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Abstract
Different XML formats are widely used for data exchange and pro-
cessing, being often necessary to mutually convert between them.
Standard XML transformation languages, like XSLT or XQuery, are
unsatisfactory for this purpose since they require writing a separate
transformation for each direction. Existing bidirectional transforma-
tion languages mean to cover this gap, by allowing programmers to
write a single program that denotes both transformations. However,
they often 1) induce a more cumbersome programming style than
their traditionally unidirectional relatives, to establish the link be-
tween source and target formats, and 2) offer limited configurability,
by making implicit assumptions about how modifications to both
formats should be translated that may not be easy to predict.

This paper proposes a bidirectional XML update language called
BIFLUX (BIdirectional FunctionaL Updates for XML), inspired
by the FLUX XML update language. Our language adopts a novel
bidirectional programming by update paradigm, where a program
succinctly and precisely describes how to update a source document
with a target document, in an intuitive way, such that there is a
unique “inverse” source query for each update program. BIFLUX
extends FLUX with bidirectional actions that describe the connection
between source and target formats. We introduce a core BIFLUX
language, with a clear and well-behaved bidirectional semantics and
a decidable static type system based on regular expression types.

Keywords XML, bidirectional programming, update languages,
regular expression types

1. Introduction
Nowadays, various XML formats are widely used for data exchange
and processing. Since data evolves naturally over time and is
often replicated among different applications, it becomes frequently
necessary to mutually convert between such formats. However,
traditional XML transformation languages, like the XSLT and
XQuery standards of the World Wide Web Consortium (W3C),
are unsatisfactory for this purpose as they require writing a separate
transformation for each direction.

Bidirectional transformation (BX) languages [11] mean to cover
this gap, by allowing users to write a single program that can be
executed both forwards and backwards, so that consistency between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

two formats can be maintained for free. A variety of bidirectional
languages have emerged over the last 10 years to support bidi-
rectional applications in the most diverse computer science disci-
plines [11], including functional programming, software engineering
and databases. These languages come in different flavors, including
many focused on the transformation of tree-structured data with a
particular application to XML documents [7, 12, 14, 18, 21, 22, 26],
and can be classified into three main paradigms. The first re-
lational paradigm [7, 21] prescribes writing a declarative (non-
deterministic) consistency relation between two formats, from which
a suitable BX is automatically derived. The second bidirectionaliza-
tion paradigm [12, 22, 24] asks users to write a transformation in a
traditional unidirectional language, that plays the role of a functional
consistency relation. The last combinatorial paradigm [14, 18, 26]
encompasses the design of a domain-specific bidirectional language
in which each combinator denotes a well-behaved BX, allowing
users to write correct-by-construction programs by composition.

As most interesting examples of BXs are not bijective, there may
be multiple ways to synchronize two documents into a consistent
state, introducing ambiguity. Despite of this fact, bidirectional lan-
guages are typically designed to satisfy fundamental consistency
principles, and support only a fixed set of synchronization strategies
(out of a myriad possible) to translate a (non-deterministic) bidi-
rectional specification —the syntactic description of a BX— into
an executable BX procedure. This latent ambiguity often leads to
unpredictable behavior, as users have limited power to configure and
understand what a BX does from its specification. Even for combi-
natorial languages, that have the theoretical potential to fully specify
the behavior of a BX [13, 28], their lower-level programming style
requires significant effort and expertise from users to write intricate
BXs via the composition of simple, concrete steps; they also scale
badly for large formats, since one must explicitly describe how a
BX transforms whole documents, including unrelated parts.

Intuitively, the goal of a BX is to translate updates on a target
model into updates on a source model (and vice-versa) so that the
updated models are kept consistent. As SQL stands for relational
databases, a few high-level XML update languages [8, 15, 30] facil-
itate common modification operations over XML documents. Con-
trarily to XML transformation languages, XML update languages
are well-suited for specifying small in-place changes to in a concise
way, leaving all the remaining parts of a document unchanged.

In this paper, we propose a novel bidirectional programming
by update paradigm, in which the programmer writes an update
program that describes how to update a source model to embed
information from a target model, and the system derives a query from
source to target that evinces the consistency between both models.
Such a bidirectional update allows to express the relationship
between source and target models in a simple way —as in the
relational paradigm— by saying which related source parts are to
be updated, but combined with additional actions that supply the
missing pieces to tame the ambiguity in how target modifications



are reflected —as in the combinatorial paradigm. For a wide class of
BXs usually known as lenses [13], that have a data flow from source
to view, this paradigm opens a new axis in the BX design space that
enjoys a unique tradeoff between the declarative style of relational
approaches and the stepwise style of combinatorial approaches.
This paper demonstrates that a new family of bidirectional update
languages, featuring an hybrid programming style, can render
bidirectional programming more user friendly.

From a linguistic perspective, the main contribution of this paper
is conceptual: we propose the idea of extending an update language
with bidirectional features to write, directly and at a nice level of
abstraction, a view update translation strategy which bundles all the
necessary pieces to build a BX. Concretely, we design BIFLUX, a
type-safe, declarative and expressive language for the bidirectional
updating of XML documents that is deeply inspired by FLUX [8], a
simple and well-designed functional XML update language. We lift
unidirectional FLUX updates to bidirectional BIFLUX updates by
imbuing them with an additional notion of view. Reading updates as
BXs will motivate a few language extensions to original FLUX, and
require a suitable bidirectional semantics and extra static conditions
on BIFLUX programs to ensure that they build well-behaved BXs.

We demonstrate the usefulness of BIFLUX by illustrating typical
examples of BXs written as bidirectional update programs. These
help clarifying the stylistic differences to traditional bidirectional
programming approaches, and substantiate that bidirectional update
languages can combine a declarative language notation with a
flexible and clear semantics. BIFLUX has been fully implemented
and tested with many examples including those in this paper.

The rest of the paper is organized as follows. After briefly ex-
plaining the novel features of BIFLUX in Section 2, we show typical
examples of BIFLUX programs in Section 3. Section 4 presents the
core BIFLUX language that can be used to interpret high-level BI-
FLUX programs either as unidirectional or bidirectional updates,
and Section 5 discusses the static typing and semantics of core BI-
FLUX. Section 6 formalizes the translation from high-level to core
BIFLUX, Section 7 compares our approach with related work on
bidirectional and XML programming, and Section 8 concludes with
a synthesis of the main ideas and directions for future work.

2. A Bidirectional Update Language
Before giving concrete examples in Section 3, we start with a brief
explanation of the features of BIFLUX and its informal semantics
to show the big picture of our general framework.

2.1 BIFLUX syntax
We define the high-level syntax of BIFLUX in Figure 1 as a modest
syntactic extension to FLUX; the new features that are the focus
of this paper are highlighted in green. FLUX [8] is a high-level,
purely functional language for writing XML updates, with a clear
semantics and syntactic typechecking. Similarly, we typecheck BI-
FLUX programs by translating them into a canonical core language
with a clear bidirectional semantics. Our examples assume an infor-
mal familiarity with commonplace XML technologies like XQuery
expressions, XPath paths and XDuce-style regular expression types.

To have a taste of BIFLUX, imagine that we want to update
the last author of a particular book with title ’Querying XML’ in a
database of books with type

books[book [title[string], author [string]+]
∗
]

using a view of type author [string]. We can accomplish this by
writing an update (with source $source and view $view ):1

1 The position-dependent last() XPath function is actually not supported in
our path expressions, and is desugared in BIFLUX using pattern matching.

UPDATE $source/books/book BY {
REPLACE author[last()] WITH $view

} WHERE SOURCE title = "Querying XML"

FLUX-like syntax At first glance, bidirectional BIFLUX programs
look just like regular FLUX programs. We omit the syntactic defini-
tions of expressionsExpr, paths Path, and patterns Pat. Variables
V ar are written $x, $y, etc. Statements Stmt include condition-
als, composition, let-binding, case expressions or updates, which
may be guarded by a WHERE clause that defines a set of condi-
tions. Statements can be empty {} or parenthesized using braces
{Stmt}. As in FLUX, in-place updates Upd can be singular, to
update single trees, or plural, to update the children of each se-
lected tree. Single insertions (INSERT BEFORE/AFTER) insert a
value before or after each node selected by a path, while plural
insertions (INSERT AS FIRST/LAST INTO) insert a value at the
first or last position of the child-list of each selected node. Sin-
gular deletions (DELETE) delete each selected node, while plural
deletions (DELETE FROM) delete their content. Single replacements
(REPLACE WITH) replace each node selected by a path, while plural
replacements (REPLACE IN) replace their content. Single updates
UPDATE BY apply a statement to each tree in the result of a path.

Source and view matching The main difference in BIFLUX
is that updates on sources carry an additional notion of view,
what becomes syntactically evident with a new non-in-place
UPDATE FOR VIEW operation that synchronizes a source sequence
with a view sequence. Such synchronization can be configured by
the programmer via a matching condition that aligns source and view
nodes, and a triple of matching/unmatching clauses that describe
the actions for individual source-view nodes. When two source and
view nodes MATCH, a bidirectional statement is executed to update
the source using the view; an unmatched view node (UNMATCHV)
creates a new node in the source, either as a default or according to
a unidirectional CREATE statement that provides a fresh source node
to be normally updated with the existing view node; an unmatched
source node (UNMATCHS) is DELETEd by default, but we may KEEP it
by providing a unidirectional statement describing how to invalidate
the given WHERE SOURCE selection criteria. It is worth noting that
while UPDATE FOR VIEW statements are intrinsically bidirectional,
the same BIFLUX syntax (e.g., DELETE) may be overloaded and
denote either a bidirectional or a unidirectional update depending on
the context. The rule is that all BIFLUX statements are bidirectional,
except inside UNMATCHS or UNMATCHV clauses. An example that
puts all these features to use is illustrated later in Figure 3.

Pattern matching Another significant difference to FLUX is the
support for pattern matching. This is a very useful feature of XML
transformation languages like XDuce [17] or CDuce [3], that allow
matching tree patterns against the input data to transform it into
an output of different shape. Typical XML update languages like
XQuery! [15] or FLUX [8] do not support pattern matching, since
it is not essential and may be more difficult to optimize, and they
use solely paths to navigate to the portions of the input documents
that are to be updated in-place. In BIFLUX, pattern matching can be
used to guide the update based on the structure of the data (via LET
and CASE statements), and is mostly useful for non-in-place updates
that match source and view formats of different shapes.

Source/view/normal expressions Our language considers three
kinds of source, view or normal variables. Expressions in IF, LET,
CASE or WHERE clauses support additional tags to disambiguate if
they refer to only the SOURCE, to only the VIEW, or to the global
environment of an update. These tags can be ignored at first glance
and will in fact be omitted in our examples, as they are inferable
from context information for each update. Update procedures are
omitted but can be easily added to the language.



Stmt ::= Upd [WHERE Conds] | Stmt ; Stmt | { Stmt } | { }
| IF Tag Expr THEN Stmt ELSE Stmt
| LET Tag Pat = Expr IN Stmt
| CASE Tag Expr OF { Cases }

Upd ::= INSERT (BEFORE | AFTER) PatPath VALUE Expr
| INSERT AS (FIRST | LAST) INTO PatPath VALUE Expr
| DELETE [FROM] PatPath | REPLACE [IN] PatPath WITH Expr
| UPDATE PatPath BY Stmt
| UPDATE PatPath BY V Stmt FOR VIEW PatPath [Match]
| KEEP PatPath | CREATE VALUE Expr

Conds ::= Tag Expr [; Conds] | Tag V ar := Expr [; Conds]

Cases ::= Pat→ Stmt | Cases ′|′ Cases
V Stmt ::= { V Stmt } | V Upd

| V Upd ′|′ V Upd
V Upd ::= MATCH→ Stmt

| UNMATCHS→ Stmt
| UNMATCHV→ Stmt

Match ::= MATCHING BY Path
| MATCHING SOURCE BY Path

VIEW BY Path
PatPath ::= [Pat IN] Path
Tag ::= [SOURCE | VIEW]

Figure 1: Concrete syntax of BIFLUX updates.

2.2 Informal semantics and general framework
In general, a BIFLUX update is executed for a particular source and
view as follows: a source path is evaluated over the current source,
yielding a source focus selection, to be recursively updated using a
view focus selection computed by evaluating a view path over the
current view, until all the view information is embedded into the
source. View and source focus selections denote the mutable parts
of the source and view trees that can be updated and used by the
update, and subexpressions of the update may restrict the focuses.

Despite the emphasis is on writing updates, BIFLUX programs
have a bidirectional interpretation. They can be read as 1) an update
function U(s, v′) = s′ that updates a source s into a new source s′

which contains a given view v′, or 2) a query functionQ(s) = v that
computes a view v from a given source s; these functions may be
partial2. For the example at the beginning of this section, (assuming
that books are uniquely identified by their titles) the corresponding
query function is semantically equivalent to the XPath expression
that returns the last author of the respective source book:

$source/books/book[title="Querying XML"]/author[last()]

Our language is carefully designed to ensure that the inferred
relationship between sources and views is deterministic, so that
capturing it by a query function is appropriate. In other words, there
exists a unique query function for each update program written in
our language. Moreover, its bidirectional semantics satisfies two
basilar synchronization properties; that an update U consistently
embeds view information to the source, without view side-effects:

U(s, v′) = s′ ⇒ Q(s′) = v′ UPDATEQUERY

and that it does not update already consistent sources:

Q(s) = v ⇒ U(s, v) = s QUERYUPDATE

These two properties are commonly known as the well-behavedness
laws of lenses in the bidirectional programming community [11].

For an example of a FLUX update that is not (syntactically) valid
as a BIFLUX update, imagine that we had written instead:

UPDATE $source/books/book BY {
INSERT AS LAST INTO author VALUE $view

} WHERE SOURCE title = "Querying XML"

This update function is not idempotent on sources, since it always
inserts the view as an extra author of the source book, violat-
ing QUERYUPDATE: even when the view is already an author of the
source book, a new duplicated author is inserted. Such class of valid
BIFLUX updates can be statically checked, namely as the programs
for which update normalization and typechecking succeed.

The general architecture of our bidirectional updating framework
is illustrated in Figure 2. A BIFLUX program is evaluated in two

2 We represent the undefined value as ⊥, failure of a partial function f as
f v = ⊥ and partial inclusion (v v v′) as v 6= ⊥ ⇒ v = v′.
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Figure 2: Architecture of the BIFLUX framework.

stages. First, it is statically compiled against a source and a view
schema (represented as DTDs), producing a bidirectional executable.
The generated executable can then be evaluated bidirectionally for
particular XML documents conforming to the DTDs: in forward
mode as a query Q, or in backward mode as an update U .

3. Examples
This section illustrates how writing a bidirectional update feels like
to a programmer, through a series of BX examples using BIFLUX:

Example 3.1 demonstrates how the new bidirectional notation, in
combination with ordinary unidirectional FLUX updates, can
intuitively describe a bidirectional update;

Example 3.2 illustrates nested bidirectional updates and flexible
non-local matching behavior;

Example 3.3 showcases pattern matching and recursive procedures.

3.1 Institutional address book example
Consider a typical address book represented by the DTD from
Figure 4. An address book contains a list of persons, each possessing
a name, a list of emails and an optional telephone number. Let us
start with the following XML address book with three persons:

<addrbook><person><name>Hugo Pacheco</name>
<email>hpacheco@nii.ac.jp</email>
<email>hpacheco@gmail.com</email></person>

<person><name>John Doe</name>
<email>doe@domain.com</email></person>

<person><name>Zhenjiang Hu</name><email>zh@nii.ac.jp
</email><tel>+81-3-4212-2530</tel></person>

</addrbook>

On the other hand, the NII’s administrative services may keep only
a view with the name and institutional address of employees (people
with an email at ”nii.ac.jp”), as shown in the DTD from Figure 5.



PROCEDURE niibook(SOURCE $source AS s:addrbook, VIEW $view AS v:niibook) =
UPDATE $source/addrbook/person BY {
MATCH -> REPLACE email[ends-with(text(),’nii.ac.jp’)][1] WITH $email’

| UNMATCHV -> CREATE VALUE <person> <name/> <tel>+81-3-4212-2000</tel> </person>
| UNMATCHS -> KEEP . ; DELETE email[ends-with(text(),’nii.ac.jp’)]
} FOR VIEW employee[$name AS v:name, $email’ AS v:email] IN $view/niibook/employee
MATCHING BY name WHERE email[ends-with(text(),’nii.ac.jp’)]

Figure 3: BIFLUX update for the institutional address book example.

<!DOCTYPE addrbook [
<!ELEMENT addrbook(person*)>
<!ELEMENT person(name,email*,tel?)>
<!ELEMENT name(#PCDATA)>
<!ELEMENT email(#PCDATA)>
<!ELEMENT tel(#PCDATA)> ]>

Figure 4: A simple address book DTD.

We can easily write a bidirectional update in BIFLUX to syn-
chronize these two formats, as illustrated in Figure 33. The root
procedure niibook takes as arguments the root source and view
variables. It focuses on a sequence of source persons by traversing
down the path $source/addrbook/person, selecting only those
that have NII emails, and focuses on a sequence of view employees
by traversing up the (injective) path $view/niibook/employee.
Elements in the two sequences are matched by their names. For
matching person-employee pairs, the person’s first NII email is
updated with the employee’s email. If a new unmatched employee
exists in the view, a new person with a default telephone is created in
the source (inheriting its view name and email). If an old unmatched
person exists in the source, all its NII emails are deleted.

The unique query for this example simply keeps the first institu-
tional email of each person working at the NII:

<niibook><employee><name>Hugo Pacheco</name>
<email>hpacheco@nii.ac.jp</email></employee>

<employee><name>Zhenjiang Hu</name>
<email>zh@nii.ac.jp</email></employee>

</niibook>

The update function is more interesting. For instance, if we add
Tao (in alphabetical order) as a new NII employee, fix Zhenjiang’s
email and delete Hugo, we get an updated source where John is left
unchanged, Tao is created with a default telephone number (as his
name does not match any name in the original source), Zhenjiang’s
NII email is updated and the NII email of Hugo is deleted:

<addrbook><person><name>Hugo Pacheco</name>
<email>hpacheco@gmail.com</email></person>

<person><name>John Doe</name>
<email>doe@domain.com</email></person>

<person><name>Tao Zan</name><email>zantao@nii.ac.jp
</email><tel>+81-3-4212-2000</tel></person>

<person><name>Zhenjiang Hu</name><email>hu@nii.ac.jp
</email><tel>+81-3-4212-2530</tel></person>

</addrbook>

Note that if we queried the updated address book again, we would
get a view with the names and NII emails of only Tao and Zhenjiang.

As a BX side note, this precise behavior can not be achieved
using the existing typical declarative BX languages, which are not
designed with fine user control in mind; alignment-aware combina-
torial BX languages could be tailored to produce similar behavior,
but getting it right requires much higher effort and expertise.

3.2 Social address book example
In response to the Web 2.0 movement, consider that our address book
now supports groups of people according to their social relationships.
The new DTD corresponds to the following regular expression type:

addrbook [group[name[string], person[. . .]∗]
∗
]

Consider our address book with people now classified into groups:

<addrbook><group><name>coworkers</name>

3 The names s:elem and v:elem are BIFLUX type variables that refer to
the types of source and view elements declared in the respective DTDs.

<!DOCTYPE niibook [ <!ELEMENT niibook (employee*)>
<!ELEMENT employee (name,email)>
<!ELEMENT name (#PCDATA)> <!ELEMENT email (#PCDATA)> ]>

Figure 5: A NII address book DTD.

<person><name>Hugo Pacheco</name>...</person>
<person><name>Zhenjiang Hu</name>...</person></group>

<group><name>friends</name><person>
<name>John Doe</name>...</person></group>

</addrbook>

This time, a social media application may only be interested in the
groups and names of people, according to a view schema:

socialbook [group[name[string], person[name[string]]∗]
∗
]

A bidirectional update that synchronizes address and social
books is written in Figure 6. It starts by matching groups, proceeding
recursively for persons within groups (with default behavior for
unmatched groups). Inside, for source-view persons matching on
their name, no update is necessary. For each unmatched view person,
we attempt to retrieve its address book information from any other
group in the original source, or otherwise create a default person.

The corresponding query function produces a view with the same
structure but showing only names of groups and persons. For the
update function, imagine that we modify the view by reordering the
two groups, changing Hugo’s group and creating a new group for
family members:

<addrbook><group><name>friends</name>
<person><name>Hugo Pacheco</name></person></group>

<group><name>coworkers</name><person>
<name>Zhenjiang Hu</name></person></group>

<group><name>family</name></group>
</addrbook>

The correspondingly updated source is as follows:

<addrbook><group><name>friends</name>
<person><name>Hugo Pacheco</name>...</person>
<person><name>John Doe</name>...</person></group>

<group><name>coworkers</name><person>
<name>Zhenjiang Hu</name>...</person></group>

<group><name>family</name></group>
</addrbook>

Since Hugo changed from group coworkers to friends, he is con-
sidered an unmatched view person under his new group. Our bidi-
rectional update avoids his original address details to be lost, by
looking them up in all groups, instead of only in Hugo’s original
group (what would be the default behavior). An analogous example
motivates an extension to the alignment-aware language of [1].

3.3 Bookmark example
For a different bidirectional updating example, consider the conver-
sion between two popular browser bookmark formats studied in [21].
Netscape stores its bookmarks in an HTML format (Figure 7), while



PROCEDURE socialbook(SOURCE $source AS s:addrbook, VIEW $view v:socialbook)
= UPDATE $source/addrbook/group BY { MATCH ->
UPDATE $person IN $persons BY { MATCH -> {}
| UNMATCHV -> LET $old = $source/addrbook/group/person IN

LET $oldperson = $old[name/text() = $person’/name/text()][1] IN
IF $oldperson THEN CREATE VALUE $oldperson ELSE {}

} FOR VIEW $person’ IN $persons’ MATCHING BY name
} FOR VIEW group[$name AS v:name, $persons AS v:person*]
IN $view/socialbook/group MATCHING BY name

Figure 6: BIFLUX update for the social address book example.

<!DOCTYPE html[<!ELEMENT html(head,body)>
<!ELEMENT head (#PCDATA)>
<!ELEMENT body (h1,dl)>
<!ELEMENT h1 (#PCDATA)>
<!ELEMENT dl ((dt|dd)*)>
<!ELEMENT dt (a)>
<!ELEMENT a (href,#PCDATA)>
<!ELEMENT dd (h3,dl)>
<!ELEMENT h3 (#PCDATA)> ]>

Figure 7: A Netscape bookmark format DTD.

PROCEDURE top(SOURCE $html AS s:html,VIEW $xbel AS v:xbel) =
UPDATE html[head[String], body[$h1 AS s:h1, dl[$nc AS (s:dt|s:dd)*]]] IN $html BY
{ REPLACE IN $h1 WITH $t ; contents($nc,$xc) }
FOR VIEW xbel[title[$t AS String], $xc AS (v:bookmark|v:folder)*] IN $xbel

PROCEDURE contents(SOURCE $nc AS (s:dt|s:dd)*,VIEW $xc AS (v:bookmark|v:folder)*) = UPDATE $nc BY { CASE $v OF {
bookmark[href[$url AS String], title[$title AS String]] -> REPLACE . WITH <dt><a><href>{$url}</href>{$title}</a></dt>

| folder[title[$title AS String], $fxc AS (v:bookmark|v:folder)*] -> REPLACE IN h3 WITH $title ; contents(dl/*,$fxc)
} } FOR VIEW $v IN $xc

Figure 8: BIFLUX update for the bookmark example.

<!DOCTYPE xbel[<!ELEMENT xbel(title,(bookmark|folder)*)>
<!ELEMENT title(#PCDATA)><!ELEMENT bookmark(href,title)>
<!ELEMENT folder(title,(bookmark|folder)*)> ]>

Figure 9: A XBEL bookmark format DTD.

the XBEL open XML bookmark exchange format opts for a loosely
equivalent representation (Figure 9). Both formats contain a general
title (h1 or title) and a sequence of bookmarks (dt or bookmark)
or folders (dd or folder), where folders may recursively contain
sequences of bookmarks or folders.

The original biXid transformation [21] relies on pattern matching
to decompose the source and target formats and can be replicated
in BIFLUX as shown in Figure 8. The top procedure decomposes
the source into head and body (with a title $h1 and a sequence
$nc of dts or dds) and the view into a title $t and a sequence $xc
of bookmarks or folders. Then top replaces the source $h1 with
$t and invokes contents to update the remaining sequences. The
contents procedure makes use of a case expression to match source
and view bookmarks and folders: for a view bookmark, we generate
a source dt element with the bookmark’s href and title; for a
view folder, we generate a source dd element with the folder’s
title and a dl with recursively computed contents.

Finally, we can run our BIFLUX program as a query that
converts from Netscape to XBEL, or as an update that converts
from XBEL to Netscape. This is not the best showcase example
of BIFLUX, since the source and view bookmarks are almost in
bijective correspondence and there is small ambiguity to mitigate
in the update. Nonetheless, note that our BIFLUX program will
preserve the original Netscape header, while the analogous biXid
program would simply generate default data for unrelated parts.

4. Core Language
The high-level language presented in the previous sections follows
a verbose and natural syntax that is convenient for users, but its op-
erations are overlapping, complex and hard to typecheck. Following
the design of FLUX and as standard for many other languages, we

introduce a core update language of canonical operations whose
semantics and typing rules are easier to define and manipulate.

4.1 XML values and regular expression types
As several other XML processing languages [8, 9, 17], we consider
a type system of regular expression types with structural subtyping4:

Atomic types α ::= bool ‖ string ‖ n[τ ]
Sequence types τ ::= α ‖ () ‖ τ | τ ′ ‖ τ, τ ′ ‖ τ∗ ‖ X

Atomic types α ∈ Atom are primitive booleans, strings or labeled
sequences n[τ ]. Sequence types τ ∈ Type are defined using
regular expressions, including empty sequence (), alternative choice
τ | τ ′, sequential composition τ, τ ′, iteration τ∗ or type variables
X ; choice and composition are right-nested. We define the usual
τ+ = τ, τ∗ and τ? = τ | (). Types can also be recursively defined:

Type definitions τD ::= α ‖ () ‖ τD | τ ′D ‖ τD , τ
′
D ‖ τD

∗

Type signatures E ::= · ‖ E , type X = τD

Type definitions τD are sequences with no top-level variables (to
avoid non-label-guarded recursion [9]). A type signature E is a set
of named type definitions of the form X = τD , and is well-formed if
no two types have the same name and all type variables in definitions
are declared in E . We write E(X ) for the type bound to X in E .
Hereafter, we will assume the signature E to be fixed.

In traditional XML-centric approaches [9, 17], values are en-
coded using a uniform representation that does not record the struc-
ture that types impose on values. This “flat” representation is eco-
nomical and simplifies subtyping, but makes it harder to realize
that a value belongs to a type and therefore to integrate regular
expression features into functional languages with non-structural
type equivalence, such as Haskell or ML. In this paper, we instead
consider a structured representation of values (in line with values of
algebraic data types) that keep explicit annotations which, in a way,
witness how to parse a flat value as an instance of a type [23]:

Atomic values t ::= true | false | w | n[v ]
Forest values v ::= t | () | L v | R v | (v , v) | [v0, . . . , vn ]

4 We use ‖ for syntax alternatives in the type grammar to prevent confusion.



Atomic values t ∈ Tree can be true, false ∈ Bool, strings
w ∈ Σ∗ (for some alphabet Σ), or singleton trees n[v ] with a node
label n. Forest values v ∈ Val include the empty sequence (), left-
L v or right- R v tagged choices, binary sequences (v , v) and lists
of arbitrary length [v0, . . . , vn ]. The semantics of a type τ denotes
a set of values JτK that is defined as the minimal solution (formally
the least fixed point [17]) of the following set of equations:

JboolK , {true, false} Jn[τ ]K , {n[v ] | v ∈ JτK}
JstringK , Σ∗ JX K , JE (X )K
Jτ, τ ′K , {(v , v ′) | v ∈ JτK, v ′ ∈ Jτ ′K} J()K , {()}
Jτ | τ ′K , {L v | v ∈ JτK} ∪ {R v | v ∈ Jτ ′K}
Jτ∗K , { [v0, . . . , vn ] | v0, . . . , vn ∈ JτK,n > 0}

In our context, values in the type semantics preserve the type
structure. We will denote flat values ft ∈ FTree and fv ∈ FVal
(dropping left/right tags, parenthesis and list brackets) by:

Flat atomic values ft ::= true | false | w | n[fv ]
Flat forest values fv ::= () | ft , fv

and introduce a function flat : Val → FVal that ignores markup.
We denote the usual flat semantics of a type τ as JτKflat .

4.2 Core expression, path and pattern language
In BIFLUX, updates instrumentally use XQuery expressions, XPath
paths and XDuce patterns to manipulate XML data. This subsection
succinctly describes their syntax in our core language, but is not
essential for our design and may be skipped on a first reading.

We write expressions e in a minimal XQuery-like language that
is a variant of the µXQ core language proposed in [9]:

e ::= () | e, e ′ | n[e] | let pat = e in e ′ | p | e ≈ e ′

| if e then e ′ else e ′′ | for x in e return e ′

Despite expressions can be used in updates rather indiscrimi-
nately, in BIFLUX only a particular subset of the expression lan-
guage is suitable for denoting foci. Therefore, we differentiate paths
p in a core path language that represents a minimal dialect of XPath:

p ::= self | child | dos | :: nt | where e | p / p′

| x | w | true | false | F (~e)
nt ::= n | text() | node()

To simplify the formal treatment, we consider nodetests ::nt that
apply to atomic values and where clauses where e that filter
values satisfying an expression e. We write the syntactic sugar
p :: nt , p / ::nt and p[e] , p / where e. XPath-like traversals
can be defined as . = self :: node(), p / n , p / child :: a and
p // n = p / dos :: node() / child :: a .

In contrast to µXQ, our core expression language supports
pattern expressions in let bindings: let pat = e in e ′ matches a
pattern pat against the result of an expression e and then executes
an expression e ′ that may refer to the variables bound by pat. We
consider a language of XDuce-style patterns pat [17]:

pat ::= x as τ | τ | () | n[pat ] | pat , pat ′

Note that we impose a simple but strong syntactic linearity restric-
tion on patterns (no alternative choice, no Kleene star) to ensure that
matching a value against a pattern binds each variable exactly once.
Less severe linearity restrictions are actually known [16], but these
simple patterns suffice for our practical needs. Also worth noting
is that we require every variable to be annotated with a type. This
simplifies our design, but will in turn increase the number of (often
unnecessary) annotations in our bidirectional update programs. We
see it as an orthogonal problem that can be mitigated using existing
tree-based type inference algorithms [32].

4.3 Tripartite environments
A type environment Γ consists of a set of bindings x :τ of variables to
types. An environment is a function γ :Var → Val from variables to
values. As usual, we assume variable names in an environment to be
distinct. We write Γ(x ) and γ(x ) for the type and value of a variable;
Γ[x : τ ] and γ[x := v ] add a new variable to an environment. We say
that γ has type Γ, written γ : Γ, if γ(x ) : Γ(x ) for all x ∈ dom(Γ).
Fresh environments are denoted by the empty set ∅.

Since our language is bidirectional, we will consider three kinds
of variables (and environments): source variables, that are accessible
from the current source; view variables, that are accessible from
the current view; and normal variables, that are accessible from
the global environment of the update and independent from the
source or the view. We will talk about source/view/normal paths or
expressions, that may only refer to source variables, view variables
or any variable, respectively; non-source expressions may refer to
view and normal variables simultaneously.

To describe source or view environments, we introduce record
types ν that denote sequences of variable-annotated types:

ν ::= x : τ, ν | ()
As an abuse of notation, we see a record type ν as an ordinary type
(by forgetting variable names) or as a type environment; we cast a
conforming value v into an environment γv :ν .

4.4 Core update language
Unlike conventional XML update languages, our core update lan-
guage comprises two kinds of update statements: unidirectional
FLUX updates, interpreted as arrows [20] that modify a document
in-place, changing its schema; and bidirectional BIFLUX updates,
interpreted as BXs [28] that update a source document given a view
document or query a source document to compute its view fragment,
for fixed source and view schemas. Our core unidirectional updates
u are adapted from the core FLUX update language [8]:

u ::= skip | u; u ′ | insert e | delete
| if e then u else u ′ | case e of ~pat → ~u
| p[u] | left[u] | right[u] | children[u]

These include standard operations such as the no-op skip, sequen-
tial composition, conditionals or case expressions. The basic opera-
tions are insert e , that inserts a value given an empty sequence as
focus; and delete, that replaces any value with the empty sequence.
We can also apply an update in a specific direction (that traverses
down a path p, moves to the left or right of a value, or focuses
on the children of a labeled node).

Core bidirectional updates b are denoted by the grammar:

b ::= skip | fail | b1; b2 | view x := e in b
| P(~ps , ~ev ,~e) | p[b] | [b]e | replace | iter b

| ifS e then b else b′ | caseS p of ~pat → ~b

| ifV e then b else b′ | caseV e of ~pat → ~b

| if e then b else b′ | case e of ~pat → ~b
| alignpos es b c r | alignkey es ps pv b c r

Here, P is the name of a BIFLUX procedure. A procedure is defined
as a declaration P(~x : ~τ) : νs⇔ νv , s , meaning that P takes
a vector of parameters ~x of types ~τ and builds a BX between a
source of type νs and a view of type νv . Accordingly, a procedure
call P(~ps , ~ev ,~e) takes three kinds of arguments: source paths ~ps ;
non-source expressions ~ev ; and normal expressions ~e. We collect
procedure declarations into a set ∆, that we will assume to be fixed.
Procedures may also be recursive.

The bidirectional operation skip keeps the source unchanged for
an empty view; for a non-empty view, we must fail to update the
source (as UPDATEQUERY precludes that all view information must



be used to update the source). Composition b1; b2 updates the source
with b1, and then runs b2 over the updated source. The statement
view x := e in b models a view dependency, by stating that a view
variable x can be computed using the view expression e (written
$x := e in the high-level BIFLUX language), and then runs b using
the remaining view. Bidirectional statements may also change the
current source or view, by focusing down a source path and updating
the resultant source (p[b]), or by evaluating a non-source expression
“backwards” from the view and updating the source with the resultant
view ([b]e). The basic replace operation embeds the view into the
source, while iter b embeds the same view into each tree in a
source forest. As before, we consider three kinds of bidirectional
conditionals and case expressions, whose expressions or paths are
respectively source, view/non-source or normal variables.

The two special alignment statements update a source sequence
using a view sequence. They receive a filtering source expression
es , and match source elements satisfying es with view elements by
position (alignpos) or by keys (alignkey), defined by two source
(ps ) and view paths (pv ). Then, a bidirectional statement b processes
matched source-view elements, a create statement c instructs how
to create a suitable source to match with an unmatched view, and a
recover statement r denotes how to process an unmatched source.
Create statements c are simply optional unidirectional updates mu5.
A recover statement r is a unidirectional update of the form:

r ::= if e then r else r ′ | delete | keep u

| case e of ~pat → ~r

It supports conditionals and case expressions like regular updates,
and two primitive operations: delete, to delete an unmatched
source; and keep u , to keep an unmatched source modified with u
so that it does not satisfy the above es filtering expression.

4.5 Core bidirectional lens language
To interpret our core language bidirectionally, we translate core
bidirectional updates into a core language of “putback”-style lenses
over generalized tree structures [28], supporting regular expression
types. For the context of this paper, a lens is a BX l : τs⇔Γ τv

between a source type τs and a view type τv under an environment
of type Γ, defined using the combinators from Figure 10. The
concrete syntax for lenses is not essential in our design, and can be
skipped unless for understanding the bidirectional update semantics
discussed in Section 5. The intuition for each combinator (read as
a transformation from view to source) should be understandable
from its type signature, and more details regarding their concrete
bidirectional semantics can be found in [28]6.

Each lens in the above language comprises two partial functions
U : Γ → Maybe τs → τv → τs and Q : τs → τv , satisfying
laws similar to UPDATEQUERY and QUERYUPDATE. Since these
functions are partial, updating or querying may fail at runtime. This
is sometimes inevitable, for instance, whenever a view value does
not satisfy a view condition or a view dependency written in a
WHERE VIEW clause. Remark that the update function U receives
an additional environment of type Γ and an optional source of type
Maybe τs (as in Haskell, but with short-hand notation Nothing = .
and Just v = v for values), to account for cases (like UNMATCHV
clauses) when a new source must be reconstructed from the view
without updating an existing source [5, 27]. For a lens polymorphic
over its environment type, we often write just l : τs⇔ τv .

5 We often refer to optional updates mu , optional values mv , etc by defining
grammars mu ::= · | u , mv ::= · | v and so on.
6 An Haskell implementation of these (and more) combinators can be found
at http://hackage.haskell.org/package/putlenses.

4.6 XML subtyping and ambiguity
The notion of subtyping plays a crucial role in XML approaches
with regular expression types. A type τ1 is said to be a subtype of τ2,
written τ1 <: τ2, if the flat values belonging to τ1 are also values of
τ2, i.e., Jτ1Kflat ⊆ Jτ2Kflat . Under a flat value representation, a value
of a type naturally belongs simultaneously to all its supertypes. This
motivates a notion of structural equality between types: two types
τ1 and τ2 are equivalent (τ1 =: τ2), meaning that they accept the
same set of flat values, if both τ1<: τ2 and τ2<: τ1, e.g., τ =: τ | τ .
It also induces an equivalence relation ∼ that ignores structure and
relates values parsing the same data using different markup, formally,
v ∼ v ′ , flat(v) = flat(v ′), e.g., L v ∼ R v .

A type τ is said to be unambiguous if the equivalence relation
for structured values of that type (∼τ ) is the equality relation (=τ ),
intuitively meaning that there is only one way to parse a flat value
of type τ into a structured value of type τ . Unambiguous regular
expression types have a direct correspondence to algebraic data
types [29], and standard automata algorithms exist for deciding
unambiguity of regular expression types in polynomial time [10, 31].

Since we retain a structured representation of values, upcasting
a value v1 of type τ1 into a supertype τ2 requires more than a proof
of subtyping: we must also change v1 into a value v2 that contains
the same flat information as v1 but conforms to the structure of
τ2. This problem has been considered in [23], that introduces a
subtyping algorithm as a proof system with judgments of the form
` τ1 <: τ2 ⇒ c, that we treat as a “black box”. In BX terms,
c :τ2←→. τ1 is called a canonizer [14], which is a bit like a lens from
τ2 to τ1 that comprises a total upcast function ucast :τ1 → τ2, and a
partial downcast function dcast : τ2 → τ1. In our sense, canonizers
satisfy two properties stating that they only handle structure:

ucast v1 ∼ v1 UP∼

dcast v2 = v1 ⇒ v1 ∼ v2 DOWN∼

For an unambiguous type τ2, we can lift a canonizer c : τ1←→.
τ2 into a well-behaved lens lift c : τ1⇔ τ2. Similarly, for an
unambiguous type τ1, the inverse c−1 of a canonizer c : τ1←→. τ2
—even though not a canonizer itself due to partiality— can be lifted
into a well-behaved lens lift c−1 : τ2⇔ τ1.

5. Type System and Staged Semantics
In traditional XML-based languages with regular expression
types [8, 9, 17], the loose separation between types and values
lends itself to a Curry-style interpretation: terms in the language are
given semantics regardless of typing, and typing rules assess the
well-formedness of terms. In BIFLUX, however, types come prior to
semantics, as an update program describes a BX between two known
source and view types on which its meaning may naturally depend.
This leads to a Church-style interpretation, where semantics is given
to type derivations instead of independent terms. Also, as we have
seen before, updates in our core language are given semantics in two
stages: they are first interpreted as lens expressions (typed between
given types), and lenses have themselves a bidirectional semantics.

5.1 Interpreting expressions, paths and patterns
The type system and semantics for expressions and paths is similar
to that of µXQ [9] and FLUX [8], adapted to our context. We merge
typing and semantics into a single judgment Γ; mx ` e :τ ⇒ λγ.v ,
meaning “in type environment Γ with optional root variable mx ,
expression e has type τ , and given environment γ it evaluates to
value v”. Type soundness is guaranteed by construction, such that
the argument environment γ is of type Γ and the produced v is of
type τ . The concrete rules can be found in Appendix A. We also
define a judgment Γ; τ ` e : τ ′ ⇒ λγ v .v ′, meaning “in type
environment Γ with root type τ , expression e has type τ ′, and given

http://hackage.haskell.org/package/putlenses


(◦< ) : (τ1⇔Γ τ2)→ (τ2⇔Γ τ3)→ (τ1⇔Γ τ3) ifSthenelse : (τ1 → bool)→ (τ1⇔Γ τ2)→ (τ1⇔Γ τ2)→ (τ1⇔Γ τ2)
unfork : (τ1⇔Γ τ3)→ (τ2⇔Γ τ3)→ (τ1, τ2⇔Γ τ3) ifVthenelse : (τ2 → bool)→ (τ1⇔Γ τ2)→ (τ1⇔Γ τ2)→ (τ1⇔Γ τ2)
remfst : (τ2 → τ1)→ (τ2⇔Γ (τ1, τ2)) withEnv : (Maybe τ1 → τ2 → Γ→ Γ′)→ (τ1⇔Γ′ τ2)→ (τ1⇔Γ τ2)
map : (τ1⇔Γ τ2)→ (τ1

∗⇔Γ τ2
∗) keep : τ⇔Γ ()

keepfst : (τ1, τ2)⇔Γ τ2 keepsnd : (τ1, τ2)⇔Γ τ1
alignpos : (τ1 → bool)→ Maybe (Γ→ τ2 → τ1)→ (Γ→ τ1 → Maybe τ1)→ (τ1⇔Γ τ2)→ (τ1

∗⇔Γ τ2
∗) bot : τ1⇔Γ τ2

alignkey : (Γ→ τ1 → τk1)→ (Γ→ τ2 → τk2)→ (τk1 → τk2 → bool) id : τ⇔Γ τ
→ (τ1 → bool)→ Maybe (Γ→ τ2 → τ1)→ (Γ→ τ1 → Maybe τ1)→ (τ1⇔Γ τ2)→ (τ1

∗⇔Γ τ2
∗) in : n[τ ]⇔Γ τ

ifthenelse : (Γ→ Maybe τ1 → τ2 → bool)→ (τ1⇔Γ τ2)→ (τ1⇔Γ τ2)→ (τ1⇔Γ τ2) listeq : τ∗⇔Γ τ

Figure 10: Language of point-free lenses for translating core bidirectional updates (Complete in Appendix D).

environment γ : Γ and root value v : τ it evaluates to value v ′ : τ ′”.
The root type and underlying value are added to the (type and value)
environments under a fresh root variable:

Γ[x : τ ]; x ` e : τ ′ ⇒ λv γ[x := v ].v ′ x /∈ dom(Γ)

Γ; τ ` e : τ ′ ⇒ λγ v .v ′

In BIFLUX, we follow a simple approach to pattern matching.
We first define pattern type inference as a judgment ` pat :
τ ⇒ Πτ that reads “pattern pat has type τ and yields a lens
environment Πτ”. This is straightforward (Appendix B) since we
require all pattern variables to be annotated with a type; many others,
including [16, 32], have studied more advanced XML-based pattern
type inference techniques. A lens environment Πτ is a set of bindings
x := (l , τ ′) of variables to lenses from a source type τ , such that
l :τ⇔ τ ′. As an abuse of notation, we see Πτ as a type environment;
we cast a source value v of type τ into an environment of source
variables γv,Πτ = {xi := Qi(v) | xi := (li , τi) ∈ Πτ }.

The second step for matching a pattern against an input value is to
simply check for subtyping between the input type and the inferred
pattern type [16], as the witness functions of our subtyping algorithm
already give us a way to convert values in both directions. For
ambiguous patterns that may match an input value in multiple ways,
such functions are responsible for resolving the ambiguity. Different
matching policies can be modelled by adapting the subtyping proof
system, as noted in [23], despite not being essential for our approach.

5.2 Interpreting unidirectional updates
The typechecking and operational semantics of core unidirectional
updates mimic those of the core FLUX language. The judgment
Γ ` {τ } u {τ ′} ⇒ λγ v .v ′ means that “in type environment Γ,
a unidirectional update maps values of type τ to values of type τ ′,
and given environment γ and input value v (of type τ ) it produces
the updated value v ′ (of type τ ′)”. The corresponding rules do not
present any significant novelty and are relegated to Appendix C.

5.3 Interpreting bidirectional updates
Contrarily to unidirectional updates, that modify values from an
input to an output type, bidirectional updates are evaluated against
two given source and view types and return a lens between those
types. The judgment Γ; Πτ ` {τ } b {ν} ⇒ l indicates that
“in type environment Γ and lens environment Πτ , a statement b
produces a lens l (between source type τ and view type ν under type
environment Γ)”. The type environment Γ denotes normal variables
(that are in scope of the update function of the generated lens); the
lens environment Πτ denotes source variables from the source τ ;
and the view type ν defines a view environment (also referred to
as ν) that denotes view variables from the view ν. The dichotomy
between our representations of source and view environments is
justified by the need to keep a special account of view information:
declared view variables must be used at least once in the update,

while source variables might not be used at all to update the source.
Most rules for typechecking and evaluating bidirectional updates as
lenses are shown in Figure 11. (The listifyS and listifyV functions
and the judgment` τ1 6 τ2 ⇒ l will be introduced in Section 5.4.)

Source/view expressions are interpreted under only a lens/view
environment: “in lens environment Πτ (and source type τ ), a source
expression e has type τ ′, and given a value v : τ produces a value
v ′ :τ ′”; “in view environment ν (and view type ν), a view expression
e has type τ ′, and given a value v : ν produces a value v ′ : τ ′”.

Γ; x ` e : τ ′ ⇒ λγv,Πτ [x := v ].v ′

Γ = Πτ [x : τ ] x /∈ vars(Πτ )

Πτ S̀ e : τ ′ ⇒ λv .v ′
Γν ; · ` e : τ ′ ⇒ λγv :ν .v

′

ν V̀ e : τ ′ ⇒ λv .v ′

Basic combinators The skip combinator returns the lens that
does not update the source if the view is the empty sequence,
while fail yields the bottom lens that always fails to update the
source; replace completely replaces the source with a view that is
“smaller”, such that the view type is a subtype of the source type.

Composition Bidirectional composition b1; b2 first splits the view
into two parts ν1 and ν2, evaluating b1 with view ν1 followed
by s2 with view ν2 over the same source. The auxiliary function
split(ν, θ1, θ2) = (ν1, ν2, l12) splits ν such that dom(ν1) =
dom (ν) ∩ θ1 and dom(ν2) = dom (ν) ∩ θ2, returning a
lens l12 : (ν1, ν2)⇔ ν. Parallel lens composition (unfork l1 l2) is
different from sequential lens composition (l1◦< l2); for it to be well-
behaved, the second update can not affect the result of the first query,
i.e., Q1(U2(v , v2)) v Q1(v). This property is currently checked
dynamically by unfork, that fails to update the source otherwise. We
believe that this check could be done at static time by combining
recent work on XML query-update independence [2, 4, 6].

Changing source focus The bidirectional update p[b] changes
the source focus by traversing down the source path p, and then
evaluates b with a fresh lens environment. Note that it is intrinsically
different from the unidirectional update p[u], as the source type
does not change and the source data is not updated in-place, but
modified to embed the view data. Precisely, this requires interpreting
the source path as a lens via a judgment Πτ S̀ {τ } p {τ ′} ⇒ l ,
that reads “in lens environment Πτ , path p changes the source focus
from type τ to type τ ′, and produces a lens l :τ⇔ τ ′” (Appendix F).
Like in FLUX, arbitrary paths can not be used to change the source
focus —as prescribed by the rules of Appendix F. For example, only
the self and child axes (and no absolute paths) are supported; this
ensures that only descendants of the source focus can be selected as
the new source focus and that a selection contains no overlapping
elements. The iter b operator shifts the source focus to all tree
values in a source forest, and runs b for each tree. Its corresponding
BX will duplicate the view value for each source tree during updates,
and enforce all selected source trees to be the same during queries.



Γ; Π ` {τ } s {ν} ⇒ l
Γ; Πτ ` {τ } skip {()} ⇒ keep Γ; Πτ ` {τ } fail {ν} ⇒ bot

Γ; Πτ ` {τ } b1 {ν1} ⇒ l1 Γ; Πτ ` {τ } b2 {ν2} ⇒ l2
split(ν, vars(b1), vars(b2)) = (ν1, ν2, l12)

Γ; Πτ ` {τ } b1; b2 {ν} ⇒ unfork l1 l2◦< l12

Γ; Πτ ` {τ } b1 {ν} ⇒ l1 Γ; Πτ ` {τ } b2 {ν} ⇒ l2
Πτ S̀ e : bool⇒ f

Γ; Πτ ` {τ } ifS e then b1 else b2 {ν} ⇒ ifSthenelse f l1 l2

Πτ S̀ {τ } p {τ ′} ⇒ l1 Γ; ∅ ` {τ ′} b {ν} ⇒ l2

Γ; Πτ ` {τ } p[b] {ν} ⇒ l1◦< l2
listifyS(τ) = (τ1, l1) Γ; ∅ ` {τ1} b {ν} ⇒ l2

Γ; Πτ ` {τ } iter b {ν} ⇒ l1◦<map l2◦< listeq

Γ[xV : τ ′]; Πτ ` {τ } b {xV : τ ′} ⇒ l1 Γ V̀ {τ ′} e {ν} ⇒ l2
f1 mv ′s v ′v γ

′ = γ[xV := v ′v ]

Γ; Πτ ` {τ } [b]e {ν} ⇒ withEnv f1 l1◦< l2

Γ; Πτ ` {τ } b {ν2} ⇒ l2 ν2 V̀ e : ν1 ⇒ f21

x ∈ dom(ν) split(ν, {x }, dom(ν)\{x }) = (ν1, ν2, l12)

Γ; Πτ ` {τ } view x := e in b {ν} ⇒ l2◦< remfst f21◦< l12

listifyS(τ) = (τ1, l1) listifyV (τ ′) = (τ2, l2) Γ[xV : τ2]; ∅ ` {τ1} b {xV : τ2} ⇒ l
∅ S̀ e : bool⇒ fe Γ c̀reate {τ2} c {τ1} ⇒ mf c Γ r̀ecover r {τ } ⇒ fr f mv s vv γ = γ[xV := vv ]

Γ; Πτ ` {τ } alignpos e b c r {xV : τ ′} ⇒ l1◦< alignpos fe mf c fr (withEnv f l)◦< l2
Γ; Πτ ` {τ } b1 {ν} ⇒ l1 Γ; Πτ ` {τ } b2 {ν} ⇒ l2 ν V̀ e : bool⇒ f

Γ; Πτ ` {τ } ifV e then b1 else b2 {ν} ⇒ ifVthenelse f l1 l2

` ν 6 τ ⇒ l

Γ; Πτ ` {τ } replace {ν} ⇒ l

Γ; Πτ ` {τ } b1 {ν} ⇒ l1 Γ; Πτ ` {τ } b2 {ν} ⇒ l2 Γ; τ ` e : bool⇒ λγ vs .b f · vv = true f vs vv γ = b

Γ; Πτ ` {τ } if e then b1 else b2 {ν} ⇒ ifthenelse f l1 l2

P(~x : ~τ) : νs⇔ νv ∈ ∆ Πτ p̀rocS {τ } ~ps {νs } ⇒ ls Γ p̀rocV {νv } ~ev {ν} ⇒ lv
Γ; τ ` e : τ1 ⇒ λγ v .v1 . . . Γ; τ ` e : τn ⇒ λγ v .vn f vs vv γ = {x1 := v1, . . . , xn := vn }

Γ; Πτ ` {τ } P(~ps , ~ev ,~e) {ν} ⇒ ls◦<withEnv f P◦< lv

Γ c̀reate {τ2} c {τ ′1} ⇒ λmγ v2.v1 Γ r̀ecover r {τ } ⇒ λγ v .mv

Γ[xV : τ ] ` {τ } u {τ ′} ⇒ λγ[xV := v] v .v ′

Γ c̀reate {τ } u {τ ′} ⇒ λγ v .v ′
Γ ` {τ } u {τ } ⇒ λγ v .v ′

Γ r̀ecover keep u {τ } ⇒ λγ v .v ′ Γ r̀ecover delete u {τ } ⇒ λγ v .·

Γ c̀reate {τ } · {τ ′} ⇒ ·

Γ[x : τ ]; x ` e : bool⇒ λγ[x := v ].true
Γ r̀ecover r {τ } ⇒ λγ v .mv

Γ r̀ecover if e then r else r ′ {τ } ⇒ λγ v .mv

Γ[x : τ ]; x ` e : bool⇒ λγ[x := v ].false
Γ r̀ecover r ′ {τ } ⇒ λγ v .mv

Γ r̀ecover if e then r else r ′ {τ } ⇒ λγ v .mv

Figure 11: Bidirectional update well-formedness and semantics (Complete definitions in Appendix E).

Changing view focus The operation [b]e changes the view focus
according to the non-source expression e, and then evaluates b
for the intermediate view7. The judgment Γ V̀ {τ } e {ν} ⇒
l indicates that “in type environment Γ, expression e changes
the view focus from type ν to type τ , and produces a lens l :
τ⇔Γ ν” (Appendix G). Note that, to be successfully interpreted as
a “backward” lens, the expression e may only add information to the
view, since all view information must be used to update the source;
this implies that only a very restrictive class of injective paths —
statically checked by the rules of Appendix G— can be used to
change the view focus. The operation view x := e in b removes a
view variable x from the current view environment without loss of
information (with the view expression e evidencing how x can be
computed from the other view variables), followed by running b.

Conditionals The conditional operations ifS, ifV and if choose
between two statements b1 or b2 according to a boolean expression
e, and differ subtly on the bidirectional behavior of the underlying
lenses (see [28]), given that e is a source, view or normal expression.
The same rationale is applied to case expressions (Appendix E).

Source-view alignment The alignment operations alignpos and
alignkey synchronize source and view forests. They 1) uniformize

7 We use xV as a special internal view variable to accommodate the
intermediate view as a record type.

the source and view types into lists using listifyS and listifyV , 2)
align source and view elements using matching algorithms [1] on
lists by position or by keys —calculated as paths on the current
source/view— and 3) run the statement b for matching source/view
pairs, the create statement c for unmatched source elements or
the recover statement r for unmatched source elements. Cre-
ate statements are interpreted unidirectionally using a judgment
Γ c̀reate {τ2} c {τ1} ⇒ λmγ v2.v1, saying that “in type environ-
ment Γ, a create statement c between source type τ1 and view type
τ2 returns an optional function (denoted by λm · .·) that given an
environment γ : Γ and a view value v2 creates a source value v1”.
In reverse direction, the judgment Γ r̀ecover r {τ1} ⇒ λγ v1.mv1

states that “in type environment Γ, a recover statement r for a
source type τ1 returns a function that given an environment γ : Γ
and a source value v1 : τ1 returns an optional recovered source
value mv1 : Maybe τ1”. Note that our alignment operations receive
a source predicate e denoting which source values have a corre-
spondence to view values; the underlying lenses enforce that newly
created source values must satisfy e , while recovered source values
do not originate from the view and must not satisfy e .

Procedures Procedure calls P(~ps , ~ev ,~e) are interpreted under a
new type environment computed from the argument expressions
~e. The new lens environment is computed from the source paths
~ps , via a judgment Πτ p̀rocS {τ } ~p {νs } ⇒ l , and the new
view environment is computed from the non-source expressions



~ev via a judgment Γ p̀rocV {νv } ~e {ν} ⇒ l . The semantics of
a BiFluX program is given by converting a set ∆ of procedure
declarations P(~x : ~τ) : νs⇔ νv , s into a set ∆⇔ of lenses P =
l : νs⇔{x1:τ1,...,xn :τn } νv , according to the following derivation:

{x1 : τ1, . . . , xn : τn } ∪ νs ∪ νv ; Πνs ` {νs } s {νv } ⇒ l
f vs vv γ = γ ∪ γvs :νs ∪ γvv :νv

` P(~x : ~τ) : νs⇔ νv , s ⇒ P = withEnv f l

5.4 Type normalization
The semantics of our core language relies instrumentally on sub-
typing to match source and view types. The simplest example is
the replace bidirectional update, that requires the view type τ2 to
be “smaller” than the source type τ1 (Figure 11), according to a
judgment ` τ2 6 τ1 ⇒ l that returns as evidence a lens l : τ1⇔ τ2.
As the reader may guess, we could compute ` τ2 6 τ1 ⇒ l by
checking for subtyping between τ2 and τ1 (` τ2 <: τ1 ⇒ c) and
lifting the resulting canonizer into a lens. But, before doing so, we
must verify that: the view type τ2 is unambiguous, a requirement to
lift c into a lens lift c; and the source type τ1 is unambiguous, since
the ucast function of the canonizer does not consider the original
source and a naive implementation of an update would potentially
discard source information projected away by the lens.

As an example, recapitulate the source database of books used
in Section 2 and imagine how we could evaluate a simple update:

REPLACE $source/books/book/title WITH $view

using a list title[string]∗ as the view type. Consistently with
the unidirectional semantics for paths (Appendix A), the evalua-
tion of the source path as a lens traverses down the source tree
and keeps only titles, destroying element labels and replacing all
authors for the empty sequence, and modifies the source focus
to the intermediate type (title[string], (), ()∗)

∗. Then replace
checks for subtyping between the view type and the intermedi-
ate type, producing a mediating canonizer. Since the intermediate
type is ambiguous, the upcasting function of the canonizer would
translate a view sequence [title["mybook"] ] into an intermediate
value [(title["mybook"], ((), [ ]))], that would in turn lead to an up-
dated source books[[book [(title["mybook"], (aut1, [ ]))]]]. This is
clearly unsatisfactory as it would discard the entire book database
except the first author aut1 of the first book!

Source and view normalization To avoid these problems, we in-
troduce type normalization procedures that simplify regular ex-
pression types into unambiguous ones while carefully preserving
the original markup information that keeps trace of hidden in-
formation. Namely, we define a source normalization procedure
normS(τ) = (τ ′, l), that normalizes a source type into an un-
ambiguous subtype τ ′ together with a lens l : τ⇔ τ ′, and a view
normalization procedure normV (τ) = (τ ′, l), that normalizes a
view type into an unambiguous subtype type τ ′ together with a
lens l : τ⇔ τ ′. Their main difference is that they compute lenses
in opposite directions, suggesting that source normalization may
abstract ambiguous information (like redundant choices) while view
normalization may not. Their definitions are shown in Appendix H.
We do not claim that our normalization procedures are complete,
in the sense that they can disambiguate any ambiguous type, but
when they (statically) do succeed the normalized types are unam-
biguous. In a nutshell, we try to normalize a source type using
automata reduction techniques [10, 31], and derive a lens between
the ambiguous and unambiguous types; we only normalize view
types into isomorphic types. Furthermore, we evaluate source paths
in a two-phased semantics: a path is interpreted as a completely
information-preserving lens, that just marks unselected source types
τ with a special tag τ instead of replacing them for the empty

sequence (Appendix F); and tagged types are to be removed during
source normalization, that already requires special handling anyway.

Normalized subtyping and listification We are now ready to
safely define τ1 6 τ2 as the following judgment:

normS(τ2) = (τ ′2, l2) normV (τ1) = (τ ′1, l1) ` τ ′1 <: τ ′2 ⇒ c

` τ1 6 τ2 ⇒ l1◦< lift c◦< l2
Unlike iteration for unidirectional updates, that changes the focus
to all the atomic elements in a forest and updates their values (and
types!) independently, bidirectional iteration is type-preserving and
involves updating a source sequence with view information and
somehow fitting it back into a shape that conforms to the source
type. Since shape alignment is an intractable problem for arbitrary
source and view types [27], we uniformize source and view types
into lists of (choices of) atomic types according to two functions:

elems(τ ′) = {α1, . . . , αn} (α0 | . . . | αn)∗ unambiguous
normS(τ) = (τ ′, l) ` τ ′ <: (α0 | . . . | αn)∗ ⇒ c

listifyS(τ) = ((α0 | . . . | αn), l◦< lift c−1)

elems(τ ′) = {α0, . . . , αn} (α0 | . . . | αn)∗ unambiguous
normV (τ) = (τ ′, l) ` τ ′ <: (α0 | . . . | αn)∗ ⇒ c

listifyV (τ) = ((α0 | . . . | αn), lift c◦< l)
Note that the uniformized list types may be more flexible supertypes,
e.g. (α1, α2)∗ <: (α1 | α2)∗, allowing more values than those that
fit the real type. While this does not pose a problem with the for-
each semantics of plural high-level updates, it may lead to runtime
errors for UPDATE FOR VIEW updates over intricate structures. An
alternative is to statically check for type equivalence in listifyS ,
supporting only pure source lists. The function elems : Type →
{Atom } returns the set of atomic types in a sequence type.

6. BIFLUX to Core Update Normalization
In this section, we formalize the translation from the high-level
BIFLUX language to the core language presented in Section 4,
highlighting the significant gap between them. This process is
usually referred to as normalization in languages like XQuery and
FLUX. We define two main normalization functions that interpret
statements as bidirectional J|||| − ||||KbStmt and unidirectional updates
J|||| − ||||KuStmt. Most translation rules are straightforward and a few
interesting ones are shown in Figure 12; the complete set can be
found in Appendix I. Simple bidirectional updates are translated
by a function J|||| − ||||KbUpd(es , ev , ~x = ~e), where the extra parameters
group the WHERE clauses of the update into a source selection
expression es , a view selection expression ev and a sequence of view
bindings ~x = ~e; these triples are parsed from a set of conditions,
according to their source/view tags, by a function J|||| − ||||KConds. Simple
unidirectional updates are translated by a function J|||| − ||||KuUpd(e),
where e is the conjunction of all the WHERE clauses of the update.

For special UPDATE FOR VIEW statements, the splitVStmt
function parses a VStmt into a matching statement and two
optional unmatched-view and unmatched-source statements. Op-
tional unmatched-view statements are translated using a function
J|||| − ||||KcMStmt(mpat) that takes an extra optional view pattern and re-
turns a core create update; if no UNMATCHV clause is defined, the U
function of the underlying lens will be evaluated without an original
source. Optional unmatched-source statements are translated using
a function J|||| − ||||KrMStmt(mpat) that takes an extra optional source
pattern and returns a core recover update; if no UNMATCHS clause is
defined, all unmatched source elements are deleted by default.

The translation denotes a partial function from high-level BI-
FLUX to core BIFLUX. For example, INSERT is not supported
for bidirectional updates, UPDATE FOR VIEW is not supported for
unidirectional updates, and CREATE or KEEP are only supported un-
der UNMATCHV or UNMATCHS clauses, respectively. We assume that



paths and expressions are expressed in terms of our core languages;
this is standard practice as normalization of XQuery expressions
or XPath paths can be done independently. To simplify the pre-
sentation, we also assume explicit SOURCE and VIEW tags, though
our implementation is elaborated to implicitly distinguish between
source/view/normal expressions, using the additional environment
information available at the time of typechecking the core language.

7. Related Work
XML update languages Several XML update languages have
been proposed, including (among many others) XQuery! [15],
FLUX [8] and the standard W3C XQuery Update Facility [30]. Even
though the specification style, expressiveness and semantics of the
XML updates that can be written may vary significantly, they all
focus on updating XML documents in-place, i.e., updating selected
parts of an XML document, keeping the remaining parts of the
document unchanged. This means that update programs can be
seen as unidirectional transformations that insert, delete or replace
elements in a source document and produce an updated document
conforming to a new target type. XML Updates in BIFLUX are
different in that they determine how to update a source document
(using some view information) while preserving its source type. This
poses different (BX-related) challenges on how to deal with non-in-
place updates (like UPDATE FOR VIEW statements that may change
the cardinality of a sequence instead of updating each element), and
therefore how to modify the remaining parts of the source document
(e.g., by changing branching decisions) to accommodate the new
data so that the updated source fits into the same type.

XML view updating In [12], the author studies the problem of
updating XML views of relational databases by translating view
updates written in the XQuery Update Facility into embedded SQL
updates. The work of [22] supports updatable views of XML data by
giving a bidirectional semantics to the XQuery Core language. The
semantic bidirectionalization technique of [24] interprets various
XQuery use cases as BXs by encoding them as polymorphic Haskell
functions. The Multifocal language [26] allows writing high-level
generic XML views that can be applied to multiple XML schemas,
producing a view schema and a lens conforming to the schemas. In
the four approaches, the programmer writes a view function and
the system derives a suitable view update translation strategy using
built-in techniques that he can not configure. In BIFLUX, he writes
an update translation strategy directly as an update (over the source)
and the system derives the uniquely related query.

XML bidirectional languages Many bidirectional programming
languages support tree-structured or XML data formats. Two pop-
ular XML bidirectional languages are XSugar [7] and biXid [21],
that describe XML-to-ASCII and XML-to-XML mappings as pairs
of intertwined grammars. While XSugar restricts itself to bijective
grammars, biXid considers nondeterministic specifications and BXs
are inherently ambiguous. Most functional bidirectional program-
ming languages are based on lenses [13, 18, 27, 28], and follow a
combinatorial style that puts special emphasis on building complex
lenses by composition of smaller combinators. Depending on the
choice of combinators, lens languages can become very powerful at
specifying application-specific behavior [1, 27, 28]. However, their
lower-level nature also induces a more cumbersome programming
style that makes it impractical and often unintuitive for users to build
non-trivial BXs by piping together several small, surgical steps.

BIFLUX features a new programming by update paradigm, that
enables the high-level syntax of relational languages such as XSugar
and biXid while providing a handful of intuitive update strategies.
Remember the huge gap between our high-level BIFLUX language
(variables, procedures) and the core lens language that gives it
semantics (canonical “point-free” combinators). In [19], we have

proposed a simple treeless functional language for writing total put
(or update) functions, such that existence of a well-behaved lens
can be checked statically, and corresponding total get (or query)
functions can be derived automatically. The most significant and
innovative difference in BIFLUX is again the declarative surface
language used to specify BXs as bidirectional update programs,
at a notably higher-level of abstraction than native put functions.
BIFLUX programs may however be partial, due to the added
expressiveness of our language.

Quotient lenses [14] propose loosening lenses modulo equiva-
lence relations, for easing the processing of ad-hoc data formats. To
enable compositional reasoning, most interesting quotient lens com-
binators (concatenation, union, iteration) require the equivalence
relations to be decomposable. At first glance, we could lift our core
lens language into quotient lenses to allow seamless composition
with (subtyping) canonizers. However, since our notion of equiv-
alence is not decomposable for ambiguous types, this would not
overcome the need for our type normalization procedures.

8. Conclusions
In this paper, we propose a novel bidirectional programming by
update paradigm that comes to light from the idea of extending
a traditional update language with bidirectional features. Under
the new paradigm, programmers write bidirectional updates that
specify how to update a source document to reflect additional
view information. We substantiate with examples that this enjoys a
better tradeoff between the expressiveness and declarativeness of the
written bidirectional programs, by allowing users to write directly,
in a friendly notation and at a nice level of abstraction, a view update
translation strategy that bundles all the pieces to build a BX.

To demonstrate the potential of this paradigm, we designed BI-
FLUX, a type-safe high-level bidirectional XML update language.
We have fully implemented BIFLUX in Haskell and the code, to-
gether with additional examples, is available from the project’s web-
site8. Our tool translates source and view DTDs into Haskell type
declarations using the HaXml package9, and interprets bidirectional
updates as bidirectional lens transformations between the given
schemas in a robust manner: the implementation of the core-to-lens
translation is strongly-typed, serving as a proof of soundness that
helped us catching early programming errors at compile-time; and
the bidirectional semantics is completely guided by an underlying
lens language, whose correctness has been shown separately in [28].
To support a flexible design, with arbitrary conditionals, case state-
ments and expressions, the statically generated lenses may undergo
runtime checks (for particular source and view documents) to ensure
that the underlying update and query functions are well-behaved.

As future work, we plan to provide more static guarantees
to BIFLUX by incorporating existing path-query static analyses,
implement more powerful pattern type inference algorithms to avoid
excessive annotations, and extend the class of bidirectional updates
that can be written by integrating user-defined lenses for defining
source and view foci. We also plan to improve the efficiency of our
prototype for large XML databases by exploring optimizations to the
underlying lens language, including incremental update translation.
To empirically study the practical impact of BIFLUX, we are
currently undergoing a larger model-based code testing use case.
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A. Type system and semantics for queries
Following FLUX, we use a variant of a µXQ, a statically typed
XQuery-like core language introduced in [9]. The main syntactic
distinction is that we divide expressions into XQuery-like expres-
sions and XPath-like paths. We do not consider attributes, but they
can be added to our type system and to our query language, by
assuming that every labeled tree has a special sorted product of
attribute-tagged atomic values that comes before regular tree content,
adapting the semantics to preserve this sortedness and evaluating
the child, dos and the attribute axes appropriately.

We interpret expressions using a judgment Γ; mx ` e : τ ⇒
λγ.v that receives an optional variable mx which indicates the
current root value of the expression. This is useful for being able
to interpret local paths like self using the same notation. We also
define a matching relation between atomic types and node tests, that
is decidable using the following rules:

string<: text() n[t ]<: n α <: node()

Figure 13 shows the rules for interpreting expressions and paths. The
auxiliary judgment Γ; mx f̀or x in τ → e : τ ′ ⇒ λγ v .v ′ iterates
over a sequence, binding the variable x to each atomic value. It reads
“in type environment Γ with optional root variable mx , iterating over
type τ by applying expression e to each atomic value labelled x
yields type τ ′, and given environment γ it evaluates source sequence
v to view sequence v ′”. Note that for-iteration does not change the
current focus (i.e., the optional root variable), consistently with the
semantics of XQuery.

We consider only one binary operation —expression equality—
and the XPath boolean function, but more built-in operations can
be added without disrupting the semantics. The more intricate
evaluation of dos is explained in [9]. The type-level function
booleanτ : τ → bool generically converts any value into a boolean
value, mimicking the semantics of XPath:

booleanbool(v) = v
booleanstring(w) = w 6= ""

booleann[τ ](n[v ]) = true

boolean()(v) = false

boolean τ (v) = false

booleanτ1|τ2(L v1) = booleanτ1(v1)
booleanτ1|τ2(R v2) = booleanτ2(v2)
booleanτ1,τ2(v1, v2) = booleanτ1(v1) ∨ booleanτ2(v2)
booleanτ∗([ ]) = false

booleanτ∗([v0, v1, . . . , vn ]) = true

booleanX (v) = booleanE(X )(v)

We restate the results for expression soundness proven in [8]:

Theorem A.1 (Expression soundness).

1. If Γ; mx ` e : τ ⇒ λγ.v and γ : Γ, then v : τ
2. If Γ; mx f̀or x in τ → e : τ ′ ⇒ λγ v .v ′, γ : Γ and v : τ , then

v ′ : τ ′.

B. Type system and semantics for patterns
Our pattern type inference algorithm, given by judgments of the
form` pat :τ ⇒ Πτ , is described in Figure 14. It is straightforward
since we require all variables to be annotated with a type. In the last
rule, we pre-compose a lens l : τ ′⇔ τ with a lens environment Πτ

as l◦<Πτ = {xi := (l◦< li , τi) | xi := (li , τi) ∈ Πτ }.

` pat : τ ⇒ Πτ ` τ : τ ⇒ ∅ ` () : ()⇒ ∅

` x as τ : τ ⇒ {x := (id, τ)}
` pat : τ ⇒ Πτ

` n[pat ] : n[τ ]⇒ in◦<Πτ

` pat1 : τ1 ⇒ Πτ1 ` pat2 : τ2 ⇒ Πτ2

` pat1, pat2 : τ1, τ2 ⇒ keepfst◦<Πτ1 ∪ keepsnd◦<Πτ2

Figure 14: Pattern type inference.

C. Type system and semantics for unidirectional
updates

The rules for interpreting in-place unidirectional updates are shown
in Figure 15. They satisfy the following soundness property.

Theorem C.1 (Unidirectional update soundness).

1. If Γ ` {τ } u {τ ′} ⇒ λγ v .v ′, γ : Γ and v : τ , then v ′ : τ ′.
2. If Γ; Πτ1 , . . . ,Πτn c̀ase {τ } {τ1 | . . . | τn } ~u {τ ′} ⇒
λγ v v1n.v

′, γ : Γ, v : τ and v1n : τ1 | . . . | τn , then v ′ : τ ′.
3. If Γ ìter {τ } u {τ ′} ⇒ λγ v .v ′, γ : Γ and v : τ , then v ′ : τ ′.

D. Core bidirectional lens language
The complete language of lenses used in the translation of our core
bidirectional language into bidirectional transformations is given
in Figures 10 and 16. These combinators are part of the language
from [28], with the exception of our specific recursive combinators
over lists that are defined as follows:

foldlist l = in◦< (id⊕ id⊗ foldlist l)◦< l
mergelist l = (in⊗ id)◦< undistl◦< (keepfst⊕ assocl)

◦< coswap◦< (id⊗mergelist l ⊕ id)◦< l

Although lists are not defined as recursive types in our type system,
some of our type normalization rules inductively decompose lists.
We overload in : τ∗⇔ (() | (τ, τ∗)) and out : (() | (τ, τ∗))⇔ τ∗

for lists.
The more interesting combinator is l1 ∪▿ l2, that returns the union

of two lenses. For instance, for lists we have unnil∪▿ uncons = out.

Constant complement lenses In bidirectional programming, keep-
ing hidden source parts unaffected by updates is known as view-
update translation under a constant complement [25], i.e., for a lens
l : τ1⇔ τ2 there is a complement function C : τ1 → τ3 that captures
all the hidden source information (in the sense that the tupled C and
Q are injective and sufficient to restore any instance of τ1) satisfying
a law C (U (v1, v2)) v C (v1). However, forcing a constant com-
plement is often too restrictive in practice, as update functions must
disallow any update that changes the complement of the original
source. For our example, any update changing the cardinality of
view titles would not be translatable to the source bookstore; only
updating the titles of existing books in-place would be allowed.

Weak constant complement lenses In BIFLUX, we encounter
many situations where we want to perform non-in-place updates
that reshape the source data to accommodate the updated view
information. For instance, even if the source database is empty,
running our example with a single view title should be able to create
a default source book; or running it with an empty view for a non-
empty database should necessarily drop the hidden source authors
of original books. Nevertheless, we still want to keep hidden source
data intact whenever possible. For this purpose, we formulate a
weaker notion of constant complement that accepts complement-
changing updates only when there is no valid source with the same
complement. The intuition is that in-place updates will preserve



Γ; mx ` e : τ ⇒ λγ.v

Γ; mx ` e : τ ⇒ λγ.v

Γ; mx ` e : bool⇒ λγ.booleanτ (v)

Γ; mx ` e : τ ⇒ λγ.v ` τ <: τ ′ ⇒ c

Γ; mx ` e : τ ′ ⇒ λγ.ucast c v

Γ; mx ` e : τ ⇒ λγ.v

Γ; mx ` n[e] : n[τ ]⇒ λγ.n[v ]

Γ; mx ` e1 : τ1 ⇒ λγ.v1 Γ; mx ` e2 : τ2 ⇒ λγ.v2

Γ; mx ` e1, e2 : τ1, τ2 ⇒ λγ.(v1, v2)

Γ; mx ` e1 : τ1 ` pat : τpat ⇒ Πτpat ` τ1 <: τpat ⇒ c
Γ ∪ Πpat ` e2 : τ2 ⇒ λγ ∪ γucastc v1,Πτpat

.v2

Γ; mx ` let pat = e1 in e2:⇒ λγ.v2

Γ; mx ` e1 : τ1 ⇒ λγ.v1 Γ; mx ` e2 : τ2 ⇒ λγ.v2 τ1 =: τ2
Γ; mx ` e1 = e2 : bool⇒ λγ.v1 ∼ v2

Γ; mx ` e : τ ⇒ λγ.v

Γ; mx ` boolean(e) : bool⇒ λγ.booleanτ (v)

Γ; mx ` e : bool⇒ λγ.v Γ; mx ` e1 : τ1 ⇒ λγ.v1 Γ; mx ` e2 : τ2 ⇒ λγ.v2

Γ; mx ` if e then e1 else e2 : τ1 | τ2 ⇒ λγ. if v then L v1 else R v2

Γ; mx ` e : ()⇒ λγ.()

Γ; mx ` where e : ()⇒ λγ.()

Γ; mx ` e : τ ⇒ λγ.v Γ; mx f̀or x in τ → e : τ ′ ⇒ λγ v .v ′

Γ; mx ` for x in e return e ′ : τ ′ ⇒ λγ.v ′
Γ; mx ` if e then self else () : τ ⇒ λγ.v

Γ; mx ` where e : ()⇒ λγ.v

Γ; mx ` () : ()⇒ λγ.() Γ; mx ` w : string⇒ λγ.w Γ; mx ` true : bool⇒ λγ.true Γ; mx ` false : bool⇒ λγ.false

x ∈ dom(Γ)

Γ; mx ` x : Γ(x )⇒ λγ.γ(x )

Γ; x ` x : τ ⇒ λγ.v

Γ; x ` self : τ ⇒ λγ.v

Γ; x ` x : n[τ ]⇒ λγ.n[v ]

Γ; x ` child : τ ⇒ λγ.v

Γ; x ` x : α⇒ λγ.t α <: nt

Γ; x ` ::nt : α⇒ λγ.t

Γ; x ` x : α⇒ λγ.t α��<: nt

Γ; x ` ::nt : ()⇒ λγ.()

Γ; x ` x : τ ⇒ λγ.v Γ; τ ` p : τ ′ ⇒ λγ v .v ′

Γ; mx ` x / p : ()⇒ λγ.v

Γ; mx ` p1 : τ1 ⇒ λγ.v1 x /∈ dom(Γ)
Γ; mx f̀or x in τ1 → x / p2 : τ2 ⇒ λγ v1.v2

Γ; mx ` p1 / p2 : τ2 ⇒ λγ.v2

Γ; mx f̀or x in τ → e : τ ′ ⇒ λγ v .v ′

Γ; mx f̀or x in ()→ e : ()⇒ λγ ().()

Γ; mx f̀or x in τ → e : τ ′ ⇒ λγ vi .v
′
i

Γ; mx f̀or x in τ∗ → e : τ ′∗ ⇒ λγ [v1, . . . , vn ].[v ′1, . . . , v
′
n ]

Γ; mx f̀or x in τ1 → e : τ ′1 ⇒ λγ v1.v
′
1

Γ; mx f̀or x in τ2 → e : τ ′2 ⇒ λγ v2.v
′
2

Γ; mx f̀or x in τ1, τ2 → e : τ ′1, τ
′
2 ⇒ λγ (v1, v2).(v ′1, v

′
2)

Γ; mx f̀or x in E(X )→ e : τ ′ ⇒ λγ v .v ′

Γ; mx f̀or x in X → e : τ ′ ⇒ λγ v .v ′

Γ; mx f̀or x in τ1 → e : τ ′1 ⇒ λγ v1.v
′
1

Γ; mx f̀or x in τ2 → e : τ ′2 ⇒ λγ v2.v
′
2

Γ; mx f̀or x in τ1 | τ2 → e : τ ′1 | τ ′2 ⇒ λγ v . case v of {L v1 → L v ′1; R v2 → R v ′2}
Γ[x : α]; mx ` e : τ ′ ⇒ λγ[x := t ].v ′

Γ; mx f̀or x in α→ e : τ ′ ⇒ λγ t .v ′

Figure 13: Expression and path well-formedness and semantics.

the complement, while non-in-place updates may not. For our
example, the authors associated with titles in the view should be
kept unchanged, whereas non-associated authors could be lost.

For each lens l : τ1⇔Γ τ2 used in our source normalization
procedure, we can define a complement type τ3 and a complement
function Cl : τ1 → τ3 by induction over the lens expressions, as
shown in Figure 17. The complement functions for foldlist l and
mergelist l follow the same recursive structure as their argument
lenses, and terminate whenever the corresponding recursive query
functions terminate.

Theorem D.1. For a source normalization normS(τ1) = (τ2, l)
the lens l weakly preserves a constant complement function C :τ1 →
τ3, defined by induction over l in Figure 17, in the following sense:

(∃v′1. C v′1 = C v1 ∧Q v′1 = v2)⇒ C (U (v1, v2)) v C v1

E. Type system and semantics for bidirectional
updates

The complete set of rules for interpreting bidirectional updates
is shown in Figures 11 and 18. Note that source arguments of
procedures make use of unfork to apply distinct paths in parallel to
the current source. We believe that the dynamic checking performed

by unfork could be prevented by applying existing techniques for
checking XPath-like path disjointness at static time [6]. Bidirectional
updates obey the following soudness property.

Theorem E.1 (Bidirectional update soundness).

1. If Γ; Π ` {τ } s {ν} ⇒ l , then l : τ⇔Γ ν.
2. If Γ; Πτ ; Πτ1 , . . . ,Πτn ; f c̀aseS {τ } {τ1 | . . . | τn } ~s {ν} ⇒

l and f : τ → τ1 | . . . | τn , then l : τ⇔Γ ν.
3. If Γ; Πτ c̀aseV {τ } ~s {ν} {ν1 | . . . | νn } ⇒ l , then

l : τ⇔Γ (ν1 | . . . | νn).
4. If Γ; Πτ ; Πτ1 , . . . ,Πτn ; f c̀ase {τ } {τ1 | . . . | τn } ~s {ν} ⇒

l and f : τ → τ1 | . . . | τn , then l : τ⇔Γ ν.
5. If Πτ p̀rocS {τ } ~p {νs } ⇒ l , then l : τ⇔ νs .
6. If Γ p̀rocV {νv } ~e {ν} ⇒ l , then l : νv⇔Γ ν.

Create and recover statements can be interpreted unidirectionally
as shown in Figures 11 and 19. They satisfy similar soudness
properties as those for unidirectional updates.

Theorem E.2 (Create and recover statement soudness).

1. If Γ c̀reate {τ2} c {τ ′1} ⇒ λmγ v2.v1, γ : Γ and v2 : τ2, then
v1 : τ1.



Γ ` {τ } u {τ ′} ⇒ λγ v .v ′

Γ ` {τ1} u {τ ′2} ⇒ λγ v1.v
′
2 ` τ ′2 <: τ2 ⇒ c

Γ ` {τ1} u {τ2} ⇒ λγ v1.ucastc v ′2

Γ ` {τ1} u {τ2} ⇒ λγ v1.v2 Γ ` {τ2} u ′ {τ3} ⇒ λγ v2.v3

Γ ` {τ1} u; u ′ {τ3} ⇒ λγ v1.v3

Γ ` {τ1} skip {τ1} ⇒ λγ v1.v1

Γ ` {()} u {τ2} ⇒ λγ ().v2

Γ ` {τ1} left[u] {τ2, τ1} ⇒ λγ v1.(v2, v1)

Γ ` {()} u {τ2} ⇒ λγ ().v2

Γ ` {τ1} right[u] {τ1, τ2} ⇒ λγ v1.(v1, v2)

Γ ` {τ } u {τ ′} ⇒ λγ v .v ′

Γ ` {n[τ ]} children[u] {n[τ ′]} ⇒ λγ n[v ].n[v ′]

Γ; · ` e : τ ⇒ λγ.v

Γ ` {()} insert e {τ } ⇒ λγ ().v Γ ` {τ } delete {()} ⇒ λγ v .()

Γ; τ ` e : bool⇒ λγ v .v ′ Γ ` {τ } u {τ1} ⇒ λγ v .v1 Γ ` {τ } u {τ2} ⇒ λγ v .v2

Γ ` {τ } if e then u else u ′ {τ1 | τ2} ⇒ λγ v . if v ′ then L v1 else R v2

Γ; τ ` e : τ ′ ⇒ λγ v .v ′ ` pat1 : τ1 ⇒ Πτ1 ` patn : τn ⇒ Πτn τ ′ <: τ1 | . . . | τn ⇒ c
Γ; Πτ1 , . . . ,Πτn c̀ase {τ ′} {τ1 | . . . | τn } ~u {τ ′′} ⇒ λγ v ′ (ucastc v ′).v ′′

Γ ` {τ } case e of ~pat → ~u { } ⇒ λγ v .v ′′

Γ ` {τ } u {τ ′} ⇒ λγ v .v ′

Γ ` {τ } self[u] {τ ′} ⇒ λγ v .v ′
Γ ìter {τ } u {τ ′} ⇒ λγ v .v ′

Γ ` {n[τ ]} child[u] {τ ′} ⇒ λγ n[v ].n[v ′]

Γ ` {τ } p[p′[u]] {τ ′} ⇒ λγ v .v ′

Γ ` {τ } p / p′[u] {τ ′} ⇒ λγ v .v ′

α <: nt Γ ` {τ } u {τ ′} ⇒ λγ v .v ′

Γ ` {α} (::nt)[u] {τ ′} ⇒ λγ v .v ′
α��<: nt

Γ ` {α} (::nt)[u] {τ } ⇒ λγ v .v

Γ ` {τ } if e then u else skip {τ ′} ⇒ λγ v .v ′

Γ ` {τ } (where e)[u] {τ ′} ⇒ λγ v .v ′

Γ; Πτ1 , . . . ,Πτn c̀ase {τ } {τ1 | . . . | τn } ~u {τ ′} ⇒ λγ v v1n.v
′

Γ ∪ Πτ1 ` {τ } u1 {τ1} ⇒ λγv,Πτ1
v .v ′1

Γ; Πτ1 ; f c̀ase {τ } {τ1} ~u {τ ′} ⇒ λγ v v1.v ′1

Γ; Πτ1 c̀ase {τ } {τ1} u1 {τ ′1} ⇒ λγ v v1.v
′
1 Γ; Πτ2 , . . . ,Πτn c̀ase {τ } {τ2 | . . . | τn } u2, . . . , un {τ ′2} ⇒ λγ v v2.v

′
2

Γ; Πτ1 ,Πτ2 , . . . ,Πτn ; f c̀ase {τ } {τ1 | τ2 | . . . | τn } ~u {τ ′} ⇒ λγ v v1n.case v1n of {L v1 → v ′1; R v2 → v ′2}

Γ ìter {τ } u {τ ′} ⇒ λγ v .v ′

Γ ìter {()} u {()} ⇒ λγ ().()

Γ ìter {τ } u {τ ′} ⇒ λγ vi .v
′
i

Γ ìter {τ∗} u {τ ′∗} ⇒ λγ [v1, . . . , vn ].[v ′1, . . . , v
′
n ]

Γ ìter {τ1} u {τ ′1} ⇒ λγ v1.v
′
1 Γ ìter {τ2} u {τ ′2} ⇒ λγ v2.v

′
2

Γ ìter {τ1, τ2} u {τ ′1, τ ′2} ⇒ λγ (v1, v2).(v ′1, v
′
2)

Γ ` {α} u {τ } ⇒ λγ t .v

Γ ìter {α} u {τ } ⇒ λγ t .v

Γ ìter {τ1} u {τ ′1} ⇒ λγ v1.v
′
1 Γ ìter {τ2} u {τ ′2} ⇒ λγ v2.v

′
2

Γ ìter {τ1 | τ2} u {τ ′1 | τ ′2} ⇒ λγ v . case v of {L v1 → L v ′1; R v2 → R v ′2}
Γ ìter {E(X )} u {τ ′} ⇒ λγ v .v ′

Γ ìter {X } u {τ ′} ⇒ λγ v .v ′

Figure 15: In-place update well-formedness and semantics.

2. If Γ r̀ecover r {τ } ⇒ λγ v .mv , γ : Γ and v : τ , then
mv : Maybe τ .

3. If Γ; Πτ1 , . . . ,Πτn `caserecover {τ1 | . . . | τn } ~r {τ } ⇒
λγ v v1n.mv , γ : Γ, v : τ and v1n : τ1 | . . . | τn , then
mv : Maybe τ .

F. Type system and semantics for source paths as
lenses

In our core bidirectional language, source paths that change the
current source focus of a bidirectional update need to be evaluated
as lenses (Figure 20), so that they can propagate arbitrary view
updates to the source. Not every source path can be interpreted as a
lens; for example, we exclude the descendant-or-self axis, for which
it is hard to statically provide a precise view type [9]. We also do
not consider here the conversion of built-in functions to lenses. We
evaluate source paths as lenses using a judgment that receives only

the lens environment of source variables:
Πτ S̀ {τ } p {τ ′} ⇒ λγ.l1 f1 v = γv,Πτ f2 γ = l1

Πτ S̀ {τ } p {τ ′} ⇒ param f1 f2

and initializes a more complicated judgment Γ S̀ {τ } p {τ ′} ⇒
λγ.l with the source environment.

Soundness can be proved in the usual way:

Theorem F.1 (Source path as lens soundness).

1. If Πτ S̀ {τ } p {τ ′} ⇒ l , then l : τ⇔ τ ′.
2. If Γ S̀ {τ } p {τ ′} ⇒ λγ.l and γ : Γ, then l : τ⇔ τ ′.
3. If Γ`iterS {τ } p {τ ′} ⇒ λγ.l and γ : Γ, then l : τ⇔ τ ′.

G. Type system and semantics for non-source
expressions as lenses

In the opposite direction to source paths, in our core bidirectional
language we may apply non-source expressions (expressions that
may use regular variables or view variables) to change the current



out : τ⇔Γ n[τ ] remsndone : τ⇔Γ (τ, ())
param : (τ1 → a)→ (a → τ1⇔Γ τ2)→ (τ1⇔Γ τ2) remfstone : τ⇔Γ ((), τ)
⊗ : (τ1⇔Γ τ3)→ (τ2⇔Γ τ4)→ ((τ1, τ2)⇔Γ (τ3, τ4)) assocl : ((τ1, τ2), τ3)⇔Γ (τ1, (τ2, τ3))
⊕ : (τ1⇔Γ τ3)→ (τ2⇔Γ τ4)→ ((τ1 | τ2)⇔Γ (τ3 | τ4)) assocr : (τ1, (τ2, τ3))⇔Γ ((τ1, τ2), τ3)

eitherS : (τ → bool)→ (τ⇔Γ (τ | τ)) coswap : (τ1 | τ2)⇔Γ (τ2 | τ1)

∪▿ : (τ1⇔Γ τ3)→ (τ2⇔Γ τ3)→ ((τ1 | τ2)⇔Γ τ3) distl : ((τ1, τ3) | (τ2, τ3))⇔Γ ((τ1 | τ2), τ3)
injl : (τ1 | τ2)⇔Γ τ1 undistl : ((τ1 | τ2), τ3)⇔Γ ((τ1, τ3) | (τ2, τ3))

uninjl : τ1⇔Γ (τ1 | τ2) unnil : ()⇔Γ τ
∗

injr : (τ1 | τ2)⇔Γ τ2 uncons : (τ, τ∗)⇔Γ τ
∗

uninjr : τ2⇔Γ (τ1 | τ2) unwrap : τ⇔Γ τ
∗

ignore : τ → (()⇔Γ τ) foldlist : ((() | (τ1, τ2))⇔Γ τ2)→ (τ1
∗⇔Γ τ2)

new : τ1 → (τ1⇔Γ ()) mergelist : (((τ1, τ3) | τ2)⇔Γ τ3)→ ((τ1
∗, τ2)⇔Γ τ3)

•∇ : (τ⇔Γ τ1)→ (τ⇔Γ τ2)→ (τ⇔Γ (τ1 | τ2))

Figure 16: Language of put-based point-free lenses for translating core bidirectional updates.

Cid(v) = () Ckeep(v) = v
Cin(v) = () Ckeepfst(v1, v2) = v1

Cout(v) = () Ckeepsnd(v1, v2) = v2

Cassocl(v) = () C(l1◦< l2)(v) = (Cl1(v),Cl2(Ql1(v)))
Cassocr(v) = () C(l1 ⊗ l2)(v1, v2) = (Cl1(v1),Cl2(v2))
Cdistl(v) = () C(l1 ⊕ l2)(L v1) = L(Cl1(v1))
Cundistl(v) = () C(l1 ⊕ l2)(R v2) = R(Cl2(v2))
Cinjl(v) = () C(eitherS p l1 l2)(v) = if (p v) then L Cl1(v) else R Cl2(v)
Cuninjl(v) = () C(l1 •∇ l2)(v) = if (v ∈ dom(Ql1)) then L Cl1(v) else R Cl2(v)
Cinjr(v) = () C(l1∪▿ l2)(L v1) = L Cl1(v1)
Cuninjr(v) = () C(l1∪▿ l2)(R v12 ) = R Cl2(v2)
Cunnil(v) = () C(ignore v′)(()) = ()
Cuncons(v) = () C(ignore v′)(v) = v
Cunwrap(v) = () C(foldlist l)(v) = C(in◦< (id ⊕ id⊗ foldlist l)◦< l)(v)
Ccoswap(v) = () C(mergelist l)(v) = C((in⊗ id)◦< undistl◦< (keepfst⊕ assocl)◦< coswap◦< (id⊗mergelist l ⊕ id)◦< l)(v)

Figure 17: Complement function.

view focus. These expressions are useful for building tree structures
that match the source types using view variables, and need to be
interpreted as lenses from their result type to the current view.
To ensure that no view information is lost, not every non-source
expression can be evaluated as lenses. For instance, it needs to
use all view variables and shall only contain injective paths that
follow the structure of the view type; note how there is no rule for
Γ V̀ {α} :: nt {α} ⇒ l whenever the nodetest nt does not match
the view type α.

, and must match the structure of the view (note that). The
corresponding rules to interpret non-source expressions as lenses
are given in Figure 21. When performing pattern matching on views,
for instance when evaluating non-source expressions, we need to
guarantee that, unlike source patterns that may not bind variables
to all the source values, all view information must be present in
the patterns variables. We also need to interpret view patterns as
“reversed” lenses (Figure 22).

The interpretation of non-source expressions can be summarized
by the following theorem:

Theorem G.1 (Non-source expression as lens soundness).

1. If Γ V̀ {τ } e {ν} ⇒ l , then l : τ⇔Γ ν.
2. If Γ V̀ {τ ′} p {τ } ⇒ l , then l : τ ′⇔Γ τ .
3. If Γ; x `forV {τ ′} e {τ } ⇒ l , then l : τ ′⇔Γ τ .

V̀ pat : τ ⇒ ν; l

V̀ x as τ : τ ⇒ x : τ ; id

V̀ () : ()⇒ (); id

V̀ pat : τ ⇒ ν; l

V̀ n[pat ] : n[τ ]⇒ ν; l◦< out

V̀ pat1 : τ1 ⇒ ν1; l1 V̀ pat2 : τ2 ⇒ ν2; l2 ` ν1 · ν2 ⇒ ν; l

V̀ pat1, pat2 : τ1, τ2 ⇒ ν; l◦< (l1⊗ l2)

Figure 22: View pattern type inference and lens semantics.

4. If V̀ pat : τ ⇒ ν; l , then l : τ⇔ν ·.

H. Source and view type normalization
procedures

In this section we describe in more detail our source and view nor-
malization procedures that attempt to simplify ambiguous regular
expression types into unambiguous ones. Simplifying regular ex-
pressions and regular expression types into equivalent unambiguous



Γ; Π ` {τ } s {ν} ⇒ l

listifyS(τ) = (τ1, l1) listifyV (τ ′) = (τ2, l2) Γ[xV : τ2]; ∅ ` {τ1} b {xV : τ2} ⇒ l
Γ; τ1 ` ps : τ ′1 ⇒ f1 Γ; τ2 ` pv : τ ′2 ⇒ f2 τ1 =: τ2

∅ S̀ e : bool⇒ fe Γ c̀reate {τ2} c {τ1} ⇒ mf c Γ r̀ecover r {τ } ⇒ fr f mv s vv γ = γ[xV := vv ]

Γ; Πτ ` {τ } alignkey e b ps pv c r {xV : τ ′} ⇒ l1◦< alignkey f1 f2 (λv1 v2.v1 ∼ v2) fe mf c fr (withEnv f l)◦< l2

Πτ S̀ {τ } p {τ ′} ⇒ lp ` pat1 : τ1 ⇒ Πτ1 . . . ` patn : τn ⇒ Πτn

` τ <: τ1 | . . . | τn ⇒ c
Γ; Πτ ; Πτ1 , . . . ,Πτn ; ucastc c̀aseS {τ } {τ1 | . . . | τn } ~s {ν} ⇒ l

Γ; Πτ ` {τ } caseS p of ~pat → ~s {ν} ⇒ l

split(ν, vars(e), vars(ν)\vars(e)) = (ν1, ν2, l12) Γ V̀ {τ ′} e {ν1} ⇒ le
V̀ pat1 : τ1 ⇒ ν′1; l′1 . . . ` patn : τn ⇒ ν′n ; l ′n ` τ ′ 6 (τ1 | . . . | τn)⇒ l ′

Γ; Πτ c̀aseV {τ } ~s {ν2} {ν′1 | . . . | ν′n } ⇒ l

Γ; Πτ ` {τ } caseV e of ~pat → ~s {ν} ⇒ l◦< ((l′1⊕ . . . ⊕ l ′n)◦< l ′◦< le ⊗ id))◦< l12

Γ; τ ` e : τ ′ ⇒ λγ v .v ′ ` pat1 : τ1 ⇒ Πτ1 . . . ` patn : τn ⇒ Πτn

` τ ′ <: τ1 | . . . | τn ⇒ c Γ; Πτ ; Πτ1 , . . . ,Πτn ; ucastc c̀ase {τ } {τ1 | . . . | τn } ~s {ν} ⇒ l

Γ; Πτ ` {τ } case e of ~pat → ~s {ν} ⇒ l

Γ; Πτ ; Πτ1 , . . . ,Πτn ; f c̀aseS {τ } {τ1 | . . . | τn } ~s {ν} ⇒ l

Γ ∪ Πτ1 ; Πτ ∪ Πτ1 ` {τ } s1 {ν} ⇒ l1 f1 vs vv γ = γ ∪ γvs ,Πτ1

Γ; Πτ ; Πτ1 ; f c̀aseS {τ } {τ1} ~s {ν} ⇒ withEnv f1 l1

Γ; Πτ ; Πτ1 ; f1 c̀aseS {τ } {τ1} s1 {ν} ⇒ l1 f1 v1 = case f γ1 v1 of L v ′1 → v ′1
Γ; Πτ ; Πτ2 , . . . ,Πτn ; f2 c̀aseS {τ } {τ2 | . . . | τn } s2, . . . , sn {ν} ⇒ l2 f2 v2 = case f v2 of L v ′2 → v ′2

f12 vs = case f vs of {L v ′1 → true,R v ′2 → false}
Γ; Πτ ; Πτ1 ,Πτ2 , . . . ,Πτn ; f c̀aseS {τ } {τ1 | τ2 | . . . | τn } ~s {ν} ⇒ ifSthenelse f12 l1 l2

Γ; Πτ c̀aseV {τ } ~s {ν} {ν1 | . . . | νn } ⇒ l

Γ ∪ Γν1 ; Πτ ` {τ } s1 {ν1, ν} ⇒ l1 f1 mv s (v1, vv ) γ = γv1:ν1

Γ; Πτ c̀aseV {τ } ~s {ν} {ν1} ⇒ withEnv f1 l1◦< l

Γ; Πτ c̀aseV {τ } s1 {ν} {ν1} ⇒ l1 Γ; Πτ c̀aseV {τ } s2, . . . , sn {ν} {ν2 | . . . | νn } ⇒ l2

Γ; Πτ c̀aseV {τ } ~s {ν} {ν1 | ν2 | . . . | νn } ⇒ (l1 •∇ l2)◦< distl

Γ; Πτ ; Πτ1 , . . . ,Πτn ; f c̀ase {τ } {τ1 | . . . | τn } ~s {ν} ⇒ l

Γ ∪ Πτ1 ; Πτ ` {τ } s1 {ν} ⇒ l1 f1 vs vv γ = γ ∪ γf γ vs ,Πτ1

Γ; Πτ ; Πτ1 ; f c̀ase {τ } {τ1} ~s {ν} ⇒ withEnv f1 l1

Γ; Πτ ; Πτ1 ; f1 c̀ase {τ } {τ1} s1 {ν} ⇒ l1 f1 v1 = case f v1 of {L v ′1 → v ′1}
Γ; Πτ ; Πτ2 , . . . ,Πτn ; f2 c̀ase {τ } {τ2 | . . . | τn } s2, . . . , sn {ν} ⇒ l2 f2 v2 = case f v2 of {R v ′2 → v ′2}

f12 vs vv γ = case f vs of {L v ′1 → true,R v ′2 → false}
Γ; Πτ ; Πτ1 ,Πτ2 , . . . ,Πτn ; f c̀ase {τ } {τ1 | τ2 | . . . | τn } ~s {ν} ⇒ ifthenelse f12 l1 l2

Πτ p̀rocS {τ } ~p {νs } ⇒ l

Πτ S̀ {τ } p1 {τ ′1} ⇒ l1 ` τ1 6 τ ′1 ⇒ l′1
Πτ p̀rocS {τ } p1 {x1 : τ1} ⇒ l1◦< l′1

Πτ p̀rocS {τ } p1 {x1 : τ1} ⇒ l1 Πτ p̀rocS {τ } p2, . . . , pn {ν2} ⇒ l2
Πτ p̀rocS {τ } p1, p2, . . . , pn {x1 : τ1, ν2} ⇒ unfork l1 l2

Γ p̀rocV {νv } ~e {ν} ⇒ l

Γ p̀rocV {()} · {()} ⇒ id

Γ V̀ {τ ′1} e1 {ν} ⇒ l1 ` τ ′1 6 τ1 ⇒ l′1
Γ p̀rocV {x1 : τ1} e1 {ν} ⇒ l′1◦< l1

split(ν, vars(e1), vars(e2, . . . , en)) = (ν′1, ν
′
2, l12) Γ p̀rocV {x1 : τ1} e1 {ν′1} ⇒ l1 Γ p̀rocV {ν2} e2, . . . , en {ν′2} ⇒ l2

Γ p̀rocV {x1 : τ1, ν2} e1, e2, . . . , en {ν} ⇒ (l1⊗ l2)◦< l12

Figure 18: Statement well-formedness and lens semantics for key alignment, case expressions and procedure arguments.



Γ r̀ecover r {τ } ⇒ λγ v .mv

Γ[x : τ ]; x ` e : τ ′ ⇒ λγ[x := v ].v ′ ` pat1 : τ1 ⇒ Πτ1 . . . ` patn : τn ⇒ Πτn ` τ ′ <: τ1 | . . . | τn ⇒ c
Γ; Πτ1 , . . . ,Πτn c̀ase {τ1 | . . . | τn } ~r {τ } ⇒ λγ v (ucastc v ′).mv

Γ`caserecover case e of ~pat → ~r {τ } ⇒ λγ v .mv

Γ; Πτ1 , . . . ,Πτn `
case
recover {τ1 | . . . | τn } ~r {τ } ⇒ λγ v v1n.mv

Γ ∪ Πτ1 ` {τ } r1 ⇒ λγ ∪ γv1,Πτ1
v .mv

Γ; Πτ1 `caserecover {τ1} ~r {τ } ⇒ λγ v1 v .mv

Γ; Πτ1 `caserecover {τ1} r1 ⇒ λγ v v1.mv ′ Γ; Πτ2 , . . . ,Πτn `caserecover {τ2 | . . . | τn } r2, . . . , rn ⇒ λγ v2 v .mv ′′

Γ; Πτ1 ,Πτ2 , . . . ,Πτn `caserecover {τ1 | τ2 | . . . | τn } ~r {τ } ⇒ λγ v v1n. case v1n of {L v1 → mv ′; R v2 → mv ′′}

Figure 19: Recover statement well-formedness and semantics for case expressions.

Γ S̀ {τ } p {τ ′} ⇒ λγ.l

Γ S̀ {τ } self {τ } ⇒ λγ.id Γ S̀ {n[τ ]} child {τ } ⇒ λγ.in

α <: nt

Γ S̀ {α} :: nt {α} ⇒ λγ.id

α��<: nt

Γ S̀ {α} :: nt { α } ⇒ λγ.id

Γ; τ ` e : ()⇒ λγ v .()

Γ S̀ {τ } where e { τ } ⇒ λγ.id

Γ; τ ` e : bool⇒ λγ v .vb

Γ S̀ {τ } where e {τ | τ } ⇒ λγ.eitherS (λv .vb) id id

Γ S̀ {τ } p1 {τ1} ⇒ λγ.l1 Γ`iterS {τ1} p2 {τ2} ⇒ λγ.l2
Γ S̀ {τ } p1 / p2 {τ ′} ⇒ λγ.l1◦< l2

x : τ ′ ∈ Γ

Γ S̀ {τ } x {τ ′} ⇒ λγ.keep◦< ignore γ(x )

Γ S̀ {τ } w {string} ⇒ λγ.keep◦< ignore w Γ S̀ {τ } b {bool} ⇒ λγ.keep◦< ignore b

Γ`iterS {τ } p {τ ′} ⇒ λγ.l

Γ`iterS {()} p {()} ⇒ λγ.id

Γ S̀ {α} p {τ ′} ⇒ λγ.l

Γ`iterS {α} p {τ ′} ⇒ λγ.l

Γ`iterS {τ } p {τ ′} ⇒ λγ.l

Γ`iterS {τ∗} p {τ ′∗} ⇒ λγ.map l

Γ`iterS {τ1} p {τ ′1} ⇒ λγ.l1
Γ`iterS {τ2} p {τ ′2} ⇒ λγ.l2

Γ`iterS {τ1, τ2} p {τ ′1, τ ′2} ⇒ λγ.l1⊗ l2

Γ`iterS {τ1} p {τ ′1} ⇒ λγ.l1
Γ`iterS {τ2} p {τ ′2} ⇒ λγ.l2

Γ`iterS {τ1 | τ2} p {τ ′1 | τ ′2} ⇒ λγ.l1⊕ l2
Γ`iterS {E(X )} p {τ ′} ⇒ λγ.l

Γ`iterS {X } p {τ ′∗} ⇒ λγ.map l

Figure 20: Source path well-formedness and semantics as lenses.

expressions is often done by translating them into string and tree
automata, respectively, applying standard automata algorithms to
minize their numbers of transitions and states of the automata, and
converting them back into equivalent regular language representa-
tions [10, 31]. The added difficulty in our case is that we not only
want to normalize the types, but to produce a lens between the origi-
nal and the normalized type that can convert between both, while
preserving the additional markup present in values of the original
ambiguous types.

We define our source normalization procedure normS in two
phases. We first simplify the source type into an equivalent unam-
biguous type using miscellaneous automata techniques, check that
the simplified type is unambiguous and then infer a corresponding
lens between both types, as follows:

simplify τ into τ0 τ0 unambiguous τ τ0 = l

normS(τ) = (l , τ0)

We shall focus our attention on the new τ τ ′ = l step, that
is the main emphasis of our approach. The algorithm expressed by
the derivations from Figure 23 proceeds by attempting to identify

leftmost atomic values in the original type and then invokes a
“division” judgment τ/β = (l , τR) that decomposes a type τ into a
product β, τR.

To simplify our approach, in our algorithms we treat type
variables as atomic types by defining β ::= α | X and assume that
the simplification does not expand type variables (but still expect
that the type is unambiguous in the usual sense). We also treat
marked types τ in exactly the same way as the empty type. During
derivations of the form τ τ ′, we maintain the invariants that τ ′ is
unambiguous and that τ <: τ ′ holds.

As a technical detail, in the derivation of (τ1 | τ2), τ3 τ ′ we
use the function splitEmpty to restructure a choice type τ1 | τ2
into an equivalent type τne | τe that decomposes the original type
into a sum of non-empty choices τne to the left and empty choices
τe to the right. This does not affect the forward transformation of
the lens, but ensures that the backward transformation of the lens
always gives priority to consuming part of a target value when given
a choice (since we know that for rules of the kind τ1, τ2 τ3 the
type τ1 corresponds to the leftmost part of the view τ3), instead of
generating redundant markup.



Γ V̀ {τ } e {ν} ⇒ l

Γ V̀ {()} () {()} ⇒ id

Γ V̀ {τ } e {ν} ⇒ l

Γ V̀ {n[τ ]} n[e] {ν} ⇒ in◦< l Γ V̀ {τ ′} x {x : τ ′} ⇒ id

Γ V̀ {τ } p {τ ′} ⇒ l

Γ V̀ {τ } x / p {x : τ ′} ⇒ l

split(ν, vars(e1), vars(e2)) = (ν1, ν2, l12)
Γ V̀ {τ1} e1 {ν1} ⇒ l1 Γ V̀ {τ2} e2 {ν2} ⇒ l2

Γ V̀ {τ1, τ2} e1, e2 {ν} ⇒ (l1⊗ l2)◦< l12

split(ν, vars(e), vars(ν)\vars(e)) = (ν1, ν2, l12)
Γ V̀ {τ1} e {ν1} ⇒ l1 V̀ pat : τ ′1 ⇒ ν′1; l′1 ` τ1 6 τ ′1 ⇒ l ′

Γ V̀ {τ2} e2 {ν′1, ν2} ⇒ l2

Γ V̀ {τ2} let pat = e1 in e2 {ν} ⇒ l2◦< (l′1◦< l ′◦< l1⊗ id)◦< l12

ν V̀ e : bool⇒ f Γ V̀ {τ1} e1 {ν} ⇒ l1 Γ V̀ {τ2} e2 {ν} ⇒ l2 τ1 | τ2 unambiguous
Γ V̀ {τ } if e then e1 else e2 {ν} ⇒ ifVthenelse f (injl◦< l1) (injr◦< l2)

ν V̀ e : bool⇒ f Γ V̀ {τ1} e1 {ν} ⇒ l1 Γ V̀ {τ2} e2 {ν} ⇒ l2 ` (τ1 6 τ2)⇒ l

Γ V̀ {τ } if e then e1 else e2 {ν} ⇒ ifVthenelse f (l◦< l1) l2

ν V̀ e : bool⇒ f Γ V̀ {τ1} e1 {ν} ⇒ l1 Γ V̀ {τ2} e2 {ν} ⇒ l2 ` (τ2 6 τ1)⇒ l τ1 ��<: τ2

Γ V̀ {τ } if e then e1 else e2 {ν} ⇒ ifVthenelse f l1 (l◦< l2)

Γ V̀ {τ } e {ν} ⇒ l1 Γ; x `forV {τ ′} e {τ } ⇒ l2
Γ V̀ {τ ′} for x in e return e ′ {ν} ⇒ l2◦< l1

Γ V̀ {string} w {()} ⇒ new w Γ V̀ {bool} true {()} ⇒ new true Γ V̀ {bool} false {()} ⇒ new false

Γ V̀ {τ ′} p {τ } ⇒ l

Γ V̀ {τ2} self {τ2} ⇒ id Γ V̀ {τ } child {n[τ ]} ⇒ out

∅; τ ` e : bool⇒ λ∅ v .vb

Γ V̀ {τ } where e {τ } ⇒ ifVthenelse (λv .vb) id bot

α <: nt

Γ V̀ {α} :: nt {α} ⇒ id

Γ V̀ {τ1} p1 {τ } ⇒ l1 x /∈ dom(Γ) Γ; x `forV {τ2} x / p2 {τ1} ⇒ l2
Γ V̀ {τ2} p1 / p2 {τ } ⇒ l2◦< l1

Γ; x `forV {τ ′} e {τ } ⇒ l

Γ; x `forV {()} e {()} ⇒ id

Γ[x : α] V̀ {τ ′} e {x : α} ⇒ l f vs vv γ = γ[x := vv ]

Γ; x `forV {τ ′} e {α} ⇒ withEnv f l

Γ; x `forV {τ ′1} e {τ2} ⇒ l1 Γ; x `forV {τ ′1} e {τ2} ⇒ l2

Γ; x `forV {τ ′1, τ ′2} e {τ1, τ2} ⇒ l1⊗ l2
Γ; x `forV {τ ′} e {τ } ⇒ l

Γ; x `forV {τ ′∗} e {τ∗} ⇒ map l

Γ; x `forV {τ ′1} e {τ2} ⇒ l1 Γ; x `forV {τ ′1} e {τ2} ⇒ l2

Γ; x `forV {τ ′1 | τ ′2} e {τ1 | τ2} ⇒ l1⊕ l2
Γ; x `forV {τ } e {E(X )} ⇒ l

Γ; x `forV {τ } e {X } ⇒ l

Figure 21: Non-source expression well-formedness and lens semantics.

Our view normalization procedure normV is much simpler and
only attempts to remove some empty tags from the view (Figure 24),
because the normalized type needs to preserve all the information in
the original type, including additional markup for ambiguous types.
In fact, when normV succeeds the normalized type is isomorphic
(in terms of plain algebraic data types) to the original type. In
practice, this is not overly restrictive for our examples, given that
the view is always a product of variables and assuming that the type
inferred from the view DTD is normalized.

Theorem H.1 (Source and update normalization soundness).

1. If normS(τ) = (l , τ ′), then τ =: τ ′, τ ′ is unambiguous and
l : τ⇔ τ ′.

2. If τ τ ′ = l , τ ′ is unambiguous and τ =: τ ′, then l : τ⇔ τ ′.
3. If τ/β = (l , τR), then l : (β, τR)⇔ τ and (β, τR)<: τ .
4. If normV (τ) = (l , τ ′), then τ := τ ′, τ ′ is unambiguous and

l : τ ′⇔ τ .

The function elems : Type → {Atom } that computes a set of
all the top-level atomic types in a given sequence type is defined as
follows:

elems(α) = {α}
elems(()) = ∅
elems(τ1 | τ2) = elems(τ1) ∪ elems(τ2)
elems(τ1, τ2) = elems(τ1) ∪ elems(τ2)
elems(τ∗) = elems(τ)
elems(X ) = elems(E(X ))

I. Unidirectional update normalization
The syntax of ordinary unidirectional updates that we use in BI-
FLUX differs slightly from that of Flux [8]. For example, there is no
iter u update that iterates over a sequence by applying the same
update u , and instead we support arbitrary paths as directions. In
our design, iteration occurs automatically at the child axis (for
updates of the form child[u]). The two different let x = e in u



τ τ ′ = l

τ τ = id

τ τ ′ = l

n[τ ] n[τ ′] = in◦< l◦< out
β τ ′1 = l1

β τ ′1 | τ ′2 = l1◦< uninjl
β τ ′2 = l2

β τ ′1 | τ ′2 = l2◦< uninjr
β τ ′ = l

β τ ′∗ = l◦< unwrap

() τ ′1 = l1
() τ ′1 | τ ′2 = l1◦< uninjl

() τ ′2 = l2
() τ ′1 | τ ′2 = l2◦< uninjr () τ ′∗ = unnil

τ1 τ ′ = l1 τ2 τ ′ = l2
τ1 | τ2 τ ′ = l1 ∪▿ l2

τ ′/β = (l1, τR) τ2 τR = l2
β, τ2 τ ′ = (id ⊗ l2)◦< l1

τ2 τ ′ = l

(), τ2 τ ′ = keepfst◦< l

() | τ, τ ′ τ ′ = l

τ∗ τ ′ = foldlist l

τ1, (τ2, τ3) τ ′ = l

(τ1, τ2), τ3 τ ′ = assocl◦< l

τ1, τ
′ | τ2 τ ′ = l

τ1∗, τ2 τ ′ = mergelist l

τne , τ3 τ ′ = l1 τe , τ3 τ ′ = l2 splitEmpty(τ1 | τ2) = (τne | τe , l)

(τ1 | τ2), τ3 τ ′ = (l ⊗ id)◦< undistl◦< (l1 ∪▿ l2)

τ1, τ3 τ ′ = l1 τ2, τ3 τ ′ = l2 ()��<: τ1 | τ2
(τ1 | τ2), τ3 τ ′ = undistl◦< (l1 ∪▿ l2)

τ/β = (l , τR)

β/β = (keepsnd, ())

τ1/β = (l1, τR1)

τ1 | τ2/β = (l1◦< uninjl, τR1)

τ2/β = (l2, τR2)

τ1 | τ2/β = (l2◦< uninjr, τR2) β, τ2/β = (id, τ2)

τ τ1 = l

n[τ1], τ2/n[τ ] = (in◦< l◦< out⊗ id, τ2)

τ1, τ3/β = (l1, τR1)

(τ1 | τ2), τ3/β = (l1◦< (uninjl⊗ id), τR1)

τ2, τ3/β = (l2, τR2)

(τ1 | τ2), τ3/β = (l2◦< (uninjr⊗ id), τR2)

τ1, (τ2, τ3)/β = (l , τR)

(τ1, τ2), τ3/β = (l◦< assocr, τR)

τ1/β = (l1, ())

τ1∗, τ2/β = ((remsndone◦< l1⊗ id)◦< assocr◦< (uncons⊗ id), τ1∗, τ2)

τ1/β = (l1, τR1) τR1 6= ()

τ1∗, τ2/β = (assocr◦< (l1⊗ id)◦< assocr◦< (uncons⊗ id), τR1 , τ1
∗, τ2)

τ2/β = (l2, τR2)

τ1∗, τ2/β = (l2◦< remfstone◦< (unnil⊗ id), τR2)

τ/β = (l , ())

τ∗/β = ((remsndone◦< l ⊗ id)◦< uncons, τ∗)
τ/β = (l , τR) τR 6= ()

τ∗/β = (assocr◦< (l ⊗ id)◦< uncons, (τR, τ∗))

Figure 23: Source normalization procedure.

normV (n[τ ]) = (n[τ ′], in◦< l◦< out) where normV (τ) = (τ ′, l)

normV (β) = (β, id) where normV (τ) = (τ ′, l)

normV (()) = ((), id)

normV (τ1 | τ2) =
{

(τ ′1 | τ ′2, l1⊕ l2) if τ ′1 | τ ′2 unambiguous

where normV (τ1) = (τ ′1, l1) and normV (τ2) = (τ ′2, l2)

normV (τ1, τ2) =

 (τ ′2, remfstone◦< l2) if τ1 = ()
(τ ′1, remsndone◦< l1) if τ2 = ()
((τ ′1, τ

′
2), l1⊗ l2) if τ ′1, τ ′2 unambiguous

where normV (τ1) = (τ ′1, l1) and normV (τ2) = (τ ′2, l2)

normV (τ∗) =
{

(τ ′
∗
,map l) if τ ′∗ unambiguous

where normV (τ) = (τ ′, l)

Figure 24: View normalization procedure.

and snapshot x in u updates in Flux, that respectively bind a
variable to the result of evaluating an expression under the current
environment and bind a variable to the current value of the focus,
are both subsumed by our case e of ~pat → ~u update, that allows
the expression e to depend on the current value of the focus.

The remaining rules for normalizing high-level bidirectional
and unidirectional updates are shown in Figures 25 and 26. We
omit some cases for UPDATE FOR VIEW statements that can be

easily inferred. The normalization for particular create and recover
unidirectional updates are given in Figure 27.



J||||u ||||KbStmt = J||||u ||||KbUpd(true, true, ·)

J|||| {} ||||KbStmt = skip

J|||| IF SOURCE e THEN s ELSE s′ ||||KbStmt = ifS e then J|||| s ||||KbStmt else J|||| s′ ||||KbStmt
J|||| IF VIEW e THEN s ELSE s′ ||||KbStmt = ifV e then J|||| s ||||KbStmt else J|||| s′ ||||KbStmt

J|||| IF e THEN s ELSE s′ ||||KbStmt = if e then J|||| s ||||KbStmt else J|||| s′ ||||KbStmt
J|||| CASE SOURCE p OF {pat1 → s1 | . . . | patn → sn} ||||KbStmt = caseS p of ~pat → J||||~s ||||KbStmt

J|||| CASE VIEW e OF {pat1 → s1 | . . . | patn → sn} ||||KbStmt = caseV e of ~pat → J||||~s ||||KbStmt
J|||| CASE e OF {pat1 → s1 | . . . | patn → sn} ||||KbStmt = case e of ~pat → J||||~s ||||KbStmt

J|||| LET SOURCE pat = p IN s ||||KbStmt = caseS p of p → J|||| s ||||KbStmt
J|||| LET VIEW pat = e IN s ||||KbStmt = caseV p of p → J|||| s ||||KbStmt

J|||| LET pat = e IN s ||||KbStmt = case p of p → J|||| s ||||KbStmt
J|||| SOURCE e1; cs ||||KConds = (e1 ∧ eS , eV , ~x = ~e) where J|||| cs ||||KConds = (eS , eV , ~x = ~e)

J|||| VIEW e1; cs ||||KConds = (eS , e1 ∧ eV , ~x = ~e) where J|||| cs ||||KConds = (eS , eV , ~x = ~e)

J|||| VIEW x0 := e0; cs ||||KConds = (eS , eV , x0, ~x = e0,~e) where J|||| cs ||||KConds = (eS , eV , ~x = ~e)

J|||| SOURCE e ||||KConds = (e, true, ·)
J|||| VIEW e ||||KConds = (true, e, ·)

J|||| VIEW x := e ||||KConds = (true, true, x = e)

J|||| UPDATE pat IN p BY vs FOR VIEW pat′ IN p′ ||||KbUpd(eS , eV , ~x = ~e) = p[[b]p′] where

(sSV ,msV ,msS ) = splitVStmt(vs)

b = alignpos (case self of pat → eS ) J|||| sSV ||||Kb
Stmt J||||msV ||||Kc

MStmt(pat ′) J||||msS ||||Kr
MStmt(pat)

J|||| UPDATE pat IN p BY vs FOR VIEW p′ MATCHING SOURCE BY ps VIEW BY pv ||||KbUpd(eS , eV , ~x = ~e) = p[[b]p′] where

(sSV ,msV ,msS ) = splitVStmt(vs)
ps
′ = case self of pat → ps

b = alignkey (case self of pat → eS ) p′s pv J|||| sSV ||||Kb
Stmt J||||msV ||||Kc

MStmt(·) J||||msS ||||Kr
MStmt(pat)

J|||| UPDATE p BY vs FOR VIEW pat′ IN p′ MATCHING SOURCE BY ps VIEW BY pv ||||KbUpd(eS , eV , ~x = ~e) = p[[b]p′] where

(sSV ,msV ,msS ) = splitVStmt(vs)
pv
′ = case self of pat ′ → pv

b = alignkey eS ps p′v J|||| sSV ||||Kb
Stmt J||||msV ||||Kc

MStmt(pat ′) J||||msS ||||Kr
MStmt(·)

J|||| UPDATE p BY vs FOR VIEW p′ MATCHING SOURCE BY ps VIEW BY pv ||||KbUpd(eS , eV , ~x = ~e) = p[[b]p′] where

(sSV ,msV ,msS ) = splitVStmt(vs)

b = alignkey eS ps pv J|||| sSV ||||Kb
Stmt J||||msV ||||Kc

MStmt(·) J||||msS ||||Kr
MStmt(·)

J|||| p ||||KiterPatPath(eS , b) = (p / where eS )[iter b]

J|||| p ||||KSPatPath(eS , b) = (p / where eS )[b]

Figure 25: Bidirectional update normalization.



J||||u WHERE cs ||||KuStmt = J||||u ||||KuUpd(J|||| cs ||||KuConds)
J||||u ||||KuStmt = J||||u ||||KuUpd(true)

J|||| s; s′ ||||KuStmt = J|||| s ||||Ku
Stmt ; J|||| s

′ ||||Ku

Stmt

J|||| {} ||||KuStmt = skip

J|||| IF e THEN s ELSE s′ ||||KuStmt = if e then J|||| s ||||Ku
Stmt else J|||| s ′ ||||Ku

Stmt

J|||| LET pat = e IN s ||||KuStmt = case e of pat → J|||| s ||||KuStmt
J|||| CASE e OF {pat1 → s1 | . . . | patn → sn} ||||KuStmt = case e of ~pat → J||||~s ||||Ku

Stmt

J|||| pat IN p ||||KuPatPath(u) = p[case self of pat → u]

J|||| p ||||KuPatPath(u) = p[u]

J|||| e; cs ||||KuConds = e ∧ J|||| cs ||||KuConds
J|||| e ||||KuConds = e

J|||| UPDATE patp BY s ||||KuUpd(e) = J|||| patp ||||KuPatPath((where e)[J|||| s ||||Ku
Stmt ])

J|||| DELETE patp ||||KuUpd(e) = J|||| patp ||||KuPatPath((where e)[delete])

J|||| DELETE patp ||||KuUpd(e) = J|||| patp ||||KuPatPath((where e)[children[delete]])

J|||| REPLACE patp WITH e′ ||||KuUpd(e) = J|||| patp ||||KuPatPath((where e)[delete; insert e ′])

J|||| REPLACE IN patp WITH e′ ||||KuUpd(e) = J|||| patp ||||KuPatPath((where e)[children[delete; insert e ′]])

J|||| INSERT BEFORE patp VALUE e′ ||||KuUpd(e) = J|||| patp ||||KuPatPath((where e)[left[insert e ′]])

J|||| INSERT AFTER patp VALUE e′ ||||KuUpd(e) = J|||| patp ||||KuPatPath((where e)[right[insert e ′]])

J|||| INSERT AS FIRST INTO patp VALUE e′ ||||KuUpd(e) = J|||| patp ||||KuPatPath((where e)[children[left[insert e ′]]])

J|||| INSERT AS LAST INTO patp VALUE e′ ||||KuUpd(e) = J|||| patp ||||KuPatPath((where e)[children[right[insert e ′]]])

Figure 26: Unidirectional update normalization.

J|||| { } ||||KrMStmt(mpat) = delete

J|||| · ||||KrMStmt(mpat) = delete

J|||| s ||||KrMStmt(·) = J|||| s ||||KrStmt
J|||| s ||||KrMStmt(pat) = case self of pat → J|||| s ||||KrStmt

J|||| IF e THEN s ELSE s′ ||||KrStmt = if e then J|||| s ||||Kr
Stmt else J|||| s ′ ||||Kr

Stmt

J|||| LET pat = e IN s ||||KrStmt = case e of pat → J|||| s ||||KrStmt
J|||| CASE e OF {pat1 → r1 | . . . | patn → rn} ||||KrStmt = case e of ~pat → J||||~r ||||KrCases

J|||| KEEP self; s ||||KrStmt = keep J|||| s ||||Ku
Stmt

J|||| DELETE self ||||KrStmt = delete

J|||| { } ||||KcMStmt(mpat) = ·
J|||| · ||||KcMStmt(mpat) = ·

J|||| s ||||KcMStmt(·) = delete; J|||| s ||||KcStmt
J|||| s ||||KcMStmt(pat) = case pat of self→ delete; J|||| s ||||KcStmt

J|||| IF e THEN s ELSE s′ ||||KcStmt = if e then J|||| s ||||Kc
Stmt else J|||| s ′ ||||Kc

Stmt

J|||| LET pat = e IN s ||||KcStmt = case e of pat → J|||| s ||||KcStmt
J|||| CASE e OF {pat1 → r1 | . . . | patn → rn} ||||KcStmt = case e of ~pat → J||||~r ||||KcCases

J|||| CREATE e; s ||||KcStmt = insert e; J|||| s ||||Ku
Stmt

Figure 27: Create and recover unidirectional update normalization.
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