
Flow-based detection and proxy-based evasion
of encrypted malware C2 tra�ic

Carlos Novo

University of Porto and INESC TEC

Porto, Portugal

carlos.novo@fe.up.pt

Ricardo Morla

University of Porto and INESC TEC

Porto, Portugal

ricardo.morla@fe.up.pt

ABSTRACT
State of the art deep learning techniques are known to be vulner-

able to evasion a�acks where an adversarial sample is generated

from a malign sample and misclassi�ed as benign. Detection of

encrypted malware command and control tra�c based on TCP/IP

�ow features can be framed as a learning task and is thus vulner-

able to evasion a�acks. However, unlike e.g. in image processing

where generated adversarial samples can be directly mapped to

images, going from �ow features to actual TCP/IP packets requires

cra�ing the sequence of packets, with no established approach for

such cra�ing and a limitation on the set of modi�able features that

such cra�ing allows. In this paper we discuss learning and evasion

consequences of the gap between generated and cra�ed adversarial

samples. We exemplify with a deep neural network detector trained

on a public C2 tra�c dataset, white-box adversarial learning, and a

proxy-based approach for cra�ing longer �ows. Our results show 1)

the high evasion rate obtained by using generated adversarial sam-

ples on the detector can be signi�cantly reduced when using cra�ed

adversarial samples; 2) robustness against adversarial samples by

model hardening varies according to the cra�ing approach and cor-

responding set of modi�able features that the a�ack allows for; 3)

incrementally training hardened models with adversarial samples

can produce a level playing �eld where no detector is best against

all a�acks and no a�ack is best against all detectors, in a given set of

a�acks and detectors. To the best of our knowledge this is the �rst

time that level playing �eld feature set- and iteration-hardening

are analyzed in encrypted C2 malware tra�c detection.

CCS CONCEPTS
•Security and privacy → Intrusion/anomaly detection and
malwaremitigation; •Computingmethodologies→Machine
learning;

KEYWORDS
Malware command and control, intrusion detection, adversarial

learning

1 INTRODUCTION
Detecting encrypted malware command and control tra�c using

machine learning and tra�c characteristics is important – espe-

cially for zero-day a�acks or when a�ackers frequently change

black-listed items such as IP addresses or server-side certi�cates.

However, machine learning algorithms are known to be vulnerable

to adversarial a�acks and it is only natural that a�ackers would

explore this vulnerability and modify the behavior of C2 tra�c

between victim and C2 server to make detection harder. But mal-

ware development is costly. Even with a large set of open source

malware frameworks to choose from, modifying the behavior of

complex code in order to achieve speci�c adversarial tra�c can

be a task with daunting impact on the pro�t of most operations.

Applying tra�c proxies or addons to the source code that do not

modify the behavior of the malware but can modify tra�c features

can be a more a�ractive, lower cost solution. Deploying modi�ed

malware on the C2 server and even on victims seems to be a com-

parably easier problem with mechanisms available for overwriting

old payloads with new ones on the victims.

We take these constraints as the motivation for this paper. Figure

1 illustrates an a�ack and defense architecture compatible with

these constraints. �e adversarial proxies or addons in the C2 server

and the victim monitor the tra�c between the original malware

and C2 server, and when necessary – for example just before the

end of the TCP connection – delay or add packets thus modifying

tra�c characteristics that do not change the behavior of the original

malware and hopefully can break the detector. �e detector, si�ing

in one end of the Intrusion Detection System, complements existing

rule-basedmodules in the IDS by detecting yet-to-blacklist C2 tra�c

with a machine learning model.

C2 HostC2 TLS Flow 
Detector

Original 
Malware

Original 
C2 server

Adversarial 
Proxy

IDS

Victim host

Adversarial 
Proxy

Internet

Figure 1: Proxy-based modi�cation of TLS C2 �ows.

While a�ackers are said to be always more motivated than de-

fenders, our approach in this paper is to try and set a level playing

�eld between a�acker and defender. Both a�acker and defender

start from a common public dataset and we set out to understand

what happens when each develops their own strategy and these

strategies collide. In particular we try to look at a�acker and de-

fender performance for di�erent setups of the a�acker and defender

– namely what happens if a set of features is used for a�acking and

another set of features for hardening the model, and if the a�acker

goes through more or less hardening and a�acking steps than the

defender. Although we do not explicitly use proxy models for the

a�acker to generate adversarial samples, recent work [6] points to

1

ar
X

iv
:2

00
9.

01
12

2v
1 

 [
cs

.C
R

] 
 2

 S
ep

 2
02

0



adversarial a�acks transferring from one model to another – in our

case we assume the deep learning model structure and the original

training data is the same for a�acker and defender.

�e remaining of this section lays out assumptions for the under-

lying tra�c, datasets, and limitations to howmuch the malware can

be changed. Section 2 describes the dataset that we use in the paper.

Section 3 describes the deep learning model used for detection, the

method used for generating adversarial samples, an example cra�-

ing technique to increase the duration of the �ow in actual packet

traces, and performance results for the defender under a�acks with

di�erent cra�ing and feature set limitations. Sections 4 and 5 ex-

plore the level playing �eld clash between a�acker and defender,

with di�erent possibilities for a�acker and defender strategies in

hardening and iterating through a�ack-hardening steps to improve

detector resilience and adversarial sample impact. We conclude

with a review of the state of the art in section 6 and �nal notes in

section 7.

1.1 Assumptions
1.1.1 TLS tra�ic. Deep packet inspection and signature-based

techniques can be used to detect plaintext C2 tra�c, but are of

limited usefulness for encrypted tra�c. Certi�cate- and cipher

suite-based techniques have been proposed to detect encrypted

malware [3], but are not robust against C2 servers changing cer-

ti�cates and ciphers. Here we assume some other approaches will

be used for detecting plaintext C2 tra�c and �ltering black-listed

server IPs and certi�cates, but that frequently changing certi�cates

will require a detector that focuses on the characteristics of TLS

tra�c.

1.1.2 Models built on publicly available datasets and tools. We

limit our analysis to a dataset that is publicly available to both the

defender and the a�acker. �is allows the a�acker to build a proxy

model and develop their a�ack from the proxy model if the actual

model is not available. We consider both cases where the defender

model is available to the a�acker (e.g. if it was stolen) and where

a proxy model is built from the publicly available data that the

defender used. We do not consider the case where data from the

same malware is captured from other environments and used by

the a�acker.

1.1.3 Limitations to how much the malware can be changed. We

assume the malware developer is unwilling or unable to change the

code for the main functionality of the malware. In this case there are

two options for changing C2 tra�c: 1) a proxy-like approach that

works in the non-TLS part of the communications, e.g. increasing

the duration of the �ow by hanging on to the FIN/ACK packets at

the end of the �ow long enough to reach the larger �ow duration

adversarial target; 2) adding adversarial code at the end of the

original malware code that does not change the original code but

that sends additional TLS records which the C2 server receives

but ignores, adding to the byte and packet count but also possibly

changing duration. Figure 1 illustrates the proxy-like a�ack. �is

assumption is strong and we expect to address weaker assumptions

in future work namely using open source command and control

frameworks like Metasploit that we can rewrite and use to more

closely resemble the target �ow features.

2 MALWARE TRAFFIC ANALYSIS DATASET
2.1 Scraping
We use data from h�ps://malware-tra�c-analysis.net (MTA), which

contains recent, vast, and detailed content related to common mal-

ware families. �e malware is ran in sandboxed environment and

speci�c malware infections are described, many of them providing

.pcap �les containing captured network tra�c associated to the

infection and to the C2 communication. A�er scraping the website,

508 �les were obtained, corresponding to captures from 2016 to

2019. Table 1 describes the years and statistics of the data we used.

Although each .pcap �le has the date on which it was added to the

MTAwebsite, in a real network we could have tra�c from older and

newer malware families coexisting and because of that and of the

small number of �ows in our dataset we do not further distinguish

malware based on year or malware family.

year # �les fetched # TCP �ows # TLS % TLS

2016 109 1213 58 4.782%

2017 141 3168 885 27.936%

2018 147 24854 11590 46.632%

2019 111 39286 8214 20.908%

total 508 68521 20747 30.278%

Table 1: Per year statistics of the MTA �les we fetched.

2.2 Labeling individual C2 �ows
We used the SSL Blacklist project

1
list of SSL/TLS certi�cates em-

ployed by botnet C2 servers, and con�gured it on Suricata
2
with

rules to identify malicious TLS �ows. Table 2 shows how the 7672

malicious TLS �ows are distributed per black-listed malware fam-

ily certi�cates. We considered the remaining 13075 TLS �ows as

normal.

Family Flow count
TrickBot 4984

PandaZeuS 1610

Gozi 436

IcedID 374

Dridex 131

AKBuilder 56

IcedId 56

Others (< 50 �ows) 25

Table 2: Number of C2 TLS �ows per malware family

2.3 Class imbalance and training-test split
We use all of the malicious TLS �ows in the MTA dataset and

randomly take the same number of normal TLS �ows to create a

balanced dataset. From this, we randomly take 20% for testing. If

capturing data on a real network, the imbalance between normal

1
h�ps://sslbl.abuse.ch

2
h�ps://suricata-ids.org

2

https://malware-traffic-analysis.net
https://sslbl.abuse.ch
https://suricata-ids.org


and malicious would be much larger and the test set should re�ect

this imbalance. We plan to consider class imbalance in future work

where we setup real network data capture.

2.4 Obtaining �ow features
We use TStat [16] to extract 86 numerical features from tra�c �ows,

including the total number of packets observed from the client or

server and the duration of the �ow. We ignore incomplete �ows

as de�ned by Tstat. Table 3 lists the speci�c features
3
we used.

�ese are mostly numerical. We normalize features between 0 and

1 by dividing by the maximum value for the feature in the training

set and square rooting: f in =
√
f i/f imax . Features in the test data

whose value is larger than f imax are set to 1.

Figure 2 shows the boxtplot of the normalized feature values in

our training dataset for malicious and benign TLS �ows. Approxi-

mately half of the features have low entropy and the limited range

of values they take can be observed on the boxplots. �e remaining

features have a more dynamic range and higher entropy. We can

also observe that there are some di�erences between the C2 and

non-C2 ranges of values for some features, which could help detect

malicious TLS �ows.

Figure 3 shows malicious and normal TLS �ows in our training

dataset and could help understand the di�erence between the two

classes. For the visualization we used an autoencoder with 2-neuron

code, 512-neuron hidden layer, 86 inputs, and 86-neuron output

layer, trained with the normalized �ow features in the training data.

We colored the �ows according to the groundtruth. Several groups

of �ows are visible, with malicious/benign overlapping in some of

the groups. Note that this does not necessarily apply to the detector,

which will use more dimensions for classi�cation and will possibly

be able to distinguish the 2D-overlapping groups.

3 DETECTION AND EVASION
3.1 DNN detector
�e detector used throughout the paper is an 86 input, 3-layer

fully connected neural network with 2048/1024/512 ReLU activated

neurons with 0.2 Dropout layer, and an 2-neuron So�max activation

output layer. �e training uses the Adam optimizer with categorical

crossentropy loss. �e model has +2.8M parameters. We assume

this is a generic neural network structure that can be plausibly used

by anyone building a neural network-based detector.

3.2 FGSM whitebox attack with
domain-speci�c restrictions

With the Fast Gradient Sign Method [8] we take a malicious C2

�ow, compute the gradient of the detector’s loss with regard to

the input �ow, and take a �xed length step ϵ for each feature, in

the direction of the gradient, x∗ = x + ϵ siдn(∇x (θ ,x ,y)).We use

CleverHans [13] to implement this a�ack.

Table 4 de�nes three subsets of a�ack features that can be modi-

�ed given our assumptions about what the a�acker can change in

the C2 �ow. Set 1 is for an a�ack that only changes the duration of

the a�ack; set 2 is for an a�ack that in addition to duration changes

3
h�p://tstat.polito.it/measure.shtml#log tcp complete

Core Set Features 3-14, 17-28, 31-37
3-6 ; 17-20 Total, RST, ACK, pure ACK

packet counts

7 ; 21 Unique bytes

8-9 ; 22-23 Data segment and byte counts

10-11 ; 24-25 Retransmi�ed data segment

and byte counts

12 ; 26 Out of sequence segment counts

13-14 ; 27-28 SYN and FIN packet counts

31 Flow Duration

32 ; 33 Rel. time of �rst payload

34 ; 35 Rel. time of last payload

36 ; 37 Relative time of �rst ACK

TCP End to End Features 45-58
45-48 ; 52-55 Av., min., max., st.dev. RTT

49 ; 56 RTT observation counts

45-51 ; 57-58 Maximum and minimum TTL

TCP Options Features 65-79,83,85,90-104,106-109
65-66 Window scale, timestamp

options sent (C2S)

67 ; 90 Scaling values negotiated

68-69 ; 91-92 SACK option set, SACK counts

70-72 ; 93-95 MSS declared, max. and min. MSS values

73-74 ; 96-97 Max. and min. receiver

window announced

75 ; 98 zero receiver window counts

76-78 ; 99-101 Max., min., initial congestion window

79 ; 102 Retransmi�ed by timeout counts/RTO

103 Retransmi�ed by 3 dup-ack

counts/FR (S2C)

104 Packet reordering counts (S2C)

106 Unknown packet counts (S2C)

107 Probe the receiver window

counts (S2C)

85 ; 108 Unnecessary retransmission

counts by RTO

109 Unnecessary retransmission

counts by FR (S2C)

TCP Layer 7 Features 114,115,120-122
114 ; 115 Push-separated message counts

120 Client TLS session ID reuse

121 ; 122 Rel. time of last packet

before �rst TLS App. record

Table 3: TStat features used to characterize �ows. We
use C2S ; S2C feature range notation to represent client-to-
server and server-to-client feature indices.

the total number of bytes and packets; set 3 is the Tstat Core set

without 4 features that measure timings at the beginning of the

�ow, which falls out of our assumptions for the a�acker.

For each adversarial sample generated by the iterative FGSM

method we take two additional steps: 1) only modify the values of

the original samples for the a�ack features; 2) only use the values

of the a�ack features if they are larger than the their corresponding

3

http://tstat.polito.it/measure.shtml#log_tcp_complete


Figure 2: Boxplot of the 86 normalized �ow features in the training set, for malicious (C2) and normal (Non-C2) TLS �ows.

Figure 3: Visualization of the MTA training dataset.

values in the original sample, which is valid for counter features

like bytes, packets, and �ow duration and because the practical

a�ack cannot decrease packets, byte counts, and duration of the

�ows.

3.3 Proxy-based cra�ing of longer �ows
�e proxy-based a�ack in this paper considers a proxy deployed by

the a�acker with the purpose of altering the characteristics of the

C2 TLS �ows. To change the total duration of the �ow, the proxy

withholds the �nal TCP FIN packets for the intended amount of

Attacker feature set Feature indices
Set 1 – Duration 31

Set 2 – Basic 31, 3/17 (all packets), 9/23 (all bytes)

Set 3 – Core Core set features

except 32-33 and 36-37

Table 4: Attack features

time. To change the number of packets and bytes, the proxy injects

additional packets with the desired number of bytes. If the proxy is

deployed in both ends (payload on the victim side and C2 server

on the a�acker side) then both client and server packet and byte

count can be increased. In order to generate the adversarial sample

the proxy captures the C2 �ow packets and, once the �nal TCP FIN

packet is received, sends the packets to Tstat and obtains the �ow

statistics that are input to FGSM.

To have a sense of real impact on all features we implemented the

adversarial a�ack on the duration feature by modifying the MTA

packet trace �les as follows. Using scapy we modify the timestamp

of the last four packets of the �ow according to the adversarial

sample, in practice causing a delay at the end of the �ow that

increases �ow duration. �e original features of the C2 �ows are

fed to FGSM, and the target adversarial duration feature value is

de-normalized by squaring and multiplying by the maximum value.

Figure 4 illustrates this process.

3.4 Detection and Evasion Performance
Table 5 shows accuracy, precision and recall results for detection

and evasion. We take the original malicious samples, change their

4



pcap trace file

C2 TLS

modified pcap trace file

Tstat

Original 
Features

Tstat

“Real” 
Adversarial 

Features

client server

... adversarial C2 TLS

original 
duration

adversarial 
duration

insert 
delay

Adv. 
Algorithm

“Theoretical” 
Adversarial 

Features

Figure 4: Obtaining adversarial examples from tra�c modi-
�cation by changing �ow duration

value according to each of the a�acks, and then assess performance

on a data set consisting of the original benign samples and the

modi�ed malicious samples.

Accuracy Precision 1 - Recall

(A�ack

Success)

Original 95.0% 92.7% 2.7%

Adv. All Features +/- 50.1% 39.5% 95.0%

Adv. Duration +/- 67.7% 84.3% 58.8%

Adv. Duration + 79.0% 89.4% 35.5%

Cra�ed Duration + 83.1% 90.2% 26.1%

2x Duration + 93.9% 92.6% 4.9%

5x Duration + 68.1% 84.6% 57.9%

10x Duration + 63.9% 81.3% 66.7%

20x Duration + 58.1% 73.7% 78.6%

100x Duration + 51.6% 51.3% 91.9%

Adv. Set 2 +/- 64.7% 82.1% 65.0%

Adv. Set 2 + 67.6% 84.3% 58.9%

Adv. Set 2 client +/- 67.2% 84.0% 59.7%

Adv. Set 2 client + 71.4% 86.5% 51.2%

Adv. Set 2 server +/- 60.5% 77.6% 73.5%

Adv. Set 2 server + 70.3% 85.9% 53.3%

Adv. Set 3 +/- 54.3% 64.2% 86.3%

Adv. Set 3 + 55.6% 68.1% 83.7%

Adv. Set 3 client +/- 58.8% 75.0% 77.0%

Adv. Set 3 client + 64.3% 81.8% 65.7%

Adv. Set 3 server +/- 54.0% 63.2% 86.9%

Adv. Set 3 server + 54.4% 64.4% 86.1%

Table 5: Detection and evasion results. According to the at-
tack we label the data ’+/-’ if the feature values can be both
increased anddecreased, and ’+’ if the feature values are only
increased. ’client’ and ’server’ indicate whether the attack
modi�ed client or server features.

A�er training the DNN classi�er on theMTA dataset we achieved

a 95.0% accuracy on the test data, with 2.7% malicious �ows and

7.3% normal �ows misclassi�ed. Running a single iteration FGSM

with ϵ = 0.3 and allowing for changes in any feature increases

misclassi�ed malicious �ows to 95.0%. If we restrict the changes

to the duration feature but allow decreasing �ow duration (which

is out of scope for our assumptions), misclassi�ed malicious �ows

drop to 58.8%. If we keep under our assumptions and only allow

increasing �ow duration, then misclassi�ed malicious �ows drop to

35.5%. Although a 35.5% success at evading the classi�er seems low,

it causesmore than 10 timesmoremalicious �ows to bemisclassi�ed

than originally, for a relatively simple a�ack. Finally, if we consider

the changes in the pcap �le described in �gure 4, this value further

drops to 26.1%. �e a�ack is slightly less e�ective when actually

implementing it in the packet traces likely because other features

are modi�ed by the shi� in packet timestamps done in the a�ack –

e.g. the RTT features.

We compared the FGSM duration a�ack with even simpler at-

tacks that double – or multiply by x – the duration of the malicious

�ow and don’t have to obtain �ow features other than duration nor

apply the FGSM method. We observe that larger percentages of

malicious �ows are misclassi�ed with larger duration multiplica-

tion factor. For 100x duration we get 91.9% misclassi�ed malicious

�ows; however, in �gure 5 we can see from the CDF of the �ow

durations for a�acks x10, x20, and x100 that these �ows are much

larger than episolon = 0.3, which is the maximum increase caused

by our FGSM duration a�acks. In particular for x100 duration is

1.0 in practically all �ows. Although increasing duration does not

have a direct cost, for C2 that is repetitive and frequently opens

and closes TLS connections it may lower the frequency with which

the malware contacts the C2 server.

Figure 5: Increased duration CDF for simple duration multi-
plication attack. Legend values are the factor multiplied by
the original duration.

Using more features than just duration – such as those in sets 2

and 3 in table 4 – appears to improve the a�ack performance, as

expected given the high level of performance we observe by using

all features. Set 2 (with increase of feature value only) has 58.9%

misclassi�ed malicious �ows which is similar to the 5x duration

a�ack; set 3 (also with increase of feature value only) has 83.7%

misclassi�ed malicious �ows which is larger than the 20x duration

a�ack. Notice that both set 2 and set 3 a�acks only add up to +0.3 to

the normalized features in the set, whereas from �gure 5 most 20x

�ows have maximum normalized duration (1.0). We also observe

that a penalty is implied if it is only possible to modify the client- or

server-side features. �e notable exception is for server-side feature

set 3 which appears to perform as well as the full set – both with

increasing and decreasing feature values or only with increasing

5



feature values. �is would call for se�ing up the proxy at the C2

server.

4 HARDENING THE DETECTOR
In this section we try to understand not only to which extent hard-

ening the detector is possible (we expect it is given prior work on

adversarial learning) but especially how robust a model hardened

with adversarial samples from a given a�ack is against adversarial

samples from other a�acks, considering the �ow-speci�c limita-

tions in the set of features in the a�acks. To harden the detector

we take the original data set and extend it with adversarial samples.

We train the hardened model on the extended training data set

and assess the performance of the hardened detector on both the

original and the adversarial test data.

4.1 Robustness against other adversarial
samples

Table 6 shows hardening and a�acking results for some of the

feature sets in table 5. �e small values in the matrix diagonal in

the table shows us that all hardened models, having been trained

on adversarial samples with a given feature set, are robust to a test

set of adversarial samples of the same feature set. �e following

paragraphs provide a read-though and analysis of the non-diagonal

elements of the matrix.

Analysis – a�ack performance. Using all features (Adv. All Fea-
tures +/-, column 1) yields by far the best – although impracticable

under our assumptions – a�ack; the only model that is robust to

this a�ack is the model that is hardened with this dataset. Feature

set 3 a�acks (columns 10-13) are themselves successful in a�acking

models hardened with the other feature sets (rows 1-9). Notice that

Adv. Set 3 server +, column 12 causes large percentages of misclas-

si�ed malicious tra�c on most detectors except those hardened

with datasets using feature set 3; it falls under our assumption that

the proxy is only able to increment counters like packets, bytes,

and duration; and it only requires deployment at the server side –

making it a good candidate for successful a�acks to these models.

Analysis – model robustness. Adversarial samples from feature set

3 (rows 10-13) do not seem adequate for hardening detectors against

other adversarial samples. In fact, most a�acks are consistently

successful against models hardened with any of the feature sets 3

adversarial samples – except a�acks using feature set 3 itself. �e

detector hardened with all features (row 1) is surprisingly poorly

resistant to all other a�acks. Feature set 2-hardened models seem

to be robust against both duration and feature set 2 a�acks. One

reason why feature set 2-hardened models are robust to duration

a�acks may be because of the weight of the duration feature in the

feature set 2 compared to feature set 3 where there are much more

features and the impact of duration changes may be diluted.

Analysis – impact on a�ack performance of only increasing feature
values. Only increasing feature values causes a small yet relatively

consistent drop in misclassi�cation of malicious �ows. Table 6 has

3 cases where we can compare the performance of a�acks using

the same features sets – each case with one feature set where the

FGSM-suggested feature values can be added or subtracted from

the original values, and another where they can only be added.

�ese are columns 2 and 3, 6 and 7, and 10 and 11. Models hardened

with adversarial �ows whose feature values can be larger or smaller

than the original �ow also consistently perform be�er than their

increase-limited counterparts. One exception is for feature set 3,

whose Adv. Set 3 + hardened model fares be�er than its Adv. Set 3
+/- counterpart.

4.2 Non-adversarial
While the defender may prepare for an adversarial a�ack like the

one described in the paper and deploy one of the hardened models,

it is possible that the a�acker chooses not to deploy any adversarial

a�ack – not altering malware tra�c. In this case we test on the

original MTA dataset and observe that all hardenedmodels decrease

accuracy, precision, and recall, but only slightly, when compared

to the original model. From original model values of 95% accuracy,

92.7% precision, and 2.7% a�ack success rate (1-recall), no hardened

model drops below 91% accuracy and 86% precision nor goes above

6% a�ack success rate (1-recall).

5 ITERATIVELY ATTACKING AND
HARDENING

In this section we try to understand to which extent a model hard-

ened with adversarial samples from one iteration is robust against

samples from another iteration. Figure 6 illustrates our approach,

where defender and a�acker use the same iterative approach but

where the defender and a�acker may independently choose dif-

ferent iterations for hardened model (defender) and adversarial

samples (a�acker) respectively.

To incrementally a�ack and harden the detectors we train a de-

tector, at each iteration, with three di�erent options for datasets: A)

use original benign �ows and the adversarial �ows of the previous

iteration (original malicious �ows if �rst iteration); B) use original

benign and malicious �ows together with the adversarial �ows of

the previous iteration (none if �rst iteration); C) original benign

and malicious �ows together with the adversarial �ows of all prior

iterations (none if �rst iteration). While training options A and B

have �xed training size, option C has increasing training size and

may not be sustainable for large number of iterations and large

datasets. In the three cases we use all features for the adversarial

a�ack. Table 7 shows the resilience to adversarial a�acks on models

hardened in di�erent iterations.

Hardening-loop option C is robust against adversarial a�acks

at any iteration; this points to C being the best defense, although

with growing datasets and iterations this option may be impractical.

Option A yields hardened models that are not able to detect the

original malicious �ows (cf. MTA column) – given that the training

dataset for this option at each iteration only includes benign �ows

and adversarial �ows from the previous iteration. Option B is able

to detect original malicious �ows and has �xed training set size. For

option B we observe that, unlike C, no hardened model is robust

against the adversarial samples of all iterations, raising a level

playing �eld problem for the defender and a�acker. Depending on

the iterations that a�acker and defender independently choose for

their hardened model and adversarial samples, a more successful

a�ack or defense will take place.

We notice that for options B and C and at some iterations the

adversarial a�ack is not successful – for example option B iteration

6



Index 1 2 3 4 5 6 7 8 9 10 11 12 13

Adv. All Features +/- 1 0.1% 36.0% 36.1% 84.6% 97.6% 45.2% 35.0% 47.8% 25.1% 64.0% 54.4% 91.1% 37.7%

Adv. Duration +/- 2 91.7% 1.5% 2.7% 0.6% 0.2% 2.5% 7.2% 10.9% 2.5% 82.8% 81.3% 71.2% 38.3%

Adv. Duration + 3 95.2% 9.4% 1.6% 0.3% 0.2% 17.5% 11.6% 12.5% 5.9% 80.2% 70.1% 91.1% 26.8%

20x Duration 4 94.8% 9.2% 4.4% 0.1% 0.1% 34.5% 23.6% 16.1% 15.4% 73.0% 67.3% 91.2% 32.4%

100x Duration 5 95.8% 7.5% 5.9% 3.0% 0.2% 40.2% 29.9% 16.9% 21.2% 86.4% 80.1% 91.5% 46.4%

Adv. Set 2 +/- 6 93.4% 2.9% 3.6% 0.8% 0.4% 0.3% 0.3% 0.7% 0.7% 64.6% 55.0% 88.5% 11.3%

Adv. Set 2 + 7 94.0% 5.7% 3.3% 1.2% 0.4% 1.4% 0.3% 1.1% 0.8% 82.0% 69.0% 96.9% 23.9%

Adv. Set 2 server + 8 95.2% 17.4% 2.5% 0.7% 0.4% 19.0% 10.3% 0.7% 23.3% 86.3% 74.5% 79.2% 51.4%

Adv. Set 2 client + 9 93.6% 3.9% 2.0% 0.4% 0.3% 4.0% 1.3% 12.4% 0.4% 78.6% 68.6% 87.8% 11.8%

Adv. Set 3 +/- 10 78.7% 39.6% 35.1% 86.4% 98.8% 56.0% 50.5% 33.0% 48.9% 0.2% 0.1% 11.8% 6.1%

Adv. Set 3 + 11 87.2% 30.9% 28.5% 78.8% 97.4% 26.5% 16.1% 27.5% 12.0% 0.6% 0.1% 5.0% 3.1%

Adv. Set 3 server + 12 96.3% 32.8% 22.5% 52.7% 69.1% 41.9% 32.3% 16.9% 33.1% 26.0% 7.7% 0.2% 61.1%
Adv. Set 3 client + 13 92.2% 28.6% 27.9% 16.5% 11.7% 30.9% 16.3% 38.3% 7.1% 36.5% 19.7% 92.6% 0.4%

Table 6: Percentage of adversarial �ows generated with attack feature set (column) that are misclassi�ed by a model hardened
with another attack feature set (row). Same index for attack in column and hardened model in row.

Hardened Model
(Iteration i)

Dataset
(Iteration i)

Train

Merge
(Opts. 
A,B,C)

FGSM

Adv. Samples
(Iteration i)

Iteration i=i+1

Bootstrap/ 
iteration 0: 
MTA dataset

Attacker chooses 
adv. sample 

iteration (col.)

Defender chooses 
hardened model 

iteration (row)

Figure 6: Attack and hardening iterative approach. �e boot-
strap at iteration 0 starts with the MTA dataset that a�er
training yields the iteration 0 model which is the original
non-hardened model.

3 hardened model only misclassi�es 8.9% of the adversarial �ows

obtained by directly applying FGSM to its model (row Adv. 4); most

other models are vulnerable to their adversarial a�acks (bold and

italic entries in the table). �is may be a problem for the a�acker

since the a�ack at that iteration is ine�ective, and for the defender

because the next iteration model hardening does not increase or

decrease robustness against this a�ack. We also notice that all

adversarial samples are successful against the original model (cf.

Original rows), and that models seem to be yield low misclassi�ed

adversarial �ows against adversarial a�acks not only of the current

iteration but also of the next iteration.

�e most important thing to notice here is probably that under

this a�acking-hardening loop and depending on the strategy for

reusing data (A,B,C) there can be a level playing �eld between at-

tacker and defender where winning is not simply hardening your

model as much as you can �� or ge�ing the adversarial samples

from the most hardened models �� if you don�t know how many

iterations your opponent decided to do in their a�acking-hardening

loop. For example in option B the Adv. Iter 5 row performs accept-

ably for adversarial samples 3, 4, and 5 but not for samples 2 and 1,

nor even for the original MTA. �is underpins the non-monotonic

variation of values in the same rows or columns in table 7.

6 RELATEDWORK
Rule- and black-list-based detectors can be complemented by statis-

tical detectors based on tra�c characteristics. Statistical detectors

can use packet byte-streams [12, 17], �ow features [2], packet and

TLS record count and sizes [1], and combinations thereof as input

data. As these techniques are further developed we expect di�erent

network managers to deploy di�erent solutions or sets of solutions.

Adversarial techniques generate samples in the input space of the

classi�er that increase misclassi�cation and going from classi�er

input space to actual tra�c may be simple – as in the case of gen-

erating a sequence of packets with given size – or more complex

if the input space imposes constraints in the values and if there

are limitations to the extent to which the original malicious tra�c

can be changed. In this paper we focus on �ow features; we expect

e.g. packet byte-streams to be even harder to generate abiding to

constraints but easier to break because the detector has more inputs

that can be modi�ed by an a�acker. Recent work has focused on

generating real packet tra�c [5, 11] and network �ows [15] to im-

prove datasets used in malware tra�c detection using Generative

Adversarial Networks. �e �ow-based approach relies entirely on

the GAN to generate adversarial �ows, yet it may be impossible to

cra� such a �ow. Furthermore these papers do not consider any

limitations on modifying malware to support adversarial a�acks

without altering the intended malicious behavior of the malware.

7



A MTA Adv.1 Adv.2 Adv.3 Adv.4 Adv.5

Original 2.7% 95.0% 93.6% 97.0% 99.8% 94.9%

Mod. Iter 1 5.7% 0.1% 93.1% 23.6% 0.0% 93.4%

Mod. Iter 2 99.8% 0.1% 0.0% 100.0% 0.0% 12.4%

Mod. Iter 3 100.0% 97.6% 0.1% 0.1% 91.7% 40.4%

Mod. Iter 4 100.0% 18.0% 99.9% 0.0% 0.0% 100.0%
Mod. Iter 5 100.0% 71.8% 35.2% 100.0% 0.0% 0.0%

B MTA Adv.1 Adv.2 Adv.3 Adv.4 Adv.5

Original 2.7% 95.0% 92.1% 100.0% 98.0% 99.5%

Mod. Iter 1 5.1% 0.1% 90.2% 2.9% 0.1% 32.5%

Mod. Iter 2 4.6% 0.1% 0.2% 59.7% 0.1% 78.6%

Mod. Iter 3 2.9% 85.4% 0.1% 0.1% 8.9% 32.1%

Mod. Iter 4 4.2% 25.4% 59.8% 0.1% 0.1% 32.9%
Mod. Iter 5 8.0% 18.4% 55.3% 1.3% 0.1% 0.2%

C MTA Adv.1 Adv.2 Adv.3 Adv.4 Adv.5

Original 2.7% 95.0% 99.5% 90.2% 91.1% 65.9%

Mod. Iter 1 3.3% 0.2% 99.5% 59.5% 95.4% 27.9%

Mod. Iter 2 4.8% 0.1% 0.1% 14.3% 0.4% 10.2%

Mod. Iter 3 8.3% 0.1% 0.0% 0.0% 0.5% 0.2%

Mod. Iter 4 3.1% 0.1% 0.1% 0.1% 0.0% 3.0%
Mod. Iter 5 4.9% 0.1% 0.1% 0.0% 0.1% 0.0%

Table 7: Percentage of adversarial �ows generated at given
iteration (column) that are misclassi�ed by a model hard-
ened with another iteration (row). A, B, C: training option
for hardening, details in text. Original model in �rst row of
A, B, and C.

�e packet-based approaches consider some constraints on the

structure of the packet but for �ow detectors in particular the abil-

ity of a sequence of adversarial GAN-generated packets that are

misclassi�ed by a packet detector to yield a �ow whose statisti-

cal features are also misclassi�ed by a �ow detector has not been

studied.

[7] surveys command and control tra�c detection systems as

well as a�acks to these systems – and identify high-level issues

including the di�culty of modifying features in C2 tra�c and di�er-

ent a�ack techniques such as poisoning and evasion. In this paper

we only consider evasion a�acks. Although [7] looks at di�erent

aspects of security for machine learning there are few surveyed

examples of actual C2 tra�c detection and evasion issues. �e

following are three examples of recent work that takes on the chal-

lenge of a�acking C2 tra�c detection systems. [14] describes the

use of a GAN to generate adversarial samples that are able to break

CTU’s Stratosphere IDS. �e paper takes an open-source malware

and re-codes it so that it supports adversarial samples from the

GAN specifying total �ow duration and bytes, as well as delay to

the next �ow. Although the paper is interesting and shows the

point of how easy it is to break an IDS, it has signi�cant di�erences

to our work: the detector is not a �ow detector but a 3-tuple (victim

IP, C2 server IP, C2 server port) detector with features that are

not applicable to individual �ows, and it makes the assumption

that the malware tra�c can be modi�ed to support any adversarial

feature suggested by the GAN generator, which we do not. More in

line with our assumptions about the extent to which C2 tra�c can

be modi�ed, [4] analyzes how �ow-based detectors can be evaded

by adding a �xed amount to the duration, source and destination

byte counts, and total packet counts of the original C2 �ow. It uses

CTU’s 2013 dataset to train a random forest classi�er and to show

the performance of their a�ack. [9] tries to bridge the gap between

feature space a�acks and their viability in what they call tra�c

space – meaning the set of �ow feature values that are feasible

network-wise and for a given a�ack. �ey use a GAN to generate

adversarial samples and an optimization procedure to bring the

adversary samples close to the misclassi�cation boundary; then

they perform tra�c mutation to automatically �nd tra�c-space

vectors that are close to the adversarial sample. �ey then harden

a detector with the adversarial, tra�c-space samples.

Unlike the work we review in this section, in this paper we

focus speci�cally on encrypted malware command and control

tra�c rather than non-C2 a�ack tra�c or non-encrypted C2 tra�c.

Moreover, while most related work assesses the performance of

the a�ack on a detector and some work hardens the detector, they

do not consider the impact of di�erent feature sets used in the

adversarial a�ack nor of di�erent hardening iterations.

Finally, for non-network related data, a conceptually similar

work [10] addresses evasion of PDF malware detection where the

authors show that manipulating a small subset of suitable features

is e�ective against a random forest classi�er in a black-box se�ing.

�ey insert dummy content that is ignored by PDF renderers but

a�ects feature values and analyze the impact of di�erent a�ack

scenarios on the detection rate. Analysis of using adversarial ex-

amples for hardening led to similar �ndings to those in section 4

with respect to the e�ectiveness of this kind of defense, but does

not explore the a�ack and hardening loop approach of 3 – and does

not focus on network tra�c.

7 CONCLUSIONS
In this paper we assessed the performance of evasion a�acks and of

hardening detector models under the assumption that the malware

should maintain its original behavior. For that purpose we use a

public source of malware tra�c captures to build a labeled dataset

from which both defenders and a�ackers can train and a�ack C2

encrypted tra�c detector models. We show the impact of the

practical limitations on a speci�c a�ack that we implement on

the packet traces, with increasing misclassi�cation of adversarial

samples. We then harden the detector with di�erent feature set

adversarial samples. Assuming that the detector does not know

which feature set the a�acker uses and that the a�acker does not

know which feature set the defender uses to harden the detector,

we look for combinations of feasible a�acks and models that would

either make it impossible for the a�acker to win or impossible for

the defender to win. We �nd that an a�ack that allows adding or

subtracting adversarial values from all original features is the best

a�ack – but is not implementable under our a�acker assumptions –

yet does not yield the best hardened models at large. Finally, we try

to understand the same issues for di�erent iterations of a�acking

and hardening a model. We �nd out that it is feasible to reach

a level playing �eld where for a given number of iterations and

a given training set strategy no hardened model is able to detect

the a�acks of all iterations nor can an a�ack cause detectors at all

iterations to misclassify a large part of its adversarial samples.

8



We intend to implement the proxy-based a�acks for feature sets

2 and 3 both from client and server size, test the performance and

impact on feature set- and iteration-hardening of other adversarial

learning methods, and build and use a more extensive C2 encrypted

data set. We also plan to extend this work to other input data –

including packet sizes, TLS records, and packet byte-streams.

To ease the reproducibility of results we can share parts of our

code on-demand – although most of what is needed is available

publicly: the MTA dataset, Tstat, and the Cleverhans adversarial

learning framework; the learning models are very simply and easy

to code using e.g. Kereas and Tensor�ow.

REFERENCES
[1] Anderson, B., Chi, A., Dunlop, S., and McGrew, D. Limitless HTTP in an

HTTPS World: Inferring the Semantics of the HTTPS Protocol without Decryp-

tion. In Proceedings of the Ninth ACM Conference on Data and Application Security
and Privacy (Richardson, Texas, USA, Mar. 2019), CODASPY ’19, Association for

Computing Machinery, pp. 267–278.

[2] Anderson, B., and McGrew, D. Machine Learning for Encrypted Malware

Tra�c Classi�cation: Accounting for Noisy Labels and Non-Stationarity. In

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (New York, NY, USA, 2017), KDD ’17, ACM, pp. 1723–

1732.

[3] Anderson, B., Paul, S., and McGrew, D. Deciphering malware�s use of TLS

(without decryption). Journal of Computer Virology and Hacking Techniques 14, 3
(Aug. 2018), 195–211.

[4] Apruzzese, G., and Colajanni, M. Evading botnet detectors based on �ows

and random forest with adversarial samples. In 2018 IEEE 17th International
Symposium on Network Computing and Applications (NCA) (2018), IEEE, pp. 1–8.

[5] Cheng, A. PAC-GAN: Packet Generation of Network Tra�c using Generative

Adversarial Networks. In 2019 IEEE 10th Annual Information Technology, Electron-
ics and Mobile Communication Conference (IEMCON) (Oct. 2019), pp. 0728–0734.
ISSN: 2644-3163.

[6] Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A.,

Nita-Rotaru, C., and Roli, F. Why do adversarial a�acks transfer? explaining

transferability of evasion and poisoning a�acks. In 28th {USENIX} Security
Symposium ({USENIX} Security 19) (2019), pp. 321–338.

[7] Gardiner, J., and Nagaraja, S. On the security of machine learning in malware

C&C detection: A survey. ACM Computing Surveys (CSUR) 49, 3 (2016), 1–39.
[8] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and Harnessing

Adversarial Examples. arXiv:1412.6572 [cs, stat] (Mar. 2015). arXiv: 1412.6572.

[9] Han, D., Wang, Z., Zhong, Y., Chen, W., Yang, J., Lu, S., Shi, X., and Yin, X.

Practical tra�c-space adversarial a�acks on learning-based nidss. arXiv preprint
arXiv:2005.07519 (2020).

[10] Laskov, P., et al. Practical evasion of a learning-based classi�er: A case study.

In 2014 IEEE symposium on security and privacy (2014), IEEE, pp. 197–211.

[11] Lin, Z., Shi, Y., and Xue, Z. IDSGAN: Generative Adversarial Networks for

A�ack Generation against Intrusion Detection. arXiv:1809.02077 [cs] (June 2019).
arXiv: 1809.02077.

[12] Marn, G., Casas, P., and Capdehourat, G. Deep in the Dark - Deep Learning-

Based Malware Tra�c Detection Without Expert Knowledge. In 2019 IEEE
Security and Privacy Workshops (SPW) (May 2019), pp. 36–42.

[13] Papernot, N., Faghri, F., Carlini, N., Goodfellow, I., Feinman, R., Kurakin,

A., Xie, C., Sharma, Y., Brown, T., Roy, A., Matyasko, A., Behzadan, V.,

Hambardzumyan, K., Zhang, Z., Juang, Y.-L., Li, Z., Sheatsley, R., Garg, A.,

Uesato, J., Gierke, W., Dong, Y., Berthelot, D., Hendricks, P., Rauber, J., and

Long, R. Technical report on the cleverhans v2.1.0 adversarial examples library.

arXiv preprint arXiv:1610.00768 (2018).

[14] Rigaki, M., and Garcia, S. Bringing a GAN to a Knife-Fight: Adapting Malware

Communication to Avoid Detection. In 2018 IEEE Security and Privacy Workshops
(SPW) (May 2018), pp. 70–75.

[15] Ring, M., Schlr, D., Landes, D., and Hotho, A. Flow-based network tra�c

generation using Generative Adversarial Networks. Computers & Security 82
(May 2019), 156–172.

[16] Trevisan, M., Finamore, A., Mellia, M., Munafo, M., and Rossi, D. Tra�c

Analysis with O�-the-Shelf Hardware: Challenges and Lessons Learned. IEEE
Commun. Mag. 55, 3 (2017), 163–169.

[17] Wang, W., Zhu, M., Zeng, X., Ye, X., and Sheng, Y. Malware tra�c classi-

�cation using convolutional neural network for representation learning. In

2017 International Conference on Information Networking (ICOIN) (Jan. 2017),
pp. 712–717.

ACKNOWLEDGEMENTS
�is work is �nanced by the ERDF – European Regional Develop-

ment Fund through the Operational Programme for Competitive-

ness and Internationalisation – COMPETE 2020 Programme and

by National Funds through the Portuguese funding agency, FCT

– Fundação para a Ciência e a Tecnologia within project POCI-01-

0145-FEDER-032454 (PTDC/EEI-TEL/32454/2017).

9


	Abstract
	1 Introduction
	1.1 Assumptions

	2 Malware Traffic Analysis Dataset
	2.1 Scraping
	2.2 Labeling individual C2 flows
	2.3 Class imbalance and training-test split
	2.4 Obtaining flow features

	3 Detection and Evasion
	3.1 DNN detector
	3.2 FGSM whitebox attack with domain-specific restrictions
	3.3 Proxy-based crafting of longer flows
	3.4 Detection and Evasion Performance

	4 Hardening the detector
	4.1 Robustness against other adversarial samples
	4.2 Non-adversarial

	5 Iteratively attacking and hardening
	6 Related Work
	7 Conclusions
	References

