, H., Llort, G., Huck, K., Giménez, J., Labarta, J.: Framework for a produc-
tive performance optimization. Parallel Computing 39(8), 336-353 (2013)
Knitipfer, A., Rossel, C., Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D.,
Geimer, M., Gerndt, M., Lorenz, D., Malony, A., et al.: Score-p: A joint perfor-
mance measurement run-time infrastructure for periscope, scalasca, tau, and vam-
pir. In: Tools for High Performance Computing 2011, pp. 79-91. Springer (2012)
Kniipfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Miiller,
M.S., Nagel, W.E.: The vampir performance analysis tool-set. In: Tools for High
Performance Computing, pp. 139-155. Springer (2008)

Vetter, J.S., McCracken, M.O.: Statistical scalability analysis of communication
operations in distributed applications. In: ACM SIGPLAN Notices, vol. 36, pp.
123-132. ACM (2001)

Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution pro-
filer. ACM Sigplan Notices 17(6), 120-126 (1982)

Noeth, M., Ratn, P., Mueller, F., Schulz, M., de Supinski, B.R..: Scalatrace: Scalable
compression and replay of communication traces for high-performance computing.
Journal of Parallel and Distributed Computing 69(8), 696710 (2009)

Havlak, P., Kennedy, K.: An implementation of interprocedural bounded regular
section analysis. IEEE Transactions on Parallel and Distributed Systems 2(3), 350
360 (1991)

Krishnamoorthy, S., Agarwal, K.: Scalable communication trace compression. In:
Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, pp. 408-417. IEEE Computer Society (2010)
Knupfer, A., Nagel, W.E.: Construction and compression of complete call graphs
for post-mortem program trace analysis. In: International Conference on Parallel
Processing, ICPP 2005, pp. 165-172. IEEE (2005)

http://www.nersc.gov/systems/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://www.nersc.gov/systems/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://wiki.mpich.org/mpich/images/1/17/Wave2d.cpp.txt

ScalaJack: Customized Scalable Tracing
with In-situ Data Analysis*

Srinath Krishna Ananthakrishnan and Frank Mueller

North Carolina State University, USA
mueller@cs.ncsu.edu

Abstract. Root cause diagnosis of large-scale HPC applications often
fails because tools, specifically trace-based ones, can no longer record
all metrics they measure. We address this problems by combining cus-
tomized tracing and providing support for in-situ data analysis via Scala-
Jack, a framework with customizable instrumentation and pluggable
extension capabilities for problem directed instrumentation and in-situ
data analysis. We further eliminate cross cutting concerns by code refac-
toring for aspect orientation and evaluate these capabilities in case stud-
ies within and beyond the scope of tracing.

1 Introduction

Experience suggests that HPC codes suffer scalability issues each time the con-
currency level increases by an order of magnitude. Analyzing the causes requires
knowledge of an application’s global and local behavior. Frequently, tracing is
used for root cause analysis. Specific application events are identified and traced
during execution. Tracing differs from profiling in that it tries to preserve more
data, including the chronology of events, while profiling is inherently lossy and
focuses on aggregate metrics of loops and nodes. But trace-based tools struggle
to isolate problems since instrumentation costs can be prohibitive with exhaus-
tive collection of metrics at events and results in perturbations that can mask the
true problem. Traditional approaches employ periodic probing [6] instead of full
instrumentation and may employ reduction in data volume through compres-
sion. However, this merely postpones the problem of analyzing the data, which
requires decompression again. In-situ analysis is an alternative as it reduces data
volume inherently and facilities realtime/online root cause analysis. Leveraging
user knowledge for instrumentation, problem-specific tracing and analysis capa-
bilities can thus be realized.

Contributions: We have developed ScalaJack to support active analysis trac-
ing, i.e., problem-specific extraction and on-the-fly reduction of data through
analysis. ScalaJack supports user-customizable instrumentation and user call-
backs as pluggable extensions for instrumenting interfaces and a means for in-
situ data analysis at specific execution points. This supports rapid generation of
problem-specific analysis tools. Instrumentation via ScalaJack is aspect-oriented

* This work was supported in part by NSF grants 1217748, 0958311, and 0937908.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 13-25, 2014.
© Springer International Publishing Switzerland 2014

14 S.K. Ananthakrishnan and F. Mueller

to reduce cross-cutting concerns in source code to improve code readability,
reuse, portability and maintainability, which aids in designing large and multi-
scalar HPC codes. In experiments, ScalaJack shows scalable trace file sizes with
increasing number of tasks and minimal overhead. Aspect-oriented analysis sug-
gests significantly decreased scattering of cross-module code references.

2 Background

ScalaJack is a redesign of ScalaTrace to support customizable instrumentation,
user callbacks and aspect-oriented program design. ScalaTrace [17] is a state-
of-the-art scalable parallel communication tracing library for message-passing
MPI programs. MPI events are traced through the PMPI profiling layer. Scala-
Trace combines on-the-fly intra-node compression of MPI calls within loops with
inter-node compression of events across nodes (in M PI Finalize). ScalaTrace
employs RSDs and PRSDs ([Power] Regular Section Descriptors [14]) struc-
tures to represent events in a loop as constant size logs. An RSD is a tuple
< length, event;...event, > in one loop and a PRSD represents multiple RSDs
in nested loops. E.g., two nested for loops with a barrier in the outer and a send
in the inner loops correspond to PRSD < 10, RSD,, M PI Barrier > where
RSD; is < 10, M PI Send > for 10 iterations per loop level.

ScalaTrace represents events and parameters through an elastic data repre-
sentation [24] that morphs scalars, vectors and histograms. Resulting trace files
are scalable yet completely lossless, except for delta times between MPI events
recorded as lossy histograms. A replay engine allows events to be replayed with-
out original program code, even for non-deterministic histogram data.

Aspect-oriented programming [11] is a software engineering technique to
reduce scattering of cross-cutting concerns in source code. An aspect is is a piece
of code that cannot be factored out into procedural isolation due to cross-cutting
concerns (e.g., logging, timing, performance monitoring, load balancing) located
at pointcuts in the code, where concerns are the set of all aspects and a pointcut
separates two regions of disjoint concerns.

Aspect-specific code is moved from the original application’s component to an
aspects specification, i.e., advice, which is executed at the original pointcut in
the code (as a pre- or post-wrapper), often realized via run-time or compile-time
support for aspects [12,3].

3 Design and Implementation

ScalaJack reuses compression techniques of ScalaTrace but augments and ex-
tends them by introducing an API to define custom events specific to a program
and to register callbacks for in-situ analysis of live data. ScalaJack relies on
aspects through run-time interpositioning of MPI calls via PMPI and dynamic
pre-loading / tagging of event prologues / epilogues.

Figure 1 illustrates how ScalaJack composes generic instrumentation libraries
with the application. Custom events are tagged by either augmenting the appli-
cation with instrumented calls or by enumerating such events in a specification

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 15

UserStat U_SG”_ Spec for
implementation application events
[/ / compile
UserStat User app Preloader
library library
ScalaJack link
library
App binary

Task1 Taskn

f\L i

(

Custom Callback Custom Callback
Events H framework }9{ PMPI Events H framework \H PAPI

Fig. 1. Instrumentation Composition

with ScalaJack

Intra-Node Intra-Node
compresswcn wmpresslun

Inter-Node o
compression

Highly Scalable trace file

t

Fig. 2. ScalaJack’s High-level Design

file. The user may provide an instrumentation class (UserStat, derived from
the Stat class) that implements the methods to start/stop/merge specific trace
events, which is compiled separately and linked into the application.
ScalaJack’s high-level design is depicted in Figure 2 with novel compo-
nents (circled) and redesigned existing components (non-circled). Each event
is wrapped by ScalaJack with a prologue and epilogue to support tracing and
invocation of aspect-specific callbacks. Event/user trace data within a task are
compressed on-the-fly by exploiting the program’s loop constructs while a second
phase of compression is performed via inter-node compression over all tasks. This
highly compressed single file trace is thus scalable with the number of processes.

Custnrm:able Instrurnentatmrl]

Parallel
Applications

PRSD-structured
Trace

Scalable Analysis

Numerical
Measurements

e — —-3,

f"}f & 1/0 Structure

Ir| Situ Anal\r5|s+ Sl:alable Aggrzgahnn e

ﬂl’

Compact
Analysis Output

Correlative Root-

Cause Diagnosis

\/}«i‘é}: Simulation & Modeling

Task Mapping

Fig. 3. Typical Application workflow with ScalaJack

16 S.K. Ananthakrishnan and F. Mueller

A typical application workflow (Figure 3) consists of a parallel code with
customized instrumentation to trace and instrument MPI routines or arbitrary
functions augmented by in-situ reduction (through analysis) of instrumentation-
derived data. Reduced data is co-located with the appropriate event blocks and
stored as RSDs and PRSDs in a scalable fashion, preserving the structure of
program/trace. Correlating data to the events provides insight into root causes
to identify, e.g., performance anomalies. Other tertiary tasks due to cross-cutting
concerns integrate readily, e.g., visualization, yielding better code modularity.

Custom Events can bee registered to extend ScalaTrace’s scalable com-
pression algorithms for interposing arbitrary events in programs. This level of
tracing reduces default instrumentation to M PI Init/Finalize events or, op-
tionally, user-defined equivalents in the code, which would require user-provided
alternatives for rank/size/barrier (of MPI) for internal ScalaJack functionalities,
e.g., inter-node data reduction (not covered in this paper). A custom event API
supports (a) event registration and (b) specification of pre-/post-wrappers.

Registration of custom events via the API returns an event code (orthogonal to
MPIT events) for further ScalaJack calls and internally establishes a control block
for optional flags for events. Flags may suppress stack signature generation
(normally used to identify functions during compression). Signature omission
may facilitate joint compression of event sets grouped together by a data-specific
criterion or for aggregation.

Custom events invoke user-supplied arbitrary functions when triggered. Reg-
istered wrappers for pro- and epilogues resemble functions for custom events
and are synonymous to those for MPI events instrumented via the PMPI in-
terpositioning techniques. An auto-generated prelinker provides skeleton code
that wraps the original function call. Custom wrappers may coexist with MPI
wrappers per event, and both of their data resides in the same, single trace file.
Flag-controlled tracing of just Init/Finalize facilitates inter-node compression for
MPI-associated user events, while the mix of both event streams may hamper
ScalaJack’s default MPI compression.

Nested custom events, i.e., trace events inside pre-/post-wrappers, can cause
incorrect ordering, e.g., before the epilogue of event 1, the prologue of event 2 is
encountered. Instead of using stack-bloating data structures, pre-/post-wrappers
are represented as two different events sequences.

User callbacks provide hooks at any communication point and selected call
graph nodes, e.g., for in-situ data analysis on event or program data. They
also support aspect orientation to separate cross-cutting concerns from main
algorithms. Prologues of MPI events cause ScalaJack to create control blocks
while epilogues consists of routines that append the events into the trace and
engage in intra-node compression of trace data. User callbacks as pre-/post-
wrappers serve as pointcuts and may augment the trace with user-collected data.
User callbacks further support data analysis, optional on-the-fly compression,
and, in contrast to MPI wrappers, even early reduction across nodes. A Stat
(Statistics) class provides overloading capabilities by the user through object
orientation with two instantiations for (a) the computation phase before the

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 17

event and (b) the communication phase of the event. Callbacks are established
by overriding Stat’s start/end methods or by a ScalaJack API call resulting
in internal Stat instantiation and method overriding. Thus, callbacks before
and after each compute/communicate phase are invoked out of the respective
pre-/post-wrappers. An optional flag supports suppression of entries into the
trace file to let users override Stat’s callback method, which is invoked just once
(without compute/communicate distinction).

User-directed compression: Data from in-situ analysis in callbacks enters
the trace as a compressed histogram by default. Users can overload the ValueSet
class and support their own set of compression routines as callbacks invoked
by our reduction framework with data marshaling. This supports pointcuts in
programs while providing scalability even for customized user data types.

Most aspect-oriented frameworks map aspects to specific events. In contrast,
ScalaJack aspects are universal across events but event-specific aspects are re-
alized by light-weight filters. Users can access event objects of pointcuts to ex-
ecute aspects for specific events/conditions, e.g., to access the send count of
MPT events. Users can also access event trace queues in their structurally com-
pressed form (PRSDs). This facilitates analysis on the entire trace, e.g., for trace
similarity via k-means clustering to group traces based on a distance metric.

4 Evaluation

We assess the scalability of ScalaJack via traces generated by its custom event
framework. In addition, the overhead incurred in using ScalaJack over a naive
implementation is studied. We evaluate ScalaJack by refactoring several case
studies of typical HPC applications to utilize our aspect-oriented callback frame-
work. Tasks that are tangential to the program are refactored as part of these
callbacks. As a result, cross-cutting concerns are removed from the main com-
ponent of the program, thus improving readability and maintainability.

All experiments were conducted on our ARC cluster with two AMD Opteron
6128 processors with 8 cores each (16 cores) per node and a QDR InfiniBand
interconnect. Execution times and trace file sizes were averaged over 10 runs.

Since ScalaJack helps remove cross-cutting concerns in the code, the amount
of code related to a concern that is scattered is reduced. To quantify the im-
provement of using ScalaJack over a naive implementation with respect to the
code footprint, we utilize the degree of scattering (DOS) and degree of focus
(DOF) metrics from [8,7]. Concentration (CONC') measures how many of the
source lines related of a concern s are contained within a component ¢ (e.g., file,
class, method intending to a specific task), i.e.,

CONC(s,t) = “yrp0”
where SLOC), ¢ is the number of source lines of code (SLOC') in component ¢
related to concern s, and SLOC is the SLOC in all of concern s. It should be
noted that SLOC' excludes comments, blank lines and annotations for concern
assignment. The drawback of CONC' is that it does not reflect the amount of
scattering of a concern’s code and does not allow for different concerns to be
compared. This is covered by the degree of scattering (DOS) metric defined by

18 S.K. Ananthakrishnan and F. Mueller

IT| ST (CONC(s,t)— A)*
DOS(s) =1- (-1 1)
where T is the set of components for |[T'| > 1 [7]. DOS is a normalized factor be-
tween 0 (completely localized) and 1 (completely delocalized). Thus, a reduction
in DOS is an indication of less scattering of code across components.

Degree of Focus (DOF') is a dual to the DOS metric and captures how focused

a component is. Dedication (DEDI) is defined as

DEDI(t,s) = “5rpa

where SLOC) ¢ is the number of source lines of code (SLOC') in component ¢
related to concern s, and SLOC; is the SLOC in all of component ¢. Again, a
better metric would be the normalized degree of focus (DOF)

S|5 (DEDI(t,s)— L)?
DOF(s) = o1 |s|7§ i)
where S is the set of concerns for |S| > 1. DOF is a normalized factor between 0
(completely unfocused) and 1 (completely focused). Thus, an increase in DOF
is desired as it is indicative of reduction in scattering and increase in focus.

Performance analysis: One of the most frequently identified aspects in
any program is performance analysis. Developers typically want to identify the
performance characteristics of specific regions of their code. In most HPC appli-
cations, distinct regions of computation and communication can be identified,
and it is often desired to collect performance metrics related to the phases. We
evaluate ScalaJack’s viability with the IS benchmark of the NAS Parallel Bench-
mark suite. IS sorts integers through a parallel implementation of bucket sort.
As part of the benchmark, each task generates a random number sequence from
a seed based on the rank.

We illustrate ScalaJack’s capabilities to support performance analysis aspects
by choosing PAPI [15] to instrument the L1 data cache misses during the ran-
dom sequence generation in addition to performing trace analysis on every MPI
event in the program. We compare an implementation of the IS benchmark that
uses ScalaJack with a naive implementation with tracing concerns around all
MPI functions and performance analysis concerns around the random sequence
generation step. We utilize the tracing level of ScalaJack, where all MPI events
are traced with custom events and both intra-node and inter-node compression
are performed. The naive version of IS initializes the PAPI library, followed by
an instrumentation of the random sequence generation routine of IS with the
PAPI API. The return value of this instrumentation routine is then added to
the trace. To indicate the changes to perform tracing, a sample MPI routine,
MPI Reduce, is called to add data to the trace. The ScalaJack version differs
from the naive implementation by utilizing PMPI wrappers to trace events (and
compress them) while the PAPT API calls are invoked as part of a StatPAPI
callback. These callbacks are invoked as part of the prologue and epilogue of the
custom event associated with random number generation. This allows for separa-
tion of concerns and reusability of the PAPI statistics collection Stat framework.

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 19

250 0.1

[ScalaJack ScalaJack mwm

200 0.08

150 0.06

100 0.04

Execution Time [secs]
% Time Overhead

0.02

Relative trace file sizes

0 .
4 8 16 32 64 128 256 4 8 16 32 64 128 256 4 8 16 32 64 128 256

Number of Tasks Number of Tasks Number of Tasks
(a) Trace file sizes (b) Execution times (c) ScalaJack % overhead

Fig. 4. IS Results

Figure 4(a) compares the trace files generated with ScalaJack and that of the
naive implementation. The trace file sizes shown are relative (normalized) to
the ones generated with n = 4 tasks for the naive and the ScalaJack versions,
respectively. As can be seen from the graph, traces generated with ScalaJack are
highly scalable with an increasing number of processors compared to the traces
generated by the naive implementation. This is owing to the fact that ScalaJack
employs intra-node (to compress loops) and inter-node compression to generate
a single trace file, while the naive implementation performs no compression and
generates traces for each of the tasks. We compare relative trace file sizes because,
on an absolute scale, trace files generated with ScalaJack are larger for lower
values of n due to timestamp data of few hundred bytes per event added to the
trace. ScalaJack internally times every communication and computation phase
of the program and stores them as histograms. This is utilized later by the
replay engine and other tools like benchmark generators to create instances of
the original program [17,25].

To highlight the overhead incurred in using ScalaJack, we compare the run-
ning times of the two implementations of the IS benchmark. As shown in Fig-
ure 4(b), ScalaJack introduces very little overhead to the naive implementation’s
execution. To put it in a different perspective, Figure 4(c) shows the percent-
age overhead times of ScalaJack over the naive implementation. As it can be
seen, ScalaJack introduces the highest performance overhead for n = 32, i.e., for
the best performance of IS under strong scaling, which is when instrumentation
overhead (constant across n) contributes the most — but still amounts to just
0.07% overhead for n = 32. There is substantial variability in the overhead of
ScalaJack over the naive implementation since each task of the naive implemen-
tation performs I/O to the parallel file system at M PI Finalize to write n trace
files for n nodes back to disk, each of which may be rather large (in the order of
GBs depending on the number loop iterations). This results in I/O contention.
In contrast, only rank 0 performs I/O to the file system with ScalaJack after
aggregating the traces from all its peers, i.e., a single file of rather moderate size
(in the MBs) suffices.

Table 1 (left columns) shows the improvement of using ScalaJack for separa-
tion of concerns over the naive implementation. For IS, the identifiable compo-
nents are main and PAPI, where the main component implements the benchmark

20 S.K. Ananthakrishnan and F. Mueller

Table 1. Aspect metrics

IS CLAMR TFIDF
naive ScalaJack naive ScalaJack naive ScalaJack

PAPI main PAPI main aux main aux main aux main aux main
CONC(perf,t) 1 0.4777 1 0.0444 1 0.0739 1 0.0118 1 0.3665 1 0.0683
DOS(perf) 0.4992 0.0850 0.1369 0.0234 0.4643 0.1273

perf sort perf sort main fd main fd main aux main aux
DEDI(main,s) 0.0588 0.9411 0.0057 0.9942 0.2708 0.7293 0.0540 0.9459 0.4155 0.5945 0.1134 0.8666
DOF (main) 0.7782 0.9770 0.2102 0.7955 0.0286 0.5978

while the PAPI component implements the performance metrics collection rou-
tines. The concerns here are identified as perf and sort, where perf is the actual
performance metrics collection API invoked at the pointcuts and sort is the rest
of the main component that performs the sorting. The goal is to reduce the
tangling of code between the two concerns and ScalaJack achieves this. This is
reflected by the lower (better) DOS score and a correspondingly higher (better)
DOF score for ScalaJack compared to the naive implementation.

Visualization and Load balancing: We next evaluate the effectiveness
of ScalaJack for aspect-oriented application scenarios beyond tracing for per-
formance analysis. We first consider CLAMR [13], an adaptive mesh refinement
solver developed at Los Alamos National Laboratory. CLAMR implements a cell-
based shallow water code by computing the finite difference on AMR, using MPI.
CLAMR periodically refines the mesh and also performs load balancing across
the nodes to redistribute the meshes. In addition, CLAMR performs OpenGL
or MPE-based visualization to display the mesh’s current state.

%0 W naive ScalaJack 0.035
0.03

0.025
0.02
0.015

20 0.01
10 I I 0.005
o 1 all .

8 16 32

64 128 256 4 8 16 32 64 128 256

70
60
50
40
30

Execution Time [secs]
% Overhead

4
Number of Tasks Number of Tasks
(a) Execution times (b) ScalaJack % Overhead

Fig.5. CLAMR Results

Application codes like CLAMR have numerous conflicting concerns that can
be effectively addressed using ScalaJack. In the naive version of CLAMR, tasks
like visualization, mesh refinement, load balancing and printing of statistics are
not part of the main concern at hand, i.e., computing the finite difference. In
CLAMR’s ScalaJack version, the various concerns that are tangential to the main
concern at hand are refactored into the appropriate prologue/epilogue. CLAMR
was evaluated with the custom level of tracing, i.e., only custom events are traced

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 21

08 | naive ScalaJack mm— 02
'g‘ 0.8 [
8 o7l 3 o015
o £
E 06 g
L (o] 0.1
é 0.5 r E
3 L [=
§ 0.4 2 005
@ 03t I
0s 1 5 2 d 0
4 8 16 32 64 128 256 4 8 16 32 64 128 256
Number of Tasks Number of Tasks
(a) Execution times-IDF (b) ScalaJack % Overhead

Fig.6. TF-IDF Results

and no MPI events except for M PI Init/Finalize. Custom events are config-
ured to be created without the stack signature so as to reduce the trace footprint.
Since no data is to be written as part of the callbacks, we register user callbacks
with the callback mode flag. Since the goal with CLAMR is not tracing but
rather refactoring tangential concerns into callbacks, we refrain from comparing
trace sizes between naive and ScalaJack. Instead, to assess the scalability, we
compare the execution times of both versions.

Figure 5(a) compares the overhead of ScalaJack through the differences in
execution time between the naive and the ScalaJack versions of CLAMR. Fig-
ure 5(b) shows that ScalaJack introduces an overhead of a maximum of 0.03%
overhead. This is lower than that of IS because we utilize custom level tracing
for CLAMR, which does not trace any MPI events.

Table 1 (middle columns) summarizes the improvements of using ScalaJack
to eliminate concerns from CLAMR. With CLAMR, the main component is
the code that performs the finite difference, while all cross-cutting concerns are
grouped as an auxiliary concern. With ScalaJack, all cross-cutting concerns are
performed at the callbacks as part of registered custom events. With CLAMR,
the majority of the cross-cutting concern code was that of visualization because
the rank 0 task aggregates all mesh values from the other tasks for visualization.
Since a major portion of the code is eliminated from the main component, we
observe a better (higher) DOF score and thus a better (lower) DOS score.

Data analysis in-situ with trace analysis: As the final case study, we an-
alyze ScalaJack’s effectiveness with a MapReduce style application that can take
advantage of the reduction capabilities of ScalaJack. TF-IDF is a data analysis
metric used to assess the importance of a given term with respect to a docu-
ment in a dictionary [20]. The two metrics involved are term frequency tf(t,d),
defined as the frequency of occurrence of a term t in a given document, and
inverse document frequency idf (t, D) in a set of documents D, defined as the
inverse of the frequency of documents that contain a term ¢ within a given dic-
tionary of terms. The TF-IDF metric is then defined by

tfidf(t,d, D) = tf(t,d) x idf (¢, D)

22 S.K. Ananthakrishnan and F. Mueller

TF-IDF is a MapReduce style problem wherein a set of documents are ini-
tially mapped across a number of tasks and each task computes the ¢f and
idf metrics separately followed by a reduction, which aggregates idf metrics.
With such analysis problems, efficient reduction strategies that are scalable are
required because a naive implementation might lead to bottlenecks and lower
performance. Data analysis problems, such as TF-IDF, can exploit the internal
reduction logic of ScalaJack otherwise utilized by inter-node compression. This
is supported via the definition of a custom ValueSet instead of the Histogram,
thus performing data analysis as part of a defined user callback. Such a solution
allows for increased reusability of code as developers do not have to explicitly
implement communication strategies themselves.

The naive TF-IDF initially computes the ¢f and node-local idf and then con-
structs a communication tree to perform a reduction. The ScalaJack version
defines the reduction as a ValueSet of the StatT FIDF object associated with
the idf computation event. As part of the event’s epilogue, the idf table is added
to the Stat object. When inter-node compression is performed at the prologue
of MPI Finalize, the idf tables are compressed as well. With the ScalaJack
version, users do not have to be concerned with implementing a communication
tree and use ScalaJack’s internal reduction tree to perform scalable compression.
In our tests, we compare the naive implementation with the ScalaJack imple-
mentation with support for inter-node compression. As with CLAMR, tracing
is not the goal here. Hence, we assess the scalability through the overhead of
ScalaJack over the naive implementation.

Figure 6(a) shows the overhead of ScalaJack in comparison to the naive ver-
sion. ScalaJack introduces minimal overhead of about 0.16% as reflected in Fig-
ure 6(b), thus proving to be light weight. Table 1 (right columns) shows the
aspect-related metrics for the TF-IDF case study. With ScalaJack, concerns re-
lating to the communication tree for final idf aggregation are eliminated and are
made through an extension of the ValueSet class. This reduces the tangling of
code, thus leading to better (higher) DOF and better (lower) DOS scores.

5 Related Work

Our implementation of customizable instrumentation with in-situ data analysis
through ScalaJack is closely related to tools that support tracing or profiling
of MPI programs. Paraver [19] is a tracing and visualization tool that supports
tracing of both shared memory and message passing programs. For MPI pro-
grams, Paraver includes a tracing library for intercepting MPI calls and saving
them as individual trace files during execution. These trace files are merged of-
fline and then visualized. Paraver and other tracing tools [22,16,9,18] allow users
to store user-defined values in a trace but they lack ScalaJack’s compression of
trace files on-the-fly and the ability to directly affect compression of native trace
values (as opposed to user-defined trace values).

VAMPIR [16] is another tracing tool for MPI/OpenMP/CUDA events with
support for visualization that stores traces as flat files, which are compressed

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 23

later through zlib compression. Even though such tools generate trace files with
limited scalability, they do not take advantage of the underlying structure of the
trace file. Thus, such trace files cannot be efficiently used for replay [24] or code
generation [25] supported by ScalaTrace. Recent versions of VAMPIR provide
support for marking regions in the trace with specific marker events for identi-
fying potential hotspots in the trace files [4]. These markups can then be used
by automated performance analysis tools like Scalasca [9]. With ScalaJack, this
can easily be achieved by writing instrumentation data with additional markups
directly to the trace file and using plugins for domain-specific compression.

Several tools [22,16,9,18,6,5] support tracing of arbitrary user events through
automatic instrumentation via compiler abstractions, dynamic preloading or
manual instrumentation of code, both statically and dynamically via binary
rewriting. ScalaJack also supports built-in preloading and manual instrumenta-
tion but emphasizes separation of cross-cutting concerns via aspect orientation,
which simplifies reuse for other programs. In addition, programs not only lever-
age ScalaJack’s compression tree framework to perform reduction of their own
data structures efficiently but also improve on intra-node compression and inter-
node reduction of default communication tracing data, which is unprecedented.

Arnold et al. [2] identified task behavior equivalence classes using stack signa-
ture similarity. They utilized MRNet, a software overlay network that provides
efficient multicast and reduction communications [21]. MRNet provides a gen-
eral framework with generic plugins, each requiring an explicit implementation of
compression and reduction. In contrast, ScalaTrace natively supports compres-
sion and reduction, i.e., trace-specific plugins directly complement this process
or even manipulate internal data structures affecting the trace file format.

Our work is also related to light-weight profiling tools like mpiP [23], gprof [10],
and HPCToolkit [1]. While these tools provide simple and high-level information
to support a high-level understanding of performance problems, ScalaJack pro-
vides facilities to the user for profiling of arbitrary interfaces in their programs
in addition to supporting light-weight tracing. Since the instrumentation data
is stored along with the trace files, users can correlate events to the data thus
helping them to diagnose subtle anomalies dependent on event orders.

6 Conclusion

We have implemented ScalaJack, a framework for customizable instrumentation
with in-situ data analysis. ScalaJack provides APIs for users to tag sections of
the code that need to be instrumented. This allows users to perform instrumen-
tation at interfaces that are pertinent to the problem at hand instead of having
to instrument exhaustively, thereby often compromising scalability. ScalaJack
provides direct access to intra-node and inter-node compression algorithms and
data structures to preserve the execution structure of a program in a lossless
fashion in addition to maintaining scalability.

ScalaJack facilitates in-situ analysis provides by allowing users to perform re-
duction of data by registering callbacks. In addition to providing native support

24

S.K. Ananthakrishnan and F. Mueller

to compress numeric data into histograms, ScalaJack provides APIs for users
to define their own data elements depending on the application. Since the call-
backs are synonymous to aspects, users can leverage them to write better code,
thus enhancing readability and maintainability. An evaluation of ScalaJack with
several case studies has shown that it is very light-weight, posing an overhead
of under 0.2% and capable of producing lossless and near-constant trace sizes
for event parameters, while resulting in efficient, maintainable source codes with
about 75% reduction in the degree of scattering. Overall, this demonstrates the
fidelity of ScalaJack in facilitating trace generation and analysis for users.

References

10.

11.

12.

13.

14.

. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,

J., Tallent, N.: HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency & Comp. Practice and Experience 22(6), 685-701 (2010)

Arnold, D.C., Ahn, D.H., de Supinski, B.R., Lee, G.L., Miller, B.P., Schulz, M.:
Stack trace analysis for large scale debugging. In: International Parallel and Dis-
tributed Processing Symposium (2007)

Aspect, C.: AspectC: AOP for C. (2004)

Brunst, H., Hackenberg, D., Juckeland, G., Rohling, H.: Comprehensive perfor-
mance tracking with Vampir 7. In: Tools for HPC 2009, pp. 17-29 (2010)

Buck, B., Hollingsworth, J.: An API for runtime code patching. International Jour-
nal of High Performance Computing Applications 14(4), 317-329 (2000)

De Rose, L., Hollingsworth, J., Hoover, T.: The dynamic probe class library — an
infrastructure for developing instrumentation for performance tools. In: Interna-
tional Parallel and Distributed Processing Symposium (April 2001)

Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy, G., Nagappan, N.,
Aho, A.: Do crosscutting concerns cause defects? IEEE Transactions on Software
Engineering 34(4), 497-515 (2008)

Eaddy, M., Aho, A., Murphy, G.C.: Identifying, assigning, and quantifying cross-
cutting concerns. In: Workshop on Assessment of Contemporary Modularization
Techniques, pp. 2-2 (2007)

Geimer, M., Wolf, F., Wylie, B.J.N., Abraham, E., Becker, D., Mohr, B.: The
scalasca performance toolset architecture. In: International Workshop on Scalable
Tools for High-End Computing (June 2008)

Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution pro-
filer. ACM Sigplan Notices 17(6), 120-126 (1982)

Kiczales, G., Hilsdale, E.: Aspect-oriented programming. In: ACM SIGSOFT Soft-
ware Engineering Notes, vol. 26, p. 313 (2001)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of Aspect]. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 327-354. Springer, Heidelberg (2001)

Laboratory, L.A.N.: Cell-based adaptive mesh refinement using MPI and OpenCL
GPU code, https://github.com/losalamos/CLAMR

Marathe, J., Mueller, F., Mohan, T., de Supinski, B.R., McKee, S.A., Yoo, A.:
METRIC: Tracking down inefficiencies in the memory hierarchy via binary rewrit-
ing. In: Int’l Symp. on Code Generation and Optimization, pp. 289-300 (March
2003)

https://github.com/losalamos/CLAMR

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

ScalaJack: Customized Scalable Tracing with In-situ Data Analysis 25

Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: A portable interface to hardware
performance counters. In: HPCMP Users Group Conference (1999)

Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR:
Visualization and analysis of MPI resources. Supercomputer 12(1), 69-80 (1996)
Noeth, M., Ratn, P., Mueller, F., Schulz, M., de Supinski, B.R.: ScalaTrace: Scal-
able compression and replay of communication traces for high-performance com-
puting. Journal of Parallel Distributed Computing 69(8), 696-710 (2009)

of Dresden, T.U.: Score-p: Application instrumentation,
https://silc.zih.tu-dresden.de/scorep-current/html

Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: A tool to visu-
alise and analyze parallel code. In: WoTUG-18: Transputer and occam Develop-
ments. Transputer and Occam Engineering, vol. 44, pp. 17-31 (April 1995)
Rajaraman, A., Ullman, J.: Mining of Massive Datasets. Cambridge Press (2011)
Roth, P., Arnold, D., Miller, B.: MRNet: A software-based multicast/reduction
network for scalable tools. Supercomputing, 21-36 (2003)

Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High
Perform. Comput. Appl. 20(2), 287-311 (2006)

Vetter, J., Chambreau, C.: mpiP: Lightweight, scalable MPI profiling. CASC/mpip
(2005), http://mpip.sourceforge.net/

Wu, X., Mueller, F.: Elastic and scalable tracing and accurate replay of non-
deterministic events. In: Int’l Conference on Supercomputing, pp. 59-68 (June
2013)

Wu, X., Deshpande, V., Mueller, F.: ScalaBenchGen: Auto-generation of commu-
nication benchmarks traces. In: International Parallel and Distributed Processing
Symposium, pp. 1250-1260 (2012)

https://silc.zih.tu-dresden.de/scorep-current/html
http://mpip.sourceforge.net/

Performance Measurement and Analysis

of Transactional Memory and Speculative
Execution on IBM Blue Gene/Q*

Jie Jiang!2, Peter Philippen!, Michael Knobloch!, and Bernd Mohr!

! Forschungszentrum Jiilich GmbH,
Institute for Advanced Simulation,
Jiilich Supercomputing Centre,

52425 Jilich, Germany
{j.jiang,p.philippen,m.knobloch,b.mohr}@fz-juelich.de
% National University of Defense Technology,

School of Computer Science,

Changsha, Hunan Province, 410073, China
jiangjie@nudt.edu.cn

Abstract. The core count of modern processors is steadily increasing,
forcing programmers to use more concurrent threads or tasks to effec-
tively use the available hardware. This in turn makes it increasingly
challenging to achieve correct and efficient thread synchronization. To
support the programmer in this task, IBM introduced hardware trans-
actional memory (TM) and speculative execution (SE) in their Blue
Gene/Q system with its 16-core processor, which permits to run 64
simultaneous hardware threads in SMT mode. TM and SE allow for
parallelization when race conditions may happen, however upon their
detection the respective parts of the execution are rolled back and re-
executed serially. This incurs some overhead and therefore usage must
be well justified. In this paper, we describe extensions to the community
instrumentation and measurement infrastructure Score-P, allowing devel-
opers to instrument, measure, and analyze applications. To our knowl-
edge, this is the first integrated performance tool framework allowing
to analyze TM/SE programs. We demonstrate its usefulness and effec-
tiveness by describing experiments with benchmarks and a real-world
application.

Keywords: Parallel Programming, Performance Analysis, Trans-
actional Memory, Speculative Execution, Blue Gene/Q.

1 Introduction

The number of cores available in modern processors as well as the number of
processors inside cache-coherent shared-memory nodes is steadily increasing,

* This work is partially supported by the National Basic Research 973 Program of
China under Grant No.61312701001, the National High Technology Research and
Development Program of China under Grant No.2012AA01A309.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 26-37, 2014.
© Springer International Publishing Switzerland 2014

Performance Analysis of TM and SE on IBM Blue Gene/Q 27

especially in high-end servers and HPC cluster systems. This forces parallel pro-
gram developers to use more concurrent threads or tasks to effectively use the
available hardware, in turn making it increasingly challenging to achieve correct
and efficient thread synchronization.

IBM’s latest HPC architecture, the Blue Gene/Q), is based on a 16-core Pow-
erPC A2 processor, running up to 64 simultaneous hardware threads in symmet-
ric multi-threading (SMT) mode [1]. To alleviate the implementation of correct
and efficient thread synchronization, IBM introduced hardware transactional
memory (TM) and speculative execution (SE). The interface to the TM and SE
hardware features of the Blue Gene/Q memory subsystem is based on C/C++
pragmas and Fortran directives! similar to the ones in the OpenMP specification.
The TM programming model is based on an abstraction called a transaction. It
is a single-entry and single-exit code block enclosed by a “tm atomic” directive.
It can be used for atomic or critical regions in the code where data access race
conditions are expected to be rare and thus the locking overhead in the race-free
instances of the region can be avoided. For SE, the corresponding directive has
similar semantics as an OpenMP loop work-sharing construct. For example, the
“speculative for” directive mimics an “omp parallel for” directive with
the additional guarantee to maintain sequential semantics of the code, i.e., the
result corresponds to the result of an execution by a single thread. So, TM and
SE both allow for parallelization even when race conditions may happen, however
upon their detection the respective parts of the execution are rolled back and
re-executed serially. However, the benefit of the parallel execution must outweigh
the extra management overhead. To help application developers to evaluate the
effectiveness of using TM and SE constructs in their codes, the IBM compiler
runtime provides a TM/SE monitoring API which allows to collect executions
statistics for TM and SE constructs.

In this paper, we describe extensions to the parallel program performance
analysis framework Score-P [2], which allows developers to instrument, mea-
sure, and analyze MPI, OpenMP, or hybrid MPI/OpenMP parallel applications
which also use TM and SE constructs. This integration allows the user to an-
alyze all aspects of parallel performance in one tool environment and to study
dependencies and relationships between parallel constructs from the different
programming paradigms. For the instrumentation of directive-based parallel pro-
gramming paradigms, Score-P uses the Open Pragma And Region Instrumenter
(OPARI2) tool, which was enhanced to handle IBM TM and SE directives.
Measurement results are stored as summary profiles which can be analyzed and
viewed by the Cube [3] performance report viewer.

The main contributions of the work described in this paper are:

— A generic extensible tool for automatic instrumentation of directive-based
parallel programming paradigms including OpenMP and IBM TM/SE.

— An integrated performance tool framework allowing to analyze MPI,
OpenMP, or hybrid MPI/OpenMP parallel programs using TM and SE con-
structs. To our knowledge, this is the only tool set providing this capability.

! As in the OpenMP specification, in this paper we will use the term directive for both

28 J. Jiang et al.

The rest of the paper is organized as follows: Section 2 gives a brief overview
on related work. Section 3 introduces the performance tool components which
were used, adapted, and enhanced, including the IBM TM/SE monitoring API,
OPARI, Score-P and Cube. The experiments to evaluate the usefulness and
effectiveness of the introduced extensions to our tool infrastructure are described
in Section 4. Finally, conclusions and a description of future work close the paper.

2 Related Work

Research on Transactional Memory (TM) has a long history, being first intro-
duced by Herlihy and Moss [4] in 1993 as a theoretical extension to micropro-
cessors. Subsequent research shifted towards Software Transactional Memory
(STM) [5], i.e. software ensures the atomicity of the transactions and organizes
the rollbacks. Today, STM implementations are available for many program-
ming languages, either as language feature (e.g. Closure) or as a library (e.g. for
C/C++, C#, Java).

Several research groups proposed analysis techniques for software transac-
tional memory using different methods. Ansari et al. [6] extended an STM frame-
work to obtain profiling data while Zyulkyarov et al. [7] track data structures
that conflict in transactions and determine their influence on the performance of
the application. Tracing of transactional memory applications was introduced by
Lourencco et al. [8], using a similar approach like the group of Ansari. However,
due to the relatively high overhead of STM, this approach is of minor relevance
to real-world applications in the field of high-performance computing [9].

IBM presented the first commercially available hardware transactional mem-
ory (HTM) system in the Blue Gene/Q (BG/Q) supercomputer [1]. Wang et
al. [10] and Schindewolf et al. [11] evaluated the HTM implementation on BG/Q
using various benchmarks to determine which applications may benefit from TM.
Scientific application developers begin to embrace HTM; performance studies
have been performed by Kunaseth et al. [12] for molecular dynamics applica-
tions and by Schindewolf et al. [13] for the conjugate gradients method.

On the other hand, the Speculative Execution (SE) functionality of BG/Q
has not yet been so well investigated. To the best of our knowledge, no extensive
performance study for SE has been performed.

Bihari et al. [14] made a case for adding directives for transactional memory
to the OpenMP specification. The importance of a standard way to express TM
constructs became visible with the work of Yoo et al. [15], who evaluated the per-
formance of the recently introduced Transactional Synchronization Extensions
of Intel’s Core architecture processors.

3 Tool Implementation

To gain insight into the behavior and especially into the impact on performance
of the new transactional memory and speculative execution features on IBM’s

Performance Analysis of TM and SE on IBM Blue Gene/Q 29

Table 1. Structure used by reporting functions for TM counters

TM record SE record

typedef struct TmReport s { typedef struct SeReport s {

unsigned long hwThreadId; unsigned long totalNONSpecCommitted;
unsigned long totalTransactions; unsigned long totalSpecCommitted;
unsigned long totalRollbacks; unsigned long totalRollbacks;
unsigned long totalSerializedJMV; unsigned long totalSerializedJMV;

unsigned long totalSerializedMAXRB; unsigned long totalSerializedMAXRB;
unsigned long totalSerializedOTHER; unsigned long totalSerializedOTHER;
} TmReport t; } SeReport t;

BlueGene/Q architecture, we added support into OPARI2 and to the perfor-
mance measurement framework Score-P. Source-to-source translation is used to
insert probe functions into the application code to instrument the regions of the
code that make use of TM and SE. These probe functions are implemented in
one of the measurement libraries of Score-P, the so-called TM/SE adapter, and
process the data provided by IBM’s TM/SE monitoring API to make it usable
by the measurement system. The data is recorded and stored in profiles which
can be examined with Cube.

This section introduces the IBM TM/SE monitoring API and presents the
extensions to OPARI2 that were necessary to perform the instrumentation of
the TM/SE directives. Next, the measurement system Score-P and the newly
implemented adapter for TM/SE are briefly described. Finally, this section con-
cludes with a detailed description of the newly developed analysis possibilities
for transactional memory and speculative execution.

3.1 IBM TM/SE Monitoring API

The SMPRT runtime system on IBM BlueGene/Q provides several intrinsics for
application programmers and tool developers to collect accumulative statistic
for TM/SE regions.

tm get stats(TmReport t * stats) collects the relevant accumulative statis-
tics for all TM regions that a particular hardware thread has executed up to
the point of the call, and stores it in a record of type TmReport t as shown in
Table 1, left. The main fields of this record include the hardware thread ID,
the total number of transactions, the total number of rollbacks, and the total
number of serialized executions (instead of successful speculative executions),
caused either by JMV? conflicts, the maximum number of rollbacks reached, or
other reasons. This function can be called both at the beginning and the end of a
transaction, the difference reflecting the contribution of the enclosed region. To
get thread-specific values, it should be used inside parallel regions (like OpenMP
parallel regions).

2 Jail Mode Violations occur in case of irrevocable actions, e.g. I/O.

30 J. Jiang et al.

tm get all stats(TmReport t * stats) behaves similarly, but it provides the
accumulative statistics of all the TM regions that all hardware threads have
executed up to the point of the call. This function should be used outside of
parallel regions.

se get all stats(SeReport t * stats) updates the provided record (see Ta-
ble 1, right) with the sum of the statistics of all the SE regions that all hardware
threads have executed up to the call. The statistic counters for speculative execu-
tion include the total number of chunks committed by none speculative threads,
the total number of chunks committed by speculative threads, the total number
of rollbacks for speculative threads, the total numbers of serializations (caused
by JMV conflicts, due to reaching the maximum number of rollbacks, and due
to other reasons like buffer overflows, hardware races, etc.).

3.2 Instrumenting TM/SE Programs

We use the TM/SE monitoring API described above for collecting runtime ac-
cumulative statistics about the execution of TM/SE regions in the application.
The necessary instrumentation can be done in various ways; we use source-code
based instrumentation to be able to attribute performance data to user-level
constructs easily and in a portable way.

The Open Pragma And Region Instrumenter (OPARI2) is a source-to-
source instrumentation tool that inserts probe functions and code segments into
an application’s source code. OPARI2 is developed based on OPARI from the
Scalasca performance analysis tool set [16]. The original version was designed
to detect and instrument OpenMP directives in C/C++ and Fortran programs.
It reads the source file line by line, detects OpenMP directives and runtime
functions ignoring strings and comments, and instruments OpenMP constructs
by inserting functions as defined by the POMP?2 interface [17].

All directives that are to be instrumented are stored in an internal table.
While parsing the source code, OPARI2 checks the table whenever a directive
is detected. If the directive is to be instrumented, this is done at the beginning
and at the end of the source-code region associated with the directive.

Support for TM/SE program instrumentation was integrated into OPARI2
under the precondition of enhancing OPARI2 to have a more modular archi-
tecture. The goal was to support different directive-based parallel programming
paradigms, starting with OpenMP and IBM’s TM/SE, but also keeping Ope-
nACC and Intel MIC LEO (language extensions for offload) in mind. OPARI2
now maintains an internal table of all supported paradigms and directives. Each
entry of the table includes the paradigm type, directive name, a flag indicating
whether this specific directive should be instrumented, as well as two pointers to
functions which perform the necessary instrumentation at the beginning and at
the end of the associated source-code region. These directive-specific definitions
form the basis of the modularized OPARI2, which makes it straightforward to
support new paradigms and directives in the future.

Performance Analysis of TM and SE on IBM Blue Gene/Q 31

Table 2. Exemplary instrumentation of TM and SE directives for C/C++

Original code Instrumented code
PTLS_Speculativefor_enter(int* id,
const char context_infol[]);

#pragma speculative for #pragma speculative for
{ {
} }

PTLS_Speculativefor_exit(int* id);

PTLS_Speculativesections_enter(

int* id, const char context_infol[]);
#pragma speculative sections #pragma speculative sections

{ {
#pragma speculative section #pragma speculative section
{ {
PTLS_Speculativesection_begin(
int* id, const char context_infol[]);
PTLS_Speculativesection_end(int* id);
} }

PTLS_Speculativesections_exit(int* id);
} }
PTLS_Tm_atomic_enter(int* id,
const char context_infol[]);

#pragma tm_atomic #pragma tm_atomic
{ {
} }

PTLS_Tm_atomic_exit(int* id);

The instrumentation of IBM’s transactional memory and speculative execu-
tion directives was enabled by defining and adding definitions for all TM/SE
directives. That is, new table entries have been created for the tm atomic,
speculative for, speculative do, speculative sections and speculative
section directives. The instrumentation is carried out according to the trans-
formation rules as shown in Table 2.

3.3 Measuring TM and SE Programs

To actually measure programs employing the TM/SE techniques the instru-
mented executable needs to be linked to a measurement library which
implements the inserted probe functions. Therefore, we extended the Score-P
measurement framework accordingly.

The Score-P Instrumentation and Measurement Infrastructure is
a community-driven software framework for recording profiles and traces of

32 J. Jiang et al.

parallel program execution [2]. The application under investigation is automati-
cally instrumented, by means of a number of different techniques, and linked to
a set of libraries that implement the respective probe functions. Each invocation
of a probe function is translated into measurement events such as enter/exit of
code regions, or acquire/release of locks. Different metrics like number of vis-
its, time spent in a region, bytes transferred over a network are associated with
these events. Furthermore hardware counters providing information about cache
misses or floating point operations can be recorded.

There are two main modes of recording and storing data in Score-P: profiling
and tracing. In a profile, summarized data is recorded for each callpath executed
by the program. Times and number of visits are aggregated; minimum, maxi-
mum and average values are stored. The values of performance counters are also
recorded. In contrast, in a trace every single instance of an event is recorded.
This yields a very detailed view of the program run but comes at the cost of
high memory demands during measurement and for storing the trace file itself.

Different methods for performing the instrumentation of an application are
available. Many compilers allow for automatic instrumentation of user functions.
Here, the compiler inserts probe functions at entries and exits of functions and
supplies source-code information. To instrument directive-based parallel pro-
gramming paradigms, we use OPARI2 as described in Section 3.2. To record
MPI-specific events and metrics, PMPI interposition wrappers are used. For an-
alyzing programs that run on GPUs, the CUDA Profiling and Tools Interface
(CUPTI) is supported as well.

Each of the aforementioned instrumentation techniques inserts different types
of probe functions which provide different types of information to the actual
measurement system. To provide the measurement core that records profiles
or traces with consistent data, Score-P contains a number of adapters, each
taking care of implementing the probe or wrapper functions for a specific kind
of instrumentation.

A TM/SE adapter was added in Score-P to enable the measurement of code
regions making use of the transactional memory and speculative execution func-
tionality provided by the IBM compilers. These regions, which are instrumented
with OPARI2, are first registered with the measurement system. During regis-
tration, the type of TM/SE directive is stored together with source code infor-
mation, consisting of file name and line numbers. Furthermore, the measurement
system provides a unique numerical id, which is passed as parameter to the probe
function calls surrounding the corresponding TM/SE regions (see Table 2). This
allows quick access to the respective region information.

When a region is entered, interface functions provided by the TM/SE runtime
are used to obtain data about the number of transactions and rollbacks as well as
information about how much of the execution needed to be serialized due to JMV
conflicts, too many rollbacks, and other causes, such as buffer overflows, race
conditions and concurrent TM/SE regions. These values are passed as custom
metrics to the measurement system. The measurement core takes care of keeping
count of the number of visits to each region as well as the time spent inside.

Performance Analysis of TM and SE on IBM Blue Gene/Q 33

4 Experimental Evaluation

In this section, we evaluate our approach with two examples. The first is a
quasi-random field update kernel that occurs in similar form in many scien-
tific applications. The second is MP2C, a molecular dynamics application that
scales up to the whole JUQUEEN;, a 28-rack Blue Gene/Q system at the Jiilich
Supercomputing Centre.

4.1 Update Kernel

A kernel found in many scientific applications, especially in the area of plasma
physics, is an update of charge and power densities of large arrays of particles,
in total 6 entries per volume cell. First the values are interpolated and then a
reduction on the arrays is performed. Here, multiple threads may concurrently
access the same location.

!1$OMP PARALLEL DO private(xa, i, jl, j2, fl1, f2, ci)
do i=1,5000000

xa = x(1)*oodx
jl = aint (xa)
i2 = jl41

£2 = xa—jl

f1 = 1.0—f2

ci = charge (i)

I'TM$ TM ATOMIC SAFE MODE
rho(jl,ci) = rho(jl,ci) + rexfl
rho(j2,ci) = rho(j2,ci) + rexf2
I'TM$ END TM ATOMIC

end do

!$OMP END PARALLEL DO

Listing 1. Update Kernel — TM version

Listing 1 shows an example of such a kernel, although in a very simplified
form. In each iteration, it performs a quasi-random update of two entries of an
array of about 19 MB, which gives a conflict probability of ~8e-7, so it seems a
good candidate for TM.

Figure 1 shows a Cube screenshot of an execution of this kernel on one node
of BG/Q with one process and eight threads. Cube’s main window counsists of
three coupled tree-browsers. These show, from left to right, the metric tree, call
tree and system tree. A selection of an item in one tree shows the distribution of
the value associated with this item in the tree(s) to the right. In this example,
the total number of transactions is selected in the metric tree, and we see the
expected five million transactions. The call tree in the middle pane shows that
they all originate from one TM region. The right pane, the system tree, shows
that each thread completed 625,000 transactions.

34 J. Jiang et al.

=] o e | [oo
— Il 5.00e6 Visits (occ) B] r duction - machine Blue Gene/Q
- [l 165.36 Time (sec) =+ [] 0 'Somp parallel @reduction.prep.F90:94 []-rack 63
[~ 0.00 Minimum Inclusive Time (sec) 1" o '$cmp do @reduction.prep.F90:103 [J [] - midplane 0
- [l 34.67 Maximum Inclusive Time (sec) [0 '$omp single @reduction.prep.F90:110 [- nodeboard 3
~ [l 5.00e6 tm_totalTransactions [0!$omp do @reduction.prep.F90:124 [- nodecard 13
- [l 6 tm_totalRollbacks r» 1l 5.00e6 !$tmse tm_atomic @reduction.prep.F90:131 -+ [] - Process
[C 0 tm_totalSerialized)MV] 0 '$omp implicit barrier @reduction.prep.F90:136] 6.25e5 Master thread
- [0 tm_totalSerializedMAXRB [0 !'$omp single @reduction.prep.F90:140] 6.25e5 OMP thread 1
—[_ 0tm_totalSerializedOTHER L [0 !'$omp implicit barrier @reduction.prep.F90:167 [Z] 6.25e5 OMP thread 2
[0 se_totaNONSpecCommitted [6.25e5 OMP thread 3
- [0 se_totalSpecCommitted [6.25e5 OMP thread 4
- [0 se_totalRollbacks 2] 6.25e5 OMP thread 5
- [0 se_totalSerialized)MV L] 6.25e5 OMP thread 6
[0 se_totalSerializedMAXRB [6.25e5 OMP thread 7
- [0 se_totalSerializedOTHER
L ur]
r A e]
[___— .

Fig. 1. Cube screenshot of the TM implementation of the update kernel showing five
million total transactions distributed homogeneously among the threads

While this seems to be a perfect kernel for TM, with hardly any rollbacks (6 in
this example), it has to be noted that the uninstrumented TM implementation
is 2 times slower than an implementation with OpenMP atomics and 3 times
slower than an implementation with OpenMP reduction. This can also be easily
investigated with our toolset. This shows that the tool gives correct informa-
tion, but a baseline comparison to evaluate TM/SE benefits is still necessary. A
detailed performance analysis of this kernel can be found in [18], where tuning
opportunities are also shown which are not reflected in our measurements.

4.2 MP2C

MP2C [19] - Massively Parallel Multi-Particle Collision Dynamics - implements
a hybrid representation of solvated particles in a fluid. Solutes are simulated
atomistically by classical molecular dynamics (MD) which is coupled to the sol-
vent, described by the Multi-Particle-Collision-Dynamics method (MPC). In this
work we focus on the MPC part, which can be used as stand-alone implementa-
tion for particle-based hydrodynamics. The application is written in Fortran 90
and parallelized with MPI and OpenMP, which are used throughout the code.
We investigated the cell collision kernel containing an OpenMP loop counting
the particles in a cell and updating a list. In the initial version, this update is
guarded with an OpenMP critical directive. We investigated alternative imple-
mentations with both TM and SE for this critical section. In the TM case, the
OpenMP critical was replaced by an TM atomic, in the SE case the whole loop
was executed speculatively.

Figure 2 shows a Cube screenshot of the TM version of the code. We see that
800 million transactions were issued and 560 million rollbacks occurred, i.e. a
rollback ratio of 70%. And even worse, more than 3.5 million iterations were
serialized because the maximum number of rollbacks was reached. So TM is not
a good choice to replace the OpenMP critical in this case.

A much better result was achieved with SE as shown in Figure 3. Here the
rollback ratio is only 7% and no serializations occurred. In the system pane this
screenshot shows a boxplot of the distribution of rollbacks among the processes,

Performance Analysis of TM and SE on IBM Blue Gene/Q

fie_Dipay Toooy tep

35

= Sl el e
v | B e | [e ven | 1 ot | @B |
M 3.17e9 Visits (occ) =1 [0 __initial_conf_module_NMOD_initial_conf_slv = machme Blue Gene/Q B
[l 1.20e5 Time (sec) = 0 _ system values module NMOD system values_slv =L - rack
[0.00 Minimum Inclusive Time (sec) [0__lebc_module_ NMOD_lebc_init - mldplane 0
[150.87 Maximum Inclusive Time (se || 71 [C 0 __loadbalancing_module_NMOD_find_neighbors [- nodeboard 1
M 8.00e8 tm_totalTransactions = 0 collision_cell_module NMOD_cc_fill_slv [- nodecard 1
- [l 5.60e8 tm_totalRollbacks [+] 0 '$omp parallel @collision_cells.prep.F90:232 L+ |- MPI Rank 0
[0tm_totalSerialized)MV [[10 !$omp do @collision_cells.prep.F90:232 | [5.56 Master thread
i~ [l 3.68e6 tm_totalSerializedMAXRB | t M 3.68e6 !$tmse tm_atomic @collision_cells.prep.F90:254 2.95 OMP thread 1
I W 110 tm_totalSerializedOTHER L_ 0 !'$omp implicit barrier @collision_cells.prep.F90:262 Bl 3.10 OMP thread 2
[0 se_totaINONSpecCommitted [0 __tools_module_NMOD_date_time ~ [l 2.82 OMP thread 3
[0 se_totalSpecCommitted [C 0 _integration_module_NMOD_integrate_slv 1 M 3.76 MPI Rank 1
[0 se_totalRollbacks ~ L 0 __barriers_module_NMOD_barrier_interaction_slv G+ M 0.54 MPI Rank 2
[0 se_totalSerialized)MV ~[_ 0__boundary module NMOD_boundary conditions_slv L+ M 0.96 MPI Rank 3 |
[_ 0 se_totalSerializedMAXRB 1 [C 0 _parallel_module_NMOD_particle_exchange_slv (1 M 1.15 MPI Rank 4
[0 se_totalSerialized OTHER e | 0 —collision_cell_module_NMOD_cc_setup_slv r+ O 9.22 MPI Rank 5
- [l 2.99e11 bytes sent = 0 parallel module NMOD _ghost_exchange slv [+ £ 9.39 MPI Rank 6
2.99ell bytes_received r 0 — collision_cell_module_NMOD_cc_fill_ghost L+ 1 1.19 MPI Rank 7
[_ 0 __collision_cell_module_NMOD_cc_vcm_init 1 I 9.87 MPI Rank 8
~ L 0 __collision_cell_module_NMOD_cc_vcm_slv [+ B 6.61 MPI Rank 9
~[_ 0 __collision_cell_ module_ NMOD_cc_vcm_norm &+ Bl 4.58 MPI Rank 10
[— 0 _collision_cell_module_NMOD_cc_virt_vel (] O 15.09 MPI Rank 11
- [C 0 _collision_cell_module_NMOD_cc_rel_vel_slv f O 13.15 MPI Rank 12
=L 0 collision_cell_module_"NMOD _cc_rot_axis &+ L] 14.26 MPI Rank 13
[0 __collision_cell_module_NMOD_cc_rot_vel_slv L+ 1 6.85 MPI Rank 14
=1 [C 0 __parallel_module_NMOD_velocity_exchange_slv 1 0 10.89 MPI Rank 15
=H[_ 0 __thermostat module_ NMOD_thermostat_slv = 17.71 nodecard 6
=[O0 __system values module NMOD_system values_all =+[] 28.54 nodecard 13 a
1 [C 0 __parallel_env_module_NMOD_parallel_cleanup | —
| - 0MPI_Reduce i | M—]
s arly .
Tem o Teur oo o e o = o
I —————

Fig. 2. Cube screenshot of the TM implementation of MP2C. It shows a high variation
of serializations due to max. rollbacks among the threads.

el Sl e
B ot | vt ven | e oo |
~ M 1.51e9 Visits (occ) = 0 mpc -
~ Ml 4.97e4 Time (sec) G+ _| 0 _parallel_env_module NMOD_parallel_initial T =
~[10.00 Minimum Inclusive Time (sec) |- 10 __tools_module_NMOD_timer |
B 97.06 Maximum Inclusive Time (sec) [7 —10 __input_output_module_NMOD_input_output |
~ L] 0 tm_totalTransactions [+ _]0 __set values module NMOD_set values |
~ [] 0 tm_totalRollbacks G+ __input_module_NMOD _input 3
] 0 tm_totalSerialized)MV __parallel_env_module_NMOD_parallel_input ® !
~ [0 tm_totalSerializedMAXRB 23 __parallel_dd_module_NMOD_parallel_dd ! gy
~ L] 0tm_totalSerializedOTHER sl 0 MPI_Barrier
~ [l 2.05e7 se_totalNONSpecCommitted - __system_values_module_NMOD_system_init
[1 0 se_totalSpecCommitted [Fim| 0 —initial_conf_module_NMOD_initial_conf_slv
- Il 1.87€e6 se_totalRollbacks [+ _] 0 __system_values_module_ NMOD_system values_slv o
~ [] 0 se_totalSerialized)MV [] 0 lebc_module_NMOD_lebc_init
1 0 se_totalSerializedMAXRB [l 7] 0 _loadbalancing_module_NMOD_find nelghbors
~ [0 se_totalSerializedOTHER] collision_cell_module_NMOD_cc fill_slv s
~ [l 1.59e11 bytes sent B 1.87e6 !$tmse speculativedo @collision_cells.prep.F90:232
[l 1.59el1 bytes_received 0 __tools_module_NMOD_date_time w
0 __integration_module_NMOD_integrate_slv
r _10__barriers_module_NMOD_barrier_interaction_slv
- _] 0 __boundary module NMOD_boundary_conditions_slv
0l 0 _ parallel_module_NMOD_particle_exchange_slv
[_] 0 _collision_cell_module_NMOD_cc_setup_slv »
B _| 0 parallel_ module NMOD_ghost_exchange_slv e
0 __collision_cell_module_NMOD_cc_fill_ghost
0 __collision_cell_module_NMOD_cc_vcm_init
- _10 __collision_cell_module_NMOD_cc_vcm_slv
= _10 __collision_cell_module_ NMOD_cc_vcm_norm
0 __ collision_cell_module_NMOD_cc_virt_vel
A - 10 __collision_cell_module_NMOD_cc_rel_vel_slv I | CE—
la 1l L
Toa o T ey Tow|f e T
e = T ——

Fig. 3. Cube screenshot of the SE implementation of MP2C,

of rollbacks among the processes as a boxplot

with a lower quartile of 3110, an upper quartile of 4410

which seems a reasonable distribution.

This example shows that our enhanced tool set easily allows to investigate
TM/SE-related performance issues in parallel applications. Furthermore it also
allows to compare these results with other implementations like plain OpenMP
within the same environment.

5 Conclusion and Future Work

showing the distribution

and a median of 3660,

In this paper we presented a unique integrated performance tools framework to
measure and analyze applications using IBM TM/SE directives. To this end, we

36 J. Jiang et al.

modularized the OPARI2 source-to-source instrumenter to be easily extendable
to directive-based programming paradigms other than OpenMP. A respective
adapter was added to the measurement infrastructure Score-P. This adapter
uses the existing TM/SE monitoring API to query information about the exe-
cution of single TM/SE regions. The resulting profile reports can be visualized
and analyzed with the Cube performance report viewer. With two examples we
proved the applicability of the tool and showed the added value to performance
analysis of parallel applications.

One disadvantage of our approach is that TM instrumentation may add sig-
nificant overhead, especially for regions with small workload, as tm get stats()
gets called twice per region. We will investigate methods to reduce that overhead,
e.g. by minimizing the number of calls to the IBM monitoring API. However,
this needs to be carefully balanced against the more limited information avail-
able for analysis. Our tool set will be continuously adapted to changes in the
existing directive-based programming paradigms, in particular possible TM/SE
support in the OpenMP specification. We further plan to integrate other mod-
els like OpenACC and Intel LEO. Adding support for tracing of TM/SE events
— to be able to visualize these with Vampir [20] — will lead to deeper insights
on specific instances of TM/SE regions. In addition, we will work on more so-
phisticated analysis for TM/SE, both for profiling and tracing. For example, it
could be possible to color conflicting transactions in Vampir to see directly where
rollbacks originate.

References

1. Ohmacht, M., Wang, A., Gooding, T., Nathanson, B., Nair, 1., Janssen, G., Schaal,
M., Steinmacher-Burow, B.: IBM Blue Gene/Q memory subsystem with specula-
tive execution and transactional memory. IBM Journal of Research and Develop-
ment 57(1/2), 1-7 (2013)

2. Kniipfer, A., et al.: Score-P — A Joint Performance Measurement Run-Time Infras-
tructure for Periscope, Scalasca, TAU, and Vampir. In: Proc. of 5th Parallel Tools
Workshop, 2011, Dresden, Germany, pp. 79-91. Springer (September 2012)

3. Geimer, M., Kuhlmann, B., Pulatova, F., Wolf, F., Wylie, B.J.N.: Scalable Col-
lation and Presentation of Call-Path Profile Data with CUBE. In: Proc. of the
Conference on Parallel Computing (ParCo), Aachen/Jiilich, Germany, pp. 645652
(September 2007), Minisymposium Scalability and Usability of HPC Programming
Tools

4. Herlihy, M., Moss, J.E.B.: Transactional Memory: Architectural Support for Lock-
free Data Structures. In: Proc. of the 20th Annual Intl. Symposium on Computer
Architecture, ISCA 1993, pp. 289-300. ACM, New York (1993)

5. Shavit, N., Touitou, D.: Software transactional memory. Distributed Comput-
ing 10(2), 99-116 (1997)

6. Ansari, M., Jarvis, K., Kotselidis, C., Lujan, M., Kirkham, C., Watson, I.: Profiling
transactional memory applications. In: 2009 17th Euromicro International Con-
ference on Parallel, Distributed and Network-based Processing, pp. 11-20. IEEE
(2009)

7. Zyulkyarov, F., Stipic, S., Harris, T., Unsal, O.S., Cristal, A., Hur, 1., Valero,
M.: Profiling and Optimizing Transactional Memory Applications. Intl. Journal of
Parallel Programming 40(1), 25-56 (2012)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Performance Analysis of TM and SE on IBM Blue Gene/Q 37

Lourenco, J., Dias, R., Luis, J., Rebelo, M., Pessanha, V.: Understanding the be-
havior of transactional memory applications. In: Proc. 7th Workshop on Parallel
and Distributed Systems: Testing, Analysis, and Debugging, p. 3. ACM (2009)
Cascaval, C., Blundell, C., Michael, M., Cain, H-W., Wu, P., Chiras, S., Chatterjee,
S.: Software Transactional Memory: Why Is It Only a Research Toy? Queue 6(5),
40:46-40:58 (2008)

Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera,
R., Michael, M.: Evaluation of Blue Gene/Q hardware support for transactional
memories. In: Proc. of the 21st International Conference on Parallel Architectures
and Compilation Techniques, pp. 127-136. ACM (2012)

Schindewolf, M., Biliari, B., Gyllenhaal, J., Schulz, M., Wang, A., Karl, W.: What
scientific applications can benefit from hardware transactional memory? In: 2012
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1-11. IEEE (2012)

Kunaseth, M., Kalia, R.K., Nakano, A., Vashishta, P., Richards, D.F., Glosli, J.N.:
Performance Characteristics of Hardware Transactional Memory for Molecular Dy-
namics Application on BlueGene/Q: Toward Efficient Multithreading Strategies
for Large-Scale Scientific Applications. In: Proc. of Intl. Workshop on Parallel and
Distributed Scientific and Engineering Computing (2013)

Schindewolf, M., Rocker, B., Karl, W., Heuveline, V.: Evaluation of Two Formu-
lations of the Conjugate Gradients Method with Transactional Memory. In: Wolf,
F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 508-520.
Springer, Heidelberg (2013)

Bihari, B.L., Wong, M., Wang, A., de Supinski, B.R., Chen, W.: A case for including
transactions in openmp ii: Hardware transactional memory. In: Chapman, B.M.,
Massaioli, F., Miiller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp.
44-58. Springer, Heidelberg (2012)

Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance evaluation of Intel®)
transactional synchronization extensions for high-performance computing. In:
Proc. of SC13: Intl. Conference for High Performance Computing, Networking,
Storage and Analysis, p. 19. ACM (2013)

http://www.scalasca.org

Mohr, B., Malony, A.D., Hoppe, H.C., Schlimbach, F., Haab, G., Hoeflinger, J.,
Shah, S.: A Performance Monitoring Interface for OpenMP. In: Proc. of Fourth
European Workshop on OpenMP (EWOMP), Rome, Italy (September 2002)
Maurer, T.: BG/Q Application Tuning — memory hierarchy, transactional memory,
speculative execution,
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/
juqueenpt13/juqueenpti3-applicationtuningl.pdf

Sutmann, G., Westphal, L., Bolten, M.: Particle based simulations of complex sys-
tems with mp2c: hydrodynamics and electrostatics. In: ICNAAM 2010: Interna-
tional Conference of Numerical Analysis and Applied Mathematics 2010, vol. 1281,
pp. 1768-1772. AIP Publishing (2010)

Brunst, H., Mohr, B.: Performance Analysis of Large-Scale OpenMP and Hy-
brid MPI/OpenMP Applications with Vampir NG. In: Mueller, M.S., Chapman,
B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005/2006. LNCS,
vol. 4315, pp. 5-14. Springer, Heidelberg (2008)

http://www.scalasca.org
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/juqueenpt13/juqueenpt13-applicationtuning1.pdf
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/juqueenpt13/juqueenpt13-applicationtuning1.pdf

c-Eclipse: An Open-Source Management Framework
for Cloud Applications

Chrystalla Sofokleous, Nicholas Loulloudes, Demetris Trihinas,
George Pallis, and Marios D. Dikaiakos

Department of Computer Science, University of Cyprus, Nicosia, CY1678, Cyprus
{stalosof, loulloudes.n, trihinas,gpallis,mdd}@cs.ucy.ac.cy

Abstract. Cloud application portability and optimal resource allocation are of
great importance in the realm of Cloud infrastructure provisioning. c-Eclipse is
an open-source Cloud Application Management Framework through which users
are able to define the description, deployment and management phases of their
Cloud applications in a clean and intuitive graphical manner. It is built on top of
the well-established Eclipse platform and it adheres to two highly desirable fea-
tures of Cloud applications: portability and elasticity. In particular, c-Eclipse im-
plements the open, non-proprietary OASIS TOSCA specification for describing
the provision, deployment and re-contextualization of applications across differ-
ent Cloud infrastructures, thereby ensuring application portability. Furthermore,
c-Eclipse enables Cloud users to specify elasticity policies that describe how the
deployed virtualized resources must be elastically adapted at runtime to match
the needs of a dynamic application-workload. In this paper, we introduce the ar-
chitecture and implementation of c-Eclipse, and describe its key characteristics
via a use-case scenario that involves a user creating a description of a 3-tier Cloud
application, enriching it with appropriate elasticity policies, submitting it for de-
ployment to two different Cloud providers and, finally, monitoring its execution.

1 Introduction

Application deployment and management in Infrastructure as a Service (IaaS) Clouds
can be a complex and time consuming endeavor, typically requiring manual effort on
the users’ behalf and relying on vendor-specific, proprietary tools. Existing IaaS tools
do not provide users with vendor-neutral mechanisms for describing application con-
figuration, deployment, runtime application-scaling preferences, and elasticity policies.
Consequently, the migration of applications between different [aaS providers requires
significant re-configuration and re-deployment effort and time, leading to vendor lock-
in. With the growing number of IaaS-provider service offerings and the increasing
complexity of applications deployed on Clouds, the selection of the most appropri-
ate provider to host an application becomes challenging. While seeking to identify the
deployments that suit best their needs, IaaS clients need to overcome vendor lock-in in
order to test and/or deploy their applications on multiple [aaS providers. Therefore, it
becomes evident that there is a need for application management tools that facilitate
the description of applications in a vendor neutral manner, enabling easy application
deployment, management, and migration across different providers, preventing vendor
lock-in.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 38-49, 2014.
(© Springer International Publishing Switzerland 2014

c-Eclipse: An Open-Source Management Framework for Cloud Applications 39

This article presents c-Eclipse, a generic Application Management Framework that:

— is open-source and has been implemented on top of the reliable Eclipse platform';

— offers graphical tools to facilitate the description of an application’s structure and
its lifecycle management operations;

— adopts the TOSCA [1] open specification for blueprinting Cloud applications and
consequently packaging them in portable archives that can be processed by any
compliant laaS-provider;

— adopts a language that enables the description of elasticity policies for such Cloud
applications;

— provides tools for elasticity policy specification at different levels of an applica-
tion’s structure.

To this end, c-Eclipse can be promoted by Cloud vendors as an enabling tool for
configuring, deploying and managing Cloudified applications on their infrastructure.
This is beneficial both for vendors and users; The former can integrate c-Eclipse to
their Cloud architectures to attract a wider customer base to use their services via its
GUI, the latter are able to describe - the often complex - deployment and management
lifecycle of their applications with minimal effort and in a portable way, thus avoiding
vendor lock-in.

The rest of the paper is structured as follows: Section 2 presents the related work
in Cloud Application Managements platforms. Section 3 gives an overview of the c-
Eclipse framework, its architecture, the application description language used and the
UL The c-Eclipse approach for describing elasticity policies for applications is dis-
cussed in Section 4. Finally, Section 5 presents a use-case scenario with a 3-tier appli-
cation described via c-Eclipse and deployed on two separate Cloud infrastructures.

2 Related Work

Many application management frameworks have been developed lately to support Cloud
Computing. Some of these frameworks are proprietary, locking their users to specific
providers, while others are generic enough allowing management of applications on
different infrastructures.

Proprietary: Amazon CloudFormation enables the creation and provisioning of EC2
infrastructure deployments. It uses JSON template files to describe the collection of
EC2 resources that compose a deployment. Furthermore, by leveraging Amazon Auto
Scaling it enables the specification of policies for automatically scaling the number of
EC2 instances in a deployment. Oracle Virtual Assembly Builder (OVAB) [2] simpli-
fies the provisioning of multi-tier applications by capturing the application components
into self-contained VM appliances. OVAB can instantiate the appliances on Oracle’s
Exalogic Flastic Cloud Infrastructure and scale the deployed applications horizontally
after a scale command is sent via the command line interface. VMware vCloud Ap-
plication Director [3] is a provisioning solution that provides the necessary tooling for
simplifying the process of designing, customizing and deploying applications on any

! https://www.eclipse.org/

https://www.eclipse.org/

40 C. Sofokleous et al.

VMware based Cloud infrastructure. From the well established aforementioned tools,
only CloudFormation enables the specification of elasticity policies for automatic scal-
ing, while all of them lock their users to specific IaaS providers.

Generic: Juju [4] is a tool for designing, configuring and deploying applications on a
limited number of Cloud platforms. It makes use of shareable and reusable charms that
encapsulate the configuration, deployment, connectivity and scaling information for an
application. Charms are usually Linux oriented, thus limiting the portability of Juju appli-
cations. Also, Juju does not allow the specification of elasticity policies. The Agility Plat-
form by ServiceMesh [5] enables the automatic deployment of applications on any Cloud
provider, and the dynamic management of their lifecycle by defining auto-scaling rules
for adding/removing VMs. Although ServiceMesh allows deployment of applications
on different Cloud environments, it comes with a significant financial cost. Wrangler [6]
provides a system for automatic deployment and monitoring of distributed applications
with complex dependencies on different Cloud infrastructures, through a dedicated XML
language. Users can describe a deployment; characteristics of the virtual resources, VM
images, authentication credentials; and send it to a coordinating web service.

None of the aforementioned platforms adopts open Cloud standards for describing
applications. In an effort to promote Cloud application portability, Winery [7] supports
modeling of TOSCA applications via an HTML5-based environment. TOSCA elements
are created via the Web-based GUI, which also allows users with prior knowledge of the
TOSCA standard to define new types for the TOSCA elements, or configure the existing
ones. Furthermore, Winery does not provide a straightforward way of specifying elas-
ticity policies for applications. c-Eclipse on the other hand provides an intuitive GUI
that hides all the complex details of the TOSCA standard, enabling thus users to exploit
the full potential of the tool. In addition, c-Eclipse enriches the TOSCA specification
with Policy Types for elasticity, and allows its users to specify the desired elasticity
policies for their applications. Finally, Winery relies on BPEL to model applications’
management plans, while c-Eclipse makes use of the TOSCA Lifecycle Interface. An-
other platform that uses TOSCA to automate the deployment and scaling of applications
over any Cloud technology, is Cloudify [8]. It supports the creation of TOSCA applica-
tion blueprints via an open-source CLI, however requiring users to master YAML and
Python languages. This procedure gets easier when using the full-featured web inter-
face, available only in a payware edition.

3 c-Eclipse Overview

This section presents the c-Eclipse framework focusing on the features that make it
attractive to Cloud application developers. Furthermore, it provides a brief overview of
the open Cloud application description specification adopted by c-Eclipse. It continues
with the description of its architecture together with the necessary requirements when
it comes to integration with Cloud vendors. Finally, the c-Eclipse Ul is introduced.

3.1 c-Eclipse Features

The c-Eclipse Cloud application management framework incorporates the following
characteristics:

c-Eclipse: An Open-Source Management Framework for Cloud Applications 41

Ease of Use: It provides an intuitive and user-friendly GUI that minimizes any
complexity regarding the process of Cloud application management, therefore serv-
ing as a low-entry barrier to Cloud technologies for new end-users. Not neglecting
experienced users, GUI-driven operations can be manually fine-tuned, effectively
allowing full workflow control when needed.

- Elasticity Policies Specification: It enables the specification of applications’ elas-
ticity policies, so that applications can benefit from the dynamic nature of Cloud
environments.

— Monitoring Interface:It provides interfaces for integration with existing monitor-
ing systems, so that its users can monitor the performance of their deployed appli-
cations and their resources thereof.

— Cloud Vendor Neutral: Through the adoption of the TOSCA open specification,
allows its users to describe applications in a very generic way, so that they can be
deployed across different Cloud infrastructures.

— Platform Independence: It runs on any OS supported by Eclipse.

3.2 TOSCA Specification for Cloud Applications

TOSCA provides a language to describe the structure of applications, together with
their management operations. The structure of an application defines the components
an application consists of and the relationships between them. Application components
are described in TOSCA by means of Nodes (i.e. an application component can be a
Tomcat application server in a 3-tier environment). Each Node can have certain seman-
tics that are defined by the properties of the corresponding Node Type. Such semantics
include the Requirements a Node has against its hosting environment, the Capabilities
it offers and the Policies that govern its execution, such as security or elasticity policies.
Similarly, TOSCA Relationships are used to represent the relations in an application’s
structure, and have their own semantics defined by their Relationship Type. The man-
agement aspects of an application are described in TOSCA either by means of lifecycle
operations (via the Lifecycle Interface) or by more complex Management Plans. The
Lifecycle Interface defines five operations (install, configure, start, stop, uninstall) for
describing the management of applications’ lifecycle. On the other hand, there is no
TOSCA specific way to describe Management Plans. Instead, plans can be specified
in any existing process modeling language, such as BPMN, and referenced through
TOSCA. Both Lifecycle Operations and Managements Plans require some content to
be realized, such as virtual machine images, configuration files etc. These contents are
collectively referred to as Artifacts.

TOSCA application descriptions can be processed in an imperative or declarative
manner. In case of imperative processing [9] the management behaviour of the de-
scribed application has to be explicitly defined by the user by means of Management
Plans. In declarative processing, the management behaviour of the application can be
inferred by the semantics of Nodes’ and Relationships’ Types (i.e. operations speci-
fied in the Lifecycle Interface of a Type). The latter imposes extra overhead to TOSCA
type architects who need to precisely define the semantics of each type, and for the im-
plementers of the TOSCA processing environments who must correctly interpreter the

42 C. Sofokleous et al.

c-Eclipse
_ TOSCA
Application Elements

Modeling Tool
Type
Definitions

£
5
i
1
P
s
E
P
i
A
=
F
]
R
"

[CSAR Exporter]

=T ==

= - 1 = = . -
- TOSCA = v TOSCA
Container s TOSCA Container Container iy
ﬁ — CSAR Model b
Processor Interpreter

] 12as Orch | }
amazon L
webservices™ -

Fig. 1. c-Eclipse Architecture

types’ semantics to infer an application’s management plans. Consequently, declara-
tive processing makes modeling of Cloud applications easier from the user perspective,
since they don’t have the extra overhead of defining Management Plans. For this reason,
c-Eclipse adheres to the declarative processing approach.

3.3 c-Eclipse Framework Architecture

c-Eclipse is built on top of the Eclipse Platform and follows its OSGi plug-in based
software architecture. Its main component is the Application Modeling Tool, which
facilitates the creation of TOSCA application descriptions. The elements specified in
TOSCA and the c-Eclipse specific type definitions for Nodes and Relationships, are
stored in the c-Eclipse file system (TOSCA Elements and Type Definitions), so that
they can be accessed by the Modeling Tool. The Application Modeling Tool associates
the TOSCA elements and the defined Node and Relationship Types with visual elements
that can be used to graphically model an application. The graphical description is trans-
lated on the fly into TOSCA, using the semantics of each element in the description.
In order to provide such functionalities, c-Eclipse utilizes Graphiti, an Eclipse-based
graphics framework that enables rapid development of state-of-the-art diagram editors
for domain models. Graphiti is based on the Eclipse Modeling Framework (EMF) and
offers graphical representations and editing possibilities for EMF objects. To this ex-
tend, the Application Modeling Tool transforms TOSCA elements into EMF objects
and uses the Graphiti infrastructure to build the graphical editor through which users
can schematically describe their applications The TOSCA description along with any
artifacts for materializing and managing the described application are packaged into a
single archive file (CSAR) by the CSAR Exporter. Fig. 1 depicts the high level archi-
tecture and the major components of c-Eclipse.

The exported CSAR is passed from c-Eclipse to a TOSCA processing environment
operated by a Cloud provider. This environment, referred to as a TOSCA Container,

2 https://www.eclipse.org/graphiti/

https://www.eclipse.org/graphiti/

c-Eclipse: An Open-Source Management Framework for Cloud Applications 43

must be able to process CSAR files and understand the semantics of the contained ap-
plication description, so that it can deploy and manage the application throughout its
lifecycle. Each application modeling tool can define its own types, for various TOSCA
elements, with different properties and interfaces. Thus, in order for the TOSCA Con-
tainer to process a TOSCA description in a declarative manner, which implies deriving
based on the type definition of each element the order in which the specified manage-
ment operations must be executed, the type definitions utilized in a description must
also be known to the TOSCA Container. Consequently, a CSAR archive file must con-
tain the following so as to be portable and processable by any TOSCA Container: (1)
The XML file specifying the TOSCA-based application description, (2) The definitions
of the Node, Relationship and other elements’ types that are used in the TOSCA de-
scription, and (3) the artifacts that realize an application’s management operations and
that are referenced in the TOSCA description.

A TOSCA Container might include various components that can be used to pro-
cess CSARs. Each vendor can decide what components to support and how to provide
them within his Cloud architecture. A Container that supports declarative processing of
CSARs must implement at least two components: CSAR Processor and Model Inter-
preter (Fig. 1). The CSAR Processor receives the CSAR from the TOSCA Container
and is responsible for the extraction and deployment of the artifacts. Once the artifacts
are ready to be used by the TOSCA Container, the Model Interpreter navigates the
application’s structure and distinguishes the artifacts realizing the management oper-
ations of each Node, such as installing/uninstalling instances. Other components that
can be implemented by the container, are a Definition Manager component in charge
of storing the type definitions and making them available to the Model Interpreter and
an Artifact Manager component for storing the artifacts in appropriate stores.

According to the specification, Cloud providers that wish to become TOSCA-
compliant should provide a Container as part of their Cloud architecture. The Container
must communicate with an IaaS Orchestrator to invoke the necessary IaaS-specific
API calls that satisfy the respective TOSCA description. An alternative way of integrat-
ing TOSCA modeling tools, such as c-Eclipse, with Cloud providers is to implement
a TOSCA Container at the tools’ side, with interfaces to multiple Cloud infrastruc-
tures. To this extend, Cloud providers should offer the required APIs, so that they can
be accessed by the Containers. However, this endeavour entails in-depth knowledge
of several complex APIs (sometimes lacking sufficient documentation) and extensive
development skills to produce a fully working Container at the tools’ side. This was ob-
served and confirmed at first hand, while working towards the evaluation of c-Eclipse
in a real scenario (see Section 5), where we implemented simple yet functional TOSCA
Containers for two Cloud vendors. Among other, developing a TOSCA Container for a
particular IaaS requires to provision for the exchange of authentication tokens, perform
validity checks for CSARs, correct deployment/configuration of virtualized instances
given defined Node Types, as well as, user requirements and constraints.

Finally, c-Eclipse provides the necessary interfaces so as to be integrated with exist-
ing monitoring systems, enabling thus its users to acquire and record the performance
of their deployed applications from a single working environment. Currently, it is fully
integrated with the JCatascopia [10] monitoring system.

44 C. Sofokleous et al.

S CEL % = O [videoGenericDesrc % = =

% o SierVideo Sream Senvice || palette >

I; Select
{l Marquee
& Connections
& Components

& Images
» ami3007F247

+ ami-sd310c19
" Videoservicewar » amisf310c1b

¥ (= Deployment Scripts e — NosQL Datab E L]
aws.id_rsa.pub == pon oo e

g sh
Gz A

» ami-fffbcesb
& User Applications

& Virtual Machine Images
& Moritoring
= AWS Nicholas

» CPUULilization
» DiskReadBytes

» StatusCheckFailed_System
» cPuUtilization

» DiskReadBytes

» StatusCheckFailed

RPpe—
& Elasticity Actions

& Authentication Token Ul 8 g $ =0

D - Type State Time Left
© AWS Authentication Token # 1 @ 1818S Authentication Tol Active infinite

Fig. 2. c-Eclipse UI - (Left) Cloud Project View, (Center) Canvas, (Right) Palette, (Below) Au-
thentication View

3.4 c-Eclipse User Interface

Like any other Eclipse project, c-Eclipse organizes all the files related to an application
in a structured hierarchy, as depicted in Fig. 2. A Cloud project, in the Cloud Project
View, acts as a placeholder for a single Cloud application and consists of four folders: (i)
the Application Descriptions folder containing TOSCA descriptions of applications, (ii)
the Application Submissions folder containing details about application deployments
(i.e. Cloud provider, deployment status, total cost etc.), (iii) the Artifacts folder with the
actual files for the artifacts referenced in the application description, and finally (iv) the
Monitoring folder including any monitoring data collected by the integrated monitoring
system during application’s deployments.

Application developers can use the Modeling Tool to describe a Cloud application
graphically. The most important part of the tool is the Palette, which includes most
of the elements required for creating application descriptions. These are the applica-
tion components (one component element in the Palette for each distinct Node Type),
Relationships (one relationship/connection element in the Palette for each distinct Re-
lationship type), artifacts and monitoring metrics. By simply dragging and dropping
pictorial elements from the Palette onto the Canvas of the tool, developers can create a
graphical representation of an application. Throughout the application description pro-
cess, the Modeling tool translates on-the-fly the graphical description into TOSCA and
error-proofs the generated TOSCA to assure adherence to the specification, prompting
warnings if necessary.

Apart from the default semantics that each Palette element has, additional informa-
tion can be provided for each element contained in the description, by using the Proper-
ties View of the tool. For example, the view can be used for uploading custom images for
application components, specifying elasticity policies for the whole application and/or
for components separately, writing deployment scripts etc. Fig.3 presents a tab in the
properties view for specifying elasticity constraints and strategies for a specific appli-
cation component.

c-Eclipse: An Open-Source Management Framework for Cloud Applications 45

] Properties 52 -
ion Comp Elasticity C i Elasticity Strategies
Main
Elasticity
T Constraint Strategy Add
Deiiygies CONSTRAINT CPU_Usage<80% [add | STRATEGY Add VM (Remore |
CONSTRAINT Memory_Usage<60%
[Remove &5 Add Elasticity Condition b [conditn]
ondition
——{ | When violated Constraint:
[CONSTRAINT CPU_Usage <80%
|CONSTRAINT Memory_Usage<60% ‘
[ok [cance |

Fig. 3. c-Eclipse Properties View (Elasticity constraints and strategies tab)

Users with expertise in writing XML and with deep knowledge of the TOSCA spec-
ification, can manually create or edit an application’s TOSCA XML description. Any
changes in the XML will be automatically reflected to the corresponding graphical de-
scription. This way c-Eclipse attracts broader audience, from entry level to more ad-
vanced users.

4 Elasticity Specification in c-Eclipse

Apart from enabling portable automated application deployment and management,
c-Eclipse facilitates the specification of applications’ elasticity policies so that they can
scale at runtime based on user defined policies. Since the TOSCA language does not
directly specify how to define elasticity policies for Cloud applications, c-Eclipse ex-
ploits the TOSCA Policy element to achieve elasticity specification without interfering
with applications’ portability. TOSCA defines policies as the means by which we can
express non-functional behaviour or quality-of-services for an application.

We use two types of elasticity-oriented TOSCA policies in accordance with the
SYBL [11] language for elasticity requirements specification: Elasticity Constraint and
Elasticity Strategy. The Elasticity Constraint type is used to express the constraints of
an application, related to cost, performance and other application-quality metrics. Here
the application user does not specify the exact actions to be enforced when a constraint
is violated. Instead, the appropriate actions are determined by the underlying intelli-
gent elastic Resource Provisioning System [12]. The Elasticity Strategy type, is used to
express specific strategies that should be enforced by the execution environment when
specific constraints are violated.

The purpose of defining two distinct TOSCA Policy Types of elasticity is twofold.
Cloud users can:

— Specify elasticity constraints and strategies for their applications at different levels
of detail, based on their expertise.

— Fully exploit the capabilities of the underlying Resource Provisioning System. In
case the underlying system is smart enough to take scaling decisions on its own,
the user specifies only the elasticity constraints and relies on the system to decide
how to fullfil them.

46 C. Sofokleous et al.

The purpose of specifying elasticity policies in c-Eclipse is to give its users more
control over their deployments. Elasticity policies are translated into SYBL, and in-
jected into the TOSCA description. If the IaaS resource provisioning system supports
dynamic scaling of applications, then the specified elasticity policies are translated, (by
the TOSCA Container) to provider specific elasticity rules. Otherwise, the defined elas-
ticity policies will be ignored.

5 Use-Case

This section aims at demonstrating the portability and elasticity support capabilities of
the c-Eclipse Cloud Application Management Framework. To do so, we present the
description, deployment and management phases of an exemplary Cloud application
on two environments: (i) Amazon’s EC2 infrastructure and (ii) Nephelae®, our own
OpenStack-compliant Cloud research infrastructure.

Before starting the demonstration we needed to implement our TOSCA Containers,
as described in Section 3.3, and deploy them on a single virtual instance both on Ama-
zon EC2 and Nephelae. Our simple container for AWS is composed by ~ 450 lines of
Code (LOC), implementing 24 needed functions. Similarly, the OpenStack container
needed ~ 600 LOC and same number of functions. In order to instrument the ap-
plication’s deployment we also needed a monitoring system to be deployed on both
infrastructures. In contrast to EC2%, Nephelae does not include a native resource and
application monitoring solution. Therefore, we instantiate the JCatascopia system for
providing the monitoring metrics that will be utilized during the specification of elas-
ticity policies. Finally, we assume each tier instance runs on a Linux-based OS.

Use-Case Scenario: We consider a 3-tier Web application that provides video stream-
ing services to online users. The tiers comprising the application are as follows: (i)
a Load Balancer which serves as an entry point and distributes incoming user requests
across multiple application servers, (ii) the Application Server itself, which is mate-
rialized through an Apache Tomcat server with the necessary video streaming Web
application deployed, and (iii) a Cassandra® NoSQL distributed data storage back-end
from where the necessary video content is retrieved.

Application Description Phase: In this first step, the application developer initiates the
description process by creating a Cloud project, which will be unique for the above Web
application. The necessary folder structure (see Section 3.4) is automatically created,
establishing placeholders for individual components required throughout the applica-
tion management lifecycle. At the same time, the developer is prompted to enter service
endpoints and authentication credentials® for one or more candidate Cloud provider(s),
where the application might eventually be submitted for deployment. The Authentica-
tion Token View gives an overview of credential details (Fig. 2).

3 http://linc.ucy.ac.cy/Nephelae/

4 AWS provide the CloudWatch solution for monitoring applications and Cloud resources.
5 http://cassandra.apache.org/

% Credentials are managed in a secure manner using the native Eclipse password manager.

http://linc.ucy.ac.cy/Nephelae/
http://cassandra.apache.org/

c-Eclipse: An Open-Source Management Framework for Cloud Applications 47

The next step involves creating the application description itself through a guided
wizard and subsequently invoking the Modeling Tool, where the respective application
structure will be defined. During this phase, the user designs a coarse-grained blueprint
of the application structure, avoiding reference to vendor-specific details. This way, the
description is portable across different providers. Consequently, at this stage the Palette
contains only those generic components that will later-on act as containers for vendor-
specific information. Such structural parts include: the application components and the
relationships.

For the use-case scenario at hand, the coarse-grained application blueprint is com-
prised of 3 different application components (Fig. 4). The Load Balancer component is
populated with an HA Proxy’ tarball (orange color box) and a Bash script (white color
box) for the respective configuration. Similarly, the Application Server component is
populated with the Web application ARchive (WAR) that provides the video stream-
ing functionality and a Bash script for minimal Tomcat configurations. The NoSQL
database component is populated with a Bash script for contextualization purposes,
such as seed node IP address, listening ports, etc. Additionally, each Component is
enriched with a common RSA keypair® for shell-access purposes (yellow color box).
Finally, the necessary inter-dependencies in the application’s structure are specified via
the two Relationships shown in Fig. 4. Generic application descriptions are stored in the
Application Descriptions folder, and can be used later as customizable templates which
can be enriched with vendor-specific information at the deployment phase.

Application Deployment Phase: Once the application developer completes the generic
design, it is time to engage in a more fine-grained topology description by providing
vendor-specific information. To do so, the user has to invoke the application deploy-
ment phase through a context menu action on the description file. This phase is again a
wizard driven process requiring the user to select the target Cloud provider where the
application deployment will eventually take place. The Palette and Properties Views
are now populated with vendor-specific information retrieved by interrogating the TaaS
APIL. In addition to the standard information advertised by the provider such as com-
pute resources availability, volumes and networking configurations, the Palette provides
monitoring metrics available by the monitoring systems on EC2 and Nephelae.

To minimize the information displayed and swiftly identify any required component,
the Palette includes standard searching and filtering mechanisms. Given that each tier
instance of the video streaming service will run on a Linux-based OS, the developer
sets the necessary filters to expose available base images that include a 64-bit Ubuntu
12.04 server. For the Application and Database components, the filters are adjusted to
search for available Ubuntu-based images that include Apache Tomcat and Cassandra
NoSQL, respectively. When suitable images are returned, a simple drag-n-drop oper-
ation of their pictorial representations from the Palette to the respective application
components (green color box), results to their inclusion within the generated TOSCA
description. In the case that matching images are not retrieved, c-Eclipse provides the
necessary fields through which the developer can pass specific scripts (or artifact file-
names) that will be executed upon contextualization.

7 http://haproxy.lwt.eu/
8 Only the public key material of the RSA keypair is included within the TOSCA description.

http://haproxy.1wt.eu/

48 C. Sofokleous et al.

[VideoDescr_AWS 3% =
STier Video Stream Service 15 Palette
[Select
i} Marquee
|| & connections
l|& components
|| Images @
RegionOne/
» 4bd70005-46b4-4297-
b092-Fb802761a901
RegionOne,
Load Balancer “Application Server NoSQL Database ¥+ 54567cas-8eda-421f-a63a-
23c638a¢8c65
RegionOne/
cassandra_confiy s » 55eed608-4617-4a16-96c4-
[Chaproxy configsh | [tomeat_configsh | 8653203a48cF
RegionOne/7ed094ac-
h1c5-dsfinkl-ani:
= User Applications
ws 14 rsapub s id_rsapub aws id_rsapub = E
[[T Sl Pairs
= Deployment Scripts
(Monitor Probes @
> Elasticity Actions ®
[Application Deployments O |
Application Name status Instance ID 1P Address
B8 3Tier Video Stream Service (3) DEPLOYED
[Load Balancer RUNNING i-13461e53 172.31.43.237
[Application Server RUNNING i-aaddicea 172.31.31.71
E NoSQL Database RUNNING i-ab441ceb 172.31.37.226
~ B 3Tier Video Stream Service (3) DEPLOYED
[Load Balancer RUNNING 8e3cdcho 10.16.5.3
[Application Server RUNNING Fd9F7aF2a3c2 10.16.5.4
[NosQL Database RUNNING 21d9f7af2a4ct 10.16.5.5

Fig. 4. Application Deployment on Amazon EC2 and Nephelae

What remains to do before inhibiting the actual application deployment process, is
for the developer to specify the elasticity-oriented policies. This includes selecting one
or more available monitoring metrics from the Palette and assigning them to the compo-
nents whose resources need to be elastically adapted on runtime. For the video service,
it was decided to scale-up only the Application and Database components by adding a
new virtualized instance when the CPU utilization threshold exceeded 80% (see Fig. 3).
To achieve this, each component was assigned to a CPU probe that reports utilization
to the underlying IaaS orchestrator in frequent time intervals.

The customized description, is stored under the Application Submissions folder at-
tributed with the name of the Cloud provider. Upon the completion of the fine-grained
description, the application can be submitted to the target Cloud infrastructure for de-
ployment. With a context-menu action, the CSAR Exporter creates the CSAR con-
taining the description with the artifacts, and hands it to the TOSCA Container at the
selected TaaS provider.

Application Management Phase: Finally, through, the c-Eclipse Deployment View,
the application developer can instantly obtain the deployment status without leaving
the Eclipse environment. As depicted in the lower part of Fig. 4, a snapshot of the
deployments on EC2 and Nephelae is provided, along with provider-specific properties
such as component IP addresses, instance IDs, running times etc. A background polling
mechanisms refreshes the view and provides the latest information from each IaaS.

6 Conclusion and Future Work

In this paper we present c-Eclipse; an open-source, vendor neutral, Cloud Applica-
tion Management Framework built on top of Eclipse. c-Eclipse aims at facilitating the

c-Eclipse: An Open-Source Management Framework for Cloud Applications 49

deployment and management of Cloud applications, promoting portability of appli-
cations across infrastructures, and supporting application elasticity. It adopts an open
Cloud standard, and provides a unified environment for describing the structure, de-
ployment and management operations of applications. It then exports the applications’
descriptions into portable archives that can be processed by different providers. The
functionality of c-Eclipse is presented via a use-case scenario with a 3-tier applica-
tion being described and deployed on private and public Cloud infrastructures. Though
still a prototype, c-Eclipse is currently used in the CELAR Project to deploy elastic
Cloud applications. As future work, we will extend c-Eclipse to support existing ap-
plication configuration management tools, such as Chef (http://getchef.com),
to automatically provision and configure applications on new node instances, without
requiring the user to write custom deployment scripts. c-Eclipse is available on GitHub
athttp://github.com/CELAR.

Acknowledgments. This work was partially supported by the European Commission
in terms of the CELAR 317790 FP7 project (FP7-ICT-2011-8) and by the European Re-
gional Development Fund and the Republic of Cyprus through the Research Promotion
Foundation (“Infrastructure Upgrade /0609/09” project). The authors thank Andreas
Papadopoulos, Georgiana Copil and Demetris Antoniades for their fruitful insights.

References

. OASIS: TOSCA Version 1.0, http://goo.gl/ApNP3C

. Oracle Virtual Assebly Builder, http://goo.gl/Eetqg0Vv

VMware vCloud Application Director, http://goo.gl/j7LyU7

. Ubuntu Juju, https://juju.ubuntu.com/

. ServiceMesh Agility Platform, http: //www.servicemesh.com

. Juve, G., Deelman, E.: Automating Application Deployment in Infrastructure Clouds. In:

Proceedings of the 2011 IEEE 3rd International Conference on Cloud Computing Technol-
ogy and Science, pp. 658-665. IEEE Computer Society (2011)

7. Kopp, O., Binz, T., Breitenbiicher, U., Leymann, F.: Winery: A Modeling Tool for TOSCA-
Based Cloud Applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 700-704. Springer, Heidelberg (2013)

8. GigaSpaces Cloudify, http://goo.gl/rYGcek

9. Binz, T., Breitenbiicher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.: Open-
TOSCA - A Runtime for TOSCA-Based Cloud Applications. In: Basu, S., Pautasso, C.,
Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 692—695. Springer, Heidelberg
(2013)

10. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia: Monitoring Elastically Adaptive Ap-
plications in the Cloud. In: 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (2014)

11. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: An Extensible Language for
Controlling Elasticity in Cloud Applications. In: 13th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pp. 112-119 (2013)

12. CELAR EU FP7 Project, http://celarcloud.eu/

LA L~

http://getchef.com
http://github.com/CELAR
http://goo.gl/ApNP3C
http://goo.gl/Eetq0V
http://goo.gl/j7LyU7
https://juju.ubuntu.com/
http://www.servicemesh.com
http://goo.gl/rYGceK
http://celarcloud.eu/

Modeling and Simulation of a Dynamic
Task-Based Runtime System for Heterogeneous
Multi-core Architectures

Luka Stanisic!, Samuel Thibault?, Arnaud Legrand’,
Brice Videau', and Jean-Francois Méhaut!

L CNRS, Inria, University of Grenoble, France
firstname.lastname@imag.fr
2 University of Bordeaux, Inria, France
samuel.thibault@labri.fr

Abstract. Multi-core architectures comprising several GPUs have be-
come mainstream in the field of High-Performance Computing. However,
obtaining the maximum performance of such heterogeneous machines is
challenging as it requires to carefully offload computations and manage
data movements between the different processing units. The most promis-
ing and successful approaches so far rely on task-based runtimes that
abstract the machine and rely on opportunistic scheduling algorithms.
As a consequence, the problem gets shifted to choosing the task gran-
ularity, task graph structure, and optimizing the scheduling strategies.
Trying different combinations of these different alternatives is also itself
a challenge. Indeed, getting accurate measurements requires reserving
the target system for the whole duration of experiments. Furthermore,
observations are limited to the few available systems at hand and may be
difficult to generalize. In this article, we show how we crafted a coarse-
grain hybrid simulation/emulation of StarPU, a dynamic runtime for
hybrid architectures, over SimGrid, a versatile simulator for distributed
systems. This approach allows to obtain performance predictions accu-
rate within a few percents on classical dense linear algebra kernels in a
matter of seconds, which allows both runtime and application designers
to quickly decide which optimization to enable or whether it is worth
investing in higher-end GPUs or not.

1 Introduction

High-Performance Computing architectures now widely include both multi-core
CPUs and GPUs. Exploiting the tremendous computation power offered by such
systems is however a real challenge. Programming them efficiently is a first con-
cern, but managing the combination of computation execution and data transfers
can also become extremely complex, particularly when dealing with multiple
GPUs. In the past few years, it has become very common to deal with that
through the use of an additional software layer, a runtime system, based on the
task programming paradigm [3,4,7]. Applications are expressed as a task graph

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 50-62, 2014.
© Springer International Publishing Switzerland 2014

Modeling and Simulation of a Dynamic Task-Based Runtime System 51

with data dependencies, i.e., a Directed Acyclic Graph (DAG), and provide both
CPU and GPU implementations for the tasks. The runtime can then schedule
the tasks over all available computation units, and automatically initiate the
entailed data transfers. Scheduling heuristics such as HEFT or work stealing are
used to automatically optimize that execution [3]. Application programmers are
thus relieved from scheduling concerns and technical details.

As a result, the concern becomes choosing the right task granularity, task
graph structure, and scheduling strategies optimizations. Task granularity is of
a particular concern on hybrid platforms, since a tradeoff must be found between
large tasks which are efficient on GPUs but expose little task parallelism, and
a lot of small tasks for CPUs but are less efficient on GPUs. The task graph
structure itself can have an influence on execution time, by requiring more or
less communication compared to computation, which can be an issue depending
on the available bandwidth on the target system. Last but not least, optimizing
scheduling strategies has been a concern for decades, and the introduction of
hybrid architectures only makes it even more challenging.

Getting accurate measurement results for all combinations is not trivial and
it requires reserving the target system for a long period, which can become pro-
hibitive. Moreover, experimenting over a wide range of different platforms is also
necessary to make sure that the resulting strategy choices are generic, and not
only suited to the few target systems which were available to developers. Finally,
since execution time on real machine exhibit variability, dynamic schedulers tend
to make varying scheduling decisions, and the obtained performance is thus far
from deterministic. This makes performance comparisons more questionable and
debugging of non-deterministic deadlocks inside such runtimes even harder.

Simulation is a technique that has proven extremely useful to study complex
systems and which would be a very powerful way to address these issues. Per-
formance models can be collected for a wide range of target architectures, and
then used for simulating different executions, running on a single commodity
platform. Since the execution can be made deterministic, experiments become
completely reproducible, also making debugging a lot easier. Additionally, it is
possible to try to extrapolate target architectures, for instance by trying to in-
crease the available PCI bandwidth, the number of GPU devices, etc. and thus
even estimate performance which would be obtained on hypothetical platforms.
Cycle-accurate simulation of GPUs has hence received a lot of attention recently.
However, the current solutions are extremely costly and not precise enough for
helping runtime and application designers (see Section 2). Instead, we claim that
a top-down modeling approach should be used.

In this article, we show how we crafted a coarse-grain hybrid simula-
tion/emulation of StarPU [3] (see Section 3), a dynamic runtime system for
heterogeneous multi-core architectures, on top of SimGrid, a simulation toolkit
specifically designed for distributed system simulation. Although our work is
based on the StarPU runtime system, it could be applied to other runtimes. Our
contribution are the following:

52 L. Stanisic et al.

— we present in details models that are essential for good performances and
quantify their impact on overall prediction (Sections 5, 6, and 7);

— we validate our models by systematically comparing traces acquired in sim-
ulation with those from native executions in a wide variety of settings;

— we show that our approach allows to obtain predictions accurate within
a few percents for both Cholesky and LU factorizations on four different
generations of GPUs, within a few seconds on a commodity laptop, and we
illustrate how it allows to conduct preliminary exploratory studies easily
(Section 8).

2 Related Work

In most other scientific fields, simulation is used to evaluate complex phenomena
and to address all the difficulties raised by the conduction of real experiments
such as cost, reproducibility, and extrapolation capability. As a result, many
detailed micro-architecture level simulators of GPUs have been developed in
the last years. For example GPGPU-Sim [5], one of the most commonly used
cycle-accurate GPU simulator, runs directly NVIDIA’s parallel thread execution
(PTX) virtual instruction set and simulates every detail of the GPU. It is thus
very useful for obtaining insights into architectural design problems for GPUs.
However, no comparison to an actual GPU is provided in [5] and although the
trends predicted by GPGPU-Sim are certainly interesting, it is not clear that it
can be used to perform accurate performance prediction of a real hardware. A
few other GPU-specific simulators have therefore been developed (e.g., Barra [9]
for the NVIDIA G80 or Multi2Sim [11] for the AMD Evergreen GPU). Such
specialization allow Multi2sim to report predictions within 5 to 30% of native
execution for several OpenCL benchmarks. While this prediction is quite impres-
sive, it comes at the price of a very long simulation time as every detail of the
GPU is simulated. The average slowdown of simulations versus native execution
is reported to be 44,000 while the one of GPGPU-Sim on a similar scenario is
about 90,000x[11].

In the context of tuning HPC runtimes, expectations in term of simulation
accuracy are extremely high. It is thus difficult to rely on a simulator that may
provide the right trends but with a 50% over/under estimation. Choosing the
right level of granularity or the correct scheduling heuristic can not be done with-
out precise and quantitative predictions. Such errors come from an inadequate
level of details and can be avoided. Therefore, we propose to use a top-down
modeling approach such as promoted by the SimGrid project [8], which provides
a versatile simulation toolkit to study the behavior of large-scale distributed sys-
tems like grids, clouds, or peer-to-peer systems. SimGrid builds on fluid network
models that have been proven as a reasonable alternative to both simple ana-
lytic models and expensive, difficult-to-instantiate packet-level simulations [12]
and have recently been extended to simulate accurately MPI applications on
Ethernet networks [6]. In a fluid model, communications, represented by flows,
are simulated as single entities rather than as sets of individual packets and the

Modeling and Simulation of a Dynamic Task-Based Runtime System 53

bandwidth allocated to flows is constrained by the network resource capacity.
While such models ignore all transient phases between two steady-state operation
points, they are very flexible and allow to easily account for network topology
and heterogeneity as well as many non-trivial phenomena (e.g., RT'T-unfairness
of TCP or cross-traffic interferences) [12] at a very low simulation cost. In the
next sections, we explain how StarPU has been ported on top of SimGrid and
how multi-GPU architectures have been modeled within SimGrid.

3 Porting StarPU over SimGrid

StarPU relies on a task-based abstraction with a clear semantic, which eases
the modeling. A StarPU execution consists in scheduling a graph of tasks with
data dependencies (i.e., a Directed Acyclic Graph) on the different computing
resources, while taking care about data localization. Hence, from the model-
ing perspective, there are three main components to take into account: StarPU
scheduling, computation on the different computing resources, and communica-
tion between the computing resources.

Since StarPU scheduling is generally dynamic and opportunistic, the decisions
taken when simulating should be as close as possible to the ones taken in a native
execution. The most natural approach is thus to execute the StarPU code related
to scheduling decisions and to replace actual task execution with SimGrid calls.
Yet, to make sure that simulation is carried out in a reproducible and controlled
way, SimGrid exports a specific thread API (similar to the POSIX one) that
allows the SimGrid kernel to control the scheduling of all application threads. In
simulation, such threads run in mutual exclusion and are scheduled upon com-
pletion of simulated data transfers and simulated computations. Therefore, any
direct regular call to the POSIX threads had to be abstracted as well. Likewise,
in simulation mode, any memory allocation on CPUs or GPUs has to be faked
as no actual data processing is done and no actual GPU is necessarily available
on simulation machines. Last, since schedulers may use runtime statistics to take
scheduling decisions, time had to be abstracted as well to make sure that simu-
lation time (instead of current time) is used in a consistent way. When running
on top of SimGrid, StarPU applications and runtime are thus emulated since
the actual code is executed, but any operation related to thread synchroniza-
tion, actual computations of CPU-intensive kernels, or data transfer is in fact
simulated. More precisely, the control part of StarPU is executed to dynamically
inject computation and communication tasks in the simulator.

For simplicity reasons, each CPU and GPU is represented as a SimGrid host
with specific characteristics and it comprises one or several threads which man-
age synchronization and signaling to StarPU, whenever transfer or computation
kernels end. The characteristics of the GPUs and of the communication intercon-
nect are measured beforehand on the target machine and expressed in term of
processing power, bandwidth, and latency. As a result, such approach is very dif-
ferent from the classical ones described in Section 2 where architecture is modeled
in detail and coarse-grain performances are derived from fine-grain simulation
of GPU internals.

54 L. Stanisic et al.

Table 1. Machines used for the experiments

Name Processor Number of Cores Frequency Memory GPUs
hannibal Intel Xeon X5550 2 x4 2.67GHz 2 x 24GB 3xQuadroFX5800
attila Intel Xeon X5650 2x6 2.67GHz 2 x 24GB 3xTeslaC2050
conan Intel Xeon E5-2650 2x8 2.0GHz 2 x 32GB 3xTeslaM2075
frogkepler Intel Xeon E5-2670 2x8 2.6GHz 32GB 2xK20

In such a modeling, the overhead of the runtime (e.g., the time needed to
take scheduling decisions, to manage synchronizations or to manage internal
queues) is not accounted for in the simulation and only the parts related to the
application execution are simulated. As we will see in the rest of the article,
such a naive emulation coupled with a simple modeling of computation and
communications may be enough for some applications on some platforms but
can lead to gross inaccuracies in others. Showing merely a few examples where
simulation and native execution match would hence not be a validation. Instead,
we tried to (in)validate our model by conducting as much experiments as possible
in a large variety of settings until we find a situation where our simulation fails
producing a good prediction. These critical experiments were generally very
instructive as they allowed us to understand how to improve our modeling.

In the rest of the article, we present the different sources of errors we identified
and the kind of prediction that can be done once they are fixed.

4 Experimental Setting

We conducted series of experiments to (in)validate our modeling approach. All
conclusions were drawn from analyzing and comparing GFlop/s rate, makespans
and traces of StarPU on one hand (called Native in the following), and StarPU
on top of Simgrid (called SimGrid in the following) on the other.

Before running applications, StarPU needs to obtain a calibration of the plat-
form, which consists in measuring bandwidths and latencies for communication
between each processing unit, together with evaluating timings of computation
kernels [2]. Such information is used to guide StarPU schedulers’ decisions when
delegating tasks to available workers. StarPU has thus been extended to gener-
ate at the same time a (XML) SimGrid description of the platform, which can
later be used for simulation purposes. It is important to understand that only
the calibration, which is meant to be run once and for all on the target system
before conducting any performance investigation, is used in the SimGrid simula-
tion and that it is not linked to the application being studied. The only condition
is that the application can use only computation kernels that have been mea-
sured, of course. Such a clear separation allowed all the simulations presented
in this paper to be performed on personal commodity laptops. This separation
also allows to simulate machines we don’t have access to, knowing merely their
characteristics (i.e., computation kernel runtimes and memory bandwidth).

To study the validity of our models, we used the systems described in Ta-
ble 1. These NVIDIA GPUs have distinct characteristics and belong to different

Modeling and Simulation of a Dynamic Task-Based Runtime System 55

Table 2. Typical duration of runtime operations

Transfer queue GPU memory GPU memory Pinned RAM

Operation management allocation deallocation allocation
(cudaMalloc) (cudaFree) (cudaHostAlloc)
Time 10us 175us 125us 650us/MB

generations, which intends to demonstrate the validity of our approach on a
range of diverse machines. Regarding applications, we decided to focus on two
common dense linear algebra kernels: cholesky and LU factorization. Regard-
ing task granularity, we fixed a relatively large block size (960 x 960) as it is
representative of what is typically used to achieve good performances. In our ex-
periments, CPUs were only controlling the execution and scheduling of the tasks
while GPUs had the roles of workers, meaning that whole computation was done
entirely on multiple GPUs. We focused on this kind of scenario as GPUs have
stable performance and provide a significant fraction of computational power in
dense linear algebra. We also investigated situations involving both CPUs and
GPUs a the same time. Although the initial results were excellent, we could not
include them in this article due to lack of room and decided to instead present
in detail the specifics of GPU modeling.

This whole work was done in the spirit of open science and reproducible re-
search. Both StarPU and Simgrid software are free software available online. All
experiment results presented in this paper are publicly available on figshare [13].
Supplementary data, which is not presented in this paper due to space limita-
tion, are also available at the same location along with all the scripts, raw data
files and traces which allow to regenerate this document.

Finally, assessing the impact of our various modeling attempts is quite diffi-
cult. Some of them are specifically linked to the modeling of the StarPU runtime,
while others are more linked to the modeling of communications or to the com-
putation variability. Obtaining a good predictive power is the combination of
a series of improvements. Hence, comparing different runtime modeling options
with a native execution while having a poor modeling of communications and
computations would not be very meaningful. So instead, we evaluate our differ-
ent runtime modeling options while using the best options for communication
and computation modeling. Likewise, when we evaluate various communication
modeling options, we always use the best modeling option of runtime and com-
putations, which allows us to evaluate how much accuracy we may lose by over-
looking this particular aspect.

5 Modeling Runtime System

Since StarPU is dynamic, inaccurate emulation of the control part would pro-
duce different scheduling decisions and would damage prediction of the overall
execution time. We show how, in some cases and if not treated correctly, this
can produce misleading results, and present how these issues were eliminated.

56 L. Stanisic et al.

Conan Cholesky Attila LU
1500
x Experimental
» Condition
5 1000+ — _|SimGrid (naive
° runtime modeling)
6 500 - ---+ SimGrid (smart)
— Native
O -

1 1 1 1 1 1 1 1
20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

Fig. 1. Illustrating the influence of modeling runtime. Careless modeling of runtime
may be perfectly harmless in some cases, it turns out to be misleading in others.

As we already mentioned, process synchronizations, memory allocations of
CPU or GPU, submission of data transfer requests are all faked in simulation
mode, whereas such operations in native execution do take time and have an im-
pact on the overall performance. Several delays were included in the simulation
to account for their overhead (Table 2 depicts typical duration of such opera-
tions). Another (probably the most) influential parameter for accurate modeling
of runtime proved to be the size of GPU memory. Such hardware limits force the
scheduler to swap data back and forth between the CPUs and GPUs. These data
movements saturate the PCI bus, producing a tremendous impact on overall per-
formance. It is thus critical to keep track of the amount of memory allocated
by StarPU during the simulation to make sure the scheduler will behave in the
same way for both real native executions and simulations.

Figure 1 illustrates the importance of taking into account the runtime pa-
rameters described above. Each curve depicts GFlop/s rate of experiments rep-
resenting 90 different matrix dimensions (matrix dimension 80,000 corresponds
to ~25GB). Solid line Native shows the execution of StarPU on the native ma-
chine, while the other two are the results of the simulation: naive for execution
without any runtime adjustments and smart with all of them included. The left
plot depicts a situation where all these optimizations have very little influence
as both naive and smart lines are almost overlapping with the native line. On
the other hand, for some other machines and applications (plot on the right),
having a precise modeling of runtime is critical as otherwise, simulation may
highly overestimate the performance for the larger matrix size. Nonetheless, we
remind that the excellent predictions achieved in these examples are also the
result of the careful modeling of communications and computations, which we
will present in the next Sections.

6 Modeling Communication in Hybrid Systems

Due to the relatively low bandwidth of the PCI bus, applications running on
hybrid platforms often spend a significant fraction of the total time transferring
data back and forth between the main RAM and the GPUs. Modeling com-
munication between computing resources is thus of primary importance. As a

Modeling and Simulation of a Dynamic Task-Based Runtime System 57

% \\

%//

(a) Crude modeling (b) More elaborated modeling

Fig. 2. Communication and topology modeling alternatives. In the crude modeling, a
single link is used and communications do not interfere with each others. The more
elaborated modeling allows to account for both the heterogeneity of communications
and the global bandwidth limitation imposed by the PCI bus.

first approximation (see Figure 2(a)), the transfer time between resources could
be modeled as a single link with a latency and a transfer rate corresponding
to typical characteristics of the PCI bus. However, such modeling does not ac-
count for many architectural aspects. First, the bandwidth between CPU and
GPU is asymmetrical. Second, communication characteristics are not uniform
among all pairs of CPUs and GPUs, as it depends on the chipset architecture.
We decided to account for it by using a dedicated uplink and a downlink with
different characteristics for each pair of resources (see Figure 2(b)). Furthermore,
any communication between two resources has to go through a common shared
link (in bold), which represent the maximum capacity of the PCI bus. Modeling
contention in such a way is however insufficient as depending on resources in-
volved in a communication, data transfers may be serialized or not. For example,
although most CUDA transfers are serialized whenever they involve the same
resource, on some systems it is possible to transfer both from GPUy to GPU;
and from GPU; to GPUy at the same time.

QuadroFX5800 [TeslaC2050
30004
2000 750 Experimental
Condition
1000+ — » _. SimGrid (naive
(2} 3 m 1
E 0- 5‘500 gclamvg ﬁ r(ﬁeterv:)g?gneous
© TeslaM2075 [K20 [" network but no pitch)
E 3000 o -+ SimGrid (smart)
250 4)
2000 — Native
1000
0-
0- 1 1 Il 1 1 Il T | T T
0 100 200 0 100 200 20K 40K 60K 80K
LD(pitch) parameter [KB] Matrix dimension

Fig. 3. Transfer time of 3,600 KB using Fig. 4. Performance of the LU application
cudaMemcpy2D depending on the pitch on hannibal (QuadroFX5800 GPUs) using
of the matrix different modeling assumptions

58 L. Stanisic et al.

Additionally, to move chunks of matrices between resources, StarPU relies on
the cudaMemcpy2D function. First, the performance of this function is not exactly
the same as the one of cudaMemcpy, which was used in the original calibration
process. Even more importantly, it turns out that the pitch (i.e., the stride of the
original matrices) can have a significant impact on transfer time on some GPUs
(see Figure 3) whereas it can be relatively safely ignored on others. Therefore,
communication time is modeled as a piece-wise linear function of data payload
and whose slope and intercept depend on the pitch of the matrix.

Again, for a given application and a given target architecture, it may not
be necessary to take care of all such details to obtain a good prediction. For
example, as illustrated on Figure 4, a naive network modeling such as the one
on Figure 2(a) proved excellent predictions when matrix dimension is smaller
than 40,000. Beyond such size, a more precise modeling of the network (as in
Figure 2(b)) is necessary. Beyond 66,240, the behavior of cudaMemcpy2D changes
drastically and has to be correctly modeled to obtain a good prediction of the
performances.

7 Modeling Computation

When running simulation, the actual result of the application is of no interest.
Hence the execution of each kernel is replaced by a virtual delay accounting
for its duration. In our initial approach, we used the mean duration of each
computation kernel, which was benchmarked by StarPU during the calibration
phase. Although this was producing satisfactory results, using a fixed value leads
to a deterministic schedule in simulation. This may bias the simulation and
does not allow to verify the ability of the scheduling algorithms to handle the
variability of the resources.

Therefore, we modified StarPU to capture the timing of every computation
during a Native execution. Such collection of data can then be used to analyze
the computation time distribution which can be approximated using irregular
histograms [10], as regular ones (with uniform bin-width) revealed very inefficient
at representing details of distributions where a small but non-negligible fraction

Checking predictive capability of the simulation
hannibal: 3 QuadroFX5800 attila: 3 TeslaC2050 conan: 3 TeslaM2075 frogkepler: 2 K20

2500 4

2000 Y
1500 e .
10004 /\N - /
500 /r\ Experimental

Condition

Aysejou

0
L 2500 SimGrid
20004 — Native

1500+
1000 /\-\M e
500 /_\—‘ //’\

T T T T T T T T T T T T T T T T
20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

GFlop/s

Fig. 5. Checking predictive capability of our simulator in a wide range of settings

Modeling and Simulation of a Dynamic Task-Based Runtime System 59

of values are an order of magnitude larger than the vast majority of measure-
ments. Such approximation can then be used in the simulation by generating
pseudo-random variables from the histograms.

Although this technique allows to obtain different simulated schedules by
changing the seed of the simulation, no significant gain in term of accuracy could
be observed for the applications and machines we used so far. The makespan is
always very similar in both cases (mean duration vs. random duration following
an approximation of the original distribution). Nonetheless, we strongly believe
that in some more complex use cases, e.g., sparse linear algebra algorithms, using
fine models like histograms may provide more precise predictions.

8 Prediction Accuracy in a Wide Range of Settings

As we explained in the previous section, a careless modeling of any aspect of
runtime, communications or computations, can lead to gross inaccuracies for
particular combinations of machines and applications. We show in this section
that we managed to cover the most important issues, which enables us to ob-
tain excellent prediction of performances. Figure 5 depicts the performance as a
function of the size of the matrix for the two applications LU and Cholesky and
for the four different hybrid systems we described in Table 1. For most combi-
nations, the prediction obtained with SimGrid is very accurate. The only two
scenarios where the error is larger than a few percents is for the LU kernel on
conan and frogkepler when our prediction slightly overestimates the (bad) per-
formances for large matrices. The trend is however perfectly predicted as well as
the size beyond which performance drops.

A closer look at traces (see Figure 6) allows to see that this approach does not
only provide a good estimation of the total runtime but also offers an accurate
simulation of the scheduling details. Since even with the same parameters, native
traces differ from an execution to another, a point-to-point comparison with a

Comparing traces
Native

State
W rotrF
W rsm
| I cevm
[orivercopy

I Fetchinginput

5000
Time [ms]

Fig. 6. Comparing execution traces (native execution on top vs. simulated execution at
the bottom) of the Cholesky application with a 72,000 x 72,000 matrix on the Conan
machine. Traces are not perfectly identical since the execution is not deterministic but
the behavior of the simulation is representative of the real execution.

60 L. Stanisic et al.

DMDA I DMDAR I DMDAS

1500 -

Experimental
Condition

-+ SimGrid

— Native

1000 Yo

GFlop/s

500

1 1 1 1 1 1 1 1 1 1 1 1
20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

Fig. 7. Cholesky on Attila: studying the impact of different schedulers

simulation trace would not make sense. However, we can check that both traces
are indeed extremely close, which allows to study and understand the potential
weaknesses of a scheduler.

For example, the reason for the performance drop observed on Figure 5 and
which is more and more critical with newer GPUs can be explained by the
need to move data back and forth between the GPUs and the main memory
whenever matrix size exceeds the memory size of the GPUs. The scheduler we
used in Figure 5 is the DMDA (Deque Model Data Aware) scheduler. Although
it schedules tasks where their termination time (including data transfer time)
will be minimal, it does not take care of the number of available data buffers on
each GPU. Such greedy strategy may be harmful as GPU may be overloaded
with work and forced to evict some data, as it cannot handle the whole matrix.
Two other strategies DMDAR and DMDAS were designed to tend to execute
tasks whose data is already on the GPU, before tasks whose data is not yet
available. Therefore, we decided to check whether these two other schedulers
could stabilize performances at the peak or not. To this end, we first ran the
corresponding simulations and obtained a positive answer (Figure 7). Later,
when the target system became accessible again, we confirmed these results by
running the same experiments and as can be seen on Figure 7, our simulations
were again perfectly accurate.

It is important to mention that the time to run each simulation typically takes
few seconds compared to sometimes several minutes for a real experiment. Com-
pared to architecture-level simulators (see Section 2) whose average slowdown
of simulations versus native execution is of the order of magnitude of several
dozens of thousands, our coarse-grain simulation allows to obtain a speedup of
ten to a hundred depending on the workload and on the speed of the machine.
Furthermore, since the target system is not required anymore, it is easy to run
series of simulations in parallel.

9 Conclusion and Future Work

In this article, we have explained how to model and simulate using SimGrid
a task-based runtime system on a hybrid multi-core architecture comprising

Modeling and Simulation of a Dynamic Task-Based Runtime System 61

several GPUs. Unlike fine-grain GPU simulators that have been proposed in
the past and which focus on architectural details of GPUs, our coarse-grain
approach allows to accurately predict the actual running time and to perform
extremely quickly extensive simulation campaigns to study various alternatives.
We demonstrated the precision of our simulations using the critical method, i.e.,
by testing our models and by conducting as much experiments as possible in
a large variety of settings (two standard dense linear algebra applications, four
different generations of GPUs, several scheduling algorithms) until we found a
situation where our simulation failed at producing a good prediction, in which
case we fixed our modeling. Such a tool is extremely interesting for both StarPU
developers and users as it allows (i) to easily and accurately evaluate the im-
pact of various parameters or scheduling alternatives (ii) to tune and debug
applications on a commodity laptop (instead of requiring a dedicated access to
a high-end machine) in a reproducible way (iii) to obtain reliable comparison
of performance estimations that may allow to detect problems with some real
experiments(perturbation, configuration issue, etc.).

Now that we have proven the efficiency of this approach on dense linear alge-
bra kernels, we intend to continue with this work in three directions. First, we
plan to explore using both CPUs and GPUs as computation units. While initial
investigation on classical hybrid multi-core computers showed perfect results, we
expect that dealing with large NUMA machines comprising hundreds of cores
will be much harder. Second, StarPU was recently extended to exploit clusters
of hybrid machines by relying on MPT [1]. Since SimGrid’s ability to accurately
simulate MPI applications has already been demonstrated [6], combining both
works should allow to obtain good performances predictions of complex applica-
tions on large-scale high-end HPC infrastructures. Third, many numerical appli-
cations have been recently ported on top of StarPU, including dense (MAGMA
and PLASMA) and sparse linear algebra (QR-MUMPS), and FMM methods.
Such applications are less regular and are thus likely to be more challenging
to model. However, a reliable performance evaluation methodology would bring
considerable insights to the developers.

Acknowledgments. This work is partially supported by the SONGS ANR
project (11-ANR-INFRA-13). We warmly thank Paul Renaud-Goud for his help
with the initial investigation of validity and Emmanuel Agullo for motivating
this study and providing insights on its usefulness.

References

1. Augonnet, C., Aumage, O., Furmento, N., Namyst, R., Thibault, S.: StarPU-MPI:
Task Programming over Clusters of Machines Enhanced with Accelerators. In:
Traff, J.L., Benkner, S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490, pp.
298-299. Springer, Heidelberg (2012)

2. Augonnet, C., Thibault, S., Namyst, R.: Automatic Calibration of Performance
Models on Heterogeneous Multicore Architectures. In: Lin, H.-X., Alexander, M.,
Forsell, M., Kniipfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009
Workshops. LNCS, vol. 6043, pp. 56-65. Springer, Heidelberg (2010)

62

10.

11.

12.

13.

L. Stanisic et al.

Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency
and Computation: Practice and Experience 23, 187-198 (2011)

Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Orti, E.S.:
An Extension of the StarSs Programming Model for Platforms with Multiple GPUs.
In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 851—
862. Springer, Heidelberg (2009)

Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing
CUDA workloads using a detailed GPU simulator. In: ISPASS, pp. 163-174 (2009)
Bedaride, P., Degomme, A., Genaud, S., Legrand, A., Markomanolis, G., Quinson,
M., Stillwell, L.M., Suter, F., Videau, B.: Toward better simulation of mpi appli-
cations on ethernet/tcp networks. In: 4th International Workshop on Performance
Modeling, Benchmarking and Simulation of HPC Systems (PMBS) (November
2013)

Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
DAGuE: A Generic Distributed DAG Engine for High Performance Computing.
In: IEEE International Symposium on Parallel and Distributed Processing, pp.
1151-1158. IEEE Computer Society (2011)

Casanova, H., Legrand, A., Quinson, M.: SimGrid: A Generic Framework for Large-
Scale Distributed Experiments. In: Proceedings of the 10th IEEE International
Conference on Computer Modeling and Simulation (UKSim) (April 2008)
Collange, S., Daumas, M., Defour, D., Parello, D.: Barra: A Parallel Functional
Simulator for GPGPU. In: IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication, pp. 351-360 (2010)
Denby, L., Mallows, C.: Variations on the histogram. Journal of Computational
and Graphical Statistics 18(1), 21-31 (2009)

Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D.: Multi2Sim: A Simulation
Framework for CPU-GPU Computing. In: Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, PACT 2012,
pp. 335-344. ACM, New York (2012)

Velho, P., Schnorr, L., Casanova, H., Legrand, A.: On the validity of flow-level TCP
network models for grid and cloud simulations. ACM Transactions on Modeling
and Computer Simulation 23(3) (October 2013)

Companion of the StarPU+SimGrid article. Hosted on Figshare (2014),
http://dx.doi.org/10.6084/m9.figshare.928095, online version of this article
with access to the experimental data and scripts (in the org source)

http://dx.doi.org/10.6084/m9.figshare.928095

Modeling the Impact of Reduced Memory
Bandwidth on HPC Applications*

Ananta Tiwari!, Anthony Gamst?, Michael A. Laurenzano®, Martin Schulz*,
and Laura Carrington!

! Performance Modeling and Characterization Lab,
San Diego Supercomputer Center, USA
{tiwari,lcarring}@sdsc.edu
2 Computational and Applied Statistics Lab, San Diego Supercomputer Center, USA
acgamst@math.ucsd.edu
3 Department of Computer Science and Engineering, University of Michigan, USA
mlaurenz@eecs.umich.edu
4 Lawrence Livermore National Laboratory (LLNL), USA
schulzm@llnl.gov

Abstract. To deliver the energy efficiency and raw compute throughput
necessary to realize exascale systems, projected designs call for massive
numbers of (simple) cores per processor. An unfortunate consequence
of such designs is that the memory bandwidth per core will be signifi-
cantly reduced, which can significantly degrade the performance of many
memory-intensive HPC workloads. To identify the code regions that are
most impacted and to guide them in developing mitigating solutions, sys-
tem designers and application developers alike would benefit immensely
from a systematic framework that allowed them to identify the types of
computations that are sensitive to reduced memory bandwidth and to
precisely identify those regions in their code that exhibit sensitivity. This
paper introduces a framework for identifying the properties in computa-
tions that are associated with memory bandwidth sensitivity, extracting
those same properties from HPC applications, and for associating band-
width sensitivity to specific structures in the application source code.
We apply our framework to a number of large scale HPC applications,
observing that the bandwidth sensitivity model shows an absolute mean
error that averages less than 5%.

1 Introduction

The trend towards multi-core systems has accelerated over the last decade and
has had a profound impact on HPC systems. Multi-core designs allow for greater
energy efficiency by increasing the compute performance of the processors through
replicating simple and more energy conserving cores on a processor chip, poten-
tially at lower voltages, without requiring complex and power hungry single core
enhancements. With energy and power often being cited as the most critical
issues on the road to practical exascale systems, it is foreseeable that this trend

* The rights of this work are transferred to the extent transferable according to Title

17 §105 U.S.C.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 63-74, 2014.
© Springer International Publishing Switzerland 2014 (outside the US)

64 A. Tiwari et al.

will continue. Some studies already project hundreds to thousands of cores per
processor [7]. While multi-core systems certainly offer advantages in terms of
energy efficiency, they also pose new challenges. As the number of cores per pro-
cessor is scaled up, the memory bandwidth feeding the cores, in particular the
off-chip bandwidth which is limited by pin constraints and slowly rising memory
speeds, will result in performance challenges that can seriously undermine the
performance achievable by multi-core processors.

Different HPC computations will suffer different degrees of performance degra-
dation when faced with reduced per core memory bandwidth, i.e., performance
degradation is not a simple linear function of bandwidth vs. performance, but
rather a complex function that also involves the characteristics of the workload
(e.g., arithmetic intensity, memory access patterns and work distribution among
cores). We therefore need a systematic methodology to understand and predict
how sensitive a given computation or algorithm is to reduced per core memory
bandwidth. This paper presents a modeling framework that allows such a char-
acterization and can be used to predict how different computations within an
application, computational phase or even basic block will behave under a given
reduced memory bandwidth. Our methodology uses fine-grained application and
hardware characterization to build predictive models through machine learning
based models. In particular, we make the following contributions:

— We introduce predictive models for memory bandwidth sensitivity that are
effective across a range of code granularities. We detail the machine learning
algorithm used to construct the models and how to train them using empirical
measurements that capture both data flow and computational properties of
applications.

— We evaluate our models using a diverse set of real scientific workloads. We
show that the framework accurately pinpoints regions within these codes
where reduced bandwidth of current and future generation multi-core sys-
tems could pose significant performance challenges.

— We apply our framework to HYPRE [14], a library for solving large sparse linear
systems of equations, and show how it can accurately predict bandwidth
sensitivity scores for different solver implementations and thereby help select
implementations that are less sensitive to reduced memory bandwidth.

2 Predicting Performance Sensitivity

The amount of available memory bandwidth can have a crucial performance
impact on the different computational phases of a large scale application. Un-
derstanding the level of this impact, where in the execution it is occurring, and
algorithmic choices that might minimize this impact are critical for application
developers as the core count on current and future multi-core systems grows.
Performance prediction via fine grain models of an application can address these
questions. Developing such detailed performance models requires a test system
for model validation (Section 2.1), a modeling technique amenable to the com-
plex and diverse space of HPC computations (Section 2.2), and techniques to
capture the details or characterization of computations (Section 2.3).

Modeling the Impact of Reduced Memory Bandwidth on HPC Applications 65

2.1 Model Validation System

To validate that the models accurately predict an application’s sensitivity to
reduced per core memory bandwidth, we need a test system where we can change
the per core memory bandwidth. To design such a system, we first focus on
the parameters involved in determining theoretical memory bandwidth (TBW),
which can be calculated as follows:

TBW =mem freq x L xW x I (1)

TBW is the product of memory bus frequency (mem freq), the number of lines of
data transferred per clock cycle (L), the bus width (W) and the number of mem-
ory channels (7). The test system that we use in our study consists of DDR-N
(Double Data Rate) DRAM modules on a motherboard that supports dual chan-
nel memory; therefore, L and I parameters are fixed at 2. Bus width W is 64 bits
for our test-bed. Thus, to approximate systems with lesser memory bandwidth,
we rely on changing the mem freq parameter, the frequency of the memory bus.
While it is not possible, on current systems, to change the memory bus fre-
quency from the OS-level, modern systems allow choosing between different bus
frequencies at boot time (through the BIOS setup). Our test system consists of a
single node from the Gordon Supercomputer [25]. The dual-socket node contains
two 8-core 2.6 GHz Intel Xeon E5-2670 (SandyBridge) processors and 64 GB of
DDR3 memory. The default frequency rating of the DDR3 modules is 1333 MHz.
The BIOS setup allows two additional frequencies — 1067 MHz and 800 MHz.
To demonstrate that low-

ering the memory bus fre- Read Bandwidth as measured by Imbench
quency in the BIOS results 126406 ————— 7
in a test bed with reduced 1e+06 i‘ﬁﬁ\ 16 Man M%mowéw 1
per core memory bandwidth, 800000 - o 13 EE%E)
we present a study that uti- § 600000 | 1353 Mz TNE 81% |
lizes the memory read band- £ 800 MHz =) °> g ®
width test in lmbench [24] 400000 \‘""*‘“"f\ e]
for the three available mem- 200000 \ 1
ory bus speeds on our sys- 0 b

tem. The results in Figure 1
show four plateaus indicat-
il’lg the L1 cache, L2 cache, working set size (MB)

L3 cache, and main memory

bandwidths for the test-bed Fig. 1. lmbench results for different bus frequencies
at the three memory bus fre-

quencies. As expected, the L1, L2, and L3 cache plateaus do not show any change
across different memory bus frequencies. The fourth plateau, for working set
sizes above 4.19 MB, indicates the main memory bandwidth and shows changes.
These changes are replotted in the histogram sub-graph within Figure 1. In this
subfigure the bandwidths for 1067 MHz and 800 MHz are normalized to the
bandwidths at 1333 MHz. Memory read bandwidth is reduced by roughly 17.5%
when we decrease the memory bus frequency by 20% from 1333 MHz to 1067

0.008192

0.016384
0.032768
0.065536
0.131072
0.262144

66 A. Tiwari et al.

MHz. This reduction is roughly 37.7% when going from 1333 MHz to 800 MHz
(or by 40%). These results demonstrate that changing the memory bus frequency
allows us to approximate the behavior we are looking to study — reduced per
core memory bandwidth and its effect on the performance of compute phases
within HPC applications.

2.2 Model Methodology

To model the performance sensitivity we utilize machine learning techniques
produce estimates F'(x) of that function F'(x) which is the optimal predictor of
the output variable y from the input variables x = {x1,...,x,} in the class of
functions F, in the sense that

F(x) = arg min BL (f(x),9)

where L is a non-negative loss function, for example, L(s,t) = (s — t)?/2, and
Eh(z,y) = [h(x,y)dP(x,y) is the expectation operator corresponding to the
joint distribution P of x and y. The function F' is an approximation to the
optimal predictor G of y, which may involve input variables other than x and
may be in a different class of functions from F; that is, G may have a different
functional form or be more or less smooth than functions in F. Any particular
technique and specific, finite set of training data {(x;,y;)};—,, will produce a
specific estimate F(x) of F(x). Different data sets and different techniques will
generally produce different estimates.

There are numerous approaches to this problem, each with various tradeoffs
in terms of efficiency, stability, convergence and interpretability. In this work, we
take a generic approach to the machine learning problem, using the Gradient-
Boost, Multiple Additive Regression Tree (MART) approach of Friedman [15],
with 10-fold cross validation for model selection. Cross-validation is used to pro-
duce honest (i.e. approximately unbiased) estimates of the error of fitted models.

Friedman’s GradientBoost procedure uses additive (ANOVA-type) expansions
of F(x), which consist of main effects and second-, third-, and higher-order
wnteraction terms

F(x) = ij(xj) + ijk(xj,xk) + Z fjkl(xj,xk,l'l) + ... (2)
J gk

Jikl

While the interaction terms may include two-way, three-way, or even higher-
order interactions, care must be taken when fitting the model to (finite) training
sets to avoid over-fitting, which has a negative effect on the ability of the predic-
tor to generalize; that is, to produce reasonable predictions from input variables
not already in the training set. The GradientBoost procedure uses two regular-
ization techniques to limit the risk of over-fitting. The first is to limit the number
of terms M included in the additive expansion (2), and the second (essentially)
multiplies the predicted values associated with each of the fitted terms by a
learning rate parameter, which slows the optimization process through incre-
mental shrinkage, reduces the risk of converging to (sub-optimal) local minima,

Modeling the Impact of Reduced Memory Bandwidth on HPC Applications 67

and (essentially) determines the effective number of (unique) trees K in the final
predictor. There is an inverse relationship between these two control parameters,
such that solutions with a larger number of additive components are more likely
to converge successfully when a smaller learning rate is used, and vice versa [15].
Naturally, there is still a risk of over-fitting and approximately optimal values of
K and M must be selected from the range of candidate values. We use 10-fold
cross validation for this purpose. In k-fold cross validation (in our case, k=10),
the training dataset is randomly partitioned into k subsets of approximately
equal size. k different models are then constructed, each using (k — 1) of the k
partitions as training input so that 1 of the k sets can be set aside for model
validation. Each of the k models are then validated against the validation set
and the model that yields the minimum error is selected.

MART was selected in part because the regression trees, upon which the tech-
nique is based, are computationally efficient, relatively robust to missing data
and monotone transformations of the input variables, and allow us to make very
minimal smoothness assumptions (see [8,9]). We describe the training set, error
estimates and the predictive accuracy of our fitted models on real application
hotspots in Section 3.

2.3 Computational Characterization

In order to develop models that capture a computation’s sensitivity to per core
bandwidth we need to first capture low-level details of how an application inter-
acts with and exercises the underlying hardware subcomponents or application
characterizations. We develop these detailed characterizations by gathering what
we will refer to as an application signature. These signatures are collected by
a set of static and dynamic binary analysis tools and include per basic-block,
per loop and per function information. This information consists of the opera-
tions required by the application in the form of instruction mix and counts, data
locality properties, metrics that capture the application’s interaction with the
memory subsystem such as cache hit rates, load and store operations, etc.

At the center of the characterization and analysis tool-suite is our x86 binary
instrumentation toolkit, PEBIL [21]. PEBIL works directly on the binary and
there is no re-compilation or re-linking required — steps we wish to avoid because
they can interfere with the original behavior of the application. The fact that
PEBIL works on the binary directly also makes the use of the tools easy to use
on large-scale applications.

Static Analysis: The static analysis tool written on top of PEBIL produces infor-
mation about the approximate structure of the program and the operations that
occur within those structures (e.g., functions and loops). The tool also records
type and size of classes of operations (e.g., memory and floating operations) that
are within those control structures. The static analysis tool records the average
size of memory operands in each block and measures the number of instructions
between register or memory definitions and their usage (i.e., data dependencies).

Dynamic Analysis: To gather detailed information about data movement within
an application, the memory characterization tool written on top of PEBIL

68 A. Tiwari et al.

instruments every memory access in the application and pipes the address stream
to be processed on-the-fly by a series of different tools (e.g. reuse distance cal-
culation, working set size analysis and a cache simulator for system of interest).
The cache simulator tool, for example, produces the cache hit rates for a set of
target systems of interest for each of the application’s loops. Another dynamic
analysis tool keeps visit count information for the application’s control units
(e.g., basic block visit counts). Visit count information when combined with the
static instruction mix information gives detailed information on the instruction
make-up of the application.

The characterization data is managed using an SQL relational database. All
the static and dynamic data for an application is collected into the database,
which can be queried for computational characterization information that form
the application signature. The signature includes an entry for each of the control
structure units of a given application (such as basic blocks) and consists of
information about instruction mix, cache behavior, data dependencies, etc.

3 Results

We utilized the test system and the modeling methodology to investigate the
performance sensitivity of HPC applications to the reduced per core memory
bandwidth. The test system (described in Section 2.1) was used to both train
and validate the models (see Section 3.1). We then evaluated our models on a
set of real applications and the results are presented in Sections 3.2 and 3.3.

3.1 Model Training

To create a model that captures how the performance of various types of com-
putations are affected by reduced per core memory bandwidth, we use a set
of benchmarks along with source code transformation frameworks to generate
a diverse set of small computations to train the model. The benchmarks come
from pcubed benchmarking framework [22], which can be configured to yield
computations with specific computational, memory, and data flow properties.
We supplement these pcubed loops with kernels derived from different compu-
tational domains — dense linear algebra (e.g. matrix-matrix multiplication and
matrix-vector multiplication), stencil computations, etc. In addition, for some
of the kernels, we generate variants using two source-to-source compiler trans-
formation tools — Orio [26] and CHILL [11]. Some of the optimizations that we
used to generate these variants include loop unrolling, cache/register tiling and
scalar replacement. Each of these variants is configured to run with multiple
working set sizes. Together with pcubed, kernels and kernel variants, we had
a total of 2900 computations that formed our training set. All of the training
computations were timed using the three memory bus frequency settings on the
test system. We take six measurements for each; we discard the min and max
measurements and average the remaining four. Also, for each test we generate a
characterization signature using the tools described in Section 2.3.

Modeling the Impact of Reduced Memory Bandwidth on HPC Applications 69

Predictive models are constructed using the machine learning problem pre-
sented in Equation 3. The predictors listed in right hand side of the equation
show the entries that make up a loop signature. mem freq is the memory bus
frequency and dim, d2m, d3m are the number of memory accesses per instruction
that hit on L1, L2 and L3 caches respectively. dmm is the number of accesses per
instruction that miss on L3. loads, stores, int ops and branch ops are the
number of load, store, integer and branch operations per instruction. fprat is
the the ratio of the number of floating point operations to the number of memory
operations. fops ins is the number of floating point operations per instruction.
int dud and fp dud are integer and floating point def-use distances respectively.
The outcome (degradation) is log-transformed to stabilize the residual variance.

log(degradation) = F(mem freq, dim,d2m, d3m, dmm, loads, stores, int ops
branch ops, fprat, fops ins, int dud, fp dud) ®)
We use 10-fold cross validation for model selection, optimizing both the number
of trees and the interaction depth empirically via a parameter sweep. The model
reported here is based on K = 800 trees, each with an interaction depth of
at most M = 5, where both K and M were selected by cross validation, as
described in Section 2.2. Squared error loss is used to fit the multiple addltlve
regression tree model. The model selected via the 10-fold cross-validation is then
used to make predictions for all the points in the training set. The predictions
are highly accurate with just 2% absolute mean error.

3.2 Model Evaluation on Real Applications

We evaluated the predictive capability of the model on real applications at a
fine grain level by looking at the individual computational phases or loops of
the applications. Our evaluation application suite consisted of the following ap-
plications: 1) four benchmarks (CG, MG, LU and FT) from the NAS parallel
benchmarks [4], 2) miniFE and miniGhost from the Mantevo benchmarks [1],
3) AMG2006 [29], which is parallel algebraic multigrid solver for linear systems
arising from problems on unstructured grids, and 4) SMG2000 [10], which is a
parallel semicoarsening multigrid solver for the linear systems arising discretiza-
tions of the diffusion equation. miniFE is a finite-element mini-application that
implements kernels representative of unstructured, implicit finite-element appli-
cations. miniGhost is a Finite Difference mini-application which implements a
difference stencil across a homogenous 3D domain.

We started by generating the characterization signatures for the applications
using our analysis tool-suite. We identified a total of 42 computational phases or
hotspots in these applications. Using a loop timer tool built on top of PEBIL, we
instrumented the binaries to collect timing information for each of these loops
to verify the models. We then executed the applications using the three bus
frequency configurations.

To evaluate the models, we fed the characterization signatures for the ap-
plication’s hotspots to our model to predict the performance degradation when

70 A. Tiwari et al.

Histogram —- Prediction Accuracy on Real Application Phases

Mantevo Miniapps (MiniGhost and MiniFE), 16 Cores
Performance Sensitivity of dominant phases (256 x 256 x 256)

measured miniGhost (P1) ------

: 16 modeled miniGhost (P1) —+—
’ measured miniFE (P1) ---x----

15 ™\ modeled miniFE (P1) ——

Count (or number of phases)
2

Time wrt to the highest (1333 MHz) Frequency

, D~
0 : o .‘5 09
800 900 1000 1100 1200 1300 1400
Absolute Mean Ertor (%) Memory Bus Frequency (MHz)
(a) (b)
AMG, 16 Cores SMG2000, 16 Cores

Performance Sensitivity of 4 dominant phases (256 x 256 x 256) 1 Phase, 2 input sizes (64x64x64 and 128x128x128)

> >
g 17 . g 17 : . \
] measured (P] measured (P1-64)
g 16 modeled (P1 g 16 modeled (P1-64)
i : measured P ! measured (P1-128) ---x--
= modeled = modeled (P1-128) ——
Tz 15 measured Tz 15
= modeled =
Q14 Q 14p
e e
S g3 = 13
7 7
3 41
5 5 12
£ £
2 £ 11t
s T~ s
€ € 1 4
3 3
g o9 g2 o9 i : :
= 800 900 1000 1100 1200 1300 1400 = 800 900 1000 1100 1200 1300 1400
Memory Bus Frequency (MHz) Memory Bus Frequency (MHz)
(c) (d)

Fig. 2. (a) Overall prediction accuracy for application phases. (b), (c) and (d) demon-
strate the accuracy of models on different application behaviors.

running at the two lower frequencies. Overall prediction results (histogram) are
shown in Figure 2(a). Note that the error calculation reported here are ‘out of
sample’, i.e., the characterization signatures for the application hotspots are not
seen during the model training process and thereby demonstrates the predictive
accuracy of our models. Overall the models predict the outcome well — average
absolute mean error is 4%. For more than 91% of the application hotspots, the
prediction error is less than 10%. Some of the outlying hotspots with higher
error rates have at least one characteristics in common — the per visit time on
these loops is very small. So, it is possible that the method we use to measure
time does not accurately capture the time spent on these loops.

After validating the models, we used the models to investigate the behav-
ior of the different computational phases within the applications. Figure 2(b)
shows that different applications of the same benchmark suite (e.g. mantevo)
can exhibit different reduced memory bandwidth sensitivity and that our model
accurately predicts those sensitivities. In particular, miniFE’s key hotspot con-
sists of an sparse matrix product, with the matrix stored in compressed sparse
row format. Indirect addressing and random memory access patterns thus make
this hotspot highly sensitive to the memory bandwidth.

We also looked at the diversity of computational phases within a single ap-
plication. Figure 2(c) shows the results for the three most dominant loops in

Modeling the Impact of Reduced Memory Bandwidth on HPC Applications 71

AMG2006. These three phases have different sensitivity to reduced bandwidth
and our models accurately capture this behavior. The figure also shows that
applications are comprised of phases that exhibit different sensitivities and that
only fine-grained models can capture the complex behavior in these applications.
Finally, the working set size can also impact how individual phases react to
reductions in memory bandwidth. In Figure 2(d) we investigate a single phase of
the SMG2000 application to analyze how its sensitivity changes as the problem
size is changed. The figure illustrates how the model is able to accurately capture
the change in the phase’s sensitivity as the application’s input size is changed.

3.3 Algorithm Selection

We applied our framework to HYPRE [14], a library for solving large sparse lin-
ear systems of equations. With this set of experiments, we want to demonstrate
how our models can accurately predict bandwidth sensitivity scores for different
solver implementations and thereby help developers select and/or design algo-
rithmic implementations that are less sensitive to reduced memory bandwidth
for future multi-core systems.

We focused on the linear algebraic System (1J) interface, which provides access
to general sparse matrix solvers. We selected three best-performing solvers —
Algebraic Multigrid (AMG), Parasails and hybrid-AMG. Solver choice can be
made at run-time and to isolate just the phases related to different algorithms, we
first profiled the three runs using different algorithms to eliminate the common
phases or loops (only those that have the same computational properties). We
then timed these phases at the highest frequency and used our model to predict
how reduced per core memory bandwidth affects the unique phases in each of the
solver instantiations. Results for the analyzed phases are presented in Table 1.
The predictions that our model makes are, at worst, off by 3.6%. Parasails is the
best solver for our test system and beats the second best choice (hybrid-AMG)
by 1.28x. It is, however, also the most sensitive to the reduced bandwidth —
slowing down by 1.37x when run at 800MHz bus frequency. hybrid-AMG, on
the other hand, is the least sensitive. The speedup advantage Parasails has on
hybrid-AMG diminishes to 1.09x at 800MHz. If we were to make a reasonable
assumption that on future many-core systems the per core memory bandwidth
will be below the range that we could simulate using our test system, then
hybrid-AMG solver will deliver better performance for those systems.

Table 1. Exploring the choices of solver algorithms — all times in seconds and the
(slowdown) is wrt to time @1333MHz

Algo Measured Measured Predicted % Error Measured Predicted % Error
Time@1333 Time@1067 Time@1067 @1067 Time@800 Time@800 @800
(slowdown) (slowdown) (slowdown) (slowdown)
AMG 2.96 3.14 (1.06) 3.18 (1.07) 1.08 3.46 (1.17) 3.59 (1.21) 3.76
Parasails 2.06 2.29 (1.11) 2.30 (1.11) 0.40 2.84 (1.37) 2.87 (1.39) 1.06

hybrid-AMG ~ 2.85 2.99 (1.05) 3.04 (1.07) 1.65 3.28 (1.15) 3.40 (1.19) 3.58

72 A. Tiwari et al.

4 Related Work

Many researchers have investigated the idea of utilizing different power states of
memory modules for greater energy efficiency [13,23,27]. These efforts exploit
memory stalls to drive their optimization for energy usage. Our work is distinct
in that we take a model-based approach to predict performance degradation at
different bus frequencies; these models should enable fine-grain optimizations.
Deng et al. [12] use DVF'S techniques to limit main memory energy consumption
on single- and multi-core systems. They utilize modeling to determine optimal
DVEFS settings for the applications. Our work is distinct from theirs in that they
use a simulator rather than a real system. Thus, they are restricted to small ex-
ecutions (e.g. <100M instructions), whereas our work models large applications
for the full execution and validates the models on a real system.

Performance models for HPC applications have been utilized to improve sys-
tem designs, inform procurements, and guide application tuning [3,17,19]. Ker-
byson et al. [20] utilize application-specific knowledge to construct performance
models. These models are highly accurate, however, the mostly manual model-
ing exercise has to be largely repeated when the structure of the code or the
algorithmic implementation changes. Vetter et al. [2] combine analytical and
empirical modeling approaches to incrementally construct realistic and accurate
performance models. Code modification must be made in the form of adding
annotations or “modeling assertions” around key application constructs. Oth-
ers [5,16, 28] have also used application-specific approaches to generate perfor-
mance and power models, however, they are difficult to automate and generalize
because they require guidance from domain experts. Our models do not assume
any domain- or application-specific knowledge and strictly base their predictions
on what they learn about the computational properties of the application.

There has also been work done on using model-based methodology to pre-
dict the scalability of HPC applications. Barnes et al. [6] use regression-based
approaches on training data consisting of execution observations with different
input sets on a small subset of the processors and use the models to predict
performance on a larger number of processors. Others [18] have used machine
learning to model input parameter sensitivity of HPC applications. These mod-
eling techniques are application-specific and the training points for regression
and machine learning are drawn from the application’s input parameter space.

5 Conclusion

This paper presented a model-based framework that can be used to identify
computational phases within large-scale applications that are sensitive to re-
duced per-core memory bandwidth — a phenomenon which we anticipate will
be further exacerbated as systems scale up the number of cores on a processor.
Our framework assumes no domain-specific knowledge about the application and
strictly makes predictions about the memory bandwidth sensitivity of the appli-
cation’s phases based on characterization information that we can collect using
our binary analysis tools. We evaluated the framework using various scientific

Modeling the Impact of Reduced Memory Bandwidth on HPC Applications 73

workloads and showed that the framework accurately predicts (<5% absolute
mean error in prediction) how sensitive the diverse phases and algorithms within
these workloads are to the reduced per core memory bandwidth.

Acknowledgements. This work was supported in part by the DOE Office of
Science, Advanced Scientific Computing Research, under award number 62855
“Beyond the Standard Model — Towards an Integrated Modeling Methodology
for the Performance and Power”; PNNL lead institution; Program Manager So-
nia Sachs. The authors acknowledge partial support from LLNL under subcon-
tract B600667. This work was also supported in part by the DoD and used
elements at the Extreme Scale Systems Center, located at ORNL and funded by
the DoD. Partial support also came from the DOE Office of Science through the
SciDAC award titled SUPER (Institute for Sustained Performance, Energy and
Resilience). Part of this work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07TNA27344 (LLNL-CONF-655084).

References

1. Mantevo Project, http://mantevo.org/

2. Alam, S., Vetter, J.: A framework to develop symbolic performance models of
parallel applications. In: 20th International Parallel and Distributed Processing
Symposium, IPDPS 2006, p. 8 (April 2006)

3. Bailey, D.H., Snavely, A.: Performance modeling: Understanding the past and pre-
dicting the future. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS,
vol. 3648, pp. 185-195. Springer, Heidelberg (2005)

4. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The nas parallel benchmarks—summary
and preliminary results. In: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, Supercomputing 1991. ACM, New York (1991)

5. Barker, K., Davis, K., Kerbyson, D.: Performance modeling in action: Performance
prediction of a cray xt4 system during upgrade. In: IEEE International Symposium
on Parallel Distributed Processing, IPDPS (2009)

6. Barnes, B.J., Rountree, B., Lowenthal, D.K., Reeves, J., de Supinski, B., Schulz,
M.: A regression-based approach to scalability prediction. In: Proceedings of the
22nd Annual International Conference on Supercomputing, ICS 2008 (2008)

7. Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,

Franzon, P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R.,

Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R.S.,

Yelick, K.: Exascale computing study: Technology challenges in achieving exascale

systems (2008), http://www.cse.nd.edu/Reports/2008TR-2008-13.pdf

Breiman, L.: Random forests. Machine Learning 45(1), 5-32 (2001)

9. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. Chapman & Hall, CRC (1984)

10. Brown, P.N.; Falgout, R.D., Jones, J.E.: Semicoarsening Multigrid on Distributed
Memory Machines. SIAM J. Sci. Comput. 21(5), 1823-1834 (2000)

11. Chen, C., Chame, J., Hall, M.W.: CHiLL: A framework for composing high-level
loop transformations. TR 08-897, Univ. of Southern California (June 2008)

®

http://mantevo.org/
http://www.cse.nd.edu/Reports/2008TR-2008-13.pdf

74

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A. Tiwari et al.

Deng, Q., Meisner, D., Bhattacharjee, A., Wenisch, T.F., Bianchini, R.: Coscale:
Coordinating cpu and memory system dvfs in server systems. In: 45th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO (2012)
Diniz, B., Guedes, D., Meira Jr., W., Bianchini, R.: Limiting the power consump-
tion of main memory. In: ACM SIGARCH Computer Architecture News, vol. 35,
pp. 290-301. ACM (2007)

Falgout, R.D., Meier Yang, U.: hypre: A library of high performance precondition-
ers. In: Sloot, PM.A., Tan, C.J.K., Dongarra, J. J., Hoekstra, A.G. (eds.) ICCS
200. Part III. LNCS, vol. 2331, pp. 632-641. Springer, Heidelberg (2002)
Friedman, J.: Greedy function approximation: A gradient boosting machine. An-
nals of Statistics 29(5), 1189-1232 (2001)

Hoefler, T.: Bridging performance analysis tools and analytic performance model-
ing for HPC. In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop 2010. LNCS,
vol. 6586, pp. 483-491. Springer, Heidelberg (2011)

Hoisie, A., Kerbyson, D.J., Mendes, C.L., Reed, D.A., Snavely, A.: Special section:
Large-scale system performance modeling and analysis. Future Generation Comp.
Syst. 22(3), 291-292 (2006)

Ipek, E., de Supinski, B.R., Schulz, M., McKee, S.A.: An approach to performance
prediction for parallel applications. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par
2005. LNCS, vol. 3648, pp. 196-205. Springer, Heidelberg (2005)

Kerbyson, D.; Vishnu, A., Barker, K., Hoisie, A.: Codesign challenges for exascale
systems: Performance, power, and reliability. Computer 44(11), 37-43 (2011)
Kerbyson, D.J., Jones, P.W.: A performance model of the parallel ocean program.
Int. J. High Perform. Comput. Appl. 19(3), 261-276 (2005)

Laurenzano, M., Tikir, M., Carrington, L., Snavely, A.: Pebil: Efficient static binary
instrumentation for linux. In: 2010 IEEE International Symposium on Performance
Analysis of Systems Software (ISPASS), pp. 175-183 (March 2010)

Laurenzano, M.A., Meswani, M., Carrington, L., Snavely, A., Tikir, M.M., Poole,
S.: Reducing energy usage with memory and computation-aware dynamic fre-
quency scaling. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011,
Part I. LNCS, vol. 6852, pp. 79-90. Springer, Heidelberg (2011)

Lebeck, A.R., Fan, X., Zeng, H., Ellis, C.: Power aware page allocation. ACM
SIGPLAN Notices 35(11), 105-116 (2000)

McVoy, L., Staelin, C.: Imbench: Portable tools for performance analysis. In: Pro-
ceedings of the 1996 Annual Conference on USENIX Annual Technical Conference,
ATEC 1996, Berkeley, CA, USA, pp. 23-23. USENIX Association (1996)
Norman, M., Snavely, A.: Accelerating data-intensive science with Gordon and
Dash. In: 2010 TeraGrid Conference (2010)

Norris, B., Hartono, A., Gropp, W.: Annotations for productivity and performance
portability. In: Petascale Computing: Algorithms and Applications, Computational
Science, pp. 443-462. Chapman & Hall / CRC Press (2007)

Pandey, V., Jiang, W., Zhou, Y., Bianchini, R.: Dma-aware memory energy man-
agement. In: HPCA, vol. 6, pp. 133-144 (2006)

Tiwari, A., Laurenzano, M., Carrington, L., Snavely, A.: Modeling power and
energy usage of hpc kernels. In: Proceedings of the Eighth Workshop on High-
Performance, Power-Aware Computing, HPPAC 2012 (2012)

Yang, U.: Parallel algebraic multigrid methods in high performance precondition-
ers. In: Garbow, B.S., Dongarra, J., Boyle, J.M., Moler, C.B. (eds.) Numerical
Solution of Partial Differential Equations on Parallel Computers. LNCS, vol. 51,
pp. 209-236. Springer, Heidelberg (1977)

ParaShares: Finding the Important Basic Blocks
in Multithreaded Programs

Melanie Kambadur, Kui Tang, and Martha A. Kim

Columbia University, New York, NY
{melanie,martha}@cs.columbia.edu, kt2384@columbia.edu

Abstract. Understanding and optimizing multithreaded execution is a
significant challenge. Numerous research and industrial tools debug par-
allel performance by combing through program source or thread traces
for pathologies including communication overheads, data dependencies,
and load imbalances. This work takes a new approach: it ignores any
underlying pathologies, and focuses instead on pinpointing the exact lo-
cations in source code that consume the largest share of execution. Our
new metric, ParaShares, scores and ranks all basic blocks in a program
based on their share of parallel execution. For the eight benchmarks ex-
amined in this paper, ParaShare rankings point to just a few important
blocks per application. The paper demonstrates two uses of this infor-
mation, exploring how the important blocks vary across thread counts
and input sizes, and making modest source code changes (fewer than 10
lines of code) that result in 14-92% savings in parallel program runtime.

1 Introduction

With massive-scale data to analyze, explosive growth in server and mobile core
counts, and multithreading making its way into mainstream language specifi-
cations such as C++ [22], parallel software is officially ubiquitous. All parallel
applications share the same fundamental goal of making the best use of resources:
time, power, money, or some combination of these. To honor this goal, programs
must be performant, bug-free, scalable, and not overly difficult to write or de-
bug. Parallel program optimization poses particular challenges, as developers
must uncover and address a nearly unbounded catalog of potential inefficiencies
arising at any level of the stack, from relatively high level algorithmic and design
choices, to program inputs, to source language implementation, to thread library
selection, to operating system configurations, and the target hardware platform.
Correcting performance inefficiencies requires programmers to have knowledge
of, and potentially, take action at, multiple levels of the stack.

Many research and industrial tools have been introduced over the years to
help programmers correct parallel performance inefficiencies. Generally these
tools employ one of two broad strategies. The first is to look for specific kinds of
errors, sometimes within targeted program regions such as a program’s critical
path. For example, tools may identify load imbalances [4], long waits [16,8], lock
contention [23,6], I/O blocking [18], or unnecessary I/O [5]. One issue with this

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 75-86, 2014.
© Springer International Publishing Switzerland 2014

76 M. Kambadur, K. Tang, and M.A. Kim

approach is that each type of inefficiency may need its own tool or search proce-
dure. The second general strategy is to troll for multiple or broader types of prob-
lems by tracking hardware and system events. Some tools track thread traces and
program runtimes to predict which threads will scale poorly in future runs [9,12].
Other tools take a hardware perspective, monitoring instruction counts, CPU
utilization, thread preemption rates, and cache latencies [14,7,26,15,21,1]. Un-
fortunately, linking hardware events back to software can pose a number of
challenges. For example, event data may need to be aggregated across parallel
threads. Additionally, it is often difficult to connect certain events precisely to
software, meaning that areas of code identified as problematic may be large.

This paper utilizes a third strategy for performance debugging. ParaShares
identify very tiny regions of code that take up the majority of multithreaded
execution, agnostic to the type or cause of underlying performance pathologies.
Their only goal is to precisely point programmers to the lines in their program
that would benefit most from optimizations. A ParaShare is a rankable score
that measures each basic block’s share of a total parallel program’s execution.
The rankings are similar to hot block analyses that report the most frequently
executed basic blocks and their CPU use. However, ParaShares factor in the
degree of program parallelism at each block execution, providing a more accurate
reflection of a block’s contribution to wall-clock execution time. The weighting
scheme downgrades the importance of blocks that execute during highly parallel
program phases. As a result, it ranks blocks that mostly run during serial phases
relatively higher in importance as they tend to consume a greater fraction of
runtime.

Per block parallelism weights are enabled by parallel block vector (PBV) pro-
filing [17], a recent technique which was introduced for the purpose of improving
micro-architectural design. In the next section, we explain this new application
of PBVs in more detail, comparing ParaShares to existing analyses and moti-
vating the use of such a precise and fine-grained performance debugging tool
(Sect. 2). We then present a step by step procedure for collecting and analyzing
ParaShares (Sect. 3). Finally, using ParaShares for eight benchmark applications,
we examine how the key optimization points move as input size and parallelism
vary (Sect. 4.1), and make small, ParaShare-targeted source code changes that,
although only a few lines apiece, speed the benchmarks 14-92%(Sect. 4.2).

2 ParaShares

ParaShares are a new way to rank the basic blocks in a parallel program accord-
ing to their relative multithreaded runtime contributions. This section defines
ParaShares, describes how they differ from traditional hot block analyses, gives
readers a first look at experimentally collected ParaShares, and makes a case for
analyses that focus on fine-grained regions of code.

ParaShares: Finding the Important Basic Blocks in Multithreaded Programs 7

“A-- TEVEBE }----- Exec. Count
st--CERERE F----- B-° &
E

ParaShares

4 execs / 1 thread
4

9 execs / 4 threads
2.25

1AL HAHAHA]

Time

Fig.1l. ParaShares rank basic blocks to identify those with the greatest
impact on parallel execution, weighting blocks by the runtime parallelism exhibited
by the application each time the block was executed

2.1 The Basic Concept

Basic blocks are small program fragments, constrained to be a linear sequence
of instructions with a single entry point and a single exit point. As the program
executes, some blocks will be executed very frequently, while others may execute
rarely or not at all. The frequently executed blocks are called “hot” and are im-
portant optimization targets as they constitute a large share of an application’s
dynamic work. Hot block analysis has traditionally been used for a variety of
purposes, including JIT translation [24], garbage collection optimizations [13],
simulation points analysis [19], code cache management [20], and parallel per-
formance debugging, for example, in Intel’s VTune Amplifier [15].

ParaShares makes a subtle but important twist on traditional hot block anal-
yses, weighting each basic block by the degree of parallelism exhibited by the
program when the block was executed. Figure 1 illustrates the significance of this
change. On the left is a program trace that highlights the execution patterns of
two blocks of interest, A (gray) and B (black). For simplicity, we assume that
both blocks have the same number of instructions and equal execution times,
though in actual ParaShare computations this unlikely assumption is amended
(Sect. 3.1). Simple counting reveals that B executes 9 times whereas A executes
only 4, giving B a higher rank of importance. However, A may consume more of
the program’s execution time because its executions occur during serial phases
of the program. To account for this nuance, ParaShares divides the executions
by the degree of parallelism at execution time, in this example dividing B’s 9
executions by the 4 threads that ran while B executed, and dividing A’s 4 blocks
by 1 for the single running thread. As a rule, parallelism is counted at the start
of a basic block’s execution to resolve any overlaps in block executions between
threads. The resulting scores capture parallel execution shares more effectively,
and in this case rank A and B in the opposite order of importance versus tradi-
tional execution counts.

2.2 A First Look at Real Applications

Figure 2 gives a first look at ParaShare block rankings for real applications,
eight programs from the Parsec Version 3.0 [3] and Splash-2 [25] benchmark

78 M. Kambadur, K. Tang, and M.A. Kim

blackscholes canneal radiosity raytrace
2 40% .
2 30%
g % .
o 20% H
©
5 10% [s s
O (o L ey - [¥ [y
0 15 80 45 60 0 150 300 450 600 0 250 500 750 1000 0 250 500 750 1000
Basic Blocks Basic Blocks Basic Blocks Basic Blocks
streamcluster swaptions volrend water_nsquared
2 40%
S 30% ° . .
& 20% . *
© 3
= 10% 2 °
£ o I " L t
0 100 200 300 O 50 100 150 0 150 300 450 600 O 100 200 300
Basic Blocks Basic Blocks Basic Blocks Basic Blocks

Fig. 2. ParaShare rankings identify important blocks to target for multi-
threaded performance optimizations. These graphs show the ParaShare percent-
ages (ordered from greatest to least share) of all the basic blocks in eight benchmark
applications.

suites, namely blackscholes, canneal, radiosity, raytrace, streamcluster,
swaptions, volrend, and water nsquared. The Splash2x variant of Splash that
is packaged with Parsec was used for its provision of multiple input sets. All
of the applications are written in C and C++ and parallelized using pthreads
with a variety of design patterns, including a mix of data and task parallelism.
Each program was run alone using 24 threads and native input set sizes on a Dell
PowerEdge R420 server. The server is dual socket with Intel Sandybridge E5-243
chips, each with six cores and two-way hyper-threading for a total of 24 effective
cores. The system has 24GB of DRAM and runs Ubuntu 12.04.2 with the 3.9.11
version of the Linux kernel. The graphs show that just a few basic blocks (on
the x-axis) per program dominate the ParaShare rankings (on the y-axis). The
small number of important blocks is no surprise. However, ParaShare’s ability
to highlight blocks that are important in terms of wall-clock time instead of
processor execution times combined across threads makes it possible to massively
improve program performance with just minor code changes, as demonstrated
later in Sect. 4.2.

2.3 Benefits of Fine Granularity

The well known 90-10 rule of thumb says that 90% of program execution time
resides in just 10% of code. For our benchmarks, the rule holds: functions that
consume roughly 90% of the execution represent 2.3-17.3% of the lines in the
overall programs, or an average of 7.7%. Table 1 shows the exact line counts
per benchmark, as well as line counts for the functions consuming 90% of the
execution based on ParaShare computations.

The table also shows the number of lines of code contained in the basic blocks
that are responsible for 90% of the ParaShare execution. Using block-granularity

ParaShares: Finding the Important Basic Blocks in Multithreaded Programs 79

Table 1. A case for fine-grained identification of performance inefficiencies.
To examine the functions that take up 90% of the parallel execution, a programmer
must examine an average of 338.5 lines per program. To examine the basic blocks that
consumed the same amount, they would need to look at an average of 50 lines per
program.

Benchmark Total 90% Exec By 90% Exec By 50% Exec By
Application Lines Func Lines Block Lines Block Lines

blackscholes 564 68 34 21
canneal 1362 204 70 6
radiosity 11836 276 42 4
raytrace 10963 431 51 8
streamcluster 2539 439 12 5
swaptions 1550 359 28 10
volrend 4227 585 133 89
water nsquared 2079 338 29 18

hotspots rather than function hotspots saves programmers from looking at an
average of 289 lines per benchmark. In fact, basic block hotspots save enough that
we could coin a new 90-2 rule of thumb, because 90% of the parallel execution
is taken up by just 2.4% of the program source lines according to our precise
ParaShares analysis. The top 50% of program execution could be covered by
searching an even more targeted set of code; programmers would need to look
at only 20 source lines per application, or 1% of the overall program. The block
versus function savings is particularly important in unfamiliar applications with
lengthy functions and lots of loops — a feature common to some of the scientific
benchmarks used in this study. For example, volrend has one function with
three sets of doubly nested loops, and we found more than a few instances where
a single function contained four or more loops.

3 Collecting and Analyzing ParaShares

This section describes the framework for translating source code to ParaShare
rankings, examines the robustness of ParaShare rankings across trials, and ex-
perimentally demonstrates that ParaShare weighting can significantly change
top blocks’ relative importance versus traditional profiling.

3.1 The Collection Framework

From a user’s perspective, ParaShares are straightforward to collect. They re-
quire recompilation, a single program run with the usual inputs and usual out-
puts, and the execution of a post-processing script. Under the covers, ParaShares
are more complex, as depicted in the framework in Figure 3. The first two steps
come from previous work, while the remaining steps are new to this work.
Step 1. Compile the source program with Harmony. ParaShares use
parallel block vectors, or PBVs [17], to count how many times each basic block

80 M. Kambadur, K. Tang, and M.A. Kim

Source | ‘F Optimize ParaShare
>

code [Program rankings

A

| Optimized
source code $
ol Calculate

'l ParaShares

Instrumented
executable

Run
program

Annotated
assembly

Tune ISA
weights
for machine

ISA to
weights
dictionary

A

Calculate
| weighted
dyn. instr.
| counts

Per block
instruction
weights

Previous Work | This Paper

Fig. 3. The Collection Framework. To collect ParaShares, programmers re-compile
their program with a specialized compiler, then execute it once with normal inputs.
Profiling files produced at compile and execution time are analyzed in post-processing
to give the programmer a list of ParaShares and corresponding source code locations.

executes at each thread count exhibited over the course of a program’s execution.
PBVs are collected via compiler instrumentation, requiring source programs to
be compiled with Harmony [11], an extended version of LLVM. Compilation
with Harmony produces two outputs: an annotated assembly code file and an
instrumented executable file.

Step 2. Execute the program once to collect a PBV. After compilation
with Harmony, a single program run with normal inputs produces a PBV profile
as well as the usual program outputs.

Step 3. (Optional) Tune machine specific parameters. Optionally,
ParaShares can incorporate machine specific instruction weights to account for
differences in opcode processing or memory access times. If used, these weights
should be stored in a dictionary mapping instruction types to latency factors.
Opcode dependent latency factors are often already available online; for exam-
ple, latency factors for our machine are available in [10]. These latency factors
suggest multiplying conditional operations by two, add instructions by one, and
divide instructions by 30, as well as multiplicative factors for other types of in-
structions. Due to the overwhelming significance of total instruction count, our
applications’ ParaShare rankings showed minimal sensitivity to these latency
factors. However, latency factors could have more of an effect for other applica-
tions and architectures.

Step 4. Calculate per block static instruction counts. Next, the total
(possibly weighted) instruction count per basic block is calculated. The instruc-
tion contents of each block are available in the annotated assembly file produced
earlier by Harmony. With weighting, a sum of the weights of each instruction in
the block produces a total block weight (Weight). As an unweighted alternative,
a simple count of the instructions per block suffices.

ParaShares: Finding the Important Basic Blocks in Multithreaded Programs 81

Step 5. Calculate ParaShare rankings. The ParaShare for each block b is
computed using the block’s static instruction weight and dynamic thread weight.
Specifically, the sum of each block’s executions at thread count ¢ (Ezecsy) are
divided by t. This formula is loosely related to the runtime calculation used
in Quartz [2], but we apply it here at a smaller granularity and for a different
purpose. The ParaShare of block b is the product of this dynamic thread weight
and the static block weight, where max is the maximum number of threads that
ever executes concurrently in the program:

max

E
ParaShare, = Z xetcsb,t x Weight,,

t=1

As necessary for further analysis, the absolute ParaShare for each basic block
can be normalized to the program’s total ParaShare (the sum of ParaShares
across blocks).

Step 6. Use the ParaShare rankings for performance optimizations
or other analyses. Finally, ParaShares can be mapped back to the source code
via compiler debug information in the assembly code.

60% Between Trials -

8 50% Between Threads
t 40% Between Inputs mm
= 30%
é 20%
2 10%

0%

Fig. 4. Robustness of the metrics. Runtimes and basic block execution counts can
change across program trials, but the differences are small relative to the differences in
ParaShares collected across varying thread counts or input set sizes.

3.2 ParaShare Robustness

A program’s parallel behavior may be inconsistent across runs, changing block
execution counts or overall program runtime. Despite these variations, a single
profiling run can produce representative ParaShares, particularly if the pur-
pose of collection is to examine and optimize the hottest blocks with the high-
est ParaShares. Figure 4 plots the standard deviations of a program’s total
ParaShares as a fraction of the maximum program total ParaShare across ten
trials. Across runs with the same thread count and input, this division was never
more than 7% and averaged only 3.2%. The variation is small when compared
with variations between trials given different maximum thread counts (31% on
average) or different input sizes (48%). In addition to the magnitude of the

82 M. Kambadur, K. Tang, and M.A. Kim

overall program ParaShare staying consistent between trials, the ranking of in-
dividual basic blocks varies minimally, and changes only in lower ranked blocks
with ParaShares of 2% or less. This is not the case across thread counts and
input sizes as explored in Sect. 4.1.

-
0
o

[~

Max Increase (Top 90%)
Max Decrease (Top 90%)
Max Incr. (Top 100 blocks)
Max Decr. (Top 100 blocks)

& o o
S o © ©
K >
> >
>
44>

ParaShare Rank versus
Dynamic Instruction Rank

=)
o
L4 4w

Benchmark

Fig. 5. ParaShares versus unweighted rankings for the blocks representing 90%
of ParaShare execution and for the larger set of the top 100 blocks per application.
ParaShares often significantly impact the relative importance of a block versus dynamic
instruction count rankings not weighted by parallelism.

3.3 Impact of ParaShare Weights

ParaShare’s utility is not just to locate small regions of significant source code,
but to locate significant code that other tools may not highlight. Figure 5 shows
differences in the top block rankings according to ParaShares versus according to
dynamic instruction counting that is unweighted by parallelism. The graph shows
the minimum and maximum differences between two sets of ‘top’ ParaShare
blocks: first, those blocks representing 90% of the execution of 24-thread count
runs (as previously depicted in Fig. 2, this block count varies by application),
and second, the top 100 ParaShare blocks per program. From the first set of
differences, we see significant changes in four of the eight applications. One
block in radiosity is ranked 55 spots higher by ParaShares than by dynamic
instruction counts, and another is ranked 36 spots lower by ParaShares. In the
second, larger set of 100 block differences, rankings change significantly amongst
almost all of the applications. Individual blocks (in raytrace) jump as many as
135 spots in the ParaShare rankings, and fall as many as 72 spots (in canneal).

4 ParaShares in Real Applications

This section uses ParaShares to explore real applications in more detail, exam-
ining how important blocks differ across inputs and thread counts and using
ParaShares for targeted micro-optimizations.

ParaShares: Finding the Important Basic Blocks in Multithreaded Programs 83

‘ Top Blocks Shared with 1 Thread m |
Remaining Top Blocks

[F)] (=2} ~
S O © o o
T T T T

Number of Blocks in Top 90%
n
o

o
T

78,2 782 782
45 ’/'5 z;5 ’/'5 ’/'5 1;5 ’/'5 ’/'5 25 &5 45 ’6 &5 ’6 ’6 4},’6,7/,} ’6,’6,7/,5 %575
X £ £ £ LY LR 8, 8
ooe 009 ooe oos o065, 0 9068 0 068 o0
%%y % % %%

blackscholes canneal radiosity raytrace streamcluster swaptions volrend water_nsq

120 —— —— ——

Top Blocks Shared with native
Remaining Top Blocks

100

80 r

60 -

Number of Blocks in Top 90%

5.9 25,955 2599

/)6'6' 2
%2

6‘ S
@@% %% @2@ %6& ¢%% Q@% /%% @@%
90; % 0&’5 9@’5 9@’?7 0@”) 0@’& ’>; 0@’56 %
blackscholes canneal radiosity raytrace streamcluster swaptions volrend water_nsq

Fig. 6. Top ParaShare blocks vary across thread counts and input sizes.
These differences suggest that optimizations may need to be targeted to the level of
expected parallelism and to input size for maximum effect.

4.1 How Top Blocks Differ

A small handful of basic blocks dominates the ParaShare ranks and overall ex-
ecution. These top blocks can vary significantly across thread counts and input
sizes, suggesting that as environmental circumstances change, optimizations may
need to be re-applied or re-targeted for maximum effect. The top of Fig. 6 plots
the number of blocks that make up the top 90% of each application when run
with 1, 8, and 24 threads. The number of hot blocks can change significantly. For
example, when run with 1 thread, 71 blocks comprise the top 90% of radiosity,
but this number shrinks to 39 when the application runs with 24 threads. The
black part of each bar indicates how many of the top 90% were also in the top
90% of a serial run. Thus, the 39 key blocks in 24-threaded radiosity include
11 blocks that were not important to single-threaded radiosity. While it is
not evident in the plot, the ranking of blocks within the top 90% changes as
well: the block with the highest ParaShare in single-threaded radiosity falls
to 26th place in 24-threaded radiosity. The highest ranking block in single-
threaded streamcluster remains atop the list in 24-threaded streamcluster,
but the second place block falls off of the list entirely, dropping from 19% of the
ParaShare to 0.3%, and the third ranked block falls to the ninth spot.

84 M. Kambadur, K. Tang, and M.A. Kim

Hotspots shift even more with program input variations. Black portions of
the bars in the bottom of Fig. 6 show the overlap of other input sizes with
the largest, native input size. Raytrace shows the biggest sensitivity to input,
with the number of top blocks exploding from 22 to 113 between the native and
simsmall inputs. The first two top blocks stay the same across inputs, but their
combined ParaShare drops from 40.9% to 28.3%, while the third block drops
even more sharply from 10.2% to 2.6%. In swaptions, none of the top native
blocks appear amongst the top simsmall blocks. These variations indicate the
surprising degree to which the internal dynamics of a parallel application can
shift depending on simple parameters such as thread count and input size.

blackscholes streamcluster swaptions
o 100%
£3
TN 80%
cE
25 e
(=]
Bs 40%
8o 20% Z
= 0% Z z
1 2 4 8 1624 1 2 4 8 16 24 1 2 4 8 16 24
Maximum Threads Maximum Threads Maximum Threads
Unoptimized 77z Optimized ==

Fig. 7. ParaShares pinpoint inefficiencies that lead to significant opportuni-
ties for optimization. With the extremely targeted profiling provided by ParaShares,
we were able to improve benchmark performance by up to 92% through source code
changes less than 10 lines long.

4.2 Performance Tuning

Using ParaShares to target particularly important lines of source code, we made
extremely simple and short source code changes to reduce application run-
times 14-92%. Figure 7 shows the effect of optimizations to blackscholes,
streamcluster, and swaptions. Both optimized and unoptimized versions were
compiled with LLVM’s -03 optimization set. Our manual optimizations improve
computation time, but do not make any algorithmic or parallelization changes.
As a result, the savings shrink as thread counts increase, but they remain sig-
nificant (up to 82%) even at large thread counts.

In blackscholes, the top two blocks consume nearly 60% of the overall run-
time given 24 threads and native input sizes. These blocks are found in the kernel
function which calculates financial option values. By collapsing the original 20
temporary variables in the function to 3, we alleviated register pressure resulting
in a 44.6% performance improvement at one thread and 22% at 24 threads. For
streamcluster, the top blocks are found in the dist () function, which com-
putes the squared Euclidean distance between two Points, each of which is a

ParaShares: Finding the Important Basic Blocks in Multithreaded Programs 85

struct with pointers to arrays of float coordinates. Inspecting the line of code in
question (the body of a nested for loop), we guessed that the compiler missed an
opportunity for common subexpression elimination, then modified the code to
force it to do so. This change halved the loop body’s original four array lookups
and two subtractions and reduced register pressure, saving 92% of the serial run-
time, and 64% of the 24 thread runtime. Finally, the top blocks in swaptions cor-
respond to a few nested loops within the HJM SimPath Forward Blocking.cpp
file. We experimentally unrolled these loops one to four times to find the op-
timum unrolling level for each. In addition to the inability of the compiler to
dynamically test a variety of unrolling levels, these opportunities may have been
missed because the loops involve nested accesses to custom data structures. In
total, our loop optimizations resulted in a 15% savings for a single threaded
swaptions execution, and a 19.7% savings for a 24-thread execution.

Given the simplicity of our optimizations, the performance savings are dispro-
portionately large. Across a datacenter or many nodes in a distributed system,
the savings could be even more important, and potentially financially significant
as well. Best of all, we were able to make the optimizations quickly, because
ParaShares allowed us to focus our efforts on just a few lines of code rather than
thousands.

5 Conclusions

ParaShares provides a new lens through which to analyze multithreaded ap-
plication performance. In contrast to most parallel performance optimization
techniques, ParaShares do not target a specific type of inefficiency or level of
the system stack. Instead, ParaShares track parallelism from the code’s point of
view, weighting each basic block execution by the whole program’s parallelism at
the time of the execution. This fine-grained scoring makes it simple to localize
important lines of code, even in large or unknown programs. Once important
code is localized, more extensive analysis and optimizations can be precisely
targeted, leading to small code changes with big performance effects.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent, N.R.: HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation 22(6) (April 2010)

2. Anderson, T.E., Lazowska, E.D.: Quartz: A tool for tuning parallel program per-
formance. SIGMETRICS 18, 115-125 (1990)

3. Bienia, C.: Benchmarking Modern Multiprocessors. PhD thesis. Princeton Univer-
sity (2011)

4. Bohme, D., Wolf, F., de Supinski, B.R., Schulz, M., Geimer, M.: Scalable critical-
path based performance analysis. In: IPDPS (2012)

5. Chabbi, M., Mellor-Crummey, J.: Deadspy: A tool to pinpoint program inefficien-
cies. In: CGO (2012)

86

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M. Kambadur, K. Tang, and M.A. Kim

Chen, G., Stenstrom, P.: Critical lock analysis: Diagnosing critical section bottle-
necks in multithreaded applications. In: SC (2012)

Chen, K.-Y., Chang, J., Hou, T.-W.: Multithreading in Java: Performance and
scalability on multicore systems. Transactions on Computers 60(11) (November
2011)

Du Bois, K., Eyerman, S., Sartor, J.B., Eeckhout, L.: Criticality stacks: Identify-
ing critical threads in parallel programs using synchronization behavior. In: ISCA
(2013)

Du Bois, K., Sartor, J.B., Eyerman, S., Eeckhout, L.: Bottle graphs: Visualizing
scalability bottlenecks in multi-threaded applications. In: OOPSLA (2013)
Granlund, T.: Instruction latencies and throughput for AMD and Intel x86 pro-
cessors (February 2012), http://gmplib.org/~tege/x86-timing.pdf

Harmony Parallel Block Vector Collection Tool,
http://arcade.cs.columbia.edu/harmony

He, Y., Leiserson, C.E., Leiserson, W.M.: The Cilkview scalability analyzer. In:
SPAA, pp. 145-156 (2010)

Huang, X., Blackburn, S.M., McKinley, K.S., Moss, J.E.B., Wang, Z., Cheng, P.:
The garbage collection advantage: Improving program locality. In: OOPSLA (Oc-
tober 2004)

Huang, Y., Cui, Z., Chen, L., Zhang, W., Bao, Y., Chen, M.: HaLock: Hardware-
assisted lock contention detection in multithreaded applications. In: PACT (2012)
Intel® Corporation. Intel® Parallel Amplifier (2011),
http://software.intel.com/en-us/articles/intel-parallel-amplifier/
Joao, J.A., Suleman, M.A., Mutlu, O., Patt, Y.N.: Bottleneck identification and
scheduling in multithreaded applications. In: ASPLOS (2012)

Kambadur, M., Tang, K., Kim, M.A.: Harmony: Collection and analysis of parallel
block vectors. In: ISCA (June 2012)

Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Bruce, R.,
Karen, 1., Karavanic, L., Kunchithapadam, K., Newhall, T.: The Paradyn parallel
performance measurement tools. IEEE Computer (1995)

Perelman, E., Hamerly, G., Van Biesbrouck, M., Sherwood, T., Calder, B.: Using
simpoint for accurate and efficient simulation. In: SIGMETRICS, vol. 31. ACM
(2003)

Shi, H., Wang, Y., Guan, H., Liang, A.: An intermediate language level optimiza-
tion framework for dynamic binary translation. SIGPLAN Notices 42(5) (May
2007)

STMicroelectronics, Inc. PGProf: Parallel profiling for scientists and engineers
(2011), http://www.pgroup.com/products/pgprof .htm

Stroustrup, B.: C++11 the new ISO C++ standard (2013),
http://www.stroustrup.com/C++11FAQ.html

Tallent, N.R., Mellor-Crummey, J.M., Porterfield, A.: Analyzing lock contention
in multithreaded applications. In: PPoPP (2010)

Topham, N.; Jones, D.: High speed CPU simulation using JIT binary translation.
In: MOBS, vol. 7 (2007)

Woo, S., Ohara, M., Torrie, E., Singh, J., Gupta, A.: The SPLASH-2 programs:
Characterization and methodological considerations. In: ISCA (1995)

Yoo, W., Larson, K., Baugh, L., Kim, S., Campbell, R.H.: ADP: Automated diag-
nosis of performance pathologies using hardware events. In: SIGMETRICS (2012)

http://gmplib.org/~tege/x86-timing.pdf
http://arcade.cs.columbia.edu/harmony
http://software.intel.com/en-us/articles/intel-parallel-amplifier/
http://www.pgroup.com/products/pgprof.htm
http://www.stroustrup.com/C++11FAQ.html

Multi-Objective Auto-Tuning with Insieme:
Optimization and Trade-Off Analysis for Time,
Energy and Resource Usage

Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer

University of Innsbruck, Institute of Computer Science, Austria
{philipp, juan,tf}@dps.uibk.ac.at

Abstract. The increasing complexity of modern multi- and many-core
hardware design makes performance tuning of parallel applications a
difficult task. In the past, auto-tuners have been successfully applied to
minimize execution time. However, besides execution time, additional
optimization goals have recently arisen, such as energy consumption or
computing costs. Therefore, more sophisticated methods capable of ex-
ploiting and identifying the trade-offs among these goals are required.
In this work we present and discuss results of applying a multi-objective
search-based auto-tuner to optimize for three conflicting criteria: exe-
cution time, energy consumption, and resource usage. We examine a
method, called RS-GDE3, to tune HPC codes using the Insieme paral-
lelizing and optimizing compiler. Our results demonstrate that RS-GDE3
offers solutions of superior quality than those provided by a hierarchical
and a random search at a fraction of the required time (5%) or en-
ergy (8%). A comparison to a state-of-the-art multi-objective optimizer
(NSGA-II) shows that RS-GDE3 computes solutions of higher quality.
Finally, based on the trade-off solutions found by RS-GDE3, we provide
a detailed analysis and several hints on how to improve the design of
multi-objective auto-tuners and code optimization.

1 Introduction

The performance of a software application crucially depends on the quality of its
source code. The increasing complexity and multi/many-core nature of hardware
design have transformed code generation, whether done manually or by a com-
piler, into a complex, time-consuming, and error-prone task which additionally
suffers from a lack of performance portability. To mitigate these issues, a new re-
search field, known as auto-tuning, has gained increasing attention. Auto-tuners
are an effective approach to generate high-quality portable code. They are able
to produce highly efficient code versions of libraries or applications by generating
many code variants which are evaluated on the target platform, often delivering
high performance code configurations which are unusual or not intuitive.
Whilst earlier auto-tuning approaches were mainly targeted at execution time
[1], other optimization criteria such as energy consumption or computing costs
are gaining interest nowadays. In this new scenario, a code configuration that

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 87-98, 2014.
© Springer International Publishing Switzerland 2014

88 P. Gschwandtner, J.J. Durillo, and T. Fahringer

is found to be optimal for low execution time might not be optimal for an-
other criterion. Therefore, there is no single solution to this problem that can
be considered optimal, but a set, namely the Pareto set, of solutions (i.e. code
configurations) representing the optimal trade-off among the different optimiza-
tion criteria. Solutions within this set are said to be non-dominated: any solution
within it is not better than the others for all the considered criteria.

This multi-criteria scenario requires a further development of auto-tuners,
which must be able to capture these trade-offs and offer the user either the
whole Pareto set or a solution within it. Although there is a growing amount of
related work considering the optimization of several criteria [2, 3, 4, 5, 6], most
of them consider two criteria simultaneously at most, and many fail in capturing
the trade-off among the objectives.

In this paper we investigate the auto-tuning of parallel codes using the Insieme
compiler to optimize three different criteria: execution time, resource usage and
energy consumption. For tuning the codes, we consider as optimization knobs: dy-
namic concurrency throttling (DCT, later on referred to as used cores), loop tiling,
and frequency and voltage scaling (DVFS). We examine the obtained results in
detail to analyze and illustrate the complex interactions between optimized soft-
ware and hardware. To the best of our knowledge, this is the first work exploring an
auto-tuner to optimize parallel programs for more than two objectives and analyz-
ing trade-offs among these objectives. Our main findings of this work demonstrate
that: (1) RS-GDE3 can be successfully applied to a three-objective optimization
problem without any modifications or restrictions and (2) the trade-off between
execution time and energy consumption, dependent on efficient parallelization,
can be explained by investigating resource usage. Furthermore, we compare RS-
GDE3 with a state-of-the-art multi-objective optimizer (NSGA-II) that has been
adjusted to deal with three objectives. The results show that RS-GDE3 derives
solutions with better quality than an NSGA-II-based solution.

The paper is structured as follows: Section 2 describes the auto-tuning infras-
tructure used for this work. The experiment design, the objectives of interest, the
target codes and hardware platform are outlined in Section 3. Section 4 presents
our results and their detailed analysis. Finally relevant related work is listed in
Section 5 and Section 6 concludes.

2 Insieme Compiler

2.1 Auto-Tuning Infrastructure

Our work is based on the Insieme compiler, a multi-objective auto-tuning opti-
mizing compiler and runtime system for parallel codes [7].

Figure 1 illustrates the overall architecture of Insieme. An input code is loaded
by the compiler (1), analyzed and prepared (2) to be tuned prior to execution.
During this process, a set of tunable parameters are identified, encompassing loop
tile sizes, number of cores involved in the computation as well as the frequency
setting of the CPUs. Afterwards, the optimizer conducts auto-tuning (hence we
use the terms auto-tuner and optimizer interchangeably) by iteratively selecting
sets of configurations for each code to be evaluated (executed) on the target

Multi-Objective Auto-Tuning with Insieme 89

compile time : runtime
Input Analyzer Backend Multi-
Code Versioned
Code

co de A A
Regions Best L N @
Solutions Dynamlc
Selection

Optimizer A T

Runtime System |
Search [ﬂ (©)) D Measure-
Points ments ¢

Parallel Target Platform |

Fig. 1. Overview of the Insieme compiler, adapted from [7]

system (3). At the end, the optimizer derives a Pareto set consisting of the best
configurations found. These are passed to the backend (4) and compiled into
multi-versioned code (5). The runtime system can then dynamically select the
preferred code version to be executed (6).

2.2 Optimizers

The main search engine of Insieme, described in previous work of the authors [7],
is called RS-GDE3 and aims at computing the Pareto set of code configurations.
RS-GDE3 combines an approximation technique from the class of Differential
Evolution (DE) and a search space reduction mechanism based on Rough Set
theory. The goal of this latter technique is to reduce the search to a small area
where RS-GDE3 assumes the location of the optimal configurations. This method
was successfully applied to an optimization problem with two conflicting objec-
tives in [7], whereas we apply it for the first time to three objectives in this
work. However, RS-GDE3 is a true multi-objective optimizer that can handle an
arbitrary number of objectives within the scope of Pareto optimality.

In addition to RS-GDE3, the Insieme compiler includes two other search en-
gines, which are used in this paper to compare with, based on a hierarchical and
a random search. The hierarchical search evaluates points on an equidistant grid
defined over each tunable parameter. Random search generates a set of code
configurations by randomly setting the values of each tunable parameter.

3 Experiment Design

3.1 Objectives

In this work we try to optimize parallel programs for three objectives and in-
vestigate the trade-offs between them: execution time, resource usage, and
energy consumption.

Ezecution time is inherently an objective of interest, as providing results
within the shortest possible time is desirable for most programs.

We furthermore include resource usage, denoted by r(z) = x - t,(z) with z
being the number of cores involved in executing the program and t,(z) denoting

90 P. Gschwandtner, J.J. Durillo, and T. Fahringer

Table 1. Code Characteristics

Problem Compu- No. of CPU Freq. Total No. of

Code Memory Tile Sizes

Size tation Cores (Ghz) Configurations
mm 12002 O(N?) O(N?%) (1-600)3 1.11- 10
dsyrk 12002 O(N?) O(N?) (1-600)® 1227 1.11- 10
jacobi-2d 100002 O(N?) O(N?) (1-5000)% 1 a9 + Turbo 1.28 - 101°
3d-stencil 600° O(N®) O(N®) (1-300)* Boost 4.61-107
2 1-1000, 1
n-body 500000 O(N?) O(N) | 500000 2.56 - 10

the parallel execution time, as an objective to reflect computing costs. Most eco-
nomic cost models that focus on computational resources, such as the ones used
by cloud providers, are based on CPU hours [8]. Similarly, many academic com-
puting centers base their accounting on CPU hours even if users are not charged.
Hence, we believe that resource usage (reflecting computing costs — economic or
otherwise) is an important optimization goal for parallel applications.

As a third objective of interest we consider energy consumption. Reducing it is
of interest to both HPC center operators and users (as future cost models might
include energy consumption due to its increasing workload dependence). To op-
timize also for energy, we require information about the energy consumption of
parallel programs. The CPU is the largest contributor of the overall energy con-
sumption of a non-accelerated HPC node that can also be influenced the most
by the workload executed. Hence, we focus our energy optimization efforts on
this component and rely on the Intel RAPL interface. It offers estimations with
a resolution of 15.3 microjoules at a rate of 1 KHz for the entire CPU package.
Recent related work showed RAPL to be accurate enough for purposes such as
ours [9]. It should be noted that we use RAPL due to its wide availability, how-
ever the Insieme compiler can use any energy measurement/modeling system
that meets the necessary accuracy and resolution requirements.

Let E; be the energy consumption of a code executed on any number of cores
of CPU socket i € P where P denotes the set of all sockets that have cores
participating in the execution of a parallel program. Then Eipq = Zz‘e p B
denotes the overall energy consumption of the code. For brevity, we refer to
execution time only as time and to energy consumption as energy throughout
the rest of the paper.

3.2 Benchmarks and Target Platform

Our benchmarks consist of a matrix multiplication kernel (mm, using an ijk loop
order), a BLAS-3 linear algebra kernel (dsyrk, computing B = A* AT + B), two
stencil codes (jacobi-2d and a generic 3x3x3 3d-stencil) and an implementation
of an n-body simulation. Except for the mm and dsyrk codes, all of them exhibit
distinct computation and memory complexities as listed in Table 1 and hence
considerably different memory reuse and access patterns. Furthermore, although
identically categorized in terms of complexity, the memory access patterns of mm
and dsyrk are very different since the (on-the-fly) transposition of A eliminates
the unaligned matrix access conducted within the mm code. Table 1 also lists
the tunable parameters and their ranges for each code.

Multi-Objective Auto-Tuning with Insieme 91

Table 2. Parameter Settings of the Optimizer

Algorithm Parameters
RS-GDE3 |C| =30, CR=0.5, F =0.5
21 values per tiling parameter (2D tiling problems)
8 values per tiling parameter (3D tiling problems)
6 different numbers of cores
6 different frequencies

Hierarchical Search

The target platform is a quad-socket shared-memory system equipped with
Intel Xeon E5-4650 Sandy Bridge EP processors, each offering 8 cores clocked
at 1.2-2.7 GHz (up to 3.3 GHz with Turbo Boost). Each core features private
L1 and L2 caches of 64 and 256 KB each in addition to the CPU-wide shared
L3 cache of 20 MB. The system provides 128 GB of main memory, uses a Linux
operating system with a 3.5.0 kernel and our backend compiler is GCC 4.6.3.
Hyper-Threading was not used in any of our experiments.

3.3 Configuration of the Optimizers

We have run the three optimizers available within the Insieme framework: RS-
GDE3, hierarchical search, and random search. The parameters for RS-GDE3
and hierarchical search are described in the following and summarized in Ta-
ble 2. In the case of RS-GDE3, we need to set the size of set C' of code configu-
rations (processed by RS-GDE3), the parameters CR and F required by the DE
method, and the termination condition of the algorithm. These values have been
determined during a preceding tuning phase , have an impact on the optimiza-
tion results and may differ for different architectures. As termination condition,
RS-GDE3 stops when it does not generate a better code configuration for m
consecutive iterations (to be set by the user, 5 in our case).

For the hierarchical search only the sampling grid needs to be defined. It
depends on the number of tunable parameters and defines the total number
of configurations to be evaluated. We have configured the hierarchical search
with a grid such that at least 15000 different configurations are examined. For
generating the grid we only need to specify how many equidistant values we
consider for every tunable parameter (note that for the number of cores, we only
select powers of 2).

Finally, for the random search, we need to specify the number of configurations
to be examined (also 15000 for this work) and the probability distribution to be
used (uniform probability distribution).

3.4 Comparison Criteria

To systematically compare different search-based optimization strategies we use
two different metrics: (1) the efficiency of each strategy, and (2) the quality of
the configuration set obtained.

Efficiency. N denotes the total number of configurations evaluated and re-
flects the effort of the auto-tuner. Furthermore, time-to-solution and energy-to-
solution respectively refer to the amount of time and energy spent by a search
method to arrive at a final configuration set S.

92 P. Gschwandtner, J.J. Durillo, and T. Fahringer

Table 3. Performance Comparison of the Different Evaluated Algorithms

Hierarchical Search Random RS-GDE3
Code N S| |8 V(S) N |S||S)! V(S) N |S||S)T V(S)
mm 18432 18 2% 0.00 15000 4.4 0% 0.33 956.2 23.4 98% 0.48
dsyrk 18432 21 5% 0.00 15000 2.2 11% 0.17 1149.6 24.8 98% 0.31
jacobi-2d 15876 31 78% 0.69 15000 17.2 5% 0.55 1243.6 29.8 75% 0.76
3d-stencil 15876 30 22% 0.75 15000 24.8 60% 0.61 981.4 282 77% 0.76
n-body 15876 26 0% 0.50 15000 30 17% 0.70 1801.4 29.6 87% 0.77

Quality. Assessing the quality of a configuration which optimizes only one ob-
jective can be achieved by simply analyzing its value in that objective. However,
comparing configurations of a multi-objective optimization problem is more com-
plex since it requires comparing sets —the computed trade-offs— instead of single
values. The hypervolume V(S) of a set of non-dominated configurations S is a
metric proposed in [10] that solves this problem. It consists of the normalized
volume —an area in case of a dual-objective problem— containing configurations
that are worse than those contained in S. In other words, for any configuration
enclosed by that volume there is a configuration in S with better values for all
the considered objectives. Obviously, the larger the hypervolume the better the
quality of the configurations in S. The largest hypervolume value (V(S) = 1)
belongs to the utopia point (unattainable optimal configuration), i.e. the point
consisting of the optimum value for each criterion.

We also propose another metric to evaluate the quality of S: the freedom in
selection. The metric aims to quantify how many different high quality configu-
rations a technique exposes to the user. Simply using |S| to measure this does
not completely address the problem: e.g. a configuration set obtained by strategy
A could contain a lot of points dominated by the single point computed with
strategy B. For this reason, we also employ |S|’, denoting the relative amount of
configurations which are not dominated by the configurations computed by any
other of the auto-tuners used. Hence, the higher the percentage, the higher the
quality of the configurations contained within S.

Since random search and RS-GDE3 are stochastic algorithms, results of a
single run are not sufficient for a meaningful comparison. In our evaluation we
use the arithmetic means N, |S], |S|" and V (S), derived over five runs, as directly
comparable substitutes.

4 Experimental Results

4.1 RS-GDE3 Evaluation

Table 3 gives an overview of the performance of RS-GDE3 compared to hierar-
chical and random search with respect to the three considered metrics. It shows
that RS-GDE3 needs only 5-12% of the number of evaluations compared to the
hierarchical and random search strategies to provide configurations that domi-
nate between 77% and 100% of the configurations offered by the other two. In
addition, the configuration sets offered by RS-GDE3 span larger hypervolumes
than the configuration sets provided by hierarchical and random search.

Multi-Objective Auto-Tuning with Insieme 93

Beyond the already low number of evaluations compared to hierarchical and
random search, RS-GDE3 requires even less time and energy for finding the
final configuration set since it quickly converges on good solutions during the
search. Hence, only 0.7-7.2% of the time and 1.2-8% of the energy are required
by RS-GDE3 compared to hierarchical and random search. It should be noted
that the optimization problem cannot be simplified by sequentially optimizing
parameters (e.g. finding an optimal tile size first and then tuning the number of
cores), as the optimal choices for these settings are inter-dependent [7].

4.2 Energy-Time Trade-Off as a Function of Resource Usage

Related work has already shown the existence of a trade-off between time and
power consumption [5]. It is easily explained by different levels of CPU usage:
faster configurations commonly use a higher number of cores, naturally demand-
ing a higher power budget. Trade-offs between time and energy have been less
studied in literature and are more difficult to obtain/explain since energy also
depends on time. Thus, any optimization providing a trade-off between time and
energy must in-/decrease power consumption disproportionally high compared
to the de-/increase in time. Our experiments show that the trade-off between
time and energy varies with the resource usage and can expose different be-
haviors. In the rest of this section, we analyze these results and describe which
parameters/situations are respounsible for such trade-offs.

For the sake of clarity, we summarize our results using a graphical representa-
tion as the one presented by Figure 2a. It shows the time, energy, and resource
usage behavior of the set of code configurations computed by RS-GDE3 for dif-
ferent benchmark codes (in this case mm). These configurations (described in
Table 4) are first ranked according to the number of sockets used; configurations
using the same number of sockets are further sorted by increasing resource usage.

In all our evaluated problems (see Figure 2) we can observe two different parts:
a part where time and energy are highly positively correlated, and a second one
indicating a trade-off between the two. In all the cases, the first part always
corresponds to configurations using a single CPU socket. As a consequence, we
structure our discussion in two blocks: the single-socket and the multi-socket
case. It should be noted that RS-GDE3 computed configurations that use up to
four sockets for all problems except for jacobi-2d. This is explained by an average
scaling behavior of the jacobi-2d code, which reaches its minimal execution time
by using 10 cores instead of the maximum of 32. The remaining four codes scale
well on our target hardware.

The Single-Socket Case. The results show that the configurations using only
one socket can be further divided into a subset where reducing time also reduces
the energy, and a subset where reducing time increases the energy. Without loss
of generality we focus our discussion on the example of matrix multiplication
(Figure 2a). When taking resource usage into consideration, we observe that
time and energy are highly correlated when resource usage is low; however, this
only holds until the resource usage reaches a critical point (configuration no. 5

94 P. Gschwandtner, J.J. Durillo, and T. Fahringer

T T T T T T T T T T I — e e e
1L 1 socket (s) 2s 3s As |
82 | —— time " A i
07 —.— energy . S A - i
06 - £ - resource usage S N e -
0.5 |- .
0.4 .
0.3 |- =
0.2 |- .
0.1} .
0
configurations

(a) mm

1 1
0.8 |- . 0.8 |- =
0.6 |- . 0.6 |- =
0.4 B 0.4 |
0.2 - = 0.2+ N

0 0

1 1
0.8 |- . 0.8 |- .
0.6 |- . 0.6 |- .
0.4 B 04+ i
0.2 - = 0.2 |

0 0

(d) dsyrk (e) jacobi-2d

Fig. 2. RS-GDE3 computed trade-offs among time, energy and resource usage

in Figure 2a), when both, energy and time, become conflicting objectives (i.e.
energy can be further reduced from that point onwards while time increases).
A detailed analysis of the computed configurations (listed in Table 4) reveals
that they use almost identical tile sizes. These values correspond to an optimal (lo-
cal or global) tile size configuration found by the auto-tuner. Thus, once this opti-
mal tile size configuration has been found, there are only two tunable parameters
influencing the behavior of a code: the number of cores and the clock frequency.
Due to our sorting, the left-most configuration in Figure 2a is the one with the
lowest resource usage (only one core in use, at the highest frequency). From this
point, increasing the number of used cores reduces the time, and at the same time
also the energy. The reason for this behavior can be explained with the power
consumption breakdown of the CPU: using a single core requires most off-core
entities of a socket to be active, such as the last level cache or the memory con-
troller. Generally, increasing the number of used cores does not require providing
additional power to activate those entities. Hence, doubling the number of used
cores for example does not usually require double the power. Thus, as both time
and power per used core decrease, the overall energy is also reduced. In fact,
our experiments show that configurations no. 1-5 in Figure 2a, where time and

Multi-Objective Auto-Tuning with Insieme 95

Table 4. Details of all mm configurations depicted in Figure 2a

Conf. No. 1 2 3 4 5 6 7 8 9 10 11 12 13
Tile Size A 37 30 24 31 30 30 30 30 30 30 30 30 21
Tile Size B 248 248 248 248 236 248 248 248 248 248 248 248 248
Tile Size C 6 6 6 6 6 6 6 6 6 6 6 6 6
No. of Cores 1 2 3 6 8 8 8 8 8 8 8 8 12
CPU Freq. (GHz) 2.7 2.7 2.7 27 27 27 25 23 22 20 19 16 2.7
Conf. No. 14 15 16 17 18 19 20 21 22 23 24 25 26
Tile Size A 18 30 18 30 32 31 25 21 30 15 24 21 24
Tile Size B 248 248 248 248 248 248 248 248 248 248 248 248 248
Tile Size C 6 6 6 6 6 6 6 6 6 6 6 5 6

No. of Cores 16 16 16 16 16 19 20 23 23 24 24 32 32
CPU Freq. (GHz) 2.7 26 23 22 1.7 27 26 27 23 27 23 27 27

energy do not conflict, only differ in the number of used cores. Note that this
holds only for scalable codes such as the ones used in our experiments. If a code
does not scale sufficiently, parallelization may lead to a disproportionally low
decrease in time compared to the increase in power, and the overall energy will
increase as well. Since we target HPC codes, we assume scalability for the rest
of the analysis. Our first observation can then be stated as follows: 1. Assuming
scalable codes, parallelism is a way of reducing both time and energy when using
a single socket computing system if the other parameters are kept invariable.

The second way of modifying the behavior with regard to the left-most con-
figuration is via frequency tuning. Lowering the frequency — despite possibly
decreasing the energy — increases time. The results of RS-GDE3 show that fre-
quency tuning leads to dominated configurations if it is applied before fully
exploiting parallelism. The reason explaining this is very simple. For every other
configuration, the optimizer finds a configuration with increased parallelism re-
ducing the time and obtaining a higher energy reduction than by using lower
frequencies. Our second observation can be stated then as: 2. In a single-socket
scenario, parallelism allows for higher rates of energy reduction than frequency
tuning and, in addition, reduces time.

Once the maximum number of cores has been reached, the auto-tuner ex-
ploits frequency tuning. These configurations correspond to the second part of
the graph, where energy and time are conflicting objectives. As follows from our
previous discussion, decreasing the time is no longer possible since parallelism
has been already exploited and all cores are working at their maximum frequen-
cies. Decreasing the frequency will naturally increase the execution time but
energy reductions can be achieved, caused by the cube root rule [11]: the power
consumption of a CPU scales cubically as long as its voltage changes with the fre-
quency in a correlated fashion; however, the performance of a code usually scales
at most linearly with the CPU clock frequency. Hence, a trade-off between time
and energy is formed and continues up to the energy-optimal frequency setting.
This energy-optimal setting is workload-dependent and was found to be around
1.5 GHz on our target platform by our auto-tuner, as lower frequencies show an
increase in energy (because the CPU voltage cannot be scaled down accordingly
by the hardware). Thus, as lower frequencies would worsen all three objectives,
such configurations are rejected by the optimizer. Our third observation in this

96 P. Gschwandtner, J.J. Durillo, and T. Fahringer

case is: 3. When parallelism has been already exploited, energy can still be further
reduced by the sake of slightly increasing time, via applying frequency tuning.

The Multi-socket Case. Again, without loss of generality we focus on the
results depicted by Figure 2a. According to the results illustrated in that graph,
moving to a configuration using an increased number of sockets has been suc-
cessfully exploited by the auto-tuner. In such situations, RS-GDE3 has always
found a configuration which reduces the time compared to configurations using a
lower number of cores (see for example the first configurations using two, three,
or four sockets in Figure 2a). However, this jump to a higher number of sock-
ets always comes with an increase in energy. Thus, our observation (1) in the
previous section does not hold in the case of using multiple sockets due to the
required energy to operate additional sockets. This fact allows us to state our
fourth observation: 4. Multiple sockets can be exploited to decrease the execution
time of an application but not to further reduce its energy.

Our experiments also reveal that, when using more than one socket, the num-
ber of cores leading to optimal trade-off configurations does not gradually in-
crease as in the single socket case, but almost instantly reaches the maximum
number. This results in our fifth observation: 5. Optimal trade-off configurations
using more than one socket span over the mazximum number of available cores.

We also observe that the energy can be reduced by the sake of increasing
the time. This situation corresponds to observation (3), where the auto-tuner
reduced the frequency for energy savings. Therefore, that observation also applies
to the case of configurations involving several sockets at a full utilization level.

In addition to the results presented so far, we investigated whether Turbo
Boost might have any effect on our observations. Our experiments showed that,
while Turbo Boost allows RS-GDE3 to generate additional solutions (with lower
execution time and higher energy compared to not using Turbo Boost, therefore
extending the solution set in one direction), all our observations are valid whether
Turbo Boost is enabled or disabled.

4.3 Comparison of RS-GDE3 with NSGA-II

We have shown the potential of our RS-GDE3 method for three-objective auto-
tuning compared to a hierarchical and a random search. The aim of this section
is to empirically evaluate RS-GDE3 when compared to other multi-objective
optimizers that have been adjusted to deal with three objectives. Neverthe-
less, it should be noted that without such modification, none of them can be
used for auto-tuning with three conflicting objectives. To that end, we chose
NSGA-II [12], the most popular algorithm for multi-objective optimization. For
a fair comparison, we configured NSGA-II to evaluate the same number of con-
figurations as RS-GDE3. Table 5 lists the results of this comparison for each of
our benchmark codes. It shows that the Pareto sets obtained by RS-GDE3 span
larger hypervolumes than the ones achieved by NSGA-II, hence providing better
solutions. Furthermore, RS-GDE3 offers at least the same number of solutions
as NSGA-II. Thus, overall, RS-GDE3 outperforms NSGA-II.

Multi-Objective Auto-Tuning with Insieme 97

Table 5. Performance Comparison of RS-GDE3 with NSGA-II

RS-GDE3 NSGA-IT
Code |S| V(S) |S| V(S)
mm 17 0.65 17 0.64
dsyrk 20 0.93 8 0.78
jacobi-2d 30 0.83 30 0.74
3d-stencil 25 0.93 20 0.87
n-body 30 0.88 30 0.82

5 Related Work

There is a wide range of related work in the field of auto-tuning. One possible
approach is machine learning (ML), however it has never been used in a truly
multi-objective fashion. Search-based methods as used in Active Harmony [1]
pose an alternative to ML. They have been successfully applied for computing
the whole set of Pareto efficient solutions for up to two criteria, (e.g. execution
time and efficiency [7] or execution time and compilation time [4]).

The recent concern for power and energy consumption is reflected in the
growing amount work applying auto-tuning to optimize them. Whether they
consider power or energy, in addition to execution time, most of them fail to
capture the full trade-off and only compute a single solution. Some works use
models for power/energy and execution time and apply dynamic programming
for optimization [2], while others obtain real power measurements [3]. Similar
efforts include exploiting slack time for example in OpenMP [6]. However, hardly
any of these approaches compute the full Pareto set of solutions. Reducing this
trade-off to a predefined number of solutions may limit the freedom of selecting
a solution and render detailed trade-off analyses impossible. To the best of our
knowledge, [13, 14] are two of the few works investigating that trade-off.

To the best of our knowledge, this is the first application of an auto-tuner
to optimize three objectives. We also provide a detailed analysis of the identi-
fied trade-offs. While present in several related works, they do not directly deal
with optimization or auto-tuning. They rather analyze trade-offs for changing
hardware or software configurations. Predominantly using manually preselected
solutions, instead of automatically obtained ones, many investigate DVFS or
DCT [15], while some evaluate application model changes [16].

6 Conclusion

In this work, we have shown the application of a multi-objective auto-tuner which
optimizes for three conflicting criteria: execution time, resource usage and energy
consumption. We compared RS-GDE3 with a hierarchical and a random search
and showed that it requires at least 93% less time and 92% less energy to obtain
solutions of equal or higher quality in a benchmark composed of five represen-
tative codes. A comparison to a modified state-of-the-art optimizer, NSGA-II,
shows that RS-GDE3 offers solutions of higher quality. We identified the com-
plex relationships between the three objectives and the effect of our tunable
parameters on them. Our results have been outlined with clear observations to
be used to guide the development of auto-tuners and code optimization.

98

P. Gschwandtner, J.J. Durillo, and T. Fahringer

Acknowledgements. This research has been partially funded by the Austrian
Research Promotion Agency under contract 834307 (AutoCore) and by the FWF
Austrian Science Fund under contracts 101079 (GEMSCLAIM) and W 1227-N16
(DK-plus CIM).

References

1]

2]

3]

[4]

[5]

[6]

[11]

[12]

[13]

[14]

[15]

[16]

Tapus, C., Chung, 1., Hollingsworth, J.: Active harmony: Towards automated per-
formance tuning. In: IEEE 2002 Conference on Supercomputing (2002)

Li, D., de Supinski, B.R., Schulz, M., et al.: Strategies for energy-efficient resource
management of hybrid programming models. IEEE Transactions on Parallel and
Distributed Systems 24(1), 144-157 (2013)

Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Auto-tuning for energy
usage in scientific applications. In: Alexander, M., et al. (eds.) Euro-Par 2011
Workshops. Part II. LNCS, vol. 7156, pp. 178-187. Springer, Heidelberg (2012)
Hoste, K., Eeckhout, L.: Cole: Compiler optimization level exploration. In: Proc.
of the 6th Intl. Symposium on Code Generation and Optimization. ACM (2008)
Rahman, S., Guo, J., Bhat, A., et al.: Studying the impact of application-level
optimizations on the power consumption of multi-core architectures. In: Proc. of
the 9th Conference on Computing Frontiers. ACM (2012)

Dong, Y., Chen, J., Yang, X.: et al.: Energy-oriented openmp parallel loop schedul-
ing. In: International Symposium on Parallel and Distributed Processing with
Applications, ISPA 2008. IEEE (2008)

Jordan, H., Thoman, P., Durillo, J., et al.: A multi-objective auto-tuning frame-
work for parallel codes. In: IEEE 2012 Conference on Supercomputing (2012)
Fox, A., Griffith, R.: Joseph, et al.: Above the clouds: A berkeley view of cloud
computing. Dept. Electrical Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS 28 (2009)

Hahnel, M., Doébel, B., Vélp, M., et al.: Measuring energy consumption for short
code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3) (January 2012)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Com-
putation 3(4) (1999)

Flynn, M., Hung, P., Rudd, K.: Deep submicron microprocessor design issues.
IEEE Micro, 19(4) (1999)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182-197 (2002)

Freeh, V., Lowenthal, D.: Using multiple energy gears in mpi programs on a power-
scalable cluster. In: Proc. of the 10th ACM SIGPLAN PPoPP. ACM (2005)
Balaprakash, P., Tiwari, A., Wild, S.: Multi-objective optimization of hpc kernels
for performance, power, and energy. In: 4th International Workshop on Perfor-
mance Modeling, Benchmarking, and Simulation of HPC Systems, PMBS 2012
(2013)

Freeh, V., Lowenthal, D., Pan, F., et al.: Analyzing the energy-time trade-off
in high-performance computing applications. IEEE Transactions on Parallel and
Distributed Systems, 18(6) (2007)

Lively: C., Wu, X., Taylor, V., et al.: Energy and performance characteristics of
different parallel implementations of scientific applications on multicore systems.
International Journal of High Performance Computing Applications 25(3) (2011)

Performance Prediction and Evaluation
of Parallel Applications in KVM, Xen,
and VMware

Cheol-Ho Hong!, Beom-Joon Kim?, Young-Pil Kim®,
Hyunchan Park!, and Chuck Yoo!

! Korea University, Seoul, South Korea
2 LG Electronics, Seoul, South Korea

Abstract. Cloud computing platforms are considerably attractive for
parallel applications that perform large-scale, computationally intensive
tasks. These platforms can provide elastic computing resources to the
parallel software owing to system virtualization technology. Almost ev-
ery cloud service provider operates on a pay-per-use basis, and therefore,
it is important to estimate the performance of parallel applications before
deploying them. However, a comprehensive study that can predict the
performance of parallel applications remains unexplored and is still a re-
search topic. In this paper, we provide a theoretical performance model
that can predict the performance of parallel applications in different
virtual machine scheduling policies and evaluate the model in repre-
sentative hypervisors including KVM, Xen, and VMware. Through this
analysis and evaluation, we show that our performance prediction model
is accurate and reliable.

1 Introduction

Cloud computing is an attractive approach to enable research scientists to utilize
nearly limitless computation resources in a reliable and flexible manner. By us-
ing cloud services, research scientists can deploy parallel applications to perform
large-scale, computationally intensive tasks reliably without worrying about the
configuration or the arrangement of the hardware platforms for the deployment
[17]. Moreover, owing to the elastic characteristic of cloud computing, they can
flexibly adjust the capacity of the computing resources according to the require-
ments of each parallel application. As a result, the use of cloud computing for
parallel applications is currently increasing at a fast rate [3].

Virtualization is the main technology of cloud computing. Whether cloud
vendors provide TaaS (Infrastructure as a Service), PaaS (Platform as a Service),
or SaaS (Service as a Service) for their customers, every stack of those services
has a virtualization layer on top of the lower physical layers. Virtualization
offers elastic and flexible virtual computing environments that are essential for
cloud computing by providing each user the illusion of possessing an OS on
a real hardware platform. In virtualization software, a hypervisor virtualizes all

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 99-110, 2014.
© Springer International Publishing Switzerland 2014

100 C.-H. Hong et al.

hardware resources such as the CPU, memory, and I/O devices of a real physical
machine, providing each of the virtualized resources to a virtual machine (VM).
Recent popular hypervisor titles for cloud computing include KVM (8], Xen [2],
and VMware ESXi [6].

Because almost every cloud service provider operates on a pay-per-use basis,
the question of whether a hypervisor can run parallel applications with accept-
able performance at lower cost has become an important issue. In virtualization,
the main factor that decides the performance of parallel applications is the CPU
scheduler of each hypervisor [16][11]. The scheduler multiplexes all virtual CPUs
(VCPUs) in a system according to its particular policy. Because of this additional
scheduling layer, it is difficult to estimate the performance of parallel applica-
tions in virtualization before deploying them, even though performance in the
native environment is already known.

In this paper, we provide a comprehensive performance model that can pre-
dict the performance of parallel applications in different scheduling policies and
evaluate the model in the representative hypervisors. The main contributions of
this paper related to previous studies are as follows:

e We provide theoretical performance modeling and prediction for parallel ap-
plications in virtualization. Previous research studies [17][12][13] only address
virtualization overheads based on experiments. To the best of our knowledge,
no other research studies have suggested practical performance models yet.

e We present the evaluation results of the performance model on the repre-
sentative hypervisors. Throughout the evaluation, we show that our per-
formance prediction model is accurate and reliable to such an extent as to
predict the performance of parallel applications in virtualization before di-
rectly deploying them.

The remainder of this paper is structured as follows: In Section 2, we explain
the background of VM scheduling policies. In Section 3, we provide the perfor-
mance prediction model. Section 4 shows the performance evaluation results.
Section 5 explains related work. Finally, we present our conclusions in Section 6.

2 Background

2.1 Scheduling Policy

One of the main tasks of a VM scheduler is to choose which virtual CPU should
be assigned to a physical core. A VM scheduler schedules all VCPUs in a sys-
tem according to its policy that has purposes such as improving responsiveness,
throughput, and utilization.

KVM. The Completely Fair Scheduler (CFS) [8] was introduced as the Linux
CPU scheduler from the Linux kernel 2.6.23. The goal of the CFS is to give each
VCPU a fair amount of CPU time by maintaining a balance between them. For
this purpose, the CFS scheduler tracks the virtual runtime that is the amount

Performance Prediction and Evaluation of Parallel Applications 101

of CPU time given to each VCPU at a certain point. In scheduling VCPUs, the
CFS selects VCPUs with smaller virtual runtimes-that means some VCPUs have
not received sufficient CPU time compared to other VCPUs-thus maintaining
the balance. In addition to this basic policy, it considers I/O-intensive VCPUs
by giving them a comparable share of CPU time when they request the CPU.

Xen. In recent versions of Xen, the credit scheduler [2], which is a proportional
fair-share CPU scheduler, is used by default. The credit scheduler schedules do-
mains fairly based on the credit amount that is determined by the weight each
domain receives. Credit refers to CPU time or CPU bandwidth for which each
domain can run. Three VCPU priorities are defined in the current Xen imple-
mentation: UNDER (value of -1), OVER (-2), and BOOST (0). The priority of
the VCPU is determined by the remaining credit amount of the VCPU when the
global account thread is running. If the credit amount of the VCPU is positive,
the priority of the VCPU is UNDER. Conversely, if the credit amount is nega-
tive, the priority of the VCPU becomes OVER. BOOST priority is introduced to
improve 1/O performance of domains in terms of both bandwidth and latency.

VMware. The relaxed coscheduler [15] in VMware is based on the proportional-
share-based algorithm in which each VM has resource specifications such as
shares, reservation, and limit. The scheduler maintains the consumed CPU re-
source of each VM, and makes scheduling decisions based on the recorded data.
If a VM consumes less CPU than allowed, the VM is temporarily assigned a
higher priority than other VMs, and it is chosen to run next. When a VM is
selected to run, the ESXi scheduler uses a co-scheduling policy, also known as
gang scheduling, which executes all VCPUs of a single VM at the same time.
This scheduling policy is beneficial to parallel applications because threads that
frequently attempt to synchronize with each other can decrease their waiting
time by running the VCPUs concurrently.

3 Performance Prediction

In this section, we theoretically show how the execution time of a parallel pro-
gram is determined in the virtualization environments. For simplicity, we make
some assumptions needed to build our VM scheduling model and policy. First,
we assume that the number of threads in a parallel application does not exceed
the number of VCPUs in the VM. This assumption is rational because CPU-
intensive applications commonly run using a number of threads equal to or less
than the number of cores [10]. Second, each thread is fixed to a VCPU to avoid
the cost of thread migration in a guest OS. Third, each parallel thread is as-
sumed to be blocked rather than spin when the thread has to wait for other
threads during synchronization. In virtualization, this wait policy is generally
configured in order to prevent superfluous CPU spinning.

102 C.-H. Hong et al.

3.1 VM Scheduling Model and Policy

To predict the performance of parallel programs in virtualization, we formalize
the VM scheduling model and policy. P = {Pi, P,,..., Pp|} represents phys-
ical CPUs, where |P| is the number of physical CPUs in the system. V =
{V1,Va,...,Vjy|} indicates VMs running on the physical CPUs, where |V is
the number of VMs in the system. The weight of VM V; is represented by

w(V;), which is a relative proportion of CPU consumption. Therefore, we have
V]

Y w(Vi) = 1. O(V;) = {vi1,vig, -, vijcv;)|} indicates VCPUs running on VM
i=1

Vi, and the number of VCPUs is |C(V})].

We need to define the fair amount of received CPU by VCPU v;; from time 0 to

t, which we call F'(t,1,7). F(t,1,7) is determined by the number of processors, the

weight proportion of the VM, and the number of VCPUs in the VM. Reflecting
these factors, we define F'(t,14,7) as

C o [PIxw(Vs)

F(t,i,j) = [C(V;)] Xt (1)

Then, we define the amount of CPU time that a VCPU actually uses in the

scheduling interval [t1, t2) as R(t1,14, 7). Then, we can derive the next scheduling

time t5 as follows. To guarantee fairness in sharing CPU time, the hypervisor
scheduler should meet the following condition: F'(t2,4,5) = F(t1,4,j)+R(t1,4, 7).

Therefore, using Equation (1), we have ‘P\lcx((:/f)‘?) Xty = “T‘CX(‘*‘;()‘T) xt1+R(t1,1, 7).
Then, we obtain the following equation.
R(t1,1,5)x|C(V;
tr =t + MRS 2)

3.2 Execution Time of a Single Phase

A parallel application distributes the total work into several parallel threads.
Each thread then consists of multiple phases, each of which has one compu-
tation part and one subsequent synchronization part. Through the latter part,
all computations in the same phase must be finished before the next phase
begins. To obtain the execution time of a single phase in virtualization, we de-
fine the execution time of the computation part of VCPU v;; during the mth
phase as compT'(m,v;;) and the synchronization part as syncI'(m,v;;). Then,
the execution time of the mth phase, execP(m), is as follows: execP(m) =
compT'(m, vij) + syncT (m, vyj).

compT. The value of the computation part itself may be longer than a time
slot of the hypervisor. We define the length of the computation part of VCPU
v;; during the mth phase as C(m,v;;). Then, we have C(m,v;;) = My, x S +
Frac(m,v;j), where M,, > 0, S is the length of a time slot, and Frac(m,v;;)
is the remainder of the time. This computation part is executed using (M, +
1) time slots. Let us assume that this computation part starts at ¢; and the

Performance Prediction and Evaluation of Parallel Applications 103

remaining part starts at ¢,. According to Equation (2), the second time slot of

this computation part has to start at the following point: to = ¢; + ls;)x‘LC;((\(;))\
Similarly, t3 = to+ \SPXI ‘XC;((VVB)‘ =t14+(2x \SPXI ‘XC;((VV.B)'). The (M,,+1)th time slot starts

at t,. Then, it should have the following value: t, = t1 + (M, X \SPXI ‘XC;((VVB)l). Then,
the execution time of the computation part of the mth phase, compT' (m, v;;), is
as follows: compT (m, v;;) = t,+ Frac(m,v;;) —t1. Then, we obtain the following
equation:

Sx|C(V;
‘le‘xw((vi))‘) + Frac(m, v;;) (3)

compT' (m, vi;) = (M X
syncT. The synchronization part follows the computation part, and the main
purpose of this part is to wait for other threads to finish their computation
parts while being blocked. Let us assume that the former computation part
starts at t1, and the next computation part starts at ¢2. To guarantee fairness
in sharing CPU time, the hypervisor should then execute the next part at the
following point according to Equation (2): t2 = ¢; + ch(l?"i"'i)(a)c(v’i”
Frac(m,v;;) is the remainder of C(m,v;;) (see subsection compT'). Then, the
execution time of the synchronization part of the mth phase, sync preT'(m,v;j),
is as follows: sync preT’(m,v;;) = ta — t1 — Frac(m,v;;). Then, we obtain the

Frac(m,vi;)x|C(V;)| ..
B o) — Frac(m,v;j).

This value is derived on the assumption that the hypervisor ideally maintains
fairness between VMs. However, in our previous research [7], we showed that
this value can be significantly larger in real hypervisors. The credit scheduler
and the CFS adopt an asynchronous scheduling policy; therefore, they are not
synchronization-aware. The problem, then, is that those VCPUs required to
participate in each synchronization phase are not guaranteed to be scheduled
within the ¢5 value. Consequently, the execution time of the synchronization part
is increased, and this situation degrades the performance of parallel applications.
Conversely, when a coscheduling policy is selected, it makes all VCPUs in a VM
run on physical CPUs simultaneously. Therefore, this scheduling method can
make a synchronization environment similar to that of a non-virtualized OS,
therefore mitigating the increase in synchronization time.

To reflect the characteristic of each scheduling policy, we introduce a propor-
tional constant, H. The H value can be obtained by conducting experiments in
each virtualization environment. We repeatedly run our micro benchmark pro-
grams with a medium computation size (the details are provided in Section 4.1)
and measure the average synchronization time. Then, we compare the measured
value of each program with the calculated sync preT'(m,v;;) value to produce
the H value. We could check that the different programs produce similar H val-
ues in the same hypervisor. We determined that the values are 1.7 in KVM, 1.15
in Xen, and 0.7 in VMware. We multiply H by the intermediate value of the
synchronization part. Then, we obtain the following equation:

, where

following equation: sync preT'(m,v;;) =

syncT (m,vi;) = H x Frac(m,v;j) X (‘Ij‘lc;(&)‘Li) -1 (4)

104 C.-H. Hong et al.

execP. Because we have execP(m) = compT (m, v;j)+syncT (m, v;;), we obtain
the following equation by adding Equations (3) and (4).

SXICVOL 4 Frac(m,vij) x (1+ H x (S~ 1)) (5)

execP(m) = M X b5 o) | PIxw(V3)

3.3 Execution Time of a Parallel Program

Because a parallel application consists of multiple phases, the completion time
of a parallel application is the sum of the execution times of each phase in the
software. When the parallel application has |J| phases, the total completion time,
completionT, is obtained using Equation (5) as follows.

|J]
completionT = > execP(m)
m=1
1] SxlCv) . (6)
B mz=1{Mm X |pixw(vy) T Erac(m, vij) < (L4 H x (ppeay — D)}

|C(Vi)], |P], w(Vi), S, and H are predetermined in the virtualization environ-
ment. The value of M,, and Frac(m, v;;) can be obtained from C(m, v;;), which
is the length of the computation part of VCPU v;; during the mth phase, be-
cause C(m,v;j) = My, x S+ Frac(m, v;;). The C(m,v;;) value can be obtained
in the non-virtualized environment manually by calculating the total number of
instruction cycles or automatically by using profiling tools that utilize Profiler
for OpenMP (POMP) and Opari [9]. Therefore, we can predict the performance
of parallel applications in virtualization without directly deploying them.

4 Performance Evaluation

4.1 Experimental Setup and Method

For all experiments in this paper, we used an Intel Xeon E5-2620 hexa-core
platform that has six cores running at 2.0 GHz with 15 MB of L3 cache and 16
GB of main memory. To realize exact one-to-one mapping between physical cores
and VCPUs, the hyper-threading technology is turned off. The system is hosted
by KVM 1.4.2, Xen 4.1.3, and VMware ESXi 5.0 on separate hard disk drives.
We use all guest OSs as Linux with the kernel version 2.6.32. In the experiments,
with regard to Xen, we did not use domain(, which is an administrator VM and
is responsible for processing I/O requests, leaving it mainly in the idle state. We
let the number of VCPUs of all VMs equal to the number of physical CPUs (six)
in order to make each group of VCPUs exploit the underlying physical CPUs
efficiently and thoroughly.

Performance Prediction and Evaluation of Parallel Applications 105

In all Linux VMs, we use GCC 4.7.1, which supports the version 3.1 of the
OpenMP specification, and we set the waiting policy of OpenMP as PASSIVE
that blocks VCPUs when the synchronization condition is not met in order to
prevent superfluous CPU spinning at the user-level. To prevent kernel-level lock-
holder preemption (LHP) [14], we applied a Linux patch for paravirtualization
VMs [4] in Xen, and activated Intel Pause Loop Exiting (PLE), which is a
hardware-based feature, in KVM and VMware.

To evaluate the execution time prediction of a single phase as provided in
Equation (5), we develop a new micro benchmark program that is intended to
measure the overhead of a single phase that is composed of one computation
part and one subsequent synchronization part. The program can receive the
computation size of a thread as an input parameter so that we can make par-
allel programs of any size. We create 4 individual child benchmark programs
with computation sizes of a single phase as approximately 3,500 (small), 15,000
(medium), 35,000 (large), and 150,000 (very large) kilo-cycles per thread (in the
latest x86 architecture).

To evaluate the execution time prediction of a parallel program, provided in
Equation (6), we use NAS Parallel Benchmarks (NPB) [1] that are programs
used to evaluate the performance of parallel supercomputers. In this research,
we use NPB version 3.2.1 for the OpenMP programming model and set the
problem size to A. The benchmark programs consist of CG, EP, FT, IS, MG,
BT, LU, LU-HP, and SP.

4.2 Prediction for a Single Phase

In this section, we show whether the performance prediction model provided in
Section 3.2 is accurate and reliable. For the experiment, a target VM executing
each child benchmark program was individually run on each hypervisor. The tar-
get VM had 6 VCPUs with 6 threads per our benchmark program that was based
on the assumption explained in Section 3. To adjust the target VM weight, we
deployed multiple CPU-bound VMs running our single-threaded CPU-intensive
program that simulates background workloads. Because we configured the num-
ber of VCPUs in all VMs as 6, we can set the weight of the target VM to 100%,
50%, 33%, 256%, 20%, and 17% by launching each background VM one by one.
For example, to set the weight of the target VM to 20%, we deploy the target
VM and 4 background VMs. For accuracy, we run our micro benchmark program
repeatedly more than 20,000 times in each hypervisor and then calculate the av-
erage execution time of the computation and synchronization part separately
during the run of a single VCPU.

To predict the performance of each program, we run each benchmark program
in the native Linux environment, and produce values of C(m,v;;) which is the
length of the computation part of VCPU wv;;. Then, the M, and Frac(m,v;;)
values can be obtained as shown in Table 1, given that the time slice of KVM

106 C.-H. Hong et al.

Table 1. Parameters required to predict the performance of a single phase. The unit
of time is ms.

Hypervisor [Benchmark [C(m,vi) Mn S | Fracimyvy) | H |C(Vy)| 1P|
KVM 3,500K 1.67 0 6 1.70 1.7 6 6
15,000K 8.36 1 6 2.40 1.7 6 6
35,000K 16.72 2 6 4.70 1.7 6 6
150,000K 83.59 13 6 5.60 1.7 6 6
Xen 3,500K 1.67 0 30 1.70] 1.15 6 6
15,000K 8.36 0 30 8.40| 1.15 6 6
35,000K 16.72 0 30 16.70(1.15 6 6
150,000K 83.59 2 30 23.60] 1.15 6 6
VMware 3,500K 1.67 0 30 1.70 0.7 6 6
15,000K 8.36 0 30 8.40 0.7 6 6
35,000K 16.72 0 30 16.70 0.7 6 6
150,000K 83.59 2 30 23.60 0.7 6 6

is 6 ms, that of Xen is 30 ms, and that of VMware is 30 ms. Other values such
as H, |C(V;)], and |P| are also provided in the table. The H value is obtained
by the experiments as explained in Section 3.2. Then we use Equation (5) to
predict the time of each program.

The execution times of a single phase for KVM, Xen, and VMware, for which
the weight was changed from 100% to 17%, are shown in Figure 1. We also
provide the measured synchronization (SyncT') and computation (CompT) time
which comprise the execution time, in order to help the analysis of the execution
overhead. The ratio of the difference between the measured and predicted time
to the measured time, defined as predide‘:ﬂgﬁi;@ﬁi‘;ﬁ!ed time “follows each graph.
As the graphs show, our prediction model can estimate the execution time of a
single phase quite accurately in Xen and VMware, and approximately in KVM.
In most cases, the value of the ratio is within 19% in KVM (19% in average),
15% (9% in average) in Xen, and 6% (4% in average) in VMware.

The KVM result shows that the scheduler imposes an additional overhead
when the weight is 50% in all benchmark programs. It seems that the CFS
cannot properly deal with the situation in which the workloads are apparently
asymmetric. The result also shows that our prediction model is not accurate for
the small program (3,500 K). This is because the actual synchronization time
was shorter than the prediction, and we are investigating the exact reason for
this. In Xen, our prediction model underestimates the execution time of the small
program because the actual synchronization time was longer than expected. This
situation seems to be related to the minimum preemption time of Xen (2 ms).
The small program must be repeatedly blocked and unblocked during a relatively
short time. However, Xen prevents VCPUs from preemption during the first 2
ms in order to prohibit starvation. When the small program cannot preempt the
current VCPU, this seems to cause extra synchronization overhead. The VMware
result shows that the scheduler can solidly process parallel applications without
fluctuation as it adopts the coscheduling policy for synchronization.

Performance Prediction and Evaluation of Parallel Applications

107

600.0
»
£ 500.0
@ 400.
g 00.0
pat 300.0
2
E 200.0
3
%
X 100.0 -
0.0 100%| 50% [33% [25% | 20% | 17% [100%] 50% [33% [25% [20% [17% [100%] 50% | 33% [25% [20% [17% [100%] 50% | 33% [25% | 20% [17%
500K 15,000K 35,000k 150,000
=SyncT 0.5[7.8[57[69]71]76] 1.4 [23.0[155[20.6[26.1]31.2] 1.6 [25.6]21.6[27.2[34.6[40.8[5.9 [42.2[37.5[46.7[58.5]68.8
m=CompT 17191818 1.8 1.9 8.7 [17.3]18.5|21.5]22.8]25.7|17.4|40.2[45.1[53.0|62.672.5|87.4 [200.7[265.2[346.4]430.4|514.4
[~=Measured time| 2.2 [9.7 [7.5 | 8.7 [8.9 | 9.5 [10.040.3[34.0[42.248.9(56.9]18.9]65.8]66.7 | 80.2 | 97.2 [113.3[93.4 [242.9[302.7[393.1]488.9[583.2]
>Predicted time | 1.7 | 4.6 | 7.6 [10.4]13.3[15.8[8.4 [18.5[28.9[38.6 [48.7[57.6 [16.7[36.7[57.3[76.7 [96.7 [114.3[83.6 [171.1[261.3[346.2[433.7[510.9]
100%
50%
0%
sox 33% 25% 20% 17% 10 3% 25% 20% 17% 100! 3% 25% 20% 17% 100 3% 25% 20% 17%
100% 3,500K 15,000K 35,000K 150,000K
==Ratio of the difference between the measured and predicted time to the measured time
Xen
600.0
0 :
£ 500.0 A
@ A ..
g 400.0 :
=
- 300.0
S
5 200.0
3
%
3 100.0
e vy
0.0 100%| 50% | 33% | 25% | 20% | 17% [100%] 50% [33% | 25% | 20% [17% [100%] 50% [33% [25% [20% | 17% [100%] 50% | 33% [25% | 20% [17%
,500K 15,000K 35,000K 150,000
==SyncT 0.1[20[3.7[78]12.0[16.1] 0.2 [86 [16.9[26.4[36.2[46.0| 0.3 [17.8]29.7[44.7[59.7[73.0| 1.0 [42.3]67.9[93.8[120.1[146.1
== CompT 17 [17[17[17[18[19[84[85[86]92]097[105[16.8/17.1(17.6]19.120.3[22.3]84.2[120.7|178.2[245.9[316.9/383.6]
[~=Measured time| 1.8 [3.7 [5.4 | 9.5 [13.8[18.0] 8.6 |17.1[25.535.6|45.9(56.5|17.134.9(47.4]63.7 |80.0[95.3 [85.1 [163.0[246.2[339.7[437.0[529.7]
>Predicted time | 1.7 [3.7 [5.7 [7.6 [9.5 [11.2] 8.4 [18.1]28.0(37.4[47.0[55.6[16.7[35.9[55.7| 74.3[93.5 [110.5] 83.6 [170.7]260.5[345.0(432.2[509.0|
100%
50%
ol LR
so% 100% 50% 33% 2 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20% 17%
3,500K 15,000k 35,000K 150,000K
-100%
==Ratio of the difference between the measured and predicted time to the measured time
VMware
600.0
=
£ 500.0 .
@ 400.
2 00.0
=
- 300.0 -
2
E 200.0
S
3
X 100.0 =
0.0 e R ™
-~ [100%| 50% | 33% | 25% | 20% | 17% [100% | 50% | 33% | 25% | 20% | 17% [100%] 50% | 33% | 25% | 20% | 17% [100%] 50% | 33% [25% | 20% | 17%
3,500K 15,000K 35,000K 150,000K
== SyncT 01[13[24[36[48[62][01][58][107[14.6[19.6[24.9] 0.2 [11.0[18.8]28.8]39.8[49.7[0.3 [44.6]90.3[126.4[137.9[145.4
== CompT 1.7 (17|17 |17 |17 |17 |84 |85 91|98 |11.2(12.1{16.9|17.5|18.5/20.3|21.6|22.0|84.4|94.1 [109.6(144.8[219.6{291.1]
[==Measured time| 1.8 | 3.0 [4.1 | 53 [6.5 | 7.9 | 8.6 [14.319.8(24.5[30.8(36.9[17.0[28.4[37.3[49.1 |61.5|71.8|84.8[138.7[199.9[271.2[357.6[436.5
o-Predicted time | 1.7 [2.9 [4.1 [53 | 6.5 | 7.5 | 8.4 [14.3[20.3[26.0[31.9[37.1/16.7]28.4|40.451.8[63.5] 73.8[83.6 [160.1]239.0313.2]389.7[457.2

100%
50%
0%
-50%
-100%

100% 50% 33% 25% 20% 17% 100% 50% 33% 25% 20%

3,500K

15,000K

17% 100% 50%

33% 25% 20% 17%
35,000

100% 50% 33% 25% 20% 17%
150,000K

—=Ratio of the difference between the measured and predicted time to the measured time

Fig. 1. Execution time of a single phase for KVM, Xen, and VMware, for which the
weight was changed from 100% to 17%, and the ratio of the difference between the
measured and predicted time to the measured time

108 C.-H. Hong et al.

1.0 30
o8 %
L ©
@ 20 - - -
Eos £
5 515 + A 1
S04 e
3 $10 MMM M--0--W-W -
&S &
00 1 1] . 1 |
R RBRERXERRERRERREERRRR R R RRRRREERRERERRXRRR
S S MmMhSORS S mibSRK SO mbo R E S mMih SR SESmMih RS S m i &R
SRAMARASAMARNSSAmMAN ~ S A mMAR S AmMmMAN S A mA A~
1 2 2 = 2 1
KVM Xen VMware KVM Xen VMware
" Measured time ™ Predicted time ®Measured time ®Predicted time
140 400
120 350
2100 3300 i
5 £250 ------9-f-- i
= 80 =
5 o 5200 -
2 150 - & i
5 40 3100 -----fi-- et e o B
B I I II e JI m
. o k . L
S S ESEBEREBRSEEEEE ES N EEEBEBBBREBESLR
SAMANASAMANNSGS®AMAN N ~ SAMJAR -SSR mMARAgHAMmA RS
KvM Xen VMware KvM Xen VMware
¥ Measured time ¥ Predicted time ®Measured time ¥ Predicted time

Fig. 2. Measured and predicted time values of the NPB benchmarks for KVM, Xen,
and VMware, for which the weight was changed from 100% to 17%

4.3 Prediction for a Parallel Program

In this section, we show whether the performance prediction model for a parallel
program, provided in Section 3.3, is precise. For the experiment, we used IS,
EP, BT, and LU-HP in the NPB program. IS and EP are kernel programs that
have short execution times whereas BT and LU-HP are pseudo applications that
have long completion times. We repeatedly ran each benchmark program for ten
rounds in each weight configuration and produced the average execution time.
In addition, to predict the performance, we deployed each benchmark program
in the native Linux environment, with ompP [5], a profiling tool for OpenMP
applications, and obtained the C'(m,v;;) value of each phase.

The measured and predicted time values of the NPB benchmarks for KVM,
Xen, and VMware, for which the weight was changed from 100% to 17%, are
shown in Figure 2. For IS, EP, and BT, our prediction model could estimate
the execution times of the programs quite accurately in all hypervisors. In most
cases, the ratio of the difference between the measured and predicted time to
the measured time is within 5% for IS, 8% for EP, and 13% for BT. However,
our model suffered in the case of LU-HP. LU-HP is the hyperplane version of
LU, and is composed of lots of small size computation parts (in our experiment,
1,108,416 x 0.5ms). Therefore, the program seemed to cause severe synchro-
nization overheads across all hypervisors as explained in Section 4.2. When we
changed the H value for the small size computation part to 6 in KVM, 4 in

Performance Prediction and Evaluation of Parallel Applications 109

Xen, and 2.9 in VMware, we could predict the execution times more correctly
as depicted in Figure 2.

5 Related Work

There are several studies to resolve the synchronization problem of virtualiza-
tion. Relaxed coscheduling [15] of VMware ESXi is a representative coscheduling
algorithm for synchronization. Instead of forcing all VCPUs of a VM to be simul-
taneously scheduled, the scheduler enables the VCPUs to be scheduled within
the skew value. As another coscheduling approach, Weng et al. [16] proposed hy-
brid scheduling in the Xen hypervisor. For only concurrent VMs, the scheduler
determines to coschedule VCPUs; other VCPUs are scheduled asynchronously.
The researchers also provided simple modeling for the performance of parallel
applications. However, because the proposed model assumes that the size of the
computation part is equal to a single time slice, it is inadequate for the real
hypervisors.

There are several studies to explain the virtualization overhead of Xen. Xu et
al. [17] revealed that the performance of Xen VMs could reach the performance
in the native environment only when few synchronization operations are used,
and the number of VCPUs in the VM does not exceed the number of physical
CPUs. Tao et al. [12][13] quantified the performance deficit of OpenMP appli-
cations in Xen VMs . They showed that the inefficiency of the kernel blocking
operation decreases the performance of some parallel applications in the virtual
environment. However, these studies only show preliminary results, and there-
fore, they are insufficient to predict the performance of parallel applications in
virtualization.

6 Conclusion

In this paper, we proposed a performance model that can predict the perfor-
mance of parallel applications in various scheduling policies. First, we provided
theoretical performance modeling and prediction for parallel applications in vir-
tualization, Second, we showed the evaluation results of the performance model
on the representative hypervisors. We hope that our research will contribute to-
ward further studies on parallel computing performed in a virtual environment.

Acknowledgements. This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government(MEST) (No.2010-
0029180) with KREONET.

References

1. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Frederickson, P., Lasinski, T., Schreiber, R., et al.: The nas parallel bench-
marks summary and preliminary results. In: Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing 1991, pp. 158-165. IEEE (1991)

110

2.

o

10.

11.

12.

13.

14.

15.

16.

17.

C.-H. Hong et al.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, 1., Warfield, A.: Xen and the art of virtualization. In: ACM SIGOPS
Operating Systems Review, vol. 37, pp. 164-177. ACM (2003)

Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the
5th utility. Future Generation Computer Cystems 25(6), 599-616 (2009)

Friebel, T., Biemueller, S.: How to deal with lock holder preemption. Presentation
at Xen Summit North America (2008)

Firlinger, K., Gerndt, M.: ompp: A profiling tool for openmp. In: Mueller,
M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
2005/2006. LNCS, vol. 4315, pp. 15-23. Springer, Heidelberg (2008)

Haletky, E.: Vmware esx and esxi in the enterprise (2011)

Hong, C., Yoo, C.: Synchronization-aware virtual machine scheduling for parallel
applications in xen. IEICE Transactions on Information and Systems 96(12), 2720—
2723 (2013)

Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: The linux virtual
machine monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225-230
(2007)

Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Towards a performance tool inter-
face for OpenMP: An approach based on directive rewriting. Forschungszentrum,
Zentralinst. fiir Angewandte Mathematik (2001)

Nishitani, Y., Negishi, K., Ohta, H., Nunohiro, E.: Implementation and evaluation
of openmp for hitachi sr8000. In: Valero, M., Joe, K., Kitsuregawa, M., Tanaka, H.
(eds.) ISHPC 2000. LNCS, vol. 1940, pp. 391-402. Springer, Heidelberg (2000)
Sukwong, O., Kim, H.: Is co-scheduling too expensive for smp vms? In. In: Pro-
ceedings of the Sixth Conference on Computer Systems, pp. 257-272. ACM (2011)
Tao, J., Fiirlinger, K., Marten, H.: Performance evaluation of openmp applications
on virtualized multicore machines. In: Chapman, B.M., Gropp, W.D., Kumaran,
K., Miiller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665, pp. 138-150. Springer,
Heidelberg (2011)

Tao, J., Firlinger, K., Wang, L., Marten, H.: A performance study of virtual ma-
chines on multicore architectures. In: PDP, pp. 89-96 (2012)

Uhlig, V., LeVasseur, J., Skoglund, E., Dannowski, U.: Towards scalable multipro-
cessor virtual machines. In: Proceedings of the 3rd Virtual Machine Research and
Technology Symposium, pp. 43-56 (2004)

VMWare. The cpu scheduler in vmware vsphere 5.1.,
https://wuw.vmware.com/files/pdf/techpaper/VMware-vSphere-CPU-
Sched-Perf.pdf

Weng, C., Wang, Z., Li, M., Lu, X.: The hybrid scheduling framework for virtual
machine systems. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, pp. 111-120. ACM (2009)
Xu, C., Bai, Y., Luo, C.: Performance evaluation of parallel programming in virtual
machine environment. In: Sixth IFIP International Conference on Network and
Parallel Computing, NPC 2009, pp. 140-147. IEEE (2009)

https://www.vmware.com/files/pdf/techpaper/VMware-vSphere-CPU-Sched-Perf.pdf
https://www.vmware.com/files/pdf/techpaper/VMware-vSphere-CPU-Sched-Perf.pdf

DReAM: Per-Task DRAM Energy Metering
in Multicore Systems

Qixiao Liu''?, Miquel Moreto!2, Jaume Abella!,
Francisco J. Cazorla™?3, and Mateo Valero':2

! Barcelona Supercomputing Center, Barcelona, Spain
2 Universitat Politecnica de Catalunya, Barcelona, Spain
3 Spanish National Research Council (IITTA-CSIC), Barcelona, Spain

Abstract. Interaction across applications in DRAM memory impacts
its energy consumption. This paper makes the case for accurate per-
task DRAM energy metering in multicores, which opens new paths to
energy /performance optimizations, such as per-task energy-aware task
scheduling and energy-aware billing in datacenters. In particular, the
contributions of this paper are (i) an ideal per-task energy metering
model for DRAM memories; (ii) DReAM, an accurate, yet low cost, imple-
mentation of the ideal model (less than 5% accuracy error when 16 tasks
share memory); and (iii) a comparison with standard methods (even dis-
tribution and access-count based) proving that DReAM is more accurate
than these other methods.

1 Introduction

Energy demand and cost of computing systems have grown during the last years,
and the trend is expected to hold in the coming future [1]. Conversely, computing
hardware-related costs (e.g., servers) have remained roughly constant or even de-
creased in datacenters, desktops and laptops. This leads to scenarios where energy
costs are as significant as hardware-related costs. For instance, energy already ac-
counts for 20% of the total cost of ownership in a large-scale computing facility [2].
This cost virtually doubles if we also include the cost of the cooling infrastructure
needed to dissipate the temperature induced by such a high energy consumption.
Similarly, laptops and desktops may use in the order of 50-200 Watts depending on
the computing power and peripherals attached. Assuming a cost of 0.11€/kWh and
3 years of non-stop operation (so 26,280 hours), a computer dissipating 120 Watts
sustainedly would reach an energy cost of 350€. This cost isin the same order of mag-
nitude as the computer itself and it is expected to grow since energy cost is expected
to grow [1]. Therefore, managing energy consumption is of paramount importance.

As processor design moves towards multi-threaded and many-core processors,
in which an increasing number of different applications run simultaneously in
the same processor, providing per-task energy metering becomes critical. Me-
tering the energy consumed by each task accurately would provide the follow-
ing benefits. First, the amount of hardware resources allocated to a given task
(e.g., cores, memory space) impact both its execution time and energy consump-
tion. If per-task energy can be accurately estimated, one may optimize, not only

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 111-123, 2014.
© Springer International Publishing Switzerland 2014

112 Q. Liu et al.

- % Fig. 1. Average memory power of a set
g a0 of SPEC CPU 2006 benchmarks running
g 3 alone on an Intel Sandy Bridge server,
£ 3 with 8 cores and a 64GB DDR3 memory
;-: 2 1 running at 1.6GHz. Memory power is ob-
Z 20 A P 3% tained using the Running Average Power

pevray
astar
soplex

Limit (RAPL) interfaces [6] and total sys-
tem power with a FitPC external multi-
meter. We correlate total power data with
the data collected from the hardware en-
ergy counters using time stamps. Repre-
sentative benchmarks were selected based
on previous characterization studies [7].

sphinx3
caleulix
leslie3d
cactusADM
omnetpp
GemsFDTD
libquantum

each task’s performance, but its energy consumption or a combined energy-delay
metric.Second, per-task energy metering can be used by the operating system
(OS) to schedule tasks better so that energy consumption is minimized while
still completing tasks when needed. And third, traditionally, datacenters charge
users based on the resources they are allocated. The increasing fraction of energy-
related costs in datacenters and the need for more accurate billing pushes for
new billing approaches based on the actual energy consumption of each task
rather than on the nominal resources allocated or on simply distributing energy
evenly among running applications [3].

In that respect, despite memory power keeps increasing, reaching 30-50W in
high-performance computers [4], there is a lack of understanding of per-task
energy consumption in memory. To elaborate on the need of accurate per-task
memory energy metering, we measured the power dissipation of different SPEC
CPU 2006 benchmarks on an Intel Sandy Bridge server, see Figure 1. In this
experiment memory represents between 25% and 34% of the total system power
and it is comparable to the entire processor socket power. Further, different tasks
incur different power consumption: e.g., 25.7W (482.sphinx3) versus 40.4W
(462.1libquantum). However, while per-task energy metering solutions exist for
processors [5], to the best of our knowledge, no mechanism exists to accurately
measure the per-task memory energy consumption in multicore systems.

We propose, for the first time, an ideal method and an efficient implementation
of such method to fairly measure the energy consumed in DRAM memories when
concurrently running several tasks. Our approach relies on tracking both the
activity incurred by running tasks and the memory state they induce.

Overall, the contributions of this work are as follows:

— An ideal per-task energy metering model for DRAM memories, as needed for
performance/energy optimization, task scheduling and billing in multicore
systems. This is the reference model against which per-task energy metering
mechanisms in DRAM memories can be compared to.

— DReAM, an accurate, yet low cost, implementation of the ideal model. DReAM
is within 5% average error with respect to the ideal model at the expense of
less than 0.1% power and area overhead in the processor.

— A comparison of DReAM with other energy metering approaches proving that
DReAM is far more accurate than those other approaches.

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 113

2 Background and Related Work

Inrecent years, there has been an increasing interest for energy metering in different
environments from datacenters [3] to smartphones [8,9]. Previous proposals, how-
ever, focus on providing accurate energy metering for single-core architectures or
multicore architectures in which a single (multi-threaded) application is executed.
These scenarios are relatively easy to handle since, when an application is scheduled
onthe CPU, it is accounted the whole energy consumption of the system (e.g., using
asimple meter). Other proposals [4,10] make use of performance-monitoring coun-
ters (PMCs) or system events, such as OS system calls, to breakdown the energy
consumption of the system across its components (e.g., memory, processor, etc.).
In many cases, the results of the power model are compared against approaches
using circuit-based mechanisms such as current sense resistors. Some Intel servers
model DRAM power per channel, but they are unaware of per-task interactions in
each channel as well as DRAM bank state interactions across requests [11].

Recently, Shen et al. [12] proposed a request-level OS mechanism to attribute
power consumption to each server request based on PMCs [13]. Similarly, Kestor
et al. [14] derive the energy of moving data along the memory hierarchy by
designing a set of micro-benchmarks. However, both approaches cannot take
into account the impact of inter-task interferences unless appropriate solutions
provide accurate per-task energy metering in multicores. Our work in [5] provides
Per-Task Energy Metering (PTEM) for on-chip resources (cores, caches, etc.).
Our proposal in this paper, DReAM, provides such support for DRAM memories.

DRAM memory energy consumption can be split into dynamic, refresh and
background. Dynamic energy corresponds to the energy spent to perform those
useful activities triggered by the programs running. For instance, the energy
spent to retrieve data from memory on a read operation or the termination power
due to terminating signals of other ranks on the same channel. Refresh energy
corresponds to the energy consumed to refresh periodically all memory contents.
Background energy includes the energy consumed due to useless activity not
triggered by the program(s) being run as well as the energy wasted due to
imperfections of the technology used to implement the circuit.

3 Metering Per-Task Energy Consumption

In this section we present an idealized model for per-task energy metering with-
out considering hardware cost. The result of this model is later used as the
reference for DReAM model to meter per-task energy with a low-cost implemen-
tation. We assume a multicore architecture where an on-chip memory controller
serves as the bridge to the off-chip memory. Next we describe the memory model
considered in this paper, how energy is consumed in the different memory blocks,
and our models to split energy among different tasks.

3.1 Memory Model

We focus on DDRx SDRAM as it is one of the most common memory technolo-
gies. A DDRx SDRAM memory system is composed by a memory controller and

114 Q. Liu et al.

Table 1. Memory commands, timing, power states and background power breakdown
for a read operation in close-page mode

Command ;(1) — ACT _READ PRE —
Timing To - txp trep trTP trp -
Bankg
Bank1
State Banks PD S g S PD
Banks
Rank PPD Ps PA PS PPD
Power To P};D Ps — P};D Pa — P};D Ps — P};D P};D
el Ppp

2

one or more DRAM devices. The memory controller controls the off-chip memory
system acting as the interface between the processor and DRAM devices.

A memory rank consists of multiple devices, which in turn consist of multi-
ple banks that can be accessed independently. Each bank comprises rows and
columns of DRAM cells (organized in arrays) and a row-buffer to cache the most
recently accessed rows in the bank. Rows are loaded into the row-buffer using a
row activate command (ACT). Such command opens the row, by moving the data
from the DRAM cells to the row-buffer sense amplifiers. Once a bank is open,
any read/write operation (R/W) can be issued. Finally, a precharge command
(PRE) closes the row-buffer, storing the data back into the row. The memory
controller can use two different policies to manage the row-buffer: close-page that
precharges the rows immediately after every access, and open-page that leaves
the rows in the row-buffer open for potential future accesses to the same rows.

Different models can be adopted to access memory. Those models determine
which ranks, devices, banks and arrays are accessed on each operation. We adopt
the same model as DRAMsim2, which in turn models Micron DDR2/3 memo-
ries [15]. In this model, all devices in a rank are accessed upon every access. In
each device, only one bank is accessed, in which all arrays are accessed. Each
array provides the specified row to the sense amplifier on every access, where
a number of contiguous columns are accessed over successive cycles to serve an
incoming access. In our model, we use a single rank, 8 devices per rank, 8 banks
per device and 8 arrays per bank configuration. In one cycle, one bank per de-
vice is accessed, thus providing 64 bits in total for the rank. A burst of 8 cycles
provides 64 bytes on every access to memory, therefore matching the cache line
size for the last level cache (LLC) in the processor.

Under this configuration, all devices are always in the same power state, which
is equivalent to consider the power state at rank level. In each device, banks can
be in different states. Note, however, that our approach can be easily adapted
to other models. This is not detailed in this paper due to lack of space.

3.2 Memory Energy Consumption

The energy model for the main memory is based on the current profiles pro-
vided by Micron [16] and it splits energy consumption into dynamic, refresh and

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 115

background energy. This is analogous to the methodology used in [17], where the
same data from Micron is used as input. Micron energy model determines the
background electric current level, and so the background power dissipation of
each rank. Devices can be in three different states: Power Down (PD), Standby
(9), and Active (A). In each state, power dissipation is Ppp, Ps and P4 respec-
tively. PD state is the one with the lowest power dissipation.

Table 1 shows the effect on memory of a read command. We observe that the
device is in PD state when the memory controller is not processing any request.
Note that in our configuration all devices in the rank are in the same state and
therefore, rank and device states match. When the memory controller receives a
memory access request from task 0 (7p), it sends a clock enable (CKFE) signal to
transition the rank from PD to S state. The device stays in S state as long as all
banks are powered up and idle. This includes the time the device is waiting for the
memory controller to send those commands corresponding to the requests in the
memory controller’s queues. During the S state, background power is higher than
in PD state (Ps > Ppp). S state lasts tx p, as depicted in Table 1. Eventually,
some banks are activated so that the device as well as some banks transition to A
state. The device and the accessed banks (Bank0 in the example) are in A state
during part of the activation period (tgcp) and while the read/write command
is served (tgrp in the example for a read command). While in A state, the
device incurs the highest power dissipation, P4, with P4 > Ps. Once the only
command being processed is the PRE command, the device and accessed banks
transition to S state. When no command is executed and no memory access
request exists in the memory controller buffer, the memory controller sends the
clock disable signal returning the device to PD state.

As stated before, modern memory controllers may implement either open-page
or close-page policies. The close-page policy is the focus in this paper, although
we have observed similar trends for open-page policy.

3.3 Per-Task Energy Metering for Close-Page Policy

Our idealized model relies on the fact that background power dissipation of a
device depends solely on its current state, which can be induced by different,
concurrent accesses. Therefore, our model attributes background energy to each
task based on the state it imposes on memory. Memory occupancy is discarded
as input for the model since background energy does not depend on it.

1) During PD only background power is consumed, which cannot be at-
tributed to any task since during PD no task has any memory activity. Hence,
we divide background power evenly across all tasks running in the processor. 2)
Whenever a device transitions from PD to S state, the extra background power
incurred due to S state, i.e. Ps — Ppp is distributed uniformly across all tasks
with inflight commands that force the memory devices to stay in S state. 3)
When a device is in A state (active), the extra power incurred (i.e. P4 — Pg) is
distributed evenly across all tasks enforcing A state. For instance, Table 1 shows
the case where one task, Tp, issues a read command (first row) and the other
task 77 issues no command. Assuming that those are the only tasks using the

116 Q. Liu et al.

Table 2. Memory commands, timing, power states and background power breakdown
for several operations in close-page mode.

T — ACT READ PRE —
Command 0

T1 - ACT READ PRE _
Timing To - txp tRCD tRTP tpRp _
71 - tRRD tRCD tRTP tRP
Bankg A 3
State Bamki oo < A . .
Banksy s
Banks
Rank Ppp Pg Py Pg PpD
P P P P P P
Power Ty PD pg—"ED p,- ‘5 A s PD
Prp Fs Fa Ps Ps Ppp Ppp
n 2 2 5 Pa— 9 3 Ps— % 2

memory system, during the whole period Tj is responsible only for half of the
Ppp power (last row). Tj is responsible for half of the Ppp and all Ps and Pa
extra power (penultimate row).

When multiple commands are processed in parallel, we follow the same prin-
ciple of attributing power to those tasks that impose the memory to be on a
given state. In the example in Table 2, we show a particular case where both
To and T3 issue commands in parallel. First, the device is in PD state. Even-
tually, Ty makes the device transition to S, so T is responsible for the extra
background power. Then, devices transition to A state and T starts its activate
command. Both tasks are equally responsible for Ppp and Pg power, but only
Ty is responsible for P4 power. Later, T} also enforces memory to be in A state
so that the total power must be uniformly distributed across both tasks. Finally,
as commands finish, tasks Ty and T} stop enforcing high-power states and power
dissipation is attributed only to those tasks imposing each particular state.

3.4 Ideal Per-Task Energy Metering Model

We generalize the memory energy consumed by each task as follows.
1) The background (bg) energy attributed to a task can be generalized as
follows for both open- and close-page policies:

EzxecTime(Tk;) 55,
By ota(Tki) = Ppp x ExecTime(Tk;)/#Tk + > ((PS — Ppp) % #TL’;JS J')
7=0 ’
EzecTime(Tk;) 5A.
— »J
+ Jgo ((PA Pg) x #TkA,j) 1)

In the first addend each running task is metered an even part of Ppp, where
ExecTime(Tk;) stands for the execution time of task i in cycles and #Tk for
the number of tasks running in the processor — not necessarily the maximum
number of tasks allowed in the processor—. The second and third addends meter
Ps — Ppp and P4 — Ps for tasks enforcing those states. #1T'ks; and #Tk4 ;
correspond to the number of tasks imposing S and A states respectively in cycle
j; and 525:3' and 5;‘2 indicate if the task ¢ makes memory be in S and A state

respectively, in cycle j. In other words, 5{‘]- is 1 if task i is executing a read, write

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 117

or activate (last trop cycles) command in cycle j, and 0 otherwise; and (5;? ;18
1 if task ¢ is executing a precharge or activate (first txp cycles) command or if
it has pending commands in the memory controller while all banks are idle in
cycle j, and 0 otherwise. Note that, as stated before, memory occupancy is not
considered for metering energy to tasks since the memory regions not used by
the task under consideration cannot be turned off when idle. Hence, background
power remains the same regardless of the memory space used.

2) Dynamic energy for a task depends on the number of operations it performs,
as shown in the following equations:

Edyn, tota(Tki) = Eycad X #RD(Tk:) + Eyyrite X #W R(Tk:)

2
T ETER x #ACT(Tk:) + ERgw x #PRE(Tk;) @

where ET207 BTV ERST and EREE stand for the energy of each command,
and #RD(Tk;), #W R(Tk;), #ACT (Tk;) and #PRE(Tk;) stand for the num-
ber of memory internal commands executed by task 1.

3) Refresh operations may have some side effects such as delaying some com-
mands issued by running tasks. However, this fact does not alter the energy
model. Also, refresh commands consume some energy to access the correspond-
ing rows. Since refresh operations are distributed evenly over time at a fixed rate
and they are not originated by any particular task, their energy is split evenly

across all running tasks. Thus, refresh energy per task is as follows:

et total(Tki) = Eretr X #Ref x ExecTime(Tk:)/#Tk (3)
refr corresponds to the dynamic energy of a refresh command. #Ref cor-
responds to the average number of refresh operations performed per cycle.

4 DReAM, A Practical Approach to Per-Task Energy
Metering

Implementing the exact computation of the idealized energy model is expensive
— if at all feasible — due to the large number of events to be tracked, the
frequency at which they must be tracked, and the lack of information that the
processor has about the memory state. On the other end, metering memory
energy evenly among running tasks or proportionally to the number of accesses
that they perform requires minor changes to current architectures. However,
these approaches exhibit low estimation accuracy as shown later in Section 5.2.
Therefore, we propose DReAM, our per-task energy metering approach that trades
off energy metering accuracy and implementation complexity.

In DReAM memory model, dynamic and refresh energy can be easily tracked as
in the idealized model. This requires the memory vendor to provide the dynamic
energy per access type, namely EC7, E7O" ETET and ERSE for tracking
dynamic energy and E7%" for tracking refresh energy, as well as the average
number of refresh operations per cycle (#Ref). These parameters are already
provided by chip vendors like Micron for DDR2/3 memories [16], so our model
imposes no change to current DDR2/3 memories. In the memory controller,

118 Q. Liu et al.

Table 3. DReAM hardware requirements

Block Memory Vendor Extra Logic
Memory E?T;Zga 17)1:17;7;57 #RD, #WR, #ACT, #PRE, #RD(Tk'L)v
EXéT, EPRE, #WR(Tk:), #ACT(Tk:), #PRE(Tk:),
EZp", ESy, #Ref IntMem cycle counter

we only require per-task activity counters, namely #RD(Tk;), #W R(Tk;),
#ACT(Tk;) and #PRE(Tk;). Total background energy, E/™¢", . can be ob-

bg,total
tained by metering memory energy consumption [10] and sub%racting dynamic
and refresh energy. The PD background power is constant and hence easy to
track. Meanwhile, the remaining background energy, E2¢7 is due to active and
standby periods (i.e. Ej 50, = EPR™ + Efeil).

Our model distributes EZ5™ uniformly across all tasks, while E2S™ is dis-
tributed based on access frequencies per task. To that end, we divide the execu-
tion into intervals of IntMem processor cycles and track the number of memory
accesses sent to the memory controller (in a per-task basis) in the current inter-

val. Thus, background energy is obtained as follows:
EzecTime(Tk;)

Prem x ExecTime(Tk;) fniMem Tk; B (5)
pmem pp.y _ * PD + accesses; "t X rem
bg, total(i) #Tk J; # 7 #TOT(ICC(—ZSSGS]'

4)
where Pp'5"™ is the PD background power, #accesses?ki tracks the number of
memory accesses of task ¢ during interval j, and #7'OTaccesses; tracks the
total number of memory accesses in interval j. EI¢™(5) is the non-power-down
background energy in interval j, obtained by subtracting all other sources of
energy consumption from the total energy measured in the interval. Sensitivity

to the sampling interval (IntMem) is studied in the evaluation section.

Putting All Together

The DReAM approach requires little hardware overhead. DReAM mostly requires
setting up some counters similar to the PMCs currently available in most high-
performance processors. DReAM support does not interfere the execution of pro-
grams since it is not in any critical path. Table 3 summarizes those parameters
required from the memory vendor and the extra logic (i.e. counters) that must
be set up. Counters with the “(Tk;)” suffix must be replicated for each task.
Regarding the interface with the software, the OS is responsible for keeping
track of the energy consumed by every task running in the system. DReAM exports
a special register, called Memory Energy Metering Register (MEMR), that acts
as the interface between DReAM and the OS. The OS can access that register to
collect the energy estimates made by DReAM. This typically will happen when a
context switch takes place. At that moment, the OS reads the MEMR using the
hardware-thread index (or CPU index) for the task that is being scheduled out
(Tout). Then, the OS aggregates the energy consumption value read in the task
struct for T,y Right after the new task (7},,) is scheduled in, the memory state

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 119

Table 4. System Configuration

Main memory

Frequency and size 1000MHz, 8GB
Technology and supply voltage 65nm, 1.2V
Row-buffer management policy close-page

Address mapping scheme Shared Bank
Chip details
Core count 1, 4, 16 cores, single-threaded
Fetch, decode, issue, 2 instructions/cycle
commit bandwidth
Instruction & Data L1 32KB, 4-way, 32B/line (2 cycles hit)
Instruction & Data TLB 256 entries fully-associative (1 cycle hit)
LLC Size 256KB/core, 16-way, 64B/line (3 cycles hit + 12 cycles

L1 miss penalty and bus round trip)
256KB (1 core), 1IMB (4 cores), 4MB (16 cores)

may remain at a particular state due to an access triggered by the task that has
been scheduled out. Although, DReAM attributes background energy consumption
to Ty, this occurs during few cycles (in the order of tens or hundreds of cycles).
Under a processor frequency of 2GHz, 500 cycles are equivalent to 0.25us, while
context switches occur at much higher granularity, every 10-100ms.

As in [5], the time the OS spends working on behalf of a given task is attributed
to the calling task. The remaining energy consumed by the OS can be evenly
attributed to all running tasks. In any case, DReAM provides the hardware support
needed to attribute OS energy to tasks as required.

5 Evaluation

5.1 Experimental Setup

We use DRAMsim2 [15] to model off-chip main memory, a cycle-accurate mem-
ory system simulator for DDR2/3 memories including a memory controller and
DRAM memory. The processor is modeled with MPsim [18]. DRAMsim2 has
been connected to MPsim so that LLC misses are propagated to the memory
controller, which manages those memory requests. A power model based on Mi-
cron memories has been implemented in DRA Msim2.

We consider three Chip Multi-Processor (CMP) configurations with 1, 4 and
16 single-threaded cores. The second level cache (L2) is partitioned with 256KB
16-way per core. Therefore, L2 size is 256 KB, 1MB and 4MB for 1, 4 and 16
cores respectively. These configurations have been chosen to discount the effect
of on-chip inter-task interferences due to shared resources (e.g., shared L2 cache),
thus allowing to consider memory effects only. Details about the configuration
can be found in Table 4. Other parameters are analogous to those in [5].

For the DRAM memory we model a 8GB memory since it is enough to support
the workloads used in this paper. DRAM memory is single-rank with 8 devices
per rank, 8 banks per device and 8 arrays per bank. DRAM memory row-buffer
management policy is close-page across all the evaluation section.

120 Q. Liu et al.

Benchmarks. We use traces collected from the whole SPEC CPU 2006 bench-
mark suite using the reference input set. Each trace contains 100 million in-
structions, selected using the SimPoint methodology [19]. Running all N-task
combinations is infeasible as the number of combinations is too high. Hence,
we classify benchmarks into two groups depending on their memory access fre-
quency. Benchmarks in the high-frequency group (denoted H) are those pre-
senting a memory access frequency higher than 5 accesses per 1,000 cycles when
running in isolation, that is: mcf, milc, lbm, libguantum, soplexr, gcc, bwaves,
leslie3d, astar, bzip2, zeusmp, sphinz3 and omnetpp. The rest of the benchmarks
access with low frequency (denoted L). From these two groups, we generate
3 workload types denoted L, H and X depending on whether all benchmarks
belong to group L, H or a combination of both.

We generate 8 workloads per group and processor setup randomly, except for
the 1-core setup where all benchmarks run in isolation. In the case of X, half of
the benchmarks belong to L and the other half to H.

Metrics. In order to evaluate the accuracy of DReAM, we use as the reference
the ideal model. In each experiment, we measure the off estimation or prediction
error of each model with respect to the idealized model, which is computed as
follows, where N is the number of tasks in a workload.

N
i E ideal; — E 'model;
WIldPredError = 2izo [Energyidear, nergyYmodel, | (5)

We then take the average WldPredE'rm]%ngglgg%E?ﬂl“ﬁénchmarks in each work-
load analyzed in each processor setup.

5.2 DReAM Energy Estimation

In this section we show the accuracy of DReAM with respect to the ideal model
presented in Section 3. We also include the ES model that uniformly splits
energy across all running tasks regardless of their activity and memory behavior,
together with a simple Proportionally To memory Accesses model (PTA) that
splits energy across tasks proportionally to their memory accesses.

DReAM Sampling Interval (IntMem). The memory energy consumption pre-
diction of DReAM varies with different sample period (interval) lengths. When
choosing the interval length, we seek for a reasonable tradeoff between accuracy
and hardware cost, by regulating the interval period from 128 to half million pro-
cessor cycles. As expected, higher sampling frequency increases accuracy. How-
ever, discrepancy between short and long sampling periods is not huge (from
4.6% to 7.4% average WidPredError). Some meaningful average WIdPredEr-
ror increase is observed when moving from a 512-cycles sampling interval to a
1024-cycles interval. Further increasing the interval size until reaching half mil-
lion cycles has little impact on accuracy since deviation from the ideal model
quickly flattens. Thus, we have chosen two different interval sizes with different
accuracy/cost tradeoff: 512 and 50K cycles sampling intervals.

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 121

20%

67%

16%

12%

8% -

4% -

2 b=

4 e

0 e,
[<< e
(o2]
e 2]
2 2
24 2
2 20
£ 23
244 2
243 243
2 29
2
24 2
2 20
£ 23
244 2
o2 2]
2 29
#4 2
o2 293
2 29
£ 2
24 2
(o2 2]
e 29
244 2
o2 293
2 29
4 4
£ 2

0% -

Memory Energy Prediction Error

4-core workloads 16-core workload

Fig. 2. Per-task DRAM energy prediction error for 4-core workloads

DRAM Energy Consumption Prediction. Next we evaluate the off esti-
mation for 4-core and 16-core processor setups with respect to the ideal model.
The left half of Figure 2 shows the result for the 24 workloads (8 of each type)
under the 4-core setup. We observe that, in general, the ES model is highly in-
accurate averaging over 45% prediction error across all workloads, and ranging
from 26% to 69% for all workload types. Prediction is more accurate for L and
H workloads than for X ones. This is expected since benchmarks in L and H
workloads are more homogeneous, so their individual power consumption is also
more homogeneous than in X workloads. PTA model improves the estimation
accuracy, with an average prediction error around 24%. PTA accuracy is high
for H workloads since the large number of accesses of H benchmarks makes
energy cost more proportional to the number of accesses (dynamic energy be-
comes dominant). However, benchmarks in L group seldom access memory, so
their memory energy is mainly background energy, which PTA fails to predict
accurately.

Our DReAM model improves prediction accuracy significantly over both ES and
PTA. When the sample period granularity is 512 cycles, the prediction error is
always below 10%, and 3.9% on average. If the sampling period increases to 50K
cycles, the prediction error may reach 14.0% at most for one particular workload,
and 6.1% on average. The right half of Figure 2 shows results under the 16-core
setup. First, we observe that ES and DReAM accuracy remains similar to that of
the 4-core setup. In contrast, PTA accuracy slightly improves. The average predic-
tion error across all workloads for the ES model rises to 53%. The error increment
mainly comes from L workloads. A similar effect occurs for DReAM, thus making L
workloads to exhibit the lowest prediction accuracy. Trends for PTA are similar
to those for the 4-core setup, thus exhibiting higher accuracy for H workloads, al-
though accuracy for the 16-core setup is higher. This is due to the fact that, with
4 cores, a large deviation for one benchmark has significant impact in average re-
sults, but such average impact becomes lower across 16 tasks. However, maximum
error for individual benchmarks in each workload still remains high. Nevertheless,

122 Q. Liu et al.

PTA has an average prediction error above 10%, and around 23% for a particu-
lar workload. Opposably, DReAM error is below 5% on average (512-cycles interval)
and always below 8% across all workloads. Note that the gap between 512 and 50K
cycles sampling intervals for DReAM is still around 2%, as in the 4-core case. Our
results prove that DReAM is far more accurate than ES and PTA models across all
workload types, and average prediction error remains nearly the same for 4 and
16 cores, thus proving that DReAM scales well.

Using the same evaluation methodology, we have also validated the prediction
accuracy of DReAM under open-policy. However, results obtained did not offer any
further insight. Since many current DRAM chips implement low-power mode,
and so is DRAMsim2, the open banks under open-page policy transition quickly
to power down state when there is no incoming request. This fact makes open-
page policy perform similarly to close-page in multicore systems. Results are not
shown due to space constraints.

DReAM Energy Overhead. DReAM requires some hardware support in the form
of counters to track memory activity. Those counters are placed in the memory
controller, which in general is on-chip, so the memory devices remain unchanged.

As shown in Table 3, DReAM needs few counters (5 shared counters and 4 extra
counters per thread). 32-bit counters suffice to track the corresponding events.
Further, few of those counters are accessed on each memory access and at the
end of a sampling interval. We have considered the energy consumption for two
different sampling intervals: 512 and 50K cycles. Area and power overheads have
been derived with power models analogous to those of Wattch [20]. Wattch-like
power models are built on top of CACTI 6.5 simulation tool [21]. Results for
4-core and 16-core configurations show that the total energy and area overhead
for DReAM is largely below 0.1% of the memory system.

Furthermore, relative overheads do not change noticeably if the core count is
increased, which proves that DReAM scales well. Energy overheads for 512 cycles
sampling intervals are higher than for 50K intervals, but still under 0.1% for the
whole chip.

6 Conclusions

Different programs show highly different energy profiles in different components.
However, per-task memory energy metering has not been considered so far. In
this paper, we propose, for the first time, an ideal model to measure per-task
DRAM memory energy and devise DReAM, an efficient and accurate implementa-
tion of such ideal model. We show how DReAM achieves a prediction error between
3.9% and 4.7% w.r.t. the ideal model with negligible overhead for 4 and 16 core
setups respectively. The error is largely below the error introduced by approaches
such as even distribution and proportional-to-accesses distribution.

Acknowledgements. This work has been partially supported by the Spanish
Ministry of Science and Innovation under grant TIN2012-34557, the HIPEAC

DReAM: Per-Task DRAM Energy Metering in Multicore Systems 123

Network of Excellence, by the European Research Council under the European
Union’s 7th FP, ERC Grant Agreement n. 321253, and by a joint study agree-
ment between IBM and BSC (number W1361154). Qixiao Liu has also been
funded by the Chinese Scholarship Council under grant 2010608015.

References

1.
2.
3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Barroso, L.: The Price of Performance. Queue 3(7) (2005)

Hamilton, J.: Internet-Scale Service Infrastructure Efficiency. In: ISCA (2009)
Jimenez, V., Gioiosa, R., Cazorla, F., Valero, M., Kursun, E., Isci, C., Buyukto-
sunoglu, A., Bose, P.: Energy-aware accounting and billing in large-scale computing
facilities. IEEE Micro 31(3), 60-71 (2011)

Bircher, W.L., John, L.K.: Complete system power estimation: A trickle-down
approach based on performance events. In: ISPASS (April 2007)

Liu, Q., Moreto, M., Jimenez, V., Abella, J., Cazorla, F.J., Valero, M.: Hardware
support for accurate per-task energy metering in multicore systems. ACM Trans.
Archit. Code Optim. 10(4) (December 2013)

Intel Corp.: Intel 64 and ia-32 architectures software developer’s manual (2012)
Phansalkar, A., Joshi, A., John, L.K.: Analysis of redundancy and application
balance in the SPEC CPU2006 benchmark suite. In: ISCA, pp. 412-423 (2007)
Pathak, A., Hu, C., Zhang, M., Bahl, P., Wang, W.M.: Fine-grained power mod-
eling for smartphones using system call tracing. In: EuroSys. (2011)

Chung, Y.F., Lin, C.Y., King, C.T.: ANEPROF: Energy profiling for android java
virtual machine and applications. In: ICPADS (2011)

David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL: Memory
power estimation and capping. In: ISLPED (2010)

Intel Corp.: Intel xeon processor E5-2600 product family uncore performance mon-
itoring guide (March 2012)

Shen, K., Shriraman, A., Dwarkadas, S., Zhang, X., Chen, Z.: Power containers:
an os facility for fine-grained power and energy management on multicore servers.
In: ASPLOS (2013)

Bellosa, F.: The benefits of event-driven energy accounting in power-sensitive sys-
tems. In: ACM SIGOPS European Workshop, pp. 37-42 (2000)

Kestor, G., Gioiosa, R., Kerbyson, D., Hoisie, A.: Quantifying the energy cost of
data movement in scientific applications. In: IISWC, pp. 5665 (September 2013)
Rosenfeld, P., Cooper-Balis, E., Jacob, B.: DRAMSim2: A cycle accurate memory
system simulator. IEEE Comput. Archit. Lett. (2011)

Micron: Calculating memory system power for DDR3. Micron Technical Notes
(2007)

Deng, Q., Meisner, D., Ramos, L., Wenisch, T., Bianchini, R.: Memscale: Active
low-power modes for main memory. In: ASPLOS (2011)

Acosta, C., Cazorla, F., Ramirez, A., Valero, M.: The MPsim simulation tool.
Technical Report UPC-DAC-RR-CAP-2009-15, UPC (2009)

Sherwood, T., Perelman, E., Calder, B.: Basic block distribution analysis to find
periodic behavior and simulation points in applications. In: PACT (2001)

Brooks, D.M., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-
level power analysis and optimizations. In: ISCA (2000)

Muralimanohar, N., Balasubramonian, R., Jouppi, N.: CACTI 6.0: A tool to un-
derstand large caches. HP Tech Report HPL-2009-85 (2009)

Characterizing the Performance-Energy Tradeoff
of Small ARM Cores in HPC Computation

Michael A. Laurenzano!:?, Ananta Tiwari'3, Adam Jundt!, Joshua Peraza!,

William A. Ward, Jr.%, Roy Campbell?, and Laura Carrington'3

! EP Analytics
2 Dept. of Computer Science and Engineering, University of Michigan, USA
3 Performance Modeling and Characterization Lab.,
San Diego Supercomputer Center, USA
4 High Performance Computing Modernization Program, U.S. Dept. of Defense, USA
{michaell ,ananta.tiwari,adam.jundt, joshua.peraza,
laura.carrington}@epanalytics.com,
{william.ward,roy.campbell }@hpc.mil

Abstract. Deploying large numbers of small, low-power cores has been
gaining traction recently as a system design strategy in high performance
computing (HPC). The ARM platform that dominates the embedded and
mobile computing segments is now being considered as an alternative
to high-end x86 processors that largely dominate HPC because peak
performance per watt may be substantially improved using off-the-shelf
commodity processors.

In this work we methodically characterize the performance and en-
ergy of HPC computations drawn from a number of problem domains
on current ARM and x86 processors. Unsurprisingly, we find that the
performance, energy and energy-delay product of applications running
on these platforms varies significantly across problem types and inputs.
Using static program analysis we further show that this variation can
be explained largely in terms of the capabilities of two processor sub-
systems: single instruction multiple data (SIMD)/floating point and the
cache/memory hierarchy; and that static analysis of this kind is suffi-
cient to predict which platform is best for a particular application/input
pair. In the context of these findings, we evaluate how some of the key
architectural changes being made for upcoming 64-bit ARM platforms
may impact HPC application performance.

1 Introduction

As large-scale high performance computing (HPC) systems have grown in size
and the scope of problems being solved, reducing their power consumption has
become a first-class problem. Indeed, many argue that power consumption is one
of the primary constraints on the size of upcoming HPC systems [4][5][20][27][30].
We see this impacting industry, academia, and government, where substantial
effort and resources are being marshaled to improve energy efficiency in HPC
centers. On the other hand, the problems being solved on HPC systems, ranging

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 124-137, 2014.
© Springer International Publishing Switzerland 2014

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 125

from basic research to solving day-to-day problems in defense and industry, have
HPC users demanding more and more performance out of their systems.

In response to these forces, HPC system architects have sought out designs
that deliver higher performance with lower power budgets. One of the design
alternatives that has gathered much attention along these lines is to use a large
number of small, low-power cores in place of a smaller number of large, power-
hungry cores. In particular, ARM processors, the dominant platform in the em-
bedded and mobile computing domains, are being considered. The argument
for using a large number of ARM cores is twofold. First, low-power cores are
often more energy efficient than high-end cores [17]. Second, having come from
domains which have always been power constrained, ARM designs in particular
have been engineered to be frugal with power; careful attention having been
given to include only those features that are worth the extra power they con-
sume [7]. However, the question remains: are those features well-suited to HPC
applications?

Current 32-bit ARM platforms such as ARMv7 have limitations that preclude
their immediate use in modern HPC systems: only 4GB of memory are supported
per process [15], and the ISA and hardware support for vector math is limited [8].
Ameliorating these limitations is one of the purposes of ARMvS8, a 64-bit version
of the ARM architecture, which is set to be released in early to mid 2014. Among
other improvements, ARMv8 includes the ability to natively address significantly
more than 4GB of memory, along with support for IEEE754 double-precision
(DP) math and vectorized DP operations [14]. Still, it remains unclear whether
these improvements will impact the ability of ARMv8 to deliver satisfactory
performance to broad classes of HPC applications, and to what extent they will
improve upon existing ARMvT processors.

In this work, we characterize the performance and energy of ARM and x86
platforms by drawing compute kernels and applications from a number of HPC
problem domains. These benchmarks are methodically characterized in terms
of their performance and power on several ARMv7 (32-bit) and x86 processors.
We examine performance, energy and energy-delay product (EDP), finding that
these metrics vary by least an order-of-magnitude on a given implementation,
and that they depend on the specific features of the application being run. We
employ static program analysis on the benchmark kernels to characterize their
behavior in terms of memory and floating point operations. From these char-
acteristics, we develop simple regression models for performance, energy, and
EDP disparities across applications, finding that these are largely explainable
as functions of the memory and floating point characteristics of the compiled
application. Building upon this insight, we present a model for estimating how
performance is likely to change with improvements in the CPU and memory of
upcoming 64-bit ARMvS8 systems, finding that both have significant impacts on
the performance of a broad class of applications.

The rest of this paper is structured as follows. Section 2 discusses work in the
literature related to this paper. Section 3 explains the experimental methodology
used in this work to assess the performance and power characteristics of HPC

126 M.A. Laurenzano et al.

applications. Section 4 presents a methodical evaluation of two ARM platforms
on a number of compute kernels and application benchmarks, followed by a
discussion of the factors underlying the performance and energy characteristics
of the applications and how these characteristics are likely to be impacted by
the introduction of 64-bit ARM platforms. Finally, Section 5 concludes.

2 Related Work

This section describes the related literature in two areas that intersect with our
work: using ARM cores in HPC and HPC Performance Modeling.

2.1 ARM in High Performance Computing

Rajovic et al. [26] evaluate the performance and energy efficiency of the Tegra
2, Tegra 3, and Quadro 1000M on a set of HPC microkernels. The Tegra 2
and 3 contain two and four core ARM Cortex-A9 processors respectively, and
the Quadro 1000M is a discrete mobile GPU. Padoin et al. [24] compare the
scalability and energy efficiency of a PandaBoard, Snowball, and Tegra 2 when
running High Performance Linpack. Ou et al. [23] compare energy and cost ef-
ficiency of a PandaBoard containing an ARM Cortex-A9 with an Intel Core2
Q9400 on three applications: web server throughput, an in-memory database,
and video transcoding. They find that the PandaBoard achieved the greatest
energy efficiency gains in less computationally intensive applications (the in-
memory database in their study). Fiirlinger et al. build a cluster of second-
generation Apple TV devices which utilize an ARM Cortex-A8 [13]. They eval-
uate CPU and memory performance compared to a BeagleBoard and system
performance per watt running High Performance Linpack compared to systems
on the Green500 list.

Blem et al. [7] focus on the specific microarchitectural implementations of
ARM and x86 processors, comparing an ARM Cortex-A8, ARM Cortex-A9, In-
tel Sandybridge, and an Intel Atom. By showing that the Atom could achieve
similar energy consumption to the Cortex-A9 when controlling for microarchi-
tectural features, they conclude that ISA is not major determinant of energy
efficiency, instead finding that ARM and x86 implementations are simply differ-
ent engineering design points.

Our work complements this existing body of literature. Our contribution is
to document the performance and energy impact ARM cores have on a wide
range of HPC computational benchmarks, as well as to show that the variability
in performance and energy can largely be attributed to FP/SIMD computation
and interactions with the memory subsystem.

2.2 HPC Application Performance Modeling

Kerbyson et al. propose some of the seminal ideas in predictive application
performance and scalability modeling, showing that it is possible to accurately

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 127

model the performance for a single application and that the model depends on
specifics of the implementation of that application [18][19]. Several other works
show how to use an application-independent approach to modeling performance,
using a variety of application characteristics collected as traces of the running
application, then mixing those with the results of measurement microkernels that
are deployed on the system to predict performance for the application/system
pair [10][28]. Snavely et al. [29] show that while a cycle accurate simulator could
be very accurate, it was infeasible for a full-scale HPC application. Instead, they
show that it is possible to tractably predict performance using a few important
features.

Carrington et al. [9] show that simple combinations of metrics are infeasible
to use for precisely predicting HPC application performance. In this work we
show that even simple, static features of HPC applications can be employed to
provide useful insights into the direction and magnitude of their performance
and energy characteristics, even while precise performance prediction with those
features may not be feasible.

3 Analysis and Measurement Methodology

The aim of this work is to characterize an extensive set of HPC application bench-
marks in terms of their performance, energy and energy-delay product (EDP) on
a several ARM processor configurations. This section discusses the methodolog-
ical considerations made to develop these characterizations. We begin by dis-
cussing the performance measurement methodology, followed by a discussion of
a methodology for attributing the wall-level power draw to the workload running
on a system. Last, we describe a set of program analysis tools and methodologies
that are deployed in the evaluation to develop energy models.

3.1 Performance Measurement

This work evaluates a number of HPC application kernels and benchmarks for
performance and power. Our approach to measuring performance on application
kernels is to manually insert timing instrumentation around the key computa-
tional loops, avoiding measurement of initialization and finalization code such as
parsing arguments, reading files, allocating/freeing memory and output valida-
tion. The performance of these activities is important, yet in benchmark kernels
they tend to be greatly over represented as a fraction of runtime relative to their
runtime in full application codes. Many HPC benchmarking packages such as
the NAS Parallel Benchmarks [6], pcubed [21] and polybench [25] adopt a sim-
ilar rationale, providing (sometimes multiple) timers around important phases
of computational work.

3.2 Attributing Power to a Workload

The goal of our power measurement methodology is to isolate the power draw
consumed only by the CPUs running the application. To isolate the power draw

128 M.A. Laurenzano et al.

in this fashion we measure system-wide power draw during long-running com-
putational kernels at several core counts, with the purpose of deriving the power
contribution only of the cores actively involved in the computation. We begin
with the formulation of system-wide power shown in Equation 1.

siystem =i * Wactive + (N - Z) * Widie + Wother (1)

The elements of Equation 1 are ¢, the number of active cores, Wsiystem, the
measured power using ¢ active cores and IV, the total number of available cores on
the system. The goal of producing an equation in this form is to derive Wy tipe,
the power draw of a single active core, Wjgie, the power draw of a single idle core
and Woiper, the power draw of all other system components. Because there are
three unknowns (Wctive, Widie and Wozper), measurements at three core counts
(i = ¢1, ca, c3) is sufficient to produce system of equations, shown in Equation 2,
to which we can apply any of a number of numerical techniques to approximate
the unknowns. In this work we use Gaussian elimination.

c
sylstem C1 N — C1 1
¢!

Ws;stem = Wactive | 2| + Widie N —c| + Wother |1 (2)
c3

W‘;ystem €3 N —c3 1

This framing of the problem makes several assumptions. First, it assumes
that Wective, Widie and Woiper do not depend on the number of cores that are
active. For this assumption to hold, the workload must be carefully selected so
that each additional running instance of the kernel produces a similar additional
power draw increase. This means ensuring that running instances do not compete
with one another for processor resources like cache and interconnect, which would
introduce execution stalls and reduce circuit-level switching activity. Second, this
formulation resolves Wctive, Widle and Wosper only for a particular benchmark.
Empirically, however, we found that Wz, and Wy, for a particular system
are stable across a range of computational kernels, indicating that these values
are relatively independent of the workload running on the system. Therefore,
we utilize this methodology for only a few kernels on each system to estimate
Widte and Wope, for the system, allowing us to isolate the power per active
core for any workload by plugging the full system power measurement for that
workload T/VsZ along with W;g. and Wyper, into Equation 1.

ystem>

3.3 Program Static Analysis Tools

In this work we employ two binary analysis tools to analyze application codes.
In particular, we use the EPAX toolkit [12] to analyze the static properties of
ARM binaries and the PEBIL toolkit [22] on x86 binaries. Static binary analysis
is the act of examining a compiled binary program to extract information about
the properties of the code and data that reside within that program. EPAX
and PEBIL accomplish this by reading the executable from disk, parsing and
disassembling its contents, then writing out a file containing a number of details
about the machine-level instructions in the program as well the relationship

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 129

between those instructions such as their membership in high-level structures
such as basic blocks, loops, and functions. In this work, we use EPAX on ARM
binaries and PEBIL on x86 binaries to extract a number of features we expect
to be salient to HPC applications, including counts of floating point and vector
(SIMD) operations, along with the counts and properties of memory operations.
When possible to gather at compile-time, we augment the information gathered
by EPAX and PEBIL with information about the sizes of key data structures
within the important computational loops. As we show in Section 4.3, this array
of static properties is enough to make informative predictions about the direction
and magnitude of the relative amount of energy consumed when running the
application on ARM and x86 systems.

Table 1. Platform configurations

Intel Sandy Bridge ARM Cortex-A9 ARM Cortex-A15
Name Dell Poweredge T620 Dell Copper nCore BrownDwarf Y-class
Platform x86 64 64-bit ARMvT 32-bit ARMvT 32-bit
Processor 8-core 2.6GHz Xeon E5-2670 4-core 1.6GHz Marvell MV78460 4-core 1.4GHz TI 66 AK2E05
D-Cache Shared 20MB L3, Priv. Shared 2MB L2, Priv. 32KB L1 Shared 4MB L2, Priv.
256KB L2, Priv. 32KB L1 32KB L1
Memory 32GB 1333MHz DDR3 4GB 1333MHz DDR3 2GB 1600MHz DDR3
FP/SIMD SSE, AVX VFPv3-D32, no SIMD VFPv4, NEON
Notes Turbo and HT disabled - c66x DSP cores disabled

Table 2. Benchmarks and applications

Type Programs Summary
PolyBench[25] adi, atax, bicg, cholesky, doitgen,
dynprog, fdtd-2d, fdtd-ampl, gemver,
gesummyv, grammschmidt, jacobi-2d, | .
Compute . . linear algebra, data mining,
mvt, seidel, symm, trisolv, trmm K
Kernels stencils
Other covcol, dct, dsyr2k, dsyrk,
matmulinit, mm, stencil-3d, strmm,
strsm, swim, tce
. . molecular dynamics, finite
L Mantevo[16] miniMD, CoMD, miniGhost : .
Application element, finite difference,
CORAL[1] AMGmk, MILCmk

Trinity[11] miniFE, GTC

Benchmarks quantum chromodynamics,

plasma physics

4 Evaluation

4.1 Experimental Setup

We utilize three distinct platforms throughout this evaluation, summarized in
Table 1. These test platforms consist of a high-end Intel Sandy Bridge E5-2670,
a popular configuration among the largest modern supercomputers [2]. We also

130 M.A. Laurenzano et al.

use two energy-efficient ARM server platforms: a Cortex-A9 based Dell Cop-
per server and a Cortex-A15 based nCore BrownDwarf Y-class supercomputer.
For power measurement, we use a Yokogawa WT310 digital power meter [3]
to measure AC power draw of the entire system at the wall. Power measure-
ments for each benchmark run are then isolated using the approach described in
Section 3.2.

On our test platforms we deploy 28 compute kernels and 7 application bench-
marks, summarized in Table 2. Many of the compute kernels are drawn directly
from the Polyhedral Benchmark Suite [25], while others are augmented versions
thereof or hand-written compute kernels of our devising. For each compute ker-
nel we generate a total of eight configurations, consisting of the cross product
of double- and single-precision (DP and SP) versions of the benchmarks and
data set sizes that are large enough that they fit into each of the four levels of
the memory hierarchy on all systems (L1 , L2 and L3 Cache! as well as main
memory). This yields a total of 224 compute kernels. The sizes of the four data
sets were chosen carefully so that both the DP and SP versions fit into the same
level of the memory hierarchy on all systems (SP data types generally consume
half the memory of their DP counterpart). For our particular test platforms,
we use 10-15KB of SP data for L1, 80-100KB of SP data for L2, 700-900KB
of SP data for L3 and 50-70MB of SP data for main memory. The seven ap-
plication benchmarks are also described in Table 2, which are drawn from the
Mantevo [16], CORAL [1] and NERSC-8 Trinity [11] benchmark suites and rep-
resent applications from among a number of unique computational domains. For
most applications we use both DP and SP versions. The exception to this is min-
iMD, for which we were unable to compile the DP version on either of the ARM
platforms. Benchmarks and applications are compiled with gce, using optimiza-
tion level -03 and vectorization support flags: ~-funsafe-math-optimizations
-mavx on the Sandy Bridge and -funsafe-math-optimizations -mfpu=neon?
on both ARM systems. We pin threads to cores to ensure that no thread migra-
tion occurs during any experimental runs. All performance, power, energy and
EDP numbers presented are the average of three runs.

4.2 Performance and Energy Characterization

We begin the evaluation by presenting performance and energy characteriza-
tions of the compute kernels and benchmark applications on all systems. Fig-
ure 1 shows distributions of the performance 1(a)-1(b), energy 1(c)-1(d) and
EDP 1(e)-1(f) for the compute kernels, grouped according to floating point pre-
cision (SP/DP) and which memory level the kernel exercises (L1/L2/L3/MM)
and normalized to the Intel Sandy Bridge system, where values greater than

! Neither the Cortex-A9 nor the Cortex-A15 have L3 cache, and thus they have two
sizes that fit into main memory.

2 Without -funsafe-math-optimizations, SIMD NEON instructions will fail to ma-
terialize on the ARM systems because those instructions do not adhere to the
IEEET754 standard.

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 131

(a) Cortex—A15 measured runtime (b) Cortex—A9 measured runtime
) _ -)
£ 1007+ - = 7T Egod =~ -~ 7T T T
=] 1 e =
| AR T ém-llllQQEﬁ
?52‘0_-L_.__._4‘E$$—'— 3 50 .
5 10 , S 20 o R _:_
E 05+ + E 10
2 B DP O SP ZOS_IDPEISPI
T 1T 1T 1T T T T 1 ’ T 1T 1T 1T T T T 1
337352713 =R RCI R R R
(c) Cortex—A15 measured energy (d) Cortex—A9 measured energy
— 10.00
g 100 = - % 500 || W DP O SP M
—]
g o III TTTE 22004 T T o« o 1o
2 ! = 1.00 A
£ o - 587 @ raEmmoeEst
:‘% 0.10 4 + —:— _:_ - ! : Lo % 0.50 1 ! 1 1 ! !
E -t £ 020 ~ & > 4 oo+ 1
Zz 095 9 m pp O sp Z 010 o -
[N e 0.05 T T T T T T
— Lo IR — [\ I — o = — o -
I § I é SR § RN E
(e) Cortex—A15 measured EDP (f) Cortex—A9 measured EDP
10.00 — i -
8T ST sw R - -3
m 2.00 -y m o
R - e [| [
N n 1 N VT
Té 020 -4 "+ 4 1 + E | T L = \ -
£ 0.10 4 < 1 é 1.0 L T T T
2 005 - H z 057+ Lt
=
002 4| m pp @ sp 01
T T T T T T T 1 T T T T T T 1
— o — a7 — o — a7
I § I B § 0379 § N R é

Fig. 1. Distributions of the runtime (a)-(b), energy (c)-(d) and energy-delay product
(e)-(f) for single-core compute kernels on ARM Cortex-A15 and Cortex-A9, relative
to Intel Sandy Bridge. Distributions are shown as box plots, which highlight the the
maximum (upper tail), 75th percentile (box upper-bound), median (line within box),
25th percentile (box lower-bound) and minimum (lower tail). Interested readers can
find more detailed charts at http://epanalytics.com/data/euro-par2014/.

one for runtime indicate ARM performance suffers relative to the Sandy Bridge
system, and values less than one for energy and EDP identify benchmarks that
are more energy efficient when executed on the ARM systems. Three interesting
trends can be observed. First, in almost all cases the SP versions of the kernels
show better characteristics on the ARM systems over their DP counterparts,
an issue that should be resolved on future 64-bit ARM systems. Second, there
is substantial variation in runtime even within a particular grouping of ker-
nels, suggesting that performance, energy and EDP have a substantial software

http://epanalytics.com/data/euro-par2014/

132 M.A. Laurenzano et al.

component, rather than being a simple property of the hardware. Third, the
larger the working set, the worse the efficiency is on the ARM systems. For
example, the Cortex-A15 energy results show that median L1-Cache energy im-
provement is more than double that of main memory energy improvement. This
suggests that there is room to improve the efficiency of HPC applications by im-
proving the cache and memory architecture of the ARM platforms. We refer the
interested reader to http://epanalytics.com/data/euro-par2014/ to find a
more detailed treatment of these charts.

In Figure 2, we present similar findings on the performance 2(a), the energy
2(b) and the energy-delay product 2(c) for the application benchmarks.

(a) Runtime

25

(b) Energy
|- Cortex-A15 [Cortex-A9|

SorrLNNWWE
cuioumouoUo

Normalized Energy Normalized Runtime

(c) Energy-delay product
[WEm Cortex-A15 [Cortex-A9]

[uny
o
N

3]

Normalized EDP
=
<L

—_
(=)
=)

MEAN

miniMD-SP
miniFE-SP
miniFE-DP
AMGmk-SP
AMGmKk-DP
MILCmk-SP
MILCmk-DP ®
CoMD.eom-SP =
CoMD.eom-DP
CoMD.Jj-SP
CoMD.lj-DP®
miniGhost.lrg-SP &
miniGhost.lrg-DP
miniGhost.sml-SP &
miniGhost.sml-DP
MEAN-SP
MEAN-DP

Fig. 2. Runtime (a), energy (b) and energy-delay product (c) for quad-core application
benchmarks on an ARM Cortex-A15 and Cortex-A9, relative to an Intel Sandy Bridge.
Note that (c) is plotted on a log scale.

4.3 Attributing Energy Characteristics to Static Program Features

In Section 3.3, we described two static binary analysis tools, PEBIL for x86
and EPAX for ARM, which were employed to collect information about the the

http://epanalytics.com/data/euro-par2014/

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 133

(a) Cortex—A15 DP energy (b) Cortex—A15 SP energy
2 1.2 7| o Measured @ z 10 7] o Measured
E 1.0 -1 % Modeled > § 0.8 — Modeled
Ho0.8 o = 8
B 2 T 0.6
N 0.6 N 4‘?
S 04 — s 04 > e
E) g wy@wso
S | S 02 S
Z 0.2 s & Z, B ¢3¢
0.0 — 0.0 —
Kernel (ordered by measured energy) Kernel (ordered by measured energy)
(c) Cortex—A9 DP energy (d) Cortex—A9 SP energy
2.0 - 4 -
2 O Measured &8) O Measured o
g 1.5 - Modeled & 3 3 Modeled
= = ®
3 o) ©
8 1.0 R g IS 2 7 /&
g et = g
s 5 g g
E 05 £ s
Zo %) \":‘w 2 s
R B
0.0 0 1%~
Kernel (ordered by measured energy) Kernel (ordered by measured energy)

Fig. 3. Measured and modeled energy for Cortex-A15 (a)-(b) and Cortex-A9 (c)-(d).
A statistical measure of the variation in kernel energy that is explained by the models
(adjusted R-squared) is (a) 90%, (b) 64%, (c) 80% and (d) 76%.

memory/cache and floating point/SIMD operations that reside within the key
loops of the compute kernels. Specifically, we collect the counts of instructions,
memory operations, floating point operations, the number of bytes moved per
memory operation, and the size of the key data structure(s) in the loop. We then
use multivariate linear regression to build models of the energy consumption
(normalized to Sandy Bridge) of the compute kernels as a function only of these
terms and some of their simple variants (e.g., floating point ops per instruction),
along with 10-fold cross validation on the models. Figure 3 shows the measured
and modeled energy consumption for the Cortex-A15 3(a)-3(b) and the Cortex-
A9 3(c)-3(d), again normalized to the Intel Sandy Bridge.

Two interesting features are apparent from Figure 3. First, we observe that
the models capture a significant fraction of the variation in energy across the
compute kernels. Visually, this can be seen where the shape of the modeled
energy points follows the shape of the measured energy points. A statistical
measure of this property is given by the adjusted R-squared of the model [31].
Adjusted R-squared is the percentage of variation captured by the model, where
a perfect model would capture 100%. The models shown in Figures 3(a), 3(b),
3(c) and 3(d) have adjusted R-squared measures of 90%, 64%, 80% and 76%
respectively. Qualitatively, the models account for the majority of the energy
variation across benchmarks. Second, the models are able to correctly predict
which system uses the least energy to run a particular compute kernel in 210 of
the 224 kernels. We take care to note that these models are imprecise, lacking

134 M.A. Laurenzano et al.

exactness in the energy prediction of any particular compute kernel. Neverthe-
less, they are surprisingly useful for estimating the direction and magnitude of
the energy difference between the ARM and x86 systems.

(a) Compute kernels (b) Application benchmarks

2.0 7 [Fast CPU + Fast Memory
EE Fast CPU |

Speedup

OO A Ay A A A A A A O A B Ay
A L
2 L ECEE R R L
Fast CPU + Fast Memory .EE-EEdddd%%ggggzz
o Fast CPU ERF<E5250058582
1.0 oS EEE%
SP/DP Kernels (ordered by speedup) EEE E

Fig. 4. Estimated speedup conferred by CPU and memory speed improvements in 64-
bit ARM systems for (a) compute kernels (b) and application benchmarks. The thick
red line shows the theoretical speedup that would be achieved if scaling by the CPU
clock rate increase (2.6/1.6 = 1.625).

4.4 Implications for 64-Bit ARM

Implementations of 64-bit ARM platforms are expected to arrive in early to mid
2014. Tt is widely anticipated that 64-bit ARM will improve upon the current 32-
bit implementations by offering higher clock rates, improvements in the memory
architecture, and more complete vector math support, for example by supporting
2-wide DP SIMD operations and fully adhering to the IEEE754 standard. We es-
timate the impact of these factors on performance by examining the relationship
those factors have to performance on the Sandy Bridge system. In particular,
we dial down the memory and processor clock frequencies on the Sandy Bridge
system to 800MHz and 1.6GHz respectively to measure the speedup between the
low and high clock rate runs, which represents how much benefit is conferred to
the application by running on hardware which has faster compute and memory
resources. Similarly, we estimate the impact of faster CPU only by dialing down
only the memory. The estimated speedups produced by this approach are pre-
sented in Figure 4, showing in 4(a) that increasing a slow clock rate by a factor
of 1.625 confers a speedup of at least 1.625x for a majority (81%) of compute
kernels. This suggests that clock rate increases in 64-bit ARM systems are likely
to show substantial improvements for the performance of many HPC applica-
tions. In 4(b), we present the application benchmarks speedups when speeding
up only the CPU clock rate (blue/dark), and both the CPU and memory clock
rates (orange/light). From these results and the results in 4(a), we can infer

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 135

that increases in the speed of the cores, as opposed to the memory, account for
the largest share of the speedups in the applications. We conclude from these
insights that improvements in the clock rates of 64-bit ARM implementations
are likely to have a substantial benefit to HPC applications, while memory speed
plays a significant but quantitatively less important role.

5 Conclusion

Using a large number of small, low-power cores has been gaining ground as
a design strategy to improve the energy efficiency of upcoming HPC systems.
As ARM is the dominant platform in the mobile and embedded computing
segments, many believe that ARM is a viable competitor to the high-end x86
systems that make up a substantial fraction of large-scale HPC systems today.
In this work, we methodically documented the performance and energy charac-
teristics of a number of HPC computations on several current ARM platforms.
We found that performance and energy efficiency of the ARM systems varies by
up to an order-of-magnitude and depends on the computational and memory
characteristics of the application. Moreover, we showed that this variability can
be described as a function of two important processor subsystems: the floating
point/SIMD unit and the cache/memory hierarchy. Finally, we investigated the
performance implications that 64-bit ARM systems will have, finding that HPC
applications stand to benefit substantially from changes in the CPU and memory
subsystems.

Acknowledgments. This work was supported in part by the U.S. Department
of Defense HPCMP PETTT program (Contract No: GS04T09DBC0017 though
DRC) and by the U.S. Air Force Office of Scientific Research under AFOSR
Award No. FA9550-12-1-0476. We also wish to thank Mr. Tim Carroll and Dr.
Mark Fernandez of Dell for providing early access to the Cortex-A9 based Dell
Copper ARM server.

References

1. CORAL Benchmark Codes (2013), https://asc.11lnl.gov/CORAL-benchmarks/

The Top 500 list (November 2013), http://www.top500.o0rg

3. Yokogawa: WT300 Series Digital Power Meters, http://tmi.yokogawa.com/
us/products/digital-power-analyzers/digital-power—-analyzers/wt300-
series-digital-power-meters/

4. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., et al.: The landscape of
parallel computing research: A view from berkeley. Technical report, Technical Re-
port UCB/EECS-2006-183, EECS Department, University of California, Berkeley
(2006)

5. Attig, N., Gibbon, P., Lippert, T.: Trends in supercomputing: The european path
to exascale. Computer Physics Communications 182(9), 2041-2046 (2011)

N

https://asc.llnl.gov/CORAL-benchmarks/
http://www.top500.org
http://tmi.yokogawa.com/us/products/digital-power-analyzers/digital-power-analyzers/wt300-series-digital-power-meters/
http://tmi.yokogawa.com/us/products/digital-power-analyzers/digital-power-analyzers/wt300-series-digital-power-meters/
http://tmi.yokogawa.com/us/products/digital-power-analyzers/digital-power-analyzers/wt300-series-digital-power-meters/

136

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M.A. Laurenzano et al.

Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The nas
parallel benchmarks summary and preliminary results. In: Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, 1991, pp. 158-165. IEEE (1991)
Blem, E.R., Menon, J., Sankaralingam, K.: Power struggles: Revisiting the risc
vs. cisc debate on contemporary arm and x86 architectures. In: HPCA, pp. 1-12
(2013)

Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., Kurzak, J.: Mixed
precision iterative refinement techniques for the solution of dense linear systems.
International Journal of High Performance Computing Applications 21(4), 457-466
2007)

E]arrington, L., Laurenzano, M., Snavely, A., Campbell, R.L., Davis, L.P.: How well
can simple metrics represent the performance of hpc applications? In: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, SC 2005, p. 48. IEEE
Computer Society, Washington, DC (2005)

Carrington, L., Snavely, A., Gao, X., Wolter, N.: A performance prediction frame-
work for scientific applications. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V.,
Gorbachev, Y.E., Dongarra, J. J., Zomaya, A.Y. (eds.) ICCS 2003, Part III. LNCS,
vol. 2659, pp. 926-935. Springer, Heidelberg (2003)

Cordery, M., Austin, B., Wassermann, H., Daley, C., Wright, N., Hammond, S.,
Doerfler, D.: Analysis of cray xc30 performance using trinity-nersc-8 benchmarks
and comparison with cray xe6 and ibm bg/q (2013)

Analytics, E.P.: EPAX Toolkit: Binary Analysis for ARM (2014),
http://epaxtoolkit.com/

Fiirlinger, K., Klausecker, C., Kranzlmiiller, D.: Towards energy efficient parallel
computing on consumer electronic devices. In: Kranzlmiiller, D., Toja, A.M. (eds.)
ICT-GLOW 2011. LNCS, vol. 6868, pp. 1-9. Springer, Heidelberg (2011)
Goodacre, J.: Technology preview: The armv8 architecture. White Paper (Novem-
ber 2011)

Goodacre, J., Cambridge, A.: The evolution of the arm architecture towards big
data and the data-centre. In: Proceedings of the 8th Workshop on Virtualization
in High-Performance Cloud Computing, p. 4. ACM (2013)

Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Sandia National Laboratories, Tech. Rep.
(2009)

Holzle, U.: Brawny cores still beat wimpy cores, most of the time. IEEE Micro 30(4)
(2010)

Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings, M.:
Predictive performance and scalability modeling of a large-scale application. In:
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (CDROM),
Supercomputing 2001, pp. 37-37. ACM, New York (2001)

Kerbyson, D.J., Jones, P.W.: A performance model of the parallel ocean program.
Int. J. High Perform. Comput. Appl. 19(3), 261-276 (2005)

Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carson, W., Dally, W., Denneau,
M., Franzon, P., Harrod, W., Hill, K., et al.: Exascale computing study: Technology
challenges in achieving exascale systems (2008)

Laurenzano, M.A., Meswani, M., Carrington, L., Snavely, A., Tikir, M.M., Poole,
S.: Reducing energy usage with memory and computation-aware dynamic fre-
quency scaling. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011,
Part I. LNCS, vol. 6852, pp. 79-90. Springer, Heidelberg (2011)

http://epaxtoolkit.com/

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Characterizing the Performance-Energy Tradeoff of Small ARM Cores 137

Laurenzano, M.A., Tikir, M.M., Carrington, L., Snavely, A.: Pebil: Efficient static
binary instrumentation for linux. In: 2010 IEEE International Symposium on Per-
formance Analysis of Systems & Software, ISPASS 2010, pp. 175-183. IEEE (2010)
Ou, Z., Pang, B., Deng, Y., Nurminen, J.K., Yla-Jaaski, A., Hui, P.: Energy- and
cost-efficiency analysis of arm-based clusters. In: Symposium on Cluster, Cloud
and Grid Computing, CCGRID (2012)

Padoin, E.L., de Oliveira, D.A., Velho, P., Navaux, P.O., Videau, B., Degomme,
A., Mehaut, J.-F.: Scalability and energy efficiency of hpc cluster with arm mpsoc
Pouchet, L.-N.: PolyBench: The Polyhedral Benchmark suite (2012),
http://www.cse.ohio-state.edu/~pouchet/software/polybench/

Rajovic, N., Rico, A., Vipond, J., Gelado, 1., Puzovik, N., Ramirez, A.: Experiences
with mobile processors for energy efficient hpc. In: Design, Automation and Test
in Europe Conference and Exhibition, DATE (2013)

Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010.
LNCS, vol. 6449, pp. 1-25. Springer, Heidelberg (2011)

Sharkawi, S., DeSota, D., Panda, R., Stevens, S., Taylor, V., Wu, X.: Swapp: A
framework for performance projections of hpc applications using benchmarks. In:
Proceedings of the 2012 IEEE 26th International Parallel and Distributed Process-
ing Symposium Workshops & PhD Forum, IPDPSW 2012, pp. 1722-1731. IEEE
Computer Society, Washington, DC (2012)

Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., Purkayastha, A.:
A framework for performance modeling and prediction. In: Proceedings of the
2002 ACM/IEEE Conference on Supercomputing, Supercomputing 2002, pp. 1-
17. IEEE Computer Society Press, Los Alamitos (2002)

Snir, M., Gropp, W., Kogge, P.: Exascale research: Preparing for the post—moore
era (2011)

Vogt, W.P., Johnson, R.B.: Dictionary of statistics & methodology: A nontechnical
guide for the social sciences. Sage (2011)

http://www.cse.ohio-state.edu/~pouchet/software/polybench/

On Interactions among Scheduling Policies:
Finding Efficient Queue Setup Using
High-Resolution Simulations

Dalibor Klusacek!:2 and Simon Téthl:2

L CESNET a.l.e., Zikova 4, Prague, Czech Republic
2 Faculty of Informatics, Masaryk University
Botanicka 68a, Brno, Czech Republic
{xklusac,toth}@fi.muni.cz

Abstract. Many studies in the past two decades focused on the prob-
lem of efficient job scheduling in HPC and Grid-like systems. While many
new scheduling algorithms have been proposed for systems with specific
requirements, mainstream resource management systems and schedulers
are still only using a limited set of scheduling policies. Production sys-
tems need to balance various policies that are set in place to satisfy both
the resource providers and users (or virtual organizations) in the system.
While many works address these separate policies, e.g., fairshare for fair
resource allocation, only few works try to address the interactions be-
tween these separate solutions. In this paper we describe how to approach
these interactions when developing site-specific policies. Notably, we de-
scribe how (priority) queues interact with scheduling algorithms, fair-
share and with anti-starvation mechanisms. Moreover, we present a case
study describing how an advanced simulation tool was used to find new
configuration for an actual resource manager deployed in the Czech Na-
tional Grid, significantly increasing its performance.

Keywords: Scheduling, Queues, Fairshare, Simulation.

1 Introduction

For many years, researchers have been searching for a perfect job scheduling
algorithm that would improve the performance of HPC and Grid-like systems.
Still, there are few algorithms that are being used in practice [18] as can be seen in
many production schedulers applied in nowadays general resource management
systems. For example, the core of the system is generally based on the trivial first
come first served (FCFS) approach and backfilling is typically the most advanced
option available [2,1,17,18]. Since backfilling has been proposed in 1995 [13], it
is obvious that there is some misunderstanding between the research community
and system administrators concerning “what is really important”.

In this paper we show that the problem of operating a production scheduler
is far more complex than just choosing a proper scheduling algorithm. Using
our experience from Czech National Grid Infrastructure MetaCentrum [14] we

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 138-149, 2014.
© Springer International Publishing Switzerland 2014

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 139

explain several additional challenges that appear when searching for a functional
solution. These problems are related to the fact that real systems must meet far
more complicated requirements than those that are typically considered in classi-
cal research papers. For example, real life systems have to focus on maintaining
fairness among users of the system [9,19], rather than just trying to optimize
simple criteria like the average slowdown or makespan. In practice, it quickly
turns out that those widely used “theoretical” models and optimization goals
are mostly impractical in real life [5,18].

The contribution of this paper is based on our ability to provide detailed in-
sight into a real, complex job scheduling system. In detail, we explain several
important features that current resource managers offer to the system admin-
istrator in order to establish robust, efficient and fair computing infrastructure
(Section 2). In Sections 3 and 4, we provide a real life example from MetaCen-
trum, describing how the actual resource manager has been reconfigured in order
to increase the overall performance and fairness. Furthermore, Section 5 demon-
strates how advanced simulation and evaluation tools can be used to evaluate
new possible setups of complex scheduling systems prior actual deployment. We
conclude the paper in Section 6.

2 Main Components of a Resource Management System

Resource managements systems are rather conservative in their choices of schedul-
ing policies and mostly rely on well established and robust approaches [18]. The
desired overall behavior is then achieved through the interactions of a chosen set
of policies and additional mechanisms. This section describes these commonly
employed components of resource management systems and their impacts.

2.1 Ordering Policy

Ordering policies determine the order of jobs in which they are then processed
by a scheduling policy. Resource management systems usually provide a set of
static ordering policies (ordering between two jobs does not change once estab-
lished) as well as dynamic policies. Jobs can be either kept in the order of their
arrival (static ordering), or can be ordered dynamically according to their length
(Shortest Job First, Longest Job First), according to their resource requirements
(Largest CPU/Memory Requirements First,...) or their (user configured) pri-
ority. Combinations of ordering policies are also possible [1,7].

Fairshare is a dynamic priority ordering policy designed to provide user-to-
user fairness. Job ordering is usually based on users previous resource consump-
tion [7,12]. Typically, the more resources a user consumes the lower her priority
becomes. Fairshare self-balances itself around an equilibrium where all users have
consumed the same amount of resources. Practical implementations of fairshare
also reflect aging [7] by periodically decreasing all recorded consumption using
so called decay factor [1]. This is suitable for systems with faster job turnaround
times that put higher emphasis on more recent resource consumption.

140 D. Klusééek and S. Téth

2.2 Scheduling Policy

Commonly used scheduling policies range from trivial FCFS, aggressive back-
filling (no reservations), to EASY [13] or Conservative backfilling [7], each with
it’s own shortcomings. FCFS guarantees the execution of jobs in the order of
arrival by considering the first job only (provided by the ordering policy). FCFS
will wait until the first job can be executed and only then continues processing
the rest of the jobs. FASY backfilling [13] builds on top of FCFS but instead
of strictly following the job order as mandated by the ordering policy it only
guarantees the earliest possible start for the first job. Other jobs are allowed to
start, as long as they do not interfere with the first job’s reservation. Conserva-
tive backfilling extends EASY by providing reservation for every job that cannot
start immediately. Remaining jobs are allowed to start as long as they do not
interfere with any previously established reservation. The notions of “first job”
and the order of jobs are mandated by the ordering policy as was described in
Section 2.1.

Job starvation is an undesirable process where a particular job (or a user)
is subject to excessive wait time due to the presently configured policies. The
notion of excessive is of course subject to interpretation. For example, fairshare
ordering priority will deliberately cause starvation of users with recent high re-
source consumption, which is however considered desirable. FCFS and Conser-
vative backfilling algorithms provide anti-starvation mechanisms, guaranteeing
that jobs are not undesirably delayed. More aggressive forms of backfilling like
EASY or aggressive backfilling need to be combined with other mechanisms
in order to prevent starvation, as they can delay the execution of certain jobs
without any bounds [15].

2.3 Queue Configuration

Previously presented policies provided by resource management systems are rela-
tively simple. At the same time, a single policy cannot cover the usually complex
requirements used in production systems. To deal with more complex require-
ments, resource management systems provide the notion of queues which can be
configured separately. Then, it is the interaction between queue-specific policies
and the global system policies that dictates the overall behavior of the system.

Queues can handle different policies, that are mostly represented by a set
of various limits [1,2,17]. These limits then apply on jobs that are executed
from that queue. The limits usually cover per-user, per-group and per-queue
limitations concerning the maximum number of running jobs and/or amount
of particular resource type (e.g., CPU cores). Queues can also be configured to
have access to only a subset of available resources, e.g., limiting a queue to a
particular cluster of machines. Such policy establishes pools of resources, where
several queues can compete for a limited set of resources, thus preventing a
(potentially dangerous) saturation of the entire system.

While such configuration can increase resource fragmentation [7], it is neces-
sary when dealing with different classes of users accessing the system. We need to

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 141

be very careful when saturating the system with jobs from a single user, or even
when saturating the system with a single class of jobs. For example, saturating
the system with long running jobs (i.e., jobs with expected runtime of several
weeks) will naturally lead to great deterioration in performance characteristics
of the system (e.g., huge wait times for shorter jobs).

Such situations are approached in different manners. For example, in Zeus
cluster in PL-Grid, all long jobs as well as jobs that require whole node(s) are
planned ahead using reservations which enables the forward detection of poten-
tial problems [4]. In Ohio Supercomputer Center several combined approaches
are used together. For example, long serial jobs are only allowed if a user is able
to reasonably explain why he or she needs to run such a long experiment [16].
Moreover, parallel jobs have in general smaller maximal runtime limit compared
to sequential jobs. Also, per-user and per-group limits are used together with
fairshare accounting [16].

Surprisingly, we are not aware of any work that would describe how to deter-
mine suitable combinations of global policies and queue configurations. Clearly,
a more in-depth analysis must be performed to better understand these issues.
We provide such a case study in the following text.

3 Configuration of MetaCentrum Resource Manager

So far, we have provided an overview of several techniques that are available in
current resource management systems. In the remaining text we demonstrate
how these techniques interact together. We also describe how existing setup
can be significantly improved by proper reconfiguration, using a real-life based
example from MetaCentrum (Sections 4 and 5).

Before we start, we would like to stress out that there is no widely accepted and
universal definition describing “the one and only suitable setup of the system”. In
fact, different people and/or organizations may have different notion of “what is
efficient” when it comes to job scheduling. In this paper, we use examples coming
from the Czech NGI MetaCentrum. The approaches and solutions presented in
the following sections are presented in the context of this system. Still, we believe
that they are applicable to a wide range of systems.

3.1 Historical Setup

Historically, MetaCentrum used three major queues (long, normal, short) that
had different maximum walltime limits per job (30 days, 24 hours, 2 hours),
different priorities (70, 50, 60) and different limits on maximum running con-
current jobs of one user (70, 300, 250). Together with the user limits, long and
short queues were also limited to a subset of machines. Using the combination of
priorities, user limits and limited resource pools the system originally provided
balanced performance for each of the three job classes (under 2 hours, 2-24 hours,
up to 30 days). There was also a low priority (20) queue called backfill that
only accepted single node jobs (max limit per user is 1000) that run up to 24

142 D. Klusiéek and S. Téth

hours. Beside these, there were several other queues for special purposes, e.g.,
administrator’s testing queue. Still, majority of jobs used those 4 main queues.
A scheme of the historical setup is shown in Fig. 1.

(priority 70/1440 CPUs)

direction of job selection and anti-starvation process,

go to next queue
IIIIIIIIII jobs ordered by fairshare

direction of job selection and anti-starvation process,
go to next queue

T T[] —

direction of job selection and anti-starvation process
go to next queue

backfill -II-IIII.ordered by fairshare
(priority 20/2000 CPUs)

direction of job selection and anti-starvation process,

short
(priority 60/2300 CPUs)

normal
(priority 50/2400 CPUs)

Fig. 1. Historical queues setup as applied in MetaCentrum

Jobs were dynamically ordered within queues using priorities based on fair-
share [7]. A backfill-like algorithm was used to scan the queues, starting with
the highest priority queue. It immediately started every job that could execute.
Those jobs that could not start immediately received reservations using an anti-
starvation mechanism (see Section 2). A reservation blocked every node that
was potentially suitable to execute a job, that is any node that is capable of
providing the requested amounts of resources and properties. This approach has
been applied as classical reservations computed according to estimated comple-
tion times of jobs were very imprecise. This was caused by the fact that users
of the system often did not provide detailed runtime estimates, instead simply
choosing one of the job classes available (under 2 hours, 2-24 hours, up to 30
days). By reserving all suitable nodes the scheduler was able to guarantee the
earliest possible start time, at the cost of decreasing opportunities for backfilling.

3.2 Problems with Historic Setup

The major problem with the historic setup was that it only used one queue for
jobs longer than 1 day. Therefore, this queue had to be used by every job that was
expected to last longer than 24 hours. At the same time, it was also used by very
long jobs that are “dangerous” as we have explained in Section 2.3. Therefore, the
queue had quite strict limits concerning number of available CPUs (1440), while
short, backfill and normal had significantly larger pools of CPUs (2300, 2000
and 2400, respectively). While such a restriction was necessary, it was obvious
that it limits efficient usage of resources.

For example, our historic workload logs indicated that majority of utilized
CPU time was based on jobs from long queue. An example of job arrivals and

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 143

Bl (s e e e S e o

~
5]
=
5
=

15000 (- ot
long
10000 |
soo0
o |

~ mbackfill

- Mnormal

number of arrived Jobs

1115 81143 15113 22113 29.1.13 5213 12213 19213 26213 5313 12313 19313 326313

short
long
N o | mhackfil
.

o S | - | | | | £

1115 8113 15113 22113 29113 5213 12213 19213 26213 5313 12313 19313 26313

used CPU weeks

Fig. 2. Job arrivals (top) and used CPU time (bottom) per week and queue

CPU time distribution with respect to queues is shown in Fig. 2. Clearly, long
queue, having the least CPUs was at the same time responsible for the most of
the overall utilization (see Fig. 2 (bottom)).

4 Proposed Modifications of the Scheduling Scheme

After performing detailed analysis of historic workloads, MetaCentrum manage-
ment decided that a new setup of the whole scheduling system must be devel-
oped. We now present main features of the two new setups that were proposed
and evaluated (Section 5), in order to remove aforementioned inefficiencies.

4.1 Conservative Extension

The first considered modification was rather conservative. The main goal was to
increase the pool of available CPUs for longer jobs. In the first step, long queue
has been refined into 5 queues. The one with the longest maximum job walltime
limit is called q 2w plus (up to 30 days) and has the maximum priority. Next,
there are q 2w, q 1w, q 4d, q 2d with decreasing priorities and walltime limits (2
weeks, 1 week, 4 days and 2 days, respectively). Normal and short queues are
now called q 1d and q 2h while q 4h is a new queue with walltime limit being 4
hours. The scheme of the system with newly refined queues is shown in Fig. 3.
Once the long queue has been replaced with several new queues it is now pos-
sible (and safe) to increase the number of CPUs for selected newly created queues
as is shown in Fig. 3. Importantly, we have significantly increased the number of
CPUs for jobs lasting at most 2 weeks, while very long jobs (q 2w plus) obtain
at most 1024 CPUs!. No other modifications were considered in this scheme.

! Different queues may share some CPUs, i.e., in general, CPUs available for a given
queue are not exclusively reserved for such a queue.

144 D. Klusiéek and S. Téth

direction of job selection and anti-starvation process

-
q_2w ‘--I. jobs ordered by fairshare
(priority 90/1024 CPUs)

direction of job selection and anti-starvation process

q_1w ‘-I.-I jobs ordered by fairshare
(priority 80/1024 CPUs)

direction of job selection and anti-starvation process

_2w_plus
(priority 100/1024 CPUs)

— q_4d(70/1536) — q_2d(60/1536) — q_2h(50/5000)—> q_4h(40/5000) —

IIIIIIIIII jobs ordered by fairshare

direction of job selection and anti-starvation process

q_1d
(priority 30/5000 CPUs)

Fig. 3. The scheme of queues with refined walltime limits

4.2 Complex Extension

While the conservative modification described in the previous section was rather
simple and straightforward, we also tried to develop a more complex modifica-
tion that would also address overall fairness and efficiency of the anti-starvation
mechanism.

Concerning fairshare, we have replaced the original single-resource aware
mechanism that only reflected CPU consumption with a new multi-resource
aware solution that also reflects RAM consumption. As discussed in the litera-
ture, single-resource based fairshare is highly unfair for heterogeneous systems
and workloads [6,8,12]. Beside the fairshare metric itself, we have also started
to consider the effect of newly added queues on fairness. For example, if a job
has low priority (due to the fairshare) but ends up in a high priority queue (due
to its walltime) it will often start much earlier than a high priority job resid-
ing in a low priority queue, which is highly unfair. Therefore, we have proposed
more complex modification of the scheduling scheme, which extends the previ-
ous conservative, multi-queue setup. In this case, the queues are only used to
(1) setup CPU limits and (2) provide information on job’s mazimum walltime
(if not specified directly by a user). All (major) queues have the same priority,
i.e., the ordering in which a job is being selected for execution is now only based
on a given user’s fairshare. Therefore, those queues are now only “virtual” and
the actual scheduling process is performed over one single queue that contains
all jobs from those “virtual” queues, as depicted in Fig. 4.

In the second step, we have proposed a modification of the anti-starvation
mechanism. So far, all suitable nodes were reserved for starving job (see Sec-
tion 3.1), which often led to resource wasting. Since the queues are now more
fine-grained with respect to maximum job runtime, we can compute estimated
job completion times far more precisely and only reserve those CPUs that are
expected to be the soonest available. The calculation of reservations uses runtime

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 145

q_2w (priority 50) ‘- “virtual queue” }7
q_1w (priority 50) ‘-Il “virtual queue” }7

... other queues follow: q_4d — q_2d — gq_2h — q_4h —

q_1d (priority 50) ‘IIIIIIIIII “virtual queue” T

1 main queue dynamically reordered by fairshare

direction of job selection and anti-starvation process

jobs transferred into the main queue

1 main
scheduling queue

T

Fig. 4. “Virtual queues” with only 1 main scheduling queue managed by fairshare

estimates (or refined queue walltime limits) of currently running jobs. Reserva-
tions are updated in every scheduling cycle with respect to dynamic changes like
early completing jobs or changes in fairshare-based priorities.

5 Experimental Evaluation

The two possible modifications of the scheduling scheme described in Section 4
were experimentally evaluated through detailed simulations. It must be said
that according to MetaCentrum management, the conservative extension was
the prime candidate to become the new production setup in MetaCentrum. The
intuition within the management was that it is a simple and safe evolution of
the historical setup. On the other hand, we believed that the complex exten-
sion was more suitable for our purposes, as it introduces new and important
features including multi-resource fairshare and optimized anti-starvation mech-
anism. Therefore, it was necessary to perform detailed simulations, analyzing
pros and cons of these two candidates.

5.1 Simulation Environment

The simulations were performed using our GridSim-based job scheduling simu-
lator Alea [10]. Alea provides advanced capabilities that allow for very detailed
and complex simulations. These capabilities include support of several schedul-
ing algorithms, complex job specifications (based on standard qsub syntax used
in real systems), multi-resource aware fairshare policies, multi-queue setups in-
cluding related limits, etc. Alea is regularly used in MetaCentrum to test new
setups prior their deployment in the production service.

5.2 Simulation Results

The simulations used a historic workload from MetaCentrum, covering 5 months
of execution in 2013. This workload contains 376,722 jobs coming from 302

146 D. Klusééek and S. Téth

different users and is publicly available at: www.fi.muni.cz/~xklusac/workload.
Due to the space limitations, we only present the most important findings related
to performance and fairness.

The initial comparison considered all 3 scenarios (historic, conservative and
complex). The avg. weighted wait/response time (AWWT/AWRT) [3] and the
avg. weighted slowdown (AWSD) [3] were used to measure the general perfor-
mance. These metrics are weighted by jobs CPU consumption to prevent that
smaller jobs have a relatively larger impact on a metric than jobs with a higher
resource consumption [3]. Concerning fairness, we have used a per-user metric
called normalized user wait time (NUWT) [11]2. Then we have measured the avg.
of all NUWT values (ANUWT) and their standard deviation (NUWT-dev). The
lower the average value and/or the standard deviation are, the more efficient and
fair are the results, respectively [11].

The results for these metrics are shown in Table 1 with the best results being
highlighted by bold font. Clearly, the complex extension is highly improving,
delivering (nearly) best results in all criteria. In fact, the slightly worse NUWT-
dev is acceptable as the ANUWT has decreased significantly compared to the
historic scenario. Surprisingly, the conservative approach has worse results than
both considered setups, which was not anticipated. In fact, all criteria have shown
large deterioration compared to historic and complex scenarios. Importantly, the
large standard deviation of normalized user wait times (NUWT-dev) suggested
that the deteriorating results are likely related to insufficient fairness.

Table 1. General results concerning performance and fairness

AWWT AWRT AWSD ANUWT NUWT-dev

historic 33795 629448 2.32 0.11 0.50
conservative 56207 647769 4.37 1.07 13.52
complex 18346 609909 1.66 0.08 0.56

The initial experiment was a surprise, indicating that conservative extension
s not a good solution due to a significant deterioration in both performance and
fairness related metrics. To better understand the situation, we have measured
how the two new setups influence the wait times of users in the system. For
this purpose, we have measured the percentage of users/jobs having their wait
time (WT) improved or deteriorated compared to the original (historic) setup.
Also, we have measured the average improvement/deterioration of wait times
for these jobs. The overall results are presented in Table 2. For most criteria, the
complex setup behaves similar to the conservative. A closer inspection reveals
that the actual problem is the huge difference in the avg. wait time for delayed
jobs. Complex increases the avg. job wait time by 2.1 hours while conservative

2 In NUWT, the total user wait time is normalized by the amount of user-consumed
CPU time. It uses the same idea as classical maz-min fairshare [6], i.e., users with
high CPU consumption may wait longer than (so far) less active users.

www.fi.muni.cz/~xklusac/workload

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 147

Table 2. Detailed results showing impact on users wait times

users with ~ jobs with avg. WT' users with jobs with avg. WT

impr. impr. impr. deter. deter. deter.

WT(%) WT(%) (hours) WT(%) WT(%) (hours)
conserv. 26.5 13.9 6.7 19.2 2.7 55.7
complex 31.1 13.4 7.2 13.9 3.2 2.1

increases it by 55.7 hours on average! Such a huge increase corresponds with the
overall unsatisfactory results seen in Table 1.

Still, further analysis was required to exactly identify the source of the prob-
lem. So far, the data indicated that this a fairness-related problem caused by huge
wait times of particular jobs. Therefore, we have decided to construct heatmaps
showing the avg. wait time of jobs (shown by color intensity) with respect to
time (z-axis) and queues (y-axis) for both considered extensions. Fig. 5 shows
the results for conservative (top) and complex (bottom) approaches. Using this
“high resolution” tool, we can better understand why the conservative approach
performs much worse compared to the complex extension.

LT | Il Jlll*'lll”l L 1 I a
q9.4n I
a_2n IIIII
924 | |
q_4d
q_iw
q_2w
q_2w_plus | 1

ERE] | I Hl | | 1 1
q_4h

a_2n | i

924 1

o_4d 1

qw ‘

q_2w

q_2w_plus |

5219
12.2.13]
19.2.13]
26.2.13|

5319
12.3.13|
19.3.13|
26.3.13|

24.13]

9.4.13]
16.4.13]
23.4.13|
30.4.13]

7.5.13|
14.5.13]
215.13]
28.5.13|

46.13
11.6.13]
18.6.13]
256.13]

Fig. 5. Heatmap of avg. wait time (in minutes) wrt. queues and time for conservative
(top) and complex (bottom) extensions

As was mentioned in Section 4, the conservative approach uses fixed ordering
of queues which is potentially dangerous as low priority queues may be “blocked
out” by higher priority queues, which is unfair with respect to global fairshare.
This “blocking effect” is a result of the applied (historic) “greedy” anti-starvation
mechanism. Fig. 5 (top) shows such situations on several occasions where the
low priority q 1d and q 4h queues exhibit significant delays compared to higher
priority queues. As can be seen, this situation does not appear for complex
approach (see Fig. 5 bottom) as (1) all queues are only virtual and all jobs are
strictly ordered using fairshare and (2) an optimized anti-starvation mechanism
is used.

148 D. Klusééek and S. Téth

To sum up, the experiments surprisingly demonstrated that a simple conser-
vative extension of known setup is not a good solution. They revealed previously
unexpected results such that it is not sufficient to simply increase the pool of
available CPUs for longer jobs, without also improving fairness-related features
and the anti-starvation mechanism. For example, it turned out that as soon as
longer jobs can use more CPUs it means that also the (original) anti-starvation
mechanism can occupy more CPUs which blocks all other waiting jobs. More-
over, it was shown that a multi-queue based solution with fixed queue ordering
is dangerous as it ignores global fairshare. From this point of view, the complex
extension increases fairness as now a user with high fairshare-based penalty can-
not cheat by sending his or hers jobs into a higher priority queue, such as q 2w,
or so. Similarly, shorter jobs having high priorities are not unfairly overtaken by
longer jobs (from high priority queues). Also, thanks to the new multi-resource
aware fairshare mechanism [12] we are now able to properly establish fairness
priorities subject to (highly) heterogeneous resources and jobs.

6 Conclusion and Future Work

We have shown that an efficient job scheduling is a very complex problem when
realistic scenarios are considered. Unlike many prior works that only consider
scheduling algorithms, we have provided a detailed insight into the complexity of
the problem, using several real-life based examples. Especially, we have stressed
out how several particular components of the system interact together and influ-
ence the resulting performance. Using a real-life based example, we have shown
that detailed simulations can be very useful when looking for a better setup of a
given system. The proposed complex extension is currently applied in production
use within MetaCentrum’s TORQUE resource manager.

Still, this work has some limitations, e.g., several decisions used in this pa-
per are based on an empirical knowledge, an expert assessment or hand-tuned
parameters. In the future we would like to develop more rigorous methods that
would allow to (semi)automatically identify proper and efficient setups of par-
ticular policies. For starters, it would be very helpful to have some method for
an efficient dynamic adaptation of various queue limits.

Acknowledgments. We highly appreciate the support of the Grant Agency of
the Czech Republic under the grant No. P202/12/0306 and the support provided
by the programme LM2010005 funded by the Ministry of Education, Youth, and
Sports of the Czech Republic is highly appreciated. The access to the MetaCen-
trum computing facilities and workloads is kindly acknowledged.

References

1. Adaptive Computing Enterprises, Inc. Maui Scheduler Administrator’s Guide, ver-
sion 3.2 (January 2014), http://docs.adaptivecomputing.com

http://docs.adaptivecomputing.com

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 149

. Adaptive Computing Enterprises, Inc. Moab workload manager administrator’s

guide, version 7.2.6 (January 2014), http://docs.adaptivecomputing.com

. Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of global Grid computing for

job scheduling. In: GRID 2004: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pp. 374-379. IEEE (2004)

. Flis, L., Lason, P., Magrys, M., Ozieblo, A., Twardy, M.: Effective utilization of

mixed computing resources on zeus cluster. In: Cracow Grid Workshop, pp. 105—
106. ACC Cyfronet AGH (2012)

. Frachtenberg, E., Feitelson, D.G.: Pitfalls in parallel job scheduling evaluation.

In: Feitelson, D., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2005. LNCS, vol. 3834, pp. 257-282. Springer, Heidelberg (2005)

. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-

inant resource fairness: Fair allocation of multiple resource types. In: 8th USENIX
Symposium on Networked Systems Design and Implementation (2011)

. Jackson, D.; Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In:

Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87-102.
Springer, Heidelberg (2001)

. Joe-Wong, C., Sen, S., Lan, T., Chiang, M.: Multi-resource allocation: Fairness-

efficiency tradeoffs in a unifying framework. In: 31st Annual International Confer-
ence on Computer Communications (IEEE INFOCOM), pp. 1206-1214 (2012)

. Kleban, S.D., Clearwater, S.H.: Fair share on high performance computing sys-

tems: What does fair really mean? In. In: Third IEEE International Symposium
on Cluster Computing and the Grid, pp. 146-153. IEEE Computer Society (2003)
Kluséacek, D., Rudova, H.: Alea 2 — job scheduling simulator. In: 3rd International
ICST Conference on Simulation Tools and Technique, ICST (2010)

Kluséicek, D., Rudovd, H.: Performance and fairness for users in parallel job
scheduling. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2012. LNCS, vol. 7698, pp. 235-252. Springer, Heidelberg (2013)
Klusécek, D., Rudova, H.: Multi-resource aware fairsharing for heterogeneous sys-
tems. In: Job Scheduling Strategies for Parallel Processing (2014)

Lifka, D.A.: The ANL/IBM SP Scheduling System. In: Feitelson, D.G., Rudolph,
L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295-303. Springer,
Heidelberg (1995)

MetaCentrum (January 2014), http://www.metacentrum.cz/

Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions
on Parallel and Distributed Systems 12(6), 529-543 (2001)

Ohio Supercomputer Center. Batch Processing at OSC (February 2014),
https://www.osc.edu/supercomputing/batch-processing-at-osc

PBS Works, PBS Professional 12.1, Administrator’s Guide (January 2014),
http://www.pbsworks.com

Schwiegelshohn, U.: How to design a job scheduling algorithm. In: Job Scheduling
Strategies for Parallel Processing (2014)

Wierman, A., Harchol-Balter, M.: Classifying scheduling policies with respect to
unfairness in an M/GI/1. In: 2003 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pp. 238-249. ACM (2003)

http://docs.adaptivecomputing.com
http://www.metacentrum.cz/
https://www.osc.edu/supercomputing/batch-processing-at-osc
http://www.pbsworks.com

ProPS: A Progressively Pessimistic Scheduler
for Software Transactional Memory*

Hugo Rito and Joao Cachopo

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
{hugo.rito, joao.cachopo}@ist.utl.pt

Abstract. Software Transactional Memory (STM) is one promising ab-
straction to simplify the task of writing highly parallel applications.
Nonetheless, in workloads lacking enough parallelism, STM’s optimistic
approach to concurrency control can adversely degrade performance as
transactions abort and restart often.

In this paper, we describe a new scheduling-based solution to improve
STM'’s performance in high-contention scenarios. Our Progressively Pes-
simistic Scheduler (ProPS) uses a fine-grained scheduling mechanism
that controls the amount of concurrency in the system gradually as trans-
actions abort and commit with success.

Experimental results with the STMBench7 benchmark and the
STAMP benchmark suite showed that current coarse-grained, conser-
vative transaction schedulers are not suitable for workloads with long
transactions, whereas ProPS is up to 40% faster than all other schedul-
ing alternatives.

Keywords: Performance, Software Transactional Memory, Transaction
Conflict, Transaction Scheduling.

1 Introduction

Software Transactional Memory (STM) [11] turned into one of the most promis-
ing abstractions to bridge the gap between mainstream programmers and parallel
programming. Unfortunately, the performance of STM-based applications may
vary greatly, depending on the application’s workload: Even though STMs ex-
hibit very good performance for read-dominated workloads, the same cannot be
said about highly contended workloads in which frequent transaction reexecu-
tions place a significant stress on the system, hindering its performance [1,3,7].

Transactions reexecute whenever they conflict, which happens when the STM
runtime speculatively executes two or more concurrent transactions that cannot
both commit due to conflicting memory accesses.

A transaction scheduler [12,2,4] is an STM component that uses runtime in-
formation to predict conflicts and, thus, prevent transactions that are likely to

* This work was supported by national funds through FCT — Fundagéo para a Ciéncia
e a Tecnologia, under project PEst-OE/EEI/LA0021/2013.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 150-161, 2014.
© Springer International Publishing Switzerland 2014

ProPS: A Progressively Pessimistic Scheduler 151

conflict from running concurrently. The assumption is that in workloads lack-
ing inherent parallelism, executing a large number of transactions concurrently
can degrade performance as transactions restart often. So, to limit the amount
of restarts and the amount of wasted work, a transaction scheduler serializes
conflicting transactions either at transaction begin or at transaction restart.

Unfortunately, most scheduling policies are too conservative as they over-
serialize transactions—that is, two non-conflicting transactions are scheduled to
execute one after the other when they could safely overlap.

In the next section, we discuss how STMs may benefit from transaction
scheduling in high-contention workloads and we explain why coarse-grained and
conservative scheduling policies, as those used by existing transaction schedulers,
are unable to extract the latent parallelism of STM-based applications.

In this paper, we tackle the problem of efficient transaction scheduling and
we make the following contributions:

— A new fine-grained progressively pessimistic scheduling policy (ProPS) for
STM that collects information regarding the maximum concurrency level
between pairs of atomic operations and, then, uses that information to grad-
ually reduce concurrency as contention increases (Section 3).

— An overview of ProPS’s implementation in the FlashbackSTM [10]. This fully
decentralized implementation of our novel fine-grained scheduling policy has
zero runtime overhead for read-only transactions (Section 4).

— A thorough evaluation of ProPS with both the STMBench7 benchmark [6]
and the STAMP benchmark suite [8]. Results show that ProPS is up to 40%
faster than ATS [12], CAR [2], and Shrink [4] (Section 5).

2 Why We Need Better Transaction Scheduling

The key observation behind transaction scheduling is that conflicts are dynamic,
meaning that the order in which transactions execute influences the number of
conflicts that occur. Moreover, in many STM-based programs, transactions exe-
cute independently of each other in a nondeterministic order. Hence, by changing
the order in which transactions execute, a transaction scheduler may reduce the
amount of wasted work in high-contention workloads and increase throughput.
In practice, transaction schedulers use serialization to order transactions with
expected conflicts one after another, trading off concurrency between threads
for less wasted work. To exemplify, consider the execution scenario 1 depicted
at the top half of Figure 1. In this scenario, thread T} makes two calls to atomic
operation OP1 while thread 75 tries to execute atomic operation OP2 once.
Without a transaction scheduler, the concurrent execution of OP1 and O P2
has an adverse effect on performance because both atomic operations conflict
and, thus, only Tx; (first) and Tzs (later) commit with success without con-
flicting. Transaction T'zs, on the other hand, aborts and reexecutes twice before
committing with success, which happens only when executing solo in the system.
With a transaction scheduler, after detecting the conflict between T'z; and
Tzo (and to prevent T'zo from restarting again) the scheduler may force new

152 H. Rito and J. Cachopo

Without scheduler With scheduler
T, o | T, — (o=
T, —Iix o JH_om |H_—o= f}— | T,
T, T, — & 3> i

[Transaction executing [>_~"3] Transaction waiting I Transaction commit I:l Transaction abort
Fig. 1. Execution of operations OP1, OP2, and OP3 without a transaction scheduler
and with a naive transaction scheduler by two concurrent threads (scenario 1) and three
concurrent threads (scenario 2). Only OP1/OP2 conflict when executed concurrently.

transactions to serialize after T'wo—that is, the scheduler delays T'xz3’s start to
after the successful commit of transaction Tzs. With this decision, the sched-
uler reduces to half the number of transaction restarts, therefore reducing the
execution time.

Ideally, the transaction scheduler is accurate enough to execute concurrently
only transactions that will not conflict. Though possible in some particular cases,
in general this is very hard to accomplish due to the dynamic nature of transac-
tions and, thus, schedulers serialize transactions based on previous observations.
Current scheduling solutions, however, are still too coarse-grained, too conser-
vative, and, for those reasons, may serialize non-conflicting transactions.

Coarse-grained scheduling solutions [12] monitor the number of aborts to de-
tect periods of high-contention, in which case they serialize all transactions. Such
schedulers assume that, when contention is high, a transaction that aborts and
restarts immediately has high probability to conflict again, leading to another
transaction abort. Thus, to prevent conflict-prone transactions from conflicting
again, the scheduler serializes all transactions that abort.

Despite their low overhead, these all-or-nothing approaches to scheduling have
limited applicability because transactions are serialized not due to the transac-
tion’s expected behavior but because of the behavior of the system as a whole.
To exemplify, consider scenario 2 of Figure 1 that extends scenario 1 with a third
thread (75) executing a single atomic operation OP3.

With the transaction scheduler, the reexecution of transaction Tzo forces all
subsequent transactions (Tx3 and Tx4, in this case) to serialize. Yet, as the
execution without the scheduler shows, this coarse-grained scheduling policy is
over-serializing transactions. Only T'zo and Tx3 need to execute one after the
other because only the pair OP1/0O P2 conflict when executed concurrently. The
pairs OP1/OP3 and OP2/OP3 do not conflict and may execute concurrently
with performance benefits as we observe in the scenario without scheduling.

Our naive scheduling policy is an over-simplification of Yoo and Lee [12]’s
Adaptive Transaction Scheduler (ATS). In ATS, each thread maintains a con-
tention intensity (CT) value, which is decreased after each successful commit and
increased after each abort, and threads serialize in a central queue whenever their
C1T value is above a predetermined threshold. ATS’s scheduling policy is very

ProPS: A Progressively Pessimistic Scheduler 153

simple and has nearly no overhead, but is too coarse-grained and unnecessarily
reduces concurrency in high contention scenarios, as described before.

Conservative scheduling solutions [2], on the other hand, serialize transac-
tions based on the fact that the atomic operations they execute conflicted with
each other, at least once, in the past. By using per-transaction information,
the scheduler attempts to predict more accurately how a particular transaction
configuration will behave when executed again concurrently. Going back to the
previous example, a conservative scheduler may learn that operations OP1 and
OP2 conflict, in which case it will serialize all their future executions.

CAR-STM [2] is a conservative scheduling policy that maintains a per-core
transaction queue and, when a transaction restarts, the dispatcher serializes the
restarting transaction in the per-core queue containing the transactions with
maximum probability of conflicting with it. Even though less conservative than
ATS, with a large number of concurrent threads or under high contention, CAR-
STM'’s per-core queues may constitute a performance bottleneck.

The problem with both scheduling policies is that they ignore the fact that
transactions are dynamic—that is, a transaction’s behavior may change as the
state of the application also changes. This means that, for instance, operations
OP1 and OP2 in our example may be able to execute concurrently in the future,
if they access disjoint memory locations.

Recognizing this runtime property of transactions, the Shrink [4] scheduler
uses the memory locations recently accessed by a thread to predict the read-
set of future transactions executed by that thread. At transaction start, Shrink
verifies whether any of the memory locations in the transaction’s predicted read-
set is being written by other concurrently executing transactions and, if that is
the case, the starting transaction serializes by acquiring a global shared lock.
However, it is unclear how the read-set of a transaction may help predict the
read-set of a different transaction executing a distinct atomic operation, even
considering the fact that both transactions are executed in succession by the
same thread. Also, Shrink intercepts all read accesses to memory, adding a non-
negligible overhead to the most common STM operation: the transactional read.

In summary, transaction schedulers’ pessimistic approach to concurrency may
reduce the number of conflicts between transactions but at the cost of reducing
too much the parallelism in the application. The decision to serialize transactions
that would execute without conflicting greatly hinders the throughput of the
system and constitutes a fundamental obstacle to the effectiveness of scheduling.
The challenge, then, is to develop a fine-grained, more optimistic transaction
scheduler that is able to increase parallelism between transactions.

3 A Progressively Pessimistic Scheduling Policy

Although system-wide information may help describe the runtime behavior of
the system as a whole, the transaction scheduler acts upon individual transac-
tions and, for that reason, the scheduler needs fresh transaction-specific infor-
mation to perform fine-grained scheduling decisions that minimize the number
of transactions that are unnecessarily serialized.

154 H. Rito and J. Cachopo

To allow such fine-grained scheduling our new Progressively Pessimistic Sched-
uler (ProPS) maintains a concurrency level matrix (C'L) between pairs of atomic
operations—that is, for each atomic operation of type ¢ and each atomic oper-
ation of type j, the value of C'L;; describes how many transactions executing
atomic operations of type i may execute concurrently with one transaction exe-
cuting atomic operation of type j.

In the beginning, all C'L;; values are equal to MAX_-THREADS, which corresponds
to the maximum number of concurrent threads in the systems (typically the
number of processors in the machine), and ProPS uses C'L values to adapt the
amount of concurrency in the system: At transaction begin of atomic operation 7,
the scheduler calculates the minimum C'L;; value between the starting transac-
tion and all other in-flight transactions. Atomic operations with a minimum CL
value of MAX_THREADS proceed normally. Yet, as an operation’s minimum C'L value
decreases, ProPS reduces the number of transactions executing that operation.

When a transaction of type ¢ aborts due to a conflict with another transaction
of type j, ProPS reduces the concurrency level between atomic operations of type
j and 7 using equation 1 below, where k is a value in [0, 1].

CLji = CLji X k (1)

By limiting the number of transactions of type j that may start concurrently
with transactions of type ¢ only, our new scheduling policy reduces the STM’s
level of optimism in a fine-grained way. Future transactions for different atomic
operations are unaffected by this reduction and, thus, may proceed normally at
transaction begin if their minimum CL value is equal to MAX_THREADS.

When a transaction of type 7 finally commits with success, for each operation
of type j ProPS updates operation’s ¢ C'L;; values using equation 2 below, where
a is a value in [0, 1], and numRestarts > 0 corresponds to the number of times
that the committing transaction restarted before this successful commit.

CL;; = min(MAX_THREADS, C'L;; + MAX_THREADS X « =+ (1 + numRestarts)) (2)

Note that, by design, ProPS exponentially reduces concurrency as transactions
conflict but increases concurrency only linearly at transaction commit. This de-
sign decision allows the scheduler to react very fast to periods of high contention,
while, at the same time, to steadily revise its predictions as transactions start
committing with success. Furthermore, at transaction commit, our scheduling
policy uses the number of times the transaction aborted before committing with
success to control how fast the scheduler restores concurrency, benefiting trans-
actions that seldom conflict.

4 The ProPS Implementation

We implemented ProPS in the FlashbackSTM [10], a word-base, multi-version
STM implemented as a pure Java library that extends the lock-free version of the
JVSTM [5] with the concept of memo-transactions [9]. In the FlashbackSTM,

ProPS: A Progressively Pessimistic Scheduler 155

1 static double[][] CL; static TxInfo[] txs; TxInfo myInfo

3 upon tx.begin:
myInfo.id = tx.id; myInfo.numRestarts = 0
do

S

6 cl = MAX THREADS; enemies = 1; worstEnemy = nil

7 for each inFlightTx in txs do

8 if (CL[tx.id][inFlightTx.id] < cl)

9 cl = CL[tx.id][inFlightTx.id]; enemies = 1; worstEnemy = inFlightTx
10 else if (inFlightTx == worstEnemy)

11 ++enemies

12 while (cl <+ enemies < 1)

13 limitConcurrency(cl =+ enemies)

14

15 upon tx.abort caused by enemyTx:

16 myInfo.numRestarts++

17 CL[enemyTx.id][myInfo.id] = CL[enemyTx.id][myInfo.id] * k
18

19 upon tx.commit:

20 txs[myInfo.pos] = nil

21 for each opId in atomicOperations do

22 CL[myInfo.id][opId] = min(MAX_ THREADS,

23 CL[myInfo.id][opId] + MAX THREADS X « =+ (1 + myInfo.numRestarts))

Listing 1.1. The ProPS implementation. The scheduler is fully decentralized as each
thread decides whether to wait or to begin immediately by itself.

reads are very fast, always consistent, and read-only transactions never conflict
with other transactions. Read-write transactions, on the other hand, may conflict
but only with other already committed read-write transactions.

To control the execution and the order in which read-write transactions com-
mit, we changed the FlashbackSTM in two ways. First, we changed read-write
transactions so that they report to the scheduler at transaction begin time, com-
mit time, and abort time. Second, we changed the bytecode manipulator so that
it assigns a unique identifier (ID) to each atomic operation.

Note that our modifications to the FlashbackSTM have zero runtime overhead
for read-only transactions: Given that read-only transactions never conflict in
the FlashbackSTM, they do not need to be scheduled and, thus, never report
to the transaction scheduler as read-write transactions do. In Listing 1.1 we show
the pseudocode of ProPS, which works in a fully decentralized way because each
thread decides whether to wait or to begin immediately by itself.

ProPS stores per-thread information in a TxInfo object and system-wide in-
formation in a global CL matrix and in a global txs array. The thread-local TxInfo
instance gathers information about the transaction currently in execution by the
thread, such as the ID of the atomic operation, and the number of transaction
restarts. On the other hand, the global CL matrix stores the concurrency level
between pairs of atomic operations, as described in the previous section, whereas
the global txs array contains all in-flight transaction currently in the system.

156 H. Rito and J. Cachopo

At begin time, the scheduler updates the thread’s TxInfo instance with infor-
mation regarding the new transaction (line 4) and uses the CL matrix to calculate
the transaction’s minimum cl value, depending on the operation’s ID and the
current system configuration (lines 5-12).

The limitConcurrency function (line 13) may delay the execution of a trans-
action because it forces the starting transaction to acquire a position in the
txs array with a compare-and-swap (CAS) operation. When a transaction suc-
cessfully acquires a given position in the txs array, it may begin its execution
(otherwise, it will have to keep trying until it succeeds); when the transaction
finishes, it releases its position in the txs array, as shown in line 20.

The size of the array corresponds to the maximum number of read-write trans-
actions that the scheduler will allow to execute concurrently—in our current
implementation, the size of the array corresponds to the number of cores in the
machine—and the scheduler uses the minimum cl value of each starting trans-
action to control the number of positions in the array that may be used. With a
cl value equal to MAX_THREADS, the scheduler behaves similarly to an optimistic
scheduler. Lower cl values make ProPS progressively more pessimistic.

At transaction abort, the scheduler increments the number of restarts (line 16)
and reduces the concurrency level (line 17). At commit time, a committing trans-
action increments its concurrency level with all atomic operations (lines 21-23).

It is worth mentioning that we made our implementation as lightweight as
possible. For instance, accesses to the C'L matrix are not explicitly synchronized
and, thus, threads may read stale data. We argue, however, that adding random
imprecisions to the scheduler is preferable than to pay the high cost of synchro-
nization because, in this particular context, suboptimal scheduling decisions do
not change the semantics of the programs, only their performance.

5 Experimental Results

To evaluate our approach, we used the STMBench7 benchmark [6] and the
STAMP benchmark suite [8]. We ran these benchmarks using the Flashback-
STM either with no scheduler (shown as Default) or with one of the following
schedulers: ProPS, ATS [12], CAR [2], and Shrink [4].

We configured ProPS with a k-value of 0.5, an a-value of 0.05. We tested
with several values for these parameters and used the values that produced the
best results. Due to space constraints, we do not show in this paper a sensitivity
analysis for these parameters, but the results do not vary too much within a
reasonable range for these values.

Neither one of the pessimistic schedulers used in our tests had an implementa-
tion for the FlashbackSTM, so we provided our own optimized implementation of
each scheduling policy. To collect fair and comparable results, all four schedulers
share the same FlashbackSTM code base and the same scheduling interface.

We ran our tests on a machine with four AMD Opteron 6168 processors, each
with 12 cores, for a total number of 48 cores. All processors shared a Supermicro
H8QG6 motherboard with 128Gb of RAM. The machine was running CentOS

ProPS: A Progressively Pessimistic Scheduler 157

55 Read-write (40% writes) 8 Write-dominated (90% writes)
z =26 '/,A"“A""A----A---»A.\._ VNN S
Q Q2.4
[e] o
= c 22
kel kel
© ©
o 0
c <
= =
9@)
o i)
= C
a a
o [oR
=3 =}
el el
(7] ()
[()
Q. Q.
) 7 (I
0 0.6

1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Threads # Threads

Coarse =—f— Default --3-+ cArR -l ProPSs «+/A\:-
Medium = Y= ATS —-F- Shrink =<5~

Fig. 2. Speedup of the STMBench7 benchmark with all long read-write traversals and
all structural modifications disabled, for each of the two workloads

release 6.4 and Java SE version 1.7.0_.21. We made 20 runs of each benchmark
with 1 up to 48 threads in increments of 4 threads per test, and we removed the
top 5 best and worst results, presenting only the average of the ten remaining
values. The speedup results use as baseline the execution time of the benchmark
running single-threaded without any STM instrumentation.

5.1 STMBench7? Benchmark: Short Transactions

The STMBench7 benchmark was designed to test STMs under high-contention
scenarios, making it appropriate to understand how non-negligible concurrency
among transactions that often results in reexecutions affects performance.

We measured the time it took for the benchmark to complete a fixed number
of operations with all long read-write traversals and all structural modifications
disabled in a read-write workload (40% writes out of 130000 total operations)
and in a write-dominated workload (90% writes out of 60000 total operations).

In Figure 2, we present speedup results for the STMBench7 benchmark us-
ing both the FlashbackSTM with the various schedulers and two lock-based
approaches: coarse-grained locks and medium-grained locks.

Although STM’s indirect memory accesses add overhead, on both workloads
with one thread the STM version of the benchmark is faster than the non-
instrumented version of the benchmark. This happens because some operations
execute repeated method calls. These methods, when executed inside Flashback-
STM’s memo-transactions, populate a per-transaction memo-cache with infor-
mation about their runtime behavior. The STM then uses this information to
identify repeated work that may be skipped, thus improving performance.

Comparing the results obtained with the various schedulers, we see that, re-
gardless of the workload, ProPS outperforms all other approaches. The results
for the read-write workload with the STM are specially good when compared to
locks, because this workload benefits both from our less pessimistic approach to

158 H. Rito and J. Cachopo

Table 1. Percentage of aborts of the STMBench7 benchmark with all long read-write
traversals and all structural modifications disabled, for both workloads with 48 threads

Transaction scheduler

Workload Default ATS CAR ProPS Shrink
Read-write 59.41 9.34 871 15.96 30.49
Write-dominated 65.06 7.93 6.92 16.50 28.96

scheduling and from FlashbackSTM’s read-only operations that have very low
overhead and never conflict.

Overall we can conclude that, as the number of concurrent threads increases,
conflicts become more frequent and, therefore, the benchmark starts to benefit
from scheduling. The influence that conflicts have on performance is more evident
on the write-dominated workload where the FlashbackSTM without scheduling
achieves its peak speedup with 4 threads and then performance abruptly plunges
to the point that, with 48 threads, the benchmark executes as fast as with 1
thread. With scheduling, on the other hand, the benchmark is able to maintain
the performance stable as the number of threads increases.

Despite the drastic reduction in the abort rate (Table 1), none of the pes-
simistic schedulers’ peak performance surpasses the peak performance of the
Default scheduler. As the results with ATS and CAR clearly show, even on
write-dominated, conflict-prone workloads a lower abort rate may not translate
into better performance if the scheduler is too pessimistic and serializes trans-
actions that could otherwise execute concurrently without conflicts.

Instead of serializing all transactions when contention is high as traditional
pessimistic schedulers do, ProPS’s progressively pessimistic scheduling policy
gradually reduces concurrency when transactions start conflicting. Thus, even
though the abort rate goes up to 16.50%, ProPS outperforms all other alter-
natives, showing that there is latent parallelism in the benchmark that is not
explored by the pessimistic schedulers.

5.2 STMBench7 Benchmark: Mixed Transactional Workload

The previous results were obtained with two workloads that execute short trans-
actions predominantly. Now, we explore how the various schedulers behave for
a workload with very long transactions: For that, we use again the STMBench7
benchmark, but now with all long read-write traversals enabled.

For these tests, we changed the number of operations executed on each work-
load to 4000 operations on the read-write workload and to 2000 operations on the
write-dominated workload. This change was necessary to maintain an average
execution time of roughly 30 seconds with 48 threads. We present the speedup
results in Figure 3.

As we can see, all pessimistic schedulers perform worse than the FlashbackSTM
with no scheduler, a result somewhat surprising because the use of a scheduler

ProPS: A Progressively Pessimistic Scheduler 159

1a- Read-write (40% writes) 12- Write-dominated (90% writes)
1.34 N
A‘"'AH
1.2 ~ T«
" l;:15%1'l'i.";‘jﬁ‘;'3%::‘?@‘:%:3&‘._'_;:_i_-x_-_:x

Speedup (Single-thread no-STM)
Speedup (Single-thread no-STM)

2.7 +m4m—-/——m™™@™—m—————————— 0.6 +—1—7F—"7F—7F"7"—"T"—"""7"—"T—"7—7
1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Threads # Threads
Coarse =—f— Default --3-+ cArR -l ProPSs «+/A\:-
Medium = Y= ATS —-F- Shrink =<5~

Fig. 3. Speedup results relative to a sequential execution of the STMBench7 benchmark
with all structural modifications disabled, for each of the two workloads

should reduce the amount of wasted computation due to conflicting transactions,
and STMBench7 is known for having a highly conflicting workload. Yet, despite its
high abort rate, the Default approach extracts more parallelism from the bench-
mark with its optimistic approach, and, thus, it has better performance.

These results show that the performance issues caused by over-serialization
are specially bad in applications that execute large numbers of threads in a
mixed transactional workload where the size of transactions may vary greatly.

Furthermore, our results strongly indicate that the assumption behind most
pessimistic scheduling policies—that in high contention workloads transactions
that conflicted at least once in the past will always conflict with each other again
in the future—is usually wrong and, for that reason, schedulers need to take into
consideration the dynamic nature of transactions when deciding.

ProPS’s more optimistic approach to concurrency, coupled with fine-grained
information about the conflict probability between atomic operations, is able to
make better scheduling decisions, extract more parallelism from the benchmark,
and improve performance up to 35% in these two highly contented workloads.

Finally, despite the additional overhead imposed by the STM, the Flashback-
STM with ProPS outperforms locks and scales better on both workloads. Even
on the worst case scenario where 90% of transactions are read-write and may
read up to 1 million memory locations, ProPS is able to extract the benchmark’s
latent parallelism and scale up to 40 threads. In this very demanding workload,
medium-grained locks are only 10% faster with 48 threads than with 1 thread,
whereas ProPS with 48 threads executes 70% faster than with 1 thread and
surpasses the performance of medium-grained locks for 16 or more threads.

5.3 STAMP Benchmark Suite

STAMP has eight different applications but we limited our study to Genome
and Vacation as these applications represent two important execution scenarios:

160 H. Rito and J. Cachopo

Genome Vacation
4 4 1.8+
s [N N - s
B AX 4
5 35 o o e
[e] o
c 21.4
g’ - E
i ‘ g 1.2
£ 2.5 £
@ 3 14
o 24 o
= C
& 5081
o 1.5 o
0.6 M- - -
3 3 o e
2 ' 204y
() (2]
0.5 +¥—"F—"a--—-ab-—--a--—-v--+—- 0.2 br——v—-v—oav—-av-v—"T—"T"T—"T7
1 4 8 12 16 20 24 28 32 36 40 44 48 14 8 12 16 20 24 28 32 36 40 44 48
Threads # Threads
Default --3é-- ATS -F- cArR - Shrink =~ ProPS --/A\:-

Fig. 4. Speedup results for the Genome and the Vacation applications

Genome executes millions of short transactions (98% of read-write transactions
read less than 3 memory locations), whereas Vacation predominantly executes
long transactions that perform up to 7226 transactional reads. Each applica-
tion executed with the following parameters: For Genome, “-g 32768 -s 64 -n
667772167, and for Vacation, “-n 1800 -q 90 -u 90 -r 16384 -t 300000”.

Figure 4 shows the speedup results for the various schedulers. Once again,
ProPS consistently outperforms all other transaction schedulers.

Genome’s results highlight the usefulness of our scheduler in an application
that executes millions of micro transactions. ProPS is always as good or better
than all other schedulers, improving performance up to 40%. Yet, ProPS does
not scale past 24 threads and we believe that the cost of creating and terminating
a high number of short lived transactions justifies this performance plateau.

The Vacation benchmark reinforces the idea that current pessimistic sched-
ulers are not suitable for workloads with long transactions: Again, all pessimistic
schedulers perform significantly worse than Default. Most transactions in this
benchmark are long and, therefore, the decision to serialize any transaction that
would be able to execute without conflicting greatly hinders the performance of
the system. ATS, CAR, and Shrink use coarse-grained, conservative heuristics
that fail to predict the behavior of each individual transaction and end up se-
rializing almost all threads. ProPS, on the other hand, is the first transaction
scheduler to perform well on these types of workloads.

6 Conclusions

In this paper we proposed ProPS, a new transaction scheduler for STM systems
that gradually adapts the amount of concurrency in the application as trans-
actions abort and commit. When compared to other scheduling policies, our
new scheduling policy is fine-grained, because ProPS calculates C'L;; values for
each pair of atomic operations i and j, and is progressively pessimistic, because

ProPS: A Progressively Pessimistic Scheduler 161

rather than serializing all transactions when contention is high, ProPS gradually
reduces concurrency as C'L values decreases.

Experimental evaluation with the STMBench7 benchmark and the STAMP

benchmark suite demonstrated the usefulness of our novel scheduling policy as
ProPS was able to outperform and scale better than all other scheduling alter-
natives in a variety of workloads and applications. Unlike conservative solutions,
our less pessimistic approach to scheduling performs well in workloads with long
transactions and with a lot of latent parallelism.

References

10.

11.

12.

Cascaval, C., Blundell, C.; Michael, M., Cain, H., Wu, P.; Chiras, S., Chatterjee,
S.: Software transactional memory: Why is it only a research toy? Queue 6, 4658
(2008)

Dolev, S., Hendler, D., Suissa, A.: CAR-STM: Scheduling-based collision avoidance
and resolution for software transactional memory. In: Proceedings of the 27th ACM
Symposium on Principles of Distributed Computing, PODC 2008, pp. 125-134
(2008)

Dragojevié¢, A., Felber, P., Gramoli, V., Guerraoui, R.: Why STM can be more
than a research toy. Commun. ACM 54, 70-77 (2011)

Dragojevié, A., Guerraoui, R., Singh, A., Singh, V.: Preventing versus curing:
Avoiding conflicts in transactional memories. In: Proceedings of the 28th ACM
Symposium on Principles of Distributed Computing, PODC 2009, pp. 7-16 (2009)
Fernandes, S., Cachopo, J.: Lock-free and scalable multi-version software transac-
tional memory. In: Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, PPoPP 2011, pp. 179-188. ACM (2011)
Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: A benchmark for software
transactional memory. SIGOPS Oper. Syst. Rev. 41, 315-324 (2007)

McKenney, P., Michael, M., Triplett, J., Walpole, J.: Why the grass not be greener
on the other side: A comparison of locking vs. transactional memory. SIGOPS
Oper. Syst. Rev. 44, 93-101 (2010)

Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional
applications for multi-processing. In: IEEE International Symposium on Workload
Characterization, IISWC 2008, pp. 35-46. IEEE (2008)

Rito, H., Cachopo, J.: Memoization of methods using software transactional mem-
ory to track internal state dependencies. In: Proceedings of the 8th Interna-
tional Conference on the Principles and Practice of Programming in Java, PPPJ
2010(2010)

Rito, H., Cachopo, J.: FlashbackSTM: Improving STM performance by remember-
ing the past. In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS, vol. 7760,
pp. 266-267. Springer, Heidelberg (2013)

Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing, PODC
1995, pp. 204-213. ACM (1995)

Yoo, R., Lee, H.: Adaptive transaction scheduling for transactional memory sys-
tems. In: Proceedings of the 20th Annual Symposium on Parallelism in Algorithms
and Architectures, SPAA 2008, pp. 169-178. ACM (2008)

A Queueing Theory Approach to Pareto
Optimal Bags-of-Tasks Scheduling on Clouds

Cosmin Dumitru!, Ana-Maria Oprescu', Miroslav Zivkovié!,
Rob van der Mei?, Paola Grosso', and Cees de Laat!

! System and Network Engineering Group,
University of Amsterdam (UvA),
Amsterdam, The Netherlands
C.Dumitru@uva.nl
2 Department of Stochastics,

Centre for Mathematics and Informatics (CWI),
Amsterdam, The Netherlands
R.D.van.der.Mei@cwi.nl

Abstract. Cloud hosting services offer computing resources which can
scale along with the needs of users. When access to data is limited by
the network capacity this scalability also becomes limited. To investigate
the impact of this limitation we focus on bags—of-tasks where task data
is stored outside the cloud and has to be transferred across the network
before task execution can commence. The existing bags—of-tasks esti-
mation tools are not able to provide accurate estimates in such a case.
We introduce a queuing—network inspired model which successfully mod-
els the limited network resources. Based on the Mean—Value Analysis of
this model we derive an efficient procedure that results in an estimate
of the makespan and the executions costs for a given configuration of
cloud virtual machines. We compare the calculated Pareto set with mea-
surements performed in a number of experiments for real-world bags—of—
tasks and validate the proposed model and the accuracy of the estimated
configurations.

1 Introduction

Bag-of-tasks (BoT) applications are common in science and engineering and
are composed of multiple independent tasks, which can be executed without any
ordering requirements. Therefore, the execution of a typical BoT application
can be parallelized. As the number of tasks within a particular BoT application
may be large, the application may also be computationally (i.e. resource) de-
manding. The execution parallelism and resource demanding properties of BoT
applications make them suitable for deployment and execution within the cloud
environment. Since the cloud environment has large (theoretically unlimited)
resources, the widely—adopted pay—as—you—use model implies the assignment of
budgets and/or execution deadlines. Characteristics of tasks, such as the running
time, are not given a priori, and therefore need to be estimated [12]. Taking into

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 162-173, 2014.
© Springer International Publishing Switzerland 2014

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 163

account the lack of prior knowledge of the tasks’ running times, this presents
the challenges for the resource management system with the conflicting goals of
minimizing the execution cost while meeting the total execution time deadlines.
In general, there are two types of BoT applications, namely compute—intensive
and data—intensive applications. We focus in this paper on data—intensive BoT
applications where each task requires the large—sized data to be available at the
location where data processing takes place before actual processing. In a typical
scenario involving such BoT applications, the Master (owned by the cloud user)
has a BoT, and each task is to be executed by one of the K Virtual Machines
(VMs), VM;, VMy, ..., VMg. As the VMs are instantiated in the cloud and
become ready, they connect to the Master. When a VM connects (1) , the Master
randomly selects a task from a BoT, and assigns (2) it to the VM. In order to ac-
complish the assigned task, the VM has to retrieve the data of a—priori unknown
large size via Internet from a remote server (3), and during the retrieval process,
this VM may compete for the network and remote server resources with other
VMs. Naturally, the more VMs that compete for network and remote server re-
sources, the longer the retrieval time, and consequently, the larger the makespan.
Similarly, the larger the data to be retrieved, the longer the retrieval time and
the makespan. However, predicting by how much these factors will impact the
makespan remains a considerable challenge.

In this paper we analyze the significance of the data transfer performance
uncertainty to the makespan. This uncertainty further affects the accuracy of
the schedules presented to the user as (nearly) optimal. This is a consequence of
the approach in which state—of-the—art schedulers cannot identify the network
contention induced by a large number of VMs participating in an execution, or
large data transfers (or both). This leads to incomplete executions, or dramati-
cally violated makespan constraints. We derive a queueing—theory based model
that allows efficient investigation of the impact of data transfer to the makespan.
Based on the model and performed analysis, we derive the procedure that allows
efficient numerical derivation of the makespan, which further allows to calculate
the Pareto optimal solutions for execution costs and makespan.

— We derive and discuss a queueing—theory based model of the cloud system
used for the BoT applications. This model takes into account the data trans-
fer, and requires only the average size of the data set within the BoT. The
average size of the data may be estimated using well-known procedure for
estimating bags stochastic properties [12].

— We analyze the model using Mean—Value Analysis (MVA) [8] and develop
the simplified, yet efficient procedure that allows us to determine the data
retrieval time, and to estimate the makespan.

— We validate the proposed model against the traces of two different types of
real-world BoT applications executions on real-world clouds. In addition,
we use the MVA method to derive Pareto optimal configurations.

The paper is organized as follows: in Section 2 we describe the related work.
In Section 3 we describe the system model which accounts for the large data

164 C. Dumitru et al.

transfers. Further we analyse the proposed model using an MVA approach. Sec-
tion 4 discusses the results of the model validation, and illustrates the Pareto
front of the makespan in case of data—intensive BoT applications using the large
data sets. We present our conclusions in Section 5.

2 Related Work

This work is closely related to a number of topics: resource selection and schedul-
ing in clouds,performance prediction, and data-aware scheduling. In this section
we provide a short overview of related work.

Efficient resource scheduling with regard to minimizing makespan or other
objectives has been explored within the context of cluster, grid and cloud tech-
nologies. A common approach assumes full capacity information of available
resources and by employing various heuristics optimal schedules are obtained.
The majority of approaches just ignore the data access/transfer requirements
and expect that the network behaves as an infinite resource.

In [14] the authors consider network resources in the cloud resource selec-
tion phase, but they are performance constant, regardless of the workload. The
assumption made here is that input data is replicated across the available re-
sources. A genetic algorithm is used to obtain the Pareto frontier of combination
of resources that would lead to optimal schedules for a given workload.

The Budget Aware Task Scheduler (BaTS) [12] uses a stochastic approach to
determine the workload’s properties and uses the collected information to gener-
ate an approximated Pareto set of schedules suitable for the workload, along with
a predicted makespan [16]. While this system is efficient in predicting the behav-
ior of compute-intensive workloads, the potential impact of the limited network
resources on the makespan is ignored. The scheduler presented in [10] is able to
predict the execution time of more complex workloads, like DAG workflows and
it is data-aware, but it expects full information on tasks runtime including the
data transfer time. Moreover, this data transfer time does not change over time
with the addition of new, possibly different resources (scaling up).

When network resources are involved and data access becomes a bottleneck,
two popular approaches are taken. One optimizes based on data locality, that
is, jobs are scheduled on resources that are close to the data sources [7], [6]. An
orthogonal approach replicates data [11], such that the same data is stored at
multiple locations and compute jobs which require the same data can be spread
across the best available resources, thus lowering the chances of contention. Sys-
tems like Gfarm [15] and Hadoop [17] ensure that data is replicated system-wide
in order to avoid data access bottlenecks. The replication strategy and the num-
ber of replicas influences the performance of the system.

However, both approaches require either compute resources located conve-
niently close to the data or extra steps (and costs) to replicate the data before
the application starts. None of the approaches described above take into account
the changing data transfer time when predicting performance. Besides, to the
best of our knowledge, the queue—network models and Mean Value Analysis were
not used for the makespan calculation of data—intensive bags—of-tasks.

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 165

3 System Model

In this section we introduce our model of the data—intensive BoT system previ-
ously described. First we describe the details of the observed system; then we
explain the queueing—theory based model of the system, and we end this section
by describing Mean Value Analysis of the given model.

One of the major assumptions for BoT systems is that all tasks from given
BoT are independent from one another, i.e. the tasks could be executed without
any ordering requirements. The assignment of a single task T; from a total of
N BoT tasks to virtual machines is random, and we neglect the communication
overhead (for this assignment) between a particular virtual machine and the
master. There are in total K virtual machines, and once the task T; is assigned
to VMg, k=1,2,..., K, the virtual machine downloads the data from the data
storage. We note the random variable representing the download time of task T;
as Ty, and the expected value of task download time is noted by Tp = E[T}].

Once the data corresponding to T; has been downloaded by VM, this virtual
machine immediately starts execution of the assigned task. When processing of
task T; is completed, VM, requests new task assignment from the master. We
neglect the time that VM needs to store (i.e. upload) task’s output data to a
remote destination. As each VM in the system either downloads data or processes
the task, the number of tasks (jobs) allowed in the system is constant and equals
K. We note the compute rate of VM, by p, and therefore the average time E[Si]

1
a task has been served by VMy, is given as E[Sy] = ,k=1,2,..., K.
223

Due to the fact that we neglect the upload data pfocess as well as the com-
munication between master and VMs, our system can be modeled as the closed
queueing network. The VMs represent a queueing system where every new task
arrival experiences immediate service and does not wait — this system is modeled
as the one with infinite number of servers, of which at most K are used.

As single data storage is used for the data download, the download happens
over shared network resources. Therefore it could be modeled as single—server
Processor Sharing (PS) queue, in which the server download rate is p1g. The PS
queue that models download process in our case could be either the Discrimi-
natory Processor Sharing (DPS) or Egalitarian Processor Sharing (EPS) queue.
This is due to the fact that download rate experienced by a VMj is limited by
the maximum download rate, ukD , and these download rates may be different for
different VMs. When the number of download sessions is small, i.e. when the sum
of all the service demands at the server is below pg, we have DPS. Otherwise,
when the number of download sessions is large, the download process is modeled
as EPS. In the EPS model, each of the download tasks present in the system
obtain a fair share of the capacity. In such a case the download rate experienced
by VM, is " d‘;jsks. The data download rate for task T; experienced by VM, is
given as the following:

#dtasks #dtasks

D D us . D
pi if IZ; - < ps and Ldtasks if IZ; K > s (1)

166 C. Dumitru et al.

The model we presented can be considered as a closed BCMP queuing net-
work [4], i.e. there are multiple classes of the tasks as their processing rates
depend on the class of the task. This is due to the fact that a task is already
mapped to a VM of a certain type before it reaches the server. Next to it, the
download rates may differ, as given by equation 1. In order to calculate the
makespan, we need the expected time, E[T] a task spends in the system. As
the data requests are generated only when the task assigned to VMy is com-
pleted, the expected time E[T}] that tasks assigned to VM spend in the sys-
tem, equals to the sum of the expected download time]E[TkD], and the expected
service time i.e.:

1
E[T:] = E[TP] + E[Sk] = E[T] + . k=1,...,K. (2)
k
The average download times E[T{P] are dependent on the number of download
tasks, and using equation 1 we have

L) #dtasks D
e if > M Sps
o= S ®)
[#utss it z; upP > ps

In order to evaluate the expected number of download tasks E[#dtasks| from
equation 3 we would need the equilibrium state probabilities of our system.
While methods to obtain a product form for the equilibrium state probabilities
exist [5], they require computing all the states of the network and their complex-
ity increases with the number of nodes in the network. The computing of states
may take time, which impact the time required for the makespan calculation.
Besides, in order to calculate E[T}”] we need information about each task size. In
order to solve these two issues we derived an aggregated model, based on Mean
Value Analysis.

3.1 A Mean Value Analysis Approach

The first step in our approach is to transform the given model into the model in
which all virtual machines would have the same compute rate (jix = i) as well
as download rate (i = fi”). The second step is to analyse such model for tasks
of average size. This is the essence of the Mean Value Analysis (MVA) approach.

We model the VMs as the queueing system with the infinite number of servers,
of which at most K are used. The aggregated compute rate (tq44) of this system
remains the same,

K

k
Hagg = Zwk,LLk where wy = Ig (4)
k=1 D1 Mk

where wy, represents the probability that some arbitrary task will be executed
on machine k in the non—aggregated system. The service rate of VM is

. (5)

M:K

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 167

|

ofo)o

nl jobs

n2 jobs

Fig. 1. The aggregated model of the considered system
The similar reasoning holds for the aggregated download rate ,uaDgg, ie.

K D
/Lfgg = Zwk,uf where wy, = ng D (6)
k=1 D k1 M

The maximum download rate of VMy in this system is therefore

b Mg
pm= (7)
As in the original model, the actual data download rate is dependent on the
number of tasks that simultaneously access the data storage. The data download
rate is now equal for all virtual machines VM, and let pg(j) be the service rate
of the data storage server when the number of download tasks #dtasks = j.
Using equation 7 we obtain the following expression for us(j)

{ﬁD ! I];'/‘t?gggﬂs

B ; J D
js if Kk HMagg > [s

ps(j) = (8)

Due to the aggregation process we can now calculate the stationary proba-
bilities of the system states. The system state is described as (n1,n2) where nq
represents the number of the tasks that are downloaded while ny represents the
number of the tasks that are processed by (n2) VMs. It holds that ny +ng = K,
and ny,ne > 0. Let 71 (j|K) be the conditional probability that the number of
download tasks is j under condition that the total number of tasks in the net-
work is K. We define 7 (j| K) accordingly. The mean service time experienced by
an arriving job at the data storage node (the average download time) is derived
using MVA for the single chain product form closed networks [8]. The MVA
analysis is based on two important results from the queuing theory: the arrival
theorem [13,8] and Little’s Law [9].

From the arrival theorem we obtain the expected download rate when there
are K tasks in the network as the following

K .
E[TP(K)] = Y mG = 1K -1) %)

168 C. Dumitru et al.

As VMs have the same compute rate, the expected service time is constant, i.e.

Es|= | . (10)
Hagg
The visit rate is defined as the mean number of visits made by a task at the

download server (vp) or aggregated virtual machines (vg). In our case, vp =

vy = % as the number of arrivals at the download server and the aggregated
virtual machines are the same. From Little’s Law we obtain the total system

arrival rate, i.e. throughput of the system with K jobs:
K K
AMK) = = . 11
B = oBITo() + vsBls) ~ o)+ eSO

The queue length distribution at the download server is derived from

mGlK) ="M Gk 1, =1, K (12)
ps(j)
The probability of an empty queue is derived from
K
m(0[K) =1 m(jlK). (13)
j=1

Using recurrence formulae 9-13 we can derive E[T” (K)]. For a total of N tasks
within the BoT, the total makespan obtained using the MVA is

M = N (14)

E[TP(K)]+E[S]

The computation complexity of the MVA-based estimation algorithm is O (K 2)
where K is the number of VMs. As in practice K is relatively small, the MVA
approach is well-suited to estimate the Pareto frontier of optimal configurations
for a given workload.

4 FEvaluation and Discussion

We evaluate the accuracy of our MVA-based prediction procedure for data-
intensive bags—of-tasks using an experimental setup consisting of two real-world
applications and multiple cloud instance types. We also investigate the efficiency
of our MVA-based procedure when employed towards constructing Pareto fronts.

All experiments were performed using the Amazon EC2 [1] cloud region Ire-
land. The characteristics of the Amazon EC2 instance types used in our ex-
periments are presented in Table 1. The compute performance of each instance
consists of the number of virtual CPUs (vcpus) and their allocated shares, ECU
(EC2 Compute Unit), the equivalent of a 2007 AMD Opteron CPU. We chose
to focus on these three types because they exhibit different computation-to-
network-to-price ratios and therefore allow us to analyze the behavior of the
MVA-based procedure in different real-world scenarios. The storage server host-
ing the input data was located in the Netherlands. For instance reservation and
task execution we used the Budget- and Time-constrained Scheduler[12].

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 169

Table 1. Amazon EC2 Instance Details

Type CPUs (ECU) Memory(GB) Network Cost($/h)

ml.s 1(1) 1.7 Low 0.047
ml.m 1(2) 3.75 Moderate 0.095
mll 2(4) 7.5 Moderate 0.190

Applications. We considered two image processing applications, each display-
ing a different compute-to-data ratio: OpenJpeg a JPEG2000 software encoder [3]
and a ImageMagick suite component, which compresses images to the JPEG for-
mat [2] and applies a sharpening filter. The input data used for our experiments
consisted in a subset of 7500 TIFF image frames in 4K resolution of the open
source movie Sintel. The average file size was 24.3 MB. For both applications, we
estimated the expected performance of each EC2 instance type (see Table 1) us-
ing BaTS’ sampling module. During the sampling procedure, we also performed
network bandwidth measurements to assess the storage server’s capacity. We
remark that, according to our sampling results, for the same input data, the
OpenJpeg application has a higher average execution time since the compression
algorithm used is more computationally-intensive.

Experiments. To evaluate the accuracy of our MVA-based prediction proce-
dure, we compare it against the data-oblivious prediction mechanism of BaTs§,
referred to as ‘simple’, and against real executions ("exec”) of several scenarios
having the same input data (bag), but different cloud instance configurations:

1-1-1 consists in one instance of each type: ml.s, m1.m, m1.1
5-5-5 consists in five instances of each type: ml.s, ml.m, m1.1
10-10-10 consists in ten instances of each type: m1l.s, m1.m, m1.1

Since real executions are subject to external noise (such as network traffic or
cloud instance performance variability), we repeat the execution of each scenario
three times and derive corresponding error bars to obtain the ‘exec’ makespans.

All results for both types of applications are collected in Figure 2. For each
configuration, we present the MVA-based makespan estimate, the ‘simple’
makespan estimate and the ‘exec’ makespan (with error bars). Each configu-
ration is labeled using the types and respective number of instances, in the
following format: type:no instances[+type:no instances[...]]. All execu-
tions were performed three times and the makespans averaged. The variance
of each execution was relatively low(0.10-0.20), especially for the ‘larger’ con-
figurations. In the case of ‘small’ (3 machines) configurations the variance is
slightly higher(0.20-0.25). We assume that this is due to both varying network
conditions and to the slight variability in performance of the instances. The
cloud provider is not able to provide a perfectly identical instance in terms of

170 C. Dumitru et al.

performance due to the shared environment. Also small configurations are more
sensitive to varying Internet conditions.

We selected these three configurations as they offer a good insight with re-
gard to the behavior of the MVA prediction method in the presence of varying
numbers and types of instances. The ‘1-1-1’ configuration has a low number of
instances and thus can be used to benchmark the behavior of both the MVA
and simple prediction methods. The ‘5-5-5’ configuration starts to encounter
contention at the storage server, especially in the case of the ImageMagick ap-
plication, which as previously mentioned, exhibits a lower compute-to-data ratio.
We already see here that the ‘simple’ estimation is no longer accurate enough.
The ‘10-10-10 configuration manages to saturate the storage server in the case
of both applications. The MVA method is able to include the fact that the data
storage server has become the bottleneck. In all cases the MVA value is close to
the measured execution time. This shows that the simplification we have made
in our model, where all the different types of instances are aggregated and then
homogenized does not considerably affect the accuracy of the MVA method.

T
Il Openjpeg:Exec N
=3 Openjpeg:MVA [
I Openjpeg:Simple|]

0.70 0.71 0.58

Makespan(hours)
orNwhUON
T T

ml.m:1+ml.l:11+ml.s:1 ml.m:5+ml.l:55+ml.s:5 ml.m:10+m1.1:10+m1.s:10

T
B ImageMagick:Exec [{
3 ImageMagick:MVA |]
E ImageMagick:Simple|]

068 0.70 (57

0.69 1
Lol |

ml.m:1+ml.:1+ml.s:1 ml.m:5+ml.l:5+ml.s:5 ml.m:10+m1.1:10+m1l.s:10

COHENNWWA
[=]8)[=]8;[=]F;[=]¢[=]

Makespan(hours)

Fig. 2. Measured (exec), MVA Predicted and simple predicted makespans for three
configurations

We can now use this result to apply the MVA method to a real scenario in
which the user is faced with the task of selecting from a list of configurations,
which exhibit different performance and cost. We obtained the Pareto fronts
(PFs) of each application, using both the MVA-based and ‘simple’ estimates, as
shown in Figure 3. Each point in the graph represents an unique configuration
with its corresponding cost and makespan. The PFs were obtained by exhaus-
tively computing the makespan and budget estimates of all possible configura-
tions, considering a maximum of 10 instances per type, and then selecting the
non-dominated set of configuration, i.e. for a configuration from the Pareto Set
is . As the maximum number of instances and instance types increases, this ap-
proach becomes extremely slow (the total number of configurations grows expo-
nentially). However, here we focus on the efficiency of employing our MVA-based
method when constructing PFs and further usage of approximations algorithms
is beyond the scope of this paper. In the case of the PF of the ImageMagick ap-
plication we observe a ‘tipping point’, i.e. a point in the objective space where the

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 171

speedup obtained by selecting a more expensive configurations starts decreas-
ing considerably. This is less visible in the case of the OpenJpeg application, as
the saturation point is not fully achieved not even in the case of the most ex-
pensive configuration. This is related, as previously mentioned, to the different
compute-to-data ratio of the application.

The ‘simple’ PF offers a set of configurations which, as empirically shown in
the first set of experiments does not represent the ‘true’ Pareto Front, due to the
naive method’s inaccuracy in the presence of network bottlenecks. By selecting
a configuration from this set, the user could potentially make inefficient use of
his budget.

e*s ImageMagick MVA
25l Open)peg MVA |
+*x ImageMagick Simple

+ Open)peg Simple

Makespan (hours)
= N

w o

.

g
o

¥
FE Ry
5 dyy
e cosee o o . AR S

>
a ok
* %
LTI T T

o
wn

hOKN wwk ww ox g

0.
%.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cost($)

Fig. 3. Pareto fronts for two application types: OpenJpeg and ImageMagick

To empirically evaluate the accuracy of each MVA-based Pareto front, we se-
lected for real execution four configurations: the global cheapest, the cheapest
from the group of very fast schedules, i.e. the ones at the right of the ‘tipping
point’, and two other configurations such that they equally divide the price in-
terval between the first two selected configurations. Figure 4 shows the execution
makespan (exec), the ‘simple’ makespan estimate and the MVA-based makespan
estimate for each configurations and for each application considered. Each con-
figuration was executed three times and Figure 4 presents the average over the
three executions together with the error. Again, we remark that the variance is
small, similar to that observed for the first presented experiments.

For all the configurations, the execution times, and both the MVA and simple
estimates are close to each other. This is due to the special properties held by
the schedules located on the Pareto front. These configurations make best use
of the available resources and inherently avoid contention; when contention is
reached, the configuration is less efficient with respect to cost and makespan
and therefore would not be present in the non-dominated set of configurations
(Pareto front).

172 C. Dumitru et al.

T
I Openjpeg:Exec
EEm Openjpeg:MVA
B Openjpeg:Simple {

A ImageMagick:Exec
B ImageMagick:MVA
Ml _ImageMagick:Simple

0.70.70

e

Makespan (hours)
Makespan (hours)

X X X X

[=]
KX >

N

Fig. 4. Measured (exec), MVA-based and ‘simple’ predicted makespans for Pareto front
selected configurations

5 Conclusions and Future work

In this paper we have presented the theoretical model of a system which executes
data—intensive bags—of-tasks in a cloud computing environment with data access
bottlenecks. The empirical evaluation of the model shows promising results with
respect to makespan estimation for various combinations of cloud instances in
the presence of limited network resources. We showed how this method (MVA)
can be successfully applied to an existing scheduler to obtain Pareto fronts for
data—intensive bags—of-tasks workloads. The MVA procedure requires informa-
tion about the mean behavior of the system’s components and thus no other
statistical properties can be derived, besides means. While this can be seen as a
limitation of the prediction ability of our model, it makes it on the other hand
very robust and computationally efficient. As future work we plan to model the
system as a more complex queueing network, which would allow us to obtain
more properties of the system, such as service time distributions.

Funding has been provided by the Dutch national research program
COMMIT.

References

1. Amazon ec2 - amazon elastic compute cloud, https://aws.amazon.com/ec2/ (ac-
cessed: January 27, 2014)

2. Imagemagick: Convert, edit, or compose bitmap images,
http://www.imagemagick.org/ (accessed: Januray 27, 2014)

3. Openjpeg - jpeg2000 codec, http://www.openjpeg.org/ (accessed: January 27,
2014)

4. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed
networks of queues with different classes of customers. J. ACM 22(2), 248-260
(1975)

https://aws.amazon.com/ec2/
http://www.imagemagick.org/
http://www.openjpeg.org/

10.

11.

12.

13.

14.

15.

16.

17.

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 173

Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions. Wiley-Interscience, New York (1998)

Cirne, W., Paranhos, D., Costa, L., Santos-Neto, E., Brasileiro, F., Sauve, J., Silva,
F.A.B., Barros, C., Silveira, C.: Running bag-of-tasks applications on computa-
tional grids: The mygrid approach. In: Proceedings of the 2003 International Con-
ference on Parallel Processing, 2003, pp. 407416 (2003)

Frey, J., Tannenbaum, T., Livny, M., Foster, 1., Tuecke, S.: Condor-g: A compu-
tation management agent for multi-institutional grids. Cluster Computing 5(3),
237-246 (2002)

Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press,
Inc., Orlando (1983)

Little, J.D.C.: A proof for the queuing formula: L. = A\ w. Operations Research 9(3),
383-387 (1961)

Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application dead-
lines in cloud workflows. In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2011, p. 49:1-49:12.
ACM, New York (2011)

McClatchey, R., Anjum, A., Stockinger, H., Ali, A., Willers, I., Thomas, M.: Data
intensive and network aware (diana) grid scheduling. Journal of Grid Comput-
ing 5(1), 43-64 (2007)

Oprescu, A.-M., Kielmann, T., Leahu, H.: Budget estimation and control for bag-
of-tasks scheduling in clouds. Parallel Processing Letters 21(02), 219-243 (2011)
Reiser, M., Lavenberg, S.S.: Mean-value analysis of closed multichain queuing net-
works. J. ACM 27(2), 313-322 (1980)

Taheri, J., Zomaya, A.Y., Siegel, H.J., Tari, Z.: Pareto frontier for job execution
and data transfer time in hybrid clouds. Future Generation Computer Systems
(2013)

Takefusa, A., Tatebe, O., Matsuoka, S., Morita, Y.: Performance analysis of
scheduling and replication algorithms on grid datafarm architecture for high-energy
physics applications. In: HPDC, vol. 3, p. 34 (2003)

Vintila, A., Oprescu, A.-M., Kielmann, T.: Fast (re-)configuration of mixed on-
demand and spot instance pools for high-throughput computing. In: Proceedings of
the First ACM Workshop on Optimization Techniques for Resources Management
in Clouds, ORMaCloud 2013, pp. 25-32. ACM, New York (2013)

White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Inc. (2009)

SPAGHETtI: Scheduling/Placement Approach
for Task-Graphs on HETerogeneous archltecture

Denis Barthou'? and Emmanuel Jeannot?

! Bordeaux Institute of Technology, France
% Tnria, LaBRI, France

Abstract. We propose a new algorithm, called SPAGHET?I, for static
scheduling tasks on an unbounded heterogeneous resources where re-
sources belongs to different architecture (e.g. CPU or GPU). We show
that this algorithm is optimal in complexity O(|E||A|? + |V||A]), where
|E| is the number of edges, |V| the number of vertices of the scheduled
DAG and |A| the number of architectures — usually a small value — and
that it is able to compute the optimal makespan. Moreover, the number
of resources to be used for executing the schedule is given by a linear
time algorithm. When the resources are bounded we provide a method to
reduce the number of necessary resources up to the bound providing a set
of compromises between the makespan and the size of the infrastructure.

1 Introduction

Directed acyclic graphs (DAGs) have been used to model [7,8,15], execute [2,5,12]
and predict [14] the performance of parallel applications. There exists many
scheduling algorithms for mapping tasks of a DAG onto the resources of parallel
machines [13,17,20]. A lot of work have been proposed to schedule task graphs
on heterogeneous resources when execution and communication time depend on
the machine that executes a task [3,16,17]. However, recent advances in High-
Performance Computing (HPC) have led to two important considerations:

— HPC systems feature a relatively low heterogeneity. Contrary to proposed
solutions of the literature where each individual machine can perform dif-
ferently, one often face a fix number of architectures (e.g. CPU, GPU, MIC,
etc.) where performance is homogeneous.

— HPC systems and their applications are of very large-scale. Top end HPC
systems can have as many as hundreds of thousands of processors. The tiled
version of the dense Cholesky factorization for instance has more than 10
million tasks (matrix of order 204800 and tiles size of 512). Therefore, the
complexity to schedule the DAGs is crucial in this setting.

In this paper, we propose a new static scheduling algorithm designed for this
kind of systems. Instead of considering each individual processor independently
it considers the architectures of the target machine. Within each architecture
the communication and execution time is considered homogeneous. Thanks to

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 174-185, 2014.
© Springer International Publishing Switzerland 2014

SPAGHET!tI: Scheduling/Placement Approach for Task-Graphs 175

that feature, for an unbounded number of resources, it is able to schedule the
input graph optimally in terms of makespan, with an optimal complexity of
O(|E||A]>+|V||A|) where |E| is the number of edges, |V| of vertices of the DAG
and | A| the number of architectures and potentially resorting to task duplication.

The remaining of the paper is organized as follows. In Section 2, we discuss the
related work. The models are described in Section 3. The algorithm is detailed
in Section 4. How to go from an unbounded number of resources to a bounded
number is discussed in Section 5. Experimental results are provided in Section 6.

2 Related Work

Static scheduling task graphs on homogeneous resources is NP-hard even for
two machines (reduction from 2-partition [9]). However, for unbounded resources
and no communication cost it is clearly in P as it requires to use new resources
(resource augmentation) to have a schedule of the length of the critical path.
In the case of communication cost, optimal scheduling can be found for some
special input graph only (without [19] or with [1] duplication).

There exists a lot of static scheduling heuristics for heterogeneous scheduling
(see [6] for some examples. If duplication is not allowed, HEFT [17] provides a
good schedule in a reasonable complexity O(|V'|?p), with p the number of pro-
cessing units. In [6], it has been experimentally shown that HEFT is one of the
best heuristics (in terms of makespan) for random graphs among 20 different
heuristics. In case duplication is allowed, TANH [3] is a heuristic of interest for
our study as it provides a low complexity (O(|V|(plogp) + |V|?)) and is opti-
mal under some hypothesis. The authors show that TANH provides an optimal
schedule (in terms of makespan) if a “A fork node i that is not a join node is as-
sumed to have the same execution time on all processors.”. Such hypothesis does
not hold in many cases. For instance in the Cholesky task graph, the POTRF
task is a fork task that is not a join task and its runtime is very different if you
execute it on a CPU or on a GPU.

In conclusion static scheduling heuristics have a complexity that depends on
the number of processors and are not able in the general case, due to NP-
completeness, to provide an optimal schedule.

3 Models and Definitions

We consider an application modeled by a directed acyclic task graph (DAG) G =
(V, E) where V is the set of tasks to be executed and E represents precedence
constraints between tasks. The execution model of the DAG is close to the macro-
dataflow model where a task can be executed only after all its predecessors have
terminated and when communications from its predecessors and this task have
been performed. However, it differs in the way costs are modeled.

We want to model a large platform where we have different architectures.
Think for instance of a node with a set of multicore processors (a NUMA ma-
chine with several hundreds of cores) with some accelerators (e.g. GPU cards

176 D. Barthou and E. Jeannot

having each several hundreds of CUDA cores or Xeons Phi each featuring 60
cores with 4 threads each). In this case, we assume that the communication
cost between two architectures is the same whatever the actual instances that
are sending and receiving the data. Moreover, the communication costs are con-
sidered constant when data move within one architecture (whether this task is
executed on the same instance as its predecessor or not). This later assumption is
different from the standard DAG scheduling model where a distinction is made if
the communication is occuring within the same instance (has no cost) or between
different instances (has a non zero cost). This is justified as follows. First, in our
model, this constant cost can be zero in order to neglect intra-architecture com-
munications compared to inter-architecture communications. Second, we want
to produce a schedule where high-level decisions are taken such has: ” On which
architecture should I schedule this task 7”7 We think the impact of locality on a
multi-architecture machine is more important than locality inside one given ho-
mogeneous architecture. Third, the assumption of constant communication time
within an architecture makes all the difference theoretically speaking: it is this
assumption that allows us to find an optimal solution. Finally, the experiment
section will show that it leads to predictable execution time and is therefore
reasonable in real settings.

Formally, let w be the communication time function, defined for each edge
of the graph, and 7 is the execution time function, defined for each vertex. We
consider a set of different architectures, A. The communication time for a given
edge depends on the architecture executing the vertices of this edge. Hence, the
function w is defined over E x A2 — R: For each edge, we have a communication
matrix of order |A| x |A| that provides the communication times of this edge
depending on the source and destination architecture. Similarly the execution
time function is defined as V x A — R: for each task we have a vector of execution
time of order |A| (see an example in Fig. 1).

Definition 1 (Start time). For a task graph G and an architecture set A, the
start time is a function:

0:VxA—-N
i, =1

that associates to task i and architecture j a timet for i to start on j. We denote
the starting time of task i on architecture j: 6;[j].

The start time is a total function, defined for all vertices and architectures. It
does not imply that tasks are systematically duplicated on all architectures,
but only represents possible starting times according to architectures. The ear-
liest completion time is defined as the minimal time to start a task, added to
the time to execute the task, considering all possible architectures: C¢artiest =
min;jca 0;[j] + 7[j] The makespan is then simply deducted: Cpax =
max;cy C£971¢t The makespan usually involves the latest completion time,
when tasks are duplicated. The earliest completion time is equal to the latest

SPAGHET!tI: Scheduling/Placement Approach for Task-Graphs 177

completion time for non-duplicated tasks. This is not a limitation, since it is al-
ways possible to define an additional sink task, having as predecessors the tasks
initially with no successors. Besides, our mapping algorithm will ensure that the
tasks with an earliest completion time equal to the makespan are not duplicated.
The mapping function defines more precisely the resource executing task i:

Definition 2 (Mapping). 4 mapping of a task graph G is a function
p:VxA—-NU{L}
,J =T
that associates to each task © and architecture j the resource number r that ex-
ecutes 1. When i is not evecuted on architecture j, r corresponds to the special

value L. When the same task is mapped to different architectures, there is du-
plication. We denote the resource executing task i on architecture j: p;[J].

Definition 3 (Constraints). Given a graph G, a set of architectures A and
a vector of resources r = (ri)kea, the functions p and 6 define resp. a valid
mapping and schedule if and only if the following constraints are checked:

1. Resource constraint. One task is executed at a time on the same resource.
Vi,j e Vik € Aji # j, ilk] = pylk] # L = (0i[k] + 7ilk] < 0;[K])
V(05[] + 75[k] < 0:[k]) (1)
2. Architecture constraint. Resources are bounded by r:
VieVkeA k] <rp (2)

3. Dependence constraints. The start time follows the precedence constraint and
communication costs:

V(’L,]) € E,Vk,3h, 9]' [k‘] > GZ[h] + Ti[h} + wij [h,]{3] (3)

4 The SPAGHETtI Algorithm

We consider here the computation of the minimum makespan when there is no
resource constraint (1) and no architecture constraint (2). Within this formula-
tion, it is possible to define a schedule and a mapping function giving for each
task the architecture(s) where it executes.

4.1 Minimizing Makespan

Consider first the case where there is only one architecture available, i.e. |A| = 1.
Then w and 7 are only functions of tasks. The optimal makespan can be evaluated
by computing the earliest start time of each task. According to the dependence
constraint (3), this start time fulfills the following property:

earliest __ earliest
05 = ({I;,)aé{E(ei + 7 + wij)

178 D. Barthou and E. Jeannot

We can arbitrarily define the earliest start time for tasks with no predecessor
in G as 0. This formulation then corresponds to a longest path problem on the
DAG G (critical path). This can be solved in O(|V|+|E|) time with a topological
sort and then the evaluation in topological order of the function geeriest,

Now, consider the case where |A| > 1. The dependence constraint defines the
value of the earliest start time as:

earliest _ . earliest
05 (k] = (erjl)ach %121(92» [h] + Ti[R] + wijlh, k).

Using (min, +) notation algebra, where the addition corresponds to a min and
multiplication to +, the min term can be rewritten into: Y, o , (¢t [n] «
7;[h] * wijlh, k]. This corresponds to a matrix vector product with 6, and =
vectors indexed by A and w; ; a square matrix of rank | A|. The vector definition
of ggartiest js therefore:

gertiest = max 05orhiest « diag(T;) * w; (4)

with max the component-wise maximum and diag(r;) the diagonal matrix ob-
tained from the vector. This recursive definition of 9;-‘”“6“ is similar to the case
where |A| =1, and leads to the definition of the SPAGHET'I algorithm.

Algorithm 1. Compute the earliest starting time for each vertex in G

Input: G = (V,E) // The input DAG
Input: 7 // Function defining the duration time vector
Input: w // Function defining the communication time vector
1 forall the i € G do // Assign a time vector, for all architectures
0.5 +— 0

Cmax < 0
S <+ Topological sort(G)
forall the ¢ € S do // Visit G in topological order, starting with source
for every vertex j predecessor of i in G do
0; = max(0;,0; * diag(7;) * w;, ;)// Element-wise maximum on vectors

i BT)

o

Chax max(Cmax, maxgea 0;[k] + 7i[k])

Figure 1 shows an example of the schedule and makespan computed by
SPAGHETtI on a graph, for two architectures, CPU and GPU. CPU values
are put in the first row/column of vectors and matrices, GPU in the second.
For instance, CPU—CPU communication between a and e takes 1, CPU—GPU
takes 3. The earliest starting time for task a is 0 for both architectures. The
starting time for task b, when started on CPU, is at least the time to complete a
on CPU and then communicate with b, or complete a on GPU and communicate
accross architectures. This leads to a starting time of 2. This is the same case for
GPU, and for task c. Task e on CPU cannot complete before either task a has
completed on CPU and CPU—CPU communication has finished (duration 1),
or task a has completed on GPU and GPU—CPU communication has finished
(duration 4): the earliest starting time for e on CPU is therefore 2. We let the
reader continue the reasoning and check the values of the table on the right.

SPAGHET!tI: Scheduling/Placement Approach for Task-Graphs 179

Task OF5y°" 0&55°*" Mapping

LN

a 0 0 CPU

b2 2 GPU

51 - . v ¢ 2 2 CPU

[1 ‘j\ /[] I:1 ;l a7 7 CPU
4 1 d e

22 o6 e 2 3 CPU

[™S P8 9 CPU

Fig. 1. On the left, the task graph with the values of 7 for each task and w for each
edge. On the right, the earliest starting time for each task, given when the task starts
on CPU and on GPU. Then the last column corresponds to the architecture where the
task is mapped in order to reach the optimal makespan (9 in this example).

Theorem 1. Algorithm 1 computes the optimal makespan of G with the optimal
complexity O(|A|? x |E| + |A] * |V]).

Proof. First, let us show that the SPAGHETtI algorithm computes indeed the
optimal makespan. Assume that Algorithm 1 does not compute the optimal
makespan. There exists a scheduling function 6’ verifying the dependence con-
straint (3) such that for all architectures k, 07, . [k] < Ogni[k] and for at least
one architecture, this inequality is strict. Such relation is denoted 6%, < Osink-
Consider a task ig, minimal according to the topological order, such that ¢, < ;.
0;, is defined as:
i, = (j{gz;écE(Gj * diag(7;) * Wjig)-

As 0; = ¢’ for all the predecessors j of ig and there exists a k € A such that

03, [k] < 0i,[K], we have:

B K] < mex min(O5[R] x 7 [A] % wj io [, K]).

Thus there exists a predecessor j of ig such that for all architecture h € A:
0:, (k] < 05[h] * 75[h] * wj i [h,).

This is in contradiction with the dependence constraint (3), and contradicts the
definition of #’. Hence Algorithm 1 computes the optimal makespan.

Now line 7 corresponds to O(|A|? % |E|) operations, the |A|* term coming
from the matrix vector product 6; * diag(7;) * wj,;. Line 8 takes O(|A| [V])
operations due to the max operation. The total complexity corresponds to the
size of the inputs. Since the makespan may depend on all of them, this shows
the complexity is optimal. O

4.2 Mapping Tasks to Architectures

Finding a mapping function corresponds to finding one or several architectures
for each task, compatible with earliest starting time constraints. As there is no

180 D. Barthou and E. Jeannot

resource constraints, p is here an indicator function returning a boolean: a task
i is mapped on an architecture j € A if p;[j] = 1 otherwise u;[j] = 0. A task is
duplicated on two different architectures j, k,j # k if u;[j] = pi[k] = 1.

For all tasks with no successor in G, the architecture is chosen so that the
earliest completion time can be attained:

Vh € A h =min{k € A | 0;[k] + 7;[k] = Cforlest} = ;[n] = 1. (5)

Note that these tasks are not duplicated, since h is uniquely defined. The
makespan corresponds to the earliest completion time of one of these tasks,
hence the mapping here is chosen so that the optimal makespan is reached.

For all the other tasks, the dependence constraint guides the choice of archi-
tecture that can execute them: Consider a task i € G and an edge (4,j) € E.
Assume j is mapped on architecture k£ € A, then the schedule computed by
the SPAGHETtI algorithm ensures there exists an architecture h € A such that
0i[h] < 8;[k] — 7i[h] — wyj[h, k]. This defines a value for p;:

Y(i,j) € E,Vk,l € A,
wilk] =1Al=min{h € A|6;[h] < 0;k] — 7 [h] — wijh, k]} = pill] = 1. (6)

An alternative definition of u can prevent useless task duplication, whenever
possible. Instead of Equation (6), the following equation can be used:

H; ={h|V(i,j) € E,Vk € A, p;[k] =1 = 0;[h] < 0;[k] — 7;[h] — wij[h, k]},
H; # 0 = p;[min H;] = 1.(7)

When this equation does not define a value for p;, Equation (6) has to be used
and duplication is necessary. Equations (5), (6) and (7) define recursively the
function u: Starting from tasks with no successor, p is defined for all tasks in
a reverse topological order. The definition of p shows that this computation re-
quires O(]A|?| E|) operations when applying definitions (6) or (7) and O(|A||V])
operations when applying definition (5). This is the optimal complexity since, as
for the schedule, it corresponds to the size of the inputs G, 7 and w. Therefore,
this procedure, combined with the SPAGHETtI algorithms provides a solution
that is optimal in terms of makespan and complexity.

Figure 1 shows the result of the mapping computation on the task graph. As
the task f as a lower completion time 8 + 1 = 9 when executed on CPU, this
is the mapping of this task. Task e and d are indifferently mapped to CPU or
GPU (here CPU, ordered first). For task b, there is only one possible mapping
to ensure that d is scheduled at time 7: b has to be scheduled on GPU.

4.3 Determining the Number of Resources for Each Architecture

The required amount of resources for each architecture is not given by the previ-
ous algorithms. To determine this number of resources we use a greedy algorithm
that allocates task to architecture instances, extending the previous architecture

SPAGHET!tI: Scheduling/Placement Approach for Task-Graphs 181

mapping computed in the previous section and computing the actual instance
wi[k] of task ¢ when mapped on architecture k. For each architecture we consider
the tasks by increasing start time and we allocate them to the first resource of
the architecture that can respect the start scheduling constraints. If no resource
is available we proceed with resource augmentation and create a new instance of
this architecture. Therefore, the number of resources used is the minimal num-
ber of resources that respect the schedule (i.e. the task start time). Moreover,
this allocation is optimal in terms of platform dimensioning only if there is no
sufficient slack in the schedule to delay tasks in order to save resources.

5 Exploring Tradeoffs for Heterogeneous Machines

Here, we deal with the case where the number of resources is higher than the
available ones. There exists several ways of reducing the number of resources
used by a schedule. In homogeneous setting an effective way was explored by the
Pyrros project [19] where, after DSC [20] clusters were merged using the work
profiling method of [10]. Another technique, presented in the context of register
allocation, consists in adding some dependence edges in the graph in order to
reduce the number of simultaneously live variables [18].

In heterogeneous environments, merging architectures has no meaning. We
propose here a method similar to the one proposed for register allocation, where
instructions are replaced by tasks and resources are processing units instead of
registers. We reduce the inherent parallelism of the task graph by iteratively
adding edges and then re-computing the schedule, the mapping and the number
of resources until we reach the target number of resources. The procedure is
depicted in Algorithm 2.

Algorithm 2. Adding n edges to the DAG G to reduce its parallelism

Input: G = (V,E) // The input DAG
Input: n // Number of edges to add
S <+ Topological sort(G)
I < Interference graph(G);
forall the n edges to be added do // We will add n edges
i < Highest degree node([I)
j < Highest degree node(neighbor(z))
if ¢ <g j then // If i is before j in the topological order
Add (i,j) in G // Communication cost is set to 0
else
Add (j,%) in G // Communication cost is set to O

© 0 N0 U s W®N

=
[=]

Remove (i,j) in I // and decrease degree of i and j

To add edges to the graph in order to reduce its parallelism, we first sort
nodes in topological order. Then, we build the interference graph I of the DAG.
In the interference graph, vertices are the same as in the original DAG. There
is an edge between two vertices if there is no path between them in the DAG
(they could be scheduled in parallel). In this interference graph we choose the
node i of highest degree and a neighbor of ¢ of highest degree. Then, this edge
is added to the DAG G and the interference graph is updated. We iterate until

182 D. Barthou and E. Jeannot

n edges have been added. Therefore we add a batch of n edges before applying
again the SPAGHET?I algorithm. The rational behind adding several edges at
the same time is to amortize the interference graph construction. The rational
behind choosing the highest degree nodes in the interference graph is that a node
with high degree has a lot of freedom in terms of parallelism and we are therefore
more likely to impact the whole graph parallelism by reducing the parallelism of
this kind of nodes. We avoid adding cycles in the original DAG: the added edge
is directed so that it respects the topological order (line 6).

Moreover, each time we add a set of n edges, we compute the makespan of
the new SPAGHET1tI’s schedule. This outputs a new compromise between the
execution time and the number of resources. Hence, with this procedure we
explore a full set of compromises (time vs. resources) until we reach the required
bound. This is helpful for decision makers to correctly dimension their platform.
In the following experiments, n was chosen between 10 and 100.

6 Experimental Results

We have implemented all the algorithms and procedures of the previous section.
They take an input DAG, the communication and computation cost of each task
on each architecture and the target number of resources for each architecture.
In the following experiments intra-architecture communications are always zero.

We have also designed a simple runtime system that executes the static sched-
ule on the given environments. In our experiments we have used nodes featuring
2 6-cores intel Xeons (X5650) at 2.67GHz with 36 Gb of RAM and 3 NVIDIA
Tesla M2070 GPU at 1.15 GHz with 6 Gb of memory.

We have coded the dense tiled Cholesky factorization [11]. It features 4 kernels
(POTRF, TRSM, SYRK and GEMM) that are executed using the Intel MKL
library 12.1.9 for the CPUs and the CUBLAS version 4.2 for the GPUs. The
Cholesky DAG can be seen here [4].

100000 1000

" Predicted Scheduled Time " Predicted Scheduled Time
Real Execution Time —— Real Execution Time —«—
10000
” » 100
£ £
c c
° 1000 °
£ £
[= 10 |
100
10 . . 1
1 10 100 1000 4 6 8 10 12 14 16
Number of kernels Number of tiles
(a) (b)

Fig. 2. Model validation experiments on (a) a chain of SYRK kernels alternatively on
CPU and GPU, (b) on a tiled Cholesky factorization with 4096x4096 tile size

SPAGHET!tI: Scheduling/Placement Approach for Task-Graphs 183

Model Validation. To validate our model we have executed a real schedule,
measured the execution time of each kernel and compared the predicted schedule
time with the measured values.

In Fig. 2(a), we execute a chain of SYRK kernels that are scheduled alter-
natively between a GPU and CPU. We see that as the chain size increases, the
performance between the predicted time and the actual execution time becomes
closer. This validates our execution and inter-architecture communication model.

In Fig. 2(b), we execute the Cholesky factorization! using tile size of 4096 and
the decomposition of the matrix varies between 4 and 16 tiles (hence, the order
of the matrix varies between 16384 and 65536). Here, we see that the predicted
execution time is just a little higher than the real execution time. This validates
the kernel execution time and communication time within a GPU as all the
tasks, in this case, are scheduled on the GPUs.

11000 T T 10000
Spaghetti ——
10000 SEFT o
9000 + 4

8000
7000
6000
5000 - 1
4000 | 1 10 b EFT high density of problematic nodes —— |

HEFT low density of problematic nodes ——

3000 + 1 Spaghetti high density of problematic nodes —=—
2000 ,) 4 Spaghetti low density of problematic nodes —s—
10 100 1 10 100 1000 10000

number of resources of each architecture Number of nodes in the triangle graph

(a) (b)

1000 ¢

100 £

Makespan
Makespan

Fig.3. HEFT and SPAGHETtI comparison (a) for bounded number of resources for
the Cholesky Graph, (b) for unbounded number of resources in case of duplication

Comparison with HEFT. Being a list scheduling algorithm, HEFT is not
able to make a short-term sacrifice to achieve a gain in the long term. This is
exemplified with Fig. 3(a). In this Figure, we schedule a Cholesky DAG of 1540
nodes on two different architectures. Communicating within an architecture is
free but communicating between architecture is very costly. In this case, the first
task to be scheduled is faster on architecture 1 than on architecture 2 and the
other tasks are faster on architecture 2. HEFT will execute the first task on
architecture 1 and stay on this architecture until the end of the execution. On
the other hand, the execution cost of the tasks on architecture 2 can amortize
the communication time: SPAGHETtI pays the cost of executing the first task
on architecture 2 and continues to execute all the tasks on this architecture.
The optimal makespan is 2505 for 191 resources of architecture 2. We output
all the compromises found by our method between 191 and 5 resources. For 191
resources, SPAGHETtI’s makespan is 1.9 faster than the HEFT one. But if we
reduce the number of resources to 5 for both architectures, SPAGHET?I still

! The factorization was checked correct by post-processing the result.

184 D. Barthou and E. Jeannot

outperforms HEFT by a factor of 2.2. We explain the increase of performance
ratio as follows. For a large number of resources SPAGHETtI does not need to
use duplication but when the number of resources decreases, SPAGHETtI finds
that duplication reduces the makespan even more. Indeed, it starts using this
feature when the number of available resources is lower than 105.

In order to assess the importance of duplication, we have tested the case of
a triangle DAG, where from time to time, two nodes (called problematic nodes)
sharing the same predecessors, have an opposite behavior in terms of execution
time (one is more efficient on one architecture while the other is more efficient
on the other architecture) and in terms of communication time (going from
the architecture they favor to the other architecture is very costly). The other
tasks are homogeneous (they have the same execution time on every architec-
tures). In this case, it is better to duplicate nodes that are predecessors of these
problematic nodes in order to avoid to pay the communication cost while these
nodes are executed on their privileged architecture. This is what is depicted on
Fig 3(b) where we see that, the inability of HEFT to duplicate nodes, adds a big
overhead in the makespan. We also see that for small number of nodes, HEFT
and SPAGHETtI perform identically: this is due to the fact that there is no
problematic nodes for small instances.

7 Conclusion

Being able to schedule a DAGs on a large parallel machine is a challenge. Most
heterogeneous static scheduling heuristics have a complexity that depends on the
number of resources. In this paper we propose to classify the resources by archi-
tecture in order to reduce the complexity of the scheduling process and to cope
with modern HPC environments where the heterogeneity is relatively low. We
also use a model where the communication time depends only on the source and
destination architecture and not on the instances of these architecture. Thanks
to this hypothesis, we are able to provide an optimal mapping strategy with a
very low complexity. We then show that we can find the minimal number of
resources required to respect the schedule start time and we are able to propose
a set of compromises (makespan vs. platform size) in order to help decision mak-
ers to dimension their environment depending on the time-to-solution constraint
they impose. Results show that the proposed model is verified in some real set-
tings and that we are able to amortize the execution of some task on suboptimal
resources or to duplicate tasks when necessary.

Future works are directed towards a better optimization of the part where we
switch from unbounded to bounded resources. We plan to do this by exploiting
the slack of the schedule and map tasks on suboptimal resources as long as the
schedule length is not increased.

Acknowledgement. We would like to thank Valentin Fréchaud for his help in
the implementation and test of the SPAGHETtI method.

SPAGHET!tI: Scheduling/Placement Approach for Task-Graphs 185

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Ahmad, I., Kwok, Y.K.: On exploiting task duplication in parallel program schedul-
ing. IEEE Transactions on Parallel and Distributed Systems 9(9), 872-892 (1998)
Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: A unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23(2), 187-198 (2011)

Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous envi-
ronment. IEEE Transactions on Parallel and Distributed Systems 15(2), 107-118
(2004)

Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
Dague: A generic distributed dag engine for high performance computing, innova-
tive computing laboratory technical report. Tech. rep., ICL-UT-10-01 (2010)
Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
Dague: A generic distributed dag engine for high performance computing. Parallel
Computing 38(1), 37-51 (2012)

Canon, L.-C., Jeannot, E., Sakellariou, R., Zheng, W.: Comparative evaluation
of the robustness of dag scheduling heuristics. In: Grid Computing, pp. 73-84.
Springer (2008)

Chong, F.T., Sharma, S.D., Brewer, E.A., Saltz, J.: Multiprocessor runtime support
for fine-grained, irregular dags. Parallel Processing Letters 5(04), 671-683 (1995)
El-Rewini, H., Lewis, T., Ali, H.: Task Scheduling in Parallel and Distributed
Systems. Prentice Hall (1994)

Garey, M., Johnson, D.: A Guide to the Theory of NP-Completeness. W.H. Free-
man and company, New York (1979)

George, A., Heath, M.T., Liu, J.: Parallel cholesky factorization on a shared-
memory multiprocessor. Linear Algebra and its applications 77, 165-187 (1986)
Gustavson, F.G., Karlsson, L., Kagstrom, B.: Distributed sbp cholesky factoriza-
tion algorithms with near-optimal scheduling. ACM Transactions on Mathematical
Software (TOMS) 36(2), 11 (2009)

Jeannot, E.: Automatic multithreaded parallel program generation for message
passing multiprocessors using parameterized task graphs. In: International Confer-
ence on Parallel Computing (2001)

Leung, J.Y.T. (ed.): Handbook of Scheduling. Chapman & Hall/CCR (2004)
Mak, V.W., Lundstrom, S.F.: Predicting performance of parallel computations.
IEEE Transactions on Parallel and Distributed Systems 1(3), 257-270 (1990)
Sinnen, O.: Task scheduling for parallel systems, vol. 60. Wiley. com (2007)

Tang, X., Li, K., Liao, G., Li, R.: List scheduling with duplication for heterogeneous
computing systems. J. of Parallel and Distributed Computing 70(4), 323-329 (2010)
Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260274 (2002)

Touati, S.-A.-A., Eisenbeis, C.: Early control of register pressure for software
pipelined loops. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 17-32. Springer,
Heidelberg (2003)

Yang, T., Gerasoulis, A.: Pyrros: Static Task Scheduling and Code Generation for
Message Passing Multiprocessor. In: Supercomputing 1992, pp. 428-437. ACM,
Washington D.C (1992)

Yang, T., Gerasoulis, A.: DSC Scheduling Parallel Tasks on an Unbounded Number
of Processors. IEEE Trans. on Parallel and Distributed Systems 5(9) (1994)

Energy-Aware Multi-Organization Scheduling
Problem*

Johanne Cohen!, Daniel Cordeiro?, and Pedro Luis F. Raphael?

! Laboratoire de Recherche en Informatique (LRI, UMR 8623),
Université Paris-Sud, Bat 650 Ada Lovelace, 91405 Orsay, France
Johanne.Cohen@lri.fr
2 Department of Computer Science,

University of Sdo Paulo, Rua do Matao, 1010; 05508-090 Sao Paulo/SP, Brazil
{danielc,plfr}@ime.usp.br

Abstract. Scheduling algorithms for shared platforms such as grids and
clouds granted users of different organizations access to powerful re-
sources and may improve machine utilization; however, this can also
increase operational costs of less-loaded organizations.

We consider energy as a resource, where the objective is to optimize
the total energy consumption without increasing the energy spent by a
selfish organization. We model the problem as a energy-aware variant of
the Multi-Organization Scheduling Problem that we call MOSP-ENERGY.

We show that the clairvoyant problem with variable speed processors
and jobs with release dates and deadlines is NP-hard and also that being
selfish can cause solutions at most m®~! far from the optimal, where m
is the number of machines and o > 1 is a constant. Finally, we present
efficient heuristics for scenarios with all jobs ready from the beginning.

1 Introduction

Cooperative computational platforms such as grid computing or community
clouds are typically organized as a federated system where users and compu-
tational resources, belonging to different organizations — i.e., different adminis-
trative domains — share resources and exchange jobs with each other, in order
to simultaneously maximize the profits of the collectivity and their own inter-
ests. Those platforms create novel research and business possibilities that, in
turn, require ever more computational power. Examples of such organizations
are research laboratories, universities or company departments.

Current distributed systems and their underlying algorithms allow an efficient
redistribution of the jobs over the available resources, improving the overall
utilization of the platform. Specialized algorithms for cooperative computing
are capable of incite the creation of these platforms by guaranteeing that no
organization will worsen its own results (in terms of performance) by sharing its
resources with the others, even when the other behave in a selfish way.

* This work was partially funded by the Sao Paulo Research Foundation
(FAPESP #2012/03778-0).

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 186-197, 2014.
© Springer International Publishing Switzerland 2014

Energy-Aware Multi-Organization Scheduling Problem 187

The participation on such communities can have a side-effect that is often
neglected by its users: the unpredictable increase of the operational costs for the
organization. Less loaded organizations could save energy by putting its machines
on stand-by, turning them off, or even decreasing the speed of the processors for
non-priority jobs. The co-existence of these jobs with jobs migrated from other
organizations can make this practice unfeasible.

It is crucial to optimize the allocation of the jobs for the whole platform in
order to achieve good system performances. Moreover, it is important to do that
in such a way that no organization will be harmed by sharing its own resources.
The goal of this work is to study this problem considering energy costs also as
a kind of resource that should be exchanged between the participants.

1.1 Related Work

The evolution of the processors technology has been driven by the demand
of increased performance and reduced sizes. These demands resulted on chips
with high power density and temperatures. On large scale server farms, energy-
efficiency became an important issue because of the energy costs. Furthermore,
part of this energy is converted into heat, which degrades processor’s perfor-
mance and reliability. Technologies as Intel’s “Turbo Boost” or AMD’s “Power-
Now” were developed to offer speed-scaling capabilities, that allow the system
to set the speed of the processors in order to control energy consumption.

The Dynamic Speed Scaling scheduling model was first studied by Yao, Demers
and Shenker [9]. They considered a problem where n jobs with release dates
r;, deadlines d; and processing volumes w;, must be scheduled in a variable-
speed processor with the objective of minimizing the energy consumption on
that processor. The energy consumption is given by the integral over time of the
power function P(s(t)) = s(t), where s(t) is the speed in which the processor
is running on time ¢ and o > 1 is a constant real number that depends on
the technical characteristics of the processor — usually o € [2,3]. There are
two assumptions to simplify the model: the processor spectrum of speeds is
continuous and can be any real number between 0 < s < 4oc0.

They have proposed an optimal greedy algorithm for the problem, known
as the YDS algorithm. It iteractively finds the mazimum density interval, that
is, the time interval [t,¢'] such that the sum of the processing volumes of the
jobs completely inside that interval, divided by the length of the interval, is
maximum. By the convexity of the power function, this value gives the optimal
speed on that interval (in the sense that no other feasible schedule can use less
power on that interval.) The jobs in the interval are then scheduled using the
Earliest Deadline First policy at this speed, jobs partially in the interval have
their release dates and deadlines adjusted.

Albers et al. [1,2] studied the problem with m variable-speed processors with
and without preemption and job migration. When migration is not allowed, the
problem is NP-Complete; otherwise there is a polynomial algorithm to find the
optimal solution. They also proved that, if the jobs have agreeable deadlines (i.e.,
given two jobs, if 7 < ro then d; < d2), the problem can be optimally solved in

188 J. Cohen, D. Cordeiro, and P.L.F. Raphael

polynomial-time by distributing the jobs in a round-robin fashion, prioritizing
jobs with smaller release dates.

Scheduling on cooperative platforms were first studied by Pascual et al. [5,8].
They proposed the Multi-Organization Scheduling Problem (MOSP). In their
model, independent organizations, sharing resources on a grid-like fashion, have
a local performance objective for their jobs besides the global makespan. Their
main contribution is the analysis of a centralized 3-approximation algorithm for
the makespan that always incite these organizations to cooperate.

The concept of selfishness on individualists organizations has been broaden
by Cohen et al. [4]. Studying workloads of bag-of-tasks jobs, they have analyzed
situations where selfish organizations could change the schedule of the jobs as-
signed to its own machines and proposed algorithms that avoid schedules where
the devised global schedule could be changed by re-inserting local jobs earlier.
When all organizations behave selfishly, any approximation algorithm has a ra-
tio greater than or equal to (2 — N/2) regarding the optimal makespan with lo-
cal constraints and presented several 2-approximation algorithms for the global
makespan that always respect the selfishness restriction. They have also analyzed
the decentralization of the decision making using Algorithmic Game Theory [3].

1.2 Contributions and Outline of this Paper

Scheduling algorithms for modern cooperative platforms composed of resources
shared between independent participants granted its user access to powerful re-
sources and improved the utilization of machines that were, most of the time,
idle. With the increasing need for more computational power, the energy con-
sumption on these machine also became an issue.

We modeled the problem as a Multi-Organization Scheduling Problem (MOSP)
with respect to the system total energy consumption. We have multiple orga-
nizations, each one with a processor that can operate at variable speed (as in
classic Dynamic Speed Scaling problems), and its own set of jobs. The goal is
to find a global schedule, migrating jobs from one organization to another, that
minimizes the total energy consumption.

Each organization has what is called a selfish restriction, that being a energy
restriction that makes unfeasible any schedule that increase the energy consump-
tion of that organization compared to what would be if the same organization
was alone (even if the global energy consumption decrease with that schedule.)

An interesting aspect of this problem is that the energy consumption is given
by a convex function on the speed of the processor, making its analysis signifi-
cantly different from the original MOSP problem.

On Section 2 we formally define the problem. Section 3 shows that the general
problem is NP-hard and that the ratio between the energetic consumption of
solutions that respect the selfish constraint to the cost of solutions that does not
respect may be unbounded for some instances of the problem. Heuristics for the
problem with several organizations executing jobs that must meet a deadline are
presented in Section 4, and their energy savings are experimentally analyzed in
Section 5. Finally, some conclusion remarks are presented in Section 6.

Energy-Aware Multi-Organization Scheduling Problem 189

2 Problem Description and Notations

The general problem studied in this paper is how to perform energy-aware
scheduling on cooperative platforms formed by a federation of organizations.
Different independent organizations, interconnected in a grid-like fashion, share
resources and exchange jobs, expecting an improvement on their performance
and costs. We are interested in studying how to redistribute the load between
the organizations, decreasing the total energy-cost of the entire platform.

We call this problem the Energy-Aware Multi-Organization Scheduling Prob-
lem (MOSP-ENERGY), after the Multi-Organization Scheduling Problem
(MOSP), that first studied scheduling on grid computing platforms. Formally,
we define our cooperative platform as a federation of N organizations. Each
organization O),| 1 < k < N, shares a machine that supports continuous dy-
namic speed scaling (i.e., processors can operate at any arbitrary speed s that
can be changed by the scheduler over time) and intend to execute n(¥) jobs. A
job Ji(k), 1 <i<n® is defined by its release date ’I“Z(k), its deadline dgk) and its
processing volume wgk). The job with the biggest deadline of O®) is defined as
dl(rlf;)lx = max; dgk). Job preemption is allowed.

At a given time, if the chose speed is s, the power required to operate the
processor is given by P(s) = s*, where « is a constant real number that depends
on the type and model of the processor, usually with a value between 2 and
3. The energy consumption on one machine is given by the integral of P(s)
over time. The total energy consumption of the system is the sum of the power
consumption of the machines of all organizations.

In order to encourage the creation of these cooperative platforms, we impose
a hard constraint on the feasibility of the schedules: no organization can have its
costs increased by cooperating. We call this the selfish restriction of the organi-
zations. In other words, if an organization O®) can execute its jobs consuming

a total energy of El(f'c)al only using its own machines, then a feasible schedule S

must ensure that Eék) < El(f'c)al (otherwise the organization could just leave the

platform). The optimization problem to be solved can be stated as:

minimize Es subject to Eék) < E® Vk

local?

3 Complexity Analysis

3.1 The Cost of Having Selfish Organizations

Respecting MOSP-ENERGY selfish restriction restrains the set of feasible sched-
ules. This limitation have an impact on the quality of the optimal solutions. For
the general (i.e., without the selfish restriction) energy minimization problem
for multiple machines, it is known that:

Lemma 1 (Albers et al. [2]). For any set of jobs, the energy of an optimal
schedule on m processors is at least 1/m®~" times that of an optimal schedule
on one processor.

190 J. Cohen, D. Cordeiro, and P.L.F. Raphael

The worst case for MOSP-ENERGY is when all but one organizations are idle.
The overloaded organization may not be able to migrate its jobs to the others in
order to respect the selfish restriction. The optimal solution without the selfish
restriction would be able to redistribute the load among all the m machines. So,
the following corollary holds:

Corollary 1. The ratio between the best solution that respects MOSP-ENERGY
selfishness restriction to the best solution that does not respect it is m®~1.

3.2 Computational Complexity

This section studies how hard is to find an optimal solution for the MOSP-
ENERGY problem. We study, without loss of generality, the simpler case with
1 machine per organization. Lets consider the decision version of the MOSP-
ENERGY defined as follows:

Instance: a set of N organizations (for 1 < k < N, organization O™ has
n®) jobs and 1 processor with variable speed) and an integer K.

Question: does there exist a schedule S such that the selfish restriction
Eék) < El(f C)al is respected for all O®) and such that its total energy consumption
Es is less than or equal to K7

We will show that:

Theorem 1. The MOSP-ENERGY problem is NP-Complete.

Proof. 1t is straightforward to see that MOSP-ENERGY € NP. Our proof is
based on a reduction from the well-known PARTITION problem [6]:

Instance: a finite set of positive integers A = {a1,...,an}.
Question: is there two disjoint subsets A; and As of A such that ZaieAl a; =
Za iEAS aj ?

Given an instance of PARTITION, we construct an instance of MOSP-ENERGY
with N = 2 organizations as follows. Let ¢ and ¢’ be two integers representing two
different deadlines where ¢ < t’. Let D be an integer representing a processing
volume; we will discuss their values later.

Organization O™ has only one job, Jl(l), with rgl) =0, dgl) =t and wgl) =D.
Organization O has n+1 jobs: Jl(z), ceey J,(izl. The first job of O®) is identical
to the one from OM): 7"52) =0, d?) =t, w?) = D. The remaining n jobs have
TZ@) =0, d§2) =t and wz@) = a;.

Let 8 = ZaieA a;. We define an integer K as:

e ()
ol (¢)l (¢ —t)ed

And choose the values of D, t and ', such that: ’tj > D;,r’g. Choosing D > 50
and ¢’ > 3t + 1 satisfy these conditions.

Energy-Aware Multi-Organization Scheduling Problem 191

Now we can easily build an instance for MOSP-ENERGY from the set A
in polynomial time, as depicted in Fig. 1(a). In this instance, the optimal lo-

cal energy consumption of O (computed by the YDS algorithm) is given by
l(c}c)al = tgjl'

Now, we will compute the cost of the local energy consumption of organization
O®) . This cost can also be computed using the YDS algorithm. Recall from
Section 1.1 that the optimal speed to execute a job is calculated using the concept
of interval of maximum density, i.e., the time interval such that the sum of the
processing volumes of the jobs that start and finish in it, divided by the length
of the interval, is maximum. This density is the speed on which the jobs inside
this interval will be executed in the optimal schedule, hence, the total energy
spent by a job is determined by its speed in an optimal schedule.

D, t and ¢’ was chosen in such a way that ? > P ;,rﬁ . Thus, the interval of
maximum density for both organizations will always be the interval on which the
jobs of processing volume D and deadline ¢ are. This means that in the optimal
local schedule for O, job J1(2) must be executed alone from time 0 until time ¢.
From time ¢ until time #’, all the remaining jobs are executed. The energy spent

by O is then given by g® taDjl + (t/_i;a—l-

local —

speed speed
) [o |4V
N ! !) 7 72
@@ T T T o T o o~~~
o Jq Jéz) J§2) Jf) Jéz) Jé2) J;2) 1 Jéz) J§2) Jf)
t t‘,time t t‘,time
(a) Initial instance. (b)

Scheduling after the migration of some
jobs from O® to OW.

Fig. 1. Reduction of the MOSP-ENERGY problem from PARTITION

Now we must show that this transformation is a reduction. First, suppose that
the set A can be split into two disjoint subsets A; and As such that ZaieAl a; =
> ;€A 44+ In order to respect the selfish restriction and avoid an increase on

the local cost of organization O™V neither the first job from O™ nor O can
migrate. The only way to decrease the total energy cost is to migrate some of the
other jobs. We will split the last n jobs of O® into 2 subsets, J; and J» such
that if a; € A; than the job Ji(i)l, with wg)l = a;, belongs to set J;. Otherwise,
it belongs to J>.

We can migrate the jobs of one of the subsets, say 7, to organization O As
co(n?equence of our assumptions on D, ¢ and #’, the migrations does not change
s

loeal- After all migrations, the cost of organization 0® will be given by:

192 J. Cohen, D. Cordeiro, and P.L.F. Raphael

b (B (St

E® _
S ta—1 + (t/ _ t)afl + (t/ _ t)afl
Since ZJEQ’E‘% wZ@) = ZJ;Q’EJQ wj(?) = g, the global energy consumption on

this schedule is equal to:

2 ()"
_ (), p(2 _ 2D° (2)
ES - ES +ES - ta—1 + (t/ _ t)afl

Thus, the local constraints are respected and the total energy spent is K.

Suppose now that there is a valid schedule for this instance such that its total
cost is less than or equal to K. It implies that some jobs from organization O(?)
must have migrated. We can split the jobs from O into two subsets J; and Js
such that Ji@) € J; if job Ji(z) was migrated to O otherwise Ji(z) € J2. Now,
we split the set A in two subsets A; and A, in such a way that a; € A; if and
only if Ji(j-)l € J1; otherwise, it belongs to J>. The global energy consumption of
this schedule is given by:

2D« <ZJ752)€J1 U)Z(Z))a (ZJJ(?)EJz w](?))a

E =
ST a1 + (t' — t)a-1 + (' — t)o-1

Since Es < K, we deduce from the two previous equations that:

@)*
(Eoen ™) | (yene)” o ay

t/—t)x—1 (t"—t)x—1

(« « «
— (ZJEQ)E.ﬁ w§2)) + (ZJJ(.Q)EJQ wj(?)) < 2(5)

Since x® + y* is convex and x + y = S, then, by definition of convexity, the
function % + y® is minimum when x = y and =% + y® > 2(§)a. In our case,
this means that:

« «

2(5)2 >oow? | | X v §2<§)a (1)

1P en 1P e

Now, we split set A into two subsets A; and As such that a; € Ay if Ji(2) € Ji;
otherwise a; € Az. From Eq. 1, >°, 4 a; = Z']i(Z)ejl wz@) — 'g

In other words, it means that >, 4 a; = >_, .4, @;- This proves that set
A can be split into two disjoint subsets A; and A, such that ZaieAl a; =
> a;€As if and only if there is a valid schedule to this instance such that its
total cost is less than K. This concludes our proof.

Energy-Aware Multi-Organization Scheduling Problem 193

4 Heuristics

We developed heuristics for the MOSP-ENERGY problem for instances of bag-
of-tasks jobs that are available at the beginning of the batch (r; = 0). Without
loss of generality, we assume that all w; = 1 and only deadlines are free to vary.

The main idea of these heuristics is to migrate jobs from a more costly or-
ganization to a less costly one, always respecting the selfish restrictions. This
is achieved by adjusting the release date of the migrated jobs to values higher
then the higher deadline of the host organization. If one migrates a job to an
interval that overlaps with any job from the hosting organization, the processor
may have to increase its speed to be able to respect all the deadlines, resulting in
an increase of the energy cost to execute the jobs of hosting organization. This
may happen if value of the maximum density interval is changed. Avoiding these
migrations ensures that the energy to run the host’s jobs will remain unchanged.
Fig. 2(a) illustrates the idea, showing the result of a possible migration.

We start considering how to redistribute energy as a resource among N = 2
organizations and then present a generic heuristic for N organizations.

]
i 1
O(2> | :
| |
— I
_| 9 9 |
I M@ Lré) dél) :
O(l) f 1 I 1 :
d<h) @, di did time
(a) (2) . . 1 . (b) (1 . . 3 .
J5™ is migrated to OW and has its disly is adjusted and O® migrates
release date adjusted to diax. jobs to O® and O™,

Fig. 2. Schema of the heuristics migrations

4.1 Heuristics for N = 2 Organizations

Consider an instance of the MOSP-ENERGY problem with only N = 2 organi-
zations. Assume, without loss of generality, that dl(éf)lx < dl(ri)lx.

Our heuristics — based on the YDS algorithm (see Section 1.1) — iteratively
find the maximum density interval of the more costly organization on each iter-
ation. After performing the migrations, we use the original YDS algorithm on
each organization to compute the minimum processor speed to execute each job.

At each iteration, the heuristics compute the maximum density interval
[rg),d(j)] of the organization with the biggest dpay (in our case, O?)) and the

list of jobs J(Zi) IS jg) that lies inside it. We have three cases to consider:

194 J. Cohen, D. Cordeiro, and P.L.F. Raphael
(i) if d(2 < d®), the heuristic cannot migrate J(Azi) without increasing the
energy spent by the other organization’s local jobs;
(ii) if r(2) > dmax the heuristic can migrate the job “asis” (without changing its
release date and deadline). For N = 2, this case is equivalent to the problem
for m machlnes and can be optimally solved on polynomial-time [2];
(iii) if r) < d), and d(2 > d{i)y the job can be migrated, but its release
date must be adJusted “has shown in Fig. 2.

Our heuristics differ on how to handle the third case, which we call the border
jobs, since they intersects the border defined by dg;x. We will describe how each
heuristic tackles the border problem in the following sections.

Greedy Heuristic. The first heuristic deals with the border jobs in a greedy
way. At each iteration, we compute the maximum density interval of O, If the
jobs on jf) does not intersects the border, we solve the problem as explained
before. If the jobs are in the border, we choose the job with biggest deadline. If
the migration of this job (adjusting its release date to dglx) decreases the total
energy cost of the platform, the job is migrated. Otherwise, the job remains in
its original state on O?). We repeat this process until there are no more jobs to
consider on O

Probabilistic Heuristic. In this heuristic, the border is handled in a prob-
abilistic way. A job Ji(z) € jf) in the border is migrated with probability

dP a2 1
(o s if dz(' ' > dix
pi = d d!uax
0 otherwise.

This heuristic has the advantage of being very fast in practice, whereas Greedy
must run the YDS algorithm several times.

Brute-Force Heuristic. The border problem that we are trying to solve is,
essentially, a problem of splitting the set jf) into two disjoint subsets, migrating
one to O, For small inputs, it is computationally feasible to try all possible
splits. The results from the experiments with this approach gives insight into
the quality of the solutions provided by the other heuristics.

Consider the subset of JE) that is in the border. We enumerate all possible

partitions of jf) in two disjoint subsets (one set will be migrated and the other
will remain on 0(2)) and test which one minimizes the total energy cost. This

heuristic is, of course, exponential in the number of jobs in J 22).

4.2 Heuristic for N Organizations

Using the ideas presented on Section 4.1, we have designed a simple polynomial-
time heuristic for the case when we have more than two organizations. The
heuristic is based on the Iterative Load Balancing Algorithm (ILBA [5]).

The basic principle of our heuristic is to redistribute the energy expenditure
of the organizations starting with the two organizations that have the smallest
deadlines and iteratively add the jobs from the most costly organizations. One-
by-one, each organization has its energy decreased.

Energy-Aware Multi-Organization Scheduling Problem 195

The heuristic enumerates the organizations by non-decreasing values of their
dmax, €., dr(r}g)m < dg;x <. < dr(n]\;; and considers, one-by-one, each organi-
zation O%) for k = {2,..., N}. The choice of which jobs from O®) should be
migrated is done based on the concept of the maximum density interval (MDI).
The algorithm computes the MDI of its jobs and migrates the border job with
biggest deadline to the organization among O™, ... O%~1 that decreases the
most the total energy.

When there is no more job worth migration on the density interval, the value
of diax of all organizations O, ..., O*=1) is updated — see Fig. 2(b) — and
the algorithm checks if there is a new MDI on O®) with jobs worth migration. If
yes, it repeats the migration process. If not, the algorithm will try to redistribute
the jobs of the next organization (O*+1)).

This process is repeated until all organizations had been considered. Note
that by updating the dn,.x value after considering each MDI, we never increase
the energy spent to execute the jobs already scheduled. Consequently, MOSP-
ENERGY selfish restrictions are always respected.

5 Experimental Evaluation

We designed a series of experiments to evaluate the heuristics presented on
the previous section. The experiments were evaluated using randomly gener-
ated workloads akin to typical environment found on academic cooperative
platforms [5]. We evaluated the algorithms with instances containing a ran-
dom number of machines, organizations and jobs with different deadlines. Two
different scenarios were considered.

In the first, the number of initial jobs in each organization follows a Zipf
distribution with exponent equal to 1.4267 and the jobs’ deadlines are uniformly
distributed. In the second, the Cp,.x of these organizations follows the same Zipf
distribution, and dgk) = I(rﬁzx, Vi, k and the jobs are uniformly distributed among
the organizations. The intuition about the scenarios is that the first configuration
best models the distribution of jobs among organizations in shared platforms [7],
where the second models the selfish restriction of the original MOSP problem,
with the deadlines representing the initial makespan of the organizations.

Table 1. Results for N = 2 organizations. For different numbers of jobs per organiza-
tion, we show how each heuristic performs if compared to no cooperation at all.

Jobs/Org % Greedy % Probabilistic % Brute-Force

5 0.69 1.85 2.45
10 0.94 2.12 3.09
15 2.29 1.61 3.21
20 1.79 1.27 4.97
50 0.78 0.67 7.44

100 0.32 0.30 3.08

196 J. Cohen, D. Cordeiro, and P.L.F. Raphael

Table 2. Results for N = 10 and 20 organizations, showing how the iterative algorithm
performs if compared to no cooperation at all

N # Jobs/Org Energy Saved (%) N # Jobs/Org Energy Saved (%)
10 5 11.87 20 5 15.64
10 10 6.81 20 10 9.81
10 15 5.47 20 15 6.11
10 20 4.64 20 20 5.04
10 30 2.86 20 30 3.24

Table 3. Performance results for N = 2 organizations on the second scenario

Jobs/Org % Greedy % Probabilistic % Brute-Force

5 4.22 5.86 6.72
10 4.12 3.19 5.94
15 2.08 2.96 6.81

Tables 1 and 2 summarizes the results obtained by our heuristics for the
first scenario. Our preliminary tests showed that the maximum dy.x does not
affect significantly the results for the first scenario. So, due to the lack of space,
all results for this scenario are presented for dy.x = 50. Varying the number
of jobs per organization, we show how much each heuristic can save on the
total energy usage if compared to the total energy usage that could have been
obtained without migrations (applying the YDS algorithm for each organization
individually.) Each result is presented as the average of 200 experiments.

The results shows that for N = 2 organizations, the energy saving is limited
by the selfish restriction of the organizations. The Greedy heuristic is able to
save more energy than Probabilistic when the ratio between the number of jobs
to the number of organizations is higher. The results obtained with Brute-Force
are presented for the sake of comparison. For N = 10 and N = 20, our iterative
algorithm was able to obtain savings up to 11.87% and 15.64%, respectively.
Further investigation is needed for instances with higher number of jobs per
organizations. In this case, the organizations have a higher probability of have
similar dpyax. This fact hampers the ability of improving the solutions because
of MOSP-ENERGY selfish restriction.

Tables 3 and 4 summarizes the results obtained by our heuristics for the second
scenario. The results show a significant energy reduction — up to 27.45% — if
the notion of deadline is related only to the initial makespan.

Table 4. Performance results for N = 10 and 20 organizations on the second scenario

N # Jobs/Org Energy Saved (%) N # Jobs/Org Energy Saved (%)
10 5 17.99 20 5 20.08
10 10 19.10 20 10 25.50

10 15 19.13 20 15 27.45

Energy-Aware Multi-Organization Scheduling Problem 197

6 Concluding Remarks

In this work, we have studied the problem of scheduling on cooperative platforms
considering energy as a communal resource. The objective of the Energy-Aware
Multi-Organization Scheduling Problem (MOSP-ENERGY) is to minimize the
total energy consumption of the entire platform, while assuring that the energy
cost to execute jobs from a particular organization will not increase.

Balancing energy consumption is significantly different from the load balanc-
ing problem because of the convexity of the cost function. We have proved that
the MOSP-ENERGY problem is NP-hard and that the ratio between the best
solution respecting the organizations’ selfish restriction to the solution that min-
imized the total energy is equal to m®~!.

We have designed heuristics to show how one can redistribute the energy
between organizations respecting the selfish restriction. Our experimentals shows
that we can save as much as 27% energy of the total spent by the platform.

This study was a first step on a better understanding of the role of energy
costs on cooperative platforms. Further research will investigate approximation
algorithms for the problem and fairness issues on the distribution of the energy
costs between the organizations even if the jobs from different organizations
belong to the same maximum density interval.

References

1. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with mi-
gration. In: ACM Symposium on Parallelism in Algorithms and Architectures, pp.
279-288 (2011)

2. Albers, S., Miiller, F., Schmelzer, S.: Speed scaling on parallel processors. In: ACM
Symposium on Parallel Algorithms and Architectures, pp. 289-298 (2007)

3. Cohen, J., Cordeiro, D., Trystram, D., Wagner, F.: Coordination mechanisms for
selfish multi-organization scheduling. In: IEEE International Conference on High
Performance Computing, pp. 1-9 (December 2011)

4. Cohen, J., Cordeiro, D., Trystram, D., Wagner, F.: Analysis of multi-organization
scheduling algorithms. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010, Part II. LNCS, vol. 6272, pp. 367-379. Springer, Heidelberg (2010)

5. Dutot, P.F., Pascual, F., Rzadca, K., Trystram, D.: Approximation algorithms for
the multiorganization scheduling problem. IEEE Transactions on Parallel and Dis-
tributed Systems 22(11), 1888-1895 (2011)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (January 1979)

7. losup, A., Dumitrescu, C., Epema, D., Li, H., Wolters, L.: How are real grids used?
The analysis of four grid traces and its implications. In: 7th IEEE/ACM Interna-
tional Conference on Grid Computing, pp. 262-269 (September 2006)

8. Pascual, F., Rzadca, K., Trystram, D.: Cooperation in multi-organization schedul-
ing. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS,
vol. 4641, pp. 224-233. Springer, Heidelberg (2007)

9. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Symposium on Foundations of Computer Science, pp. 374-382. IEEE (1995)

Energy Efficient Scheduling of MapReduce Jobs*

Evripidis Bampis!, Vincent Chau?, Dimitrios Letsios', Giorgio Lucarelli,
TIoannis Milis?, and Georgios Zois!*?

! Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, France
{Evripidis.Bampis,Dimitrios.Letsios,Giorgio.Lucarelli,
Georgios.Zois}@lip6.fr
2 IBISC, Université d’Evry, France
vincent.chau@ibisc.univ-evry.fr
3 Dept. of Informatics, AUEB, Athens, Greece
milis@aueb.gr

Abstract. MapReduce has emerged as a prominent programming model
for data-intensive computation. In this work, we study power-aware
MapReduce scheduling in the speed scaling setting first introduced by
Yao et al. [FOCS 1995]. We focus on the minimization of the total
weighted completion time of a set of MapReduce jobs under a given bud-
get of energy. Using a linear programming relaxation of our problem, we
derive a polynomial time constant-factor approximation algorithm. We
also propose a convex programming formulation that we combine with
standard list scheduling policies, and we evaluate their performance using
simulations.

1 Introduction

MapReduce has been established as a standard programming model for paral-
lel computing in data centers or computational grids and it is currently used
for several applications including search indexing, web analytics or data mining.
However, data centers consume an enormous amount of energy and hence, energy
efficiency has emerged as an important issue in the data-processing framework.
Several empirical works have been carried-out in order to study different mech-
anisms for the reduction of the energy consumption in the MapReduce setting
and especially for the Hadoop framework [6-8]. The main mechanisms for en-
ergy saving are the power-down mechanism, where in periods of low-utilization
some servers are switched-off and the speed-scaling mechanism (or DVFS for
Dynamic Voltage Frequency Scaling) where the servers’ speeds may be adjusted
dynamically [18]. Until lately, most work in the MapReduce framework were fo-
cused on the power-down mechanism, but recently, Wirtz and Ge [17] showed

* This work was partially supported by the European Union (European Social Fund
- ESF) and Greek national funds, through the Operational Program ”Education
and Lifelong Learning”, under the programs THALES-ALGONOW (E. Bampis, G.
Lucarelli, I. Milis) and HERACLEITUS II (G. Zois), and the project “Mathemati-
cal Programming and Non-linear Combinatorial Optimization” under the program
PGMO (E. Bampis, V. Chau, G. Lucarelli).

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 198-209, 2014.
© Springer International Publishing Switzerland 2014

Energy Efficient Scheduling of MapReduce Jobs 199

that for some computation intensive MapReduce applications the use of intel-
ligent speed-scaling may lead to significant energy savings. In this paper, we
study power-aware MapReduce scheduling in the speed scaling setting from a
theoretical point of view.

In a typical MapReduce framework, the execution of a MapReduce job creates
a number of Map and Reduce tasks. Each Map task processes a portion of
the input data and outputs a number of key-value pairs. All key-value pairs
having the same key are then given to a Reduce task which processes the values
associated with a key to generate the final result. This means that each Reduce
task cannot start before the completion of the last Map task of the same job.
In other words, there is a complete bipartite graph implying the precedences
between Map and Reduce tasks of a job. However, the Map tasks of a job can
be executed in parallel and the same holds for its Reduce tasks.

In what follows we consider a set of MapReduce jobs that have to be exe-
cuted on a set of speed-scalable processors, i.e., on processors that can adjust
dynamically their speed [18]. Each job consists of a set of Map tasks and a set
of Reduce tasks, with every task having a positive work volume. Each job is
also associated with a positive weight representing its importance/priority, and
a release date (or arrival time). Like in [4, 5], we consider that the Map and
the Reduce tasks of each job are preassigned to the processors and in this way
we take into account data locality, i.e. the fact that each Map task has to be
executed on the server where its data are located. Given that the preemption of
tasks, i.e. the possibility of interrupting a task and resuming it later, may cause
important overheads we do not allow it. This is also the case often in practice:
Hadoop does not offer the possibility of preemption [12]. The scheduler has to
decide the time interval and the speed over time at which a task is executed,
taking into account the energy consumption. High processor’s speeds are in favor
of performance at the price of high energy consumption. Our goal is to schedule
all the tasks to the processors, so as to minimize the total weighted completion
time of jobs respecting a given budget of energy.

Related Work. Chang et al. [4] consider a set of MapReduce jobs with their Map
and Reduce tasks preassigned to processors and their goal is to minimize the to-
tal weighted completion time of jobs. They proposed approximation algorithms
of ratios 3 and 2 for arbitrary and common release dates, respectively. However,
they do not consider neither distinction nor dependencies between Map and
Reduce tasks of a job. Moreover, their model falls into a well-studied problem
known as concurrent open-shop (or order scheduling) for which the same ap-
proximation results are known (see [10] and the references therein). Extending
on the above-mentioned model, Chen et al. [5], proposed a more realistic one
which takes into account the dependencies among Map and Reduce tasks and
derived an 8-approximation algorithm for the same objective. Moreover, they
managed to model also the transfer of the output of Map tasks to Reduce tasks
and to derive a 58-approximation algorithm for this generalization. In a third
model proposed by Moseley et al. [12], the dependencies between Map and Re-
duce tasks of a job are also taken into account while the assignment of tasks to

200 E. Bampis et al.

processors is not given in advance. The authors studied the preemptive variant
for both the case of identical and unrelated processors. They proposed constant
approximation ratios of 12 and 6, respectively. For the unrelated processors case,
they focused on the special case where each job has a single Map and a single
Reduce task. For the latter case on a single map and a single reduce proces-
sor they also proposed a QPTAS which becomes a PTAS for a fixed number of
processing times of tasks.

In the energy-aware setting, Angel et al. [2] proposed approximation algo-

rithms for the problem of minimizing the total weighted completion time on
unrelated parallel processors, under a model where the processing time and the
energy consumption of the jobs are speed dependent. Moreover, Megow et al.
[11] recently proposed a PTAS for the problem of minimizing the total weighted
completion time on a single speed-scalable processor.
Our Results and Organization of the Paper. We adopt the MapReduce model
of [4] where the tasks are preassigned to processors but extended with dependen-
cies between Map and Reduce tasks as in Chen et al. [5, 12] in the speed scaling
setting [18]. In Section 2, we present formally our problem and we introduce our
notation. In Section 3, we present a constant-factor approximation algorithm.
Using discretization of the possible speed values we give an interval indexed LP
relaxation of our problem and we transform an optimal solution to this LP to a
feasible solution for our problem by list scheduling in the order of tasks’ a-points
(see e.g. [9, 13]). This leads to a O(1)-energy O(1)-approximation algorithm, that
is an algorithm that may use energy augmentation. More specifically, we call a
schedule c-energy p-approximate if its objective function is at most p times far
from the objective function of an optimal schedule and it exceeds the given en-
ergy budget by a factor of at most ¢ (see e.g. [14]). Our algorithm describes
a tradeoff between the approximation ratio and the energy augmentation as a
function of «. By appropriately choosing «, our result becomes a constant-factor
approximation for our problem. In Section 4, we are interested in natural list
scheduling policies such as FIRST COME FIrRsT SERVED (FCFS) and HIGH-
EST DENsSITY FIRST (HDF). However, in our context we need to determine the
speeds of every task in order to respect the energy budget. For that, we propose a
convex programming relaxation of our problem, for a prespecified order of jobs,
which can be solved in polynomial time by the Ellipsoid algorithm. Then we
combine the solution of this relaxation with FCFS and HDF and we compare
experimentally their effectiveness.

2 Problem Statement and Notation

In the sequel we consider a set J = {1,2,...,n} of n MapReduce jobs to be
executed on a set P = {1,2,...,m} of m speed-scalable processors. Each job is
associated with a positive weight w; and a release date r; and consists of a set
of Map tasks and a set of Reduce tasks that are preassigned to the m processors.
We denote by T the set of all tasks of all jobs, and by M and R the sets of
all Map and Reduce tasks, respectively. Each task T; ; € T is associated with a
non-negative work volume v, ;.

Energy Efficient Scheduling of MapReduce Jobs 201

We consider each job having at least one Map and one Reduce task and that
each job has at most one task, either Map or Reduce, assigned to each processor.
Map or Reduce tasks can run simultaneously on different processors, while the
following precedence constraints hold for each job: every Reduce task can start
its execution after the completion of all Map tasks of the same job.

For a given schedule we denote by C; and C;; the completion times of
each job j € J and each task T;; € T, respectively. Note that, due to the
precedence constraints of Map and Reduce tasks, C; = maxr, ,er{C;;}. By
Crae = max;c7{C;} we denote the makespan of the schedule, i.e., the com-
pletion time of the job which finishes last. Let also, wmin = minjes{w;},
Umin = Ming, ;e7{vi; : vij > 0}, Wnmax = Maxjes{w;}, "max = Max;es{r;}
and Vmax = maxr, ;e7{vi;}

In this paper, we combine this abstract model for MapReduce scheduling
with the speed scaling mechanism for energy saving [18] (see also [1] for a recent
review). In this setting, the power required by a processor running at time ¢ with
speed s(t) is equal to P(s(t)) = s(t)?, for a constant 3 > 1 (typically, 8 € [2,3])
and its energy consumption is power integrated over time, i.e., E = [P(s(t))dt.

Due to the convexity of the speed-to-power function, a key property of our
problem is that each task runs at a constant speed during its whole execution.
So, if a task T;; is executed at a speed s; ;, the time needed for its execution
(processing time) is equal to p; ; = zl; and its energy consumption is E; ; =
sy = vigs

Moreover, we are given an energy budget E and the goal is to schedule non-
preemptively all the tasks to the m processors, so as to minimize the total
weighted completion time of the schedule, i.e., > jeT w;Cj, without exceeding
the energy budget E. We refer to this problem as MAPREDUCE problem.

All omitted proofs can be found in the full version of this work, available at

http://arxiv.org/abs/1402.2810.

3 A Linear Programming Approach

In this section we present an O(1)-energy O(1)-approximation algorithm for
the MAPREDUCE problem. Our algorithm is based on a linear programming
relaxation of the problem and it transforms the solution obtained by the linear
program to a feasible schedule for the MAPREDUCE problem using the technique
of a-points. Note that, by allowing energy augmentation we are able to describe
a tradeoff between energy and performance. Moreover, we can derive a constant-
factor approximation ratio (without energy augmentation) for the MAPREDUCE
problem by appropriately choosing some parameters.

3.1 Linear Programming Relaxation

To give a linear programming formulation of our problem, we first discretize the
possible speed values. In order to do this, we need to compute an upper and a

http://arxiv.org/abs/1402.2810

202 E. Bampis et al.

1
lower bound on the speed of each task. An upper bound of (U) s easily

obtained since the energy consumption of any task can not exceed the energy
budget. A lower bound on the speed values is "3, where C is an upper bound
to the makespan of any optimal schedule; C can be computed by considering
all jobs executed after the maximum release date. Then, by loosing a factor of
(1 + €) with respect to an optimal solution, we can prove the following.

Lemma 1. There is a feasible (1+¢€)-approxzimate schedule for the MAPREDUCE
problem in which each task T; ; € T runs at a speed s € V, where V is the set of
all possible discrete speed values and € € (0,1).

Next, we discretize the time horizon (0,C| of an optimal schedule by parti-
tioning it into the intervals (0, A], (A, A(1 + &)}, (A(L + &), A(1 +6)2],..., (A1 +
8)“ 1 A\(1+46)"], where § > 0 is a small constant, A > 0 is a constant that we will
define later, and u is the smallest integer such that A\(1 +6)“~1 > C. Let 7o =0
and 7, = A\(1+6)!71, for 1 <t < u+1. Moreover, let I; = (74, 74+1], for 0 < t < w,
and |I;| be the length of the interval Iy, i.e., |Io| = A and |I;] = A6(1 + 6)'1,
1 <t < u. Note that, the number of intervals is polynomial to the size of the
instance and to 1/, as u = [logy 5 $]+ 1.

Let pijs = 27 be the potential processing time for each task T;; € T if it
is executed entirely with speed s € V. For each T; ; € T, t € {0,1,...,u} and
s € V, we introduce a variable y; ; s+ that corresponds to the portion of the
interval I; during which the task T; ; is executed with speed s. In other words,
Yi i | is the time that task T; ; is executed within the interval I, at speed s, or

equlvalently vi. ;7 =tItl is the fraction of the task T; ; that is executed within I; at

speed s. Note that the number of y; ; s+ variables is polynomial to the size of the
instance, to 1/€ and to 1/6. Furthermore, for each task T; ; € T, we introduce a
variable Cj ;, which corresponds to the completion time of T} ;. Finally, let C},
Jj € J, be the variable that corresponds to the completion time of job j. (LP)
in the next page, is a linear programming relaxation of the problem where each
task T; ; € 7 runs at a single speed s € V.

Our objective is to minimize the sum of weighted completion times of all
jobs. For each task T; ; € T, the corresponding constraint (1) ensures that T; ;
is entirely executed. Constraints (2) enforce that the total amount of processing
time that is executed within an interval I; cannot exceed its length. In [16], the
authors proposed a lower bound for the completion time of a job. This lower
bound can be adapted to our problem and for the completion time of a task
T;; € T leads to a corresponding constraint (3). Constraints (4) ensure that the
completion time of each job is the maximum over the completion times of all its
tasks. Constraint (5) ensures that the given energy budget is not exceeded. Note
that the value s° for each s € V is a fixed number. Constraints (6) imply the
precedence constraints between the Map and the Reduce tasks of the same job,
as they enforce that the fraction of a Map task that is executed up to each time
point should be at least the fraction of a Reduce task of the same job executed
up to the same time point; hence, each Map task completes before all Reduce

Energy Efficient Scheduling of MapReduce Jobs 203

(LP) : minimize Z w;Cj

KISVA
subject to :
u
%,7,8 1,
D) VI e T o
sevico Piis
Z Zyi,j,s,t <1, VieP,0<t<u (2)

J:T; ;€T sEV

1 1
Cij > 9 Zyi,j,s,0|10| (p + 1) +

i,

sey
u el 1
» (yw,«,tl et Ly Itl), VT €T ®)
t=1scV Pijs 2
C; > Ciy, VT €T)

DD bissallls” < E (5)

T; ;ET sEV =0

N il gy el
ZZ ©,7,S, ZZZ i/,7,8,t 7

=0 sey Phis =0 sey Pils

VTi; € M, Ty, € R,0< (< u (6)
Yi,j,st = 0, VI;; €T, s €V, t:m <rj (7)
Yijs.t, Cig, C5 >0, VT;; € T,s€V,0<t<u (8)

tasks of the same job. Constraints (7) do not allow tasks of a job to be executed
before their release date. o
In what follows, we denote an optimal solution to (LP) by (i,j,s,¢, Ci.5, Cj)-

3.2 The Algorithm

In this section we use (LP) to derive a feasible schedule for the MAPREDUCE
problem. Our algorithm is based on the idea of list scheduling in order of
a-points [9, 13]. In general, an a-point of a job is the first point in time where
an a-fraction of the job has been completed, where a € (0, 1) is a constant that
depends on the analysis. In this paper, we will define the a-point t{'; of a task
T;; € T as the minimum ¢, 0 < £ < u, such that at least an a-fraction of v; ; is
accomplished up to the interval I to (LP), i.e.,

L _
. Yi,j,s,t 1]
t?-:mln{fzg E) >ap.
J o =
t=0 s€S pz,j,s

Thus, once our algorithm has computed an optimal solution (g j,s,¢, Ci. s C’j)
to (LP), it calculates the corresponding a-point, t$*,, for each task T;; € T.

YR
Then we create a feasible schedule as follows: For each processor i € P, we

204 E. Bampis et al.

consider a priority list o; of its tasks such that the tasks with smaller a-point
have higher priority. A crucial point in our analysis is that we consider that a
task Tj; € T becomes available for the algorithm after the time 7o 11 > r;.
Moreover, if T; ; € R then we need also all tasks Ty ; € M to be completed in
order T} ; to be considered as available. For each task T; ; € T, we use a constant
speed s; j = ;j, where

t7;
Pij =YY Uigstlhil

t=0 s€V

is the processing time of T; ; used by our algorithm, and v > 0 is a constant that
we define later and describes the tradeoff between the energy consumption and
the weighted completion time of jobs. In fact, speed s;; is determined by the
needs of the analysis and it serves as a tool in order to upper bound the energy
augmentation used for the execution of T; ; and also the completion time of T; ;
in a schedule produced by the algorithm. At each time point where a processor
1 € P is available, our algorithm selects the highest priority available task in
o; which has not been yet executed. Note that our algorithm always create a
feasible solution as we do not insist on selecting the highest priority task if this is
not available. ALGORITHM MR (a,) gives a formal description of our method.

ALGORITHM MR (e,)
Compute an optimal solution (g j,s.t, Ci,j, C;) to (LP).
for each task T;,; € T do
Compute the a-point t3;, the processing time p; ; and the speed s;,;.
for each processor i € P do
Compute the priority list o;.
for each time where a processor i € P becomes available do
Select the first available task, let T; ;, in o; which has not been yet executed.
Schedule T ;, non-preemptively, with processing time p; ;.
Let C;,; be the completion time of task T; ;.
for each job j € J do
10: Compute its completion time C; = max;ep C; ;.

©

Note that the processing time of a task 7;; € 7 to an optimal solution to
(LP) is Pij = Yy 2oscy Jirjst|lt]. Hence, the energy consumption Ei; =
Yoo Y oscy gi’j,s’tm\s'@ for the execution of T} ; to an optimal solution to (LP)
may be smaller or bigger than the energy consumption E;; for the execution
of T; ; by the algorithm. The next lemma gives a relation between these two
quantities.

Lemma 2. Let Ei,j and Ej; ; be the energy consumption of the task T;; € T
in an optimal solution to (LP) and in the solution of ALGORITHM MR(«,7),
respectively. It holds that E; ; < ,yﬂ,llaﬂ E; ;.

Energy Efficient Scheduling of MapReduce Jobs 205

We also need to lower bound the completion time C; ; of the task T;; € T
given by the (LP). This is done by the following lemma.

Lemma 3. If A\ < a™", then for each task T;; € T it holds that Cij >
(]. — OZ) . Tt?j . ’

Using Lemmas 2 and 3 as well as Lemma 1 we can prove the following theorem.

Theorem 1. ALGORITHM MTR(«,7) is a W,i_ﬂaﬁ -energy 78y (1+4-¢)-approxi-

11—

mation algorithm for the MAPREDUCE problem, where v > 0 and a,e € (0,1).

By choosing v = | ﬂf%/a, no energy augmentation is used and ALGORITHM
MR (a,7) becomes a constant-factor approximation for the MAPREDUCE prob-
lem, and the following theorem holds.

@ ﬁ(_j;j‘lifj)g‘(fizf;‘+l (1+4¢)-approxzimation algorithm for

the MAPREDUCE problem, where a, e € (0,1).

Theorem 2. There is a

In Fig.1 we depict the tradeoff between energy augmentation and approxima-
tion ratio for some practical values of 3.

For special instances of our problem where there are no precedence constraints
between Map and Reduce tasks or even all jobs have a common release date (as
in [4]) our results are improved as follows.

Corollary 1. There is a a%f\;‘zatla)(l + &)-approzimation algorithm for the

MAPREDUCE problem without precedence constraints between Map and Reduce
tasks, and a 6,\1/&17&)(1 + &)-approximation algorithm for the MAPREDUCE

problem without precedence constraints between Map and Reduce tasks and jobs
with common release dates, where a, e € (0,1).

Our ratios are optimized by selecting the appropriate value of « for each .
Table 1 gives the achieved ratios for practical values of 3.

Table 1. Approximation ratios for
the MAPREDUCE problem for differ-
ent values of

100 |-

o
w N

80 -

60 |-
no prece- no precedence &

energy augmentation (%)

10 1
’ B genera dence no release dates
2 2 37.52 9.44 6.75
o 2 2.2 3489 884 6.29
approximation ratio 2 ,4 33 . 0]_ 8 .4]. 5 . 97
Fig. 1. Tradeoff between energy aug- ;g g(l)gg ?gi ggg

mentation and approximation ratio

when 8 = {2,2.5,3} 3 29.62 7.64 5.38

206 E. Bampis et al.
4 A Convex Programming Approach

We are interested in natural list scheduling policies such as FIRST COME FIRST
SERVED (FCFS) and HIGHEST DENSITY FIRST (HDF'). However, in our context
we need to determine the speeds of every task in order to respect the energy
budget. For that, we propose a convex programming relaxation of our problem
when an order of the jobs is prespecified.

4.1 The Convex Program

Let 0 = (1,2,...,n) be a given order of the jobs. Consider now the restricted
version of the MAPREDUCE problem where, for each processor ¢ € P, the tasks
are forced to be executed according to this order. We shall refer to this problem as
the MAPREDUCE(c) problem. Note that, the order is the same for all processors.
We write j < j' if job j € J precedes job j' € J in 0. We propose a convex
program that considers the order ¢ as input and returns a solution that is a
lower bound to the optimal solution for the MAPREDUCE(c) problem.

In order to formulate our problem as a convex program, for each task T; ; € T,
let p; ; be a variable that corresponds to its processing time and Cj ; a variable
that determines its completion time. Let also Cj, j € J, be the variable that
corresponds to the completion time of job j. Then, (CP) is a convex programming
relaxation of the MAPREDUCE(o) problem.

(CP) : minimize Z w;Cj

JjeET
subject to :
Uz@,j
> L <E 9)
T, ;€T Pij
J
ri + Z Di.k < C@j, VTZ‘J,TZ"]‘I eT, j/ <J (10)
k=5’
Ci/’j + pi,j < Ci,j, Vn,j €ER, Ti/’j eM (11)
Ci,j < Cj, VTi,j eT (12)
SZ‘J,CZ"]‘,C]‘ >0, VTZ‘J‘ eT,jeJg

The objective function of (CP) is to minimize the weighted completion time of
all jobs. Constraint (9) guarantees that the energy budget is not exceeded; note
that we have substituted the energy consumption F; ; of each task T; ; by its

Vi 5
Pij
Constraints (10) and (11) give lower bounds on the completion time of each task
T;; € T, based on the release dates and the precedence constraints, respectively.
Note that, if we do not consider precedences between the tasks, then (CP) will

return the optimal value of the objective function, instead of a lower bound on

equivalent E; ; = pmsgj =p;;(U77)P where s; ; = ;j is the speed of task T; ;.

Energy Efficient Scheduling of MapReduce Jobs 207

it, as constraints (10) describe in a complete way the completion times of the
tasks. However, this is not true for constraints (11) which are responsible for the
precedence constraints. Finally, constraints (12) ensure that the completion time
of each job is the maximum over the completion times among all of its tasks.

As the optimal solution to (CP) does not necessarily describe a feasible sched-
ule, we need to apply an algorithm that uses the processing times found by (CP)
and the order o so as to create a feasible schedule for the MAPREDUCE(o) prob-
lem, and hence for the MAPREDUCE problem. It suffices to apply, the lines 6-8
of ALGORITHM MR («q,), by considering the same order for all processors.

4.2 Experimental Evaluation of Scheduling Policies

We propose different orders of jobs and discuss how far is an optimal solution
for the MAPREDUCE(0) problem using these orders with respect to an optimal
solution for the MAPREDUCE problem. Consider the following standard orders.

FirsT CoME FIRST SERVED (FCFS): for each pair of jobs j,j' € 7, if rj < ry

then j < j/ in o.

HiGHEST DENsITY FIRST (HDF): for each pair of jobs j, 5’ € J, if > i o
Ty ;€5 Vhd

wj/

A
S, e Vi

then j < j/ in o.

The following proposition gives negative results concerning the approximation
ratio that we can achieve if we use the FCFS or the HDF order.

Proposition 1. There are instances for which the optimal solutions to the MAP-
REDUCE(FCFS) and the MAPREDUCE(HDF) problems are within a factor of
Q2(n) from the optimal solution to the MAPREDUCE problem.

In what follows we compare the FCF'S and HDF policies with respect to the
quality of the solution they produce. Our simulations have been performed on a
machine with a CPU Intel Xeon X5650 with 8 cores, running at 2.67GHz. The
operating system of the machine is a Linux Debian 6.0. We used Matlab with
cvx toolbox. The solver used for the convex program is SeDuMi.

The instance of the problem consists of a matrix m x n that corresponds
to the work of the tasks, two vectors of size n that correspond to the weights
and the release dates of jobs, a precedence graph for the tasks of the same job,
the energy budget and the value of 3. Similarly with [5], the instance consists
of m = 50 processors and up to n = 25 jobs. Each job has 20 Map and 10
Reduce tasks, which are preassigned at random to a different processor. The
work of each Map task is selected uniformly at random from [1,10], while the
work of each Reduce task v; ; € R is set equal to a random number in [1, 10]

"y
plus 32&;1,/2 Eejx/:}ll 7 taking into account the fact that Reduce tasks have more
work to execute than Map tasks. The weight of each job is selected uniformly at
random from [1, 10] and the release date of a job, is given as a Bernoulli random
variable with probability 1/2 for every interval (¢, ¢+ 1]. The energy budget that
is used equals £ = 1000, while g is set 5§ = 2. We have also set the desired

208 E. Bampis et al.

accuracy of the returned solution of the convex program to be equal to 1077.
For each number of jobs, we have repeated the experiments with 10 different
matrices. The results we present below, concern the average of these 10 instances.
The benchmark and the code used in our experiments are freely available at
http://www.ibisc.univ-evry.fr/~vchau/research/mapreduce/.

As mentioned before, the (CP) does not lead to a feasible solution for our
problem. In order to get such a solution we apply the following algorithm. At
each time ¢ where a processor becomes available we select to schedule the task
T;,; of higher priority such that: (i) T;; is already released at ¢, (ii) if T;; is
a Reduce task, then all Map tasks of the same job must have been already
completed at ¢, and (iii) 7; ; has not been yet executed.

\ \
200 | [=— FCFs s
-»- HDF

CP(FCFS)
- CP(HDF)

150 77

100

S w0

50 -

number of jobs

Fig. 2. Comparing solutions for FCFS and HDF (scaled down by a factor of 10?)

As shown in Fig. 2 the heuristic based on FCFS outperforms the heuristic
based on HDF. In fact, the first heuristic gives up to 16 — 21% better solu-
tions than the second one for different values of n. Surprisingly, the situation
is completely inverse if we consider the corresponding solutions of the convex
programs. More precisely, the convex programming relaxation using HDF' leads
to 26% — 43% smaller values of the objective function compared to the convex
programming relaxation using FCFS. Moreover, we can observe that the ratio
between the final solution of each heuristic with respect to the lower bound for
the MAPREDUCE(0) problem given by the convex program is equal to 1.46 for
FCFS and 2.43 for HDF'; the variance is less than 0.1 in both cases.

5 Conclusions

We presented a constant-factor approximation algorithm based on a linear pro-
gramming formulation of the problem of scheduling a set of MapReduce jobs
in order to minimize their total weighted completion time under a given bud-
get of energy. Moreover, in the direction of exploring the efficiency of standard
scheduling policies, we presented counterexamples for them, as well as, we exper-
imentally evaluated their performance, using a convex programming relaxation
of the problem when a prespecified order of jobs is given. It has to be noticed

http://www.ibisc.univ-evry.fr/~vchau/research/mapreduce/

Energy Efficient Scheduling of MapReduce Jobs 209

that our results can be extended also to the case where multiple Map or Reduce
tasks of a job are executed on the same processor. An interesting direction for
future work concerns the online case of the problem. However, it can be proved
that there is no an O(1)-competitive deterministic algorithm (see Theorem 13
in [3]). A possible way to overcome this is to consider resource (energy) augmen-
tation, or to study the closely-related objective of a linear combination of the
sum of weighted completion times of the jobs and of the total consumed energy.

References
1. Albers, S.: Algorithms for dynamic speed scaling. In: STACS, pp. 1-11 (2011)
2. Angel, E., Bampis, E., Kacem, F.: Energy aware scheduling for unrelated parallel

10.

11.

12.

13.

14.

15.

16.

17.

18.

machines. In: Green Computing Conference, pp. 533-540 (2012)

Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. STAM J. on
Computing 39(4), 1294-1308 (2009)

Chang, H., Kodialam, M.S., Kompella, R.R., Lakshman, T.V., Lee, M., Mukherjee,
S.: Scheduling in mapreduce-like systems for fast completion time. In: INFOCOM,
pp. 3074-3082 (2011)

Chen, F., Kodialam, M.S., Lakshman, T.V.: Joint scheduling of processing and
shuffle phases in mapreduce systems. In: INFOCOM, pp. 1143-1151 (2012)
Feller, E., Ramakrishnan, L., Morin, C.: On the performance and energy efficiency
of Hadoop deployment models. In: BigData Conference, pp. 131-136 (2013)
Feng, B., Lu, J., Zhou, Y., Yang, N.: Energy efficiency for MapReduce workloads:
An in-depth study. In: ADC, pp. 61-70 (2012)

Goiri, I., Le, K., Nguyen, T.D., Guitart, J., Torres, J., Bianchini, R.: GreenHadoop:
leveraging green energy in data-processing frameworks. In: EuroSys, pp. 57-70
(2012)

Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion
time: Off-line and on-line algorithms. In: ACM-SIAM SODA, pp. 142-151 (1996)
Mastrolilli, M., Queyranne, M., Schulz, A.S., Svensson, O., Uhan, N.A.: Minimiz-
ing the sum of weighted completion times in a concurrent open shop. Oper. Res.
Letters 38(5), 390-395 (2010)

Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying
speed. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part I. LNCS, vol. 7965, pp. 745-756. Springer, Heidelberg (2013)

Moseley, B., Dasgupta, A., Kumar, R., Sarlés, T.: On scheduling in map-reduce
and flow-shops. In: ACM-SPAA, pp. 289-298 (2011)

Phillips, C.A., Stein, C., Wein, J.: Minimizing average completion time in the
presence of release dates. Math. Programming 82(1-2), 199-223 (1998)

Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theory Comput. Syst. 43, 67-80 (2008)

Roemer, T.A.: A note on the complexity of the concurrent open shop problem.
Journal of Scheduling 9, 389-396 (2006)

Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding.
SIAM J. Discr. Mathematics 15(4), 450-469 (2002)

Wirtz, T., Ge, R.: Improving MapReduce energy efficiency for computation inten-
sive workloads. In: IGCC, pp. 1-8 (2011)

Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy.
In: IEEE- FOCS, pp. 374-382 (1995)

Automated Transformation of GPU-Specific
OpenCL Kernels Targeting Performance
Portability on Multi-Core/Many-Core CPUs*

Dafei Huang!?, Mei Wen!2, Changqing Xun'?, Dong Chen' 2, Xing Cai?,
Yuran Qiao™?2, Nan Wu?3, and Chunyuan Zhang!2

! Department of Computer, National University of Defense Technology
% State Key Laboratory of High Performance Computing,
Changsha, China
3 Simula Research Laboratory, Oslo, Norway
hdafei@acm.org

Abstract. When adapting GPU-specific OpenCL kernels to run on
multi-core/many-core CPUs, coarsening the thread granularity is
necessary and thus extensively used. However, locality concerns exposed
in GPU-specific OpenCL code are usually inherited without analysis,
which may give side-effects on the CPU performance. When executing
GPU-specific kernels on CPUs, local-memory arrays no longer match
well with the hardware and the associated synchronizations are costly.
To solve this dilemma, we actively analyze the memory access patterns
by using array-access descriptors derived from GPU-specific kernels,
which can thus be adapted for CPUs by removing all the unwanted
local-memory arrays together with the obsolete barrier statements.
Experiments show that the automated transformation can satisfactorily
improve OpenCL kernel performances on Sandy Bridge CPU and Intel’s
Many-Integrated-Core coprocessor.

Keywords: OpenCL, Performance portability, Multi-core/many-core
CPU, Code transformation and optimization.

1 Introduction

Heterogeneous computing systems, which incorporate two or more types of
compute devices, are nowadays widely available from supercomputers to smart
phones. A typical combination has been CPU plus GPU accelerator, while Intel’s
many-integrated-core (MIC) coprocessor is an increasingly popular choice of
accelerator, such as in the currently No.1 supercomputer of the world: Tianhe-2.
Programming, however, can be a challenge for using the heterogeneous devices
for computations. The common strategy is to program separately for each
type of the compute devices. Such a device-specific approach requires extensive

* Supported by the National Nature Science Foundation of China under No. 61033008,
61272145, and 61103080; 863 Program under No. 2012A A012706.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 210-221, 2014.
© Springer International Publishing Switzerland 2014

Automated Transformation of GPU-Specific OpenCL Kernels 211

programming effort, thereby difficult with respect to code maintenance and
portability. An ideal scenario is thus to have the same source code base for
multiple architectures, while maintaining a good level of performance portability.

OpenCL was designed with cross-platform code portability in mind. The
advantage of adopting OpenCL programming is thus that a unified source code
can work on different hardware architectures. On the other hand, however,
performance portability does not come for free with OpenCL. The majority of
existing OpenCL programs are GPU-specific, written with a bias or consensus
toward getting good performance through making use of a massive number of
threads, the round-robin instruction scheduling pattern, and the GPU-specific
memory hierarchy [4][14]. These GPU-specific implementations, when executed
directly on CPUs with heavy-weight cores, typically cannot achieve good
performance [10].

Code transformation can provide a GPU-specific OpenCL program with
performance portability to multi-core/many-core CPUs. A common technique
of transformation is to enforce a coarser thread granularity, using the so-called
work-item coalescing or serialization [12,13]. Moreover, work-items within a
work-group are a primary source of vector- and instruction-level parallelism, both
of which are typically exploited by a single CPU thread. However, the prior work
concerning OpenCL code transformation has largely neglected to incorporate
CPU-specific performance properties, such as spatial and temporal data
locality [6], or directly inherit data locality features from a GPU-specific OpenCL
kernel, often resulting in poor performance on CPUs [12,13]. What’s more, when
handling local memory and barriers, the existing code transformations have
mainly concentrated on functionality and semantics but not performance, and
without relevant analysis.

We will propose in this paper a new approach to transforming GPU-specific
OpenCL kernels into a high-performance form that suits multi-core/many-core
CPUs. It is based on a precise analysis of memory accesses, with help of a linear
array-access descriptor. The resulting code transformation can thus remove all
the unnecessary arrays that are allocated in OpenCL’s local memory. In addition,
all the unnecessary thread synchronizations are properly removed, instead of
blindly using the known technique of loop fission. Thereafter, a post optimizer
performs CPU-specific loop-level optimizations. The automatically transformed
OpenCL kernels can be effectively executed on the multi-core/many-core
architecture by using POSIX threads.

2 Related Work

There are many publications that address the challenge of adapting
OpenCL code for the multi-core/many-core architecture targeting performance
portability using code transformation, which directly translates GPU-specific
OpenCL code into another code fit for CPUs.

Previous research activities that implement OpenCL for CPU platforms
vary widely in the chosen approach to coalescing work-items and capturing

212 D. Huang et al.

SIMD parallelism. The Twin Peaks method [6] utilizes setjmp and longjmp to
merge fine-grain work-items into a single OS-thread, and performs vectorization
within a work-item, but does not explore inter work-item parallelism. Region
serialization methods [12,13] coalesce work-items by constructing thread loops
and performing loop fission to reproduce the similar functionality of inter
work-item synchronizations. They rely on an auto-vectorization technology
within loop iterations to exploit parallelism. Intel’s implementation of OpenCL
for x86, being the least explicitly disclosed or studied, directly targets SIMD
instructions and efficiently exploits vector-parallelism within a work-group [7].
None of the above implementations, however, handles data locality well enough,
since they just depend on if the locality exposed on the GPU-specific code is
suitable for the targeting CPU, so they may result in a strided access pattern by
executing one or more work-items as long as possible, instead of interleaving the
accesses of the work-items that can share the elements on one cache line. Stratton
et al. rely on CEAN expression to do a more advanced handling of spatial
locality [14]. Seo et al. adopt another approach from a different viewpoint [11], by
automatically adapting the work-group size for better performance on multi-core
CPU architecture.

No existing work can properly handle the issue of unnecessary use of local
memory and synchronization. The state of the art usually uses arrays in
OpenCL’s global memory (main memory as to CPU) to simulate the ones in
local memory, while ignoring the existence of caches on CPU. As for barriers,
the Twin Peaks method directly uses jump instructions to simulate the function,
which results in excessive overhead and breaks the locality in kernel code. Other
approaches fully depend on the technique of loop fission, which also results in
overhead of loop control instructions and variable extensions.

3 A Linear Descriptor of Array Access

An accurate identification of local and global memory access patterns is the key
to a high-quality transformation from GPU-specific kernels to the CPU-matching
counterparts. However, previously proposed descriptors of array access patterns
have been designed for the scenario of nested loops, or not accurate enough
to extract dependencies between work-items in the context of parallel SPMD
OpenCL kernels [3][5].

We propose a precise linear descriptor of array accesses, based on the
observation that most array accesses in a GPU-specific kernel can be expressed
linearly. For example, the only exception to linear array accesses that can be
found in Nvidia Computing SDK and the SHOC benchmark suite consists of
indirect array accesses.

For each array that is accessed in any loop within a GPU-specific OpenCL
kernel, our new array-access descriptor expresses the array index as a linear
subscript function of only initial variables, that is: the work-item/work-group
IDs, the loop induction variable, and the input arguments to the OpenCL kernel.
In addition, a set of linear constraints, i.e., equalities and inequalities, are derived

Automated Transformation of GPU-Specific OpenCL Kernels 213

__kernel void matrixMul(__global float* C, __global float* A, __global float* B,
__local float* As, __local float* Bs, int uiWA, int uiWB)

{
1 int aBegin = uiWA * BLOCK_SIZE * Gid.y;
2 int aEnd = aBegin + uiWA - 1;
3 int aStep = BLOCK_SIZE;
4 int bBegin = BLOCK_SIZE * Gid.x;
5 int bStep = BLOCK_SIZE * uiWB;

6 float Csub = 0.0f;
7 for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep)
8 { AS[Lid.x + Lid.y * BLOCK_SIZE] = Al[a + uiWA * Lid.y + Lid.x];

9 BS[Lid.x + Lid.y * BLOCK_SIZE] = B[b + uiWB * Lid.y + Lid.x];

10 barrier (CLK_LOCAL_MEM_FENCE) ;

11 for (int k = 0; k < BLOCK_SIZE; ++k)

12 Csub += AS[k + Lid.y*BLOCK_SIZE] * BS[Lid.x + k+BLOCK_SIZE];

13 barrier (CLK_LOCAL_MEM_FENCE); }

14 C[(Gid.y*GROUP_SIZE_Y+Lid.y)*GLOBAL_SIZE_X + (Gid.x*GROUP_SIZE_X+Lid.x)] = Csub;
}

Fig. 1. The original GPU-specific kernel of matrix multiplication

from the conditions of branches and loops to accurately pinpoint the range of
the array index. As an illustrating example, Figure 1 shows the OpenCL kernel
implementation of matrix multiplication, C = A x B, available from Nvidia GPU
Computing SDK. (It should be noted that some of the variables are renamed
for clarity, and Lid denotes the local work-item ID, whereas Gid denotes the
global work-group ID.) Within the outer loop of the kernel function there are
six different array accesses: write access to AS and read access to A on line 8,
write access to BS and read access to B on line 9, read access to both AS and BS
on line 12. Descriptors of the array accesses to AS and A (line 8,12) are listed
in Figure 2, where f denotes the linear subscript function, Constraint denotes
the set of linear constraints, and Iter,(r = a,b, k) represent the normalized
loop induction variables. For read access A[atuiWA*Lid.y+Lid.x], the linear

function is f4°2, derived by replacing a with its corresponding linear expression

without any intermediate variable. The Constraints’2¢ limits the ranges of the

variables in fzead, by combining loop conditions and intrinsic constraints on

work-group and work-item IDs.

fae*d = (uiWA x BLOCK SIZE x Gid.y + BLOCK SIZE x Itery) + wiW A x Lid.y + Lid.x
Constraint’¢® = {Iter, > 0; Iter, < uiW A/BLOCK SIZE; Gid.y > 0; Gid.y < GLOBAL SIZF;
Lid.xz > 0; Lid.x < BLOCK SIZE; Lid.y > 0; Lid.y < BLOCK SIZE}
fuEte = Lid.x + Lid.y x BLOCK SIZE
{Constramtf{g”e ={Lid.x > 0; Lid.x < BLOCK SIZE; Lid.y > 0; Lidy < BLOCK SIZE}

fred = Itery + Lid.y x BLOCK SIZE
Constraint’c§® = {Iter, > 0; Iter, < BLOCK SIZE; Lid.y > 0; Lid.y < BLOCK SIZE}

Fig. 2. Array access descriptors of accesses to AS and A in matrix multiplication

The derivation of a linear array-access descriptor, such as shown in Figure 2,
is fully automated by taking advantage of the Static Single Assignment in LLVM
infrastructure.

214 D. Huang et al.

4 Transforming GPU-Specific OpenCL Kernels

4.1 Analysis-Based Coalescing

Work-item coalescing (or serialization) aims to merge the work-items of an entire
work-group into a single CPU thread. The standard technique of coalescing is to
construct a nested thread loop, where the loop levels correspond to the dimension
of a work-group, the loop induction variables match the local work-item IDs, and
the loop body is the original GPU-specific kernel code. A complicating factor,
however, arises with thread synchronization. The state of the art is to adopt loop
fission wherever synchronization appears. An example can be found in Figure 3.

Kernel_ Name(Kernel Args...) Kernel_Name(Kernel _Args...)

Kernel _Body_1... for(Lid.z=0; Lid.z<GROUP_SIZE_Z; Lid.z++)

barrier(); for(Lid.y=0; Lid.y<GROUP_SIZE_Y; Lid.y++)

Kernel_Body_2. .. for(Lid.x=0; Lid.x<GROUP_SIZE_X; Lid.x++)
} { Kernel_Body_1... }

for(Lid.z=0; Lid.z<GROUP_SIZE_Z; Lid.z++)
for(Lid.y=0; Lid.y<GROUP_SIZE_Y; Lid.y++)
for(Lid.x=0; Lid.x<GROUP_SIZE_X; Lid.x++)
{ Kernel_Body_2... }

(a) Original kernel with barrier (b) Coaleced kernel using thread loop and loop fission
Fig. 3. Work-item coalescing by constructing thread loops

Considering the negative effects of blindly adopting loop fission, our remedy
is to adopt an accurate dependence analysis, based on the linear descriptor of
array accesses from Section 3, so that unnecessary thread synchronizations are
eliminated, thereby avoiding loop fission.

Another performance-critical factor, in connection with work-item coalescing,
is the use of OpenCL’s local memory. Local memory array emulated by a segment
of the slow main memory attached to a CPU may result in performance penalty,
due to unnecessary data copies and additional thread synchronizations. This
performance dilemma has received insufficient attention in the state of the art
of work-item coalescing. Our novel contribution is therefore to eliminate all the
unnecessary local-memory arrays during coalescing. This again will be based on
the precise analysis of memory access patterns.

Eliminating Unnecessary Local-Memory Arrays
The functionality of local memory usage in GPU-specific kernels can be classified
into three types:

1) Buffering: To improve temporal and spatial data locality within the kernel
code, newly accessed data that are to be reused are buffered in OpenCL’s
local memory, so that long-latency global memory accesses are replaced by
faster local memory accesses.

2) Reorganization: Data are loaded from OpenCL’s global memory and stored
in local memory using a different pattern, which allows coalesced memory
accesses and effectively avoids bank conflicts. A representative example is

Automated Transformation of GPU-Specific OpenCL Kernels 215

the transposed matrix multiplication (C' = A x AT) kernel [8], where tiles
of matrix A are loaded in rows but stored into columns of a local-memory
array.

3) Enabling communication and reducing computation: Intermediate results
of a work-item are stored in OpenCL’s local memory before another
work-item uses them. This type of usage not only reduces duplicated
computations among different work-items, but also enables inter work-item
communication.

On the multi-core/many-core architecture, functionality No. 3 also has to use
OpenCL’s local memory, thus work-item coalescing should not change this usage
of local memory. For functionality No. 2, although data copy overhead arises due
to the data reorganization, subsequent more efficient accesses to the reorganized
data may still draw overall performance benefits. Regarding functionality No. 1,
however, the usage of OpenCL’s local memory becomes obsolete because the
same effect can be achieved by the cache hierarchy on CPUs. Therefore, such
a usage of local memory should be eliminated during coalescing. This requires
an automated code analysis that can distinguish between the three usage types,
together with automated replacement of local-memory array accesses with the
corresponding global-memory array accesses.

Loads from local-memory arrays can be translated to direct global memory
loads, provided the following two conditions are both satisfied:

(1) For a pair of local array write and read, by examining their array access
descriptors, if some of the variables in the write descriptor are substituted
with the variables of the read descriptor, the two descriptors become identical
including the subscript functions and constraints.

(2) In this local array read-write pair, the write data is from a global memory
read, which can be checked by using a definition-use chain.

After replacing the local array read with its corresponding global array read.
The local array write will become dead code, and can be removed by compiler
afterwards. An example is the following local array read-write pair from Figure 2:

Constraintys't® = {Lid.x > 0; Lid.x < BLOCK SIZE; (4.1)

{ fYLi*e = Lid.x + Lid.y x BLOCK SIZE
Lid.y > 0; Lid.y < BLOCK SIZE}

Constraint’ed? = {Itery, > 0; Iter, < BLOCK SIZE; (4.2)

{ freed = Ttery + Lid.y x BLOCK SIZE
Lid.y > 0; Lid.y < BLOCK SIZE}

If we substitute Lid.z in (4.1) with Itery from (4.2), the two descriptors become
identical, which satisfies condition (1). Moreover, the write data of (4.1) is read
from global array A according to line 8 in Figure 1, which satisfies condition (2):

fred = (uiWA x BLOCK SIZE x Gid.y + BLOCK SIZE

(4.3)
XItery) + wiWA x Lid.y + Lid.x

216 D. Huang et al.

So a transformation from local memory load to direct global memory load is
legal, by performing the substitution of Lid.x with Itery in (4.3), and using it
to replace (4.2):

fasd = Itery + Lid.y x BLOCK SIZE =
fread = (wiWA x BLOCK SIZE x Gid.y + BLOCK SIZE (4.4)
XItery) + wiW A x Lid.y + Itery,

However, for local arrays with the data reorganization functionality, it is legal
but not performance-beneficial. So an intuitive or heuristic condition is induced
here to guarantee that a local array does not have the functionality of data
reorganization:

(3) Looking at the linear subscript functions of a local array write and its
respective global memory read, the variable Lid.x has the same coefficient
in the two functions (or that Lid.z does not exist).

For example, in formulas (4.1) and (4.3), Lid.z has coefficient 1 in both fy5i¢
and f7°%? and array accesses by (4.1) and (4.2) are the only accesses to local
array AS. By using the condition above, we can conclude that local array AS
does not have the functionality of data reorganization. By removing all the local
arrays that only have the functionality of data buffering, and replacing them
with direct accesses to global arrays, we can thus ensure good performance after
work-item coalescing. Lines 8,9,12 in Figure 5 (line numbers remain the same
as in Figure 1) shows the codes after eliminating the unnecessary local arrays
AS and BS.

Dependence Analysis and Synchronization Elimination
Synchronization elimination happens after the unnecessary local arrays, the main
source of synchronizations, are removed. However, we cannot simply delete all
the barriers, since these may serve other local arrays that are not removed, or
the synchronizations may use global memory. To check whether a barrier can
be safely eliminated, dependence analysis is needed. Here, dependence analysis
is very different from the typical scenario, because it is the dependence between
different work-items that we care about.

When performing dependence analysis for a certain barrier, we first divide
the kernel into basic blocks (barriers are also boundaries of the basic blocks).
Then we examine every pair of array accesses (one of the accesses must be a
write operation and both touch the same local or global array) that are located
separately in two basic blocks before and after the barrier. The process is shown
in Figure 4, where rectangles with dashed edge show the partitioning of basic
blocks with different control structures, and arrows show the basic blocks within
which array access pairs must be examined. The left part emphasizes that the
examinations are for different work-items. For each examination, we combine
the two descriptors of the access pair to form a linear Diophantine Inequation
System. If there is a solution to the inequation system where not all the three
pairs of local IDs are required to be equal, actual dependence exists and the
barrier cannot be removed.

Automated Transformation of GPU-Specific OpenCL Kernels 217

\

Work-item A Work-item B . Kernel Code Kernel Code Kernel Code

for/while() {

§ Basic Block... A i} Basic Block... |
Barrier() > Barrier()
| Basic Block... M Basic Block... |

§ Basic Block..

Barrier()

}

Fig. 4. An illustration of dependence analysis

ary = (..., Lid.z, Lid.y, Lid.zx)

— —— T
f1 =Coe; -Var; + Const V—>
Constraint,

—— —— T

= . —
fo=Coez-Vare +Const on (| Lid.2, Lid.y', Lid.a') s
Constraints (4.5)

fi=f2
= { Constrainty

Constraints

Equation (4.5) shows the construction of an inequation system. The upper
part shows two descriptors to be examined (Coe denotes the vector of coefficients,
Var denotes the vector of variables, and Const denotes a constant), and the
lower part is the resultant system, generated by forcing the subscript functions
to be equal while the both constraints are satisfied. Note that each local ID is
no longer treated as the same variable in fi; and f>, so we use different names.
A barrier must be reserved if the inequation system has a solution without the
restriction {Lid.x = Lid.2’; Lid.y = Lid.y'; Lid.z = Lid.z'}.

By using the above dependence analysis, we can eliminate all the removable
barriers in a GPU-specific kernel, and then enclose the kernel body by a thread
loop. For non-removable barriers, loop fissions are inserted. Figure 5 shows the
matrix multiplication kernel after coalescing, where both the barriers in the
original kernel are eliminated.

for (int Lid.y=0 ; Lid.y<BLOCK_SIZE; Lid.y++)
for (int Lid.x=0 ; Lid.x<BLOCK_SIZE; Lid.x++) {

6 float Csub = 0.0f;

7 for (int Itera=0, Iterv=0; Itera<=uiWA/BLOCK_SIZE; Iterat++, Iterv++)

8,9 { //Dead Code

10 //Removed barrier (CLK_LOCAL_MEM_FENCE) ;

11 for(int Iterx=0; Iterx<BLOCK_SIZE; ++Iterx)

12 Csub += A[(uiWA*BLOCK_SIZE#Gid.y+BLOCK_SIZE*Itera)+uiWA*Lid.y+Iterk]
* B[(BLOCK_SIZE*Gid.x+BLOCK_SIZE*uiWB*Iters)+uiWB*Iterx+Lid.x];

13 //Removed barrier (CLK_LOCAL_MEM_FENCE); }

14 C[(Gid.y*GROUP_SIZE_Y+Lid.y)*GLOBAL_SIZE_X+(Gid.x*GROUP_SIZE_X+Lid.x)] = Csub;
}

Fig. 5. Code snippet of the matrix multiplication kernel after work-item coalescing

218 D. Huang et al.

4.2 Post Optimizations

After the synchronization elimination described in Section 4.1, there are two
unexploited CPU-specific performance properties of importance. The first is that
inter work-item parallelism is buried, leading to insufficient utilization of the
SIMD capability. The other is that loops in a coalesced code may be fused to
such a degree that gives poor CPU-specific data locality. Figure 6(a) shows
the unoptimized access sequences to arrays A and B, where iterative accesses to
array A go through the whole long row, and accesses to B go through the whole
column, resulting in successive cache misses. Furthermore, no SIMD parallelism

is exploited.

I Vectorized ...

4 000 /|
A B /, ! A = -
Loop 16 times. ; ’/ | ’/ E " | /’v —] i I\
————————— — i e e roadcaste oopasi ||| /]| | |itoon1s
= “ - A . . A
e |' " | " g % o) /*-—0, — times | / times
== = i] 5 | A— f a—y e
Loop 16 Ly | %] I . 1 . H t block
times : : | : e W IS 8 A 8 3 TE i
N Teessa X i =
i | 2 8 K N Y ! i
\ t = Eem ===
"BLOCK SIZE=16 ' BLOCK_SIZE=16 i \ w Loop 2 times Loop 2 times J
\ \ &
| 5

k
3 .
GLOBAL_SIZE=8000 s b N

(a) (b)

Fig. 6. Different access sequences to arrays A and B

We adopt two post optimizations of the coalesced code. They are combinations
of traditional loop-level optimizations, but of vital effects on final performance.

Vectorization: The best loop level for performing vectorization should be that
with induction variable Lid.x. This is because the coalesced memory accesses of
a GPU-specific kernel often result in sequential and short-stride memory accesses
across that loop level. So loop-interchange is firstly performed before ordinary
vectorization so that Lid.x-loop becomes the innermost. The resultant effect as
shown in Figure 6(b) is that, each scalar element of A is expanded into a vector,
and each set of eight adjacent accesses to B is vectorized to produce a new vector.
Then computational operations are fully vectorized so that the works of eight
work-items are accomplished simultaneously.

Data locality re-exploitation: Our process of data locality re-exploitation
has two steps, blocking of long non-thread-loops and loop interchange. As the
result shown in Figure 6(b), the iterative array accesses are restricted in small
blocks, so that the CPU cache can play a very good role.

The code snippet as the final output of the kernel transformation targeting
the Sandy Bridge architecture can be found in Figure 7.

5 Performance Evaluation

We have implemented a fully automated tool chain that performs kernel
transformation based on the Clang compiler front end and the LLVM compiler

Automated Transformation of GPU-Specific OpenCL Kernels 219

for(int Itera=0, Iterv=0; Itera<=uiWA/BLOCK_SIZE; Itera++, Itern++)
for(int vLid.x=0; vLid.x<BLOCK_SIZE/8; vLid.x++)
for(int Lid.y=0; Lid.y<BLOCK_SIZE; Lid.y++)
for(int Iterx=0; Iterx<BLOCK_SIZE; ++Iterk)
Csub[Lid.y] [vLid.x]= vec_float8_add(Csubl[Lid.y] [vLid.x],
vec_float8_mult(
vec_float8_broadcast (A[(uiWA*BLOCK_SIZE*

Gid.y+BLOCK_SIZE*Itera)+uiWA*Lid.y+Iterx]), //broadcast
vec_float8_load (B+BLOCK_SIZE*Gid.x+BLOCK_SIZE*uiWB*Iterv+
uiWB*Iterx+vLid.x*8) //load
)) //mult, add

Fig. 7. Final code snippet of the transformed matrix multiplication kernel

infrastructure [2]. The tool chain transforms a GPU-specific OpenCL kernel
into a function, whose input arguments include the original ones from the
GPU-specific kernel plus a set of work-group IDs. The vector operations are
enabled by using Intel intrinsics. Each call to this function is equivalent with
executing a corresponding work-group.

To run an entire OpenCL program that has both host and kernel code, the
kernel transformation tool chain is integrated into an open source OpenCL
implementation called FreeOCL [1], where POSIX threads are used to execute
work-groups concurrently.

Experiments are carried out on two hardware platforms: (1) two Intel Xeon
E5-2650 eight-core CPUs that have 16 physical cores together, as a typical
multi-core CPU, (2) an Intel Xeon Phi 5110p coprocessor with 60 physical
cores, as an emerging many-core CPU. The new OpenCL implementation,
including our automated kernel transformation tool chain (denoted by OurOCL),
is compared against the OpenCL implementation from Intel SDK for OpenCL
Applications 2013, which is the official OpenCL runtime provided by Intel
(denoted by IntelOCL).

Six kernels are used as the benchmarks. They cover a wide range of
computational intensities and intrinsic memory localities. The first five kernels
are optimized for running on GPUs so that they are well GPU-specific, where
Stencil2D comes from SHOC and the remaining four kernels are from Nvidia
GPU Computing SDK. The sixth kernel, NaiveMatrixMul, is the baseline
matrix multiplication from [9], which is not so GPU-specific, and can show the
potentiality of our method when few optimization features can be inherited.

IntelOCL is usually the most powerful commercial OpenCL runtime on Intel
platforms, so we compare running the kernels via OurOCL, where kernels will
be auto-transformed before execution, against running the same kernels via
IntelOCL. When running the benchmarks, only the kernel execution times are
recorded. Table 1 shows all the speedups of kernel executions relative to the
CPU+IntelOCL configuration. The table indicates that OurOCL can improve
the performance of GPU-specific kernels on multi-core CPUs by an average factor
of 3.24x, not including the NaiveMatrixMul kernel. The average performance
improvement of MIC+OurOCL over MIC+IntelOCL is 2.06x (3.53x/1.71x).

220 D. Huang et al.

Table 1. Performance comparison with Intel OpenCL implementation and OpenMP

CPU + CPU + CPU + MIC + MIC + MIC +

Kernel name Sl telOCL OwrOCL ~ OMP IntelOCL OurOCL ~ OMP
oclMatrixMul 8000 x 8000 1 3.02 0.37 1.94 3.95 3.74
320% 320 x 320
oclFDTD3d Radius=16 1 6.02 2.20 2.22 5.88 4.13
Timestep=>5
. 4096 x 4096 .

Stencil2D 1000 iters 1 2.53 1.16 1.83 2.42 1.95
oclDCT8x8 10240 x 10240 1 3.42 2.27 1.43 4.17 4.52
oclNbody 327680 1 1.20 0.74 1.13 1.24 1.38
«NaiveMatrixMul 8000 x 8000 1 33.48 4.10 4.55 43.76 41.43
Average (except NaiveMatrixMul) 1 3.24 1.35 1.71 3.53 3.14

IntelOCL is very good at utilizing the inter-work-group and inter-work-item
parallelism by using the multiple cores and SIMD units. But its synchronization
overhead is experimentally found to be somewhere between that of the
region-based methods and the Twin Peaks method [14]. So the performance
boost of OurOCL should be mainly attributed to the elimination of barriers
and local-memory arrays, and partly the locality re-exploitation. The oclNbody
kernel gets the minimum performance improvements on both platforms, because
it is the most compute-intensive. The overheads induced by barriers and
redundant memory copies only account for a small part of the kernel execution
time. As for the two stencil computation kernels: oclFDTD3d and Stencil2D,
improvements on MIC are much lower than those on CPU. This is because only a
small portion of the execution time is used for computation as the two kernels are
highly memory-intensive, so MIC can hardly show its superior parallel capability.
The intensity of memory accesses also results in the slightly lower performances
on MIC than those on CPU. On the other hand, the NaiveMatrixMul kernel
obtains huge performance boosts because of both overhead removal and data
locality improvement.

Performances of corresponding OpenMP implementations are also presented.
The OpenMP implementations are based on the serial host implementations
that can be found in every adopted benchmark, by properly adding OpenMP
directives. (Execution of the OpenMP implementations on MIC uses the native
mode.) We note that multi-core/many-core specific optimizations were already
performed in some of the host implementations such as ocIDCT8x8, and the
icc can also automatically carry out various optimizations. Generally, improved
OpenCL performances on both CPU and MIC are comparable with or even
better than the OpenMP implementations. This shows that our automated code
transformation can indeed greatly enhance performance portability.

6 Conclusion

To improve the performance portability of OpenCL programs from GPUs
to CPUs, code transformation is widely accepted. This paper presents a
novel transformation methodology for GPU-specific OpenCL kernels targeting

Automated Transformation of GPU-Specific OpenCL Kernels 221

performance portability on multi-core/many-core CPUs, aiming at solving the
potential problems induced by using local-memory arrays on CPUs, including
redundant data copies and the accompanying costly synchronizations. A new
array-access descriptor that can accurately uncover the array access patterns of
OpenCL work-items lays the foundation of our work.

Experiments are done on Sandy Bridge CPU and Knights Corner MIC,

which show that, for GPU-specific kernels, our new OpenCL implementation
outperforms the powerful Intel OpenCL runtime on both platforms.

References

1.

2.
3.

11.

12.

13.

14.

FreeOCL: multi-platform implementation of OpenCL 1.2 targeting CPUs,
https://code.google.com/p/freeocl/

The LLVM compiler infrastructure, http://11vm.org/

Balasundaram, V., Kennedy, K.: A technique for summarizing data access and its
use in parallelism enhancing transformations. In: SIGPLAN 1989 Conference on
Programming Language Design and Implementation, Portland, USA, pp. 41-53
1989

I(Baska)ran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev,
A., Sadayappan, P.: A compiler framework for optimization of affine loop nests for
GPGPUs. In: 22nd International Conference on Supercomputing, Island of Kos,
Greece, pp. 225-234 (June 2008)

Bastoul, C.: Code generation in the polyhedral model is easier than you think.
In: 13th International Conference on Parallel Architectures and Compilation
Techniques, Antibes Juan-les-Pins, France, pp. 7-16 (September 2004)
Gummaraju, J., Morichetti, L., Houston, M., Sander, B., Gaster, B.R.,
Zheng, B.: Twin peaks: A software platform for heterogeneous computing on
general-purpose and graphics processors. In: 19th International Conference on
Parallel Architectures and Compilation Techniques, Vienna, Austria, pp. 205-216
(September 2010)

Intel Corporation: Intel SDK for OpenCL Applications XE 2013 Optimization
Guide (2013)

Nvidia: OpenCL Best Practices Guide (February 2011)

Nvidia: OpenCL Programming Guide for the CUDA Architecture (February 2011)

. Pennycook, S., Hammond, S., Wright, S., Herdman, J., Miller, I., Jarvis, S.A.: An

investigation of the performance portability of OpenCL. Journal of Parallel and
Distributed Computing 73(11), 1439-1450 (2013)

Seo, S., Lee, J., Jo, G., Lee, J.: Automatic OpenCL work-group size selection for
multicore CPUs. In: 22nd International Conference on Parallel Architectures and
Compilation Techniques, Edinburgh, UK (September 2013)

Stratton, J.A., Grover, V., Marathe, J., Aarts, B., Murphy, M., Hu, Z., Hwu,
W.M.W.: Efficient compilation of fine-grained SPMD threaded programs for
multicore CPUs. In: 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, Toronto, Canada, pp. 111-119 (April 2010)
Stratton, J.A., Stone, S.S., Hwu, W. M.W.: MCUDA: An effective implementation
of CUDA kernels for multi-core CPUs. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 16-30. Springer, Heidelberg (2008)

Stratton, J.A., Kim, H.S., Jablin, T.B., Hwu, W.M.W.: Performance portability
in accelerated parallel kernels. Tech. Rep. IMPACT-13-01, University of Illinois at
Urbana-Champaign (May 2013)

https://code.google.com/p/freeocl/
http://llvm.org/

Switchable Scheduling for Runtime Adaptation
of Optimization

Lénaic Bagnéres' and Cédric Bastoul®

! University of Paris-Sud and Inria, Orsay, France
lenaic.bagneres@inria.fr
2 University of Strasbourg and Inria, Strasbourg, France
cedric.bastoul@unistra.fr

Abstract. Parallel applications used to be executed alone until their
termination on partitions of supercomputers: a very static environment
for very static applications. The recent shift to multicore architectures
for desktop and embedded systems as well as the emergence of cloud
computing is raising the problem of the impact of the execution context
on performance. The number of criteria to take into account for that pur-
pose is significant: architecture, system, workload, dynamic parameters,
etc. Finding the best optimization for every context at compile time is
clearly out of reach. Dynamic optimization is the natural solution, but it
is often costly in execution time and may offset the optimization it is en-
abling. In this paper, we present a static-dynamic compiler optimization
technique that generates loop-based programs with dynamic auto-tuning
capabilities with very low overhead. Our strategy introduces switchable
scheduling, a family of program transformations that allows to switch
between optimized versions while always processing useful computation.
We present both the technique to generate self-adaptive programs based
on switchable scheduling and experimental evidence of their ability to
sustain high-performance in a dynamic environment.

1 Introduction

Static compilers are facing the challenge of generating efficient codes for increas-
ingly dynamic execution environments. Two decades ago, optimizing compilation
was referred as building "supercompilers for supercomputers" [20]. Compiler
techniques had to optimize aggressively for complex parallel machines but in
a very static context: usually one program with few dynamic parameters, one
well defined architecture/system and one user. Iterative compilation and auto-
tuning approaches have been developed on top of static compilation as efficient
solutions to find the best optimization parameters and to adapt to various (but
fixed) architectures and problem sizes [2,19,12]. The large adoption of multicore
systems and the emergence of cloud computing brings new dynamic factors that
are not captured by iterative compilation or auto-tuning, such as the existence of
competing workloads or the possible migration of the process to another archi-
tecture. This situation raises the need for more dynamic optimization schemes.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 222-233, 2014.
© Springer International Publishing Switzerland 2014

Switchable Scheduling for Runtime Adaptation of Optimization 223

Just in time compilation is a convenient solution to address dynamic exe-
cution environments. However, it requires very low algorithmic complexity of
the underlying techniques to avoid to offset the optimization it is enabling. Cur-
rent state-of-the-art static automatic optimization and parallelization techniques
rely on an algebraic representation of programs that allows precise analyses as
well as very aggressive program transformations to optimize codes, known as
the polyhedral model [7,3,11]. Unfortunately, most polyhedral-based techniques
show exponential complexity [17]. Hence, they are challenging to include in a
dynamic compilation framework, except when a runtime analysis allows to use
this model while it was not possible at static compile time [9]. Our proposal is
a mixed static-dynamic technique, which benefits from the power of polyhedral
frameworks at static compile time, while being able to change the optimization
decision at runtime during the computation itself.

The potential benefit of such a technique is significant because the dynamic
nature of the execution environment comes from several factors that directly
impact performance. First of all, a compiled program may be run on different
architectures with different features such as various cache memories or number
of cores, which have dramatic impact on the best optimization choice. A decision
at the early stage of the execution is not enough: virtual machines and cloud
computing technology allow the architecture to change during execution. Next,
the application may depend on dynamic parameters such as problem size (e.g.,
array size). Hence the best optimization is likely to be different depending on
those parameters that will be known only at runtime. Finally, the operating
system and the system workload are also paramount because processes may affect
each other, e.g., through cache pollution or by stressing the system scheduler.

Our approach is to design at compile-time programs that can adapt at run-
time to the execution context. The originality of our solution is to rely on switch-
able scheduling, a selected set of program restructuring which allows to swap
between program versions at some meeting points without any rollback. A first
step selects pertinent switchable versions according to their performance behav-
ior on some execution contexts. The second step builds a self-adaptive program
including selected versions. Then at runtime the program keeps choosing the
best version thanks to a low overhead sampling and profiling of the versions,
ensuring during the process that every computation contributes to the final re-
sult. We performed an experimental study on dozens of execution contexts and
demonstrate superior adaptability of our generated codes with respect to state-
of-the-art static optimization technique.

2 Background

The application domain of our technique is loop-based kernels with affine control
and memory accesses, i.e., such that loop bounds, conditions and array subscripts
are affine forms of outer loop counters and constant parameters. This class of
computational kernels is known as SCoPs for Static Control Parts. SCoPs can be
modeled using an algebraic representation called the polyhedral model. Because

224 L. Bagnéres and C. Bastoul

of the restriction on the input program form, each dynamic instance of a given
SCoP statement can be modeled as an integer point in a union of polyhedra
called the iteration domain of that statement. For example, let us consider the
input code in Figure 1(a). Figure 1(b) shows the iteration domain of the state-
ment S(i,j). Each loop enclosing the statement in the code corresponds to a
dimension of the domain. Several compilers have the ability to raise SCoPs to a
polyhedral form such as GNU GCC*' and LLVM?2.

Once a SCoP is raised to the polyhedral model, an optimizer can compute a
scheduling by means of scheduling relations that express logical execution dates
for all statement instances, e.g., to achieve data locality or to expose paral-
lelism while satisfying data dependences. In the following, we will only consider
scheduling that does not alter the original program semantics. Figures 1(c1) and
1(c2) show two different possible scheduling relations. They map original input
dimensions, which express original statement instances, to target output dimen-
sions, which express their new order. Scheduling relations are expressive enough
to encode a complex composition of program transformations (including, e.g.,
loop interchange, fusion, fission, skewing, tiling etc.) [8]. Those in Figures 1(c1)
and 1(c2) correspond respectively to the identity transformation and to the re-
versal of the inner loop. Many efficient scheduling algorithms have been designed,
notably the Pluto algorithm for automatic optimization and parallelization [3]
and the Letsee technique based on iterative optimization [11].

Finally a code generator for scanning polyhedra such as CLooG [1] can pro-
duce a syntactic program that implements the new scheduling from the iteration
domains and the scheduling relations. Figures 1(d1) and 1(d2) present the pro-
grams generated back from the corresponding polyhedral representations after
the code generation step. The complete Figure 1 summarizes the usual workflow
of a polyhedral framework with two different scheduling relations that result in
two versions of the input program. Most previous works aim at finding only one
good version. Our work improves this scheme with dynamic capablities, to be
able to chose the right version for the right execution context.

3 Switchable Scheduling

In a polyhedral compilation framework, a program version is generated from the
input program information and a scheduling. The scheduling is in turn expressed
as a list of scheduling relations, one for each statement. In this work, we focus
on particular sets of scheduling called switchable scheduling. Two scheduling
are switchable if and only if there exist meeting points in the corresponding
generated versions such that it is possible to continue the execution from any
of these versions at those meeting points without affecting the program result.
Translated to the polyhedral model terminology, it means that there must exist
a couple of logical dates called switching dates, one for each scheduling, such that
the sets of instances that have been scheduled prior to these dates in each version

! http://gcc.gnu.org/wiki/Graphite
2 http://polly.1llvm.org

http://gcc.gnu.org/wiki/Graphite
http://polly.llvm.org

Switchable Scheduling for Runtime Adaptation of Optimization 225
for (i = 0; i <= N; i++)

for (j = 0; j <= N; j++)
S(i, 3);

(a) Input Code
Raising

Ds<N>={(§-)13§§§%}

) Iteration Domain

Scheduhng/ \Scheduhng 2
o ={(5) = () [a=5} -{0) - (B) 524

(c1) Scheduling Relation 1 (c2) Scheduling Relation 2

Code Generation L Code Generation

for (t1 = 0; t1 <= N; ti1++) for (t1 = 0; t1 <= N; ti1++)
for (t2 = 0; t2 <= N; t2++) for (t2 = -N; t2 <= 0; t2++)
i=t1; i=t1;
jo=t2; j o= -t2;
S(i, j); S(i, j);
(d1) Output Code 1 (d2) Output Code 2

Fig. 1. Polyhedral Transformation Workflow For Two Example Versions

is the same, regardless of their respective order. To simplify their computation,
and without loss of generality, we require that switching dates correspond to
existing instance schedules. The set of switching dates for a scheduling 8 to a
scheduling ¢’ is called its switching domain to 0'.

Property 1. To a given switching date in a scheduling there may exist only a
unique corresponding switching date in another scheduling.

Ezplanation. Each instance of the original program has a unique image in the
target program. Hence, given a set of already executed instances before a meeting
point in a version, the corresponding meeting point in another version, if it exists,
is the unique instance that will be executed directly after that set. a

Property 2. If the outermost dimensions of two scheduling are mapping input
dimensions in the same order, then the first instance scheduled at any value of
these outermost dimension belongs to the switching domain of the corresponding
scheduling to the other scheduling.

226 L. Bagnéres and C. Bastoul

Ezxplanation. Logical dates are multidimensional like clocks: the first dimension
may correspond to days (most significant) then the next one to hours (less sig-
nificant), then the next one to minutes and so on. To each value of the outermost
scheduling dimensions corresponds a set of scheduled instances. If the execution
order of such sets is the same in any version, then at the beginning of each set it
is possible to switch between versions, regardless of the scheduling order inside
the set, i.e., of less significant scheduling dimensions. a

From these two properties we derive a practical technique to build a multi-
version code. First for each version we compute a switching domain, as detailed in
Section 3.1. Next we generate the code itself, inserting switching statements for
each integer point of the switching domains, as explained in Section 3.2. Switch-
ing statements themselves rely on a low overhead runtime system described in
Section 3.3.

3.1 Switching Domain Computation

We derive from Property 2 that a (subset of) the switching domain is the set of
output vectors such that:

1. The outermost “common” output dimensions are expressed in the same way
for every scheduling (this ensures that all versions are executing equivalent
subsets of instances in the same order regardless of the order inside those sub-
sets). This condition may be relaxed when information about the scheduling
semantics is available. The most important case we are supporting is strip-
mining and, by extension, tiling, with a restriction on possible tile sizes. Tile
sizes are chosen to be a multiple of the smallest tile size. Hence, we know
statically that, e.g., an iteration at a given dimension in one version corre-
sponds to n iterations of the same dimension in another version. We derive
from this a simple affine constraint on the existence of meeting points.

2. The remaining output dimensions are set to the lexicographic minimum of
the possible values (to ensure the logical date of the switching statement is
at most the same as the first instance scheduled inside the subset). Moreover,
we add another output dimension set to 0 to ensure the switching statement
is executed before the first instance of the subset.

Switching domains are easy to compute from the scheduling using the PIP
tool [6] to compute the lexicographic minimum of the innermost output dimen-
sions. Figures 2(d1) and 2(d2) show the switching domains corresponding to the
scheduling in Figures 1(cl) and 1(c2): the first dimension has the same expres-
sion in both scheduling and has the same range, the second one is set to the
minimum value for each version, and a new one has been added and set to 0.

The code generation step detailed in Section 3.2 uses switching domains to in-
sert “switching statements” in the final code: to each integer point in this domain
will correspond an execution of the switching statement. It is not desirable to
execute the switching statement at each meeting point because of the overhead
it may introduce. Switching domains can be easily restricted to fit the need.

Switchable Scheduling for Runtime Adaptation of Optimization 227

A first solution is to intersect it with a convenient lattice. In this way, switching
statements will be executed at constant intervals along scheduling dimensions.
A second solution with the same effect is to apply a special strip-mine onto some
scheduling dimensions. In this case, selected scheduling dimensions are decoupled
into three dimensions in the switching domains and the scheduling relations. The
outer dimension iterates over strips, the middle one is set to 0 for the switching
domain and to 1 for all the scheduling relations, and the inner one is set to
0 for the switching domain and iterates over integer points inside strips for the
scheduling relations. This does not affect the order of the instances, but it inserts
a switching date before each strip. While the first solution is simpler, the second
one allows to consider switching along parallel dimensions: the dimension over
strips has to be sequential, but the one over points inside strips may be parallel.

3.2 Multi-Version Code Generation

Generating a code that includes multiple versions of the original program with
the ability of switching between them is a three step process. First we extend the
original scheduling with one innermost output dimension set to 1. It ensures that
the switching statement will be executed before any existing instance if they are
scheduled at the same logical date, since that output dimension has been set to
0 for the switching domain®. Figures 2(el) and 2(e2) show the extended schedul-
ings of Figures 1(c1) and 1(c2). Next, we generate the code from the original
domains and scheduling as in a classical polyhedral framework, with the CLooG
tool [1]. The only difference is that we generate a code for each version and that
we add the corresponding switching domain to each code generation problem.
Each integer point of the switching domain corresponds to an execution of the
switching statement. Finally some glue code is added to support switching: addi-
tional variables are created to communicate current common output coordinates
while switching and labels/gotos are inserted to jump to the end of the code
once one version terminates.

The switching statement itself is made of two parts. First, the switching source
includes calling the runtime to decide about switching or not, communicating of
current common output coordinates and actual switching (through goto state-
ments). Second, the switching sink includes a label to be used as the target of a
switch, receiving the common output coordinates and setting back the remaining
output coordinates to the lexicographic minimum. Figure 2(f) shows the final
code (spanning two columns) for our running example started in Figure 1. The
switching source corresponds to the if part of the switching statement while the
sink corresponds to the else part.

3.3 Runtime

The runtime switching decision system is as simple as possible to minimize the
overhead. It is based only on the execution time and has two modes called

3 If the last output dimension is not a common dimension, another solution without
scheduling extension is to subtract 1 to its expression in the switching domain.

228 L. Bagnéres and C. Bastoul

Switching Domain L

t1\ [0<t1 <N
Dsw(N) = t211t2=0
t3

t3=0
(d1) Switching Domain 1

t1=14
2=
t3=1

Extended Scheduling {

o {0

(el) Extended Scheduling Relation 1

L Switching Domain

t1\ [0<tl <N
D.,(N)={[t2]||t2=-N
t3

t3 =0
(d2) Switching Domain 2

{ Extended Scheduling

) tl tl=1
=) (3]

(e2) Extended Scheduling Relation 2

Wneration

int global_t1;

// Version 1
for (t1 = 0; t1 <= N; ti++)
t2 = 0;
t3 = 0;
if (switch_decision())
global_t1 = t1;

goto v2;
else
vl: tl = global_t1;
t2 = 0;
t3 = 1;
S(t1, t2);
for (t2 = 1;
t2 <= N; t2++)
t3 = 1;
S(tl, t2);
goto end;

// Version 2
for (t1 = 0; tl <= N; ti++)
t2 = -N;
t3 = 0;
if (switch_decision())
global_tl1 = t1;
goto vi;
else
v2: t1 global_t1;
t2 = -N;
t3 = 1;
S(t1, t2);
for (t2 = -N + 1;
t2 <= 0; t2++)
t3 = 1;
S(t1, -t2);

end: ;

(f) Final Code Including Two Versions That May Switch To Each Other

Fig.2. (Our Alternative End of Fig. 1) Generation of a Multi-Version Code

watching and sampling. In watching mode, the runtime simply checks that the
performance is stable by measuring the time spent between two calls. Since
switching statements are inserted at constant strides along output dimensions
and SCoP execution time is typically not affected by data values, this measure
is precise enough for our purpose. If it is the first call to the runtime or if the

Switchable Scheduling for Runtime Adaptation of Optimization 229

watching mode detected a performance variation, due to, e.g., changes on the
execution context or on the workload executed between two calls to the runtime,
the sampling mode is enabled. This mode switches quickly between versions to
detect the best performing one. Then a switch is performed to that version while
the runtime is set back to the watching mode. A very important property of this
strategy is that every computation contributes to the final result: no rollback is
necessary if a bad optimization decision has been made.

4 Selecting Pertinent Versions

A key aspect of our optimization strategy is the selection and the ordering of
the switchable versions to be part of the multi-version code. For this purpose
we rely on a dedicated version generation phase and on an extensive empirical
study of the version behavior.

To generate versions, we rely on the polyhedral compiler PoCC# which uses
both the Pluto algorithm [3] and the Letsee iterative optimization engine [11] to
compute efficient scheduling. Generating switchable versions is done by enforcing
additional constraints discussed in Section 3.1: from a base version, other versions
are generated by calling Letsee or Pluto with different strategies and /or tile sizes,
such that they share common output dimensions. Different scheduling may often
end up to the same executable code (a shifting on an output dimension may be
removed by a loop normalization by the compiler). Such versions are discarded.

Once a set of versions has been generated for a given input code, they are
evaluated separately by running them on pre-defined contexts. Contexts include
various architectures, data sizes and system workloads. One context is a com-
bination of these factors. Only the versions that are the best in at least one
context are considered to be selected. Our results show that they are still too
many. Some of them are performing the same way in several contexts: those
duplicates are detected and discarded (in our study, we accept a performance
loss of 10%). Finally to select a pre-defined maximum number of versions (in our
study, 8), we associate an “efficiency” coeflicient to each version on each context
(depending on how far it is from the best version) and we model and solve the
choice as a linear optimization problem to maximize the overall efficiency.

The order in which the selected versions are used during sampling by the
runtime described in Section 3.3 is critical: small loops are likely to be entirely
executed before the sampling is done. For this reason, best performing versions
in most contexts including small problem sizes are used for sampling first.

5 Experimental Results

We evaluate the switchable scheduling approach on a selection of realistic exe-
cution contexts. Experimental results demonstrate the ability of this technique
to generate programs that can adapt themselves to their environment. Overall,

4 http://pocc.sf.net

http://pocc.sf.net

230 L. Bagnéres and C. Bastoul

its geomean speedup over a fixed optimization of a state-of-the-art automatic
optimization and parallelization is 1.49 for our test cases.

Our experimental setup is three-dimensional. First, target architectures in-
cludes one ARM and several flavours of Intel x86 architectures: Olimex A20
ARM Cortex-AT7 dual-core, Intel Core2 Quad CPU Q9550 2.83GHz, Intel Core2
Quad CPU Q6600 2.40GHz and Intel Core2 Quad CPU Q8200 2.33GHz. This
selection notably spans different number of cores and cache sizes. Next, problem
size ranges are small and medium as they are defined in the target benchmarks.
Lastly, 5 workloads have been investigated: the target process may be running
alone, with low (one process) or high (one process per core) computation inten-
sive workload and with low or high memory access intensive workload.

We consider 12 benchmarks, typical compute-intensive kernels extracted from
the PolyBench suite®. Our selection focuses on kernels including one main loop
since it is the main target of our technique. We report below for all benchmarks
a short description. Column #versions gives the number of different versions that
have been generated using PoCC (duplicates have been removed); #best reports
the number of best versions reported in the 40 contexts; and #nodup removes
from the previous column the versions that behave in the same way as another
one if we accept up to a 10% performance loss. It illustrates that the best version
is indeed dependant on the execution context, but also that a limited number
of versions is enough most of the time, hence with a reasonable impact on the
generated code size.

benchmark description #versions #best #nodup
2mm Linear algebra (BLAS3) 40 9 2
adi Stencil (2D) 67 9 4
choleski Cholesky Decomposition 16 12 4
durbin Toeplitz system solver 23 17 4
fdtd-apml Stencil (3D) 50 10 2
gemm Matrix-multiply and addition 37 18 4
gramschmidt Gram-Schmidt decomposition 59 12 2
jacobi-1d Stencil (1D) 24 11 3
Jjacobi-2d Stencil (2D) 19 7 4
lu Matrix decomposition 19 8 2
mvt Matrix Vector Product and Transpose 16 8 2
seidel-2d Stencil (2D) 17 7 4

Figure 3 reports normalized mean performance for all execution contexts for
each benchmark, worst corresponds to the worse (context-wise) version, baseline
is the mean of all versions, roughly corresponding to the average performance a
random strategy is likely to provide, best corresponds to the best (context-wise)
solution, pluto is the default static Pluto (version 0.10) solution and switchable is
the switchable scheduling solution. Overall, the difference between baseline and
best with geomean 4.98 is the maximum speedup of the solution, it corresponds
to an iterative compilation strategy, a high potential already demonstrated by
previous work [12]. switchable corresponds to our solution with an overall ge-
omean speedup of 4.36 against a random strategy, including a sensible yet ac-
ceptable overhead of the switching strategy, and of 1.49 over the default Pluto
solution. size growth shows the compiled switchable scheduling kernel size growth

® http://polybench.sf.net

http://polybench.sf.net

Switchable Scheduling for Runtime Adaptation of Optimization 231

with respect to Pluto’s solution, a limited increase. Sampling on bad versions
may degrade performance significantly (e.g., gemm case). Also in jacobi-1d case,
our strategy has lower performance than Pluto. This corresponds to situations
where Pluto’s solution is good enough while the overhead of switchable schedul-
ing overcomes its benefits. We may complement our technique with a dynamic
test as Pradelle et al. suggested [13] to prevent using switchable scheduling in
such situation.

benchmark worst baseline best pluto switchable size growth
2mm 0.38 1 3.56 1.48 3.14 1.13
adi 0.13 1 4.46 2.98 4.08 1.07
choleski 0.74 1 1.89 1.35 1.52 1.02
durbin 0.25 1 2.14 1.74 1.90 1.04
fdtd-apml 0.08 1 2.77 2.19 2.61 1.07
gemm 0.31 1 8.42 1.39 5.70 1.04
gramschmidt 0.10 1 18.27 17.34 17.36 0.99
jacobi-1d 0.17 1 19.15 16.30 15.71 1.10
jacobi-2d 0.25 1 8.24 4.08 7.87 1.38
lu 0.24 1 4.42 3.02 4.82 1.04
mvt 0.55 1 2.28 1.54 2.12 1.06
seidel-2d 0.26 1 5.37 2.21 4.97 1.11

Fig. 3. Potential and Operational Performance Results (mean of all contexts, the
baseline is the mean performance of all versions in all contexts)

6 Related Work

The root of our work belongs to compiler optimization in the polyhedral model [7]
and loop versioning [4]. The Pluto algorithm is a state-of-the-art compiler tech-
nique relying on the polyhedral model to build complex loop transformations
with excellent parallelism-locality trade-offs using a target independent cost
model [3]. It has been coupled with iterative frameworks to optimize for specific
targets [12]. Those techniques create unspecialized or overspecialized optimiza-
tion which may not be adequate for various execution contexts.

Static compiler techniques have been used to help runtime systems to op-
timize dynamically. The ADAPT framework provides runtime generation and
specialization of code sections [18]. Because of the runtime overhead it fits well
to programs with large execution time while we are using static techniques as
much as possible to minimize runtime costs. Qilin provides adaptive mapping
for parallel programs [10]. Unlike our method, it is not addressing the dynamic
workload dimension of the execution context. Emani et al. proposed an adaptive
mapping technique which primarily targets dynamic workload variations [5]. Tt
impacts the OpenMP runtime behaviour whereas we target code restructuring.

Aggressive dynamic optimization techniques include thread-level speculation
[14,15]. They generate an optimistically optimized version and in case of mis-
take, they rollback to a conservative version. In comparison, we target a different
program class that can be analyzed precisely at compile time, and in case of a

232 L. Bagnéres and C. Bastoul

bad choice, no rolling back is necessary since every computation is useful by
construction. Dynamic optimization involving polyhedral compilation is emerg-
ing. EvolveTile is a framework to perform a dynamic tile size selection [16].
Our approach also supports such optimization but with more restrictions on tile
sizes and shapes because of the switchable scheduling class constraints. However,
our technique supports a wider range of optimizations. Pradelle et al. target the
same program class as our technique and involve versioning as well [13]. Their
approach is to use profiling to build predictive tests according to dynamic fac-
tors to choose the best version of a kernel before executing it. Our approach is
acting at a finer grain as we focus on switching from kernel versions during com-
putation. VMAD is an infrastructure for dynamic profiling with the unique ability
to discover static behavior, which is not visible at static compilation time [9].
VMAD supports dynamic version selection. Some forms of switchable scheduling
are possible within this framework and are under investigation.

7 Conclusion

This paper addresses the problem of taking advantage of the best optimization
while computing in an ever more dynamic environment, focusing on static con-
trol loop nests. Our proposal differs from just-in-time compilation approaches
which have to rely on low-overhead techniques as well as static compilation ap-
proaches that generate a code which can be either too generic or too specialized.
Instead, we propose a mixed static-dynamic scheme which builds on state-of-
the-art static polyhedral compilation techniques with empirical study to select
pertinent optimizations and a low-overhead runtime mechanism to switch to
the best optimization during computation, depending on the current execution
context. Our technique introduces a special class of optimization called switch-
able scheduling and a code generation method to build a program that takes
advantage of multiple such optimizations. Experimental evidence demonstrate
both the potential of this approach and its effectiveness at generating codes that
perform well on various environments.

Ongoing work includes a code generation technique to allow versions to lie
inside their own functions, to benefit from per-version low-level compiler opti-
mization options. More aggressive versioning and switchable-scheduling genera-
tion under time constraint are also under investigation.

References

1. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 2013 IEEE International Conference on Parallel Architecture and Compila-
tion Techniques, Juan-les-Pins, France, pp. 7-16 (September 2004)

2. Bodin, F., Kisuki, T., Knijnenburg, P.M.W., O’Boyle, M.F.P., Rohou, E.: Iterative
compilation in a non-linear optimisation space. In: W. on Profile and Feedback
Directed Compilation, Paris (October 1998)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Switchable Scheduling for Runtime Adaptation of Optimization 233

Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI 2008 ACM Conf. on
Programming language Design and Implementation, Tucson, USA (June 2008)
Byler, M., Davies, J.R.B., Huson, C., Leasure, B., Wolfe, M.: Multiple version
loops. In: International Conference on Parallel Processing (August 1987)

Emani, M., Wang, Z., O’Boyle, M.: Smart, adaptive mapping of parallelism in the
presence of external workload. In: 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pp. 1-10 (2013)

Feautrier, P.: Parametric integer programming. RAIRO Recherche Opéra-
tionnelle 22(3), 243-268 (1988)

Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. Int. J. of Parallel Programming 21(6), 389-420 (1992)
Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam,
O.: Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies. Int. J. of Parallel Programming 34(3), 261-317 (2006)
Jimborean, A., Mastrangelo, L., Loechner, V., Clauss, P.. VMAD: An Advanced
Dynamic Program Analysis & Instrumentation Framework. In: O’Boyle, M. (ed.)
CC 2012. LNCS, vol. 7210, pp. 220-239. Springer, Heidelberg (2012)

Luk, C.-K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: MICRO-42. 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pp. 45-55 (December 2009)
Pouchet, L.-N., Bastoul, C., Cohen, A., Cavazos, J.: Iterative optimization in the
polyhedral model: Part II, multidimensional time. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2008), Tucson, Ari-
zona, pp. 90-100. ACM Press (June 2008)

Pouchet, L.-N., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayap-
pan, P.: Combined iterative and model-driven optimization in an automatic paral-
lelization framework. In: SC 2010, New Orleans, USA (November 2010)

Pradelle, B., Clauss, P., Loechner, V.: Adaptive Runtime Selection of Parallel
Schedules in the Polytope Model. In: 19th High Performance Computing Sym-
posium - HPC 2011. United States, Boston (2011)

Rauchwerger, L., Padua, D.: The LRPD test: speculative run-time parallelization
of loops with privatization and reduction parallelization. In: Proceedings of the
ACM SIGPLAN 1995 Conference on Programming Language Design and Imple-
mentation, PLDI 1995, pp. 218-232. ACM, New York (1995)

Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The stampede approach to
thread-level speculation. ACM Trans. Comput. Syst. 23(3), 253-300 (2005)
Tavarageri, S., Pouchet, L.-N., Ramanujam, J., Rountev, A., Sadayappan, P.: Dy-
namic selection of tile sizes. In: 18th IEEE Int. Conf. on High Performance Com-
puting (HiPC 2011), Bangalore, India (December 2011)

Upadrasta, R., Cohen, A.: Sub-polyhedral scheduling using (unit-)two-variable-
per-inequality polyhedra. In: ACM Symposium on Principles of Programming Lan-
guages, POPL 2013, Rome, Italy, pp. 483-496 (2013)

Voss, M., Eigenmann, R.: ADAPT: Automated de-coupled adaptive program trans-
formation. In: Int. Conf. on Parallel Processing, pp. 163170 (2000)

Whaley, C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of soft-
ware and the ATLAS project. Parallel Computing 27(1-2), 3-35 (2000)

Wolfe, M.: High performance compilers for parallel computing. Addison-Wesley
Publishing Company (1995)

A New GCC Plugin-Based Compiler Pass
to Add Support for Thread-Level Speculation
into OpenMP

Sergio Aldea, Alvaro Estebanez,
Diego R. Llanos, and Arturo Gonzalez-Escribano

Dpto. Informatica, Universidad de Valladolid
Campus Miguel Delibes, 47011 Valladolid, Spain
{sergio,alvaro,diego,arturo}@infor.uva.es

Abstract. In this paper we propose a compile-time system that adds
support for Thread-Level Speculation (TLS) into OpenMP. Our solution
augments the original user code with calls to a TLS library that handles
the speculative parallel execution of a given loop, with the help of a new
OpenMP speculative clause for variable usage classification. To sup-
port it, we have developed a plugin-based compiler pass for GCC that
augments the code of the loop. With this approach, we only need one
additional code line to speculatively parallelize the code, compared with
the tens or hundreds of changes needed (depending on the number of
accesses to speculative variables) to manually apply the required trans-
formations. Moreover, the plugin leads to a faster performance than the
manual parallelization.

Keywords: Thread-Level Speculation, TLS, OpenMP, Source code gen-
eration, GCC plugin.

1 Introduction

The availability of multicore architectures allows users not only to run several ap-
plications at the same time, but also to run parallel code. However, the manual
development of parallel versions of existent, sequential applications is an ex-
tremely difficult task because it needs (a) an in-depth knowledge of the problem
to be solved, (b) understanding of the underlying architecture, and (c) knowl-
edge of the parallel programming model to be used. Many parallel languages
and parallel extensions to sequential languages have been proposed to exploit
the capabilities of modern multicore system. The most successful proposal in
the domain of shared memory system is OpenMP [1], a directive-based parallel
extension to sequential languages as Fortran, C, or C++, that allows the par-
allelization of user-defined code regions. OpenMP does not ensure the correct
execution of the code according to sequential semantics, making the program-
mer responsible for such tasks. Possible dependence violations that may occur
between iterations during execution need to be addressed by the programmers.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 234-245, 2014.
© Springer International Publishing Switzerland 2014

A New GCC Plugin to Support TLS into OpenMP 235

On the other hand, automatic parallelization offered by compilers only ex-
tracts parallelism from loops when the compiler can assure that there is no risk
of a dependence violation at runtime. Only a small fraction of loops falls into
this category, leaving many potentially parallel loops unexploited. Thread-Level
Speculation (TLS) techniques allow the extraction parallelism from fragments
of code that can not be analyzed at compile time, namely, the compiler can
not ensure that the loop can be safely run in parallel. TLS can deal with those
situations in which dependence violations may occur, leading the parallel loop
to correctly finalize its execution. The main problem of these techniques is that
the code needs to be manually augmented in order to handle the speculative
execution and monitor the possible dependences. Programmers have to modify
those accesses to variables that may lead to a dependence violation, also known
as speculative variables.

In our prior work [2], we proposed the idea of extending OpenMP to allow the
user to mark variables as speculative, and a compile-time system that enables the
automatic transformation of the code to support its execution by a TLS runtime
library. The transformations proposed are transparent to programmers, who do
not need to know anything about the TLS parallel model. These key aspects of
our proposal solve the problems stated above. Programmers only have to classify
variables depending on their accesses, letting our solution perform all the changes
needed in the source code. To do so, we have proposed a new OpenMP clause
(speculative) to handle those variables whose use may lead to any dependence
violation.

In this paper we present the development of a GCC plugin-based compiler pass
to give support to the new clause speculative into GCC OpenMP implementa-
tion. This pass transforms the loop with the corresponding omp parallel for
directive, inserting the runtime TLS calls needed to (a) distribute blocks of itera-
tions among processors, (b) perform speculative loads and stores of speculative
variables (pointed out using the new clause), and (c¢) perform partial commits of
the correct results calculated so far. The TLS runtime library used [3] is based
on the same design principles as the speculative parallelization library developed
by Cintra and Llanos [4,5].

Our experimental comparison between manual and automatic transformation
of the user code shows that the runtime performance of the code generated by our
compilation system is even faster than the performance returned by a manually-
transformed code. Besides, the number of lines that should be changed by the
programmer to speculatively parallelize a loop is reduced to only one, instead of
the significant amount of lines needed in a manual intervention, which depends
on the number of accesses to speculative variables inside the loop.

2 Thread-Level Speculation in a Nutshell

Speculative parallelization (SP), also called Thread-Level Speculation (TLS) or
Optimistic Parallelization [6] assumes that sequential code can be optimistically
executed in parallel, and relies on a runtime monitor to ensure that no depen-
dence violations are produced. A dependence violation appears when a given

236 S. Aldea et al.

Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)
(iteration 1, x = 1) (iteration 2, x = 1) (iteration 3, x = 2) (iteration 4, x = 2)
t0 (a) Speculative stores plus detection of dependence violations (Time t3: thread 1 detects no dependence violations)
-
t1 L+:alVar1 = SV[x] t2 (Time t6: thread 1 detects no dependence violations) o
-

Time t10: Thread 3 detects violation: thread 4 squashed

sV[xll = LocalVar2
- 4 LocalVarl = SV[x]

t6 (:S"‘I’[-};j:l = LocalVar2

t6
t7 Localvarl = SV[x]
8 LocalVarl = SV[x]
< t9 + sV[x] = LocalVar2
(Time t4: Thread 2 forwards updated value for sv[1] from thread 1 110 4=(SV[x])= LocalVar2
Reference (Time t8: Thread 3 forwards value of sv[2] from reference copy)
(

copy of

2 Time t7: Thread 4 forwards value of sv[2] from reference copy)
sv|

(b) Speculative loads with most-recent value forwarding

Time —¢_ —h —*7

\l (c) In—order commit of data from successfully—finished threads

Fig. 1. Example of speculative execution of a loop and summary of operations carried
out by a runtime TLS library

thread generates a datum that has already been consumed by a successor in the
original sequential order. In this case, the results calculated so far by the suc-
cessor (called the offending thread) are not valid and should be discarded. Early
proposals [7,8] stop the parallel execution and restart the loop serially. Other
proposals stop the offending thread and all its successors, re-executing them in
parallel [4,9,10,11].

Figure 1 shows an example of thread-level speculation. The figure represents
four threads executing four consecutive iterations, and the sequence of events
when the loop is executed in parallel. The value of x was not known at compile
time, so the compiler was not able to ensure that accesses to the SV structure do
not lead to dependence violations when executing them in parallel. Note that,
at runtime, the actual indexes of SV[x] are known.

Speculative parallelization works as follows. Each thread maintains a version
copy of the entire SV vector, called the speculative data structure. At compile
time, all reads to SV are replaced by a function that performs a speculative load.
This function obtains the most up-to-date value of the element being accessed.
This operation is called forwarding. If a predecessor (that is, a thread executing
an earlier iteration) has already defined or used that element then the value is
forwarded (as Thread 2 does in Fig. 1). If not, then the function obtains the
value from the main copy of the vector (as Thread 3 does in the figure).

Regarding modifications to the shared structure, all write operations should be
replaced at compile time by a speculative store function. This function writes the
datum in the version copy of the current processor, and ensures that no thread
executing a subsequent iteration has already consumed an outdated value for this
structure element, a situation called “dependence violation”. If such a violation
is detected, the offending thread and its successors are stopped and restarted.

If no dependence violation arises for a given thread, it should commit all the
data stored in its version copy to the main copy of the speculative structure.
Note that commits should be done in order, to ensure that the most up-to-date

A New GCC Plugin to Support TLS into OpenMP 237

#tpragma omp parallel for default(none) private(i, Q, aux) speculative(a)
for (i = 0; i < MAX; i++) {
Q=1i% (MAX) + 1;
aux = a[Q-1];

Q = (4 * aux) % (MAX) + 1;
a[Q-1] = aux;

Fig. 2. Example of FOR loop annotated with the speculative clause

values are stored. After performing the commit operation, a thread can receive
a new iteration or block of iterations to continue the parallel work.

Finally, the original loop to be speculatively parallelized should be augmented
with a scheduling method that assigns to each free thread the following chunk
of iterations to be executed. If a thread has successfully finished a chunk, it will
receive a brand new chunk not executed yet. Otherwise, the scheduling method
may assign to that thread the same chunk whose execution had failed, in order
to improve locality and cache reutilization.

In short, at compile time TLS requires that the original code be augmented to
perform speculative loads, speculative stores, and in-order commits. In addition,
it also requires that the loop structure be rearranged in order to follow the re-
execution of squashed operations. Without computational support, this is a task
that programmers have to carry out manually. Our plugin solves this limitation,
automatically performing all these changes required by the TLS runtime library
that gives support. Programmers just need to use the new OpenMP clause we
have proposed to point out which variables may lead to a dependence violation.

3 New OpenMP Clause: speculative

The new OpenMP clause we defined 2] is called speculative, and it needs to
be used as part of a parallel for directive. The new clause is used as follows,
where 1ist contains variables that may lead to any dependence violation:

#tpragma omp parallel for speculative (list)
for-loop

With this extension, programmers are able to write OpenMP programs as
usual, but annotating those variables that could lead to a dependence violation
as speculative. With this method, programmers do not have to take care of
handling these violations, being the speculative engine the responsible of such
task. Once a programmer annotates each variable to its type, the plugin aug-
ments the code to add support for the TLS runtime library.

Figure 2 shows an example of the use of the proposed clause. Variable i is
private, since it is the variable that controls the iterations of the FOR loop.
Variables Q and aux are private, because they are always written before being
read in the context of an iteration. Finally, variable a is speculative, because

238 S. Aldea et al.

Front End }{ Middle End * { Back End’;

Parsers Final Code
I C_H_’W)A-EGENERIC g Goreration T{Assembly}

Fig. 3. GCC Compiler Architecture [12,13] simplified. The main OpenMP related com-
ponents, highlighted in grey, are the C, C++ and Fortran parsers, and the GIMPLE
IR level. The black box represents the location of our plugin pass.

Plugin Pass

5 Optimizations
GIMPLE]—'—» + SSA i

accesses to this variable can lead to dependence violations. Eventually, a partic-
ular iteration will read from a a non-updated value and therefore the execution
will be incorrect. As we have seen in Sect. 2, a speculative scheme would allow
this loop to finish correctly.

4 Parsing the New speculative Clause

Although the plugin mechanism enables us to perform all the changes needed
by the TLS runtime library, plugins do not allow the extension of the parsed
language. Therefore, adding a new OpenMP clause recognized by GCC requires
not only the creation of a plugin, but also modifying the GCC code itself. In
order to parse the new clause speculative, we have extended the GNU OpenMP
(GOMP), an OpenMP implementation for GCC. The main parts of the GCC
architecture related within OpenMP are highlighted in grey in Fig. 3. GOMP has
four main components [14]: parser, intermediate representation, code generation,
and the runtime library called 1ibGOMP. In relation to GOMP, we have focused
on modifying its parsing phase and the intermediate representation (IR). The
generation of new code to support TLS is located in the plugin developed, and
mainly this new code consists of calls to the TLS library functions needed for
the speculative execution.

The parser identifies OpenMP directives and clauses, and emits the corre-
sponding GENERIC representation. We have modified the C parser and the
IR to add support for the new clause speculative. First, we have created the
GENERIC representation of the new clause like other standard clauses. Then,
the compiler has been prepared to recognize and parse the clause as part of the
parallel loop construct. When the new clause has been parsed and the IR is gen-
erated, our plugin detects the clause and starts all the transformations needed
on the code.

5 Plugin-Based Compiler Pass Description

Once the new clause proposed is recognized by GCC, programmers can set the
speculative variables, and the plugin developed can augment the original code.

A New GCC Plugin to Support TLS into OpenMP 239

Original annotated code Code generated

1 —> specinit();

| —»omp_set_num_threads(T);

#pragma omp parallel for \ It —» specstart(MAX);

private(i, Q, aux) \ #pragma omp parallel for private(i, Q, aux) \

speculative(a) - - - — — — - 4 — private(engine_vars) shared(engine_vars, a)
{
for (i=0;i < MAX; i++) { — — — — A - > initSpecLoop(a, 1);
Q =i% (MAX) + 1; Q =i% (MAX) + 1;
aux=a[Q-1];, - - - - - - — — —» specload(aux, a, Q-1);
Q = (4 * aux) % (MAX) + 1; Q = (4 *aux) % (MAX) + 1;
al[Q-ll=aux; — — — — — — — — —» specstore(a, Q-1, aux);
) - - - -——---=-—-=-—- - - - » endSpecLoop(a, MAX);
}

Fig.4. Code of Fig. 2 annotated and the resulting, transformed pseudo-code.
initSpecLoop() and endSpecLoop() are macros that expand to more code, hidden
here for legibility reasons.

The use of plugins provides several advantages, such as faster building of proto-
types, easier modifications and contributions, and the use of GCC as a research
compiler. Using plugins programmers can load external shared modules, which
are inserted as new passes into the compiler. We will take advantage of this
feature to develop our plugin and add support to TLS into OpenMP. We have
chosen to modify GCC because it is a mainstream mature compiler, and we ex-
pect that extending GCC functionalities will have a higher impact. Moreover,
as long as GCC supports more than 30 architectures, this increases the compat-
ibility of our proposal.

The new pass is added once the compiler has transformed the code into GIM-
PLE, and just before GCC does the first pass related to OpenMP (omplower).
Therefore, our pass is added before pass_lower_omp in passes.c. In this point,
we have the code in a GIMPLE representation, and the FOR-loop marked with
the omp parallel for directive preserves all the clauses written by the pro-
grammer. Therefore, we have the information about which variables are shared,
private, and speculative, the latter thanks to the new clause proposed. After
this pass, GCC processes speculative variables as shared, while their handling
as speculative will be carried out at runtime by the TLS library.

Figure 4 shows a brief example of the transformations made by the plugin.
The parser detects the new speculative clause, and the new compiler pass au-
tomatically performs all the transformations needed to speculatively parallelize
the loop. If the plugin does not find the speculative clause on the pragma,
the semantic of the loop remains identical to any other standard OpenMP loop.
With the list of variables and data structures that should be speculatively up-
dated, the plugin replaces each read of one of these variables or data element
with a specload() function call. Similarly, all write operations to speculative
variables are replaced with a specstore() function call. Loads or stores in-
volving other variables do not require additional changes in the code, since all
flavors of private and shared variables keep their respective semantics in the
context of a speculative execution. The plugin also adds all the structures and
functions needed to run the TLS system that parallelize the code. This process is

240 S. Aldea et al.

completely transparent to programmers, shielding them from the intricacy of the
underlying speculative parallelizing model. They only have to label the variables
involved in the target loop as private or shared, as with any other OpenMP pro-
gram, and label as speculative those variables that can lead to any dependence
violation.

Once the plugin has transformed the loop, GCC operation continues with the
next passes. When the compilation ends, the resulting binary file is prepared to
run speculatively.

5.1 Interface with the TLS Runtime Library

The plugin-based compiler has to augment the code with the functions and
structures needed for the speculative execution, and defined by the TLS runtime
library. The library used [3] is largely based in Cintra’s and Llanos’ work (see
[4,5] for details). The plugin has to replace accesses over speculative variables
with specstore() or specload() functions. This task requires the plugin to
detect code lines where a write and/or read is applied, to extract the type of
the speculative variable or the particular field of an speculative structure, and to
perform the changes needed, including the addition of new variables to handle
the temporal values required. The plugin is also able to detect reductions applied
on speculative variables, replacing them by the appropriate function calls to the
TLS runtime library that handle them.

The TLS runtime library also requires other functions and structures, some
of them sketched in Fig. 4, that the plugin has to correctly insert into the code.
Regarding the original loop, the plugin replaces the parallelized loop with a
new loop that drives the speculative execution. This new loop iterates over the
threads, and has the same body as the original, although it is augmented with
extra code that ensures the correct distribution of iterations over the threads,
and commits the data stored in the speculative variables. The definition of the
new loop and the code inserted before the body of the original loop is gathered
in the macro initSpecLoop() (Fig. 4) for simplicity. The code lines which are
required to be inserted after the body of the original are gathered in the macro
endSpecLoop().

Besides modifying the target loop and its body, the plugin also adds three
functions before the loop. The first one, specinit (), initializes the TLS run-
time library, and it has to be called once in a program. Therefore, the plu-
gin detects the main function of a program, and adds the call to specinit()
as the first statement. The other two functions required are specstart() and
omp_set_num_threads (), which are always placed before each parallelized loop.
specstart () initializes the execution of the following parallel loop, while omp_-
set_num_threads () set the number of threads for its parallel execution.

5.2 Handling Complex Statements

The plugin is able to handle all definitions and uses of scalar variables, not only
simple assignments. This includes dealing with complex statements, that are

A New GCC Plugin to Support TLS into OpenMP 241

required to maintain the same order in which the multiple speculative loads and
stores are executed. The plugin first resolves the loads, creating new temporal
variables that take part of the expression that assign a value to the speculative
variable. After replacing the loads for the corresponding specload(), the plugin
handles the store into the speculative variable by placing a specstore(). An
example of this situation is a writing into a speculative array with a speculative
variable as index.

Programmers may write other constructs that the plugin can deal with, such
as assignments from one pointer to another, accesses involving directions or the
data pointed by the pointer, assignments between entire data structures or only
fields of those structures, and speculative variables involved in casting operations.

5.3 Using the Plugin to Compile the User Code

From the point of view of programmers, to speculatively parallelize a source
code with our system they only have to add an OpenMP parallel loop directive
and set a few parameters to the compiler. First, programmers should add the
OpenMP directive in the target loop, and classify its variables according to their
usage in private and its variants, shared, speculative.

Second, to compile the program, programmers should indicate the size of the
block of iterations that will be issued for speculative execution, as well as the
number of threads they want to launch. We have developed a wrapper script
that launches the compilation of the plugin plus the speculative engine, and it
is run as follows:

$ atlas -threads T -block B -c example.c

Just by using the speculative clause, a programmer can speculatively paral-
lelize a code, while the rest of transformations needed are transparently per-
formed by the plug-in and the compiler.

6 Validation

In order to check the correctness of our plugin and the code that it generates, we
have developed a battery of regression tests. These regression tests include more
than 50 loops with one or more speculative variables, scalar variables, pointers,
elements from multidimensional arrays, or elements from data structures. They
also cover situations with speculative variables that have different types, and
loops executing a number of iterations that are variable and defined in runtime.
These regression tests are developed with the aim of covering possible situations
that we can find in a source code, allowing us to check the correction of the
plugin before addressing real applications. One of these tests is shown in Fig. 5,
where we check the correct operation of the plugin with speculative accesses
over variables with different sizes, and speculative accesses to data structures,
including assignments between entire structures.

We have also tested the plugin with real-word applications that are not par-
allelizable at compile time due to several data dependencies, requiring runtime

242 S. Aldea et al.

1: int i, j, array[MAX], array2[MAX];

2: struct card{ int field; };

3: struct card pl = {3}, p2 = {99999}, p3 = {11111};

4: char aux char = ’a’;

5: double au_x_double = 3.435;

6: #pragma omp parallel for default (none) private(i,j) shared(arrayl, p2) \
7: speculative(pl, p3, aux char, aux_double, array2)

8 for (i=0;i<NITER; i++){

9: for (j=0;j<NITER; j++) {

10: if (i <= 1000) pl.field = array[i % 4] + j;

11: else array2[i % 4] = pl.field;

12: if (i > 2000) aux_char =i %20 + 48 + aux_ char % 48;

13: else aux__char =i % 20 + array[i % 4] % 10 + 48;

14: if (i > 1500) aux_double = array[i % 4] / (i4+1) + aux_double;
15: else array2[i % 4] = (int) (aux_double / i*j) + (array2[(i+j) % 4] + i*j) % 1234545;
16: if (i*j > 10000) pl = p2; else p3 = pl;

17:

18: }

Fig. 5. Example of the kind of situations that the plugin can deal with

speculative parallelization. These applications are the 2-dimensional Convex Hull
problem (2D-Hull) [15], the Delaunay Triangulation using the Jump-and-Walk
strategy [16], the 2-dimensional Minimun Enclosing Circle (2D-MEC) prob-
lem [17], and a C implementation of TREE [18]. The plugin is able to spec-
ulatively parallelize the target loops in these benchmarks correctly.

7 Relative Performance and Programmability

Automatic parallelization moves the workload from the programmer to the com-
piler. This is a great deal if the performance achieved by the automatic approach
is as good as the obtained by the manual one. In Table 1 we summarizes the
relative performance of both automatic and manual approaches. Note that the
numbers are not the speedups obtained, but their relative comparison. The ex-
perimental results show that the automatic transformation leads to a faster code
than the one obtained by manually replacing accesses to speculative variables
with function calls. The reason is that the manual transformation of the source
code may prevent the application of certain compiler optimizations. In contrast,
our automatic transformation system works with the GIMPLE intermediate rep-
resentation, after the first phases of the compiler have been triggered. The per-
formance achieved by the applications parallelized using the speculative clause
is 24% faster than the performance scored by the manual parallelization on geo-
metric average. The maximum speedup achieved in each application is shown in
Table 1. Data have been obtained running each experiment three times, and then
obtaining the average. Experiments were carried out on a 64-processor server.
Regarding programmability, using the proposed clause dramatically reduces
the number of lines required in comparison with the former, manual way of

A New GCC Plugin to Support TLS into OpenMP 243

Table 1. Number of lines required in both automatic and manual approaches, their
relative performance, and the maximum speedup achieved for each application, where
'p’ indicates the number of processors. 2D-Hull and MEC are executed with a 10M-
points dataset, Delaunay with a 1M-points dataset, and TREE with a dataset of 4096
nodes.

of lines Relat. perfor. by # of proc. Maximum

Application Auto Man. 8 16 32 48 64 Speedup
2D-Hull 1 139 1.301 1.288 1.404 1.287 1.205 12.97 (56p)
Delaunay 1 191 1.261 1.255 1.212 1.106 1.122 3.11 (32p)
2D-MEC 1 50 1.335 1.369 1.416 1.285 1.410 2.63 (24p)

TREE 1 42 1.125 1.106 1.077 1.198 1.218 6.47 (40p)

Geom. Mean 1 86 1.253 1.251 1.269 1.217 1.234 5.12

parallelizing a code using the TLS library. Parallelizing a code with the pro-
posed speculative clause only requires one line of code —the modified OpenMP
pragma—, while parallelizing the same code manually requires tens to thousands
new lines, depending on the number of accesses to speculative variables.

Such reduction in the number of required lines is not the only advantage.
Parallelizing the code with the plugin only requires classifying the variables
within the loop according to their usage, whereas the manual alternative is not
only a hard, error-prone task, but also a deep knowledge of the TLS library.

8 Related Work

As far as we know, there are not proposals to extend OpenMP to support
software-based TLS. Instead, in the literature there are some approaches that
extend OpenMP to support Transactional Memory (TM) [19], and hardware
speculation, such as the pragma implemented in the IBM C/C+-+ compiler for
Blue Gene/Q [20]. Early works propose the use of pragma directives, OpenMP-
based [21] or not [22], to enable speculative parallelism at a hardware level.
However, these proposals do not define any particular new OpenMP directive.

More recently, proposals are focused on TM. Proposals such as [23,24,25]
extend OpenMP to support TM, providing new directives and clauses in order
to mark and wrap critical sections A similar proposal is Soc-TM [26], but focused
on TM programming for embedded systems.

Although some of these proposals implement the code generation required,
as far as we know, there are not any specific work that proposes or implements
OpenMP extensions to support Thread-Level Speculation. This empty hole is
what we aim to fill with this paper, proposing a new OpenMP clause, and a
plugin-based compiler pass that supports the TLS runtime library [3] based on
the technique that Cintra and Llanos’ speculative engine [4,5] implements.

Other research groups have also experimented with the GCC (since version
4.5) plugin mechanism. Among them, some plugins are designed to make the
development of GCC plugins easier than with the standard procedure, such as

244 S. Aldea et al.

GCC Melt [27], MilePost GCC [28], or a GCC Python plugin [29]. We decided
to develop our transformation system as a GCC plugin in order to avoid depen-
dencies to third-party, not-so-mature systems.

9 Conclusions

We present a compile-time system that automatically adds the code needed to
handle the speculatively parallel execution of a loop, and uses a new OpenMP
clause (speculative) to find those variables that may lead to a dependence vio-
lation. We have used the plugin mechanism provided by GCC to support the new
OpenMP clause. Using this clause, programmers can point out the speculative
variables, and they do not need to know anything about the speculative paral-
lelization model. In order to parallelize a code, programmers are only required to
add one line (the OpenMP pragma plus the speculative clause), instead of the
significant amount of lines required by the manual parallelization, which depends
on the number of accesses to speculative variables. Moreover, the performance
of the generated codes is even faster that the manually parallelized codes.

We expect that implementing this new clause in a mainstream compiler, to-
gether with the automation of the whole process of the speculative paralleliza-
tion, will help Thread-Level Speculation to be mature enough for its inclusion
in mainstream compilers.

Acknowledgments. This research is partly supported by the Castilla-Leon
Regional Government (VA172A12-2, PIRTU); Ministerio de Industria, Spain
(CENIT OCEANLIDER); MICINN (Spain) and the European Union FEDER
(MOGECOPP project TIN2011-25639, CAPAP-H3 network TIN2010-12011-E,
CAPAP-H4 network TIN2011-15734-E).

References

1. Chandra, R., Menon, R., et al.: Parallel Programming in OpenMP, 1st edn. Morgan
Kaufmann (October 2000)

2. Aldea, S., Llanos, D.R., Gonzalez-Escribano, A.: Support for thread-level specu-
lation into OpenMP. In: Chapman, B.M., Massaioli, F., Miiller, M.S., Rorro, M.
(eds.) IWOMP 2012. LNCS, vol. 7312, pp. 275-278. Springer, Heidelberg (2012)

3. Estebanez, A., Llanos, D.R., Gonzalez-Escribano, A.: New Data Structures to Han-
dle Speculative Parallelization at Runtime. In: Proceedings of HLPP 2014 (2014)

4. Cintra, M., Llanos, D.R.: Toward efficient and robust software speculative paral-
lelization on multiprocessors. In: Proceedings of PPoPP 2003 , pp. 13-24 (June 2003)

5. Cintra, M., Llanos, D.R.: Design space exploration of a software speculative par-
allelization scheme. IEEE Trans. Parallel Distrib. Syst. 16(6), 562-576 (2005)

6. Kulkarni, M., Pingali, K., et al.: Optimistic parallelism requires abstractions. In:
Proceedings of PLDI 2007, pp. 211-222 (2007)

7. Gupta, M., Nim, R.: Techniques for speculative run-time parallelization of loops.
In: Proc. of the 1998 ACM/IEEE Conference on Supercomputing, pp. 1-12 (1998)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A New GCC Plugin to Support TLS into OpenMP 245

Rauchwerger, L., Padua, D.: The LRPD test: Speculative run-time parallelization
of loops with privatization and reduction parallelization. In: Proceedings of PLDI
1995, pp. 218-232 (1995)

Dang, F.H., Yu, H., Rauchwerger, L.: The R-LRPD test: Speculative parallelization
of partially parallel loops. In: Proceedings of 16th IPDPS, pp. 20-29 (2002)
Xekalakis, P., Ioannou, N., Cintra, M.: Combining thread level speculation helper
threads and runahead execution. In: Proceedings of ICS 2009, pp. 410-420 (2009)
Gao, L., Li, L., et al.: SEED: A statically greedy and dynamically adaptive approach
for speculative loop execution. IEEE Trans. Comput. 62(5), 1004-1016 (2013)
GNU Project: GCC internals (2013), http://gcc.gnu.org/onlinedocs/gccint/
Novillo, D.: GCC an architectural overview, current status, and future directions.
In: Proceedings of the Linux Symposium, Tokyo, Japan, pp. 185200 (September
2006

Novi%lo, D.: OpenMP and automatic parallelization in GCC. In: Proceedings of the
2006 GCC Developers’ Summit, Ottawa, Canada (2006)

Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental
constructions. Comput. Geom. Theory Appl. 3(4), 185-212 (1993)

Devroye, L., Miicke, E.P., Zhu, B.: A note on point location in Delaunay triangu-
lations of random points. Algorithmica 22, 477-482 (1998)

Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.)
New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359-370.
Springer, Heidelberg (1991)

Barnes, J.E.: TREE. Institute for Astronomy. University of Hawaii (1997),
ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode/

Larus, J., Kozyrakis, C.: Transactional memory. Commun. ACM 51(7), 80-88 (2008)
IBM: Thread-level speculative execution for C/C++. IBM XL C/C++ for Blue
Gene, Tech. report (2012)

Packirisamy, V., Barathvajasankar, H.: OpenMP in multicore architectures. Uni-
versity of Minnesota, Tech. Rep (2005)

Martinez, J.F., Torrellas, J.: Speculative synchronization: Applying thread-level
speculation to explicitly parallel applications. In: Proceedings of ASPLOS 2002,
pp. 18-29 (2002)

Baek, W., Minh, C.C., et al.: The OpenTM transactional application programming
interface. In: Proceedings of 16th ISCA, pp. 376-387. IEEE Computer Society (2007)
Milovanovié, M., Ferrer, R., Unsal, O.S., Cristal, A., Martorell, X., Ayguadé, E.,
Labarta, J., Valero, M.: Transactional memory and OpenMP. In: Chapman, B.,
Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007.
LNCS, vol. 4935, pp. 37-53. Springer, Heidelberg (2008)

Wong, M., Bihari, B.L., de Supinski, B.R., Wu, P., Michael, M., Liu, Y., Chen, W.:
A case for including transactions in OpenMP. In: Sato, M., Hanawa, T., Miiller,
M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132,
pp. 149-160. Springer, Heidelberg (2010)

Ferri, C., Marongiu, A., et al.. SoC-TM: Integrated HW/SW support for
transactional memory programming on embedded MPSoCs. In: Proceedings of
CODES+ISSS 2011, pp. 39-48. ACM Press (2011)

Starynkevitch, B.: MELT: A translated domain specific language embedded in the
GCC compiler. In: Proceedings of IFIP DSL 2011, pp. 118-142 (2011)

Fursin, G., Kashnikov, Y., et al.: Milepost GCC: machine learning enabled self-
tuning compiler. Int’l. Journal of Parallel Programming 39(3), 296-327 (2011)
Malcolm, D.: GCC python plugin v0.12.(2013),
https://fedorahosted.org/gcc-python-plugin/ (last visit: May 2014)

http://gcc.gnu.org/onlinedocs/gccint/
ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode/
https://fedorahosted.org/gcc-python-plugin/

Improving Read Performance with Online
Access Pattern Analysis and Prefetching

Houjun Tang!:2, Xiaocheng Zou'2, John Jenkins'3, David A. Boyuka 112,
Stephen Ranshous!2, Dries Kimpe?, Scott Klasky?,
and Nagiza F. Samatoval:?*

! North Carolina State University, Raleigh, NC 27695, USA
2 Qak Ridge National Laboratory, Oak Ridge, TN 37830, USA
3 Argonne National Laboratory, Argonne, IL 60439, USA
samatova@csc.ncsu.edu

Abstract. Among the major challenges of transitioning to exascale in
HPC is the ubiquitous I/O bottleneck. For analysis and visualization ap-
plications in particular, this bottleneck is exacerbated by the write-once-
read-many property of most scientific datasets combined with typically
complex access patterns. One promising way to alleviate this problem is
to recognize the application’s access patterns and utilize them to prefetch
data, thereby overlapping computation and I/O. However, current research
methods for analyzing access patterns are either offline-only and/or lack
the support for complex access patterns, such as high-dimensional strided
or composition-based unstructured access patterns. Therefore, we propose
an online analyzer capable of detecting both simple and complex access
patterns with low computational and memory overhead and high accu-
racy. By combining our pattern detection with prefetching, we consistently
observe run-time reductions, up to 26%, across 18 configurations of PIO-
Bench and 4 configurations of a micro-benchmark with both structured
and unstructured access patterns.

1 Introduction

Scientists who work with simulations such as S3D combustion [1] and GTS
core plasma fusion [2] spend a significant amount of time analyzing the mas-
sive amount of data generated. With the increasing gap between CPU and 1/0,
the performance of scientific analysis and visualization applications are often
I/O-bound [3], thus read performance becomes a key area for optimization. An
essential component of this process is to better understand the application’s I/O
behavior or its access patterns.

An access pattern is a sequence of accesses that exhibits a certain regularity.
Many common access patterns occur as a result of iterative computations [4].
For example, if a matrix is stored in row-major format, reading consecutive
rows of the matrix results in a contiguous pattern, whereas reading one column
induces a simple-strided pattern with the file pointer incremented by the same
amount (row size) between each request. Scientific applications exhibit these

* Corresponding author.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 246-257, 2014.
© Springer International Publishing Switzerland 2014

Improving Read Performance with Online Access Pattern Analysis 247

patterns and others, including higher dimensional strided access patterns and
composition-based or correlation-based unstructured access patterns.

Recognizing access patterns in an application is a key to potentially reducing
future file read time. Scientific applications often read and analyze data alter-
nately, thus by overlapping the two phases with prefetching can significantly
reduce the overall execution time of the application. Accurate prefetching can
be achieved with access pattern analysis.

In order to achieve high prefetching accuracy, it is necessary to acquire com-
prehensive knowledge of the application’s access patterns. Various methods have
been proposed [5-8], however, these tools are all offline-based and not capable
of detecting complex access patterns (such as composition-based unstructured
access patterns). Offline-based tools assume access history of one or more pre-
vious runs beforehand, which is unrealistic to obtain for scientific applications
nowadays that run for hours or even days. In addition, offline based algorithms
cannot be directly applied to online analysis as 1) they assume the presence
of full access history, which may not fit in the memory; and 2) they detect a
pattern after its full occurrence, which provides no useful information for the
current optimization strategy.

We propose a method for online analysis that requires no prior information
of the application. To the best of our knowledge, our method is the first one
capable of performing online analysis of various complex access patterns. The
contributions of this work are as follows:

Online, Low-Overhead Pattern Analysis with High Accuracy. We adopt
a “pattern growth” approach and efficient pattern detection algorithms to enable
online analysis with overhead less than 5% in all test cases. The overall run-time
reduction is up to 26% via pattern-aware prefetching with accuracy up to 99%;

Support for Various Access Patterns. We develop an analyzer capable of de-
tecting structured access patterns as well as composition-based and correlation-
based unstructured access patterns;

Low Memory Footprint. To retain low memory footprint during run-time, we
merge I/O traces with their corresponding access patterns in a compact format
and keep a limited number of recent trace records in memory.

2 Background

Many I/O access patterns classification approach have been proposed [5, 9, 10].
Compared with them, we additionally support unstructured access pattern. Al-
though the access pattern classification is similar, the algorithms to detect the
patterns are different for offline and online analysis, as explained in Section 3.1.

2.1 Structured Access Pattern

Structured access patterns include contiguous, simple-strided, and kd-strided
patterns. Fig. 1 illustrates the former two kinds. A contiguous pattern occurs
when consecutive read requests are accessing a contiguous region of data in

248 H. Tang et al.

a file. It can be further divided into uniform and variable size patterns. For
strided patterns, a stride is the difference between starting offsets of consecutive
requests, and is fixed within each dimension. Simple-strided pattern is a special
case of kd-strided when & = 1. A kd-strided pattern can be viewed as a series
of k — 1d-strided segments with its k£ dimensional stride. For example, a 2d-
strided pattern with the following offsets: {1, 3, 5, 11, 13, 15, 21, 23, 25}, is
composed of three simple-strided segments {1,3,5}, {11,13,15}, and {21,23,25},
with the second dimensional stride of 10. K d-strided pattern is often found when
accessing a sub-volume or sub-plane of multi-dimensional data.

2.2 Unstructured Access Pattern

Unstructured access patterns are accesses that exhibit patterns with less reg-
ularity compared to structured ones. The number of accesses is linear to the
number of parameters representing them, while exponential for structured ones.
There are two particular instances that we found useful for scientific applications,
which are referred as composition-based and correlation-based unstructured ac-
cess patterns. The composition-based patterns capture the repeating intervals
between structured patterns or individual accesses, which is further explained
in Section 3.3. Previous research in [7] exploited block correlations in storage
systems. We include this kind of pattern and referred it as correlation-based
unstructured access patterns. For example, from an offset sequence of {10, 20,
30, 40, 50, 10, 70, 20, 30, 80, 10, 40, 20, 30}, the correlation-based pattern is
{10]20,30} and {20]30}, meaning that the data starting from offset 20,30 is
frequently accessed after 10, while 30 is often accessed after 20. The threshold
value of frequent accesses is 3, which is the number of times an offset occurs to
be considered in a pattern. The request size is omitted for simplicity.

3 Method

Our online analyzer performs access pattern analysis of applications during their
run-time and utilize the pattern information to guide prefetching for better per-
formance. Fig. 2 illustrates the overview of our framework.

R: Read
| RO | R1L | R2 | R3 | R4 | RS | R6E | R7 |
@ CITTTTTITITTTTI I I I I
| RO | R1 | R2 | R3 | R4 |
@ CLTTTTTIITTTI I I Il
| RO | | R1 | | R2 | | R3 |
[| I |

Fig. 1. Each block represents 1 byte of data stored in row-major format, with shaded
blocks being accessed. (a) Contiguous with uniform size: 8 requests (R0 to R7) each
access 4 bytes. (b) Contiguous with variable size: 5 requests with sizes of 4,8,4,8,8
bytes. (c) Simple-strided: 4 requests each access 4 bytes of data with 8 bytes between
the starting offsets of consecutive requests.

Improving Read Performance with Online Access Pattern Analysis 249

3.1 Online Access Pattern Analysis

We adopt a rule-based model for access pattern detection in our online analyzer,
which is the key component the framework. We maintained a “pattern library”
that contains a collection of rules. These rules provide a concise description of the
access sequences that are recognized as access patterns. The input is a sequence
of accesses and the output is the detected access patterns and corresponding
prefetching instructions.

Each time a read request is traced, the analyzer first performs a lookup in the
pattern history to decide whether to activate a previously detected pattern and
start prefetching or use it for analysis. The pattern analysis procedure includes
the following steps: 1) create a new pattern if current records in the trace buffer
match any detection rules in the pattern library; 2) “grow” the current pattern
if the following accesses belong to it and inform the prefetcher to prefetch data
that are predicted to be accessed next; 3) commit the access pattern to the
pattern history when the new access do not fit in; 4) attempt to coalesce the
current pattern with previous structured ones to form a higher level pattern; 5)
look back in the pattern history and check if there is any pattern that matches
the current one. More details of this procedure are explained in later examples
of structured and unstructured pattern analysis.

Unlike offline analysis with a complete access history, online analysis must
be incremental to detect a pattern during its occurrence. Thus we adopt the
above “pattern growth” approach: as new accesses arrive, they are compared to
the current active pattern before being inserted to the trace buffer. The pat-
tern library consists of detection and coalesce rules for detecting structured and
unstructured access patterns. The difference between them are the objects they
operate on: detection rule operates on offset of accesses while coalesce rule op-
erates on patterns. The analysis is performed periodically instead of upon every
new request to reduce computation overhead. Three threshold values (Tsiryet,
Teorrs and Teomyp) are used to trigger the analysis of structured, correlation-based
unstructured, and composition-based unstructured access patterns.

Tracer Analyzer l Prefetcher | 5
MPI §'.g (—_Pattern Detector ﬁg 2
[off, size, ...] | €0 A | A 2 x
e Structured [Unstructured EE = Par_allel
App ROMIO ’ Patterns Patterns 8 File
8 i System
g (Pattern History Y
=

ADIO

ADIO_Read

Fig.2. An overview of our framework: each time a read request is made, the tracer
extracts the read request’s information while it is being passed to the prefetcher. The
requested data are copied to user buffer if found in the prefetch cache or a normal file
read is issued to the parallel file system, the components added are in shaded shapes.

250 H. Tang et al.

3.2 Structured Access Pattern Analysis

Different detection rules are used for contiguous and simple-strided access pat-
terns. A contiguous pattern is determined by having at least 3 consecutive ac-
cesses with no gap in between. A simple-strided pattern comes with same offset
differences (stride) between at least 3 consecutive accesses with identical request
size. Kd-strided pattern is composed of (k — 1)d-strided segments and is de-
tected by the coalesce rule, which checks the stride and the number of accesses
of two strided patterns with the same dimension. Note that each dimension of a
kd-strided pattern must have at least three (k — 1)d-strided segments.

Take a 2d-strided pattern with the following offsets {1, 3, 5, 11, 13, 15, 21,
23, 25, 31, 33, 35} as an example. The second dimensional stride can not be
determined until 31 is accessed that signals the end of the third simple-strided
segment. With three simple-strided segments detected and committed, they are
coalesced to a 2d-strided one(step 1 to 4 of the pattern analysis procedure).
An earlier detection is possible if a previous 2d-strided pattern with the same
stride and number of accesses of first dimension exists in the pattern history: we
temporarily mark the current simple-strided pattern of {1, 3, 5} as the 2d-strided
one and start prefetching (step 5). Once a mismatch happens, it is restored to
the previously detected pattern and continue the analysis procedure. Only the
most recent pattern that qualifies is used in case multiple candidates exist, as
same pattern tends to occur close in time. The time complexity for detection
rule is O(n X Tsruet), and for the coalesce rule is O(Ngpattern), where n is the
number of total accesses, and Ngpgitern is the number of detected structured
access patterns. Though the time complexity depends on the whole trace and
could be quite large, the frequency of the analysis is expected to be high and as
a result for each analysis procedure the workload is relatively small.

3.3 Unstructured Access Pattern Analysis

Previous analyzers usually deal with access patterns build from individual ac-
cesses. However, when accessing time-series data generated by scientific simula-
tions, a higher level of pattern often exists between the accesses of different time
steps. For example, if a scientist wants to visualize a climate dataset with hourly
recorded data at the times when the daily low/high temperature occurs (usu-
ally 5-6am and 2-3pm) for 30 days. The corresponding visualization application
would read data of time step 5, 6, 14, 15, 29, 30, 38, 39, 53, 54, 62, 63, etc. and
for each time step, structured access patterns could exist if a sub-volume decom-
position is used for parallel processing. State-of-the-art analyzer like IOSIG [5]
is only able to detect the structures ones within each time step, while not rec-
ognizing the higher level of composition-based unstructured pattern with time
step intervals repeating 29 times of {1, 8,1, 14}.

The detection rule for composition-based pattern detection is to find offset
delta (the difference between any two consecutive offsets) sequences that repeat
at least twice. Two separate delta sequences are created from the offset of ac-
cesses and the starting offset of structured access patterns. To efficiently detect

Improving Read Performance with Online Access Pattern Analysis 251

such patterns, we build suffix trees incrementally that has linear time and space
complexity. The corresponding pattern can be easily obtained from its suffix tree
after each time of analysis.

For correlation-based access patterns, steps 2 and 4 are skipped because a
correlation-based pattern stays the same once generated. In step 5, patterns are
merged into one if a previous pattern with the same “entry” is found. Only
accesses with request size larger than Ry;.. are considered because the cost
of analyzing those accesses outweighs the cost brought on by prefetching. In
addition, we only focus on frequent accesses (occurs more than Ty, times)
with their next Nye.,+ accesses. And the time complexity is O(n X Nyezt) The
frequent access is referred as the “entry” of a pattern. A candidate set of accesses
that have the potential of becoming frequent, which have a frequency between
Tfreq — € and T'fpeq, is maintained for incremental analysis. The analyzer then
forms the pattern of each frequent access as the entry and a list of its following
frequent accesses. Each time the entry is accessed, this pattern is activated and
the following accesses are prefetched as much as possible.

3.4 Trace Storage with Low Memory Footprint

Our framework requires limited additional memory usage during application’s
run-time. The tracer extracts useful information from read requests and passes
them to the analyzer to determine whether to store them in the trace buffer.
Trace records are compressed to a pattern representation if possible. The memory
used for structured access patterns are significantly reduced due to its regularity.
A 2d-strided pattern with 1024 accesses needs approximately 102KB in memory
while only 134B with a pattern representation. The unstructured access patterns
require more storage than structured but still use much less memory than keep-
ing all its accesses. In addition, since online analysis focuses on current access
patterns, only recent trace records are kept in the trace buffer. The tracer is
implemented in the ADIO layer of MPI-IO, on which MPI optimizations like
data sieving can be captured and utilized, as well as allowing the usage of other
PMPI-based methods, such as Darshan [11].

3.5 Informed Prefetching

The prefetcher prefetches data informed by the analyzer and checks if data in
the prefetch cache can be used for current request. Depending on the accecc
pattern, the size of prefetched data varied, and we only consider relatively large
data size (> 1K B) as smaller request sizes do not benefit from prefetching. It
is also implemented in ADIO layer and prefetches data per MPI process using a
prefetching thread. To avoid extra overhead caused by communication between
processes, both the analysis and prefetching are per-process based. We adopted
a conservative prefetching strategy to minimize the cost of mis-prefetching: the
prefetcher starts to prefetch data when a stable access pattern is detected and
stops immediately when the previously prefetched data is not used, which indi-
cates the detected access pattern is terminated.

252 H. Tang et al.

R:Read C:Compute P:Prefetch Dx: Data Block x

Time Time

(7o) [For) (=) (=) R) [mer) [mer] [Re]

[coo] (et] [cpz] [cos CcDb3

- -- - PD4 RDO] [rRo1 T Pp2 | PD3] PD4 :

[ew) [eo[em [e] (o) (o) (em)——y—
(a) Fully masked T (b) Partially masked ?

Fig. 3. Prefetching is fully and partially masked by computation

4 Experimental Results

4.1 Experimental Setup

Our experiments were conducted on Argonne LCRC Fusion cluster. Each node
is equipped with Intel Xeon 8-core (dual quad-core) 2.53 GHz processor, 36 GB
memory, and 250GB local disk. The attached local disk to each node enables
us to set up our own PVFS2 servers and create an isolated environment. We
used 8 server nodes running PVFS2 2.8.2 file system with default strip size of
64KB. These nodes are connected with InfiniBand QDR and Gigabit Ethernet.
Additionally, we implemented our framework based on MPICH 3.0.4.

4.2 Structured Access Pattern Performance

We used the PIO-Bench [12], a widely used synthetic parallel file system bench-
mark suite, and conducted experiments with contiguous, simple-strided, and
2d-strided access patterns to evaluate the performance with structured access
pattern detection.

As mentioned in Section 1, the benefit of prefetching comes from overlapping
I/0 and computation. Fig. 3 illustrates four periodic read (R DO to R D3) that
are fully and partially masked by the computations via informed prefetching
and the total time of T; and T3 is reduced. To mimic real application’s behavior,
we insert computation time between each file read operation of PIO-Bench. To
determine the computation time, we collected the time of running GNU Scientific
Library functions such as find minimum number, first 100 smallest numbers,
mean, standard deviation, and sorting. The ratio of computation time to read
time for different size of data are shown in Table 1. We found the ratio of 0.5,
1.0, and 2.0 could represent different scenarios of real computation time and thus
are used in our experiments. The results of simple-strided is similar to those of
2d-strided and due to space limitation, we only show the results using ratio of 0.5
and 1.0 that represent I/O intensive and compute intensive scenarios, contiguous
and 2d-strided access pattern, and read request of 128 KB and 1MB.

From the results shown in Fig. 4 we can see a reduction in the application’s
total running time in all cases with the percentage of up to 26% and an average of
17% for contiguous access pattern and 16% for 2d-strided. The performance gain
of the informed prefetching with access pattern analysis are more pronounced

Improving Read Performance with Online Access Pattern Analysis 253

Table 1. Ratio of computation time to Table 2. Prefetching accuracy of three
read time for a given size of data structured access patterns

Size min minl00 mean sd sort Pattern Type Size Read # Accuracy
128KB 0.027 0.061 0.183 0.353 1.388 128KB 1024 99.9%
1IMB 0.028 0.031 0.221 0.428 1.899 MB 512 99.8%
16MB 0.034 0.027 0.244 0.473 2.586 16MB 32 96.5%
128KB 1024 99.8%
2d-strided 1MB 512 99.6%
16MB 32 92.0%

Contiguous /
Simple-strided

when the computation to read time ratio is 1.0 because read time is fully masked
by computation. For ratio with 2.0, the time reduction percentage is between
that of 1.0 and 0.5, which is expected because the potential of run-time reduction
is less when computation takes most of the time.

4.3 Unstructured Access Pattern Performance

The random strided pattern of PIO-Bench is a composition-based unstructured
access pattern, however, this pattern is too simple compared to real scientific
applications. Thus we developed a micro-benchmark with both structured and
unstructured access patterns. We found the results for correlation-based patterns
are similar to those in [7] and thus it is not included in our micro-benchmark. The
micro-benchmark simulates the file read behavior of an application mentioned
in Section 3.3, which performs 3D visualization of climate datasets with hourly
data at time steps when daily low/high temperature occurs. A sub-volume de-
composition is used to perform parallel I/O for each time step. We experimented
with two types of decompositions: row-wise and column-wise, as shown in Fig. 5.
For each time step, the 3D data is broke into “slices” and each process reads one
slice. The resulting access pattern contains both structured (simple/2d-strided
within each time step) and composition-based unstructured pattern (repeating
kd-strided with time step interval rotates from {1,8,1,14}). Similar to the pre-
vious experiments, we set the computation time to the average time of each file
read. In addition to using plain row-major file layout, we also tested with files
stored with block layout. Scientific applications like ScaLAPACK benefits from
this kind of layout as they use blocks as the unit for communication and compu-
tation. The normal row-major file layout can also be viewed as the block layout
with block size of 8B (the size of double).

The total data size of each time step read by all processes is 1GB and we
vary the decomposition type, file layout type, and the number of processes.
All processes are synchronized before the first read and the maximum elapsed
time is reported. Fig. 6 compares the performance results by row and column
decomposition with different file layout types. The row decomposition of different
block sizes have similar results, and column decomposition with row-major layout
takes much longer time since it has most dis-contiguous accesses, and are omitted
due to space limitation. For all cases, we observe the time reduction ranges from
13% to 26% with prefetching, which proves the effectiveness of the analyzer.

254 H. Tang et al.

[C—IWithout Prefetching [EEEE With Prefetching —e— Time Reduction

0.5 * read time 1.0 * read time
Contiguous Access Pattern (128KB)
s o s w0
. *’N\ 1% . L

3

%
0%
2 -10% 2
10%
1 20% 1 0%
0 -30% 0 E
2 4 8 16 32 64 2 4 8 16 ES

Contiguous Access Pattern (1MB)

W0 20% a0
35 35 0%
30 10% 0
3 B3 %
2 o% 2

N

w | | o

. . m

. rm wn| | ,
s s e e

2d-strided Access Pattern (128KB)

5 30% 5 30%

4 /—‘\.’.\. o 4 '/‘\"\-o—/' 20%
10% 10%

:
" .
z z

Running Time (s)
Time Reduction with prefetch (%)

8 16 2 64

2d-strided Access Pattern (1MB)

2 5% 25 25%
2 ///\—‘ 15% 20 /_/—/ N
15 5% 15 E3

25%

Number of Process

Fig. 4. Performance of contiguous and 2d-strided access patterns

4.4 Overhead of Trace Collection and Access Pattern Analysis

The overhead of our trace collector and analyzer is defined as the time difference
between the two runs with our framework and with original MPICH. To test the
overhead of trace collection and analysis, we run with the previous configurations
by setting the computation time to, the median of 10 different runs is used. Due
to space constraint, we only show results of two different cases in Fig. 7. Similar
overhead is observed in other cases and all are less than 5%.

4.5 Accuracy of Access Pattern Detection

To evaluate the effectiveness of our pattern detection algorithm, we use prefetch-
ing accuracy as a metric. It is calculated by dividing the amount of subsequently

Improving Read Performance with Online Access Pattern Analysis 255

Proc 0

00 d) O
PFOCZ e e

Proc3

0 d01g
1 201g
7014
€01g

Row Column Timesteps

Fig. 5. Two types of domain decomposition used in our evaluation

[__Jwithout Prefetching [With Prefetching —e—Time Reduction

Row decomposition with row-major layout Colomn decomposition with block layout (512B)

350 700

20% 20%
300 600

10% 10%

150 0% 300 -10%

50 ’_x_- -20% 100 -20%

5 M M so| | o a0
“ s 1 2 o s 15 » o s

128 a

)
§

Running Time (s
Time Reduction (%)

Number of Process

Fig. 6. Performance of row/column domain decomposition with different block size

I Without Prefetching [With Prefetching —e— Overhead

2d-strided access pattern Row decomposition with row-major layout
[% | [180 %
) —
| .—.\/———0 % 150 % o\a
E s
e 1% w|g
o | % B
& 1% 1% | £
— 60 =
c | [
o (11 nlk | o8
2|, [N o rm (W OTH

) . s 16 2 o . s 1 » o 18

Number of Process

Fig.7. Overhead of trace collector and analyzer with 2d-strided and unstructured
access pattern

used and prefetched data by the total used data. The high accuracy means the
prediction of analyzer is accurate. Table 2 shows the prefetching accuracy of three
structured access patterns. The high percentage is expected as these patterns
are highly structured and remain stable for a period of time.

5 Related Work

Various methods have been proposed to utilize access patterns for I/O optimiza-
tion. Gong et. al [13] proposed a parallel run-time layout optimization framework
to speed up queries on large complex scientific datasets. In database community,
utilizing access patterns to guide prefetching proves to be effective [14]. Un-
like their methods that deal with file layout organization and database objects,
respectively, our work only involves MPI-IO and is on byte level.

Most of the existing pattern analyzers [5-8] perform analysis in the offline-
based fashion. In [5], a notation called I/O signature that represents access

256 H. Tang et al.

patterns is proposed. However, their pattern analysis only focus on structured
ones. Oly et al. used a Markov model [6] built from access history to predict
future accesses and prefetch data. C-Miner [7] uses a frequent sequence min-
ing algorithm named CloSpan to discover block correlations, and utilizes the
detected information for prefetching and reorganizing data layout. Choi et. al
applied probabilistic latent semantic analysis with deterministic annealing [8] to
discover file or variable access patterns. These methods require prior knowledge
of the application and can not be directly applied to online analysis. We enabled
our trace collection and analysis to be online, which is more desirable for sci-
entific applications nowadays. Our analyzer can also be used in offline manner
that generates same access patterns as offline-based ones.

Prefetching is an effective latency-hiding solution for improving efficiency of
parallel I/O and has been extensively studied and widely used [15-18]. However,
the traditional prefetching strategies such as file-system level approaches are
conservative. Even with advanced parallel file systems such as PVFS [19] and
Lustre [20], high bandwidth is not achieved when only simple patterns such
as contiguous or simple strided are detected. They cannot provide satisfactory
performance for the modern scientific simulations with a large number of complex
access patterns. Patterson et al. proposed informed prefetching [21], but this
requires developers to add I/O hints to the program. Unlike their method, our
framework requires no code modification.

6 Conclusion

We proposed an online access pattern analyzer that supports both structured
and unstructured access patterns with high accuracy and low computation and
memory overhead. With the pattern-aware prefetching, our method results in
up to 26% run-time reductions on top of less than 5% overhead with both kind
of access patterns in 22 benchmark evaluations.

Acknowledgements. We would like to thank the Leadership Computing Fa-
cilities at Argonne National Laboratory and Oak Ridge National Laboratory
for the use of resources. Oak Ridge National Laboratory is managed by UT-
Battelle for the LLC U.S. D.O.E. under Contract DE-AC05-000R22725. This
work was supported in part by the U.S. Department of Energy, Office of Sci-
ence, Advanced Scientific Computing Research and the U.S. National Science
Foundation (Expeditions in Computing and EAGER programs).

References

1. Chen, J.H., Choudhary, A., De Supinski, B., DeVries, M., Hawkes, E., Klasky, S.,
Liao, W., Ma, K., Mellor-Crummey, J., Podhorszki, N., et al.: Terascale direct
numerical simulations of turbulent combustion using S3D. Computational Science
& Discovery 2(1), 15001 (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Improving Read Performance with Online Access Pattern Analysis 257

Wang, W., Lin, Z., Tang, W., Lee, W., Ethier, S., Lewandowski, J., Rewoldt, G.,
Hahm, T., Manickam, J.: Gyro-kinetic simulation of global turbulent transport
properties in tokamak experiments. Physics of Plasmas 13, 092505 (2006)

Zhu, Y., Jiang, H., Qin, X., Feng, D., Swanson, D.R.: Improved read performance
in a cost-effective, fault-tolerant parallel virtual file system (ceft-pvfs). In: CCGrid
2003, pp. 730-735. IEEE (2003)

Di Biagio, A., Speziale, E., Agosta, G.: Exploiting thread-data affinity in openmp
with data access patterns. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par
2011, Part I. LNCS, vol. 6852, pp. 230-241. Springer, Heidelberg (2011)

Byna, S., Chen, Y., Sun, X.H., Thakur, R., Gropp, W.: Parallel I/O prefetching
using MPI file caching and I/O signatures. In: SC 2008, pp. 1-12. IEEE (2008)
Oly, J., Reed, D.A.: Markov model prediction of I/O requests for scientific appli-
cations. In: ICS 2002, pp. 147-155. ACM (2002)

Li, Z., Chen, Z., Srinivasan, S.M., Zhou, Y.: C-Miner: Mining Block Correlations
in Storage Systems. In: FAST, pp. 173-186 (2004)

Choi, J.Y., Abbasi, H., Pugmire, D., Podhorszki, N., Klasky, S., Capdevila, C.,
Parashar, M., Wolf, M., Qiu, J., Fox, G.: Mining hidden mixture context with
adios-p to improve predictive pre-fetcher accuracy. In: 2012 IEEE 8th International
Conference on E-Science (e-Science), pp. 1-8. IEEE (2012)

Crandall, P.E., Aydt, R.A., Chien, A.A., Reed, D.A.: Input/output characteris-
tics of scalable parallel applications. In: Proceedings of the IEEE/ACM SC 1995
Conference on Supercomputing, pp. 59-59. IEEE (1995)

Madhyastha, T.M., Reed, D.A.: Learning to classify parallel input/output access
patterns. TPDS 13(8), 802-813 (2002)

Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., Riley, K.: 24/7 characterization
of petascale 1/O workloads. In: Cluster 2010, pp. 1-10 (2010)

Shorter, F.: Design and analysis of a performance evaluation standard for parallel
file systems. PhD thesis, Clemson University (2003)

Gong, Z., Boyuka, D., Zou, X., Liu, Q., Podhorszki, N., Klasky, S., Ma, X., Sam-
atova, N.F.: Parlo: Parallel run-time layout optimization for scientific data explo-
rations with heterogeneous access patterns. In: CCGrid 2013, pp. 343-351 (2013)
Han, W.S., Moon, Y.S., Whang, K.Y.: Prefetchguide: Capturing navigational
access patterns for prefetching in client/server object-oriented/object-relational
dbmss. Information Sciences 152, 47-61 (2003)

Baer, J.L., Chen, T.F.: An effective on-chip preloading scheme to reduce data access
penalty. In: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing
1991, pp. 176-186. IEEE (1991)

Dahlgren, F., Dubois, M., Stenstrom, P.: Fixed and adaptive sequential prefetching
in shared memory multiprocessors. In: ICPP 1993, vol. 1, pp. 56-63. IEEE (1993)
Dahlgren, F., Dubois, M., Stenstrom, P.: Sequential hardware prefetching in
shared-memory multiprocessors. TPDS 6(7), 733-746 (1995)

Ding, X., Jiang, S., Chen, F., Davis, K., Zhang, X.: Diskseen: Exploiting disk
layout and access history to enhance I/O prefetch. In: USENIX Annual Technical
Conference, vol. 7, pp. 261-274 (2007)

Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: Pvfs: A parallel file system for
linux clusters. In: Proceedings of the 4th Annual Linux Showcase and Conference,
pp- 391-430 (2000)

Braam, P.J., Zahir, R.: Lustre: A scalable, high performance file system. Cluster
File Systems, Inc. (2002)

Patterson, R.H., Gibson, G.A., Ginting, E., Stodolsky, D., Zelenka, J.: Informed
prefetching and caching, vol. 29. ACM (1995)

Robust and Efficient Large-Large Table Outer Joins
on Distributed Infrastructures

Long Cheng!2:3, Spyros Kotoulas?, Tomas E. Ward!, and Georgios Theodoropoulos*

! National University of Ireland Maynooth, Ireland
2 IBM Research, Ireland
3 Technische Universitit Dresden, Germany
4 Durham University, UK
long.cheng@tu-dresden.de, spyros.kotoulas@ie.ibm.com
tomas.ward@eeng.nuim.ie, theogeorgios@gmail.com

Abstract. Outer joins are ubiquitous in many workloads but are sensitive to load-
balancing problems. Current approaches mitigate such problems caused by data
skew by using (partial) replication. However, contemporary replication-based
approaches (1) introduce overhead, since they usually result in redundant data
movement, (2) are sensitive to parameter tuning and value of data skew and (3)
typically require that one side is small. In this paper, we propose a novel parallel
algorithm, Redistribution and Efficient Query with Counters (REQC), aimed at
robustness in terms of size of join sides, variation in skew and parameter tuning.
Experimental results demonstrate that our algorithm is faster, more robust and
less demanding in terms of network bandwidth, compared to the state-of-the-art.

1 Introduction

Outer joins are popular in complex queries and frequently used in OLAP [1, 2] and
large-scale data analysis, to name but a few applications. Unlike inner joins, the oper-
ation does not discard tuples from either relation that do not match with tuples in the
other [3]. For example, for a left outer join (<)) between two inputs R and S on their
attributes a and b, the following query returns not only the matched tuples in the form
of <x,a,y>, but also <x,a,null>, when values do not match.

select R.x R.a S.y

from R left outer join S on R.a = S.b (Query 1)

Currently, as for inner joins, implementations for distributed outer joins utilise one of
two distributed patterns [4]: redistribution-based and duplication-based outer joins. To
study the core performance characteristics of these approaches, we focus on analyzing
the parallelism within a single outer join operation between two relations R and S on
an n-node system (assuming both R and S are in the form of <key, value> pairs and
|R| < |S| in the following).

For redistribution-based approaches, parallel outer joins contain three phases: par-
tition, redistribution and local outer joins. In the first phase, the relations R; and S;,
initially arbitrarily partitioned across each computation node 7, are partitioned into dis-
tinct sets R, and S;, (k € [1,n]) respectively, according to the hash values of their
join key attributes. Each of these sets is distributed to a corresponding remote node
k in the second phase. After that, the sequential outer joins of local fragments com-
mence. This scheme can achieve near linear speed-up under ideal balancing conditions

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 258-269, 2014.
(© Springer International Publishing Switzerland 2014

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 259

for distributed systems [5]. However, when the processed data has significant attribute
value skew, the join performance will dramatically decrease due to the emergence of
computational hot spots [6].

Duplication-based distributed outer joins differ significantly from inner joins. There
are two distinct stages involved: (1) An inner join between R and S, composed by a
duplication and local inner join phase in which the former phase duplicates (broadcasts)
R; at each node to all other nodes, and the latter is the same as that for sequential
inner joins, formulating the intermediate results 7; at each node i; (2) An outer join
between R and 1T°, which is similar to the redistribution-based method described above.
The duplication in this method can efficiently reduce hot spots resulting from attribute
value skew. Nevertheless, this operation is costly and only suitable for small-large table
outer joins. Additionally, such a scheme will still encounter performance bottlenecks
when there exists join product skew [7], because in such scenarios the redistributed T’
could be very large (e.g. Cartesian product) or suffer from skew itself.

As data skew occurs naturally in various applications [8], and join performance is
challenged by large scale data in the era of Big Data, it is important for practical data
systems to perform efficiently in such contexts. In this work, we propose a new outer
join algorithm, redistribution and efficient query with counters (REQC), for robustly
and efficiently processing large-large table outer joins on distributed architectures. We
summarize the contributions of this paper as following:

— We apply the join geography of semijoins to parallel outer joins on distributed
systems. We find that this semijoin-like scheme is better suited for skew handling
in massive distributed joins.

— We further develop the semijoin-based scheme into the REQC algorithm, in order
to increase performance and robustness.

— Experimental results on 192 cores and 1 billion tuples indicate that our method is
both efficient and robust. Moreover, we compare our approaches with five different
baselines taken from the literature which we implement on the same platform. Our
findings indicate that our method is faster, more robust and requires less network
communication, across a range of skew and parameter values.

The rest of this paper is organized as follows: In Section 2, we report on related
work. We present our REQC algorithm in Section 3 and its detailed implementation
in Section 4. We evaluate our approach in Section 5 while we conclude the paper and
suggest directions for future work in Section 6.

2 Related Work

2.1 Related Work on Joins

Data skew is a significant problem for multiple communities, such as databases [9], data
management [10], data engineering [11] and web data [8]. Joins with extreme skew can
be found in the semantic web field (e.g. in [8], the most frequent item in a real-world
dataset appeared in 55% of entries).

Research in parallel joins on shared-memory systems [9] and GPUs [12] has already
achieved significant performance speedups through improvements in architecture at the
hardware-level of modern processors. Nevertheless, as applications grow in scale, their
associated scalability is limited by either the number of threads available or the system
memory and I/O.

260 L. Cheng et al.

Various techniques have been proposed for distributed inner joins to handle skew [7,
13—15]. Often, the assumption is that inner join techniques can be simply applied to
outer joins, as identified in [4]. However, applying such techniques for outer joins di-
rectly may lead to poor performance [16].

Current research on outer joins focuses on join reordering, elimination and view
matching [3, 17, 18]. State-of-the-art methods designed specific for outer join imple-
mentation achieve significant performance improvements [4], however, they are based
on the duplication-based method and cannot be applied to large-large table outer joins.

Distributed semijoins have been extensively studied, primarily in two domains: (1)
joins in P2P systems, for reducing network communication based on the high selectiv-
ity of a join [13], such as descrbied in [19]; (2) pre-joins in distributed systems which
seek to avoid sending tuples which will not participate in a join, such as the method de-
scribed in [7], for a common implementation, and [20], for application to the MapRe-
duce framework. In contrast, we apply a semijoin pattern with full parallelism to outer
joins on a distributed architecture directly, and propose our efficient and robust REQC
algorithm on this basis.

2.2 Details on the State-of-the-Art

PRPD. Xu et al. [15] propose a hybrid distributed geography called PRPD (partial
redistribution & partial duplication) for inner joins, by combining the two conventional
patterns described. For a single skew relation S (assume R is uniformly distributed), the
high skew tuples Sy, of .S are retained locally and other tuples S,..q4;s are redistributed
based on hashing. For R, the tuples R4y, with keys contained in S, are broadcast to all
the nodes, and the rest R,..q4;5 are redistributed as normal. The final joins are composed
by Rredis M Sredis and Rgyp X Sioc at each node.

As the high skew tuples of S are not redistributed at all and, instead, just a small
number of tuples from R are broadcast, the attribute value skew can be highly reduced.
This hybrid scheme has shown to be very efficient in processing inner joins, and could
be applied to outer joins directly. Nevertheless, we have to redistribute the results of
Raup X Sioc in an outer join, which could be very costly: since Sj,. is highly skewed,
the cardinality of the intermediate results can be very large. This condition will be
demonstrated in our evaluation in Section 5.

DER. Xu et al. [4] also propose another algorithm called DER (duplication and efficient
redistribution), aimed at optimizing outer joins. This method comprises two stages: (1)
R; at each node i is duplicated to all the nodes to start inner joins. At this stage, not
only are the matched results 7" kept but also the ids of all non-matched rows in the table
R; (2) Only the recorded ids are redistributed according to their hash values and, then,
the final join results are assembled on that basis.

In fact, this optimization provides for an efficient way to extract non-matched results
of an outer join. Notice that the join in the first stage of the conventional duplication-
based scheme is an inner join instead of an outer join. The reason for this is that the
duplication could bring either redundant or erroneous non-matched outputs. To alleviate
this problem, redistributing the intermediate results is adopted. In comparison, DER
uses a clever way around this: non-matched tuples of R are redistributed and these
tuples are indicated by a row-id from the table R. As such, the redistributed part is
small and network communication and computational workload are greatly reduced.
The experimental results show that the DER algorithm can achieve significant speedups
over competing methods.

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 261

As DER must broadcast R, it is designed to work best for small-large table outer
joins. When associated with the PRPD algorithm, the broadcasted part R, is typically
small. As identified by [16], we can integrate DER into PRPD to fix the cardinality
problem as described for Rg,, X Sioc previously. The experiments in [16] have shown
that this hybrid method (referred to PRPD+DER) is efficient on handling skew in large-
large outer joins. Regardless, we will demonstrate that our proposed REQC algorithm
can outperform this optimized technique.

QC. Recently, Cheng et al. [21] introduced a novel parallel join approach called query-
based distributed joins, for handling data skew of inner joins on distributed architec-
tures. An approach on that basis named query with counters (QC) [16] specified for
outer-joins proved to be faster than the state-of-the-art in the presence of highly-skewed
data. Regardless, the method performs bad when processing low-skew data. In compari-
son, the proposed REQC approach further refines that basic algorithm and we will show
that this new method is more robust and also capable of higher performance than [16]
in our evaluation in Section 5.

3 Our Approach

3.1 Semijoin for Outer Joins

The approach of semijoin-based distributed joins is shown in Figure 1(a), where the
two communication patterns (redistribution and retrieve) makes it different from the
conventional join approaches and the commonly-used semijoins. Under such a scheme,
the implementation of the outer join in Query I is organized as the following four steps:

1. Tuples in R; at each node ¢ are redistributed to remote nodes based on the hash
values of their attributes a. This process is shown as (D) in the figure.

2. The unique keys' ,(S;) of S; at each node i are sent to the corresponding node as
well, according to their hash values. This process is shown as) in the figure.

3. All received tuples |, R;, at each node k probe all received keys [J;—; m5(Six),
organizing the matched results 7}, and output the non-matched results. After that,
each key fragment 7, (.S,) probe T} and send back the matched tuples to node i.
The process of sending these back is shown as) in the figure.

4. The returned tuples join with tuples of .S; at each node to produce matched results.

The final outer join results are composed from the output of the non-matched part
in Step 3 and the matched part in Step 4. As we only distribute the unigue keys of
S, this scheme can be very efficient for handling data skew in distributed outer joins.
More exactly, (1) even when S is high skewed, each node will receive only one key (or
maximum of n keys if these tuples appear on the n nodes); and (2) each transferred key
is treated the same in the following look-up operations. We will exam the performance
of this approach in our later evaluations.

3.2 REQC Algorithm

To distinguish the matched and the non-matched tuples and then send the former back
to the requester, we implement {[{J;_, Rir x U\, m(Sir)] X m(Six)} at each node

! Here, we use the operator 7, for presenting the duplicate-removing projection on the join
attribute b of the relation S.

262 L. Cheng et al.

T
-- (o] (5] \=ol o] 1 o], 3]
:... ‘ ,../1|,: Som
~~ g ,-/V‘

52| e
- .T ﬂ‘/ 'nn

....................................

— — —> Redistribution :
| < - »> Retrieve

-—— Redlstnbutlon
I | < - » Query

(a) Semijoin-based approach (b) REQC outer join approach

Fig. 1. The semijoin-based outer join approach and our proposed REQC method. The dashed
square refers to the remote computation nodes and objects.

k as described in the third step of the above method. This process is complex and could
be time costly, since there is significant computation involved. In the meantime, when
S has low skew, the two-sided communication of large numbers of transferred keys
and returned tuples can become costly, decreasing the join performance. To remedy
these problems, we propose our REQC algorithm, shown in Figure 1(b), based on three
optimizations:

1. Tuples in each .S; are first divided into two parts before the joins: (a) the non- or
low-skewed part S/, is hash-redistributed to all the nodes, and (b) the high-skewed
part h;, using the semijoin-based scheme.

2. Each received tuple fragment S/, and key fragment 7, (h;i) probes the received
tuples | J;_; Rix at each node k. To identify the non-matched results, a counter is
added to each tuple and it increases by one when this tuple is probed. Then, the
non-matched tuples will be the ones with the counter value still at zero after all
probings.

3. Only the retrieved values are sent back during the probing process of the key frag-
ments, and the value is set to null when a key’s probes have failed. The transferred
keys are kept locally and the returned values follow the same sequence as these
keys. Then, the <key, value> pair can be easily rebuilt based on their sequence
(e.g. the index in an array), to compute the final join with &; at each node <.

With these optimizations, we can efficiently improve the performance of the
semijoin-based approach as follows: (1) even when S shows low skew, all tuples will
be redistributed, avoiding the two-sided communications issue and consequently im-
proving the robustness; (2) a simple probe operation is applied to the retrieval of the
matched results for 7, (h;), which is much simpler than the previously mentioned join
operations; (3) only values rather than entire tuples are returned, therefore the inter-
machine communication is reduced. Though we also return the non-matched values as
nulls, bringing additional communication, the number of 7, (h;) is always very small,
making this effect negligible.

We refer to our algorithm as redistribution and efficient query with counters because
(1) the process of transferring keys to remote nodes and retrieving the corresponding
values looks like a query; (2) counters are used to distinguish non-matched results;
and (3) only tuples corresponding to keys with high skew are processed by query-
ing. We refer to the algorithm with only the latter two optimizations as QC (query
with counters) [16]. As shown in our later evaluation, QC is always faster than the

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 263

semijoin-based approach, implying that the introduction of counters is itself beneficial
for such operations.

Moreover, compared with the state-of-art techniques PRPD+DER [4,15] described in
Section 2, our approach does not involve any redundancy in join (or lookup) operations,
because our method is totally duplication-free and all nodes only receive the tuples
that they will eventually use. This should make the approach more efficient, and we
will conduct a detailed performance comparison in Section 5. Additionally, the join
framework of our approach is more straightforward and can be applied to other kinds
of joins directly (e.g. the returned null can be applied directly for right outer-joins and
the counters for anti-joins etc).

4 Implementation

In this section, we present a detailed implementation of the proposed REQC approach.
We compare our algorithm with the state-of-art techniques PRPD+DER [4, 15]. Since
[4, 15] do not provide any code-level information, and in the interests of making a
fair comparison, we have implemented all these methods with the parallel language
X10 [22].

4.1 Pre-partitioning of Skew Tuples

We have to measure the local skew so as to partition the relation S at each node for our
algorithm as well as the PRPD+DER method. Efficient skew measurement is beyond
the scope of this work. As we are more interested in a high performance in-memory
implementation we add two pre-processing steps before each test: (1) for each test pa-
rameterized by ¢, each node pre-reads the keys appearing more than ¢ times into an
ArrayList and considers these the required skew keys; and (2) Tuples in .S; at each
node ¢ are divided into S} and h; based on an assessment of the skewed keys, and each
of them is kept in an ArrayList as well. These pre-processing steps make our later
performance comparison more fair and meaningful because: (1) the total join perfor-
mance is very sensitive to the chosen skew keys and operations like sampling cannot
guarantee the same set of keys are selected, (2) the extra time cost for skew extraction
is removed, so that the focus is on the analysis of runtime performance only, and (3)
in a real system, there are opportunities to perform these operations as part of other
processing activities.

4.2 Parallel Join Processing

We describe our implementation at each node as the following four steps. As the local
join process is well studied and techniques such as the sort-merge and hash joins are
commonly used, we have selected the hash-join for our implementations.

R Distribution: As shown in Figure 2 lines 1-8, tuples of R at each computation node
are partitioned into n chunks, and each tuple is assigned according to the hash value of
its key by a hash function h(key) = key mod n. After that, all collected tuples in the
chunk R_c(%) is transferred to the remote node ¢. Note that the term here means the id
of current node.

Push Query Keys: Similar to the previous step, tuples of S’ are also hash-redistributed
to remote nodes. For the high skewed part &, tuples are kept in hashmap and only the

264 L. Cheng et al.
R Distribution: 29: for key € r_key_c(here)(i) do
1: Initialize R_c:array[array[tuple]](n) 30: if key € T then
2: for tuple € list_of_R do 31: r_value_c.add(T.get(key).value)
3: des < hash(tuple.key) 32: T.get(key).counter++
4: R_c(des).add(tuple) 33: else
5: end for 34. r_value_c(i).add(null)
6: fori « 0..(n — 1) do 35: end if
7: PushR _c(i) tor_R_c(i)(here) atnode i 36: end for
8: end for 37: end for
38: fori < 0..(n — 1) do

Push Query Keys:
9: Tnitialize S’_c:array[array[tuple]](n)
h_c:array[hashmap[tuple]](n)
10: for uple € list_of_S’ do
11: des < hash(tuple.key)

Push r_value_c() to value_c(i) (here) at node ¢
. end for

Result Lookup:

:fori < 0..(n — 1)do // joins of high skew part h

12: S’_c(des).add(tuple) 2% for value € value_c(here.id)(i) do
13: end for if value # null then
14: for wple € list_of_h do 44: Lookup corresponding key over h_c(%)
15: des < hash(tuple.key); 45: Output matched results
16: h_c(des).put(tuple) 16 end if
%g: end for 4%3 Cnd for

cfori < 0..(n —1)do - end for

" (n) 49: fori < 0..(n — 1) do // joins of low skew part S’

19: Extract unique keys of h_c(¢) to local_key(i)

20: Push local_key () to r_key_c(i) (here), g(l) for {cey € r_S'_c(here)(i) do
S’_c(i) to r_S’_c(i)(here) atnode i : if key € T' then
21: end for 52: Output the matched result
53: T.get(key).counter++

Return Queried Values: 54: end if

22: Initialize T':hashmap, r_value_c:array[value] 55: end for

23: fori < 0..(n — 1) do gg ;ndkfor ra

24: for tuple € r_R_c(here)(i) do : forkey € 1"do

25: Put <tuple.key, (tuple.value, 0)> into T' 58: I gei(key).counter == 0 then

26: end for 59: Output non-matched results
. 60: endif

27: end for 61 end for

28: fori < 0..(n — 1) do // probing received keys

Fig. 2. Implementation of proposed REQC algorithm at each node

unique keys are pushed to remote nodes. Lines 9-21 of Figure 2 present the details of
this process. There, each HashMap in h_c supports the data structure of 1 — n map-
ping, so as to efficiently hold skewed tuples. In addition both the 4_c and local_key_c
are kept in memory for computing the final joins, as mentioned in Section 3.2. We syn-
chronize the operation here to guarantee the completion of the data transfer at each node
before the next phase commences.

Return Queried Values: This phase starts after the grouped query keys have been
transferred to the appropriate remote nodes. The implementation at each node is similar
to a sequential hash join. For each received tuple of R, as shown in lines 22-27 of Fig-
ure 2, a <key,(value, 0)> pair is placed in the local hash table T, where the 0 means the
initialized counter = 0 of this tuple. After that, as shown in lines 28-40, the received
keys start to access T sequentially to obtain their values. In this process, if the mapping
of a key already exists, its value is retrieved, otherwise, the value will be considered as
null. In both cases, the value of the query key is placed into an array r_value_c so that
it can be sent back to the requester(s). All these processes take place in parallel at each
node, and we also synchronize the operations here.

Result Lookup: The join results of the high skewed tuples at each node can be looked-
up after all the values of the query keys have been pushed back. Since the query keys

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 265

and their respective values are held in order inside arrays, we can easily look up the
keys in the corresponding hash tables to organize the join results. In the meantime, the
received tuples of S’ probe the hash table 7" to retrieve the matched results for the low
skewed tuples. After that step, we can easily scan the counter of each tuple in T to
organize the non-matched results. This process is described in lines 41-61 of Figure 2.
The entire join process terminates when all individual nodes terminate.

5 Evaluation

Platform. Our evaluation platform is the High-Performance Systems Research Cluster
located at IBM Research Ireland. Each computation unit of this cluster is an iDataPlex
node with two 6-core Intel Xeon X5679 processors running at 2.93 GHz, resulting in a
total of 12 cores per physical node. Each node has 128GB of RAM and a single 1TB
SATA hard-drive and nodes are connected by Gigabit Ethernet. The operating system
is Linux kernel version 2.6.32-220 and the software stack consists of X10 version 2.3
compiling to C++ and gcc version 4.4.6.

Datasets. Our evaluation is implemented on two relations R and S, which are both
two-column tables. We fix the cardinality of R to 64 million tuples and S to 1 billion
tuples and set both their key and payload to 8-byte integers. We assume that R and .S
meet the foreign key relationship, namely every tuple in S is guaranteed to find exactly
one join partner in R [11], and we only add skew to S, following the Zipf distribution.
The skew tuples are evenly distributed on each computing node and the skew factor is
set to 0 for uniform, 1 for the low skew (top ten popular keys appear 14% of the time)
and 1.25 for high skew dataset (top ten popular keys appear 52% of the time). Joins
with such characteristics and workloads are common in data warehouses and column-
oriented architectures as well as being prevalent in recent studies [9—11].

Setup. In all experiments, we only count the number of matches, we do not actually out-
put join results. Moreover, for PRPD, PRPD+DER and our REQC algorithm, in which
skewed tuples need to be pre-extracted, we implemented a test series with different pa-
rameters ¢ (recall that tuples where the key appears more than ¢ times is considered as
skewed) for each dataset, as shown in Figure 4. When presenting results, we always
choose the ¢ with the best runtime achieved.

5.1 Runtime

Performance. We examined the runtime performance of the six algorithms as de-
scribed previously: the conventional redistribution-based algorithm (referred to Hash),
PRPD [15], PRPD+DER [4, 15], semijoin-based outer joins (referred to as Semijoin),
QC [16] and the proposed REQC approaches. We implement our tests using 16 nodes
(192 hardware cores) of the cluster and present the results in Figure 3. It can be seen
that: (1) when S is uniform, the first three methods and REQC perform nearly the
same, much faster than Semijoin and QC; (2) with low skew, PRPD+DER and REQC
outperforms the other four algorithms; and (3) with high skew, the latter four algorithms
perform much better than Hash and PRPD.

We can also observe that the time cost of Hash and PRPD increases sharply with the
increase in data skew. In contrast, for the other four algorithms, it decreases. Moreover,
PRPD always performs the worst, meaning that the approach for inner joins cannot

266 L. Cheng et al.

- @
150 |- 3 «© 7o)
[—/ N 2]
i = s {77 Hash
— L — o PRPD
@ 100 = s
o - — k< XX PRPD+DER
L — KX -
£ [— - g1 E— semijoin
S L — o = . & EHac
e I | R I = B [l ReQC
SRR W » R 2 S o X
- = 5 3 o
[— e RPN
ol = BN [2o NN I=T=2=elomm
skew =0 skew =1 skew = 1.25
Algorithm / Skew
Fig. 3. Runtime comparison of the six algorithms under varying skew (192 cores)
120 40 95
4 —— PRPD+DER —a— PRPD+DER € . —A—PRPD+DER skew 1
100 | REQC r REQC = 24 L\ — REQC skew 1
[v ok T b --a- PRPD+DER skew 1.25
8 5 -v- REQC skew 1.25
80 |- a 2° - \
O 0 S .
; 60 ; 20 F "\ o 2L A*"F""‘*A
1S I £ @ ‘. v *
i:40_\\ =] A | 2T a*
AN 10 F Nl = Y
20 _va'V¢MW -v—v’ N §1_>J oL v:¢’
- . v
o J PO T PO T PO T R o J AP P P P P A B B D 5 A AT
20 22 24 26 28 210 212 214 216 20 22 24 26 28 210 212 214 216 < 20 22 24 26 28 210 212 214 216
Threshold Threshold Threshold
(a) runtime skew=1 (b) runtime skew=1.25 (¢) network communication

Fig. 4. Runtime and network communication of PRPD+DER and REQC with increasing thresh-
old t over different skews (192 cores)

be applied to outer joins directly. In the meantime, QC is always faster than Semijoin,
demonstrating that the latter two optimizations described in Section 3.2 do improve
join performance by themselves. Furthermore, runtime performance of PRPD+DER
and REQC changes much more gradually than the other four algorithms with increas-
ing skew, demonstrating their robustness under varying skew. Finally, it is also worth
highlighting that our proposed REQC approach is always faster than the state-of-the-art
PRPD+DER algorithm, about 24%-36% depending on skew value.

REQC vs PRPD+DER. We conduct a more detailed comparison of our REQC and
PRPD+DER, based on a series of tests with different parameters ¢, corresponding to
what the system considers a popular key. The results are presented in Figure 4(a)
and 4(b). It can be seen that REQC always outperforms PRPD+DER for any given
t. In addition, the runtime difference for different ¢ values are only minor for our REQC
algorithm while those in PRPD+DER change more rapidly, demonstrating that our ap-
proach is more robust with respect to input parameters. In fact, tuning ¢ would require
additional, more complex or costly operations, meaning that the performance difference
between the two approaches would be even greater for applications which include these
steps.

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 267

Table 1. Number of tuples (max/avg) received at each core using 192 cores (millions)

Max. / Avg. Hash PRPD PRPD+DER Semijoin QC REQC

skew=0 59759 59759 59759 87/87 59/59 59/59
skew=1 624/59 62.4/59 35735 3.0/3.0 21/21 23/23
skew=1.25 239.8/59 239.8/6.0 1.3/1.3 0.7/0.7 06/06 0.8/0.8

5.2 Network Communication and Load Balancing

Network Communication. We count a single key or payload as 1/2 of a tuple, and
record the average number of received tuples at each core for each algorithm as shown
in Table 1. We can see that Semijoin results in the highest number of tuples while the
other five algorithms receive the same number of tuples when the dataset is uniform.
This is expected, since (1) tuples in the first three algorithms and REQC are just simply
redistributed; (2) the number of transferred keys and the payload of QC is equal to the
number of tuples; and (3) Semijoin not only moves all the keys, but also all the retrieved
tuples. With an increase in skew, the average received tuples in the Hash and PRPD
methods generally does not change. The reason is that all tuples are still redistributed
in Hash and PRPD needs to redistribute the large number of intermediate results. In
contrast, the other four show a significant decrease, as they do not move high skew
tuples. In addition, our REQC algorithm transfers less data than PRPD+DER.

We also track the detailed number of received tuples for different threshold ¢ val-
ues for REQC and PRPD+DER and present the results in Figure 4(c). It can be seen
that in PRPD+DER that number first decreases and then increases, showing a trade-off
between the number of duplicated and redistributed tuples. For REQC, the number of
received tuples is always increasing, however, it is less than PRPD for any given ¢. In
our tests, the best performance achieved in REQC is always better than PRPD+DER.
For example, ¢ = 4 for REQC and ¢t = 64 for PRPD+DER in the condition skew = 1.
That is why REQC transfers less data than PRPD+DER in Table 1, notably 34%-38%
less, under skew.

Load Balancing. We analyze the load balancing properties of each algorithm based
on the maximum number of received tuples at each core. We can see that the first two
algorithms encounter serious load-balancing problems when the data exhibits skew. In
contrast, the latter four algorithms achieve perfect load balancing under varying skew.

5.3 Scalability

We finally test the scalability of our REQC algorithm. We implement our test on a
distributed architecture with 2 nodes (24 cores), 8 nodes, 12 nodes and 16 nodes (192
cores) on all three datasets. The detailed time-cost is shown in Figure 5, where each
step there is consistent with the implementation explained in Section 4.2.

We can see that our algorithm generally scales well with the number of cores under
varying skew. More specifically when data is uniformly distributed, the second and
fourth step scale well and dominate the runtime. In addition, the time cost of the third
step is nearly 0, the reason is that there are no guery keys for remote nodes. With low
skew, all four steps decrease with increase in the number of cores, and the second step
becomes the most expensive part of the execution. Moreover, for high skew, the second

268 L. Cheng et al.

100 skew =0

80 B step 1
O skew = 1 step 2
o 60 [T step 3
= R step 4
S 40 skew = 1.25 P
AN N O 1 s I v | e

20 ~ 4 =

0 i (AT

Number of Cores

Fig. 5. The detailed time cost of the REQC algorithm with increasing the number of cores

step is always the dominating factor in performance. All of this demonstrates that the
query processing of the third step in our algorithm is very lightweight, and the process
in the second step (namely tuple hash-partitioning, local hash table building for high
skew tuples and data transfers) has a high impact on the join performance.

6 Conclusions

In this paper, we have introduced a new algorithm, redistribution and efficient query
with counters, for robustly and efficiently computing large-large table outer joins on
distributed architectures. We have presented a detailed implementation of our approach
and the experimental results demonstrate that our implementation is robust, efficient and
scalable. Furthermore, compared to state-of-the-art techniques [4, 15], our algorithm
always performs better with less network communication under skew conditions.

Data duplication is widely used in data engineering to reduce data movement and
load imbalance. As our algorithm is duplication-free, we anticipate that our proposed
method will not only be a supplement to existing schemes on parallel joins to minimize
runtime but also for other domains. We intend to apply our approach in the semantic
web domain, where workloads present very high skew [8].

Acknowledgments. This work is supported by the Irish Research Council and IBM
Research Ireland.

References

1. Galindo-Legaria, C., Rosenthal, A.: Outerjoin simplification and reordering for query opti-
mization. ACM Transactions on Database Systems (TODS) 22(1), 43-74 (1997)

2. Rao, J., Pirahesh, H., Zuzarte, C.: Canonical abstraction for outerjoin optimization. In: Pro-
ceedings of the 2004 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2004, pp. 671-682. ACM (2004)

3. Bhargava, G., Goel, P, Iyer, B.: Hypergraph based reorderings of outer join queries with
complex predicates. ACM SIGMOD Record 24(2), 304-315 (1995)

4. Xu, Y., Kostamaa, P.: A new algorithm for small-large table outer joins in parallel DBMS.
In: Proceedings of the 26th IEEE International Conference on Data Engineering, ICDE 2010,
pp- 1018-1024 (2010)

14.

15.

16.

17.

18.

19.

20.

21.

22.

Robust and Efficient Large-Large Table Outer Joins on Distributed Infrastructures 269

. De Witt, D., Gray, J.: Parallel database systems: The future of high performance database

systems. Commun. ACM 35(6), 85-98 (1992)

. DeWitt, D.J., Naughton, J.F., Schneider, D.A., Seshadri, S.: Practical skew handling in par-

allel joins. In: Proceedings of the 18th International Conference on Very Large Data Bases,
VLDB 1992, pp. 2740 (1992)

. Al Hajj Hassan, M., Bamha, M.: An efficient parallel algorithm for evaluating join queries

on heterogeneous distributed systems. In: Proceedings of The 16th annual IEEE International
Conference on High Performance Computing, HiPC 2009, pp. 350-358 (2009)

. Kotoulas, S., Oren, E., van Harmelen, F.: Mind the data skew: distributed inferencing by

speeddating in elastic regions. In: Proceedings of the 19th International Conference on World
Wide Web, WWW 2010, pp. 531-540. ACM (2010)

. Kim, C., Kaldewey, T., Lee, V.W., Sedlar, E., Nguyen, A.D., Satish, N., Chhugani, J., Di

Blas, A., Dubey, P.: Sort vs. hash revisited: Fast join implementation on modern multi-core
CPUs. Proc. VLDB Endow. 2(2), 1378-1389 (2009)

. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join algorithms

for multi-core CPUS. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2011, pp. 37-48. ACM (2011)

. Balkesen, C., Teubner, J., Oszu, G.A., Main-memory, M.T.: Hash joins on multi-core CPUs:

Tuning to the underlying hardware. In: Proceedings of the 29th International Conference on
Data Engineering, ICDE 2013, pp. 362-373 (2013)

. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q., Sander, P.: Relational joins on

graphics processors. In: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, pp. 511-524. ACM (2008)

. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.

Surv. 32(4), 422-469 (2000)

Zhang, X., Kurc, T., Pan, T., Catalyurek, U., Narayanan, S., Wyckoff, P., Saltz, J.: Strategies
for using additional resources in parallel hash-based join algorithms. In: Proceedings of the
13th IEEE International Symposium on High Performance Distributed Computing, HPDC
2004, pp. 4-13 (2004)

Xu, Y., Kostamaa, P., Zhou, X., Chen, L.: Handling data skew in parallel joins in shared-
nothing systems. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2008, pp. 1043—-1052. ACM (2008)

Cheng, L., Kotoulas, S., Ward, T., Theodoropoulos, G.: Efficient handling skew in outer joins
on distributed systems. In: Proceedings of the 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid 2014, pp. 295-304 (2014)

Hill, G., Ross, A.: Reducing outer joins. The VLDB Journal 18(3), 599-610 (2009)

Larson, P.A., Zhou, J.: View matching for outer-join views. The VLDB Journal 16(1), 29-53
(2007)

Koloniari, G., Pitoura, E.: Peer-to-peer management of XML data: Issues and research chal-
lenges. ACM Sigmod Record 34(2), 6-17 (2005)

Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A comparison of join
algorithms for log processing in MapReduce. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, pp. 975-986. ACM (2010)

Cheng, L., Kotoulas, S., Ward, T., Theodoropoulos, G.: QbDJ: A novel framework for
handling skew in parallel join processing on distributed memory. In: Proceedings of the
15th IEEE International Conference on High Performance Computing and Communications,
HPCC 2013, pp. 1519-1527 (2013)

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun,
C., Sarkar, V.: X10: An object-oriented approach to non-uniform cluster computing. In: Pro-
ceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2005, pp. 519-538. ACM (2005)

Top-k Item Identification
on Dynamic and Distributed Datasets

Alessio Guerrieri, Alberto Montresor, and Yannis Velegrakis

University of Trento, via Sommarive 5, Trento, Italy

Abstract. The problem of identifying the most frequent items across
multiple datasets has received considerable attention over the last few
years. When storage is a scarce resource, the topic is already a challenge;
yet, its complexity may be further exacerbated not only by the many in-
dependent data sources, but also by the dynamism of the data, i.e., the
fact that new items may appear and old ones disappear at any time. In
this work, we provide a novel approach to the problem by using an exist-
ing gossip-based algorithm for identifying the k most frequent items over
a distributed collection of datasets, in ways that deal with the dynamic
nature of the data. The algorithm has been thoroughly analyzed through
trace-based simulations and compared to state-of-the-art decentralized
solutions, showing better precision at reduced communication overhead.

1 Introduction

One of the classical problems in computer science is the development of efficient
algorithms to compute statistical functions over a dataset. Among these, identi-
fying the most frequent items has attracted considerable attention over the last
years. In particular, two challenging scenarios have been considered: very large
but static datasets [12] and continuous streams of data [15].

Recent advances in information and communication technology have dramati-
cally changed the computational landscape in which these problems are applied:
useful information is now often found across many physically distributed and
independent sources. For retrieving the most frequent items, one needs to collect
and integrate information from multiple, dynamic datasets, posing challenges on
the computation of a global function over the data located at distant nodes.

Computing the most frequent items over a collection of dynamically changing
and independent data sets is part of the problem of continuous distributed mon-
itoring [9]. This problem finds application in many different scenarios, such as
computing the popularity of topics in social services like Twitter and Facebook,
discovering global security attacks in communication networks, or identifying
popular web pages for ranking search results.

The straightforward solution to this problem is to send all the information
to a central node, which can in turn compute the statistics. As this approach
is impractical for very large and dynamic datasets, a number of variations to
this idea have been proposed aiming to reduce both the traffic and the load on

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 270281, 2014.
© Springer International Publishing Switzerland 2014

Top-k Item Identification on Dynamic and Distributed Datasets 271

the central node. One approach is to perform periodic polling or more sophisti-
cated random sampling [20] instead of continuous monitoring. Since the interest
is only on the k most popular elements, one can send information only when the
local set of top-k items changes, or when there is a number of changes above
a threshold [11]. An intermediate solution tries to predict the interesting items
and communicate them to the central node, using either knowledge of the data
distribution [5], entropy statistics [3] or sketches as a form of a compact data rep-
resentation [10]. This centralized approach can be applied when this information
must be gathered in a single location to use it as a reference when needed.

However, using a central node may not be preferable in all applications. Indi-
vidual sources may not be willing to send all their information to a central node
and allow it to acquire a global view of the entire system that goes well beyond
the original goal — identifying the most frequent items. If the number of sources
is really large, the central node may become a serious bottleneck, not only in
terms of communication but also in terms of computation. Finally, in a highly
distributed environment, individual sources may need to have always available
the information that the central node has computed and use it for their own
purposes.

We advocate here a completely decentralized approach for computing the top-
k most frequent items in a large collection of independent dynamically changing
datasets, based on the idea of gossip-based protocols for information propaga-
tion [13]. Intuitively, each source has an estimate of what are the most frequent
items globally. Initially, the only information a source has is the set of local
frequencies. Periodically, each source performs a random gossip exchange with
another source, sending and receiving their current estimates. Both sources then
update their estimates using the old local estimate and the estimate received
from the other source. This process is repeated until the estimates converge to
the actual top-k items.

This idea has been recently applied to the identification of top-k items [19] in
a collection of static datasets. The algorithm in [19] is shown to be very efficient,
converging to the correct top-k items in a logarithmic time with respect to
the size of the network. In this work we push this technique even further, by
considering dynamic datasets where new items may be added — while existing
items may be removed — at any time.

The contributions of this work are the following: (i) we formally define the
problem of computing the top-k most frequent items in a distributed, dynamic
environment (Section 2); (ii) we extend the algorithm presented in [19] by con-
sidering the case in which the collection of data is not fixed but varies over
time (Section 3); (iii) we prove that our novel algorithm converges with very
high probability despite the modifications to the original one (Section 4); (iv)
we experimentally test our solution on trace-driven datasets, showing that, even
without a central node, our approach manages to achieve a very good precision
at the expense of a communication overhead which is shared among all sources
(Section 5). We conclude the paper by analyzing related work (Section 6) and
summarizing our results (Section 7).

272 A. Guerrieri, A. Montresor, and Y. Velegrakis

2 Problem Statement

We consider a finite collection P of networked nodes. Each node can communi-
cate — if it chooses to do so — with any other node in P, provided they know
its identifier; process identifiers may be obtained either through a static list, or
through a peer sampling service [14]. We consider a universe Z of items, a time
domain 7 and a function F': P x Z x T — N, referred to as the local frequency
of an item ¢ € Z in a node p € P at a time t € T, and denoted as F},(i) for
brevity. Intuitively, the function represents the number of times an item has been
observed in a node until a specific moment.

We define the global frequency of an item 4 at a time ¢, denoted as F*(i), to
be the cumulative frequency in all the nodes, i.e.,

Fii) =Y Fi(i)
peEP
We are interested in finding the k& most frequent items across the whole node
network. Let i}, denote the k-th item in the sequence of all the items in the node
network sorted in decreasing order of global frequency at the time ¢. The set we
are interested in is the set MF' C T of the items with global frequency more
than or equal to F*(i), i.e.,

MF' = {i|ieIAF'(i)> F'i})}

Note that the cardinality of MF" may be larger than k since there may be
several items with the same global frequency as k.

We consider two different cases of the problem. In the first we assume that
the frequency of the items can only increase in time. This finds application in
scenarios where one is interested in the number of times the items have appeared
in the nodes since the beginning of the operation of the system. We refer to this
case as the streaming scenario. In the second case, we are interested in counting
the appearances of items within a recent time window. This applies in scenarios
where one needs to ignore appearances of items that have occurred long time
ago and take into consideration only the recent appearances. This means that
the function F' for an item may increase or decrease in time. We refer to this
case as the sliding window scenario.

3 Gossip-Based top-k Discovery

Since we assume no centralized authority or node with global knowledge, we
would like every node of the network to be able to provide an answer to the top-
k problem. Each node will estimate the average global frequency, i.e. the global
frequency of an item divided by the network size; given that the network size is
constant, this estimate can be used instead of global frequency to compute the
top-k set.

We adopt a solution that is based on a gossip-based aggregation protocol [13],
where the local knowledge of a node is expanded with knowledge collected from

Top-k Item Identification on Dynamic and Distributed Datasets 273

Algorithm 1: Gossip algorithm executed by node p
Data: Nodes P,int k, int sleep, int s, int A,mund
MAP est, < 0
SET old < 0
int rounds < 0

function main()
repeat every Ayound time units
rounds <— rounds + 1
if extractTop(esty, k) # old then
rounds <— 0
old <+ extractTop(esty, k)

if rounds < sleep then
NODE g + random(P)
send (REQUEST, extractTop(estp, s)) to ¢

upon receive (REQUEST, MAP est,) from ¢ do
MaP A+ 0
foreach i € estq do
A[i] + 1 (estpli] — estqli])
estpli] < estpli] — Alf]

send (REPLY, A) to ¢

upon receive (REPLY, MaP A) do
foreach i € A do
estpli] < estpli] + Alf

function modifyLocalFrequency(ITEM i, int dp, (;))
estpli] < esty[i] + 0, ()

function updateWindow(list activeltems)
cutoff < currentTime — windowSize
while activeltems.head().timestamp < cutoff do
modifyLocalFrequency(activelterns.head().id, —1)
activeltems.removeHead()

other nodes in the network. The nodes try to estimate the average global fre-
quency of each item by updating any local estimate they may have to reflect
also the estimates of the other nodes. If this is repeated continuously in a gossip
fashion, then the information about the frequency of the most frequent items is
epidemically propagated to all the nodes in the system. Previous work [19] has
shown that not only this approach makes the frequencies of the various items
in the individual nodes to converge to the true average global frequencies of the
respective items, but also that they do so at an exponential rate [13].

The results of previous works [13,19] are based on the assumption that the
local frequencies are not changing, i.e., that the input remain static while the

274 A. Guerrieri, A. Montresor, and Y. Velegrakis

gossip algorithm is applied. We are interested in the case in which the local fre-
quencies of the items are continuously changing, making the global frequencies
continuously increase (in the case of the streaming scenario) or continuously fluc-
tuate (in the case of the sliding window scenario). Our gossip-based algorithm
is an extension of the one for the static case [19]. It propagates the changes that
occur in a distributed fashion all over the network, using the parallel partici-
pation of the nodes to obtain a very good approximation of the average global
frequencies.

The algorithm is shown in Algorithm 1. Each node p maintains a map struc-
ture est, : T — R that represents p’s estimate for the average global frequency
of each item 4, i.e., an estimate for the value F*(i)/|P|. Since |P| is constant,
the top-k items in the map structure should coincide with the top-k among the
estimated global frequencies. The node does not need to keep the local frequen-
cies of the items in a different structure from the estimates. Whenever there is
a change in the local frequency of an item, it is enough to record it in est, by
changing the estimate for the respective item accordingly. This is implemented
by calling the function modifyLocalFrequency and providing to it the item and
the change in its local frequency. Furthermore, we consider a function extractTop
that given a map structure M and a number s, returns a new map structure
with only the entries of M with a frequency in the top s values.

Each node p works in periodic rounds, during which it may initiate a gossip
exchange with a random node ¢. A gossip exchange consists of a REQUEST mes-
sage sent from p to ¢, followed by a REPLY message sent by ¢ to p. In the request
message, the node p includes the s > k items from est, with the s highest fre-
quencies, alongside their estimated frequencies. Sending more than k items in
the request results in faster convergence; this is a trade-off, however, as higher
values of s result in larger communication costs.

When the request is received by node ¢, ¢ updates its own estimates by sub-
tracting A[i] = } (esty[i] — estp[i]) from the estimate esty[i] of every item i that
the received message contained. It then responds to the request by sending a
reply message to p containing a map with the value A[i] of every item i whose
estimate frequency was modified. Upon receipt of the response from ¢, for every
item ¢ for which the value A[i] is contained in the response message, the value
est, is updated to the value est, + A[i]. As a result, when the gossip exchange
between the two nodes is completed, both nodes will have their estimates for the
top-k items of p, updated to the average of the values that these two nodes had
before the gossip.

1 . .
o (estalil + esty i)

1

estyli] « estpli] + Ali] = 2(

In other words, a gossip exchange between any two nodes p and ¢ substitutes
the old values est,[i] and esty[i] with their average 3 (estq[i] + est|i]).

Since it is possible that the global top-k items remain unchanged for

potentially long periods, our algorithm communicates only when nodes observe

estqli] < estq[i] — Afi] =

estq[i] + estp[i])

Top-k Item Identification on Dynamic and Distributed Datasets 275

variations in their current top-k lists, thus using fewer messages and bandwidth.
We allow our nodes to be in one of two different states: active or dormant. Ac-
tive nodes periodically initiate gossip exchanges with other nodes. Dormants only
participate in exchanges initiated by other nodes. An active node becomes dor-
mant when the last sleep number of exchanges have not changed its set of top-k
items. A dormant node becomes active again whenever a variation in the set of
top-k items occurs, either because of information received from other nodes, or
because of variations in the local frequencies. The above approach ensures that
the number of exchanges is reduced whenever there are no important changes,
but can automatically and rapidly increase when needed.

For the case of a sliding window scenario each node keeps in a list the sequence
of items it has received. When the topmost item in the list is out of the window,
it is removed from the queue and its frequency in the local frequency table is
decreased by 1. The sum of the local frequencies for that item is thus kept equal
to the number of its active instances in the network. If this approach requires
too much memory, we can divide the window into smaller time chunks and keep,
for each of these chunks, the frequencies of all items the node has received in
that time chunk. The window will not move continuously, but in chunk-steps:
each time a chunk has become obsolete all its contents will be thrown away.
In our experiments we assume that each node has enough memory to store the
sequence of items it has received during the window and will update the local
frequency table every time an item has become obsolete.

4 Protocol Convergence Analysis

Previous work [19] has computed a probabilistic upper bound on the number of
rounds in the static case, showing that the convergence time grows logarithmi-
cally with the network size. If we assume that the local frequencies of the items
do not change, then our problem is reduced to the case of [19].

In our case, the presence of the sleep parameter plays an important role. When
the top-k of a node has not changed for sleep consecutive rounds, it will become
dormant and will stop initiating ex-
changes until either it meets a node :;g‘gig -
with a different top-k set, or its local 10 Sleep-t -
top-k changes because of the arrival Te-100 ¢ =
of new local data. The introduction of
the sleep parameter creates the possi-
bility, however low, that part of the
network might converge to a wrong
answer. , S

To study the probability of such o oo of:momjoclusl;roo 120 140
a situation, we devised the following
scenario. Let C be the set of nodes Fig.1. Probability of convergence to a
containing a wrong top-k; further- wrong answer, with different values of sleep
more, consider the case where all top- (n = 1000).

k sets maintained by nodes in C are

1

1e-150

1e-200

Probability (logscale)

1e-250

1e-300

276 A. Guerrieri, A. Montresor, and Y. Velegrakis

equal. Let n = |[P| and ¢ = |C|. If, for sleep rounds of the protocol, nodes only
contact nodes of their kind (nodes in nodes in C only contact those in C, and
those in P — C only contact those in P — C), the entire network might become
dormant before a common answer is reached. The probability of this event to
occur in a complete graph is the following:

c—1 c-sleep n—c—1 (n—c)-sleep
(o) ()

As shown in Figure 1, the probability of the network becoming dormant while
a group of nodes still contain a wrong answer get exponentially small with the size
of the disagreeing group. Since nodes are also prone to exit from their dormant
state whenever the arrival of new data changes the composition of the local top-
k, we can conclude that the network will converge to the correct top-k with very
high probability.

5 Results

We performed extensive simulations of our algorithm using PeerSim [18], a peer-
to-peer simulator written in Java. If not stated otherwise, each experiment is
repeated 20 times.

Our objective is to design a protocol that identifies the items in MF" as accu-
rately as possible. Unfortunately, it is impossible to guarantee that the output
of our protocol corresponds exactly to MF® at each time ¢, because of the delay
occurring between the arrival of an item and the discovery of this fact by all
nodes in the network. We will therefore measure the quality of a proposed pro-
tocol by checking for each node in the network, at each time ¢, the number of
items that appear both in its output and in MF*. We then compute the average
across the entire network and, when needed, average across all time instants to
get the average precision of the network across the entire experiment.

Evaluation Framework. We tested the algorithm on two different scenarios.
The wcuP dataset contains timestamped URL requests to the 1998 World Cup
servers across 90 days, covering a timeframe starting from a month before the
first match to a few days after the final [4]. The LAST.FM dataset records the
playing history of users across an entire year on the Last.fm website, a music
discovery service that provides personalized recommendations based on the lis-
tening habits [1]. Our protocol computes the top-k most accessed pages in WCUP
and the top-k most listened artists in LAST.FM. Each single data item is deliv-
ered to a node chosen uniformly at random. Different policies have been studied,
without any impact on the quality of the solution.

The distributions of the frequencies of our chosen datasets follow a power
law, the few top ranked items having very large frequency while all the many
lower ranked items have very small frequency. This property guarantees a certain
degree of separation between the top-k items and all the lesser frequent items.

Table 1 contains all the default parameters for the experiments listed in the
current section. In our experiments, the d nodes that form the neighbor set of

Top-k Item Identification on Dynamic and Distributed Datasets 277

each node are chosen uniformly at random, property that could be achieved by
using a peer sampling protocol. The amount of data items s sent per round is
set to 2k. Such value has been experimentally validated in a previous paper [19]
as a good compromise between convergence speed and bandwidth. Larger values
for s do not induce a very large improvement in convergence speed (and thus
precision), but have a much steeper cost in terms of message size.

Table 1. Default values of our parameters, where not explicitly stated otherwise

N number of nodes in the network 100

d degree of nodes in the network 20

k number of most frequent items 40

s amount of data items per round per node 2k
Avound length of each round 1 hour
sleep sleeping factor 5

w size of the sliding window 1 day

Streaming Results. We first analyze how does our algorithm behave in the
streaming model, when it has to compute the top-k over all the items that have
arrived since the start of the experiment. To measure precision, in each instant
t we compare the top-k of each node in that instant against the global top-k
computed using all data delivered from instant O to instant ¢.

In Figure 2 we show the precision of
100

our algorithm against the size of the L L
. 995 1 L Wb 4
network, using a round length of one I O L L A T '
99 : i ' i
hour. The larger the system, the more R B
. . . . ® 985 - i
time is needed for information to reach ¢
. 2 98 |
all nodes; consequently, a slightly lower 3 s
precision is obtained. Still, since an in- * ?;7
crease from 100 to 1000 nodes causes a
. 96.5 - World Cup =&
decrease in just 0.5% in precision, the oo | estmem—
algorithm remains highly scalable. 100 200 300 400 500 600 700 800 900 1000
Network Size

The sleep parameter is very influ-
ential in decreasing both the amount Fig. 2. Algorithm precision using variable
of messages and the workload of each network size
node. Figure 3a shows that a small
value for sleep can decrease the amount of messages sent by a huge margin across
the entire experiment. Figure 3b instead shows that the highest the value for
sleep, the slower the nodes will become dormant. If sleep is too low, the nodes
will quickly become dormant and the algorithm will be slower to react to changes
to the global top-k. By choosing the value for this parameter it is possible to
achieve the desired trade-off between precision and bandwidth.

Sliding Window Results This second group of experiments illustrate the per-
formance and behavior of our approach in a sliding window scenario, when each

278 A. Guerrieri, A. Montresor, and Y. Velegrakis

80

8 101
70 b . J
o : 1005 -
2
g 60 & - 100
g - < L
S 50 - R 995 gt
2 2 B s L
g 40 - 2 90 o
g 8 s £ ooas| |t
2 30+ T ! i
@ 2
= / 98 |
20 - o
WorldCup =& 975 |
)) Last.fm ~-m-- ' WorldCup +&
10 Last.fm ~-m--
0 5 10 15 20 97 : . : -
0 5 10 15 20

Sleep parameter
Sleep parameter

(a) Average number of messages sent on
average by a single node per round against
sleep

(b) Average precision across the entire ex-
periment against sleep

Fig. 3. Analysis of the sleep parameter in the two datasets

occurrence of a data item is deleted after W rounds have passed. We assume that
each node has enough memory to store all the local items that are still within
the time window and updates the local frequency table whenever one local item
expires.

Figure 4 shows how the algorithm behaves with a sliding window 1-day long.
By decreasing the round length of the protocol we can achieve almost perfect
precision while using low bandwidth. Since each node will send around 1KB of
data during each round, even with a round length of one minute the amount of
bandwidth used is extremely small.

Real World Scenario. Since the wCcUP dataset also contains the identification
number of the server that served each page request, we can test our algorithm
in a real world scenario by simulating the network of 20 servers that managed
the web site during the 1998 World Cup. Figure 5 shows the precision of our
algorithm when replicating the exact same setting, with a window length of 1
day and k equal to 40. Again, with a small round length the algorithm achieves
almost perfect precision.

Comparison. To our knowledge, there are no other decentralized top-k algo-
rithm that work on sliding windows. We therefore compare our approach with
another decentralized top-k algorithm in the basic, streaming scenario.

In Figure 6 we compare our approach with the gossip-based decentralized
sampling approach in [16]. Since both approaches use gossip, it is possible to di-
rectly compare their performance by using the same round length and measuring
the amount of bandwidth used. Figure 6 shows that our approach obtains better
results using only a very small fraction of the bandwidth. When compared on
the LAST.FM dataset, the larger difference is caused by the larger dataset.

Top-k Item Identification on Dynamic and Distributed Datasets 279

100 —gwwE g 5 5100 e e e
s % T T B ’]
2 Foo g g 5 9 1
S ol T RN f gz u]
5 : O', e o 3(2) Round= 1m B
g ®ri o o I o] =
& gf p-o o er® E _
I g
0 10 20 30 40 50 60 70 s
2}
100 pogose ErlEliie s lernaiate ezt 3
o
2 90y .-.'II-’l"l-l.'l“!'l“lll\lp.al\.i
c 8 f;! Round= 1m =
2 } Round = 10m + &
o 70 i 2 a Round = gth <
I L2 2 o oy O k=3 i
T 60 ©. % b o g ®%0 O ° 2 i
50 I ® o Round < 1h
. & : s U
0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70 80

Time (d) Time (d)

Fig. 4. Precision across time, using differ- Fig. 5. Precision in the realistic wcup

ent window sizes (WCUP on top, LAST.FM scenario with k& = 40, using different
on the bottom) round lengths
< 1 < i
S S
A - A
N i 8]
a T Ty a
50]]
At [, ™
40 — —
30 ‘ ‘ ‘ ‘ ‘ ‘mum‘mm%w“uum
0 10 20 30 40 50 60 70 80 90 100 0 50 100 150 200 250 300 350 400
Time (d) Time (d)
Our approach & 10x bandwidth «-©: Our approach & 100x bandwidth + -e-
1x bandwidth +-m--« 100x bandwidth e 10x bandwidth -~ 1000x bandwidth -~
(a) wcup dataset (b) LAST.FM dataset

Fig. 6. Comparison of our algorithm with the gossiping sampling approach

6 Related Work

Finding the most frequent items is a classic problem with applications in many
different fields. According to the specific application and the properties of the
dataset, wildly different requirements need to be satisfied. In the most basic
case, where the dataset is stored in a single machine and the amount of memory
available is enough to store the frequencies of each item, the problem becomes
quite trivial. If the amount of memory is not large enough, the problem moves
into the streaming scenario. Theoretical work [2] proved that it is possible to
estimate items frequency to a constant factor in logarithmic space. The most
common approach is to define compressed data structures to store the approxi-
mated frequency of the interesting items, the items that may be part of the top-k
set. Among the many synopsis in the literature [12], the “COUNT SKETCH” data
structure [7] allows a single pass algorithm that is able to compute an arbitrarily
close approximation of the top-k in logarithmic space. Other algorithms [8] can
also work in a sliding window scenario, by keeping track of both frequent items

280 A. Guerrieri, A. Montresor, and Y. Velegrakis

and items that might become frequent in the future, with different degrees of
precision. These algorithm cannot be directly applied when the dataset itself is
distributed across different machines.

A common approach to solve our problem is to have a number of slave nodes
that analyze their data and a master node that collects the partial findings and
computes the final solution. The main drawbacks of this approach are clear: the
system has a single point of failure and may cause an excessive amount of com-
putation on the master node. Cao and Wang’s algorithm [6] is an example of this
type of solutions. Each slave computes its own top-k, all of which are collected
by the master node to compute a lower bound on the frequency of the k-most
frequent item. This information is given to the slaves, that recompute their solu-
tion to include only those items that have local frequencies above the threshold.
Babcock and Olston’s approach [5] instead computes a starting approximation
of the top-k set in each slave node and in the master node. The temporary solu-
tion is then sent back to each slave, that starts analyzing the entirety of its data
as it arrives. When a slave sees that its own solution is “different enough” from
the global solution, it sends an update to the master node. It will be the master
node’s job to then notify all slave nodes if the global solution has changed.

One possible approach to avoid putting too much stress on the master node
is using an hierarchical structure. There is still a root node that computes the
final solution, but the costs of aggregation of temporary solution are spread
between all the inner nodes of the topology. The construction and maintenance
of the topology creates additional overhead on the system. Manjhi presents an
interesting algorithm [17] based on compressed synopsis. This data structure
offers an approximation of the frequencies of a datasets. Synopsises can be joined
together at the different level of the hierarchical topology to obtain in the root
node an estimate of the top-k set. This simple approach is then enhanced by the
idea of a precision gradient. The level of compression of the synopsis is not kept
constant in the system, but is adapted at each different level of the topology to
minimize the communication costs.

A completely decentralized algorithm is inherently more robust and should
guarantee better subdivision of work between the nodes. Lahiri and Tirtha-
pura [16] presented a gossip algorithm based on uniform random sampling. The
intuition behind this algorithm is that the top-k of a dataset should be similar
to a large enough random sampling of the dataset. The algorithm thus computes
a random sampling of all the data in the distributed system via repeated aggre-
gation. Since the entire sample must be sent around, the amount of data sent is
much bigger than in our algorithm.

7 Conclusions

In this work we have extended an existing approach to find the k most frequent
items across a distributed collection of datasets, without relying on a central node
that collects global knowledge about the data. The method we discussed is based
on a gossip protocol that allows local information in a node to be epidemically

Top-k Item Identification on Dynamic and Distributed Datasets 281

propagated to other sources. The algorithm presented has special features to
deal with continuously changing data. Trace driven experiments illustrate that
despite the dynamic changes in the global frequencies, the system is able to react
quickly and provide a good approximation from any node of the network.

References
1. Last.fm, http://www.lastfm.com
2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. In: Proc. of STOC 1996, pp. 20-29. ACM (1996)
3. Arackaparambil, C., Brody, J., Chakrabarti, A.: Functional monitoring without
monotonicity. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 95-106. Springer,
Heidelberg (2009)
4. Arlitt, M., Jin, T.: 1998 World Cup web site access logs (August 1998),
http://www.acm.org/sigcomm/ITA/
5. Babcock, B., Olston, C.: Distributed top-k monitoring. In: Proc. of SIGMOD 2003,
pp. 28-39 (2003)
6. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In:
Proc. of PODC 2004, pp. 206-215. ACM (2004)
7. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theoretical Computer Science 312(1), 3-15 (2004)
8. Chi, Y., Wang, H., Yu, P., Muntz, R.: Moment: Maintaining closed frequent item-
sets over a stream sliding window. In: Proc. of ICDM 2004. IEEE (2004)
9. Cormode, G.: Continuous distributed monitoring: A short survey. In: Proc. of
AIMoDEP 2011, pp. 1-10. ACM (2011)
10. Cormode, G., Garofalakis, M.N.: Sketching probabilistic data streams. In: Proc. of
SIGMOD 2007, pp. 281-292 (2007)
11. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional
monitoring. ACM Transactions on Algorithms 7(2), 21 (2011)
12. Gibbons, P.B., Matias, Y.: Synopsis data structures for massive data sets. In:
External Memory Algorithms, pp. 39-70. American Mathematical Society (1999)
13. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dy-
namic networks. ACM TOCS 23(3), 219-252 (2005)
14. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-
based peer sampling. ACM TOCS 25(3) (August 2007)
15. Karp, R., Shenker, S., Papadimitriou, C.: A simple algorithm for finding frequent
elements in streams and bags. ACM Trans. Database Syst. 28(1), 51-55 (2003)
16. Lahiri, B., Tirthapura, S.: Identifying frequent items in a network using gossip. J.
Parallel Distrib. Computing 70(12), 1241-1253 (2010)
17. Manjhi, A., Shkapenyuk, V., Dhamdhere, K., Olston, C.: Finding (recently) fre-
quent items in distributed data streams. In: Proc. of ICDE 2005. IEEE (2005)
18. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: Proc. of P2P
2009, pp- 99-100 (September 2009)
19. Sacha, J., Montresor, A.: Identifying frequent items in distributed data sets. Com-
puting 95(4), 289-307 (2013)
20. Tirthapura, S., Woodruff, D.P.: Optimal random sampling from distributed

streams revisited. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 283-297.
Springer, Heidelberg (2011)

http://www.lastfm.com
http://www.acm.org/sigcomm/ITA/

Applying Selectively Parallel I/O Compression
to Parallel Storage Systems

Rosa Filgueiral, Malcolm Atkinson!, Yusuke Tanimura?, and Isao Kojima2

1 University of Edinburgh, School of Informatics, Edinburgh EH8 9AB, U.K.
{rosa.filgueira,mpa}@ed.ac.uk
2 Information Technology Research Institute, AIST, Tsukuba, Japan
{yusuke.tanimura,isao.kojima}@aist.go.jp

Abstract. This paper presents a new /O technique called Selectively Parallel
I/0 Compression (SPIOC) for providing high-speed storage and access to data
in QoS enabled parallel storage systems. SPIOC reduces the time of I/O opera-
tions by applying transparent compression between the computing and the stor-
age systems. SPIOC can predict whether to compress or not at runtime, allowing
parallel or sequential compression techniques, guaranteeing QoS and allowing
partial and full reading by decompressing the minimum part of the file. SPIOC
maximises the measured efficiency of data movement by applying run-time cus-
tomising compression before storing data in the Papio storage system.

Keywords: Parallel File System, Data Intensive Computing, Compression algo-
rithms, Adaptive systems.

1 Introduction

Large scale Data-Intensive Computing plays an important role in many scientific ac-
tivities and commercial applications, whether it involves data mining of commercial
transactions, experimental data analysis and visualization, or intensive simulation such
as climate modelling. The challenge [1] is to develop a new framework to support
Data-Intensive Computing that provides persistent storage for large datasets as well
as balanced computing so the data can be analyzed. Parallel file systems (PFSs) such
as Lustre [2], General Parallel File System (GPFS) [3], and Papio [4] are a type of
distributed file system that distributes file data across multiple servers and provides
for concurrent access by multiple tasks of a parallel application. For transferring com-
pletely a large dataset to or from PFS, the data are striped via several I/O streams. This
type of file system, is commonly used in Data-Intensive Computing for obtaining high-
performance I/0. While PFS, can scale in capacity and access bandwidth to support a
large number of clients and petabytes of data, they cannot mask the imbalance between
I/O throughput and compute power, the expensive storage network, and the limitation
of hard disk drive (HDD) throughput. Therefore, the rate at which data can be delivered
from disk to compute engine is a limiting factor, causing the data transfer channel to
become a serious bottleneck.

Our aim is to reduce this bottleneck by decreasing the overall I/O time needed for
transferring completely datasets between the computer and storage system (and vice
versa). To reach our objective, in this paper we present three new compression strate-
gies: Sequential Compression, Parallel Compression and Selectively Parallel I/O Com-
pression (SPIOC), which are located on the client’s side. Each strategy is an improve-
ment over the previous one, and they apply run-time lossless compression (sequential or

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 282-293, 2014.
(© Springer International Publishing Switzerland 2014

Applying Selectively Parallel /O Compression to Parallel Storage Systems 283

parallel). SPIOC also decides whether to compress or not, and which technique should
be use (sequential or parallel) depending on the features of the client’s machine.

We have chosen Papio as the storage system, because it was designed for large scale
cluster computing. Papio provides QoS guarantees by employing an advanced reser-
vation approach. While Papio executes each I/O operation with the I/O throughput re-
quested by users, our techniques reduce the number of strips needed for completing the
data transfer. Therefore, the combination of Papio and SPIOC allows us to reduce the
time needed for writing and reading files while satisfying the reservation requests from
users.

The remainder of this paper is: Section 2 introduces related work. Section 3 describes
our system for selecting the compression algorithm. Section 4 explains the compression
strategies. Section 5 presents an extensive evaluation. We conclude with a summary and
a discussion of potential future work.

2 Related Work
2.1 The Papio Parallel File System

Papio is a storage system that supports parallel I/O and the performance reservation
functionality [4]. Papio has a client API library, which allows users to reserve I/O per-
formance with desired throughput (e.g. MB/sec), access type (read or write), and access
time (from start to end). Papio allocates storage resources according to these reserva-
tions. When the requested throughput is higher than that provided by a single Storage
Server (SS), multiple SSs are used, increasing the I/O parallelization. An I/O stream
is the channel which the data flow between the client’s application and one SS. There-
fore, the total number of I/O streams (called stripe count) is set to the number of SSs
assigned to the reservation. Furthermore, Papio’s API allows users to cut up a file into
parts for performing the I/O operations (read PAPIO and write PAPIO). Each part is
called a chunk. In each I/O operation, the chunk is striped over all of the I/O streams.
The minimum unit of transfer via an I/O stream in Papio is called a stripe of stripe size
bytes. So, according to the level of I/O parallelization, more stripes can be transferred
in parallel because more I/O streams are used. The total amount of data (stream width)
written or read each time by the I/O streams is stripe size* stripe count.

Figures 1(a), 1(b) show examples of application programs which write a 130MB
file to Papio by using different chunk sizes. In both examples, the user’s I/O through-
put reservation is 300MB/sec. As the requested I/O throughput is higher than a single
SS (100MB/sec), three SSs are assigned to the execution of the applications. In Fig-
ure 1(a), the entire file is written as one chunk, which requires one write PAPIO opera-
tion, and in Figure 1(b), the file is written in several chunks of 10MB, which requires 13
write PAPIO operations. Finally, each write PAPIO operation stripes the chunk (stripe

size is IMB in the examples), written in parallel via 3 parallel I/O streams. If the re-
quested I/O throughput was 100MB/sec, only 1 SS would be assigned, and the stripes
would be written sequentially. For both examples, stream width is 3MB, and the num-
ber of stripes is 130.

Similar performance is obtained if users use a single or several chunks. Timing mea-
surements by using those methods with the environment explained in Section 6 are
at!. However, we have to be aware that if chunk size is smaller than stream width, Pa-
pio will wait for the next chunk to fill the streams, causing a performance degradation
called stream delay.

I Supplementary details:
http://effort.is.ed.ac.uk/Compression/WritingMethods.pdf

http://effort.is.ed.ac.uk/Compression/WritingMethods.pdf

284 R. Filgueira et al.

File
File (size 130MB) User application program
(size 130MB) User application program I

[| requesled 10 . ")
throughput=: GOOMBlsec write(File, chunk_size) e.g. write(File.txt, 10MB)
requested /O

ot 300MB/sec/ Write(File, chunk_size) e.g. write(File.txt, 130MB)
N_OC=1 Packing

Client a)chunk size. egquE; N_OC=13 Packing
| I E——

wrlle PAPIO(FIIe oﬂsel chunk size)
‘write_PAPIO(File_offset, chunk_size) | | I I I I T T T T T T T T T T T T T 1]

..........................
\ a) Stripe_size e.g. (1MB) Stripe_size e.g. (1MB) Papio Library

Papio Library
. Papio storage server
Papio storage server

100MB/sec UO 100ME/sec VO 100MB/sec /O
rve

Client [

100MB/sec /O 100MB/sec /O 100MB/sec /O S
Server .

= Original File L3 Original File

[Stripe] Stripe

* Number of write_PAPIO operations = 1 * Number of write_PAPIO operations = 13
(a) Writing a file by using a single chunk to Pa- (b) Writing a file by using a several chunks to
pio Papio

Fig. 1. Methods for writting files to Papio

2.2 Applying Compression to File Systems

The following are examples of how compression can be applied to files before storing
them in the file system, with parallel or sequential strategies, and using different lossless
compression algorithms.

APCEFS [5] is a file system which supports fast autonomous compression at high
compression rates by applying multiple compression techniques. It is designed as a vir-
tual layer inserted over an existing file system, compressing and decompressing data
by intercepting kernel calls. FuseCompress [6] provides a mountable Linux filesystem
which transparently compresses its content. FuseCompress supports several compres-
sion algorithms. However, when users want to read partial data by specifying an offset,
FuseCompress will decompress data from the beginning of the file to the specified off-
set.

ZBD [7] is a chunk-layer driver that transparently compresses and decompresses
data as they flow between the file-system and storage devices. ZBD maintains high
performance by leveraging modern multicore CPUs through explicit work scheduling.
In [8], two real-time methods are presented to identify the data that will yield significant
space savings when compressed. The first method estimates the compressibility of the
data. The second method examines data being written to the storage system in an online
manner and determines its compressibility.

All those approaches perform transparent compression to files before storing them,
and some of them have adaptive methods for deciding wether to compress or not. Our
work covers those two aspects, in addition it reduces the I/O time needed for transferring
the data guaranteeing the I/O throughput requested by users. We also apply adaptive
parallel techniques to reduce as much as possible the compression time. Furthermore,
our techniques allow us to perform partial reads decompressing the minimum part of
the file. Finally, the file system where we apply our compression techniques is a parallel
storage system, while others apply their techniques to serial file systems.

3 Selecting the Compression Algorithm

Depending on the datatype and redundancy levels, some algorithms can achieve a higher
compression ratio than others, or may need more time to perform the compression and

Applying Selectively Parallel /O Compression to Parallel Storage Systems 285

decompression operations. So, an adaptive method that selects the most suitable com-
pression algorithm depending on a users priorities (speed vs compression ratio) and
data features is desirable.

In [9], we implemented a strategy called Runtime Adaptive Strategy (RAS) for ap-
plying compression to the communications among MPI processes, and it has been pro-
ductively by [10]. The decisions taken by RAS relies on two modules: The Network
Behaviour module, which estimates the speedup achieved by sending a message with
and without compression, and the Compression Behaviour Module which has a library
called Compression Library with several compression algorithms and it produces a
heuristics file, which stores the compression algorithm to use depending on the mes-
sage datatype and its redundancy level.

The Compression Behaviour Module allows us to select a compression algorithm
based on two criteria: high compression ratio; high compression and decompression
speed. Our goal is to improve the I/O performance by reducing as much as possible
the transfer time. Overhead introduced by the compression should be as small as pos-
sible. Therefore, we have tuned the Compression Behaviour Module to give us the best
algorithm for each datatype (primitive or derived) based in the second criterion.

The compression strategies presented in this paper are completely different from our
previous work. However, we have decided to use the Compression Behaviour Module
to select the compression algorithm for each file datatype. As well as modifying this
module to work with files instead of MPI messages, in this work we have added two
new lossless data compression algorithms to our Compression Library: LZ4 [11] and
Snappy [12]. So, the new version of the Compression Behaviour module has access to
the following algorithms: RLE, Huffman, LZO, Snappy and LZ4.

In the current work we have performed an exhaustive empirical study with synthetic
and real files to improve the heuristics file, by using the environment described in Ta-
ble 2. We have developed a synthetic file generator to test integers, floats and double
numbers and character string datatypes. The files generated have sized 100KB, 500KB,
900KB, 1MB, 2MB. We have added redundancy to the data as described in [13]: 0%,
25%, 50%, 75% and 100%. On the other hand, real files from different sources, and
with different sizes and datatypes have been selected :

— The UCI Machine Learning repository?: 3D spatial network (float), pop failure
(float), regression tom (integer and float), regression twitter (integer and float), and
ad (integer and float)

— The Canterbury corpus3: E.coli (text), Bible.txt (text), World192.txt (text),
plrabni2.txt (text), pi.txt (text) and kennedy.xls (excell)

— The Text Compression Benchmark®: enwiki8 (text), enwiki9 (text)

— The BISP3D application [14]: Mesh3 (integer), Mesh4 (integer).

The studies show that the shortest compression and decompression times are achieved
by LZ4, Snappy, LZO, RLE, Huffman in ascending order as shown in Table 1.The re-
sults for the synthetic files can be founded at>. Notice that the highest compression
ratios are not always achieved by the faster algorithms. But as the aim this work is to
provide high-speed storage and access to Papio, fast algorithms are preferred over high-
compression algorithms. LZ4 is the fastest algorithm, independent of the datatype, size,

2 http://archive.ics.uci.edu/ml/

3 http://corpus.canterbury.ac.nz/

4 http://mattmahoney.net/dc/text . html

5 Supplementary information:
http://effort.is.ed.ac.uk/Compression/SyntheticResults.htm

http://archive.ics.uci.edu/ml/
http://corpus.canterbury.ac.nz/
http://mattmahoney.net/dc/text.html
http://effort.is.ed.ac.uk/Compression/SyntheticResults.htm

286 R. Filgueira et al.

Table 1. Compression ratio, and compression and decompression times for real files

Compression ratio Time compr. + decompr(sec)
File SizeMMB) RLE HUFF LZO Snappy LZ4 RLE HUFF LZO Snappy LZ4
3D spatial 20 1.00 2.14 1.67 1.61 1.65 104 5400 845 633 536
pop failure 0.25 1.17 23 163 1.65 1.52 12.89 74.69 15.07 11.74 10.00
regression tom 15 1.24 351 495 479 470 10.61 3533 3.70 2.80 2.46
regression twitter 217 1.20 299 4.08 427 381 7.06 36.04 4.18 324 326
ad 9.8 1 52 3305 166 38.65 9.6 24.04 098 083 0.60
E.coli 4.5 1.0l 4 203 214 1.60 1472 46.01 991 597 4.69
Bible.txt 39 1.00 1.82 2.02 2.03 193 20.01 9249 792 533 482
World192.txt 2.4 1.02 1.58 198 199 2.00 1081 123.02 7.76 5.34 5.05
plrabn12.txt 0.47 1.00 1.74 155 1.51 1.49 10.09 125.13 1643 12.05 10.79
pi.txt 0.97 1.00 235 122 120 1.26 11.53 85.07 14.00 14.02 11.89
kennedy.xls 1 1.00 222 284 242 274 11.02 6221 629 551 4.88
enwki8 35 1.00 156 1.79 1.76 197 644 7507 825 633 6.10
enwiki9 954 1.00 1.54 199 197 175 6.08 7625 7.55 561 5.16
Mesh3 14 1.00 240 7.81 7.61 650 8.18 49.01 498 3.74 3.29
Mesh4 26 1.00 226 248 255 205 8.18 4281 542 564 3.59

or redundancy level, so we have updated the heuristics file used by the Compression
Behaviour Module by selecting this algorithm for all datatypes and redundancy levels.
However, in future works this selection can be different if the selection criteria change,
or if a new algorithm is introduced which satisfies our requirements, for some or all
datatypes and redundancy levels.

4 Adding Compression to Papio

4.1 Sequential Compression Strategy

The first of three strategies proposed in this work is Sequential Compression, which
aims to reduce the total time needed for writing a file into Papio Storage Server, guar-
anteeing the I/O speed specified by the user. To reach this aim, this strategy divides the
file into several chunks and compresses them before writing to the storage system be-
cause if a user selects a part of file to read, only the chunks which belong to the selection
will be decompressed. Otherwise, the whole file must be decompressed.

This strategy applies an algorithm which returns the compression parameters: the
number of chunks to be compressed (N CC), the size of the chunks to compress (com-
pression chunk size), the compression ratio (compression ratio), and the compression
algorithm to use (algo) according to the heuristics file.

Firstly, the algorithm checks the compression heuristic file to determine the compres-
sion algorithm to use. Then, a compressibility study is performed to get the compression
ratio. Today there is not established method for estimating compression ratio rather than
just compressing. In [15], we find an analytically proof which affirms that accurately
estimate the compression cannot be performed unless reading practically all the data.
But this, will take too long. So, this algorithm selects three slices located randomly
from the middle until the end of the file and it studies their compressibility. The size of
each slice is 5% of the chunk size. Later, the algorithm calculates the compression ratio
getting an average of the compressed size of those slices. Finally, in order to avoid writ-
ing to Papio in very small chunks®, the algorithm ensures that each compressed chunk
is approximately the same size as the chunk size specified by the user. So, knowing

6 We want to prevent that the compressed chunks are not smaller than stream width to avoid the
stream delay problem.

Applying Selectively Parallel /O Compression to Parallel Storage Systems 287

. File -
File — : User application program
(size 130 MB) User application program (Sllze 130MB) I
l l requested 110 % write(File, chunk_size) e.g. write(Fi
o Z \ s 9. write(File.txt, 10MB)
requested V0 rsec | Write(File, chunk_size) e.q. write(File.txt, 10MB) throughput=300MB/sec
- y Client 7 N_CC=8
Client N CC e C LT T T T T T]
' a G on\\ Thi\| Tha|| Tha|| Tha Th3
Compressuon chunk Size
chunk_size 0. (18MB) b) Parallel
e.g. (18VB) ompression by
Num_Threads
b) Compressed z)hf:lz“g’;:ie“ e.g. (5 threads)
chunk_size ~ chunk_size. master thread
ZMHTS);':;B) Packing g (G8VE) Packing
9 *write_PAPIO(compressed_chunk, compressed_chunk_size) write_PAPIO(compressed_chunk compressed_chunk_size)
CCrIrIrrrrrrrrrrIrI1— d) Stripe_size L ' Tl T T T T T T T T T T 711
c) Stripe_size _
e)g m?na; e0. (1MB) Papio Library
Papio Library |
| . . Papio storage server Slerver - Papio storage server
Server i
100MB/sec O 100MB/sec /O 100MBisec O maMB/sec 110 IOOMB/SEC O 100MBisec 1O
[Original File] Original File
B3 Compressed chunk B Compressed chunk
[Stripe [Stripe
* Number of write_PAPIO operations = 8 * Number of write_PAPIO operations = 8
(a) Sequential compression strategy (b) Parallel compression strategy

Fig. 2. Adding compression to Papio write operation

the compression ratio, this algorithm computes the new chunk size to compress (com-
pression chunk size = [chunk size x compression ratio|) and the number of chunks to
compress (N CC= [file size/compression chunk size]). Pseudo code of the algorithm
at’. The outcome of this algorithm, is that the number of stripes is reduced.

Figure 2(a) illustrates the Sequential Compression Strategy. The number of chunks
(N OC) has been reduced from 13 uncompressed chunks to 8 compressed chunks. Note
that the chunk size is 10MB in 1(b) and the compression chunk size is 18MB in 2(a).
However, the compressed chunks size is chunk size. In the example, the number of
stripes has been reduced from 130 to 80. However, we need extra memory for allocat-
ing the compressed chunks. The write API of Papio has been modified to implement this
algorithm and to write the compressed chunks calling the compression API of the Com-
pression Library. So, the compression is completely transparent to the user. Finally, this
strategy stores in Papio a mapping file with information needed for decompressing the
file. To achieve an improvement in the I/O write operations with this strategy equation

(1) must hold: Time writex N OC

(Time writexN CC)+ (Time comp«N CC)
Where Time write is the time needed for writing a chunk of data in Papio, and
Time comp is the time for compressing a chunk of data.

>1 (O]

4.2 Parallel Compression Strategy

This strategy divides the file in chunks to compress in the same way as the previous
one. The main difference, is that Parallel Compression Strategy reduces as much as
possible the compression time, compressing several chunks in parallel. To benefit from
multithreaded compression we should use <= nc threads, where nc is the number of
cores available to the application [16]. Any number of threads higher than the number
of cores could cause performance degradation. There are studies that show, that when a

7 Supplementary details:
http://effort.is.ed.ac.uk/Compression/SequentialCompression.pdf

http://effort.is.ed.ac.uk/Compression/SequentialCompression.pdf

288 R. Filgueira et al.

machine has a large number of cores (>= 24 nc), it is not always true that the number
of threads created should be equal to the number of cores [17], [18]. However, in this
work we have set the nc as the number of cores, because the evaluations have been per-
formed in a machine with few cores (see Table 2). In future work, a more sophisticated
algorithm could be used to obtain the suitable number of threads at run time depending
on the characteristics of the machine.

To get the compression parameters, this strategy uses the outputs given by the algo-
rithm described in Section 4.1. However, this strategy also applies another algorithm
to perform the compression and write operations. Before explaining the algorithm, we
would like to highlight that Papio’s write operation requires that the file’s chunks must
be written in order. Therefore, although the compression can be performed in paral-
lel by several threads, only the master thread can write compressed chunks following
a sequential order. Note that the parallel compression and parallel streams (striping)
in Papio are independent. Therefore, parallel compression would be useful even when
only one SS is used, because the compression speed of each chunk with this strategy is
lower than the SS speed.

The algorithm starts by allocating the memory needed for compressing the chunks.
Next, the algorithm creates as many threads as cores has been detected in the machine.
In case that the number of chunks to be compressed (N CC) is smaller than the num-
ber of cores, the algorithm creates N CC threads. Later, to each thread a chunk (which
size compression chunk size) is assigned to compress. Compressions are performed in
parallel, and each thread writes the compressed data in its allocated buffer. For com-
pressing, each thread calls the compression API of the Compression Library.

In the mean time the master thread waits until the first thread has finished the com-
pression of its chunk, and then writes the compressed chunk to Papio. The information
of the compressed chunk is added to the mapping file. Blocks are compressed in groups
of the number of threads. So, as soon as the first compressed chunk of each group is
written to Papio, a new group of chunks are assigned to threads to be compressed. In
that way, the master thread only waits for the fist compressed chunk, and ideally, the
remaining chunks are going to be compressed by the time the master writes the com-
pressed ones. For pseudo code of the algorithm see at®.

The Figure 2(b) shows an example by applying Parallel Compression Strategy. The
number of chunks to compress is 8 (N CC), as in the previous example. However, the
first 5 chunks are compressed in parallel. In this example, we not only have reduced
the number of stripes from 130 to 80, but also the compression time. To achieve an
improvement in the I/O write operations with this strategy equation (2) has to be hold:

Time writex N OC
(Time writexN CC) + (Time comp) + (Time total wait) >1
Time total wait = Time wait x(N CC/Num Threads) (2b)
Note that the Time wait could be most of the time zero or near zero. This happens when
the time spent by the threads to compress in parallel a group of chunks (Time comp)
is less than the time spent by the master to write those compressed chunks (Time write x
Num Threads). Otherwise, Time wait would be the difference between these two times.

(2a)

4.3 Selectively Parallel IO Compression Strategy

While storage system compression can save disk space, compressing data can adversely
affect, increasing sometimes the I/O time when the compression is applied. So, if writ-
ing a compressed file decreases the write performance, it probably will also decrease

8 Supplementary information:
http://effort.is.ed.ac.uk/Compression/ParallelCompression.pdf

http://effort.is.ed.ac.uk/Compression/ParallelCompression.pdf

Applying Selectively Parallel /O Compression to Parallel Storage Systems 289

read performance. Therefore, we have designed Selectively Parallel I/O Compression
Strategy (SPIOC) whose decision algorithm only turns compression on when the esti-
mated time of compressing and writing the file is lower than writing the file without
compression. Also, in case the machine is single core, the file will be compressed and
written sequentially. Otherwise, multiple threads can be created for compressing and
writing the file in parallel.

SPIOC decision algorithm uses the algorithm explained in Section 4.1 for obtaining
the compression parameters. Firstly, the algorithm checks the compression ratio. If the
compression ratio is not higher than a predefined threshold (threshold 1, set up as 1.20),
the compression will be turned off, and the file will be written without compression.
Otherwise, the next step is to estimate the time for writing the file with and without
compression, applying the equation (1) in case of single core, an the equation (2) in
case of multi core. Because Papio guarantees the I/0 throughput specified by the user,
we already know the time needed for writing a chunk in Papio (time write). On the
other hand we have modified the algorithm explained in Section 4.1 to measure the
time for compressing the slices of file used for checking the compression ratio and to
estimate which is the time needed to compress a chunk of data (Time comp). Only when
the estimated reduction by the decision algorithm is higher than a predefined threshold
(threshold 2, set up as 1.20), the compression is activated, and Sequential Compresion
or Parallel Compression strategy is applied depending on the machine’s features (single
or multi core). Otherwise, the file is written without compression

The values of the thresholds have been set after preliminary studies using the en-
vironment explained in Section 6. Those values could be different depending on the
characteristics of the machine where the applications are executed. Ideally, they should
be adjusted at run time by the decision algorithm. However, this feature is beyond the
scope of this work. As the previous algorithms, this one also has been implemented
by modifying the write API of Papio. Because SPIOC is an improvement over the two
previous strategies, it has been chosen as the strategy to use in Papio. Furthermore,
with this strategy the compression is not always applied, so the information stored in
the mapping file has been modified by adding a new line, to indicate wether the file is
stored compressed.

5 Adding Decompression to Papio

In order to make readings of compressed and non-compressed files stored in Papio
transparent by applying SPIOC, a decompression algorithm has been designed and im-
plemented for the read operations, as shown®. This algorithm performs full and partial
read operations by decompressing the minimum part of the file. This means that if a
user wants to read some portion of a file, the algorithm calculates which compressed
chunks it has to read and decompresses only those ones. Unlike write operations, Papio
allows read operations to be performed without following a specific order. Therefore,
in this case, multiple threads can read and decompress the chunks in parallel.

The algorithm starts by reading the mapping file associated with the file that is going
to be read from Papio. The mapping file states whether the file has been compressed
or not, and information about each compressed chunk written to Papio. Only the com-
pressed chunks that need to be read from Papio are obtained by mapping the parameters
provided by the user.

9 Supplementary information:
http://effort.is.ed.ac.uk/Compression/ReadCompression.pdf

http://effort.is.ed.ac.uk/Compression/ReadCompression.pdf

290 R. Filgueira et al.

Table 2. Machine specifications

Nodes Description
32 Compute nodes Intel Xeon E5540 (2.53GHz, 4 cores) CPU x 2, 48GB memory, Broadcom NetXtreme-II (10 GbE)
8 Storage servers Intel Xeon E3-1230 (3.2GHz, 4 cores) CPU, 8GB memory, Intel X520-DA2 (10 GbE)
1 Management server AMD Opteron 6128 CPU (2GHz, 8 cores), 8GB memory, Intel X520-DA2 (10 GbE)

In case of compression, the next step is to read the selected compressed chunks from
Papio and decompress them in parallel by several threads. For decompressing, each
thread calls our decompression API of the Compression Library. The master thread
waits until all threads finish their operations, and if it is needed, more threads are created
in the following iterations. However, if the file is stored without compression, the file is
read as in the original version of Papio.

6 Evaluation

We have evaluated our three compression strategies by using a High-Performance Clus-
ter described in Table 2. Several files have been used to evaluate our proposal. However,
we only show results for the seven largest files (Table 3) with the most different char-
acteristics, to demonstrate how our strategies adapt to different scenarios. The file sizes
displayed in the Table 3 correspond to originals (uncompressed). Using any of our com-
pression strategies these are reduced o *¢*eo™PEoston rario

Figure 3(a) shows a comparative in terms of speed up between Sequennal Compres-
sion and Parallel Compression strategies. As previously described, in Papio a higher
level of I/O parallelization is used whenever a higher I/O throughput is requested, be-
cause more stripes are written at the same time. By presenting the speedup values de-
pending on I/O throughput, we show how our techniques perform at different levels
of I/O paralelization. We have used the first five files described in table 3, and three
different I/O throughputs: 100MB/sec, 200MB/sec and 300MB/sec. The Parallel Com-
pression Strategy set up the threading level to 8 automatically. We define speed up as

Table 3. Details of files used for our evaluation

File Size Category Type Comp. Ratio
lgd element.rdf [19] 17GB geographic text 11.96
all geonames.rdf [20] 6.3GB geographic text 12.76
enwik9.txt [21] 950MB linguistics text 1.75
strain cat.txt [22] 433MB earth science float 1.3
biggan learn.bvecs [23] 13GB computer vision multidata 1.05
tiny metadata.bin [24] 38GB computer vision binary 8.13

dna 15.cel [25] 1.9GB biology numeric 1.52

Table 4. Estimated and real speed up values for sequential and parallel compression

100 MB I/O 200 MB I/O 300 MB I/0
File/Strategy Speed Up Speed Up Speed Up
strain cat estimated real estimated real estimated real
Sequential 078 0.84 049 043 033 038
Parallel 1.28 1.34 1.21 1.24 1.20 1.21
all geonames estimated real estimated real estimated real
Sequential 8.14 872 436 4.5 3.04 2.9
Parallel 12.58 1345 1225 1235 1197 11.68

Applying Selectively Parallel /O Compression to Parallel Storage Systems 291

Sequential Compression vs Parallel Compression SPIOC write speed up
Seq_lgd_element
Higd_element
= enwiky
all_geonames
 strain_cat
tiny_metadata
®dna_15
 biggan_learn

5 = Parallel_Igd_element
2

Seq_all_geonames

Speed Up

: :
: [[B =suse g Jean : o |
1/0 throughput (MB/sec) 1/0 throughput (MB/sec)

(a) Comparative between Sequential (b) Speed up by applying SPIOC in the
Compression and Parallel Compression write operations.
strategies

SPIOC read speed up

migd_element

Henwik9

= all_geonames

W strain_cat
tiny_metadata

®dna_15

Hbiggan_learn

Speed Up

100 200 300
1/0 throughput (MB/sec)

(c) Speed up by applying decompression in the
read operations

Fig. 3. Evaluations results

Original time 10 operation . .
Strategy time 10 operation” As the results show, in most cases both strategies reduce the

time needed for writing the different files by using different I/O throughput. The speed
ups obtained by Parallel Compression Strategy are higher than Sequential Compres-
sion Strategy, because the compression overhead has been almost hidden. However, we
can observe that there are some cases where using those strategies write performance
is decreased. For example, writing the file biggan learn.bvecs with any of those strate-
gies. Because the compression ratio of that file is very low, the overhead introduced
by applying compression is higher than the benefit from writing compressed chunks to
Papio.

Table 4 shows how SPIOC detects when the compression is going to improve the
I/O performance, and when not, estimating the speed up in each case. We have used
strain cat.txt and all geonames.rdf files, with different I/O throughput, and we have
applied sequential (by using 1 thread) and parallel (by using 8 threads) compression
techniques and measured the real speed up for each case. The estimated speed up by
SPIOC has been recorded. The results demonstrate that the estimated values by SPIOC
are very close to the real ones, with an error between 3%- 7%.

The performance of SPIOC has been evaluated, see Figures 3(b) and 3(c), with all
the files described in the table 3. SPIOC set up automatically the threading level to 8.
Experiments demonstrate how SPIOC reduces I/O time for reading/writing Papio in
most cases, and only in few cases, the I/O performance has not been improved, but it
has not been degraded. Note that for biggan learn.bvecs file the compression has been
deactivated. The reason is that SPIOC has detected that the compression ratio of this file
is smaller than the threshold 1. If we used a single core machine for evaluating SPIOC,
it would also deactivate the compression for strain cat.txt file because the estimated
speed ups for sequential compression (shown in table 4) are smaller than threshold 2
for any of the I/O throughputs.

292 R. Filgueira et al.

The difference between the speed ups shown in Figures 3(b) and 3(c) depends on how
much each file can be compressed. Also, we can appreciate in the results that with higher
I/O throughput, the speed up gained by SPIOC is lower. This is because with higher
I/0O throughput, less time is required for I/O operations, and the impact of applying
compression is lower but still significant. Finally, we can observe that the speed up for
write operations is higher than for read operations. This is because the LZ4 compression
algorithm is 20% faster than the decompression algorithm. So, the threshold 2 has been
set up to 1.20, to be sure that the reads operations can also benefit from SPIOC.

7 Conclusions and Future Work

We have presented three different transparent compression strategies in order to im-
prove the I/O performance in QoS enabled parallel storage systems. With the Sequen-
tial Compression strategy, we have analysed how the I/O operations could be improved
by applying compression. With the Parallel Compression strategy we have studied how
to reduce the compression time by applying multithreading techniques. Since in some
cases compression may introduce overhead in the I/O operations, we have designed the
Selectively Parallel I/O Compression strategy. This strategy allows us to predict the I/O
time reduction achieved by compression. As the evaluations show, SPIOC is able to im-
prove the I/O operations, adapting the compression techniques at run time, and turning
it on, only when is beneficial.

In future work, we would like to improve SPIOC by detecting the optimal value for
the thresholds and threading level at run time depending on the characteristics of the
computer nodes and files. And to provide users the option to choose the compression
algorithm criteria that suit their requirements. Other improvements could apply different
compression algorithms to the file’s chunks depending on their datatypes, and apply our
strategies to collective I/O operations provided by the Papio. Finally, SPIOC could be
applied to other file systems which have similar QoS features to Papio’s. For other
systems where available throughput is not aware, Sequential Compression and Parallel
Compression strategies are still applicable.

Acknowledgment. The research has been supported by the NERC UK Grant
(NE/H02297X/1). We would like to thank the AIST institute for providing the infras-
tructures to evaluate the work.

References

1. Gu, Y., Grossman, R.L.: Toward efficient and simplified distributed data intensive computing.
IEEE Trans. Parallel Distrib. Syst., 974-984 (2011)

2. CFS Inc., Lustre: A scalable, high-performance file system, cluster File Systems Inc. white
paper, version 1.0 (2002)

3. Schmuck, F., Haskin, R.: GPFS: A shared-disk file system for large computing clusters. In:
Proc. of the First Conference on File and Storage Technologies (FAST), pp. 231-244 (January
2002)

4. Tanimura, Y., Hidetaka, K., Kudoh, T., Kojima, 1., Tanaka, Y.: A distributed storage system
allowing application users to reserve i/o performance in advance for achieving sla. In: GRID,
pp. 193-200 (2010)

5. Kella, K.K., Khanum, A.: Apcfs: Autonomous and parallel compressed file system. Interna-
tional Journal of Parallel Programming 39(4), 522-532 (2011)

10.

11.

18.

20.

21.

22.

23.

24.

25.

Applying Selectively Parallel /O Compression to Parallel Storage Systems 293

. Fusecompress, a linux file-system that transparently compresses its contents (2011),

http://code.google.com/p/fusecompress/

. Klonatos, Y., Makatos, T., Marazakis, M., Flouris, M.D., Bilas, A.: Transparent online stor-

age compression at the block-level. TOS 8(2), 5 (2012)

. Harnik, D., Kat, R., Sotnikov, D., Traeger, A., Margalit, O.: To zip or not to zip: Effective

resource usage for real-time compression. Presented as Part of the 11th USENIX Conference
on File and Storage Technologies. USENIX, Berkeley (2013),
https://www.usenix.org/conference/fast13/zip-or-not-zip-effective-
resource-usage-real-time-compression

. Filgueira, R., Singh, D.E., Carretero, J., Calder6n, A., Garcia, F.: Adaptive-compi: Enhanc-

ing mpi-based applications’ performance and scalability by using adaptive compression. [JH-
PCA 25(1), 93-114 (2011)

Filgueira, R., Atkinson, M., Nuilez, A., Ferndndez, J.: An adaptive, scalable, and portable
technique for speeding up mpi-based applications. In: Kaklamanis, C., Papatheodorou, T., Spi-
rakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 729-740. Springer, Heidelberg (2012)
Real time data compress (2012),
http://fastcompression.blogspot.co.uk/p/1z4.html

. Russell, J., Cohn, R.: Snappy. Book on Demand (2012),

http://books.google.co.uk/books?id=PXajMQEACAAJ

. Filgueira, R., Singh, D.E., Calder6n, A., Carretero, J.: Compi: Enhancing mpi based applica-

tions performance and scalability using run-time compression. In: Ropo, M., Westerholm, J.,
Dongarra, J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 207-218. Springer, Heidelberg
(2009)

. Loureiro, A., Gonziélez, J., Pena, T.F.: A parallel 3D semiconductor device simulator for

gradual heterojunction bipolar transistors. Int. Journal of Numerical Modelling: Electronic
Networks, Devices and Fields 16, 53—66 (2003)

. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.: Sublinear algorithms for approximat-

ing string compressibility. Algorithmica 65(3), 685-709 (2013),
http://dblp.uni-trier.de/db/journals/algorithmica/
algorithmica65.htmlRaskhodnikovaRRS13

. Fan, D., Zhang, H., Wang, D., Ye, X., Song, F., Li, G., Sun, N.: Godson-t: An efficient many-

core processor exploring thread-level parallelism. IEEE Micro 99(1), 5555

. Pusukuri, K.K., Gupta, R., Bhuyan, L.N.: Thread reinforcer: Dynamically determining num-

ber of threads via os level monitoring. In: Proceedings of the 2011 IEEE International Sym-
posium on Workload Characterization. ISWC 2011, pp. 116-125. IEEE Computer Society,
Washington, DC (2011)

Pusukuri, K.K., Gupta, R., Bhuyan, L.N.: Adapt: A framework for coscheduling multi-
threaded programs. ACM Trans. Archit. Code Optim. 9(4), 45:1-45:24 (2013)

. Linked geo data (July 18, 2009),

http://downloads.linkedgeodata.org/releases/2009-07-01/

Geo names (September 2009),
http://www.geonames.org/ontology/documentation.html

Mahoney, M.: Large text compression benchmark (August 2013),
http://mattmahoney.net/dc/text.html

Bell, A.F., Greenhough, J., Heap, M.J., Main, I.G.: Challenges for forecasting based on ac-
celerating rates of earthquakes at volcanoes and laboratory analogues. Geophysical Journal
International 185(2), 718-723 (2011)

Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE
Transactions on Pattern Analysis & Machine Intelligence 33(1), 117-128 (2011) (to appear)
Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set for nonpara-
metric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30(11), 1958-1970 (2008)

Greshock, J., Bachman, K.E., Degenhardt, Y.Y., Jing, J., Wen, Y.H., Eastman, S., McNeil,
E., Moy, C., Wegrzyn, R., Auger, K., Hardwicke, M.A.: Molecular target class is predictive
of in vitro response profile. Cancer Res. 70(9), 3677-3686 (2010)

http://code.google.com/p/fusecompress/
https://www.usenix.org/conference/fast13/zip-or-not-zip-effective-resource-usage-real-time-compression
https://www.usenix.org/conference/fast13/zip-or-not-zip-effective-resource-usage-real-time-compression
http://fastcompression.blogspot.co.uk/p/lz4.html
http://books.google.co.uk/books?id=PXajMQEACAAJ
http://dblp.uni-trier.de/db/journals/algorithmica/algorithmica65.htmlRaskhodnikovaRRS13
http://dblp.uni-trier.de/db/journals/algorithmica/algorithmica65.htmlRaskhodnikovaRRS13
http://downloads.linkedgeodata.org/releases/2009-07-01/
http://www.geonames.org/ontology/documentation.html
http://mattmahoney.net/dc/text.html

Ultra-Fast Load Balancing of Distributed
Key-Value Stores through Network-Assisted Lookups

Davide De Cesaris':2, Kostas Katrinis!, Spyros Kotoulas!, and Antonio Corradi?

1 IBM Research, Dublin, Ireland
2 DEIS, University of Bologna, Bologna, Italy

Abstract. Many systems rely on distributed caches with thousands of nodes to
improve response times and off-load underlying systems. Large-scale caching
presents challenges in terms of resource utilization, load balancing, robustness
and flexibility of deployment. In this paper, we propose a novel distributed caching
method based on dynamic IP address assignment. Keys are mapped to a large
IP address space statically and each node is dynamically assigned multiple IP
addresses. As a result, we have a system with minimal need for central coordi-
nation, while eliminating the single point of failure in competitive solutions. We
evaluate our system in our datacenter and show that our approach localizes the
effect of load-balancing to only loaded cache servers, while leaving cache clients
unaffected and also providing for finely-granular rebalancing.

1 Introduction

Massive distributed caches play an important role in large-scale computing infrastruc-
tures. For example, Facebook has reported [1,2] that they store tens of TB in a modified
implementation of memcached, distributed over hundreds of nodes in a cluster. A set of
challenges emerge, when managing caches of this size:

— Robustness The system should be robust against node failure and should not have
a single point of failure. On the other hand, distributed protocols should have low
overhead and be able to respond to failures quickly.

— Load-balancing In most caches, key lookups would follow a very irregular pattern,
presenting significant skew, as also described in [1]. Typically, HTTP requests and
other lookups would follow a power law [3]. Key popularity may shift with time or
rapidly change, due to unexpected events.

— Scalability Any distributed protocol should be able to scale to large numbers of
nodes and have minimal performance impact.

— Flexibility It is common and highly desirable to tap into unused resources in a data
center. We would like caching techniques that are flexible in terms of demand of
computational resources.

This paper introduces Network-Assisted Lookups (NAL), a method to do rapid load-
balancing of key-value stores by exploiting the existing IP infrastructure. The key points

in our approach are:

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 294-305, 2014.
(© Springer International Publishing Switzerland 2014

Ultra-Fast Load Balancing of Distributed Key-Value Stores 295

— IP protocol as a distributed location registry. Our system relies on a static mapping
of keys to a large space, the static mapping of this space to IP addresses and the
dynamic allocation of IP addresses to machines as a way to load balance the system.

— Exploit existing resources. The resources in the system need not be homogeneous
or have similar throughput.

— Scalability. The proposed method scales linearly and is limited only by the number
of available (private) IP addresses in the datacenter, which is not a problem in the
foreseeable future.

— Robustness. Our method relies on IP address re-allocation on the network. As such,
there is no central point of failure in the system.

We prototyped NAL in our lab datacenter and evaluated it using key access patterns
that are characteristic for skewed data access in a range of trending and established
workloads. Our results manifest that NAL manages to be as efficient as competitive
approaches (consistent hashing), while achieving to reduce convergence time after load-
balancing and also localizing the effect of block rebalancing to clients “causing” the
imbalance.

This paper is structured as follows. Section 2 presents related approaches and delves
deeper into the most competitive one, namely consistent hashing, showing its scalability
limit via experimental evaluation we conducted. Section 3 presents the architecture of
NAL and discusses the workings of the various components, while Section 4 elaborates
in our load-balancing algorithm for distributed caching in NAL. We present evaluation
results we obtained using our NAL prototype implementation in Section 5 and conclude
in Section 6.

2 Related Art and Motivation

Distributed data-management/processing frameworks typically spread data block-
s/records across two or more store locations (e.g. servers). For instance, distributed
caching systems such as Memcached [4] and Redis [5] cache recently accessed key-
value pairs (e.g. database records) across distributed cache server processes. The latter
are typically started at servers, where spare compute, memory and network resources
have been harvested. Further examples are parallel/distributed databases and distributed
batch data-processing frameworks employing distributed filesystems (e.g. HDFS [6] in
Hadoop). A precondition for these distributed stores is the existence of a lookup service
entity that maps an identifier to the actual location of the data that needs to be retrieved.
Typically, a data record/block is identified by a key. Then, by means of the mapping
entity, the key is mapped to the identity (e.g. destination IP socket) of the physical/vir-
tual host (server), where the corresponding data record/block resides. Unless otherwise
qualified, we employ in the remainder of this paper the term “key” to refer to data iden-
tifiers and the term “block” (or “data block™) to refer to the payload value (e.g. binary
object or database record) that is the data unit uniquely identified by exactly one key
and retrieved to a processing node as the result of a key lookup and data fetch action.
An additional functional requirement for a data lookup service is the ability to dy-
namically update the location of data blocks. The latter may change at runtime as the
result of a load/store balancing action or to maintain a desired replication factor to

296 D. De Cesaris et al.

counter data node failures. At the occurrence of any amendment of a block’s location
(referred to as “block migration” hereafter), the key-to-location mapping entity needs
to be updated accordingly to ensure non-intermittent access to distributed data blocks.
Distributed stores relying on a centralized lookup service address this requirement by
sending location updates to a nameserver. At large-scale, the centralized name service
becomes quickly the bottleneck and typically replication (e.g. clustering) is employed
to guarantee reasonable lookup latency. However, replication has scalability limitations
due to cost and complexity proportionality between the data volume stored and the
lookup service capacity required. Distributed hash-tables (DHTs) such as Chord [7])
constitute a scalable and resilient solution; still, they are harder to implement and may
degrade performance due to operating at the application/session layer. In addition, hav-
ing block location “encoded” among data nodes - as is the case with DHTSs - can pose
security concerns (e.g. in a public cloud environment multiple tenants share the same
physical memory resources) and/or contradict the service model. A typical example
of the latter case is when the service model mandates the service provider as the sole
provider of a persistent and highly-available distributed filesystem service to multiple
datacenter tenants. Offering a distributed file service using a DHT and with high avail-
ability guarantees may be hard to achieve within such a model, given that e.g. tenants
may choose to reboot servers, where part of the block location information is stored.

Following the above discussion on limitations of alternative solutions, we narrow our
attention to distributed caching as the best solution for being extended to provide for
dynamic data re-balancing. Although various hashing techniques are possible, we focus
here on consistent hashing [8], a technique that is known to significantly reduce the miss
rate during cache server addition/removal. Figure 1a depicts the standard continuum-
based implementation of consistent hashing, assuming in this example four data (cache)
servers and an integer continuum set S (S = {0,1,2.., N}, N = 232 — 1). Also, each
data server is assigned a unique integer in the continuum (e.g. Data-Server-1 <— N/4).
Server selection for a given key k occurs as follows: the key is first hashed to an integer
value z in the integer set S. The server selected for retrieving the block identified by
k is then the server that is assigned to the smallest integer in {z,2z + 1,.., N'}. For
instance, on the left-hand side of Figure 1a, the block corresponding to k1 (resp. k2)
will be fetched from data server-1 (resp. data server-3).

In commodity distributed caching deployments (e.g. memcached [4]), consistent
hashing is static, i.e. servers are statically assigned to the continuum, albeit not nec-
essarily following a uniform key load per server (e.g. to cater for heterogeneity of avail-
able memory at each server). Here, we exercise the scalability of extending consistent
hashing with load-balancing capabilities, specifically via dynamic re-hashing. The ap-
proach has been proposed before in different contexts (e.g. processor memory hierarchy
[9]), albeit with scalability requirements not to the level required in this use-case. Fig-
ure la exemplifies dynamic load-balancing via re-hashing in our toy four-server setup.
Initially (left-hand side sub-figure), each server is assigned (for brevity) an equal num-
ber of keys along the continuum. Due to data skewness, a fraction of keys served by
Data-server-3 becomes hot (relative to average key popularity), leading to sub-optimal
cache performance. To remedy this, the continuum is rebuilt, shifting part of the hot key
range to Data-Server-2 (right-hand side in Figure 1a) and thus providing for a balanced

Ultra-Fast Load Balancing of Distributed Key-Value Stores 297

Dynamic Consistent Hashing Overhead

0o

300

e ———

-

N
w
o

N
o
o

Data Server 2 O0— =% 10 15 20 25 30
libmemcached clients

(a) (b)

Fig. 1. Consistent Hashing: (a) Load-balancing through dynamic continuum rebuilding on four
cache servers and (b) evaluation of time overhead due to load-balancing

caching load, adaptive to recent key access patterns. This approach assumes the exis-
tence of a centralized key access pattern monitoring and adaptation entity that is though
off the lookup and retrieval path.

To evaluate the performance of dynamic consistent hashing to provide for dynamic
load-balancing at scale, we created a prototype setup in memcached, using the pro-
vided consistent hashing implementation in libmemcached (libketama [10]). The latter
provides for the ability to dynamically re-assign keys to memcached servers through a
weighting mechanism. We also implemented a baseline centralized controller with the
sole functionality of notifying memcached clients to rebuild their continua (dynamic
re-hashing), together with communicating the set of weights that each client should use
as input during each re-hashing cycle to assign memcached server in its continuum. The
latter occurs via a simple application-level UDP protocol between the controller and the
memcached client.

Using this setup, we measured the time overhead of completing a load-balancing
action, specifically by measuring the time that each memcached client takes to finish
rebuilding its continuum data structure and reporting the maximum value over the entire
set of clients. For each client set size, we repeat the experiment for 5000 times and report
the average time overhead over all 5000 repetitions. Figure 1b depicts the results of this
experiment with a memcached client set size (actual servers) ranging from 1 to 30. By
applying linear regression to the measurements, we obtain the following expression for
estimating the time overhead Ty, of dynamic consistent hashing (in microseconds) as
a function of the number of cache clients x:

Tdch(x) =100+6.6 - x (D)

In extrapolation for a conservative size of a web application comprising 1000 clients, the
last equation yields a load-balancing overhead of approximately 7ms just for rebuilding
the hashing data structures (i.e. not accounting for the cache misses that will inevitably
occur during any cache re-balancing action, regardless of the approach). Obviously, this
is a significant penalty, when sub-10ms queries is the desired operating range of target

298 D. De Cesaris et al.

applications. Even worse, the re-balancing penalty is uniform to all clients, e.g. the
key lookup has to be disrupted at all clients, even if the load-balancing adaptation is
performed to address a hot key range accessed by a small fraction of the client set.

All the above limitations of state-of-the art motivated the Network-Assisted Lookup
(NAL) approach presented in the following. Among others, NAL localizes the penalty
of load-balancing only to clients that access keys in hot key ranges, while also minimiz-
ing the overhead of location resolution during lookup.

3 NAL Architecture

The key paradigm shift introduced by NAL is the following: instead of having fixed
network service identifiers attached to data nodes and have these identifiers updated at
the lookup service, whenever the location of a data block is changed due to migration,
NAL employs a static key-to-location mapping created once and for all at key hash
generation time and provides for accurate lookup of arbitrarily migrated data blocks by
updating the network identity of the actual location of a block.

Figure 2 materializes the above abstract statement, depicting the architectural amend-
ments to a distributed application (e.g. web application) employing memcached with
Network-Assisted Lookups. The embodiment assumes deployment on an IT infrastruc-
ture employing an Ethernet 802.3/IPv4 network stack; due to this setup being “stan-
dard” in commodity datacenters, we assume it in the rest of this work, whereby a
generalization of the approach to alternative network technologies is beyond the scope
of this paper. One of the many application servers comprising the distributed applica-
tion is shown at the top of Figure 2, where a memcached client is running. Although
the memcached client p