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Abstract—Planning the optimal assembly and disassembly
sequence plays a critical role when optimizing the production,
maintenance and recycling of products. For tackling this problem,
a recursive branch-and-bound algorithm was developed for
finding the optimal disassembly plan. It takes into consideration
the traveling distance of a robotic end effector along with a
cost penalty when it needs to be changed. The precedences and
part decoupling directions are automatically computed in the
proposed geometric reasoning engine by analyzing the spatial
relationships present in SolidWorks assemblies. For accelerating
the optimization process, a best-first search algorithm was im-
plemented for quickly finding an initial disassembly sequence
solution that is used as an upper bound for pruning most of the
non-optimal tree branches. For speeding up the search further, a
caching technique was developed for reusing feasible disassembly
operations computed on previous search steps, reducing the
computational time by more than 18%. As a final stage, our
SolidWorks add-in generates an exploded view animation for
allowing intuitive analysis of the best solution found. For testing
our approach, the disassembly of two starter motors and a single
cylinder engine was performed for assessing the capabilities and
time requirements of our algorithms.

I. INTRODUCTION

Sequence planning for assembly and disassembly operations

is a NP-hard problem in which the main goal is to find a physi-

cally valid sequence that respects the precedence relationships

between parts while also minimizing a cost function for a

specific domain problem. It has an extended set of industrial

applications that follow the life cycle of any product, from the

initial prototype to the production, maintenance and recycling

stages. Solving this problem is especially important when

we need to generate structured knowledge for an automated

robotic assembly line or when we need to parallelize a set

of operations in order to reduce the overall production time.

Moreover, maintenance and recycling tasks can also benefit

from optimal disassembly planning when it is necessary to

remove a set of parts that are obstructing the retrieval of a

specific group of components.

In order to tackle this problem, a SolidWorks add-in was

implemented for finding the optimal disassembly sequence
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using a branch-and-bound algorithm implemented with a best-

first search approach. Unlike most state-of-the-art in this

domain, the proposed system can automatically generate the

precedence relationships and disassembly directions by ana-

lyzing the geometric mating information between parts while

performing a feasibility test using a collision / interference

algorithm. Moreover, the inverse of the optimal disassembly

sequence found can also be used for optimal assembly of

products. The main reason to tackle this problem as a disas-

sembly sequence optimization is related to the fact that every

search tree branch will result in a feasible solution, whereas a

considerable amount of branches of an assembly search tree

will result in non-viable solutions (because the insertion of

some parts may block the assembly of others). This approach

allows to reduce the computational cost of the search process

by reducing the number of tree nodes to evaluate while also

finding the initial solution faster.

In the next section, a brief description of some related work

will be given. Then, in Section III the Computer-Aided Design

(CAD) analysis techniques used to extract the precedences and

disassembly directions for each part will be introduced. Later

on, Section IV will describe the implemented recursive branch-

and-bound algorithm for computing the optimal disassembly

sequence. After the introduction of the main algorithms, the

analysis of the disassembly results for a starter motor and a

single cylinder engine will be presented in Sections V and VI.

Finally, Section VII will provide a brief set of conclusions and

possible future work.

II. RELATED WORK

Over the years, several approaches have been proposed

for generating optimal and close to optimal assembly and

disassembly sequences for products depending on the domain

of application and its specific optimization goals.

The first stage of an assembly planner [1] is the identifica-

tion of the spatial relationships and contacts between parts [2]

along with the extraction of their assembly precedences [3].

This can be achieved using a generate and test methodology

[4], [5] in which the relative disposition between parts is

analyzed and a set of disassembly directions are generated

and later on tested for verifying their physical feasibility for

decoupling the components.

After knowing the precedence relationships between com-

ponents, the optimal disassembly or assembly sequence of

a product can be computed using the branch-and-bound al-

gorithm [6], [7] in which the cost function may take into

consideration the physical constraints between the components978-1-5386-5346-6/18/$31.00 c©2018 IEEE
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while also relying in other information relevant for the par-

ticular use case under analysis. For robotic assembly, this

usually means a search tree that relies on information retrieved

from the detailed description of the work cell, such as the

position of all the parts to assemble or disassemble along with

the available robots and their tools, sensors, and higher-level

perception and manipulation capabilities. Moreover, it might

also be necessary to use ambient fixtures in order to ensure

the mechanical stability of the product during assembly or

disassembly. From this information, the cost function of the

branch-and-bound algorithm may use the robot travel distance,

the number of possible grasps and tool changes, along with the

mechanical stability, geometric accessibility, parallelism and

also the number of times it was required to move the product

being assembled in order for the robot to be able to access the

intended regions. This information may be stored in different

data structures [8], such as AND-OR graphs for modeling

precedences, in 3D CAD models for specifying geometry with

spatial relations and also in knowledge databases.

When an optimal solution is not needed or it takes too

much time to compute, sub-optimal algorithms can be used

for finding a feasible and reasonable disassembly sequence.

The first approach would be to modify the branch-and-bound

algorithm [9] to search only w branches at each tree expansion

(a technique known as beam search) in order to limit the

combinatorial explosion that may happen when generating

search trees with a high branching factor. Moreover, the

clustering of similar operations that are physically close would

also allow to reduce the number of decision nodes, speeding

up the search and allowing to identify parallelizable tasks. If

a heuristic can be used to compute an upper bound from a

feasible solution, then the search can be speed up further. The

system presented in [10] implemented a multi-agent system for

modeling a team of human-robot partners assembling products

cooperatively in which the task sequences were generated with

an A* algorithm that took into consideration the execution

time, resource costs (energy), risk factors (danger to humans),

agent experience, reliability and attention level of the agents.

For some particular applications, a feasible and reasonable

solution might be enough. As such, rule based systems [11]

along with evolutionary algorithms [12] or even biologically

inspired approaches such as artificial bee colony [13] or

ant colony optimization [14] might be employed for quickly

finding a disassembly sequence solution (that can then be used

as an upper bound for optimal search algorithms).

On other use cases, it might be necessary to generate the

disassembly sequence to retrieve a specified set of parts [15]

(useful for recycling) or might be required an integrated path

planner and sequence generator [16]. Moreover, these types

of systems could also be useful for generating 3D exploded

views [17] of CAD models.

III. CAD ANALYSIS

The development of complex products relies on advanced

CAD systems for modeling the mechanical shape and material

properties of each component while specifying their relative

disposition with high accuracy. Moreover, these systems can

simulate the theoretical performance and usability of the

product before it is manufactured, allowing quick generation

of prototypes and iterative development with continuously

improved mechanical designs.

The information that is necessary to build a CAD model can

also be used for other applications besides 3D modeling. One

such application is the automatic extraction of the assembly

precedences and generation of the optimal disassembly and

assembly sequence. For implementing this functionality within

one of the most used 3D CAD products, a SolidWorks1 add-in

was developed. This engineering software was chosen as our

development environment because it provides an extensive set

of 3D modeling tools and also has an advanced module for

simulating the mechanical movement of connected parts and

test their collisions in realistic conditions. Moreover, it also

has a photorealistic rendering engine which is very valuable

for generating the exploded view animation associated with the

estimated disassembly sequence (providing an intuitive way

for inspecting the planning results of our approach).

A. Symbolic Geometric Relationships

When devising the mechanical design of a product, the first

stage is the 3D modeling of each individual part using a set of

primitive shapes and geometric operators. Later on, these parts

are used for building complex products by assembling them

together using numeric and symbolic relationships, that specify

their spatial arrangement along with the type of movements

that they were designed for. In SolidWorks these geometric

relationships are called part mates and are grouped into the

standard, advanced and mechanical mates.

The standard mates are used for specifying static rela-

tionships between parts and can be numeric in nature, such

as relative distance and angular displacement, or provide

higher level symbolic concepts, such as coincident, concentric,

tangent, parallel and perpendicular relationships.

On the other hand, advanced mates model dynamic relation-

ships between parts, allowing to specify the range of motions

that a product was designed for. These include the limit, linear

coupler and path mates. Moreover, this group of mates allows

the creation of higher-level relationships that combine several

standard mates. Such is the case of profile centering mates

along with symmetry and width mates.

Lastly, the mechanical mates group allows to model how

moving parts interact with each other and transfer movement.

These include the cam follower mates that are typically found

between engine valves and the camshaft, along with the gear,

rack / pinion and universal joint mates for modeling rotational

movement transmission. For specifying range of motion there

is also the hinge, slot and screw mates.

The mates introduced earlier are specific to the SolidWorks

CAD design software (chosen due to its advanced modeling

and simulation capabilities and also its widespread usage in

the industry). But similar functionality can be found in other

1http://www.solidworks.com
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CAD systems. However, it should be noted that this type

of symbolic information is very limited or non-existent in

neutral CAD formats, such as STEP or IGES, and as such,

the development of either software add-ins for extracting

these geometric constraints within the CAD / Computer-Aided

Engineering (CAE) products or the implementation of parsers

for each CAD native format is currently required.

B. Extraction of Disassembly Directions and Precedences

The symbolic relationships described in the previous section

use a set of primitive mates that share a common data

structure (the IMateEntity2 class of the SolidWorks Appli-

cation Programming Interface (API)) and then have specific

parameters for modeling each use case. This class contains

information about the mate point, direction and inner and

outer radius, which allows to create 5 different mate primitives

(swMatePoint, swMateLine, swMatePlane, swMateCylinder

and swMateCone). From these 5 primitives, the mate direction

present in the planar, cylinder and cone mates can be used

for computing possible disassembly directions. On the planar

mate primitive, the direction vector represents the plane normal

pointing to the object outside region, which directly gives

information about a possible disassembly direction (it is the

inverse of the mate direction). On the cylinder and cone mate

primitives, the direction vector specifies the axis, which gives

two possible disassembly directions (either along the axis or

in reverse). If there are other mates associated with the part

in question, this ambiguity can be easily solved (for example,

a screw mate is usually paired with a coincident mate, which

gives information about the connection of the screw head with

the object being screwed, allowing to solve the ambiguity by

selecting the direction of the cylinder mate that points on the

opposite direction in relation to the planar mate direction).

Given that a part can be connected to several components,

and as such, can contain multiple mates, the most probable

valid disassembly direction can be computed by adding the

mate vectors component-wise, which will result in a fused

disassembly direction (that will be normalized later on). After

estimating the probable disassembly direction using the mates

information, it must be physically validated by moving the

part along its normalized direction by a given amount and

then checking if there was any collision / interference with

other parts. If there was not, then the disassembly direction is

considered physically valid. If the fused mate did not produce

a valid disassembly operation, each mate direction can be used

as a search fallback strategy. This approach allows to deter-

mine if a part can be disassembled or not, which implicitly

gives information about the disassembly precedences. This is

based on the fact that if the mates directions did not provide a

valid disassembly direction, it is very unlikely that the part can

be disassembled. It should be noted that for proper operation

of this approach, the SolidWorks project that contains the parts

to be disassembled must be physically valid, which means that

a given volume should not be occupied by more than one part.

If such requirement is not satisfied, the disassembly feasibility

test will not work as expected because the collision checker of

SolidWorks will detect component interferences that are not

related to the movement of the parts that our system performed

for validating the decoupling directions.

IV. DISASSEMBLY SEQUENCE PLANNING

Finding the optimal disassembly sequence is a NP-Hard

problem due to the combinatorial explosion of possible so-

lutions that happens as the number of parts to disassem-

ble increases. Moreover, computing the precedences between

components and the parts decoupling directions requires the

execution of computationally demanding algorithms (such as

collision checking and mesh interference) that are increasingly

slower as the volume and complexity of the geometry to test

raises. In the worst case, it might be necessary to evaluate up

to n! search tree nodes when planning the optimal sequence

for a product with n parts. Additionally, in each tree node it

is necessary to analyze a set of likely disassembly directions

(until a feasible one is found), which rises the number of

collision checking operations to k × n! (in which k is the

mean number of directions tested to remove the product

components).

The goal of our SolidWorks add-in is to find a physi-

cally valid disassembly sequence that respects the precedence

relationships while also minimizing a given cost function.

To achieve this goal, it is necessary to reach each part

and disassemble it with a specific tool (this information

was provided as comments in each SolidWorks part, which

can be entered manually or be automatically extracted from

assembly manuals using Named-Entity Recognition (NER)

algorithms [18]). The cost function models these goals using

the Euclidean travel distance between the parts and also a

penalty associated with each tool change (for example, screws

require specific screwdrivers while loose objects need suitable

grippers). After computing the optimal disassembly sequence

with the associated precedences and removal directions, the

assembly sequence can be computed by either reversing the

order of the operations or by using the precedences to find a

new assembly sequence using a different cost function.

A. Estimation of the Initial and Optimal Solution

For finding the optimal disassembly sequence for a given

CAD product we implemented a recursive branch-and-bound

algorithm using a best-first approach for the selection of

the next branch to explore. We chose this search algorithm

because it is the most memory efficient tree traversal method

while also being able to quickly reach a good initial solution

(allowing the branch-and-bound algorithm to be more effective

at pruning branches). In Figure 1 we can see that the 3 feasible

solutions found with our planning system allowed to prune

many branches long before they reached their last tree level

(resulting in a speed up of the search process). A breadth-

first approach might be useful for parallelizing the search

process, but since SolidWorks does not support concurrent

calls to its collision checking / interference detection modules

(because they use the state of the assembly project, namely

which parts are suppressed) we are currently limited to a
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Figure 1. Small search tree for visually representing the impact that the 3 feasible solutions (blue and green branches) had on the branch-and-bound algorithm
by allowing it to prune most of the tree branches (ending in red nodes) when searching for the optimal solution (green branch) for the second configuration
of the starter motor

sequential approach, making the best-first search the most

suitable algorithm. Moreover, given the factorial growth of

the search tree, the breadth-first approach is not suitable for

products with a high number of parts, because at most it needs

to store all the nodes at a given tree level (while the best-first

search only requires to store at most k×n tree nodes because

it can be implemented as a variant of the depth-first search

algorithm).

The main processing steps of our disassembly planning

system are summarized in Algorithm 1. We require as input

the 3D CAD models with their symbolic geometric relation-

ships along with the tools that are needed to perform the

removal of each CAD part. Our search state includes the best

disassembly sequence found (with its respective cost) along

with the sequence of steps that are currently applied to the

SolidWorks world state (with the associated cumulative cost).

The planning is started by calling the recursive procedure

named FindDisassemblyP lan with an empty list of cached

steps. Then we check if a solution has been reached by

retrieving the parts that still need to be disassembled. If none

is found, then a solution has been reached and we update

our search state. Otherwise, we compute which parts can be

removed using the geometric reasoning engine presented in

Section III in which the decoupling directions are generated

by analyzing the CAD mates and validated using a move

and test methodology (with collision detection for testing the

disassembly feasibility). For minimizing the usage of these

computational intensive algorithms we rely on a cache of

steps for reusing disassembly directions that were computed

previously and classified as feasible. Later on, the disassembly

cost is computed for each part that can be removed and

the list of steps is sorted by the disassembly cost. After

knowing which parts can be removed, the one with the lowest

disassembly cost is chosen and suppressed within SolidWorks

followed by the recursive call to FindDisassemblyP lan for

achieving a best-first search tree traversal.

After reaching a solution, the recursive function call returns

and backtracking is used for keep exploring the remaining of

the search tree, updating the upper bound when better solutions

are found until all the search tree branches are either expanded

or pruned. If an optimal solution is not required, we can stop

the search earlier, namely as soon as a solution is found or

when a disassembly sequence has a cost lower than a given

threshold. This approach is useful for products with a lot of

disassembly parts which may require a long time for finding

the optimal disassembly solution.

B. Speedup Techniques
Performing collision checking is a computational expensive

task that should be performed only when it is strictly neces-

sary. Given that the branch-and-bound search approach is a

recursive algorithm that divides a given problem into smaller

subproblems, we can reuse feasible disassembly steps on nodes

with higher tree depth (counting from the start node at the

top of the tree). For example, if at a given moment it was

determined that it was possible to disassemble 5 components

in a given set of directions, when we remove the one with

the lowest cost, the disassembly directions of the other 4 will

remain valid and can be cached / reused the next time we

compute which components can be disassembled. However, it

should be noted that this caching is only valid when expanding

nodes with higher tree depth. The cached steps computed

at a given search node are not valid when backtracking

is performed and another tree branch is expanded. This is

due to the fact that a part might be removable at a given

disassembly step, but when backtracking is employed, other

parts were reinserted into the collision model, invalidating the

disassembly feasibility test (they may block the removal of

other parts). As such, after backtracking to a parent node,

the cached steps that were computed below the parent node

are discarded for ensuring correct precedence and disassembly

direction estimation.

C. Generation of the Exploded View
For visual inspection of the generated disassembly sequence

(shown as an ordered list in the left panel of Figure 2),

our disassembly system generates an exploded view within

SolidWorks that animates the disassembly / assembly process

(video with the animation available at2).

Figure 2. Exploded view generated for the starter motor with the disassembly
sequence show in the numbered captions and in the left panel

2https://youtu.be/mK6JVkKY3z0
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Algorithm 1 Disassembly Sequence Planning

1: System Input:
2: P ← 3D CAD models

3: M ← Mates associated with each CAD model

4: T ← Tools required to disassemble each CAD model

5: System State:
6: B ← Empty sequence � Best solution found

7: C ← Positive infinity � Cost of best solution

8: G← Empty sequence � Disassembly steps applied

9: H ← Zero � Disassembly cost of current solution

10: System procedures:
11: S ← Cached disassembly steps

12: procedure FINDDISASSEMBLYPLAN(S)

13: q ← RetrievePartsToDisassemble(P,G)
14: if IsEmpty(q) then � Recursion termination

15: if H < C then � New solution found

16: C ← H � Update best solution

17: B ← G
18: return (SolutionFound)

19: u← ComputeDisassemblySteps(S, q)
20: z ← NewSet(S + u) � Steps cache must not

propagate up the function call stack when backtracking

21: for all n steps in u do
22: f ← H +GetCost(n)
23: if f < C then � Prune branches

24: H ← f
25: AddElement(G,n)
26: e← FindDisassemblyP lan(z) � Recurse

27: H ← H −GetCost(n) � Backtracking

28: RemoveElement(G,n)

29: return (e)

30: S ← Cached disassembly steps

31: q ← Available parts to disassemble

32: procedure COMPUTEDISASSEMBLYSTEPS(S, q)

33: k ← Empty set � Feasible disassembly steps

34: for all p parts in q do
35: if Contains(S, p) then � Check for cached step

36: j ← ComputeStepCost(p)
37: AddElement(k,NewStep(p, j))
38: else
39: w ← DisassemblyDirections(P,M,G, p)
40: for all d directions in w do
41: if PartCanMove(P,G, p, d) then
42: j ← ComputeStepCost(p)
43: AddElement(k,NewStep(p, j))
44: break
45: return (SortByStepCost(k)) � Sort for best-first

46: p← Part to disassemble

47: procedure COMPUTESTEPCOST(p)

48: r ← DistanceToLastDisassembledPart(G, p)
49: if ToolChangeIsRequired(T,G, p) then
50: r ← r + ToolChangeCostPenalty

51: return (r)

This functionality is useful when a mechanical engineer

needs to visually analyze the assembly / disassembly sequence

or needs to show it to the operators that will build the final

product.

D. Generation of the DOT Graph

For allowing the detailed inspection of the nodes that the

branch-and-bound algorithm has expanded, our SolidWorks

add-in saves the search tree into a system file in the DOT for-

mat3. This file can be used to create a graphical representation

of the search tree using GraphViz (example in Figure 1) or be

the input for an external system that needs the generated search

tree and disassembly sequence in a standard graph format.

V. DISASSEMBLY OF A STARTER MOTOR

A starter motor is a mechanical device that is used for start-

ing internal combustion engines by rotating their crankshaft. It

was chosen as a case study because it has a significant amount

of precedence relationships and has a wide range of small parts

that require different tools for assembling them (such as hex,

Torx and Phillips screwdrivers along with a universal gripper).

However, for computing optimal solutions in reasonable time,

2 different configurations containing a subset of the starter

motor parts were created (and are publicaly available on our

dataset4). In the first starter motor configuration (shown in Fig-

ures 2 to 4), the internal components were removed (namely

the armature, brushes and pinion), reducing the total amount

of parts to 13. For testing the impact of the initial search

tree branching factor, a second configuration was created

(presented in Figures 5 and 6) in which 5 more parts were

removed, namely the insulator and the solenoid along with its

3 screws.

A. First and Optimal Solutions

The first solution for the disassembly of the starter motor

was found using a best-first approach (introduced in Sec-

tion IV-A). By expanding the best branch on each tree level

during the depth-first search, we can compute an initial solu-

tion in a very short time. In Figure 3 the first solution found

for the first configuration of the starter motor is presented (the

green numbers / lines represent the parts original positions and

the blue numbers / lines correspond to the parts pose after

applying the exploded view animation that was generated by

our SolidWorks add-in). The search started with a universal

gripper at coordinates (0,0,0), which resulted in the best-first

search algorithm selecting the bottom parts first (namely the 3

screws holding the solenoid), and then due to the disassembly

precedences, it moved on to the cap screws, followed by

the shaft cap, bolts, end cap, insulator, case, solenoid and

finally the nose cone (this part was excluded from the planning

algorithm because it was marked as fixed). In this initial

solution there were 5 tool changes (with a cost penalty of

0.5 for each one), which along with the travel distance of

3https://www.graphviz.org/doc/info/lang.html
4https://github.com/carlosmccosta/AssemblyPlannerDataset
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0.662 m resulted in a total disassembly cost of 3.162 when

disassembling the 13 parts.

Given that the best-first search approach selects the next

best candidate by analyzing the nodes at the next tree level,

it may choose sequences in which the disassembly tool is

exchanged more times than it needed to. As such, after finding

the first solution, we backtrack on the search tree and continue

exploring the other branches (pruning when possible), in

order to ensure that the optimal solution is found. Looking

at the optimal disassembly sequence shown in Figure 4, it

can be seen that it managed to reduce the travel distance by

0.102 m while also performing one less tool change, which

allowed to reduce the disassembly cost by 0.602. It should be

noted that the feasibility of a disassembly operation uses the

geometric mate directions along with a collision / interference

detection algorithm (it does not use CAD meta information,

such as identifying a component as being a screw). As such,

if a screw has no thread, it will be physically possible to

disassemble the parts attached to it without removing the

screw first. To illustrate this behavior, the solenoid screws

were modeled without thread and by analyzing the optimal

sequence we can see that the solenoid was disassembled before

its screws because it had a shorter travel distance in relation to

the previously disassembled parts (since the disassembly was

progressing in a top-down direction).

Figure 3. Disassembly sequence for the first solution found with a cost of
3.162 and travel distance of 0.662 m when dismantling a product with 13
parts (12 nodes were visited in 3 minutes and 2 seconds)

Figure 4. Disassembly sequence for the optimal solution found with a cost
of 2.560 and travel distance of 0.560 m when dismantling a product with 13
parts (16339 tree expansions were performed in 30 hours, 24 minutes and 3
seconds in which 9060 branches were pruned)

Analyzing the logs and search trees generated by our

SolidWorks 2016 C# add-in (compiled using Visual Studio

2017 with the 4.6.2 .NET framework) and running on a Clevo

N170RD laptop (with an Intel Core i7-6700HQ CPU and

Windows 10 x64), we could see that the first solution took

3 minutes to expand 12 tree nodes while the optimal solution

required 36 hours, 56 minutes and 59 seconds for expanding

16339 tree nodes. During the optimal search, 5 solutions were

found, allowing to prune 9060 branches (more than 50% of

branches were pruned long before reaching the last tree levels,

resulting in the expansion of much less than 50% of the search

tree nodes).

For improving the search speed even further, we activated

the caching approach introduced in Section IV-B and managed

to reduced the search time down to 30 hours, 24 minutes

and 3 seconds (18% time reduction) while achieving the same

results. This technique can provide a significant speedup when

there is a high tree branching factor and the trees have a high

number of levels (each level corresponds to the disassembly

of a single part). For example, in this use case, we can see that

in the beginning we can disassemble 7 parts (2 cap screws, 3

solenoid screws along with 2 long bolts). When we remove

one of these parts, the disassembly directions of the other 6

remain valid (they are a subproblem), and can be reused if

we continue the disassembly process (no need to compute the

disassembly directions and perform collision checking again),

which can lead to considerable speed ups given that the most

computationally expensive task is the collision checking /

interference detection stage.

B. Impact of Part Count and Branching Factor

In order to analyze the impact that the number of disas-

sembly parts and the search tree branching factor have on

the computation time required to find the optimal solution

(and also be able to generate a search tree small enough to

be readable in a figure), a second configuration of the starter

motor was created in which 5 parts were removed (in relation

to the first configuration). Three of these removed parts could

be disassembled on the first search tree level (namely the 3

screws holding the solenoid), and the other two were on the

middle and end of the search tree (which were the insulator

and the solenoid respectively).

Figure 5. Disassembly sequence for the first solution found with a cost of
2.290 and travel distance of 0.290 m when dismantling a product with 8 parts
(7 nodes were visited in 1 minute)

Figure 6. Disassembly sequence for the optimal solution found with a cost
of 1.771 and travel distance of 0.271 m when dismantling a product with 8
parts (122 tree expansions were performed in 11 minutes and 27 seconds in
which 37 branches were pruned)

Analyzing Figure 5 we can see that the first solution was a

top-down disassembly sequence, starting with the cap screws,

then removing the shaft cap, bolts, and finally extracting the

loose objects below (namely the end cap, followed by the case

and nose cone). On the other hand, the best solution (presented
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in Figure 6), managed to disassemble the 8 parts with one less

tool change while also reducing the travel distance by 0.019

m (it extracted all the screws first and then removed all the

parts with a universal gripper).

From a time performance point of view, reducing the tree

depth and initial branch factor had a tremendous effect on

the number of visited nodes, due to the factorial tree growth

and also because the initial tree levels will not be pruned

(because they have a cost lower than the optimal solution). In

this particular use case, reducing from a total of 13 to 8 parts

(from which the number of parts that could be disassembled

in the first tree level was reduced from 7 to 4), we can

see in Figures 3 to 6 that the time needed to find the first

solution was reduced by 67% (from 3 minutes and 2 seconds

to 1 minute) while the time required to compute the optimal

solution was reduced by 99.37% (from 30 hours 24 minutes

and 3 seconds to 11 minutes and 27 seconds). These results

show the combinatorial explosion that disassembly planning

systems face, and as such, for trying to find the optimal

solution for very large products it is recommended to break the

search problem into a set of small optimization problems, such

as planning the disassembly sequence for subcomponents and

then running the global optimization on top of large clusters

of parts. This approach would allow to exploit the spatial

locality of disassembly operations and bound its combinatorial

explosion for products with a large number of components.

VI. DISASSEMBLY OF A SINGLE CYLINDER ENGINE

For assessing the suitability of our best-first search algo-

rithm for disassembling products with a large set of parts we

added to our set of benchmarks the analysis of the disassembly

sequence generated for dismantling a single cylinder engine

with 40 components (solution found in 1 hour, 57 minutes

and 35 seconds and shown in Figures 7 to 9). Inspecting

Figure 7 we can see that the tool change cost of 0.5 along with

the compact design of the single cylinder engine (bounding

box dimensions with less than 0.5 meters) caused the best-

first search algorithm to group components by the type of

robotic end effector that was needed to remove them (because

the tool change cost penalty was higher than the maximum

distance between parts). This resulted in the removal of all

of the 22 large bolts (shown in Figure 7) using a 8 mm

spanner tool followed by the extraction of the outer engine

components (illustrated in Figures 8 and 9) with an universal

gripper. Then, the search algorithm continued to remove the

parts seen in Figure 9 until no more components could be

removed with the universal gripper. Later on, a 6 mm spanner

tool was used to extract the two bolts holding the chain

tensioner followed by its removal with an universal gripper.

Given that our SolidWorks add-in temporarily disables all part

mates in order to be able to move the components during

the disassembly feasibility test, it currently assumes that each

disassembly operation results in the extraction of a single part

unit (with nothing else attached to it). As such, the large

components seen in Figure 9 could only be removed after

the two bolts with large diameter were extracted (using a

4 mm Allen wrench). In the future we intend to devise a

more advanced algorithm to test the disassembly feasibility for

allowing the removal of components that still have other parts

attached to them. This functionality could be implemented by

selectively disabling part mates while moving the components

in each decoupling direction (in order to bring attached parts

along). This extension to our SolidWorks add-in could prove

very useful for parallelizing tasks and could also be included

in the cost function of the assembly planner for prioritizing

sequential or parallel disassembly sequences.

Figure 7. Exploded view for the first set of disassembly operations found by
the best-first search algorithm (consisting of the removal of all the bolts with
a head of 8 mm)

Figure 8. Exploded view for the second set of disassembly operations found
by the best-first search algorithm (consisting of the removal of the outer parts)

Figure 9. Exploded views for the third (left) and fourth (right) set of
disassembly operations found by the best-first search algorithm (consisting
of the removal of the large center blocks)

Performing an overall analysis of Figures 7 to 9, we can

observe that the usage of a high tool change cost along with

18th IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 25-27 2018, Torres Vedras, Portugal

217



the travel distance of the robotic end effector made the best-

first search algorithm behave similarly to a human operator,

since it tries to minimize the number of times it changes the

disassembly tools while also minimizing the effort / distance

between each consecutive operation. As such, this approach

may prove fruitful for teaching or assisting human operators

using augmented reality interfaces and could also provide a

useful plan for a robotic assembly line (which can later on be

improved by the branch-and-bound algorithm and be coupled

with arm motion path planning and grasping systems).

VII. CONCLUSIONS

The generation of the optimal sequence for disassembling

or assembling products is an NP-hard problem with a wide

range of applications in the manufacturing industry (such as

the automation of assembly lines using robotic arm manipu-

lators). This paper presents a set of techniques for speeding

up the search of the optimal solution using caching / reuse

of disassembly steps along with a best-first search approach

for estimating the initial solution for the branch-and-bound

algorithm. Moreover, by analyzing the geometric mates found

on SolidWorks CAD assemblies, along with collision / in-

terference detection algorithms, our SolidWorks add-in can

automatically compute the part decoupling directions and the

disassembly precedences for generating physically feasible

disassembly sequences. For intuitive use of the system, it

also creates an exploded view animation associated with the

best solution found in order to allow the inspection of the

disassembly and assembly sequence.

Depending on the search tree branching factor and the

number of components to disassemble, the estimation of the

optimal solution may take from a few minutes to a few hours.

For very complex products with a high number of parts,

a heuristic method may provide reasonable results with a

much shorter computation time. As such, future work could

include the development of a heuristic algorithm to find close-

to-optimal disassembly sequences and also the exploration

of clustering techniques for exploiting the spatial locality

of large disassembly operations and bound their search tree

combinatorial explosion. Moreover, it would be interesting

to extend the branch-and-bound cost function to model other

disassembly factors, such as possible grasp positions for the

parts, simulation of gravity and how it affects the mechanical

stability of the components along with the usage of fixtures

(among many others). On a higher level, it would also be

useful to integrate an arm motion path planner for allowing the

generation of the structured knowledge required for a robotic

manipulator to perform the disassembly / assembly operations.
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