Partially supported by Fundação para a Ciência e Tecnologia (FCT) Project PTDC/EME-GIN/105163/2008 - EaGLeNest

USING CIRCLE COVERING TO TACKLE NESTING REPRESENTATIONS LIMITATIONS

Pedro Rocha, A. Miguel Gomes, Rui Rodrigues, INESC-TEC / Faculdade de Engenharia da Universidade do Porto

2

Motivation

Cutting and Packing Problem

3

Efficient cutting of raw material in small pieces is a complex and important task

Strong impact in industrial production costs (energy, raw material savings, environmental benefits)

Cutting and Packing Problem

- □ Aims to find a good fit to minimize wasted space
- Hard combinatorial and geometric problem
- Pieces are cut from, or placed inside a set of larger bins, in a non-overlapping configuration
- If pieces have irregular outlines it is defined as a Nesting problem

Nesting Problem

- Also known as Irregular Shapes Placement Problem
- Characteristics:
 - 2D problem
 - One big item, may have defects
 - High number of pieces to place
 - Great diversity on the size of the pieces
 - No overlap between pieces
 - Complex shapes (multi-connected regions, curves, ...)
 - Continuous and/or discrete admissible orientations

Industrial Applications

Main Challenges

Nesting Challenges

- Obtain adequate representations for the nesting problem
- Achieve faster and more efficient solutions
- Efficiently represent the relative positions between pieces

Geometrical Challenges

- Efficiently represent non-rectilinear outlines
- Deal with free rotations

Lack of solutions limit geometric tools Other problems with similar challenges (ex. collision detection in games/physics engine based simulations)

Geometrical Representations

Discrete Representations

Grid

Representation through discretization of geometrical outline (Bin/ Pieces)

□ How is it used?

- Pieces coded into a matrix, 0 = empty, 1 = non-empty
- Overlap verification done though analysis of each discretized element
- Pieces are placed on a discretized bin
 - if (element >= 1) then Overlap!!
- Advantages / disadvantages:
 - Easy to check feasibility of layout
 - Only 90° rotations
 - Can represent any outline

Adequate for integer sized elements & orthogonal orientations

						1					
						1	1	7			
1	1	1	1	1	1	1	1	1	\mathbf{X}		
1	1	1	1	1	1	1	1	1	1	X	
1	1	1						1	1	1	
1	1	1						1	1	1	1
1	1	1						1	1	1	1

Discrete Representations

Quad-Tree

Tree data structure where each node has 4 children, used to organize and access spatial information

- How is it used?
 - Irregular outlines are decomposed in non-uniform elements
 - When an element is both empty and new the element
- Advantages / disadvantages:
 - Very fast searches (overlap)
 - Allows dynamic discretization
 - Less memory consumption
 - Similar to grids

Polygonal Representations

Polygons

Closed circuit of straight segments

- □ How is it used?
 - Shape is represented through straight segments
 - Bounding boxes are used for initial overlap detection
 - D-functions used for direct polygonal comparison
- Advantages / disadvantages:
 - Overlap detection computationally expensive
 - Rotations possible but not efficient
 - Numerical precision problems
 - Curves approximated by straight lines, tangent to the curve
 - Approximation error is controlled

Polygonal Representations

No-Fit-Polygon

Points traced by a reference point from an orbital piece, with fixed orientation, while sliding along the external contour of a static piece

- How is it used?
 - Compares a vertex with a polygon
 - If (vertex inside of polygon) then Overlap!
- Advantages / disadvantages:
 - Allows faster overlap detection
 - Numerical precision problems
 - Rotations are computationally expensive
 - Discrete rotations
 - Pre-computation

Circle Covering Representations

Circle Covering

Set of identical/non-identical circles that fully or partially cover an irregular outline

- How is it used?
 - Pieces are replaced by sets of circles
 - Mathematical models only for identical circles
 - Overlap detection \rightarrow distance between circles
 - If $(\mathbf{R}_1 + \mathbf{R}_2 < \mathbf{D}_{1,2})$ then **Overlap**!
- Advantages / disadvantages:
 - Overlap detection is simple and fast
 - Needs circle positioning method
 - Continuous rotations are trivial
 - Numerical precision problems

Phi-Functions

Phi-Functions

Mathematical expression that represents all mutual positions between two objects

- □ How is it used?
 - The function returns a value
 - If (value is negative) then Overlap!
- Advantages / disadvantages:
 - Complex objects are decomposed into basic shapes:

- Convex polygons K
- Hats H Horns V Ci
 - rns V Circular segments D
- All basic elements have as their primitives:
 - Circles, triangle, rectangle, regular and other convex polygons, and their complements
- Shapes represented by unions and intersections of functions

Circle Covering Approach

Circle Covering Approach

- Collision detection with circles:
 - Games and Physical Engine Based Simulations
 - Computation speed is priority
 - Approximation error secondary
 - Fixed sets of shapes → Circles are manually placed
 - Nesting
 - Higher precision (smaller approximation error)
 - Involves much contact between pieces
 - Variable sets of shapes \rightarrow Manual placement not viable
 - Good automatic method is needed
- How to position the circles?
- How to deal with the tradeoff:
 - Number of circles
 - Approximation error

Automatic Circle Covering Method

Medial Axis

Topological Skeleton

- Set of all points having more than one closest point on the objects boundary
- Any circle, with its center placed on the skeleton, will always be the biggest circle inside it
- How is it used?
 - Defines the equidistant axis to the outline of the shape
 - The biggest circles can be placed on the skeleton
- Advantages / disadvantages:
 - Reduces complexity of circle placement problem
 - Numerical precision problems

Medial Axis Construction

How is it constructed?

- Bissection from every pair of sequential segments are intersected, creating a new spawn point, that is the base for a new bissection Iteratively repeat previous step, until no more bissections remain
- **Bissection types:**
 - Two straight edges
 - Straight edge + vertex
 - Two vertexes

Straight bissection Arc of parabola

Straight bissection

- Convex outline
- Irregular outline

Skeletons with curves

Circle Covering Construction

Circle Covering Approach

21

- □ How is the approximation controlled?
 - Error is controled by a threshold, which regulates the approximation to the shape outline

Current Results

Current Results

10	37	95,4
5	46	96,9
2	66	97,9
1	75	98,3
0,5	87	98,1

Other Shapes

Improvements

Threshold %	Circles	Area (%)
20%	52	85,4
10%	133	92,2
5%	299	96,1
2%	594	98,1

Threshold	Circles	Area (%)
25	15	97,1
2	24	98,2

Improvements

Threshold %	Circles	Area (%)
20%	124	81,1
10%	351	92,3
5%	554	95,5
2%	1029	98,2

Threshold	Circles	Area (%)
10	37	95,4
2	66	97,9

Final Remarks

- Substantial improvement over previous hierarchical method
- Circle covering with medial axis useful for polygon representation
- Numerical precision problems cause many difficulties

Future Work

- Increase reliability to numerical errors
- Expand to deal with holes
- Support geometric outlines with curves
- □ Compare with other C.D. approaches