
Mistrustful P2P: Privacy-preserving File Sharing
Over Untrustworthy Peer-to-Peer Networks

Pedro Moreira da Silva∗, Jaime Dias∗, Manuel Ricardo∗
∗INESC TEC, Faculdade de Engenharia, Universidade do Porto

Rua Dr. Roberto Frias, 378, 4200-465 Porto, Portugal

Email: {pmms, jdias, mricardo}@inesctec.pt

Abstract—Peer-to-Peer networks are extensively used for large-
scale file sharing. As more information flows through these
networks, people are becoming increasingly concerned about
their privacy. Traditional P2P file sharing systems provide
performance and scalability at the cost of requiring peers to
publicly advertise what they download. Several P2P privacy-
enhancing systems have been proposed but they still require
peers to advertise, either fully or partially, what they download.
Lacking alternatives, users have adopted anonymity systems
for P2P file sharing, misunderstanding the privacy guarantees
provided by such systems, in particular when relaying traffic of
insecure applications such as BitTorrent.

Our goal is to prevent any malicious peer(s) from ascertaining
users’ content interests so that plausible deniability always
applies. We propose a novel P2P file sharing model, Mistrustful
P2P, that (1) supports file sharing over open and untrustworthy
P2P networks, (2) requires no trust between users by avoiding
the advertisement of what peers download or miss, and (3) still
ensures deterministic protection of user’s interests against attacks
of size up to a configured privacy protection level. We hope that
our model can pave the ground for a new generation of privacy-
enhancing systems that take advantage of the new possibilities it
introduces. We validate Mistrustful P2P through simulation, and
demonstrate its feasibility.

I. INTRODUCTION

Peer-to-Peer (P2P) networks are extensively used for large-

scale file sharing. As more information flows through these

networks, people are becoming increasingly concerned about

their privacy. The reasons behind the privacy concerns may

be various such as (1) avoiding user profiling, tracking and

data mining, (2) engaging in legal content sharing that may

be embarrassing or deplorable from a political, religious or

social point-of-view, or (3) engaging in illegal or incriminating

content sharing.

Traditional P2P file sharing systems are designed for per-

formance and scalability. These systems take advantage of

the large number of interconnected peers1, and their idle

resources, to more efficiently distribute contents at the cost

of requiring peers to publicly advertise what they download.

Given that peers form interest-based communities [6], every

single connection presents an opportunity for a malicious peer

to passively obtain additional information that may enable

user’s content interests identification.

Several P2P privacy-enhancing systems have been proposed,

such as [17], [19], [12], [13], [10], the majority employing

1We say peer to refer to the network node, and user to refer to the person.

either techniques to provide anonymity, such as onion rout-
ing [11] and information slicing [13], or employing techniques

to provide plausible deniability, such as request relaying –

peers relay requests to create uncertainty about communicating

endpoints –, and content interest disguise – peers download ad-

ditional contents to hide their real interests. All these solutions

share one common issue: they require peers to advertise, either

fully or partially, what they download. Lacking alternatives,

users have adopted anonymity systems for P2P file sharing [4],

misunderstanding the privacy guarantees provided by such

systems [5], in particular when relaying traffic of insecure

applications [14], i.e., applications that disclose sensitive in-

formation.

Our objective is to prevent any malicious peer(s) from

ascertaining the interests of any user downloading a content,

either through observation or through active probing attacks,

while completing the download in a timely manner. Users

interested in downloading contents are provided with plausible

deniability against regular peers or groups of colluding peers.

In this paper, we propose a novel P2P file sharing model,

which we name Mistrustful P2P, that enables file sharing over

open and untrustworthy P2P networks (networks in which

peers should be mistrusted) without disclosing user’s interests.

Our model does not require trust between users by avoiding

the advertisement of what peers are downloading or missing.

The Mistrustful P2P model ensures deterministic protection

of user’s interests from regular peers or groups of colluding

peers of size up to a privacy protection level configured by

the user. It resorts on erasure coding to avoid advertising

what is downloaded. The remaining of this paper is structured

as follows. Section II details the problem we aim to solve.

Section III presents the related work. Section IV provides

the required background. Section V depicts the novel P2P

file sharing model we propose. Sections VI and VII describe,

respectively, the validation of our model through simulation,

and the results obtained. Section VIII presents the conclusions.

II. PROBLEM DESCRIPTION

One privacy aspect that is especially sensitive to users is

the concealment of their interests. Users look for a privacy-

enhancing system that is able to protect their interests from

other participants in the system without compromising per-

formance. Also, providing a configurable per content privacy

protection level, supporting untrustworthy P2P networks, and

395ISBN 978-3-901882-83-8, Networking 2016 © 2016 IFIP

having high performance, are all desirable features because

user’s privacy requirements are idiosyncratic, they may find

themselves in need to join untrustworthy P2P networks, and

want to download contents as fast as possible. Above all, users

tend to prefer security mechanisms that provide strong defense

against well defined attacks, even if narrow ones, rather than

broad but weak security defense mechanisms.

We consider an attacker that participates in the system,

either a regular peer or a group of colluding peers, but not

external entities monitoring all traffic of a peer, such as ISPs,

or controlling the whole network, such as governments. Protec-

tion against link monitoring could be achieved by encrypting

communications between peers, but requires key exchange and

distribution mechanisms, which are out of the scope of this

work.

P2P privacy-enhancing systems typically either completely

hide user’s activities through anonymity or disguise them by

relaying traffic and/or generating cover downloads. Anonymity

systems, being Tor [10] the most popular, as a rule, are not

designed for P2P file sharing. Nevertheless, lacking alterna-

tives, users have adopted anonymity systems for such end [4],

misunderstanding the privacy guarantees they provide [5], and

unaware of the privacy impact that relaying traffic of insecure

applications, such as BitTorrent, introduces [14]. On the other

hand, systems disguising user’s activities are designed for

P2P file sharing but require users to publicly advertise what

they download, either fully or partially, so that peers know to

whom blocks (chunks, using BitTorrent terminology) can be

requested, and also to improve content availability by provid-

ing incentives to download rarer blocks. However, advertising

what is downloaded (block advertisement) enables download

progress tracking, allowing passive attackers to differentiate

genuine from cover traffic, therefore disclosing user’s interests.

Content interest disguise systems that fully download cover

contents are an exception to this, but increase greatly the

network overhead.

Thus, the problem we aim to solve is how to enable P2P file

sharing so that (1) block advertisement and trust links between

users are avoided, (2) users are protected against attacks of size

for a privacy protection level that is flexible and configurable

per content, and (3) contents can be downloaded in due time.

III. RELATED WORK

Several P2P privacy-enhancing systems have been proposed

in the literature providing different degrees of privacy to

users, the majority of which provides either anonymity or

plausible deniability. Tor and Freenet [1] are probably the

most prominent anonymity solutions for, respectively, low-

latency anonymity and anonymous content distribution net-

works. Given that anonymity systems tend to introduce more

overhead, and do that without improving the overall perfor-

mance, herein, we depict the state-of-the-art P2P privacy-

enhancing systems providing plausible deniability and de-

signed specifically for P2P file sharing.

BitBlender [3] provides plausible deniability by introducing

relay peers that simply proxy requests on behalf of other peers.

Peers willing to act as relay peers can register at a central node

called blender, and, once requested, will join a P2P swarm

(group of peers sharing a content) in a probabilistic way so that

they cannot be distinguished from regular peers. The joining

probability of relay peers is defined by the blender, when

asking registered peers to join a P2P swarm, so that the set

of relay peers remains unknown while having the cardinality

requested by the tracker. As so, BitBlender requires users to

trust both the tracker and the blender.

SwarmScreen [6] provides plausible deniability by obscur-

ing user’s interests through cover traffic (content interest

disguise). The devised scheme, which consists in “adding

a small percentage (between 25% and 50%) of additional

random connections that are statistically indistinguishable

from natural ones”, thwarts guilt-by-association attacks, i.e.,

attacks in which the user’s interests can be inferred with high

certainty just by classifying peers based on the behavior of the

communities they participate in. SwarmScreen’s attack model

only considers passive attacks, it is vulnerable to active attacks.

OneSwarm [12] attempts to be an alternative to BitTorrent,

and builds upon friend-to-friend networks – networks in which

peers only communicate with trusted peers (friends). It pro-

vides a high privacy protection level and extensive control over

what information is disclosed to other peers. Nevertheless,

content availability may be limited as it is difficult to connect

any pair of peers using just trusted links. Also, the problem of

providing such privacy guarantees in large groups of untrusted

peers remains unsolved.

The BitTorrent Anonymity Marketplace [16] follows

SwarmScreen’s approach to provide plausible deniability.

However, in order to protect against both passive and active

attacks, all contents are fully downloaded because peers adver-

tise what they download. The authors define k-anonymity as

the privacy protection level obtained from fully downloading

k contents. Thus, as it increases greatly the network overhead,

it either prevents downloads from completing in due time or

constrains the privacy protection level.

Petrocco et. al [17], following SwarmScreen’s approach,

proposed a system that aims to protect user’s interests without

compromising download completion in due time. Their system

relies on private swarms, request relaying, caching, and partial

advertisement of downloaded blocks. As stated by the authors,

private swarms are required to ensure a good level of privacy.

Yet, to obtain the credentials needed to join a private swarm,

peers must trust one or more participants. Also, as only a frac-

tion of the blocks are advertised, it is not clear how a content

sharing is bootstrapped with few seeders nor how request relay

should operate during periods of content unavailability.

IV. ERASURE CODES

Erasure codes are a class of Forward Error Correction (FEC)

codes for the Binary Erasure Channel (BEC), a channel in

which transmitted data packets are either correct or missing

(erasures). Networking layers above the data link layer behave

as an erasure channel since packets are either correct, and are

delivered, or present errors, and are discarded.

396ISBN 978-3-901882-83-8, Networking 2016 © 2016 IFIP

An erasure code generates a set of n symbols from a set of

k symbols, k < n, at a rate given by k/n, so that any subset of

k (1 + ε(k)) is enough to reconstruct the original information,

where ε(k) is the erasure coding overhead. Erasure codes are

usually classified according to three orthogonal properties: (1)

systematicity, (2) rate fixedness, and (3) coding overhead. An

erasure code is systematic if the input symbols are embed into

output symbols, and non-systematic otherwise. If n is static

and needs to be known before encoding, the erasure code is

fixed-rate. If n can be dynamically increased and the amount

of symbols that can be generated does not impose any practical

limitation, the erasure code is rateless. Finally, an erasure code

is said MDS (Maximum Distance Separable) if any k symbols

out of n are enough to reconstruct the original information

[ε(k) = 0], or non-MDS if additional symbols are required

[ε(k) > 0]. Non-MDS erasure codes reduce significantly the

encoding and decoding time complexity orders by introducing

coding overhead.

For P2P file sharing, MDS erasure codes are more suitable

as the network is typically the most constrained resource, not

the CPU [15]. Non-systematic erasure codes may have the

property of only granting access to any part of a content after

fully downloading it. Rateless erasure codes enable the setting

of n as a function of hard to predict dynamic variables, such

as peer arrival rate, to continuously adjust it to the P2P file

sharing dynamics.

V. MISTRUSTFUL P2P MODEL

In this section, we describe the Mistrustful P2P model, a

novel P2P file sharing model that (1) supports file sharing over

open and untrustworthy P2P networks, (2) requires no trust

between users by avoiding the advertisement of what peers

download or miss, and (3) still ensures deterministic protection

of user’s interests, through plausible deniability, against attacks

of size up to a configured privacy protection level. We consider

that the burden of an increased privacy protection level should

be on the peer requiring it and not on other peers’ resources,

thereby peers communicate through direct links, i.e., there is

no peer relaying. For this reason, our model relies on cover

downloads to protect user’s interests, and therefore, targets the

development of content interest disguise systems.

The description of each component of the model is con-

ceptual but we provide the instantiation used for validating

the Mistrustful P2P model (Section VI) as an example. We

hope that our model can pave the ground for a new generation

of privacy-enhancing systems that take advantage of the new

possibilities it introduces.

A. Overview

Mistrustful P2P avoids block advertisement, and therefore

peers no longer know to whom blocks can be requested nor

can request a specific block they need. Consider a content

divided into k blocks, and that a block request is sent to a

randomly selected peer which offers a randomly selected block

it owns. Such approach enables to share some blocks between

peers but is unfeasible for fully downloading contents because,

assuming an uniform distribution of blocks among peers, the

probability of obtaining the last block is just 1/k. Using erasure

codes we are able to generate a set of n blocks so that any

subset of k′ blocks enables to retrieve the content, where k′ =
k (1 + ε(k)), and ε(k) is the erasure coding overhead. As so,

for the same conditions, the probability of retrieving the last

block increases to 1− k′−1
n .

Peers only share erasure coded blocks to ensure that access

to any part of a content is only granted after fully downloading

it, albeit all contents being publicly available. This way, there

is no proof that a user had full or partial access to a particular

content, including cover ones, by just having downloaded

some blocks; thus, they can still participate in its sharing. We

assume that this property is provided by the erasure codes,

although content encryption can be used to achieve the same

goal. Unless otherwise stated, from now on, we say block to

refer to erasure coded block.

The Mistrustful P2P model aims at enabling P2P file sharing

in large groups of untrusted peers, thereby, no trust links

between peers are required. Attending to the idiosyncrasy

of user’s privacy requirements and to the flexibility required

to not constrain the privacy-enhancing systems that can be

built on top of our model, the user privacy protection level

is configurable per peer and per content. It is defined as

a two-dimensional variable composed by c, the size of the

largest colluding group considered by the user, and m, the

maximum number of blocks that can be shared with any set

of c peers, where c ≤ m and m < k so that the content

cannot be fully downloaded from a single considered colluding

group. Thereby, our model provides a deterministic protection

of user’s interests as long as the effective size of the largest

colluding group does not exceed the one configured. When

the user privacy requirements for a particular download are

not met, the download pauses until they are met again.

Peers, per content, can take one of two roles depending on

their privacy requirements and the way they contribute to the

file sharing: seeder – peer having a content that wants to share,

and willing to forgo its privacy –, or commoner – peer willing

to download content blocks if its privacy requirements can be

met. Seeders may be the authors or some party interested in

publishing the content, and therefore do not require interest’s

concealment. We consider that there is always at least one

seeder to ensure content availability, which provides a new

erasure coded block for each request it receives. This is a

realistic assumption given that a small fraction of publishers

are responsible for 67% of the published content and 75%

of the downloads in BitTorrent [7]. Seeders only refuse to

serve block requests if they have no resources available. On

the other hand, commoners do not create new blocks and only

share them if their privacy remains protected. They can either

act as an helper (cover downloads) or as, using BitTorrent

terminology, a leecher (genuine downloads). Commoners keep

track of what they have shared with other peers both for

privacy enforcement reasons and to avoid offering a block

twice to the same peer. They may refuse to serve block

requests (1) due to resources constraints, (2) if they have

397ISBN 978-3-901882-83-8, Networking 2016 © 2016 IFIP

no useful blocks to offer due to privacy constraints, or (3)

due to content disguise strategies. The reason behind is never

disclosed. If a block is offered, the requesting peer can then

either cancel the request (duplicate block) or proceed with its

download (useful block).

Let k be number of blocks required to fully download a

content, n the number of unique blocks that can be generated,

na the number of unique blocks available for download,

and Di the set of unique blocks already downloaded by

commoner i. Commoner i attempts to select a random peer

that maximizes the probability of having it offering a block

that is not in the set Di. Given that any subset of k′ blocks

out of na enables to fully retrieve the content, increasing na

maximizes the probability of a peer obtaining a useful block;

which can be achieved by increasing the number of seeders.

However, determining which block should be offered in reply

to a request, when should a request be sent, and to which

peer is not trivial. Let us consider ei,j to be the number of

blocks that can be exchanged between commoners i and j,

and Ei the number of blocks that commoner i can exchange

with all other peers (available requests), which is limited by

the privacy constraints. If commoner i makes too much block

requests, more block requests will fail to retrieve useful blocks

and it will run out of available block requests (Ei = 0); on the

other hand, if commoner i makes too few block requests, more

block requests could have been sent and the available requests

to commoner j will still be far from zero once commoner j
leaves (ei,j � 0).

We devised three mechanisms which main purpose is to

attend the issues stated above. The block selection mechanism

is used by commoners to determine which block should be

offered to a requesting peer. The request backoff mechanism

aims at delaying block requests to help maximizing the amount

of useful blocks that can be obtained from the available

block requests, in the shortest time frame possible. The peer

selection mechanism aims at determining the peers that should

be selected to minimize the download time.

In sum, the Mistrustful P2P model relies on cover down-

loads to protect user’s interests, and has five main components:

erasure codes, the privacy enforcement mechanism, the request

backoff mechanism, the peer selection mechanism, and the

block selection mechanism. It is out of the scope of this

work to provide optimal instantiations of each component.

We provide only, as an example, the instantiation used for

validating our model.

B. Erasure Codes

Although other erasure codes can be used, we refer the

reader to [9] for a rateless MDS construction of Reed-Solomon

codes that we developed for our model. These erasure codes

are defined over the finite field Fp2 , where p is a Mersenne

prime (p = 2q − 1), and n ≤ 2q+1. Their performance was

evaluated over F(231−1)2 , so n ≤ 232, and does not impose any

constraints to the file sharing. Also, they are non-systematic

erasure codes that have the property of only granting access

to any part of a content after fully downloading it.

C. Privacy Enforcement

The privacy enforcement mechanism ensures deterministic

protection of user’s content interests, through plausible de-

niability, against attacks of size up to a configured privacy

protection level. Mistrustful P2P guarantees that any peer or

colluding group, with size up to c peers, are unable to (1)

prove that the user downloaded a particular content or had

full or partial access to it, and to (2) distinguish between cover

and genuine downloads by tracking its progress. The user can

configure, per content, the size of the largest colluding group

to consider, c, and the maximum amount of blocks that can be

shared with any set of c peers, m, where c ≤ m and m < k
so that the content cannot be fully downloaded from a single

group of size c. The protection provided is guaranteed as long

as the effective size of the largest colluding group does not

exceed the one considered by the user. Given that finding the

maximum intersection between the set of blocks exchanged

with any c peers is an NP-hard problem [18], we devised a

conservative yet efficient algorithm to evaluate the numbers

of blocks that can still be shared with a peer. The algorithm

is divided into two main functions, one to update the counter

of blocks shared with a peer (Function 1), and the other to

determine the number of blocks that can still be exchanged

with a peer (Function 2).

Function 1 Update Blocks Shared

� commoners is an array sorted by blocks shared.
� blksShared is the max no. of blocks shared w/ c peers.

function INCREMENTBLOCKSSHARED(id)
i← commoners.getIndex(id)

if invalidIndex(i) then � New.
commoners.push(id)
commoners.last.blks← 1
i← commoners.getIndex(id)

else � Known.
commoners[i].blks← commoners[i].blks+ 1
j ← i− 1

while validIndex(j) do
blksI ← commoners[i].blks
blksJ ← commoners[j].blks

if blksI > blksJ then � Still unsorted.
swap(commoners[i], commoners[j])
i← j
j ← j − 1

else � Sorted.
break

end if
end while

end if
if i < c then � Changes on top c peers.

blksShared← blksShared+ 1
end if

end function

Function 1 relies on an array sorted by the number of blocks

shared with a peer, and the maximum number of blocks shared

with any set of c peers. The function receives a peer id as a

parameter, and starts by checking if any blocks have been

398ISBN 978-3-901882-83-8, Networking 2016 © 2016 IFIP

exchanged with that peer. If it is the first one, sets the number

of blocks shared to 1. Otherwise, the number of shared blocks

is incremented, and, if needed, some elements are swapped

until the array is again sorted. The maximum number of blocks

shared with any set of c peers is incremented if the update was

in one of the top c positions of the array. Function 1 has linear

time complexity.

Function 2 Blocks to Share Left
� commoners is an array sorted by blocks shared.

� blksShared is the max no. of blocks shared w/ c peers.

function BLOCKSHARELEFT(id)
if c > m or m ≥ k then � Invalid.

return 0
end if
top← min(c, commoners.length) � Top peers.
left← m− blksShared− (c− top)
i← commoners.getIndex(id)

if invalidIndex(i) then � New.
if commoners.length > c then

left← left+ commoners.last.blks− 1
end if
return left

else � Known.
if i ≥ c then

left← left+ commoners.last.blks
left← left− commoners[i].blks

end if
return left− 1

end if
end function

Function 2 relies on the same variables as Function 1, and

also receives the same parameter. It starts by checking if the

configured privacy protection level is invalid. If it is valid,

left contains the number of blocks that can still be exchanged,

ensuring that at least one block is exchanged with each one

of the top c peers. This value needs to be updated if there are

already at least c peers and the peer referred by id is outside

of that set. Function 2 runs in logarithmic time.

D. Block Selection

The block selection mechanism is used by commoners to

determine which block should be offered to a requesting peer.

It plays an important role on how the blocks end up distributed

among peers, affecting the probability of peers obtaining

useful blocks. This mechanism ensures that no block is offered

twice to the same peer, and determines when requests should

be refused due to the lack of useful blocks to share.

Although this mechanism should use content sharing infor-

mation as input, such as the number of requests that end up

canceled (both as source and destination), for validating the

model we select blocks randomly due to its simplicity. With

Mistrustful P2P model there is no need to suddenly terminate,

remove downloads, or stop sharing because the privacy pro-

tection level does not depend on the time a peer keeps sharing

a content, as long as cover and genuine downloads are treated

in the same way.

E. Request Backoff

The request backoff mechanism aims at delaying block

requests to help maximizing the amount of useful blocks that

can be obtained from the available block requests, in the

shortest time frame possible. It does so by constraining the set

of peers to which block requests can be sent (eligible peers),

and by determining for how long no block requests should

be performed. Therefore, as the former is a direct result of

individual peer behavior and the latter depends on the swarm

behavior, we define the backoff time has a two-dimensional

variable that has a per peer and a swarm components. The

peer backoff component provides the delay to return a peer to

the set of eligible peers while the swarm backoff component

provides the delay to perform a new block request.

A block request has five possible outcomes: 1) refusal – the

request is refused by the contacted peer, 2) cancellation – the

request is canceled by the requester (duplicate block), 3) ac-

ceptance – the request is accepted and a block is downloaded,

4) interruption – the request is accepted but the download is

interrupted, and 5) disposal – no request is sent due to the lack

of eligible peers. Refusal and disposal reveal no information,

but all the others do. Cancellation and acceptance reveal that

both peers already own that block; interruption reveals that the

contacted peer owns that block.

To validate our model, we considered that the peer backoff

component is a function of the block transfer time, btt, and is

defined as min (α · λτ , μ) = min
(
btt
8 · 2τ , k·btt

4

)
, where α is

the peer base backoff time, λ is the exponential factor, τ is the

number of consecutive failed requests (all but disposal), and μ
is the maximum peer backoff time (25% of download time).

The swarm backoff component should be a function of the

swarm dynamics to find the proper amount of block requests

but, for the sake of simplicity, it is defined as β + γ · τ =
100 + 100 · τ , where β is the swarm base backoff time, γ
is the scale factor, and τ is the number of consecutive failed

request attempts (including disposal).

F. Peer Selection

The peer selection mechanism also helps to maximize the

amount of useful blocks of a given content that can be obtained

from the available block requests, in the shortest time frame

possible, by selecting the peers that return useful blocks in less

time. It depends both on the privacy enforcement and on the

request backoff mechanisms. The former provides, for a given

content, the list of peers to which no further block requests

can be sent; the latter provides, also for a given content, which

peers are ineligible for the moment, and when can the next

block request be performed.

For the validation, given that we considered homogeneous

peers and no parallel requests, and also for the sake of

simplicity, we select peers randomly.

VI. VALIDATION

This section details the simulation setup, the peer arrival

traces used as simulation input, and the use cases considered to

validate the Mistrustful P2P model. Given that simulations are

399ISBN 978-3-901882-83-8, Networking 2016 © 2016 IFIP

only as good as their models, the simulations were carried out

using the ns-3 network simulator [2], which provides realistic

network stack and its protocols. Still, the simulation of large

scale P2P networks using accurate and realistic models is a

complex task. Thereby, to be able to simulate P2P file sharing

with thousands of peers using accurate network models, we

also use CIDRarchy module [8], a module that we developed

for ns-3 that performs IP packet forwarding in constant time.

The validation of our model is done by asserting that peers

are able to download contents in due time without advertising

what they download. To do so, we simulate the content sharing

to evaluate the rate of peers that are able to complete their

downloads, and the average download time. Given that the

content download due time is subjective, we consider that a

content is received in due time if the average download time is,

at most, one order of magnitude above direct download time.

For the sake of clarity, although cover downloads are required

to protect user’s content interests, we consider a single content

download and no cover downloads. Also, peers are provided

with a list of all peers currently in the swarm, request one

block at a time, and accept one request at a time. We consider

the worst case scenario for how long peers share a given

content: peers leave immediately after finishing the download.

It is out of the scope of this work to provide a performance

comparison with state-of-the-art privacy-enhancing systems.

A. Simulation Setup

We consider a star network topology with a central node

mimicking an ISP, and with homogeneous leaf nodes connect-

ing to it through asymmetric links: 30 Mbit/s downlink and

3 Mbit/s uplink. As described in Section V, our model was

instantiated as follows. We considered Storm erasure codes,

and therefore, any subset of k blocks enables to fully download

a content, seeders generate a new block per request, and peers

only have access to the content after fully downloading it. The

privacy mechanism ensures that peers do not exchange more

than m blocks with any set of c peers. The block selection,

and peer selection mechanisms select, respectively, blocks and

peers randomly. The request backoff mechanism sets the peer

backoff component as a function of block transfer time that

grows exponentially with failed requests, while the swarm

backoff component is set as a linear function of failed request

attempts.

To ensure that the peer arrival models are realistic, we

gathered peer arrival traces of several contents and use them as

input to the simulation. The traces were collected by querying

a tracker for typical BitTorrent contents, and provide the

number of new peers that arrived within ten minute intervals

since content publication up to 21 days. We consider the peer

arrivals to be independent within each interval, and therefore,

we use an exponential function to generate the peer inter-

arrival times within that period (Poisson process). We classify

content’s popularity according to their average peer arrival

rate: more popular contents are those that have higher average

peer arrival rates. From those collected traces, we selected

TABLE I
OVERALL NUMBER AND RATIO OF DOWNLOADS COMPLETE.

Contents 1 Seeder,
Col. of 1

1 Seeder,
Col. of 32

64 Seeders,
Col. of 1

64 Seeders,
Col. of 32

VideoMP 100 75296
(99.82%)

75294
(99.82%)

75323
(99.86%)

75321
(99.85%)

VideoMP 800 74509
(98.78%)

74520
(98.79%)

74565
(98.85%)

74569
(98.86%)

VideoP 100 22444
(99.45%)

22439
(99.42%)

22471
(99.57%)

22472
(99.57%)

VideoP 800 21772
(96.46%)

21762
(96.42%)

21808
(96.63%)

21821
(96.69%)

VideoLP 100 3308
(99.91%)

3257
(98.37%)

3308
(99.91%)

3308
(99.91%)

VideoLP 800 3257
(98.37%)

3240
(97.86%)

3271
(98.79%)

3269
(98.73%)

three video traces for comparison that have different degrees

of popularity.

B. Use Cases

For each individual peer arrival trace we consider eight use

cases, which are a result of combining three distinct variables,

each taking one of two possible values. We consider a privacy

protection level against single peer attacks (collusion of 1)

or collusion group attacks of, at most, 32 peers (collusion of

32). Contents are always divided into 64 blocks, have a size

of either 100 MiB or 800 MiB, and are shared either by 1

seeder or 64 seeders; seeders are always present during the

content sharing. Given that, for the traces we collected, the

peer arrival peak usually occurs within the first 36 hours, each

use case is simulated for 48 hours to encompass, at least, the

content bootstrap and the content sharing peak. We consider

m = k − 1, i.e., no single peer can download all k blocks

from peers belonging to a group of c peers.

Our goal is to validate the model for different content pop-

ularities, privacy protection levels, content sizes, and number

of seeders.

VII. RESULTS AND DISCUSSION

In this section, we present the simulation results for the

validation of the Mistrustful P2P model. For each use case,

we measured the rate of peers that completed the download,

and the average download time. All values are for one hour

intervals, thus, for the sake of clarity, we use ’overall’ to

differentiate between the values for the whole simulation and

those for one hour intervals. Figure 1 depicts the number

of downloads completed over time, and Table I provides

the overall number of downloads completed and the overall

completion rate. The average download time is illustrated on

Figure 2 while the average overall download time, and the

ratio to the direct download time are presented on Table II.

Content download is limited by the uplink (3 Mbit/s) because

block requests are performed one at a time, thus to a single

peer at a time. As so, the reference download times for direct

download of 100 MiB and 800 MiB contents are, respectively,

approximately 5 and 38 minutes.

The results demonstrate that our model is feasible as peers

were able to complete their downloads, and do so in due

400ISBN 978-3-901882-83-8, Networking 2016 © 2016 IFIP

Fig. 1. Number of downloads completed over one hour periods for 100 MiB (left) and 800 MiB (right) contents using a more popular (MP), a popular (P),
and a less popular (LP) peer arrival traces as input (one per row). Each plot depicts four use cases that are a result of using either 1 or 64 seeders, and
considering either single peer attacks or collusion attacks of, at most, 32 peers. The peer arrival rate is represented in gray with a y-scale on the right.

time, without advertising what they have downloaded. For

most use cases, the average overall download time is close

to the direct download time (see Table II). As shown in

Figure 1, peers download completion rate closely follows the

peer arrival rate with an offset, which increases as the size

of the content increases because peers need to stay longer

to fully download the content. Table I shows that the overall

download completion rate is very high; the only peers that have

not completed the download are those that were sharing when

the simulation stopped. Figure 2 shows that peers complete

their downloads in due time, and that the average download

time depends on the peer arrival rate (content popularity), the

privacy protection level, the number of seeders sharing the

content, and on the content size.

The average download time decreases down to a minimum

TABLE II
AVERAGE OVERALL DOWNLOAD TIME, IN MINUTES, AND RATIO TO

DIRECT DOWNLOAD TIME.

Contents 1 Seeder,
Col. of 1

1 Seeder,
Col. of 32

64 Seeders,
Col. of 1

64 Seeders,
Col. of 32

VideoMP 100 8.4 (1.8) 8.4 (1.8) 6.8 (1.5) 6.8 (1.5)

VideoMP 800 60.7 (1.6) 60.8 (1.6) 57.8 (1.6) 57.6 (1.5)

VideoP 100 8.4 (1.8) 11.0 (2.4) 6.0 (1.3) 6.0 (1.3)

VideoP 800 60.1 (1.6) 60.5 (1.6) 55.5 (1.5) 55.4 (1.5)

VideoLP 100 8.4 (1.8) 51.1 (11.0) 5.2 (1.1) 5.2 (1.1)

VideoLP 800 61.0 (1.6) 85.1 (2.3) 47.8 (1.3) 48.0 (1.3)

near the direct download time as the peer arrival rate increases.

As the peer arrival rate decreases, both the average download

time and the download time variance increase, which suggests

that some peers have to wait for others to join before being

401ISBN 978-3-901882-83-8, Networking 2016 © 2016 IFIP

Fig. 2. Average download time over one hour periods for 100 MiB (left) and 800 MiB (right) contents using a more popular (MP), a popular (P), and a
less popular (LP) peer arrival traces as input (one per row). Each plot depicts four use cases that are a result of using either 1 or 64 seeders, and considering
either single peer attacks or collusion attacks of, at most, 32 peers. The bars represent the minimum and maximum download times within one hour intervals.
The peer arrival rate is represented in gray with a y-scale on the right.

able to complete the download. The numbers of peers that

need to be contacted is constrained by the privacy protection

level (at least c+1 peers) but also depends on how successful

the block requests are, which in turn are dependent on other

variables such as the block distribution among the peers.

Therefore, the results suggest that the number of peers that

need to be contacted is higher than that imposed by the

privacy protection level (c + 1), and the average download

time increases when those peers are not immediately available.

Adding seeders provides a two-fold improvement on the

average download time: 1) since seeders are always present,

less commoners need to be simultaneously sharing to be able

to complete the download; 2) seeders improve the probability

of successful block requests as they always offer a useful

block, which increases the number of unique blocks available

on the network. Unlike direct download time, the average

download time does not increase linearly with the increase of

the content size. The average number of peers present in the

network increases with the increase of the content size because

commoners have to stay longer to fully download the content,

therefore increasing the probability of successful requests,

which, in turn, contributes to a lower average download time.

This is more evident for less popular contents: for the less

popular peer arrival trace, despite the 800 MiB content being

eight times larger than the 100 MiB one, the average download

time is only less than two times higher.

402ISBN 978-3-901882-83-8, Networking 2016 © 2016 IFIP

In sum, the results demonstrate that our model is feasible

and, for most of the use cases considered, the average overall

download time is close to the direct download time. We con-

sidered an instantiation of our model that focus on simplicity

instead of optimality, and the peer download completion rate

is still very high. For the 64 seeders use cases, the average

download time is very close to the direct download time, even

for a privacy protection level against collusion group attacks

of, at most, 32 peers.

VIII. CONCLUSIONS

We proposed a novel P2P file sharing model that provides

deterministic protection of user’s content interests, against

attacks of size up to a configured privacy protection level, by

avoiding the advertisement of what peers download, as long

as the effective size of the largest colluding group does not

exceed the one configured; it supports open and untrustworthy

P2P networks, and requires no trust links between peers. Our

model thwarts passive attacks differentiating genuine from

cover downloads using solely block advertisements, and forces

attackers to engage in content sharing to know which blocks

a peer owns.

By avoiding block advertisement, our model enables peers

to control individually what information is disclosed to other

peers, and has no requirements on the amount of blocks that

have to be downloaded per cover content, so that no single

colluding group is able to identify it as a cover content. As

so, novel disguise schemes can be devised to conceal user’s

interests that use more cover contents without increasing the

network overhead.

We demonstrated its feasibility through simulation, using

ns-3, considering an instantiation of our model focused on

simplicity rather than on optimality, and where peers leave

immediately after finishing the download. In the majority of

the use cases considered, the average overall download time

is close to the direct download time. With the Mistrustful

P2P model, peers have no need to suddenly terminate or

remove downloads because the privacy protection level does

not depend on the time a peer keeps sharing a content, as long

as cover and genuine downloads are treated in the same way.

As future work, we intend to (1) compare our model against

a simple traditional P2P file sharing model, (2) improve the re-

quest backoff mechanism to increase the overall performance,

and (3) conduct further experiments to evaluate the Mistrustful

P2P model with more peer arrival traces, mainly less popular

ones, and include more variables such as the number of blocks

into which a content is divided. Then, we will analyze how

the probability of successful requests changes over time, so

that we can improve the instantiation of our model herein

presented. We will also propose cover download selection

algorithms that minimize the amount of cover traffic required

while preserving the privacy protection.

ACKNOWLEDGMENT

This work is financed by the ERDF – European Regional

Development Fund – through the Operational Programme

for Competitiveness and Internationalisation – COMPETE

2020 Programme – within project “POCI-01-0145-FEDER-

006961”, and by National Funds through the FCT – Fundação

para a Ciência e a Tecnologia (Portuguese Foundation for Sci-

ence and Technology) as part of project UID/EEA/50014/2013

and under the fellowship SFRH/BD/69388/2010.

REFERENCES

[1] Freenet project. https://freenetproject.org/.
[2] ns-3 network simulator. https://www.nsnam.org/.
[3] K. Bauer, D. McCoy, D. Grunwald, and D. Sicker. BitBlender: Light-

weight anonymity for BitTorrent. In Proceedings of the Workshop
on Applications of Private and Anonymous Communications (AlPACa
2008). ACM, September 2008.

[4] A. Chaabane, P. Manils, and M. Kaafar. Digging into anonymous traffic:
A deep analysis of the Tor anonymizing network. In Network and System
Security (NSS), 4th International Conference on, pages 167–174, 2010.

[5] S. Chakravarty, G. Portokalidis, M. Polychronakis, and A. Keromytis.
Detection and analysis of eavesdropping in anonymous communication
networks. International Journal of Information Security, 14(3):205–220,
2015.

[6] D. R. Choffnes, J. Duch, D. Malmgren, R. Guiermà, F. E. Bustamante,
and L. Amaral. SwarmScreen: Privacy through plausible deniability in
P2P systems. Technical report, Northwestern EECS, March 2009.

[7] R. Cuevas, M. Kryczka, A. Cuevas, S. Kaune, C. Guerrero, and
R. Rejaie. Is content publishing in BitTorrent altruistic or profit-driven?
In Proceedings of the 6th International COnference, Co-NEXT ’10,
pages 11:1–11:12, New York, NY, USA, 2010. ACM.

[8] P. M. da Silva, J. Dias, and M. Ricardo. CIDRarchy: CIDR-based ns-3
routing protocol for large scale network simulation. In Proceedings of
the 8th International Conference on Simulation Tools and Techniques,
SIMUTools ’15, pages 267–272, 2015.

[9] P. M. da Silva, J. Dias, and M. Ricardo. Storm: Rateless MDS erasure
codes. In Wireless Internet, pages 153–158. Springer, 2015.

[10] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th Conference on
USENIX Security Symposium - Volume 13, SSYM’04, 2004.

[11] D. Goldschlag, M. Reed, and P. Syverson. Onion routing. Commun.
ACM, 42(2):39–41, Feb. 1999.

[12] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Privacy-
preserving P2P data sharing with OneSwarm. SIGCOMM Comput.
Commun. Rev., 41(4):–, Aug. 2010.

[13] S. Katti, J. Cohen, and D. Katabi. Information slicing: Anonymity using
unreliable overlays. In Proceedings of the 4th USENIX Conference on
Networked Systems Design and Implementation, NSDI’07, 2007.

[14] S. Le Blond, P. Manils, A. Chaabane, M. A. Kaafar, C. Castelluccia,
A. Legout, and W. Dabbous. One bad apple spoils the bunch: Exploiting
P2P applications to trace and profile Tor users. In Proceedings of the
4th USENIX Conference on Large-scale Exploits and Emergent Threats,
LEET’11, 2011.

[15] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the
evolution of peer-to-peer systems. In Proceedings of the twenty-first
annual symposium on Principles of distributed computing, PODC ’02,
pages 233–242. ACM, 2002.

[16] S. J. Nielson and D. S. Wallach. The BitTorrent anonymity marketplace.
CoRR, abs/1108.2718, 2011.

[17] R. Petrocco, M. Capotă, J. Pouwelse, and D. H. Epema. Hiding user
content interest while preserving P2P performance. In Proceedings of
the 29th Annual ACM Symposium on Applied Computing, pages 501–
508. ACM, 2014.

[18] M.-Z. Shieh, S.-C. Tsai, and M.-C. Yang. On the inapproximability
of maximum intersection problems. Information Processing Letters,
112(19):723 – 727, 2012.

[19] P. Tsang, A. Kapadia, C. Cornelius, and S. Smith. Nymble: Blocking
misbehaving users in anonymizing networks. Dependable and Secure
Computing, IEEE Transactions on, 8(2):256–269, March 2011.

403ISBN 978-3-901882-83-8, Networking 2016 © 2016 IFIP

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

