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Abstract This book chapter reports a study on the importance of modeling wind
power uncertainty in the reliability assessment commitment procedure. The study
compares, in terms of economic and reliability benefits, the deterministic and
stochastic approaches to modeling wind power. The report describes the mathe-
matical formulation of both approaches and gives numerical results on a 10-unit
test system. It is found that scenario representation of wind power uncertainty in
conjunction with a proper reserve margin to accommodate for wind power
uncertainty may provide higher benefits to market participants.

Nomenclature

Indices
i Index for wind unit, i = 1.. I
j Index for thermal unit, j = 1.. J
k Index for time period, k = 1.. 24
l Index for generation block, thermal units, l = 1.. L
m Index for reserve demand block, m = 1..M
s Index for scenario, s = 1.. S

J. Wang (&) � J. Valenzuela � A. Botterud
Decision and Information Sciences Division, Argonne National Laboratory,
Argonne, IL 60439, USA
e-mail: jianhui.wang@anl.gov

J. Valenzuela
Department of Industrial Systems Engineering, Auburn University,
Alabama, USA

H. Keko � R. Bessa � V. Miranda
INESC Porto, Institute for Systems and Computer Engineering of Porto,
Porto, Portugal

H. Keko � R. Bessa � V. Miranda
Faculty of Engineering, University of Porto, Porto, Portugal

P. M. Pardalos et al. (eds.), Handbook of Wind Power Systems, Energy Systems,
DOI: 10.1007/978-3-642-41080-2_1, � Springer-Verlag Berlin Heidelberg 2013

3



Constants
a, b, c Unit production cost function coefficients
a(s) Operating reserve percentage, scenario s
WR(k) Additional wind reserve, period k
D(k) Load, period k
Cens Cost of energy not served
CRrns,m Cost of reserve not served, block m
Aj Operating cost at minimum load, thermal unit j
MCl,j Marginal cost (or bid), block l, thermal unit j
PTj Capacity, thermal unit j
PTj Minimum output, thermal unit j

Dl;j Capacity, block l, thermal unit j

CCj Cold start cost, thermal unit j
HCj Hot start cost, thermal unit j
Gð�Þ Generalized network constraints
Tcold

j Time for cold start cost (in addition to minimum downtime), thermal
unit j

Tup
j Minimum up-time, thermal unit j

Tup;0
j

Minimum up-time, initial time step, thermal unit j

Tdn
j Minimum down-time, thermal unit j

Tdn;0
j

Minimum down-time, initial time step, thermal unit j

SUj Start-up ramp limit, thermal unit j
SDj Shut-down ramp limit, thermal unit j
RLj Ramping limit (up/down), thermal unit j
Wi(k) Actual maximum wind generation, wind unit i, period k

PWf ;s
i ðkÞ Forecasted maximum generation, wind unit i, period k, scenario s

probs Probability of occurrence, wind scenario s

Variables
cp

j ðkÞ Production cost, thermal unit j, period k

cu
j ðkÞ Start-up cost, thermal unit j, period k

ptj(k) Generation, thermal unit j, period k
dl;j kð Þ Generation, block l, thermal unit j, period k
ptjðkÞ Maximum feasible generation, thermal unit j, period k
vj(k) Binary on/off variable, thermal unit j, period k
pws

i kð Þ Generation, wind unit i, period k, scenario s
cws

i kð Þ Curtailed wind generation, wind unit i, period k, scenario s
enssðkÞ Energy not served, period k, scenario s
rnss

mðkÞ Reserve curtailed, period k, scenario s
rsðkÞ Reserve requirement (spinning), scenario s, period k
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1 Introduction

In many electricity markets, power producers and buyers submit bids to an
Independent System Operator (ISO/RTO) for an amount of energy and the price
they are willing to offer or pay [1]. The electricity market is usually structured into
day-ahead (DA) and real-time (RT) markets. In the DA, power producers submit
generation offers, and consumers submit demand bids. The ISO/RTO computes
market clearing prices for the next 24 h by using a least-cost security-constrained
unit commitment (SCUC), and a security-constrained economic-dispatch (SCED)
optimization model. The objective of ISO/RTO is to meet the demand at minimum
cost while maintaining the reliability of the system.

However, high penetrating of wind power has caused great challenges to the
ability of power system operators to reliably operating the system due to the
uncertainty and variability from wind power, especially in the unit commitment
stage. How to commit the generating units optimally to address the fluctuations of
wind power becomes very critical. To account for load fluctuations, outages, and
wind power output uncertainties, the unit commitment algorithms co-optimize
energy and ancillary services. Most of current research is focused on how to
integrate the wind power forecasts into the day-ahead SCUC only without simu-
lating a complete market procedure. Barth et al. [2] presented the early stage of the
Wind Power Integration in the Liberalised Electricity Markets (WILMAR) model
in [3]. More recently, a more comprehensive UC algorithm based on Mixed
Integer Linear Programming (MILP) has been introduced in WILMAR. However,
the model is mainly a planning tool. Tuohy et al. [4] extended their previous
studies in [5] and [6] to examine the effects of stochastic wind and load on the unit
commitment and dispatch of power systems with high levels of wind power by
using the WILMAR model. The model builds on the assumptions needed for the
hours-ahead or day-ahead system scheduling. The analysis compares only the
scheduling alternatives at the scheduling stage. The effectiveness of the methods
should be examined further by analyzing the operational impact in the real-time
market, where the realized wind generation is likely to deviate from the forecast.
Ummels et al. [7] analyzed the impacts of wind power on thermal generation unit
commitment and dispatch in the Dutch system, which has a significant share of
combined heat and power (CHP) units. Bouffard and Galiana [8] proposed a
stochastic unit commitment model to integrate significant wind power generation
while maintaining the security of the system. Rather than being pre-defined, the
reserve requirements are determined by simulating the wind power realization in
the scenarios. Ruiz et al. [9] proposed a stochastic formulation to manage
uncertainty in the unit commitment problem. The stochastic alternative to the
traditional deterministic approach can capture several sources of uncertainty, and
system reserve requirements can be determined for each scenario. In a related
paper [10], the authors consider uncertainty and variability in wind power in the
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UC problem by using the same stochastic framework. Wang et al. [11] presented a
SCUC algorithm that takes into account the intermittency and variability of wind
power generation. The wind power uncertainty is represented by scenarios, and
Bender’s decomposition is used to solve the problem.

In most of the existing markets, after the clearing of the DA market, the ISO/
RTO performs a revised commitment procedure focusing on the reliability of the
power system. This procedure is called Reliability Assessment Commitment
(RAC). In this procedure, the demand bids are replaced with the forecasted load for
the next day. Since this procedure is performed several hours after the DA market is
cleared, the ISO/RTO may change the commitment schedule from the DA market
clearing because of reliability issues. After the RAC procedure, the SCED is
executed again every 5 min to economically dispatch the units. The 5-minute prices
are integrated over the hour to obtain the real-time hourly prices. As in the DA
market clearing, the RAC generates a new commitment schedule. In the real time,
the SCED determines the hourly dispatch results and energy prices. The market
settlement is based on real-time deviations from the DA transactions over the hour.
A RT demand that exceeds its DA quantity pays a RT price for the shortage and a
demand that is below its DA quantity is paid the RT price for the surplus. In the
market procedure, wind power forecasting can play a role in several places as
shown in Fig. 1. As can be seen in Fig. 1, the wind power forecast can help
determine the operating reserve requirements, as a part of the required reserves may
be used to accommodate the uncertainty and variability from wind power. Wind
power bidding strategies should also be based on wind power forecasts to predict
the actual wind power output in the real-time market. Furthermore, updated wind
power forecasts can be used by the ISO/RTO in the RAC process to provide more
accurate information. Moreover, wind power forecasts can be used in the operating
day to guide the real-time system operations. The use of wind power forecasting in
U.S. electricity markets is further discussed in [12].

Given that the day-ahead market is generally cleared as a financial market, we
investigate the role of wind power forecasting in the reliability unit commitment
by simulating the market procedure through a market simulation model in this
book chapter. The model is used to investigate the effects of wind power uncer-
tainty on unit commitment and dispatch decisions and to analyze its impact on
reserve requirements for system operations. The purpose of this book chapter is to
demonstrate that modeling wind power uncertainty properly can efficiently deal
with the uncertainty and variability associated with high penetration of wind power
generation in current markets. Also, a stochastic approach that utilizes a set of
scenarios to represent the wind power uncertainty is developed and described in
this book chapter. A deterministic approach that uses a wind power point forecast
is implemented with the purpose to compare it to the stochastic approach.

The following sections give the mathematical formulation of both approaches
and preliminary results are given for a 10-unit power system.
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2 Unit Commitment and Dispatch Formulations

The general UC constraints follow the deterministic model in [13]. However, we
make adjustments in this stochastic version based on the introduction of wind
power and wind power forecasting uncertainty, which is represented in the form of
scenarios. Our stochastic unit commitment model was first presented in [14]. We
include the formulation here for completeness.

1. Objective Function

The objective is to minimize the sum of expected production costs, the expected
cost of unserved energy and reserve curtailment, and start-up costs, as shown in
(1). Constraints on load and operating reserves are represented in (2)–(3). We use a
step-wise reserve demand curve to mimic the reserve requirement practiced by
some system operators, such as MISO, as shown in (4). This formulation allows
the reserve requirement, represented by a percentage of wind power, to be reduced
at the reserve curtailment cost in some cases to avoid load curtailment. The idea is
that this wind power reserve helps accommodate the uncertainty and variability
from wind at the day-ahead UC stage since we do not simulate load forecasting
errors and contingencies. Wind units may also be curtailed if necessary, as shown
in (5). It is of note that the thermal dispatch, and therefore the production cost and
the curtailed energy and reserve costs, all vary by wind scenario. The constraints

1100 1600 1700Prepare and 
submit DA bids

Clear DA market 
using SCUC/SCED

Day ahead:

Post-DA RAC 
using SCUC

Post results 
(DA energy 
and reserves)

Re-
bidding 
for 
RAC

DA      – day ahead
RT      – real time
SCUC – security constr.

unit commitment
SCED – security constr.

economic dispatch
RAC   – reliability ass.

commitment

Post operating 
reserve requirements

Operating day:

-30min
Operating hourPrepare and 

submit RT bids

Clear RT market using 
SCED (every 5 min)

Intraday RAC
using SCUC

Post results 
(RT energy 
and reserves)

Wind power 
forecasting

Fig. 1 Market operations timeline for midwest ISO, indicating where wind power forecasting
could play an important role1

1 Reprinted from [12], with permission from Elsevier.
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for load, operating reserves, and wind curtailment must be met in all wind sce-
narios. In contrast, the start-up costs are independent of wind scenarios. This is
because we assume that the commitment of thermal units has to be fixed at the
day-ahead stage.

We assume that each thermal unit is offered into the market as a step-wise
price-quantity offer function, and that the offers can be derived by linearizing a
standard quadratic production cost function. Hence, we can express the operating
cost for one thermal unit with the equations in (6)–(9). The coefficients for the
generation blocks are derived from the quadratic production cost function. The last
part of the objective function is the start-up cost. This part is modeled by assuming
that there is a cold start-up cost and a warm start-up cost, depending on the length
of time that the unit has been down. The mathematical formulation is shown in
(10)–(12).

2. Thermal Unit Constraints

The constraints for the operation of thermal units include generation limits,
ramping-up limits, ramping-down limits, minimum-up time, and minimum-down
time. The upper and lower generation limits for the thermal plants are shown in
(13). The maximum power output of a unit, pts

j kð Þ, is constrained by the generation
limit of a unit in (14), limitations on start-up and ramp-up rates in (15) shut-down
ramp rates in (16), and ramp-down limits in (17). The availability of spinning
reserves is equal to the difference between the maximum potential generation and
the actual generation, that is, pts

j kð Þ � pts
j . Hence, the reserve requirement in (5)

takes into account the constraints imposed by (13)–(17). The reserve requirement
is maintained for each individual wind scenario.

The final constraints included are the minimum-up and -down time constraints.
Minimum-up times are represented by (18)–(20), which represent the initial status,
the intermediate time periods, and the final time steps of the planning period,
respectively. The minimum-down time constraints are represented analogously by
(21)–(23). It is of note that the equations for generation and ramping limits,
(13)–(17), must be included for all wind scenarios, because thermal dispatch
depends on the wind generation. In contrast, the minimum-up and minimum-down
time constraints, (18)–(23), are functions of commitment only and do not vary with
wind scenarios. Generalized network constraints are represented in (24).

Min
XS

s¼1

probs �
XK

k¼1

XJ

j¼1

cp;s
j kð Þ þ

XK

k¼1

Cens � enssðkÞ
(

þ
XK

k¼1

XM

m¼1

CRrns;m � rnss
mðkÞ

)
þ
XK

k¼1

XJ

j¼1

cu
j kð Þ

ð1Þ

s.t.
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XI

i¼1

pws
i kð Þ þ

XJ

j¼1

pts
j kð Þ ¼ D kð Þ � enss kð Þ; 8k; 8s ð2Þ

XJ

j¼1

pts
j kð Þ � pts

j kð Þ
h i

� rsðkÞ; 8k; 8s ð3Þ

rs kð Þ ¼ WR kð Þ �
XM

m¼1

rnss
m kð Þ; 8k; 8s ð4Þ

pws
i kð Þ þ cws

i kð Þ ¼ PWf ;s
i kð Þ; 8i; 8k; 8s ð5Þ

cp;s
j kð Þ ¼ AjvjðkÞ þ

XL

l¼1

MCl;jðkÞ � ds
l;jðkÞ; 8j; 8k; 8s ð6Þ

pts
j kð Þ ¼ PTj � vj kð Þ þ

XL

l¼1

ds
l;jðkÞ; 8j; 8k; 8s ð7Þ

ds
l;jðkÞ�Dl;j; 8l; 8j; 8k; 8s ð8Þ

ds
l;jðkÞ� 0; 8l; 8j; 8k; 8s ð9Þ

cu
j kð Þ�CCj � vj kð Þ �

XN

n¼1

vj k � nð Þ
" #

; 8j; 8k

where N ¼ Tdn
j þ Tcold

j :

ð10Þ

cu
j kð Þ�HCj � vj kð Þ � vj k � 1ð Þ

� �
; 8j; 8k ð11Þ

cu
j kð Þ� 0; 8j; 8k ð12Þ

PTj � vj kð Þ� pts
j kð Þ� pts

j ðkÞ; 8j; 8k; 8s ð13Þ

0� pts
j ðkÞ�PTj � vj kð Þ; 8j; 8k; 8s ð14Þ

pts
j kð Þ� pts

j k � 1ð Þ þ RLj � vj k � 1ð Þ
þ SUj � vj kð Þ � vj k � 1ð Þ

� �

þ PTj � 1� vjðkÞ
� �

; 8j; 8k; 8s
ð15Þ

pts
j kð Þ�PTj � vj k þ 1ð Þ þ SDj � vj kð Þ � vj k þ 1ð Þ

� �
; 8j; 8k ¼ 1. . .23; 8s ð16Þ
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pts
j k � 1ð Þ � pts

j kð Þ�RLj � vj kð Þ
þ SDj � vj k � 1ð Þ � vj kð Þ

� �

þ PTj � 1� vj k � 1ð Þ
� �

; 8j; 8k; 8s
ð17Þ

XT
up;0
j

k¼1

1� vj kð Þ
� �

¼ 0; 8j ð18Þ

XkþTup
j �1

n¼k

vj nð Þ� Tup
j � vj kð Þ � vj k � 1ð Þ
� �

;

8j; 8k ¼ Tup;0
j þ 1; . . .; T � Tup

j þ 1

ð19Þ

XT

n¼k

vj nð Þ � vj kð Þ � vj k � 1ð Þ
� �� �

� 0; 8j; 8k ¼ T � Tup
j þ 2; . . .; T ð20Þ

XT
dn;0
j

k¼1

vj kð Þ ¼ 0; 8j ð21Þ

XkþTdn
j �1

n¼k

1� vj nð Þ
� �

� Tdn
j � vj k � 1ð Þ � vj kð Þ
� �

;

8j; 8k ¼ Tdn;0
j þ 1; . . .; T � Tdn

j þ 1

ð22Þ

XT

n¼k

1� vj nð Þ � vj k � 1ð Þ � vj kð Þ
� �� �

� 0; 8j; 8k ¼ T � Tdn
j þ 2; . . .; T ð23Þ

G pws
i kð Þ; pts

j kð Þ
� �

� 0 ð24Þ

3. Deterministic Formulation

In a simplified representation, the formulation above would consider only one
scenario for forecasted wind generation. In this case, the formulation is equivalent
to a deterministic version of the UC problem. The selected scenario could be the
expected wind power generation or point forecast or could also represent a certain
quantile in the forecasting probability distribution.

4. Economic Dispatch

In order to assess the dispatch cost in real-time, we also develop an economic
dispatch formulation. The commitment variables are now assumed to be fixed
from the UC run. The representation of wind power generation by scenarios is
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replaced by the realized wind power output (without considering potential wind
power curtailment). Hence, we formulate a deterministic economic dispatch
problem consisting of Eqs. (1)–(9) and (13)–(17) with only one wind power sce-
nario and fixed values for the thermal commitment variables, vj(k). The start-up
cost and minimum-up and -down time constraints are not considered because of
the fixed commitment. Ramping constraints are in (13)–(17), and the 24 h problem
is solved simultaneously. It is of note that the operating reserve requirement in (3)
is also imposed in the ED formulation.

3 Market Simulation

A market simulation set up has been put in place, which first clears the day-ahead
market. This is done by first running UC and then ED on the basis of a day-ahead
wind power forecast. Next, the RAC is performed with a new forecast, which
could be a deterministic point forecast or a set of scenarios, as explained below.
Finally, the real-time ED is run on the basis of the realized wind conditions. This
action is performed in sequence for multiple days. An updated wind power fore-
cast along with the unit status and generation output for the thermal units from the
previous day are taken as initial conditions for the UC problem for the next day.
The main results for the day-ahead and real-time market operations (UC, dispatch,
available reserves, unserved load, curtailed reserve, prices, etc.) are calculated and
stored after each simulation day.

Because the focus is the impact of wind power forecasts on system operation,
the only uncertainty we consider is from wind generation. Other uncertainties,
such as load or forced outage, are not directly considered. Hence, the additional
amount of ‘‘wind power reserve’’ becomes critical to address the impact of
uncertainty from use of wind power. With the stochastic UC formulation, the need
for additional operating reserves is arguably already addressed because we include
a representative set of wind power outcomes in the scenarios. However, because of
the accuracy of the scenarios in capturing all of the possible wind power outputs,
additional reserve may be needed even in the stochastic formulation to cover the
extra uncertainty that the simulated scenarios are not able to capture. In the case
study below, we run a number of different cases to investigate the impact of UC
strategy and operating reserve policy on the system dispatch.

3.1 Deterministic Approach

In the deterministic approach, the DA market uses a wind power point forecast for
the next 24 h of the operation day. Since the objective of the RAC procedure is to
assure the reliability of the power system, a conservative estimate of the wind
power, e.g. the 20th percentile, may be used in the procedure. After the units are
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committed in the RAC procedure, the units are economically dispatched by the
SCED using the actual wind power. It is also assumed that there is no demand side
bidding. Figure 1 illustrates the different stages of the market procedure and how
the wind power data is used in the deterministic approach.

3.2 Stochastic Approach

In the stochastic approach, the DA market uses the same wind power forecast for
the next 24 h of the operation day as in the deterministic approach. However, in
comparison with the point forecast used in RAC in the deterministic approach, the
RAC uses a set of wind power scenarios in the stochastic case. The scenarios are
derived by using a combination of quantile regression and Monte-Carlo simulation
[15, 16]. A comprehensive review of the state-of-the art in wind power forecasting,
including uncertainty forecasts is provided in [17]. As in the deterministic
approach, the dispatch of the units in the real-time market is completed by the
SCED using the actual wind power. Again, we assume no uncertainty on the load
and no generator outages. Figure 2 illustrates the use of the wind power data. It is
also assumed that there is no demand side bidding in the stochastic approach.

4 Case Study

A test 10-unit power system is used to study the reliability unit commitment
problem. Since we focus on the impact of different UC strategies and reserve
requirement with wind power, we do not consider transmission constraints in this
case study. Hence, the SCUC, SCED and RAC become UC and ED without
transmission constraints and are solved in sequence as described in Figs. 2 and 3.
The technical characteristics of the thermal units are given in Table 1. The values

Fig. 2 Wind power forecast in the deterministic approach
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in this table are based on the case studies presented in [13, 18]. Ramp rates have
been added to the table and the cost coefficients have been slightly modified. Each
unit is assumed to have four blocks of equal size. The bid price of each block is
based on the quadratic cost function. The production cost increases from unit 1 to
unit 10, with units 1 and 2 being the baseload plants.

Fig. 3 Wind power forecast in the stochastic approach

Table 1 Generator data

Unit PTj (MW) PTj (MW) RLj (MW/h) Tup
j [h] Tdn

j [h] In. state (h)

1 455 150 200 8 8 8
2 455 150 200 8 8 8
3 130 20 100 5 5 -5
4 130 20 100 5 5 -5
5 162 25 100 6 6 -6
6 80 20 80 3 3 -3
7 85 25 85 3 3 -3
8 55 10 55 1 1 -1
9 55 10 55 1 1 -1
10 55 10 55 1 1 -1

Unit aj ($/h) bj ($/MWh) cj ($/MW2h) CCj ($/h) HCj ($/h) Tcold
j (h)

1 1,000 16 0.00048 9,000 4,500 5
2 970 17 0.00031 10,000 5,000 5
3 700 30 0.002 1,100 550 4
4 680 31 0.0021 1,120 560 4
5 450 32 0.004 1,800 900 4
6 370 40 0.0071 340 170 2
7 480 42 0.00079 520 260 2
8 660 60 0.0041 60 30 0
9 665 65 0.0022 60 30 0
10 670 70 0.0017 60 30 0

(*) Start-up and shut-down ramps, SUj and SDj, are equal to ramp rate RLj
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The power system is simulated for 91 days. The hourly load profile corresponds
to the historical data from two utilities in the state of Illinois for the months of
October to December of 2006. The load has been scaled down to match the
generation capacity of the test power system. Figure 4 shows the hourly load for
the month of November. It is assumed perfect information about the load, i.e. the
forecasted load is assumed to be equal to the actual load. Again, the reason for this
assumption is to isolate the effects of wind power uncertainty from load uncer-
tainty. Outages of thermal plants and wind farms are not simulated either. Thus,
the results of the simulated cases show the effects of wind power uncertainty only.
The cost of reserve curtailment is 1,100 ($/MWh) and the cost of unserved energy
is 3,500 ($/MWh). The wind power plants do not provide reserves and therefore
the operating reserve requirement is met by the thermal power plants .

The wind power data corresponds to wind power forecasts and realized wind
power generation for 15 hypothetical locations in the state of Illinois for 2006.
Time series of wind power generation for the 15 sites were obtained from NREL’s
EWITS study [19]. This data was produced by combining a weather model with a
composite power curve for a number of potential sites for wind power farms. The
forecasts were generated based on observed forecast errors from four real wind
power plants. The wind power data for the 15 sites were aggregated into one time
series. The accuracy of the day-ahead wind power forecast varies from day to day.
For the forecast, the normalized mean average errors (NMAE) over a 91-day
simulation period vary between 8.4 and 12.4 % for different hours of the day, with
the highest forecast errors occurring in the afternoon between noon and 6 pm.

The total installed capacity of wind power is assumed to be 500 MW, and for
simplicity it is modeled as one large wind power plant. For the simulated 91-day
period, the wind power capacity factor is 40 %, and the wind power meets 20 % of
the load (with no wind curtailment). Wind power and load are uncorrelated with a
correlation coefficient of 0.01. With these assumptions, the total installed capacity of
the thermal units is 10.8 % higher than the peak load. If we assign a capacity value of
20 % to the wind power capacity, the system reserve margin increases to 17.4 %.

Fig. 4 Hourly load of November, 2006
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Figure 5 shows the actual and forecasted hourly wind power for the month of
November.

In the following sections, the results for the deterministic and stochastic
approaches are compared. The purpose is to study how the use of wind power
forecasts, reserve requirements, and unit commitment strategy influence cost,
prices, and reliability in system operations.

1. Deterministic Approach

To study the impact of different reserve margins, five cases are developed. Their
characteristics are shown in Table 2. All cases solve the UC and ED in the DA
market using the same wind power forecast. The reason is to clear the DA market
with the same amount of information on wind power in all cases. The RAC
formulation uses an estimate of the 20th percentile of the wind power as a forecast.
The 20th percentile is a conservative forecast of the actual wind power, which
means that the actual wind power is expected to be higher than this forecast. In this
way, the difference between the actual wind power and the 20th percentile acts as a

Fig. 5 Actual and forecasted hourly wind power of November, 2006

Table 2 Description of deterministic cases (10-unit system)

Case UC and ED
Reserve margin a (%)

RAC and ED Reserve
margin a (%)

D0a 20 20
D1 20 20
D2 20 40
D3 40 20
D4 40 40
D5 No reserve No reserve

a Case D0 uses a perfect forecast
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natural reserve for the system. In order to clarify the structure of the cases, let us
consider case D2 in Table 2. In case D2, the UC and ED use a forecast of wind
power to commit and dispatch the thermal power plants in the day-ahead market.
The reserve margin is set to 20 % of the wind power forecast to accommodate
wind power variations. The RAC, on the other hand, commits the thermal units in
the real-time market using a 20th percentile estimate of the wind power and a
reserve margin equal to 40 % of the 20th percentile estimate. The thermal units are
dispatched in the real-time market by ED using the actual wind power and with the
same reserve margin as in the RAC procedure. Notice that all reserve requirements
are functions of the wind power forecast. In addition, a hypothetical case D0
consisting of using a perfect wind power forecast (the forecast for the UC, ED, and
RAC is the actual wind power) is also simulated. The fact that the forecast is a
perfect prediction of the actual wind power is assumed to be unknown to the
operator and a reserve of 20 % of the forecast is used to accommodate for the
possible wind power variations.

A summary of the results for the six cases are provided in this section. The
cases are solved using the mathematical programming formulation given in Sects.
2.1–2.4 and the commercial solver Lingo 12.0. A Lingo tolerance of 0.01 (1 %
gap) is used in all cases for solving the integer programs. Microsoft Excel 2007 is
used as the input and output interface. On average, it takes 12 s to simulate one
day using a personal computer with 8 GB RAM and Intel(R) CoreTM2 Duo
processor 3.33 GHz. Table 3 summarizes the overall performance during the real-
time dispatch over the 91-day simulation.

As expected, D0 gives the best performance. It serves the load at all hours, and
it has the lowest startup and production costs while maintaining the lowest per-
centage of units on-line. However, this case is unrealistic since the wind power
cannot be predicted with absolute certainty. Case D5, on the other hand, is the
worst case in terms of serving the load and total costs. 0.072 % (1,556.21 MWh
over a total of 2161,989 MWh) of the total load is curtailed. The loss of load
probability is equal to 0.0238 (52 h over a total of 2,184 h). It has also the higher
total cost (startup ? production ? unserved load costs), a 16 % higher than the
best case. Case D2 is the next best case in regard to serving the load. Under this
case, 0.006 % of the total load is curtailed representing a 91 % improvement from
the worst case D5. The loss of load probability is equal to 0.004, which represents

Table 3 10-unit system overall performance (91-day simulation of deterministic approach)

Case Unserved load
(MWh)

Unserved
reserve
(MWh)

Startup
cost (M$)

Production
cost (M$)

Unserved load
cost (M$)

D0 0.00 5.5 100.70 34,357.24 0.00
D1 465.87 927.1 110.22 34,538.52 1,630.53
D2 137.37 1,678.6 110.70 34,676.18 480.80
D3 465.87 927.1 109.73 34,537.52 1,630.55
D4 137.37 1,678.6 110.49 34,676.46 480.80
D5 1,556.21 0.0 141.16 34,448.38 5,446.73

16 J. Wang et al.



an 83 % improvement. This gain is at the cost of maintaining 5.4 % more units
on-line than in the worst case. In addition to these improvements, case D2 reduces
the total cost by 12.5 %. Case D4 performs similarly to case D2, except that the
production cost is slightly higher. Cases D1 and D3 have similar performance but
they do not provide better results than cases D2 and D4.

The six cases are also compared in terms of market prices. Table 4 summarizes
the day-ahead and real-time prices over the 91-day simulation of each case.

In Table 4, Case D0 gives the lowest RT prices. There is no difference between
the DA and RT prices because the actual wind power is used to clear both the DA
and RT markets. The prices in the DA market are similar in all cases because the
UC and ED in the DA market are solved using the same wind power forecast.
However, the market prices in the RT market are much higher than those of the
DA market. The reason is that the 20th percentile estimate of the wind power
overestimates (27 % of the time) the actual wind power, which in turn increases
the reserve requirements in the real-time market. In some hours, the reserve
requirement causes the dispatch of more expensive thermal plants and sometimes
the curtailment of the reserve or the load. For example, in case D2 the reserve is
curtailed in 68 h and the load in 9 h. Case 5 produces the highest average RT
price. The reason is that having no reserve requirements causes the ramp up of
more expensive power plants to accommodate variations of the wind power. At the
same time, the price goes up to the cost of unserved energy (3500 $/MWh) as soon
as load curtailment occurs. The average DA price is the lowest because there is no
cost attributed to reserve curtailment.

The results in Tables 3 and 4 demonstrate the importance of modeling the
uncertainty of wind power and choosing an appropriate reserve margin to account
for the wind power uncertainty.

2. Stochastic Approach

Three cases are developed to test the stochastic approach. Their characteristics are
shown in Table 5. All cases solve the UC and ED in the DA market using the same
wind power forecast as in the deterministic approach. In all cases, the RAC for-
mulation uses a set of scenarios for representing the uncertainty of the wind power.
For each scenario, a reserve margin is set to accommodate wind power uncertainty
not captured by the scenarios. Within a case, the same percentage of reserve is

Table 4 10-unit system market prices (91-day simulation of deterministic approach)

Case Average DA
energy price
($/MWh)

Average RT
energy price
($/MWh)

Load-weighted DA
energy price ($/MWh)

Load-weighted RT
energy price ($/MWh)

D0 26.91 26.91 27.60 27.60
D1 22.84 72.88 23.66 77.83
D2 22.76 64.64 23.56 68.88
D3 22.32 72.88 22.90 77.84
D4 22.76 64.64 23.50 68.89
D5 20.58 103.58 21.04 105.32
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used in all the scenarios. To produce the wind power scenarios for the months of
October, November and December, data (forecasts and realized generation) for the
period from January to July were used to train a quantile regression [20] and to
estimate the co-variance matrix for the Monte-Carlo simulations. The months from
August to December were used as a test dataset.

In this section, detailed results are provided for the three cases in Table 5. The
cases are solved using the mathematical programming formulation given in Sects.
3.1–3.4 and the commercial solver Lingo 12.0. A Lingo tolerance of 0.01 (1 %
gap) is used in all cases for solving the integer programs. On average, it takes
3 min to simulate one day. Table 6 summarizes the overall real-time performance
over the 91-day simulation of each case. The results of cases D0 and D2 are shown
again for comparison.

The cases are also compared in terms of market prices. Table 7 summarizes the
day-ahead and real-time prices over the 91-day simulation of each case.

Except for case D0, all cases produce comparable total costs (startup ? pro-
duction ? unserved load costs). However, they differ on the percentage of units
that are kept online. The small dissimilarity observed in the DA average prices is

Table 5 10-unit system description of stochastic cases

Case UC and ED
Reserve margin a (%)

RAC and ED Reserve
margin aðsÞa (%)

S1 20 20
S2 40 20
S3 No reserve No reserve

a The same percentage of reserve is used in all scenarios

Table 6 10-unit system overall performance (91-day simulation of stochastic approach)

Case Unserved load
(MWh)

Unserved reserve
(MWh)

Startup cost
(M$)

Production cost
(M$)

Unserved load
cost (M$)

D0 0.00 5.5 100.70 34,357.2 0.00
D2 137.37 1,678.6 110.70 34,676.2 480.8
S1 0.00 0.0 158.84 35,501.0 0.00
S2 0.00 0.0 160.92 35,511.5 0.00
S3 0.00 0.0 158.43 35,317.3 0.00

Table 7 10-unit system market prices (91-day simulation of stochastic approach)

Case Average DA
energy price
($/MWh)

Average RT
energy price
($/MWh)

Load-weighted DA
energy price ($/MWh)

Load-weighted RT
energy price ($/MWh)

D0 26.91 26.91 27.60 27.60
D2 22.76 64.64 23.56 68.88
S1 22.78 19.97 23.58 20.33
S2 22.79 19.94 23.53 20.30
S3 20.42 20.03 20.90 20.39
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due to the different reserve margins established in each case. As for the RT prices,
a large difference between the stochastic approach cases and the deterministic case
D2 exists. The three stochastic cases produce RT prices much lower than case D2.
Moreover, the prices are lower than the prices produced by D0, which uses a
perfect forecast of wind power. The reason is that more thermal plants are kept
online in the stochastic cases than in the case D0, which in turn provides more
flexibility in economically dispatching the thermal plants. Notice that case S3,
which uses no reserve requirements, provides similar performance when it is
compared to the other two stochastic cases. This fact implies that the wind power
scenarios may be sufficient for dealing with the uncertainty of wind power.

5 Conclusion

In this book chapter, a market simulation model with reliability unit commitment is
used to compare various unit commitment strategies to address the uncertainty from
wind power. It is shown that the deterministic approach may not be suitable for
coping with the complicating aspects of operations planning with large penetration
of wind power. The deterministic approach intends to manage the uncertainty in
wind power forecast through determining the commitments of thermal plants and
scheduling sufficient levels of operating reserves to follow the rapid variations of
the wind power. The stochastic approach, on the other hand, uses scenarios in
modeling the uncertainty of wind power and determines an appropriate unit com-
mitment by considering the dispatch of thermal plants across all the scenarios.
Based on the simulation results, we conclude that the stochastic formulation is a
promising alternative for coping with the uncertainty and variability of wind power
and establishing an adequate reserve margin in the reliability unit commitment.
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