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ABSTRACT

Thresholding on coherence is a common practice for identi-

fying the surface scatterers that are less affected by decorre-

lation noise during post-processing and visualisation of the

results from multi-temporal InSAR techniques. Simple selec-

tion of the points with coherence greater than a specific value

is, however, challenged by the presence of spatial dependence

among observations. If the discrepancies in the areas of mod-

erate coherence share similar behaviour, it appears important

to take into account their spatial correlation for correct infer-

ence. Low coherence areas thus could serve as clear indica-

tors of measurement noise or imperfections in mathematical

models. Once exhibiting properties of statistical similarity,

they allow for detection of observations that could be consid-

ered as outliers and trimmed from the dataset. In this paper

we propose an approach based on renowned data mining and

exploratory data analysis procedures for mitigating the impact

of outlying observations in the final results.

Index Terms— InSAR, data mining, exploratory data

analysis, outlier detection, multivariate analysis, DBSCAN,

PCA, graph theory, Voronoi diagram, MAD, Jaccard index

1. INTRODUCTION

Multi-temporal InSAR (MTI) technique [1] is successfully

applied in measuring of subtle deformations of both natural

and man-made objects. The parameters of velocity, height

and others, sought as the ultimate MTI estimates, are com-

monly considered reliable when their ensemble coherence

∈ [0, 1] is exceeding a certain threshold of, e.g. 0.7 (Fig. 1),

and reaches the value of 1. Loss of the coherence is com-

monly associated with temporal and geometrical decorrela-

TerraSAR-X data were provided by DLR under project ID LAN2833.

Sentinel-1 data were provided by ESA under free, full and open data pol-

icy adopted for the Copernicus programme. Data have been processed by

SARPROZ c© using Matlab R© and Google MapsTM. The work has been sup-

ported by the Slovak Grant Agency VEGA under projects No. 1/0714/15 and

1/0462/16 and Portuguese FCT UID/AGR/04033/2013.

tion. Noise from the signal delays caused by the atmospheric

disturbances also prevents the interferometric phase from be-

ing readable. Beside other reasons for inaccuracies such as

sub-pixel positions, sidelobe observations and orbit errors,

there are difficulties in resolving non-uniform deformations.

Possible scenarios include: non-linear movements such as

high-phase gradients (e.g., during landslide activation process

or earthquakes), seasonal patterns (e.g., thermal expansion

of structures due to temperature changes, dam oscillations

related to the water level change) and other displacement-

inducing effects, or a combination of more of them. Usually,

only the eyes of InSAR experts are searching for the groups

of scatterers that are exhibiting similar behaviour, while

evaluating their spatial relations and agreement of the esti-

mated parameters within certain surroundings. Experiencing

a new era of operational SAR with frequent observations of

satellites with enhanced swath coverage (Sentinel-1A), fore-

seen data boost from constellation missions (Sentinel-1B,

TerraSAR-X NG, etc.) and nation-wide monitoring initia-

tives are making this task more and more complicated. It is

therefore of interest to reconsider the practice of imposing

simple threshold on ensemble coherence value and to assess

its full informative character recognised in a range of the-

matic mapping applications. Although, lot of advances have

been achieved in exploiting low or partially coherent targets

[2, 3] all effort in evaluating higher-order products often re-

mains in the hands of end-users, causing common concerns

about the reliability of InSAR results by simply looking at

the locations of extreme velocities. To limit those concerns

and possible misinterpretations, we would like to address

the topic of missing concept for finding a statistically sig-

nificant observations through removing those which appear

outlying. In the following, well known statistical procedures,

namely Density-based spatial clustering of applications with

Noise (DBSCAN), Principal Component Analysis (PCA),

Graph Theory Grouping, Voronoi diagram, Mean Absolute

Deviation (MAD) and Jaccard index are involved in order to

perform outlier detection and removal in MTI results.
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Fig. 1. Velocities before and after imposing a threshold of 0.7

on ensemble coherence value.

2. METHODOLOGY

Given a set of persistent scatterers (PS) that have undergone

standard MTI processing, we dispose of spatial data with mul-

tiple variables declared in every location. These variables de-

fine velocity (Fig. 1), height or residual height, their standard

deviations, coherence and other parameters that are part of

the estimation process assigned to each PS point. The prob-

lem of discovering spatial relations among all variables then

becomes a subject of multivariate analysis. It has to be noted,

that for our approach and the current state of its development

we are neglecting the post-processing analysis of deformation

time-series, thoroughly studied for example in [4]. As for the

time-series analysis, long history of equally sampled observa-

tions is often required (which is usually not the case of former

SAR missions like ERS, ENVISAT, etc.) our focus was aimed

at the designing a set of procedures that will, at the first level,

eliminate multivariate outliers exploiting PSs’ pointwise vari-

ables only. Building upon the six respective techniques that

are described in next sections, our implementation is appli-

cable regardless of specifics linked with every location in the

world or purpose of its monitoring or could serve as a base

for doing so. A description of methods is accompanied by the

results from monitoring of one of the biggest Europe’s wa-

terworks, Gabcikovo-Nagymaros (part Cunovo), through 52

TerraSAR-X images spanning years 2011 - 2013.

2.1. Density-based spatial clustering of applications with
Noise (DBSCAN)

The estimation of PS parameters, such as velocities (Fig. 1),

is performed within system of equation utilising several types

of networks. The connections (i.e., arcs), formed by using

all the PSs in a study area, are often intentionally adjacent

in order to decrease the impact of aforementioned systematic
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Fig. 2. Clustered data structure subjected to PCA analysis

using diagnostic plot.

errors. In other words, systematic errors are causing groups

of PSs separated by a large distance to behave in a different

manner from that of being anticipated in mathematical mod-

els amongst majority of PS points. One of many possible

approaches to search for a location-driven outliers are cluster-

ing techniques as a subdivision of data mining methods. For

demonstration purposes, we stick with a DBSCAN [5] algo-

rithm, mainly because of its mathematical simplicity and the

ability to find clusters of arbitrary sizes and shapes together

with detection of noise. As the whole process operates in 2D

space, image coordinates are used to define the location of

points. Selection of the radius (Eps) in which the points are

considered reachable is based on using distance graph em-

ploying pairs of PSs from connections network. By plotting

distances in ascending order it is possible to detect the knee

of such a graph and expose distances that are deviating. Sec-

ond input parameter required for a DBSCAN is a minimum

number of points (MinPts) needed to form a cluster. By

DBSCAN we can retrieve clusters of points classified as (Fig.

2): GROUP, the core points of the dataset; ISLANDS, to be

evaluated in the next steps; NOISE, points to be discarded im-

mediately when confirmed as outliers by PCA or kept when

their coherence is greater than a selected minimum. Finally,

we get a set of points with a clustered structure (Fig. 2), an

advantageous one, providing that points allocated within the

same cluster will exhibit the same behaviour, which will be

analysed further.

2.2. Principal Component Analysis (PCA)

One of the statistical tools capable of exposing multivariate

outliers is Principal Component Analysis (PCA). By mapping

a high dimensional space into a low dimensional space, while

retaining the maximum variability in terms of the variance-

covariance structure, test limits could be applied in order to
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Fig. 3. Zoom at the outliers group creation, matrix of Jaccard

indices and propagation to default outliers.

determine failing observations. The goal is to detect outlying

measurements and, upon PS points classified in the previous

DBSCAN step, track the behaviour of all the points allocated

within the same cluster in order to answer the question ”Why

the point has become an outlier?”: Is it because the resid-

ual height in some location varies significantly in compari-

son to the points within allocated cluster? Is it because the

displacement values varies significantly in comparison to the

core points of the dataset? To distinguish between the regular

observations and the outliers for multivariate data, we con-

struct a diagnostic plot (Fig. 2) according to [6]. For each

observation coloured proportionally to ensemble coherence

value, there are score distances and orthogonal distances, to

the PCA subspace. To classify the observations, two cutoff

lines are drawn, representing statistical confidence level (CL)

of, e.g. 90%, for the points being outlier candidates (OC)

(Fig. 2) when they are exceeding those limits.

2.3. Decision-making process

Before the final analysis is performed, the outlier candidates

(OC) detected by PCA (only), are separated on the basis of

finding connected components of undirected graph employ-

ing graph theory. Thoroughly explained, those outliers that

have not been excluded as noise in the first round of DB-

SCAN and PCA are separated in the following way: i) out-

liers without any outlier in the neighbourhood are considered

isolated and, ii) outliers with the presence of other outliers

in the neighbourhood form an outlier group (Fig. 3). Only

the points that share Voronoi adjacency cells and are within

Eps radius are taken as neighbouring. This way, tough unfor-

tunately computationally less efficient, the points could have

different amount of ”natural” neighbours in close surround-

ing, to the limit of the distance (Eps) that implies boundary of

noise. The outlier structure created upon such principles (Fig.
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Fig. 4. Final post-analysis results.

3) is then passed to the algorithm and its performance is tested

within allocated DBSCAN clusters. The variables for iso-

lated outliers and grouped outliers are then flagged in accor-

dance with Mean Absolute Deviation (MAD) [7] of their non-

outlying neighbours or non-outlying points remaining from

the whole cluster, respectively. For isolated outliers, if dis-

crepancy in terms of exceeding the rejection criterion of 2,

2.5 or 3 [7] in any variable haven’t been found and the coher-

ence of inspected point is greater than a selected minimum,

the point is kept in the dataset. Otherwise, it is recognised as

the default outlier (Fig. 3). For outliers in groups, Jaccard

similarity coefficient for each pair inside the group is com-

puted (Fig. 3), evaluating final sample sets - the vectors of

zeros and ones for each variable in every point, 1 as a flag

for variable exceeding rejection criterion again, meaning that

point is breaking the rules of inspected outlier group in some

parameter. Point pairs with Jaccard index lower than a certain

threshold (e.g., 0.6) are seized for the key step of the whole

process: minimum coherence value having a final word in de-

ciding whether the point has a bad coherence (lower than a

chosen minimum) and would be given away from the dataset,

or the coherence is too good (higher than a minimum) for the

point to be excluded - such point will be kept in a dataset

as prone to be problematic and/or ambiguously integrated to

the corresponding outlier group. One could easily grasp the

whole concept by following the behaviour of labelled points

in Figures 2 and 3. Beside the extreme cases (e.g. when there

are more outliers in the cluster than non-outlying ones and

MAD statistics would be biased, or the number of points to

keep is lower than a minimum number of points needed to

form a cluster MinPts, etc.), when whole clusters are indi-

cated as default outliers, this key process is responsible for

preserving groups of scatterers with similar statistical nature

(Fig. 4), even though their coherence is weakened and by the

rules of standard thresholding procedure they would be dis-

carded.
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Fig. 5. Deformation map over area of active landslides in Prievidza, Slovakia.

3. RESULTS ON SENTINEL-1 DATA

Relying on the C-band observations of Sentinel-1, we would

like to present the performance of our algorithm by the re-

sults obtained over the area of active landslides in Prievidza,

Slovakia. Performing PSInSAR processing (Fig. 5) on 32

images from Interferometric Wide (IW) swath mode acquired

along ascending track 175, we have identified 9247 scatter-

ers. By imposing a standard threshold of 0.7 on ensemble

coherence value, this amount decreased dramatically to 5514

PS points. However, applying post-processing analysis fol-

lowing the procedures proposed within this research we get

8318 scatterers, more than half of the amount of standard PS

points (Fig. 5), that are exhibiting spatial and/or statistical de-

pendency among themselves as described in Sec. 2. Thanks

to it, the problematic areas could be assessed in more detail,

as the deformation phenomena of these localities tend to be

diminished by the standard thresholding procedure (Fig. 5).

4. CONCLUSION AND FUTURE WORK

This paper presents a novel workflow for detecting outliers

in post-processing of Multi-temporal InSAR (MTI) results.

Tested upon Sentinel-1 data, this approach has shown its

potential in increasing point densities by a half of the to-

tal amount of standard PS points. While preserving spatial

dependency among low coherent areas, the main benefit of

this methodology are enhanced details visible in deforma-

tion maps, highlighted zones of scatterers that would require

deeper investigation in terms of systematic errors mitigation,

replacement of the frequency band, correction of the process-

ing procedures, and others. The platform will help to interpret

higher-order MTI products by removing statistically insignif-

icant observations, conserving the full informative character

of the whole range of an ensemble coherence value. The

multidisciplinary character of the proposed approach allows

for modifying the procedures in order to operate with any

heterogeneous 2D point clouds of arbitrary high-dimensional

variables. Beside the time-series analysis the state-of-art of

this approach should focus on making this procedures three-

dimensional, fully automatic and capable of predictions.
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