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ABSTRACT 
In agricultural applications hyperspectral imaging is used in cases 

where differences in spectral reflectance of the examined objects 

are small. However, the large amount of data generated by 

hyperspectral sensors requires advance processing methods. 

Machine learning approaches may play an important role in this 

task. They are known for decades, but they need high volume of 

data to compute accurate results. Until recently, the availability of 

hyperspectral data was a big drawback. It was first used in 

satellites, later in manned aircrafts and data availability from those 

platforms was limited because of logistics complexity and high 

price. Nowadays, hyperspectral sensors are available for 

unmanned aerial vehicles, which enabled to reach a high volume 

of data, thus overcoming these issues. This way, the aim of this  

paper is to present the status of the usage of machine learning 

approaches in the hyperspectral data processing, with a focus on 

agriculture applications. Nevertheless, there are not many studies 

available applying machine learning approach to hyperspectral 

data for agricultural applications. This apparent limitation was in 

fact the inspiration for making this survey. Preliminary results 

using UAV-based data are presented, showing the suitability of 

machine learning techniques in remote sensed data. 
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1. INTRODUCTION 
Hyperspectral data processing has significantly changed during 

the last decades. This fact was caused mainly because of the 

developments in new advanced sensors and processing equipment. 

Classification is usually the main goal of the hyperspectral data 

thus, most efforts have been put into this task and different 

approaches have been tested [1–5]. Lately, machine learning (ML) 

and deep learning (DL) approaches are becoming popular.  
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New processing approaches allowed new applications in various 

fields, as in agriculture, which is the main scope of this paper. 

Monitoring of agricultural activities faces special challenges that 

are not common to other economic sectors, thus the use of remote 

sensing (RS) is necessary [6]. RS techniques facilitate to gather 

information over large areas with high revisit frequency, which is 

needed because of the strong seasonal patterns related to the 

biological lifecycle of crops [7]. The concept of monitoring and 

managing the crop production based on acquired data analysis is 

called Precision Agriculture (PA) also known as Precision 

Farming (PF) [8].  

ML approaches applied to RS data are nowadays mostly used to 

crop identification or land use/cover classification [9–11]. 

However, in agriculture there are cases, like disease, weeds, or 

pest’s detection, where regular multispectral images cannot 

provide the needed level of detail, and thus hyperspectral imagery 

needs to be used. Nevertheless, using hyperspectral data for this 

purpose has brought some challenges, like high number of bands, 

and need for advanced classification methods [12]. The 

connections between the need of more advance processing 

algorithms for very high dimensional data are highlighted in [13]. 

As previously mentioned, the focus of this study is applying ML 

to hyperspectral data acquired by using RS approaches for 

agricultural applications, since it provides the possibility to 

identify effected crops over large areas without the need of 

touching the ground and this kind of information will help farmers 

to make their crop management decisions more effective and 

increase their productivity. ML along with HSI has the potential 

to change the way we look at agriculture nowadays., Especially 

when developments in processing and data accessibility, caused 

mainly due to the miniaturization of hyperspectral components 

allowed their implementation on Unmanned Aerial Vehicles 

(UAV) platforms, whose operability is more flexible and less 

expensive than traditional platforms used for carrying the 

hyperspectral sensor, needed for accurate results, has increased. 

2. HYPERSPECTRAL DATA 
Hyperspectral data are acquired by passive optical sensors. It uses 

a fact that surface can reflect, absorb and transmit electromagnetic 

solar radiation [14]. The Sun is the primary source of radiation in 

a passive RS system. The solar energy modified by the 

atmosphere that was reflected gets back to the sensor where is 

converted into digital form [15]. The captured reflectance of light 

may then be decomposed into hundreds or thousands of 

contiguous spectral wavelength bands, for every pixel in the 

image ranging from ultraviolet to infrared, providing more 

detailed signatures [16]. An example of spectral signatures of 

selected materials can be seen in Figure 1. 

               

Figure 1. Spectral signatures of selected materials [17] 

The signatures can be compared with spectral reflectance that 

were measured on materials with known compositions in 

laboratories or in the field, stored in spectral library. A 

combination of spectroscopy and image data acquisition by RS 

techniques, using different platforms (satellite, aircraft, UAV), is 

called hyperspectral imaging (HSI), known also as image 

spectroscopy. Each platform can be suitable for different 

applications depending on factors as coverage area or temporal 

resolution.  

Hyperspectral images consist of hundreds or thousands of bands 

as opposed to multispectral images, that have usually from 5 to 12 

bands [18]. The big number of spectral bands caused the 

emergence of third dimension to the spatial image resulting into 

3D data cube. High dimensionality is special characteristics of 

hyperspectral images. In each band appears a unique brightness 

patterns or signatures of spectral bands. The rich spectral 

information available in the hundreds (eventually thousands) of 

narrow bands can possibly allow the accurate discrimination of 

different materials [3]. This fact makes hyperspectral data 

valuable. The biggest advantage of hyperspectral data, the high 

spectral dimensionality and resolution, is at the same time the 

biggest challenge to the processing and analyzing, arising the need 

for developing computationally efficient algorithms. In fact, 

standard parametric classifiers are not going to be sufficient 

anymore. ML appears to be a more suitable approach[19].  

The problem with high dimensionality is known as “the curse of 

dimensionality”, introduced by Bellman [20], named as the 

Hughes phenomenon [21–23]. It is usually present because of 

limited training samples regarding the size of the feature space 

[24], resulting in hardly recognizable patterns of curse 

dimensional feature spaces [25]. Limited number of training 

samples and high number of features can decrease the average 

accuracy [26]. Other effects can be seen as distance between 

neighboring samples which is almost uniform. If the dimension is 

increased towards infinity, the distance between maximum and 

minimum samples, when it is normalized, the minimum goes to 

zero (equation 1). That means that all samples are somehow 

distributed equally and as a consequence of that, almost all 

samples are close to some border of the space [20].  

lim
𝑛→∞

𝑑𝑖𝑠𝑡max − 𝑑𝑖𝑠𝑡𝑚𝑖𝑛

𝑑𝑖𝑠𝑡𝑚𝑖𝑛
→ 0 

equation 1 Curse of dimensionality 

To overcome the “curse of dimensionality” for hyperspectral data, 

the best technique for selecting the optimal dimensions needs to 

be chosen and preparation of sufficient training samples in the 

training phase of the classification needs to be done [26]. 

Principal Component Analysis (PCA), Linear Discriminant 

Analysis (LDA), Convex Cone Analysis (CCA), Independent 

Component Analysis (ICA), Nonnegative Matrix Factorization 

(NMF), Kernels and sparse reconstruction are the most known 

techniques for dimension reduction.  

3. MACHINE LEARNING 
ML, as a part of artificial intelligence, allows to learn from input 

data and provides the ability to analyze complex data more 

effectively with higher classification accuracy than conventional 

processing methods [27], without being explicitly programmed 

[28]. The idea of applying ML into remote sensing was found in 

[29] back in 1990s. The ML approach in the study achieved 

highest accuracy compared to conventional methods at that time. 

After their great results and especially due to new advanced 

sensors that could produce data with higher quality in spatial and 
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spectral resolution, needed for accurate outputs, and the 

availability of the data, ML has become an important tool in 

remote sensing analysis.  

A number of ML algorithms has been presented to RS image 

analysis during last years, e.g. artificial neural networks (ANN), 

decision tree (DT) classifiers, Random Forest (RF) and Support 

Vector Machines (SVM) [30–32] . The SVM are in general 

context considered as a state of the art method for HSI data 

classification, because they handle the curse of dimensionality 

issue well, thus it can be applied to high dimensional data with 

limited dataset samples [33]. 

Lately, Deep Learning (DL) methods has proven to be very 

effective at discovering intricate structures in high-dimensional 

data [34], thus suitable for hyperspectral data. DL outperforms the 

limitation of conventional ML techniques, which was the ability 

to process natural data in their raw form [34]. The huge potential 

of DL hyperspectral data processing mentioned Mou et al. [35]. 

Zhang et al. [36] have found that DL is actually everywhere in 

remote sensing (RS) data analyzing (e. g. image preprocessing, 

pixel-based classification, target recognition and recently in high-

level semantic feature extraction and scene understanding), even 

though it did not provide the same impact on RS yet, as in 

detection in computer vision on RGB imagery [37]. 

DL is characterized by neural networks (NNs) with many hidden 

layers, that’s why they are called deep [38]. Multiple hidden 

layers work to build an improved feature space. Higher layers 

make aspects of the input that are important for discrimination 

more relevant and suppress irrelevant variations. Second layer 

learns first order features, as edges; third layer learns higher order 

features (combination of first layer features, combinations of 

edges) [34].  

Constructing a pattern-recognition or ML system required a deep 

knowledge for decades to build a feature extractor that could 

transformed the raw data into suitable internal representation or 

feature vector, from which the learning system could detect or 

classify patterns in input [34], but DL typically results in black-

box solutions that give us little to no insight into how they are 

working and why we should trust them [37]. DL is using 

representation learning. This approach has been known for 

decades but, due to recent advancement in computational power, 

more available data and excellent results, the implementation of 

the technique started to grow big. According to [38] it has even 

the fastest-growing trend in big data analysis, and it was consider 

as one of the ten breakthrough technologies of 2013 [39]. 

4. APPLICATIONS 

4.1 Agriculture applications 
Yalcin [40] utilized AlexNet as a pre-trained CNN model for 

classifying different phenological stages of six plant classes. The 

classification performance of the fine-tuned CNN based approach 

was compared with results achieved by ML approach based on 

manually extracted features. Results from manually extracted 

features were outperformed by results where the features were 

learned from CNN model. Liu et al. [41] applied Learning Vector 

Quantization (LVQ) neural network classifier and PCA 

techniques for discriminating and classifying different fungal 

infection levels in rice panicles. The classification accuracies 

achieved great results and proved that with hyperspectral remote 

sensing data it is possible to discriminate different fungal 

infection levels of rice panicles by using NN approach. A 

comparison of ML methods on hyperspectral plant disease 

assessments carried out Yeh et al. [42]. In the study were tested 

two hyperspectral image analysis methods: stepwise discriminant 

analysis (SDA), spectral angle mapper (SAM) and the proposed 

Simple Slope Measure (SSM) method. The outcomes of the 

research proved the suitability of using nondestructive methods to 

assess strawberry foliage Anthracnose symptoms in early stages. 

A comprehensive overview of ML tools for various biotic and 

abiotic stress traits applications can be found in [43]. Dutta et al. 

[44] provided a comparison of various supervised ML methods 

for a classification of salad leaf related disease.  Fletcher and 

Turley [45] proved that by using combination of canopy 

hyperspectral narrowband data and random forest machine 

learning algorithm it is possible to differentiate cotton from 

Palmer amaranth, an invasive weed of cotton production systems. 

Ashourloo et al. [46] were applying ML regression techniques for 

the leaf rust disease detection using hyperspectral measurement. 

They found out that Gaussian process regression (GPR) can 

outperform other methods (partial least square regression, ν 

support vector regression) in case of using smaller training dataset 

and that challenges in early detection of plant disease can be 

reduced by ML regression techniques.  

4.2 Preliminary testing on vineyard detection 
With the goal to detect vineyard plots, a first approach using 

CNNs was carried out. Data acquisition from vineyards located 

within the campus of University of Trás-os-Montes and Alto 

Douro (UTAD) was carried out. Imagery was acquired using the 

fixed-wing UAV senseFly eBee (senseFly SA, Lausanne, 

Switzerland), with a Canon IXUS 127 HS camera - operating in 

RGB and a Canon PowerShot ELPH 110 HS camera - for red-

edge (RE) imagery acquisition, were used in two distinct flight 

plans. The flight height was ~175m resulting in 5 cm/px Ground 

Sample Distance (GSD). Both RGB and RE imagery were 

submitted to a photogrametric processing stage that enabled 

orthophoto mosaics computation. 

Afterwards, they were manually segmented in patches of 512 x 

512 pixels with stride of 64 pixels that were used to train a CNN 

(U-Net [47]). The network was implemented using Keras with 

TensorFlow as backend, coded in Python 2.7. All experiments 

were performed on workstation with an Intel Xeon CPU E5-2650, 

64GB RAM and a NVIDIA GTX-1080Ti GPU (11 GB memory) 

which was used to accelerate the CNN. The CNN was trained 

from scratch with training set (Figure 2, left) which was split 

randomly in 80% (12.109 patches) for training and 20% (3.002 

patches) for testing. The training was made using Dice coefficient 

as cost function, in 3 cycles of 128 epochs with the Adam 

optimizer. The learning rate was 1E-4, 1E-5 and 1E-6 in each 

cycle, respectively. Validation using Dice Coeficient achieved 

0.9953 and is graphically depicted (Figure 2 , right).  

  

Figure 2. RGB (left) and RE (right) orthophoto mosaics of the 

vineyard used for training and testing with detected vineyard 

plots highlighted. 
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The trained network was then applied to a different vineyard area 

for validation, with same parameters (patches and stride). The 

resulting image from classification was binarized by considering 

that all pixels with a value above zero correspond to vineyard plot. 

Then a set of morphological operations were applied to remove 

possible outliers and to provide a better understanding of the 

detected area. The morphological operations were applied in the 

following order: open, close, remove objects lower than 2000 

pixels that correspond to potential outliers. For validation 

purposes, a pixelwise comparison with a manual segmented mask, 

which corresponds to ground truth, was performed. The result for 

exact detection was achieved with 85.07% accuracy, followed by 

14.64% for under detection and 0.29% over detection. A visual 

interpretation of the obtained results is presented in Figure 3. It is 

noticeable a clear lack of detection in areas with strong shadow 

presence and less density of inter-row vegetation, being this non-

detection related to the inexistence of such situations in the dataset 

used for learning. 

 

Figure 3. Results from the pixel-wise comparison of the 

detected vineyard plots against a manual segmented mask, 

with RGB orthophoto mosaic in the background. (red under 

detection, green exact detection and blue over detection). 

5. CONCLUSIONS AND FUTURE WORK 
Hyperspectral remote sensing imaging along with ML can bring 

some benefits to agricultural industry. It is a non-invasive, less 

laborious, accurate method that can reduce the costs and field 

work operations. Not many studies that implemented ML into 

remote sensing applications using hyperspectral data were found, 

especially in agriculture. 

As for the obtained results, the good classification accuracy and 

experience acquired from these preliminary experiments 

encouraged the application of this approach for hyperspectral data 

processing in near future, driven by the strong conviction that 

ML/DL-based classification has a big potential for high-

dimensional data, which turns out to be justified by both literature 

and our experiments. 
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