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Abstract

In this work, we present parameter regions for the existence of stable plain solitons of the cubic

complex Ginzburg-Landau equation (CGLE) with higher order terms associated with a fourth order

expansion: using a perturbation approach around the nonlinear Schrödinger equation soliton and

a full numerical analysis that solves an ordinary differential equation for the soliton profiles and

uses the Evans method in the search for unstable eigenvalues, we have found that the minimum

equation allowing these stable solitons is the cubic CGLE plus a term known in optics as Raman

delayed response which is responsible for the red shift of the spectrum. The other favorable term

for the occurrence of stable solitons is a term that represents the increase of nonlinear gain with

higher frequencies. At the stability boundary for higher values of the nonlinear gain, a bifurcation

occurs giving rise to stable oscillatory solitons. These oscillations can have very high amplitudes,

with the pulse energy changing more than two orders of magnitude in a period, and can even

exhibit more complex dynamics such as period doubling.
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I. INTRODUCTION

In the optics context, the complex Ginzburg–Landau equation (CGLE) has been applied

to describe pulse pulse propagation in fibers with linear and nonlinear gain and spectral

filtering [1], pulse generation in fiber lasers with additive pulse mode-locking [2] or pulse

propagation in hollow core photonic crystal fibers filled with resonant gases [3]. The CGLE

can take the cubic or quintic forms, both of them supporting dissipative stationary solitons

that result from a balance between dispersion and nonlinearity, and between gain and loss.

In the cubic CGLE, these solitons are stable in a parameter region where the background is

unstable, thus preventing the existence of stable stationary solutions. However, it has been

recently shown that the inclusion in the CGLE of a term that, in optics, models the delayed

Raman scattering, allows the existence of stable solutions in a parameter region where the

background is also stable [4]. Note that this higher order term has also been associated with

the stabilization of erupting solitons of the quintic CGLE [5–7].

The CGLE has been associated with extremely rich dynamical behaviors, of which sta-

tionary solutions are just one example. On the opposite side we find chaotic behavior and,

somewhere in the middle, the oscillatory behavior typical of pulsating solitons [8, 9]. This

oscillatory behavior has only been predicted for the quintic form of the CGLE, either with

[10, 11] or without higher-order terms [8, 12, 13], and, recently, has become the focus of

renewed interest due to the unusually high peak amplitude oscillations that can be obtained

[14].

Generalizations of the cubic CGLE including terms associated with complex coefficients of

group velocity, third order dispersion, Raman scattering, self-steepening have been proposed

in the context of pulse propagation in resonant media [3, 15]. The terms of Raman scattering

and self-steepening are also known in fluid dynamics as the nonlinear gradient terms and

their effect on the quintic CGLE have been already studied [8, 10, 16], but here we study

them in the cubic CGLE. A preliminary study of the effect of some of these terms has

already been performed [4] and it was shown that, among others, they can affect the pulse

peak amplitude and propagation velocity. Here, we expand on those results by using both

perturbation analysis and numerical methods to obtain the plain soliton characteristics.

Furthermore, these two approaches are also used to investigate how these higher order terms

affect the region of existence and stability of these solitons. Direct numerical integration is
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also used to confirm the results obtained and to establish the basin of attraction of these

stationary pulses. Note that the term plain solitons is usually used in the terminology of

stable solutions of the CGLE to designate the one-hump constant amplitude profile solution.

Finally, our results indicate that other kind of solutions are also possible in the CGLE of the

cubic type in a parameter region that is beyond the stability region of plain solitons. They

exhibit a rich behaviour of periodic or aperiodic oscillations of shape and peak amplitude.

To the best of our knowledge, this is the first time a behavior of this sort is predicted for

this form of the CGLE.

Section II of this article addresses the existence of stable traveling solutions of the cubic

CGLE with higher-order terms and is divided into two parts: the first with results from a

perturbation approach and the second one dedicated to numerical methods. The oscillatory

solutions are presented in Section III, and in section IV we summarize the main results of

this work.

II. EXISTENCE AND STABILITY OF PLAIN SOLITONS

Consider the evolution equation

iqZ − D
2
qTT + s|q|2q = iδ′q+ ξ′qT + iβqTT + id′3qTTT + iϵ|q|2q+R′ (|q|2)

T
q− iS ′ (|q|2q)

T
(1)

where, in the optical context, q is the normalized envelope of the optical field, and Z and T

are the normalized propagation distance and retarded time, respectively. The parameters in

this equation are all normalized versions of the actual parameters. The parameters D and s

may only take the values ±1, D = 1 if the group velocity dispersion (GVD) is normal and -1

if GVD is anomalous and s = 1 or s = −1 for positive or negative Kerr effect, respectively. δ′

stands for linear gain/loss, gain if δ′ > 0 and loss otherwise, ξ′ represents a linear frequency

dependent gain/loss, it will cause loss in one side of the spectrum and gain in the other side,

β (> 0) is a quadratic frequency dependent loss, easily recognized as a spectral filtering

and ϵ is responsible for nonlinear gain/loss, gain if ϵ > 0 and loss otherwise. S ′ = S ′
r + iS ′

i

is the parameter associated with the term that models the frequency dependency of the

cubic terms, its real part is associated with the so called self-steepening and represents the

dependency of the Kerr term with frequency (it is conservative) and the imaginary part is

associated with the frequency dependency of the nonlinear gain/loss which is dissipative.
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The parameter R′ = R′
r + iR′

i represents a delayed Kerr and nonlinear gain/loss response.

Both components of this term are conservative for signals that are localized in time. Finally,

d′3 = d′3r + id′3i corresponds to third order dispersion (d′3r) and to cubic frequency dependent

gain/loss (d′3i). Note that this equation is the cubic complex Ginzburg-Landau equation

(CGLE) with higher-order (HOT) terms added in the form of ξ, R, S and d3.

We may reduce the number of parameters of equation (1) using the following change of

variables

p =
q

a
, ζ = a2Z, and τ = aT,

with which the evolution equation reads

ipζ − D
2
pττ + s|p|2p = iδp+ ξpτ + iβpττ + id3pτττ + iϵ|p|2p+R

(
|p|2

)
τ
p− iS

(
|p|2p

)
τ

In the above equation δ = δ′/a2, d3 = d′3a, ξ = ξ′/a, R = aR′ and S = aS ′ and if we choose

a2 = −δ′, δ = −1. Note that we will be interested only in the case δ′ < 0.

A. Perturbation approach

We will restrict our analysis here to the case Ds = −1, such that the left-hand side of (1)

becomes the focusing nonlinear Schrödinger equation (NLS). Then, we proceed by applying

standard inverse scattering method perturbation analysis [17, 18] considering the fundamen-

tal soliton of the NLS, namely, p(τ, ζ) = η(ζ)sech [η(ζ)(τ − τ0(ζ))] exp[ib(ζ) (τ − τ0(ζ)) +

iϕ(ζ)], and obtain the following equations for η and b

dη

dζ
= 2η

[
−1 + ξb− β

(
b2 +

η2

3

)
+

2

3
η2 (ϵ+ Sib) + d3ib

(
η2 + b2

)]
(2)

db

dζ
=

2

3
η2

[
ξ − 2βb+

2

5
η2 (2Rr + 3Si) + 3d3i

(
b2 +

7

15
η2
)]

, (3)

and also dτ0
dζ

= −Db + η2
(
Sr − 2

3
Ri

)
+ d3r (η

2 + 3b2) and dϕ
dζ

= D
6
(η2 − 3b2) + 2

3
sη2 +

1
3
bη2 (Sr − 2Ri − b2).

Since the evolution equations for the perturbed soliton parameters only involve η and b,

we only have to take into account equations (2) and (3) in order to find the stationary am-

plitude and frequency. Thus, in practice, we are approximating the behaviour of the infinite

dimensional system governed by equation (1) by a two-dimensional system. Furthermore, as
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it will be shown later in this section, in order to ensure background stability we must have

β > 0 and ξ2

4β
< 1, and the d3 coefficient must be real. In this case (d3i = 0), the equilibrium

nontrivial amplitude and frequency are given by

be =
1

β

(
ξ

2
+

1

5
(2Rr + 3Si) η

2
e

)
(4)

−(6Rr − Si) (2Rr + 3Si)

75β
η4e +

1

3

(
2ϵ− β +

Siξ

β

)
η2e − 1 +

ξ2

4β
= 0 . (5)

Note that these equations are more general than the ones presented in [4], which were

obtained assuming that ξ = 0, S = 0, d3 = 0 and Ri = 0. However, similarly to what

happens when these coefficients are not present, our analysis indicates that three different

types of parameter regions can be identified: one where no stationary solution is allowed,

one with only one solution, and a third one with two different solutions that we name as low

amplitude and high amplitude solutions. Furthermore, only the high-amplitude solution in

the two solutions regime can be stable. In the following we present the details leading to

these conclusions.

A nontrivial equilibrium solution requires η2e , given by (5), to be real and positive. Since

we are considering β > 0 and ξ2

4β
< 1, we can conclude that

1. (region 1) Two positive solutions for ηe are allowed if Rr ̸= 0, −2
3
< Si

Rr
< 6 and

ϵ > ϵmin with

ϵmin =
1

2
β − Siξ

2β
+

3

5

√(
1− ξ2

4β

)
(6Rr − Si) (2Rr + 3Si)

3β
.

2. Only one positive solution for ηe is possible in the following situations:

(a) (region 2) Rr ̸= 0, −2
3
< Si

Rr
< 6 and ϵ = ϵmin,

(b) (region 3) Si = 6Rr or Si = −2
3
Rr and ϵ > ϵmin ≡ β

2
− Siξ

2β
,

(c) (region 4) Si ̸= 0 and −3
2
< Rr

Si
< 1

6
for every ϵ.

3. (region 5) Finally, no solution is predicted in all other cases.

Some valuable insights regarding the stability of system (1) can also be obtained by

addressing the stability of these stationary points of the 2-dimensional system (the perturbed

solitons). This can be investigated by looking at the eigenvalues of the 2×2 jacobian matrix
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associated with the right-hand side of equations (2) and (3), calculated at the stationary

points. In particular, the 2D system will be stable as long as the real part of these eigenvalues

is negative. In the present case and using again β > 0, this translates to two conditions

1

75β
(2Rr + 3Si) (6Rr − Si) η

4
e > 1− ξ2

4β
,

10Si (2Rr + 3Si)

75β
η2e +

2

3
(ϵ− β) +

Siξ

3β
< 0. (6)

The first condition is only met by the high amplitude solution of the two solution regime,

implying that only that solution can possibly be stable. By the perturbation approach, it

will be stable if the other condition is also satisfied.

We may now address the full scenario of traveling pulse solutions to equation (1), as given

by the NLSE perturbation approach. The low amplitude solutions are the continuation of

the chirped solutions of the cubic CGLE, that there, and for ξ2

4β
< 1, only exist above

ϵCGLE
min = β/2 [3, 19]. As we introduce the Raman term and if −2

3
< Si

Rr
< 6, we gain a new

solution, higher in amplitude, that exists on the same parameter region as the low amplitude

solution. In the same conditions but at ϵmin, the two solutions coincide, such that, there is

only one solution. If otherwise, Si = 6Rr or Si = −2
3
Rr, we have a situation identical to the

one obtained with the cubic CGLE, namely, a single solution above ϵmin. In a third case, if

Si ̸= 0 and −3
2
< Rr

Si
< 1

6
, there is only the low amplitude solution but for all ϵ. Nevertheless,

from all of these, the only stable pulse is the high amplitude solution allowed when Rr ̸= 0

in region 1, but for ϵ that obeys condition (6). In some cases, as is the case Si = 0, the

condition (6) reduces to ϵ < ϵmax = β and the existence of a finite region with stable solitons

implies that ϵmin < ϵmax, which imposes an additional restriction on the coefficients of (1),

they will exist as long as |Rr| < 5
12
β
√

β

1− ξ2

4β

. For Si ̸= 0, (6) should be solved giving also an

upper limit on ϵ or an interval, as we shall see in the examples below. We should remark

that this perturbation analysis only predicts the existence of stable plain solitons for Rr ̸= 0.

B. Numerical approach

The perturbation approach followed in the previous paragraphs would just be valid for

small values of the parameters associated with the terms beyond the NLS. To further con-

tinue our search for solutions of (1), we write p(ζ, τ) as a traveling solution of the form
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q(ζ, τ) = F (t)eiθ(t)+iωζ , with t = τ − vζ, where both F and θ are real, and used a similar

approach as used in [4] obtaining ordinary differential equations (ODEs) for F and θ′ which

were solved by a shooting method. Using the latter approach, we have scanned regions of the

parameter space having always Rr ̸= 0. In fact, we have found as doublets, a low amplitude

solution and a high amplitude solution that is stable in a region smaller than the existence

region, but we could also verify that, for parameters close to the region identified above as

4, there is only one solution in a extended region of ϵ. For the stability study, we have used

an Evans function method [3] to evaluate the eigenvalues of the associated stability system,

which reads

Lw = λw, w = (u x)T (7)

where

L =


−id3∂ttt +

(
−D

2
− iβ

)
∂tt − (iv + ξ)∂t B(t)

−ω + i+ A(t)

−id∗3∂ttt +
(
D
2
− iβ

)
∂tt − (iv − ξ)∂t

−B∗(t) +ω + i− A∗(t)


A(t) = 2(s− iϵ)F 2 −R(3FF ′ + F 2∂t − iθ′F 2) + 2iS(2FF ′ + F 2∂t)

B(t) =
[
(s− iϵ)F 2 −R(FF ′ + F 2∂t + iθ′F 2) + S(2iFF ′ − 2θ′F 2 + iF 2∂t)

]
e2iθ.

The traveling pulses are linearly stable if L has no eigenvalues λ with negative imaginary

part.

The location of the continuous spectrum may be estimated using the continuous spectrum

of the limiting form of L for t → ±∞ which is obtained from L putting A(t) = B(t) = 0.

The continuous spectrum of L∞ is given by

−d3r
3 + (D/2 + iβ)r2 + (v − iξ)r − ω + i = λ,

−d∗3r
3 + (−D/2 + iβ)r2 + (v + iξ)r + ω + i = λ,

with r being any real number. For the first curve, we have

λr = −d3rr
3 +

D

2
r2 + vr − ω

λi = −d3ir
3 + βr2 − ξr + 1
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FIG. 1. Peak amplitude (a) and velocities (b) of the two branches of solutions for δ′ = −0.022,

β = 0.4, R′ = 0.177 and other nonzero parameters as indicated in the curve labels.

For a large enough r, the dominant term in the equation for λi will be −d3ir
3. Since this

term can take negative values regardless of the sign of d3i, we must require d3i = 0 in order

to allow for stable background. Moreover, since in this case λi will attain a minimum value

of 1− ξ2

4β
if β > 0, background stability is only possible when we also have ξ2

4β
< 1 and β > 0.

The continuous spectrum of L itself is on or inside the above parabolas [20]. Hence, the

continuous stability spectrum of these solutions is stable if ξ2/4β < 1, as we have referred

in the last section.

First, we show the peak amplitude and velocities for the two branches of solutions, high

and low amplitude solutions, for particular values of the parameters (see figure 1). The

results were obtained by numerically solving the ODEs for F and θ′ described above. The

peak amplitudes for the different parameters are very similar, except for the high amplitude

solutions whenever S ′
i = −0.1. However, the velocities show some dispersion. In the rest

of this section, we will concentrate in the high amplitude solutions, studying the parameter

region for their stability and showing some of the profiles. Thus, our results of existence and

stability of the high-amplitude solution are presented in figures 2 and 3 in limited regions

of (β, ϵ) for different choices ξ and S but having always Rr ̸= 0, which by the perturbation

analysis of section A is a necessary condition for the existence of stable solitons. In figure

4, we compare the amplitude and phase derivative profiles.

From our results, we learn that the existence and stability regions for relatively small

β and ϵ are well predicted by the perturbation approach. As β increases, the tendency in
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FIG. 2. Existence and stability for δ′ = −0.022, ξ = 0, R′ = 0.177 and S′ = 0. The three different

regions are regions of absence of solitons, stable and unstable solitons as indicated in the figure.The

two curves are the threshold for existence and stability as predicted by perturbation.

all graphs is an existence threshold lower than ϵmin and a stability threshold considerably

lower than ϵmax. However, this discrepancy with the perturbation results is not the only

one. The major difference is in the phase profile. Since the perturbation results are based

on the NLS soliton, the phase is assumed to vary linearly with time. However, starting with

the work by Akhmediev in the 90s [19], it is known that there are analytical solutions of the

cubic CGLE that have fixed amplitude and chirp such that the phase derivative has a tanh

profile. For δ < 0 (needed for background stability), these solutions exist above a certain

ϵ, but are always unstable. As predicted by the perturbation approach and studied in [4],

the introduction of Rr creates a new solution with higher amplitude. The phase derivative

of both solutions is not symmetrical but also tends to fixed values at the tails showing a

rapid variation at the pulse center. The phase derivative of the high amplitude solutions

may be observed in the dashed (black) lines of graphs in Fig. 4. Concerning the amplitude

profiles, they are reasonably equal to sech, with a slight asymmetry, for smaller values of the

parameters but they tend to be narrower than the sech as the parameter values increase.

Let us now follow the introduction of Sr, Ri, ξ and Si. The perturbation results predict

that only Rr, ξ and Si will affect the solution and its stability. However, the numerical

results show different effects especially in some cases. If a positive Sr does not introduce
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much variation on the solution profiles (amplitude and phase) relatively to the case of only

nonzero Rr, a negative Sr disturbs the phase, the phase derivative has more structure at the

pulse site (fig. 4(a)) and the stability region increases in size (figures 3(a) and 3(b)).

On the other hand, the introduction of negative Ri does not affect much the profiles

and stability, but a positive Ri introduces some phase derivative structure and a negative

Ri decreases the region of stability. We have noted some similarity between the results for

negative Ri and positive Sr and vice-versa which might be anticipated since in the ODEs

[4] the Ri is always appearing in terms of the form 2Ri − 3Sr which will be approximately

the same for Ri = ±0.15 and Sr ∓ 0.1. Nevertheless the two cases are not exactly the same

since Sr is also appearing in other forms in the ODEs.

The profiles for ξ ̸= 0 are quite similar to the ones with only Rr (fig. 4(c)). The amplitude

profile is equal for ξ negative and positive but the phase derivatives are displaced from each

other. The existence and stability results obtained numerically agree with the one obtained

with the perturbation approach for small β (figure 3(d)). Note that the graph is shown only

for β > 0.113 which is the condition for stable background. The perturbation results for

existence and stability do not distinguish the signal of ξ since we are considering Si = 0 and

thus ξ only appears as ξ2. The search of profiles using the ODEs and the Evans method

confirm that fact.

Finally, the introduction of Si has a considerable influence on the results which was

already anticipated by the perturbation approach. In the particular cases presented in

figures 3(e) and 3(f), there is also an ϵmax obtained with (6) for S ′
i = 0.1 but for S ′

i = −0.1

the stability region predicted by the perturbation approach is an interval for β below 0.06

and only transforms to an upper limit beyond that β. The numerical results confirm this

behavior for small β. In general, the stability region shrinks for positive Si and enlarges

otherwise. These results are generally in agreement with the perturbation results but with

displacement of the existence and stability regions as β increases. The profiles are also quite

different from the ones for Rr ̸= 0, especially for negative Si for which the peak amplitude

and rapid variation of the phase derivative at the pulse center are much higher than in the

case of only Rr ̸= 0. There is no fine structure in phase derivative at the pulse peak location.

Due to added numerical difficulties, in particular, the resulting ODEs being third order,

we have not defined the existence and stability regions in the case d3r ̸= 0. Thus, all the

results that are shown below are for the case d3r = 0. The case d3r ̸= 0 will be considered
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FIG. 3. Existence and stability for δ′ = −0.022, R′ = 0.177 and (a) S′ = −0.1, (b) S′ = 0.1, (c)

R′
i = 0.14, (d) ξ′ = ±0.1, (e) S′ = −0.1i and (f) S′ = 0.1i. The parameters that are not indicated

are zero. The three different regions are regions of absence of solitons, stable and unstable solitons

as indicated in the figures. The two curves are the threshold for existence and stability as predicted

by perturbation.
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FIG. 4. Profiles of amplitude (F ) and derivative of phase (θ′) for δ′ = −0.022, R′
r = 0.177, β = 0.4,

ϵ = 0.24 and S′, R′
i and ξ′ as indicated in the labels.

in a future work.

We have also solved the full evolution equation (1) in order to confirm the Evans method

results and to evaluate the basin of attraction of these stable solutions. The stability of the

high amplitude solutions predicted by the Evans function method was confirmed by these

simulations. Within the parameter region of stability, we have used input pulses of the form

A sech(At) with different As. These inputs stabilized to the stable pulse for a relatively large

range of A values as long as β is not very low. Even for low β, and in the cases R′ = 0.177

and S ′ = −0.1 or S ′ = −0.1i, it was possible to stabilize the propagation for different

amplitudes of the sech. For larger values of β, the stabilization from the sech input was

easier. The attraction basin for these solitons is especially large in the case S ′ = −0.1i. We

have analyzed three pairs of β and ϵ: β = 0.1 and ϵ = 0.15 for which the A sech(At) stabilized

to the soliton for A values ranging from 0.6 to 3.5, β = 0.4 and ϵ = 0.2 with stabilization

for A values from to 1.2 to 56.0 and β = 0.4 and ϵ = 0.32 with stabilization from 0.6
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to 77.0. Whenever there was no stabilization, we observed pulse decay. Nevertheless, the

stabilization was always possible if we use the profile obtained with the integration of the

ODE.

III. OSCILLATORY SOLITONS

Thus far we have been discussing the existence and characteristics of the stable plain

soliton solutions of equation (1). However, a very interesting behaviour is also governed by

(1) as we enter the unstable region. In effect, by numerically integrating (1) we have observed

the onset of stable oscillations as ϵ increases from the critical value associated with the upper

boundary of the stable region. As we go further into the unstable region (increasing ϵ), these

oscillations increase in magnitude, such that the maximum pulse peak amplitude increases

while the minimum one decreases. Moreover, the period of these oscillations also increases

gradually, with the oscillations becoming further apart and eventually disappearing when

the minimum peak amplitude reaches the amplitude of the low-amplitude stationary point

possible in this region. Figure 5 depicts such behaviour when the HOT of the CGLE only

includes the real Raman term. In the case represented in this figure, the oscillatory behaviour

is only observed for a narrow range of ϵ. However, as other terms are considered, this range

can substantially increase. Furthermore, the amplitude of the oscillations can also increase

considerably and, in some cases, we have even observed oscillations that were quite dramatic,

which required special care with the simulation algorithm. An example of such behaviour,

for a larger β and also including Sr, is shown in Fig. 6. It is interesting to verify that in

this case the oscillations persist for a much larger interval of ϵ. Moreover, as ϵ increases,

we observe that not only do the oscillations become larger and further apart, but they also

become more asymmetric, with the descending edge varying quite abruptly. In figure 7, we

show the oscillatory evolution of the pulse for the parameters as in Fig. 6 and ϵ = 0.42.

Figure 8 shows, for the same case, the pulse energy, defined by Q(Z) =
∫ +∞
−∞ |q|2dT , versus

the peak amplitude which confirms the periodic character of this oscillations. In certain

cases, we have observed a transition from periodic oscillations to non-periodic oscillations

and again to periodic oscillations as ϵ is increased (see Fig. 9). In figure 10, we show the

pulse energy versus peak amplitude for some ϵ of Fig. 9 that exhibit period doubling and

period tripling. Also note that the oscillations depicted in figures 9 and 10 evolve very
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FIG. 5. Peak amplitude evolution for δ′ = −0.012, β = 0.3, ξ′ = 0, R′ = 0.2, S′ = 0 and ϵ as in

inset.

rapidly in the peak region and, moreover, that the difference between the maximum and

the minimum peak amplitudes is quite large. For example, for ϵ = 0.68 we observe that

within a period the minimum and maximum peak amplitudes are 1.6 and 74, respectively,

whereas for ϵ = 0.76 this interval is larger (0.6 − 93). This dramatic change becomes even

more apparent when we compute the pulse energy in each case: for ϵ = 0.68 the minimum

and maximum energies are respectively 3.9 and 538, while for ϵ = 0.76 we have 1.6 and 791.

In these last cases, we see that the pulse energy in a period changes more than two orders

of magnitude.

It is noteworthy pointing out that a similar oscillatory behaviour was already known

in the context of the cubic-quintic CGLE [8, 12–14] and for the cubic-quintic CGLE with

higher-order terms [10, 11]. However, to the best of our knowledge, this is the first time an

oscillatory behaviour of this sort is predicted for the cubic CGLE.

IV. CONCLUSIONS

We have presented results of existence and stability of plain solitons for the cubic CGLE

with higher order terms included. The analysis shows that the cubic CGLE plus the Raman

term is the minimal model to yield stable solitons. We know that, in the optics context, the
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FIG. 6. Peak amplitude evolution for δ′ = −0.022, β = 0.9, ξ′ = 0, R′ = 0.177, S′ = −0.1 and ϵ as

in inset.

FIG. 7. Pulse evolution for the case ϵ = 0.42 of figure 6.

Raman term is responsible for the continuous transfer of power from the blue to the red side

of the spectrum and that the spectral filtering and the nonlinear gain would stabilize this

process. We suppose that, in this case, this transference of power is somehow preventing the

increase of amplitude that would occur for the same values of the cubic CGLE parameters.

Nevertheless, the solution profile that allows this stabilization has higher amplitude. The

existence of solitons is, in all analyzed cases, possible for a limited region of nonlinear gain
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FIG. 8. Pulse energy versus peak amplitude for three of the cases represented in figure 6 as

indicated in the inset.

and above a certain threshold of spectral filtering. The region of stability is particularly

large for S ′
i = −0.1. The term associated with Si corresponds to a frequency dependence

of the nonlinear gain and a negative value means that the nonlinear gain increases with

frequency. The large region of stability and the large basin of attraction observed in this

case is consistent with our above discussion; the Raman term is responsible for transference of

power from higher to lower frequencies, the nonlinear gain participates in the compensation

of this effect and a larger nonlinear gain on the high frequency side is beneficial. As we

enter the unstable solitons region, the full integration of the evolution equation showed the

existence of stable oscillatory solutions in all the studied cases. This transition corresponds

to a bifurcation that will be further studied in a future work.
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