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Abstract. This paper proposes a conventional approach for pulmonary
nodule segmentation, that uses the Sliding Band Filter to estimate the
center of the nodule, and consequently the filter’s support points, match-
ing the initial border coordinates. This preliminary segmentation is then
refined to try to include mainly the nodular area, and no other regions
(e.g. vessels and pleural wall). The algorithm was tested on 2653 nodules
from the LIDC database and achieved a Dice score of 0.663, yielding
similar results to the ground truth reference, and thus being a promising
tool to promote early lung cancer screening and improve nodule charac-
terization.
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1 Introduction

Pulmonary nodules can be associated with several diseases, but a recurrent diag-
nosis is lung cancer, which is the main cause of cancer death in men and the
second cause in women worldwide [1]. For this reason, providing an early detec-
tion and diagnosis to the patient is crucial, considering that any delay in cancer
detection might result in lack of treatment efficacy. The advances of technology
and imaging techniques such as computed tomography (CT) have improved nod-
ule identification and monitoring. In a CAD system, segmentation is the process
of differentiating the nodule from other structures. However, this task is quite
complex considering the heterogeneity of the size, texture, position, and shape of
the nodules, and the fact that their intensity can vary within the borders. Data
imbalance also poses a challenge, as in a CT scan less than 5% of the voxels
belong to these lesions.

In biomedical image analysis, early methods (generally described as conven-
tional) consisted of following a sequence of image processing steps (e.g. edge/line
detectors, region growing) and mathematical models [2]. Afterwards, the idea of
extracting features and feeding them to a statistical classifier made supervised
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techniques become a trend. More recently, the trend is to use Deep Learning
to develop models that are able to interpret what features better represent the
data, but these require a large amount of annotated data, and have large com-
putational cost. Among other conventional techniques, lesion detection and seg-
mentation often imply the use of filters; e.g. the Sliding Band Filter can be used
to develop an automated method for optic disc segmentation [4] and cell segmen-
tation [5]. Such filter also proved to perform better than other local convergence
index filters in pulmonary nodule detection [3]. This work aims to go further and
precisely segment pulmonary nodules by implementing a conventional approach
based on the Sliding Band Filter (SBF).

2 Local Convergence Filters and the Sliding Band Filter

Local Convergence Filters (LCFs) estimate the convergence degree, C, of the
gradient vectors within a support region R, toward a central pixel of interest
P (x, y), assuming that the studied object has a convex shape and limited size
range. LCFs aim to maximize the convergence index at each image point, which
is calculated minding the orientation angle θi(k, l) of the gradient vector at
point (k, l) with respect to the line with direction i that connects (k, l) to P .
The overall convergence is obtained by averaging the individual convergences at
all M points in R, as written in Eq. 1, taken from [4].

C(x, y) =
1
M

∑

(k,l)∈R

cos θi(k, l) (1)

LCFs perform better than other filters because they are not influenced by
gradient magnitude, nor by the contrast with the surrounding structures. Being a
member of the LCFs, the SBF also outputs a measure which estimates the degree
of convergence of the gradient vectors. However, the position of the support
region, which is a band of fixed width, is adapted according to the direction
and the gradient orientation. The SBF studies the convergence along that band,
ignoring the gradient’s behaviour at the center of the object, which is considered
irrelevant for shape estimation. Such feature makes this filter more versatile
when it comes to detecting different shapes, even when they are not perfectly
round, because the support region can be molded.

The SBF searches each one of the N radial directions leading out of P for
the position of the band of fixed width d that maximizes the convergence degree.
The search is done within a radial length that varies from a minimum (Rmin) to
a maximum (Rmax) values, and so the filter’s response is given by Eq. 2, where
θi,m represents the angle of the gradient vector at the point m pixels away from
P in direction i [4]. The coordinates of the band’s support points (X(θi), Y (θi))
are obtained using Eq. 3, assuming that the center of the object is (xc, yc) [6].

SBF (x, y) =
1
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(3)

3 Methodology

The following algorithm was implemented on already detected nodules. For each
nodule, the 3D volume around its center was split into three anatomical planes
(sagittal, axial, and coronal), resulting in three 80× 80 pixel images per nodule.
For clarity and brevity reasons, the method will be explained for a single plane, in
Fig. 1a. The SBF is first applied to get a better estimation of the nodule’s center
coordinates. Considering most nodules have an overall uniform intensity, the
nodules’ images were processed by truncating any intensities much higher and
lower than the nodule’s. To do so, the nodule’s average intensity was determined
by calculating the mean of a matrix centered in the image. These steps result in
a truncated mask, where there is already a very primitive segmentation (Fig. 1b)
involving a low computational cost, which now needs substantial refinement.

The SBF takes the original nodule image, as well as the truncated nodule
mask, and calculates its response in each pixel around the center of the image.
The estimated nodule’s center corresponds to the pixel which maximizes the
response of the filter. With those coordinates, the SBF then evaluates the cor-
responding set of support points, returning the N border coordinates marked
in Fig. 1c with yellow. To ensure the SBF is as precise as possible, a condi-
tion was added to force the cosine of the gradient vector’s orientation angle to
be null when the pixel which is being evaluated in a certain direction is black
in the truncated mask. Ideally, this keeps the SBF from including in the seg-
mentation non-nodular regions within the Rmin and Rmax limits. An outlier
attenuation/removal step was implemented, minding the distance between con-
secutive border coordinates, and afterwards a binary mask with the initial SBF
segmentation is created. To further refine the segmentation and specifically select
the nodular area, only the intersection of the SBF segmentation mask and the
truncated nodule mask is considered, thus eliminating unwanted regions. Any
cavities within the intersected binary masks are filled, and the result is displayed
in Fig. 1e. By labeling all the different regions present in the intersected masks,
which are identified by their connected components, it is possible to eliminate
any region that has no connection to the nodule. This can be done by eliminat-
ing from the mask all regions that do not encompass the center of the image,
as the nodule is always centered. After this step, the final segmentation mask is
achieved, as exemplified in Fig. 1d.
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Fig. 1. Exemplification of the methodology steps, where the blue mark is the center of
the image, the green mark is the ground truth center of the nodule, and the red mark
is the estimated center of the nodule.

4 Results

The method was evaluated on 2653 nodules, using as ground truth the segmen-
tation masks from the LIDC database, which is publicly available and consists
of lung cancer screening thoracic CT scans from 1010 patients. These results
were obtained with the SBF parameter values N = 64, d = 7, Rmin = 1, and
Rmax = 25, which were established empirically to maximize the algorithm’s
performance. The method achieved a Dice score of 0.663, while having Preci-
sion and Recall values of 0.710 and 0.732, respectively. Figure 1e compares the
achieved segmentation with the ground truth, in which the green pixels belong
exclusively to the ground truth mask, the red pixels belong exclusively to the
achieved result using the proposed method, and the yellow pixels belong to both
- meaning that the yellow pixels mark the correct predictions made by the algo-
rithm. The proposed conventional approach exhibits a highly satisfactory per-
formance when dealing with well-circumscribed solid nodules. The nodules that
have a pleural tail generally have the thin structure ignored by the algorithm,
which does not include it in the segmentation mask, while the specialists con-
sider the tail as part of the nodule. In spite of vascularized nodules entailing an
inherent difficulty when it comes to distinguishing the nodule from the attached
vessels, the SBF based approach is frequently able to separate them and cre-
ate a mask which does not include the non-nodular structures. The algorithm’s
performance is also satisfying when dealing with nodules whose intensities vary
within their border (e.g. calcific and cavitary nodules), as it is able to ignore
the cavities/calcific regions during the segmentation process. The main flaws of
the algorithm appear when dealing with juxtapleural nodules, since it often does
not know where the nodule ends and the pleura begins, thus only being able to
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estimate the boundary to some extent. Overall, the less satisfying results are
mainly due to the unexpected shape of the nodule, or because the nodule does
not have a clear margin (e.g. non-solid nodules/ground glass opacities).

5 Conclusion

The segmentation of pulmonary nodules contributes to their characterization,
which makes it a key to assess the patient’s health state. This way, a segmenta-
tion step implemented within a CAD system can help the physician establish a
more accurate diagnosis. However, the automation of such task is hampered by
the diversity of nodule shape, size, position, lighting, texture, etc. The proposed
conventional approach deals with these challenges by implementing the Sliding
Band Filter to find the coordinates of the borders, and achieves a Jaccard score of
0.990 when tested with the LIDC database. This is a robust method for different
nodule types, particularly well-circumscribed, solid and/or vascularized nodules.
Its performance is impaired by juxtapleural lesions, and irregular shaped/non-
solid nodules, and so future work includes the refinement of this method to
deal with these particular challenges. Finally, it is possible to conclude this is
a promising segmentation method, thus contributing to the clinically relevant
characterization of pulmonary nodules.
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