
Multimedia Terminal Architecture: An Inter-Operable Approach

Beilu Shao1, Marco Mattavelli1, Maria T. Andrade2, Samuel Keller1,
Giorgiana Ciobanu2, Pedro Carvalho2

1Swiss Federal Institute of Technology (EPFL), Switzerland
2INESC Porto, Portugal

beilu.shao@epfl.ch, marco.mattavelli@epfl.ch, maria.andrade@inescporto.pt,
samuel.keller@epfl.ch, giorgiana.ciobanu@ inescporto.pt, pedro.carvalho@inescporto.pt

Abstract

This paper addresses the inter-operability problem
of multimedia terminal in media content delivery over
heterogeneous networks and devices. We design and
implement a terminal which includes a content
browser providing presentation, navigation and
interaction with MPEG-21 Digital Item Declaration
(MPEG-21 DID) in order to support universal media
access (UMA). We optimized the architecture in a
client-server distributed approach with Web Service
support. This terminal enables the MPEG-21 standard
compliant content accessible on different terminal
devices via common Web browsers. Such a design
strategy illustrates a next-generation multimedia
terminal supporting inter-operability in multimedia
content adaptation over a heterogeneous delivery
chain.

1. Introduction

The latest development of multimedia computing
and great success of the Internet have drawn
tremendous attention and contribution from both
academia and industry. Many different techniques have
been developed to exploit the efficiency and the
effectiveness of multimedia delivery, from video
coding with outstanding rate-distortion performance to
reliable and adaptive video communication. Different
kinds of transmission and terminal devices have been
deployed, from PC, Set-Top Box to mobile devices
like PDA. The capabilities and working scenarios of
these devices usually vary widely in terms of network
bandwidth, computing power, screen display, decoding
capabilities and user interaction functionalities. At the
same time, a variety of new media content formats,
standard-compliant or proprietary, have emerged
resulting in a diversity of media itself. In summary,
multimedia content delivery has been growing from

single format video transmission over the Internet to
complex multimedia adaptive delivery across
heterogeneous networks, terminals, and users [1].

Along this trend, new standards have emerged.
MPEG-21[2] has been developed to provide an open
multimedia framework to guarantee inter-operability
focusing on how the entities of multimedia application
infrastructure services should relate, integrate, and
interact. Of particular importance towards the
fulfillment of universal media access is the availability
of an open object data model. MPEG-21 has delivered
one specification addressing precisely this aspect: the
Digital Item Declaration (DID) [3].

However, current multimedia terminal design rarely
takes into consideration the requirements to support the
MPEG-21 data model for enhanced value-added
services and thus, current terminals do not offer the
necessary functionality. The overall heterogeneity
clearly imposes new demands to the terminal design,
increasing its complexity to be able to provide efficient
and more complex processing and presentation of
audio-visual content rather than simple video
decoding.

This paper attempts to investigate the multimedia
terminal design in support of the inter-operability
requirements for content delivery by using the MPEG-
21 Digital Item Model, a Client-Server architecture and
a Web-oriented strategy. The distributed approach is
achieved through the use of Web Service technologies,
allowing the deployment of functionalities in a
distributed fashion. This has the major benefit of
freeing the client (the end user terminal) of the power-
consuming processing tasks. Together with the Web-
oriented strategy, it enables virtually any commercially
available user device with standard Web browsers
installed, to receive and consume complex multimedia
objects. The proposed terminal is based on two major
components, the terminal middleware and the MPEG-
21 Digital Item Browser. Both components are

implemented in a distributed approach, interacting
among them to present in the best possible format the
complex multimedia objects to the end user.

This paper is organized as follows. Section 2
presents a short overview of the related prior work. In
Section 3, we present the Distributed Digital Item
Browser, the key component of the terminal to support
MPEG-21 Digital Item Declaration for inter-
operability. We also highlight the flexible architecture
design achieved with the Client-Server and Web
Service approaches. Section 4 represents the
multimedia terminal middleware design and the
function coordination with the Distributed Digital Item
Browser. In Section 5, we describe the implementation
details of the terminal. Section 6 draws the conclusion.

2. Overview of Related Prior Work

Universal Multimedia Access (UMA) represents the
concepts of the access to multimedia information by
any terminal through any network [1], [4]. The
objective of UMA technology is to make available
different presentations of the same multimedia content,
more or less complex, e.g., in terms of media formats
or transmission bandwidth, suiting different content
creation, communication networks and consuming
terminals.

To achieve the goal of UMA, i.e. inter-operability
during delivery chain, content compliant with MPEG-
21 Digital Item Declaration (MPEG-21 DID) has been
widely used [3]. The MPEG-21 DID is an XML
structured data type that describes the structure and the
relation among the various components of Digital Item
(DI). Typically it cannot be simply presented to
average users through a normal XML editing tool.

The DID specification does not specify how DIs
should be presented to the user. Accordingly, a variety
of different implementations can be realised, providing
different views and ways of presenting and enabling
the interaction with DIs. Usually, applications are
developed according to the usage scenario in view or to
the device they are supposed to be installed in, thus
providing non-interoperable solutions. Invariably, the
focus of the work is in ensuring accessibility,
flexibility and performance of the Peers on dedicated
terminal devices.

Existing research work has been developed in [5]-
[9]. However, most of these solutions for browsing
MPEG-21 DIs have portability problems, being often
restricted to one type of terminal device or type of
application. The Distributed DI Browser, coordinated
under a terminal middleware with other functional
components intends to solve the portability problem

and proposes a modality of processing and visualizing
complex DIs on the majority of terminal devices.

3. MPEG-21 Digital Item Browser

Considering that one of the goals to achieve was to
obtain a terminal as interoperable as possible, it was
decided that the content should be represented also in
an interoperable format, more precisely according to
the MPEG-21 Digital Item Declaration (DID)
specification. This has imposed the need to develop a
module for the terminal that would be able to process
the MPEG-21 DIDs and presenting them in a friendly
manner to the end-user. The Distributed Digital
Browser (Distributed DI Browser) is this module and is
thus responsible for rendering and presenting the
content to end-users, allowing the user to interact with
the content.

3.1. MPEG-21 DID Support and Web-oriented
approach for Delivery Inter-operability

Transparent access to content is not always simple
or possible due to the great heterogeneity of the
information that can be found as well to the diversity
of multimedia-enabled end-user equipment. The
solution proposed in this paper to the effective access
to varied multimedia information and enabling simple
interaction with complex objects regardless of the
terminal device, relies on the use of the MPEG-21
specifications, notably the MPEG-21 DIDL and the use
of the DDI Browser implemented using a Web-
oriented approach.

On one side, the MPEG-21 DIDL defines a standard
XML-based model to express the structure of complex
digital objects and to describe its components (media
resources or additional descriptions). These media
components do not need to have a specific encoding
format, nor do the descriptions need to follow a given
metadata model. There is complete freedom to include
in the Digital Item any type of component and all
included components are described in the DID using a
standard XML-based language. This obviously
motivates interoperability, as currently all Web-
enabled devices understand XML.

On the other side, presenting XML directly to the
end-user is not the friendliest possible approach.
Although XML is very convenient because it is both
machine and human readable, the average user is not
used to navigate in complex XML trees. The explosion
of popularity of the World Wide Web and of Web
applications, suggests that a Web-oriented
implementation would cover the requirements of a
considerable number of application scenarios. To date,

HTML Web pages are one of the friendliest ways of
presenting complex multimedia content, to which the
average user is very familiar with. In addition it would
provide a solution for the portability problem, as
MPEG-21 DIDs could thus be presented using any
normal Web browser, which all multimedia-enabled
devices already are equipped with. Accordingly, it was
decided to adopt a Web-oriented approach for the
development of the MPEG-21 Distributed DI Browser
[10].

Fig.1 Distributed DI Browser on PC

The adoption of a Web-oriented approach, allows

the Distributed DI Browser and thus the MPEG-21
DIDs, to be accessible on different terminal devices
through the use of commons Web browsers (e.g. IE,
Mozilla Firefox, Netscape, Opera, IE Mobile,
MiniOpera, native Symbian browser, etc.) Fig. 1 and
Fig.2 provide screenshots of the Distributed DI
Browser used with different Web browsers in two
distinct terminal devices.

3.2. Distributed Architecture and Web Service
Approach for System Inter-operability

As referred above, one major goal to achieve was

interoperability across formats and systems, allowing
the end-user to access any kind of content using any
type of terminal. Because the presentation of MPEG-
21 DIDs to the end user involved a significantly
complex processing step to produce a friendly
graphical presentation to the user, it was decided to
adopt a distributed approach to de-couple the

processing tasks (time and power consuming) from the
presentation and rendering tasks. It was thus decided to
implement two distinct modules, client and server,
communicating via a well defined Web Services
interface using SOAP (Simple Object Access
Protocol). In rich, powerful devices, both modules can
be installed there, whereas for thin clients with limited
processing capability, the server side can be installed
in a remote machine, or even both the client and the
server. All communication to and from the Distributed
DI Browser modules is done using SOAP over HTTP
or simply HTTP.

Fig. 2 Distributed DI Browser on PDA

Accordingly, the Distributed DI Browser was
designed and implemented adopting client-server
architecture and using Web services technology to
establish the communication. Web Services concepts
were applied for increasing the interoperability and
portability to heterogeneous terminal devices. This
architecture delegates on the server sub-system the
responsibility of DI processing, leaving the client sub-
system with the content presentation task. It thus
provides a clear separation between the Digital Item
processing tasks and the operations related to its
presentation to the user. The server application of
Distributed DI Browser is named Digital Item
Processing Server (DIP Server) and the client sub-
system is generically designated as Graphic Digital
Item Renderer (GDI Renderer). This distributed
architecture is represented in Fig. 3.

Client and server sub-systems communicate via a
well defined Web Services interface. This distributed
approach has the advantage of enabling the browsing
of complex Digital Items also on “thin” devices (such
PDAs and mobile phones) as it moves all the
processing heavy tasks to the server side. The same
processing core can be provided to various terminal
devices, from PC platforms up to mobile phones and
PDAs devices.

DDI Web Services API

Generic Web Browser
(IE, Mozilla, etc.)

GDI Renderer

DIP server

SOAP over HTTP

HTTP

User terminal device

MPEG-21 DDI Browser

Fig. 3 Distributed DI Browser Architecture

Generic Web Browser

(IE, Mozilla, etc.)
Generic Web Browser

(IE, Mozilla, etc.)
Custom GDI Renderer
(e.g., Java application)

WDI Browser

DDI Web Services API

DIP server

WDI Browser
User terminal

server

Server side
client side DDI Browser

Fig. 4 Possible Alternatives for GDI Architecture

The clear separation that was done between GUI
generation and the processing, thus allows using the
same processing module (DIP server) with different
GDI Renderers to suit the requirements of various
terminal devices. Nevertheless, it is considered that the
Web-oriented approach adopted for the GDI Renderer,
by which the graphical representation of the DID is a
set of HTML pages, is already able to meet the
requirements of any type of terminal, as long as that
terminal has a Web browser installed. The
implementation of the GDI Renderer as a Web
application, designated as Web DI Browser (WDI
Browser), is illustrated in Fig. 4 for deployment
alternatives and other possible solutions.

The WDI Browser can be deployed on the same
Web server as the DIP Server sub-system or on a
separate Web server. Furthermore, the GDI Renderer

may be developed either as an Applet or as a plug-in to
a generic Web browser. Other possible
implementations of the GDI Renderer module could be
for example a custom Java client application installed
on the user terminal, using the services of the DIP
Server module installed at the server side via the Web
Services API. These possible different configurations
are shown in Fig. 4.

As a summary, the Distributed Digital Item Browser
provides the following functionalist:

• Browsing of MPEG-21 Digital Items stored on a
remote repository – the user is able to search for,
access and consume complex DIs, possibly
composed of heterogeneous media resources,
stored on a remote repository. The browsing of
the contents of the DIs is made on a Web pages
style.

• Download of Digital Items – the requested
Digital Item is transparently downloaded from a
remote repository in order to be processed and
browsed;

• Validation of Digital Items – before being
presented to the user, the Digital Items must be
validated to ensure that they are conformant with
Part 2 (DID) of the MPEG-21 standard;

• Choices processing – the system offers static
User interaction with the content of the DI by
supporting the corresponding mechanism
specified in part 2 of MPEG-21. This
mechanism, which exists in the Choice element
of the DID, addresses User’s selections;

Presentation of audiovisual resources - image, video
and audio resources referenced in the DID, are
reproduced on the terminal within the Web browser
using embedded players plug-ins invoked by the DDI
Browser (e.g. Windows Media Player, QuickTime
Player.

4. Multimedia Terminal Middleware

Distributed Digital Item Browser needs to be
coordinated under a terminal middleware together with
other modules to achieve fruitful user experiences.
These modules include but not limit to a media
decoder to decode compressed audio-visual streams, a
Usage environment Description (UED) - Usage
Constraints Description (UCD) module to describe the
user environments and user preferences, some Quality
of Service (QoS) probes to provide sufficient feedback

to content adaptation servers or intermediate services,
for example, the Adaptation Decision Taking Engine
(ADTE) and key management systems for intellectual
property management and protection. We can consider
the Terminal Middleware as heart of the terminal and
name it Terminal Device Manager (TDM).

In principal, Terminal Middleware has two
responsibilities: 1) externally interacting with server or
intermediate service, e.g. to feedback for QoS control
for content adaptation or to contact with
DIBrowser@Server for content browsing; and 2)
locally coordinating the convergence of
DIBrowser@Client, Media Player, UED-UCD, QoS
Probes. In this paper, we focus on the inter-operability
problem and thus discuss only the terminal middleware
support for the Distributed Digital Item Browser.

4.1. Client-Server Distributed Architecture

As the Distributed Digital Item Browser, TDM also
adopts client-server distributed architecture in which a
TDM component is deployed at the adaptation or
server side, we can call it TDM@Server and multiple
terminal components are deployed at client side,
shortly TDM@Client. As common client-server
architecture, TDM@client initially gets registered at a
TDM@server and sends user environment parameters
from the UED and UCD modules to TDM@server.
TDM@server assigns a Terminal ID to TDM@client
for identity.

4.2. Client-Server Distributed Architecture

The Terminal Middleware coordinates DIBrowser
at Server and Client sides for content search, selection
and play functions. The TDM@Client first sets up
DIBrowser with Terminal ID and TDM@Server
address.

Sequentially, 1) SearchDI: the user initiates a
"SearchDI" request with DIBrowser@Client. Such a
request passes through DIBrowser@Server and
TDM@Server to a service provider that offers a search
service via a Search Server module; the search engine
of the Search Manager, looks into an MPEG-21
relational data base to find relevant results; the Search
Manager then creates a DID with the list of DIDs
stored in the MPEG-21 repository that matched the
user query (identified by the search engine) and returns
this DID to the DIBrowser@Server; the
DIBrowser@Server processes the elements of that
DID, generating a set of objects; these objects are used
by the DIBrowser@Client to generate the graphical
presentation of the DID elements to be rendered in the
user terminal through a normal Web browser. 2)

SelectDI: after navigation through the DID with the list
of results and browsing some more appealing DIDs,
the user finally selects the content to consume; at that
point the user chooses a specific DI through the
DIBrowser@Client; this "SelectDI" request is received
by the DIBrowser@Server, which sends information to
identify the requested DI, the terminal and the quality
chosen by the user to a TDM@Server, the
TDM@Server adds UED and the location of the
TDM@Client and sends to the service provider, which
returns the identity of the service and content DID. 3)
PlayDI: requested to play DI, the DIBrowser@Server
sends the identity of the service returned at "Select DI"
step to TDM@Server, the TDM@Server adds UED
and the location of this TDM@Client and sends to the
service provider, which returns the URL of DI as
result.

Fig. 5 Initial Set up

Fig. 6 Search Digital Item

Fig. 7 Select Digital Item

Fig. 8 Play Digital Item

Fig. 9 Distributed DI Browser integrated with TDM

5. Implementation

This section presents the implementation details.

The Client-Server architecture of Distributed DI
Browser and terminal middleware has been shown in

Fig. 9. To have a focus, we only abstract the most
functional part and highlight them in a block schema.
The entire multimedia terminal has been being
designed and developed on Windows, Windows
Mobile and Symbian platforms in order to maximize
the portability to various platforms. Such
implementation exploits the requirements of
heterogeneity and inter-operability. As a result, it
allows the terminal to be easily installed on multiple
devices, such as TV, Set-Top-Boxes, PCs, PDAs and
mobile phones.

6. Conclusion

This paper presents a multimedia terminal
supporting inter-operability for content delivery over
heterogeneous networks and devices. This terminal
includes a MPEG-21 compliant digital item browser
which provides presentation, navigation and interaction
with MPEG-21 Digital Item Declaration (MPEG-21
DID) to support universal media access. We also
investigate the architecture design in a distributed and
Web Service approach to achieve system portability
flexibility for a higher degree of inter-operability.

10. References

[1] A. Vetro and C. Christopoulos and T. Ebrahimi, “Special
Issue on Universal Multimedia Access”, IEEE Signal
Processing Magazine, Vol.20 (2), Mar. 2003
[2] ISO/IEC 21000, "Information Technology - Multimedia
Framework (MPEG-21)", 2002
[3] ISO/IEC TR 21000-2:2003 "Information Technology -
Multimedia Framework (MPEG-21)-Part2: Digital Item
Declaration", 2003
[4] F. Pereira and J. R. Smith and A. Vetro, Special Issue on
MPEG-21, IEEE Transaction on Multimedia, Vol.7 (3), Jun.
2005
[5] F. Keukelaere, W. Neve, P. Lambert, B. Rogge, and R.
Walle, “MPEG-21 Digital Item Processing Architecture”,
Proceedings of Euromedia, 2003.
[6]http://mpeg-21.itec.uni-
klu.ac.at/cocoon/mpeg21/mpeg21Demo.xml.
[7] S. Lauf, and I. Burnett, “Implementation of a Mobile
MPEG-21 Peer”. ACM Multimedia Conference (MM’05),
Singapore, 2005.
[8]http://www.enikos.com/
[9]http://www.adactus.no/
[10]G. Ciobanu, M. Andrade, P. Carvalho, E. Carrapatoso,
An MPEG-21 Web Peer for the consumption of Digital
Items", Proc. CISTI 2007, June, 2007

Generic Web

DDI browser
TDM
Client

DDI
DIP

WDI

WS API for
DDI Browser

WS API for
TDM client

WS API

Server
User

Requests
to the
Service
Provider

A/V
player A/V

player

TDM
Server

