USING CIRCLE COVERING TO TACKLE NESTING REPRESENTATIONS LIMITATIONS

Pedro Rocha, A. Miguel Gomes, Rui Rodrigues, INESC-TEC / Faculdade de Engenharia da Universidade do Porto

Motivation

Cutting and Packing Problem

Efficient cutting of raw material in small pieces is a complex and important task

Strong impact in industrial production costs (energy, raw material savings, environmental benefits)

Cutting and Packing Problem

\square Aims to find a good fit to minimize wasted space
\square Hard combinatorial and geometric problem
\square Pieces are cut from, or placed inside a set of larger bins, in a non-overlapping configuration
\square If pieces have irregular outlines it is defined as a Nesting problem

Nesting Problem

\square Also known as Irregular Shapes Placement Problem
\square Characteristics:

- 2D problem
\square One big item, may have defects
\square High number of pieces to place
\square Great diversity on the size of the pieces
\square No overlap between pieces
\square Complex shapes (multi-connected regions, curves, ...)
\square Continuous and/or discrete admissible orientations

Industrial Applications

Main Challenges

Nesting Challenges

\square Obtain adequate representations for the nesting problem
\square Achieve faster and more efficient solutions
\square Efficiently represent the relative positions between pieces

Geometrical Challenges

\square Efficiently represent non-rectilinear outlines
\square Deal with free rotations

\sum
Lack of solutions limit geometric tools
Other problems with similar challenges (ex. collision detection in games/physics engine based simulations)

Geometrical Representations

Discrete Representations

Grid

Representation through discretization of geometrical outline (Bin/ Pieces)
\square How is it used?

- Pieces coded into a matrix, $0=$ empty, $1=$ non-empty
- Overlap verification done though analysis of anch dicrratimad alamant
- Pieces are placed on a discretized bin
- if (element $>=1$) then Overlap!!
\square Advantages / disadvantages:
- Easy to check feasibility of layout
- Only 90° rotations
- Can represent any outline

Approximation errors (curves, non-orthogonal segments)

Adequate for integer sized elements \& orthogonal orientations

Discrete Representations

Quad-Tree

Tree data structure where each node has 4 children, used to organize and access spatial information
\square How is it used?
\square Irregular outlines are decomposed in non-uniform elements
\square When an element is both empty and n
\square Advantages / disadvantages:
\square Very fast searches (overlap)
\square Allows dynamic discretization

- Less memory consumption
\square Similar to grids

Polygonal Representations

Polygons

Closed circuit of straight segments
\square How is it used?

- Shape is represented through straight segments
- Bounding boxes are used for initial overlap detection
- D-functions used for direct polygonal comparison
\square Advantages / disadvantages:
\square Overlap detection computationally expensive

- Rotations possible but not efficient

- Numerical precision problems
- Curves approximated by straight lines, tangent to the curve
- Approximation error is controlled

Polygonal Representations

No-Fit-Polygon

Points traced by a reference point from an orbital piece, with fixed orientation, while sliding along the external contour of a static piece
\square How is it used?

- Compares a vertex with a polygon
- If (vertex inside of polygon) then Overlap!
\square Advantages / disadvantages:
- Allows faster overlap detection
- Numerical precision problems
- Rotations are computationally expensive
- Discrete rotations
- Pre-computation

Circle Covering Representations

Circle Covering

Set of identical/non-identical circles that fully or partially cover an irregular outline
\square How is it used?

- Pieces are replaced by sets of circles
- Mathematical models only for identical circles
\square Overlap detection \rightarrow distance between circles

- If ($\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}<\mathrm{D}_{1,2}$) then Overlap!
\square Advantages / disadvantages:
\square Overlap detection is simple and fast
- Needs circle positioning method
- Continuous rotations are trivial
- Numerical precision problems

Phi-Functions

Phi-Functions

Mathematical expression that represents all mutual positions between two objects
\square How is it used?

- The function returns a value
- If (value is negative) then Overlap!
\square Advantages / disadvantages:
- Complex objects are decomposed into basic shapes:

Convex polygons K

Hats H

Horns V

- All basic elements have as their primitives:
- Circles, triangle, rectangle, regular and other convex polygons, and their complements
- Shapes represented by unions and intersections of functions

Circle Covering Approach

Circle Covering Approach

\square Collision detection with circles:

- Games and Physical Engine Based Simulations
- Computation speed is priority
- Approximation error secondary
- Fixed sets of shapes \rightarrow Circles are manually placed
- Nesting
- Higher precision (smaller approximation error)
- Involves much contact between pieces
- Variable sets of shapes \rightarrow Manual placement not viable
- Good automatic method is needed
\square How to position the circles?
\square How to deal with the tradeoff:
\square Number of circles
- Approximation error

Automatic Circle Covering
Method

Medial Axis

Topological Skeleton

- Set of all points having more than one closest point on the objects boundary
- Any circle, with its center placed on the skeleton, will always be the biggest circle inside it
\square How is it used?
- Defines the equidistant axis to the outline of the shape
\square The biggest circles can be placed on the skeleton
\square Advantages / disadvantages:
- Reduces complexity of circle placement problem
\square Numerical precision problems

Medial Axis Construction

\square How is it constructed?
\square Bissection from every pair of sequential segments are intersected, creating a new spawn point, that is the base for a new bissection

- Iteratively repeat previous step, until no more bissections remain
\square Bissection types:
\square Two straight edges
\square Straight edge + vertex
- Two vertexes
\square Convex outline
\square Irregular outline

Straight bissection
Arc of parabola
Straight bissection

Circle Covering Construction

Circle Covering Approach

\square How is the approximation controlled?
\square Error is controled by a threshold, which regulates the approximation to the shape outline

\square Lower threshold $=$ better approximation $=$ less error $=$ more circles

Current Results

Threshold	Circles	Area (\%)
0,75	6	81,4
0,50	9	88,1
0,25	12	92,4
0,15	16	94,7
0,10	19	95,8
0,05	24	96,9
0,01	30	97,6

Current Results

Threshold	Circles	Area (\%)
10	37	95,4
5	46	96,9
2	66	97,9
1	75	98,3
0,5	87	98,1

$\% \quad$ Area coverage

Other Shapes

Improvements

Threshold \%	Circles	Area (\%)
20%	52	85,4
10%	133	92,2
5%	299	96,1
2%	594	98,1

Threshold	Circles	Area (\%)
25	15	97,1
2	24	98,2

Improvements

Threshold \%	Circles	Area (\%)
20%	124	81,1
10%	351	92,3
5%	554	95,5
2%	1029	98,2

Threshold	Circles	Area (\%)
10	37	95,4
2	66	97,9

Final Remarks

\square Substantial improvement over previous hierarchical method
\square Circle covering with medial axis useful for polygon representation
\square Numerical precision problems cause many difficulties

Future Work

\square Increase reliability to numerical errors
\square Expand to deal with holes
\square Support geometric outlines with curves
\square Compare with other C.D. approaches

