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ABSTRACT
An important dimension of complex networks is embedded
in the weights of its edges. Incorporating this source of infor-
mation on the analysis of a network can greatly enhance our
understanding of it. This is the case for gene co-expression
networks, which encapsulate information about the strength
of correlation between gene expression profiles. Classical un-
weighted gene co-expression networks use thresholding for
defining connectivity, losing some of the information con-
tained in the different connection strengths. In this paper,
we propose a mining method capable of extracting informa-
tion from weighted gene co-expression networks. We study
groups of differently connected nodes and their importance
as network motifs. We define a subgraph as a motif if the
weights of edges inside the subgraph hold a significantly dif-
ferent distribution than what would be found in a random
distribution. We use the Kolmogorov-Smirnov test to cal-
culate the significance score of the subgraph, avoiding the
time consuming generation of random networks to deter-
mine statistic significance. We apply our approach to gene
co-expression networks related to three different types of
cancer and also to two healthy datasets. The structure of
the networks is compared using weighted motif profiles, and
our results show that we are able to clearly distinguish the
networks and separate them by type. We also compare the
biological relevance of our weighted approach to a more clas-
sical binary motif profile, where edges are unweighted. We
use shared Gene Ontology annotations on biological pro-
cesses, cellular components and molecular functions. The
results of gene enrichment analysis show that weighted mo-
tifs are biologically more significant than the binary motifs.
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Gene co-expression networks (GCNs) are powerful struc-
tures to represent relationships between genes. In these net-
works, nodes represent genes, or more specifically, gene ex-
pression profiles on a microarray experiment. Network con-
nections correspond to correlations between a pair of gene
profiles under the chosen samples [12]. The classical ap-
proach for network construction is to use binary information
to encode the relationships, with a pair of genes being either
connected or not [30]. This implies the usage of a threshold
filter to decide the presence of an edge. In this process we
may lose information, since the correlation metrics are not
binary, but rather produce real values that can express the
strength of connections. This lead to a richer network setup
where a gene co-expression is encoded by a weight value,
rather than a boolean one [33]. The study of these types
of networks is known as Weighted Gene Co-Expression Net-
work Analysis (WGCNA).

An important goal of studying GCNs is to predict gene
functions and disease biomarkers such as the discovery of
cancer related genes [26, 34]. In this paper, we are inter-
ested in studying the structure of gene co-expression net-
works across healthy tissues and disease associated ones.
In particular, we would like to answer questions such as:
what does a healthy network look like? How different is a
healthy network from a cancer related one? What makes one
GCN different from another across different cancer types? Is
there subnetworks (groups of densely connected nodes in the
network) in cancer sample networks that do not appear in
healthy networks?

We study these questions by comparing networks using
network motifs as small connected subgraphs representing
characteristic patterns of a network. In this paper we study
motifs in weighted networks which require a different prob-
lem setting from that of the original definition of motifs by
Milo et al.[23]. Milo et. al. define motifs based on subgraph
frequency and over-representation, thus motifs are subgraphs
that appear more frequently than what would be expected.
In order to incorporate the weight information, we identify
motifs by comparing the weight distribution of edges within
a subgraph type to a random distribution of weights. Our
method calculates a significance value for each type of sub-
graph in order to build a weighted motif profile that can act
as a fingerprint of the network, revealing classes. The ba-
sic intuition is that the important functions of the networks
are correlated with relevant subgraphs. Only the subgraphs
appearing in the original network with a significantly differ-
ent distribution than the random distribution are selected
as motifs. In our definition, it is not the quantity of sub-



graphs but the quality of relations within a subgraph that is
of interest. Our concept of weighted motifs is therefore well
suited to applications where the strength of relations be-
tween entities is more important, as is the case in WGCNA.

The contributions of our paper can be summarized as fol-
lows:

• We define a new method for motif mining in weighted
networks based on distribution of weights of edges.
The significance of a subgraph is evaluated by a pair-
wise comparison of edge weights inside the subgraph
and the whole network.

• We compare gene co-expression networks of normal tis-
sues and cancer associated ones by their motif profiles.
The proposed weighted motif is capable of distinguish-
ing networks by their types.

• We use gene ontology terms enrichment analysis to
assess the biological relevance of discovered motifs in
each network. We use a functioning score to compare
the binary and weighted motif profiles in terms of their
capability to determine the functionality of the disease-
associated genes.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of related work. Section 3 defines
weighted motif and describes the proposed motif mining
method. Section 4 discusses the experimental results and
the evaluation of the developed method. Finally, section 5
concludes the paper, summarizing what was found and giv-
ing some possible future directions.

2. RELATED WORK

2.1 Microarray Data and Gene Co-Expression
Networks

DNA microarrays are a powerful experimental tool pro-
ducing valuable information for the study of cell compo-
nents at different levels of genes, proteins or metabolites.
A conventional approach to microarray data analysis is to
use statistical methods such as a T-test or a F-test to iden-
tify genes that are differently expressed between groups of
samples [4]. These differences are utilized to identify genes,
that are capable of correctly assigning samples to different
groups. A major drawback of these approaches is that the
selected genes are usually not functionally related and thus
cannot reveal key biological functions or processes associated
with each disease.

Besides statistical methods, there are many other research
works studying the interactions betweens genes to find bio-
logical functions. Several approaches have been adopted to
study the collective behavior of individual regulatory path-
ways. In these methods, instead of studying single genes
to identify functionally related genes, the focus is more on
global gene expression patterns. The goal of gene co-expression
network analysis in these methods is to identify groups of
genes that are highly correlated regarding expression levels
across multiple samples [13, 14, 18, 26, 34, 35].

Biological functionality can emerge from the interactions
between the constituents of a cell, and in particular between
genes. It has been shown that on average each gene has
interactions with four to eight other genes [2] and is associ-
ated with ten biological functions [21]. For constructing a

co-expression network, correlation coefficients such as Pear-
son’s are used to compare the expression profile of pairs of
genes[33]. When two genes are correlated, they are con-
nected in the network.

A major challenge in genes co-expression data analysis is
on how to define the threshold for genes connectivity such
that the network still holds the actual properties that we
want to study. In WGCNA, the network is built based on
the concept of scale-free networks since in many metabolic
networks the scale-free phenomena is observed [33].

There are other studies on weighted gene co-expression
networks, such as the one by Zhao et al. [36]. They de-
veloped a series of methods to study the networks using a
hierarchical clustering based approach. They propose sev-
eral metrics to assess the similarity of genes and identifying
groups of genes associated with diseases such as ASPM in
glioblastoma [13].

Another line of research on wighted networks is about
finding modules and substructures in the networks. Nepusz
et al. [24] introduced a clustering method (ClusterONE)
for detecting potentially overlapping protein complexes from
protein-protein interaction data. Their method is based on
the concept of the cohesiveness score which measures how
likely it is for a group of proteins to form a protein complex.
The cohesiveness of a group of proteins is proportional to the
total weight of edges contained entirely by the group of pro-
teins, and the total weight of edges that connect the group
with the rest of the network. They use a greedy growth pro-
cess to find groups in a protein-protein interaction network
that are likely to correspond to protein complexes.

Frequent subgraph mining algorithms, designed for binary
networks are not applicable for weighted networks as the
anti-monotone property does not hold in weighted networks.
This property reduced the search space and speeds up can-
didate generation and isomorphism test in subgraph mining
algorithms. To address this issue, Jiang et al. [16] proposed a
number of strategies to control candidate generation, namely
ATW-gSpan, AW-gSpan and UBW-gSpan. All three algo-
rithm are weighted variations of the gSpan algorithm [32].
They designed weighted support measures based on average
weights in subgraphs.

2.2 Network Motifs
The original definition of network motifs was introduced

by Milo et. al in 2002 as patterns of interconnections occur-
ring in complex networks at numbers that are significantly
higher than those in randomized networks [23]. This defi-
nition implies a hypothesis test to find out if the frequency
of subgraph in the original network is larger than its fre-
quency in a randomized network. The primary definition
only considers the overrepresented subgraphs as motifs but
underrepresented subgraphs, or anti-motifs, were later also
considered [22]. One of the main applications of motif dis-
covery using any algorithm is to compare networks in differ-
ent domains such as biological [22] or social [6, 7] networks.

We note that network motifs, by their definition, are dif-
ferent from frequent subgraphs [15, 32] or substructures [11].
For an unweighted network with binary connections (where
two nodes are either connected or not), motif mining con-
sists essentially in enumerating all subgraphs of specific sizes
in a network, and finding those that appear more frequently
than expected [23]. This subgraph enumeration leads to
a higher computational complexity for motif mining algo-



rithms, when compared to frequent subgraph mining algo-
rithms where pruning criterions, such as the anti-monotonicity
property, are used to limit the search space and to improve
efficiency. Another restricting issue in motif mining is the
calculation of random frequency of subgraphs. From a sta-
tistical point of view, the random frequency of a subgraph
is reliable only if a reasonable number of random networks
is generated for this purpose. These properties, imposed by
the definition of motifs, make it computationally hard to
increase the size of subgraphs.

In a weighted network, one requires a measure different
from the usual frequency. Saramaki et al. [29] used the av-
erage of weights to find motifs in a network. They define
two measures, intensity and coherence, based on the aver-
age of weights in instances of a particular subgraph type. A
subgraph is a motif if these measurements differ from ran-
dom values. Choobdar et al. [7] defined an entropy-based
measurement to assess the significance of subgraphs. A sub-
graph whose weight entropy is different from the random
entropy is called a motif. Our work takes a different ap-
proach, as we will see, by using the distribution of weights
in the subgraphs.

3. MOTIFS IN WEIGHTED NETWORKS
Our goal is to find weighted motifs as sets of differently

connected genes in weighted co-expression networks and to
use their relative importance as a fingerprint of the network.
Before starting the mining process, we first establish which
sets of connected nodes are we going to use as subgraphs and
we describe which subgraphs we are going to consider for
enumerating in the original graph. Furthermore, we design
a scoring function to assess the significance of each of these
subgraph types. Finally, we discuss how the new significance
scoring function is incorporated in the motif mining process.

3.1 Subgraphs Types and Enumeration
For the purposes of this paper, we will consider as mo-

tif candidates all possible 29 types of undirected subgraphs
from sizes 3 to 5, as depicted in Fig. 1. There is nothing
intrinsic in our methodology that forbids us from using even
larger sizes, with the exception of potentially being compu-
tationally expensive to enumerate all their occurrences.

In each subgraph type we divide its edges in classes of
equivalence according to the subgraph symmetry. For in-
stance, there is only one type of edge on the clique of 4
nodes (4-6 type) since all edges are topologically equiva-
lent. The same can be said for the star subgraph of 4 nodes
(4-1 type). However, in the linear chain of 4 nodes (4-2
type) there are two different edge types: the one between
the middle nodes and the one between a middle node and a
leaf node.

We explain in section 3.3 how we use g-tries [28] for storing
and searching for subgraph occurrences.

3.2 Motif Significance Measure
Following the definition of motifs in unweighted networks,

we define a subgraph as motif if the weights of the edges in
the subgraph follow a significantly different distribution than
a“similar” random distribution. In classical unweighted net-
work motifs, the original null model proposed involved the
creation of random networks with the same degree sequence
as the original network [23]. This is to guarantee that the
motif is really a characteristic of the network and not just

Figure 1: Set of subgraphs used for creating a motif profile
of the network. Each motif is given an identification that we
will use throughout the paper. Different topological classes
of equivalence in the edges of a subgraph are distinguished
by color and thickness.

a consequence of its global topological properties. Similarly,
in our weighted case we also want to preserve certain global
characteristics of the individual network being analysed, and
thus we use the weight distribution over the whole network
as a suitable random model.

Denoting the probability distribution of weights in a net-
work by P (w), the random distribution of weights in a sub-

graph with h edges is derived from Pw(sg) =
∏h P (w).

Hence, a motif is a subgraph whose actual weight distri-
bution in the subgraph sg is different from the random dis-
tribution, which uses the weights over the entire network.

There are several methods that one can use to compare
the distributions of weights. Two notable examples are and
Kulbeck-Leibler distance [17], or the Kolmogorov-Smirnov
test [20]. We follow the univariate comparison where weight
distributions are compared edge-wise. We use the two sam-
ple Kolmogorov-Smirnov test, which compares two samples
regarding the location and shape of the empirical cumula-
tive distribution functions of the two samples. For the uni-
variate comparison, the actual weight distribution of every
different edge type of subgraph sg is compared with the ran-
dom distribution. The weighted motifs are those subgraphs
for which the probability of holding a weight distribution
different from the random distribution is higher than a sig-
nificance value α. Hence a subgraph sg is a motif if:

max{P (Fe(wi) 6= Fr(wi))|i ∈ E(sg)} < α (1)

where Fe(wi) and Fr(wi) are respectively the empirical and
random distribution function of wi, weights on edge i and
E(sg) is the set of edges in sg, that is, the set of classes
of equivalence over all the edges of sg, as defined in the
previous section.



Note that in this definition only subgraphs having dif-
ferent distributions over all edges are considered as motifs.
An alternative would be to define motifs as subgraphs that
have at least one edge with a different distribution. In ei-
ther definition of motifs in weighted networks, the quality
of relations within the subgraph is of interest to us, not its
quantity in the network. This suits well for applications
where the strength of connections is important, as it is the
case in WGCNA.

We define the weighted score of subgraphs as follows:

w-scorek = argmax{P (KS(wi))|i ∈ E(sg)} (2)

where KS(wi) is the Kolmogorov-Smirnov statistic for dis-
tribution comparison of weights on edge i and it is equal
to the maximum absolute difference between the empirical
weight distribution and random distribution:

KS(wi) = max
w∈wi

|Fempirical(w)− Frandom(w)| (3)

and P (KS(wi)) are the critical values, regarding the distri-
bution of the KS statistic when Fempirical(wi) = Frandom(wi).

A weighted motif profile of the network can then be con-
structed as a feature vector containing the w-scores of all 29
subgraph types.

3.3 Weighted motif mining
The overall process for finding motifs of size k in a weighted

network starts with finding all subgraphs of size k (storing
the weight set over the edges for each subgraph type i), and
then the weight distribution in occurrences of gki is derived.
This is a multivariate function whose dimension increases
as the number of edges in subgraph increases. To find the
weight distribution of a given subgraph, we use the stored
weight sets while enumerating the instances of the subgraph
in the original network.

We use g-tries [27] for storing and searching for subgraph
occurrences. G-tries are multiway trees that are able to
store a collection of subgraphs. Their basic principle is to
identify common substructure. Subgraphs with the same
parent g-trie node share the same topological structure with
the exception of a single node and its connections, as is
exemplified Figure 2.

Figure 2: An example g-trie storing all possible undirected
subgraphs of size 6. In each g-trie node, the black vertex
is the new one being added, and the white vertices are the
ones “inherited” from the parent g-trie nodes.

By using an efficient canonical labeling procedure and
symmetry breaking conditions, g-tries allow the search at
the same time for an entire set of subgraphs. This avoids
the redundancy of searching several times for the same sub-
structure that belongs to different subgraphs, as it would
happen if we would search for each subgraph type individ-
ually, in a subgraph-centric algorithm such as Grochow and
Kellis [10]. At the same time, g-tries also do isomorphism
testing as we are traversing the g-trie tree, since when we
are a at a leaf we can be certain that the subgraph found is
of that type. This contrasts with network-centric methods
such as ESU [31], which enumerate all connected sets of the
desired number of vertices and postpone isomorphism tests
to when an entire occurrence is found, not reusing informa-
tion from previous isomorphisms found.

We modified the original g-tries algorithm so that we are
able to store sets of edge weights for each subgraph type,
instead of simple integer frequency. After discovering all
occurrences of a subgraph gk in the network, we evaluate the
significance of each subgraph, measured trough a weighted
score regarding equation 2 to compare the distribution of
weights in the subgraph versus a random distribution.

We produce the weighted motif profile of the network by
creating a feature vector containing all the individual weighted
scores found. The end product of our methodology, the con-
structed profile, can be seen as a characteristic fingerprint
of the network, which can be used, for instance, for network
comparison purposes. An example of such an application is
described in the results section.

4. EXPERIMENTAL RESULTS

4.1 Datasets
The NCBI Gene Expression Omnibus (GEO) is a very

rich source for cancer microarray datasets. We queried GEO
to retrieve data of various types of tumor biopsy samples.
We selected microarray data for three cancer types, includ-
ing lung cancer, breast cancer and neuroblastoma cancer, as
depicted in Table 1). All the datasets include at least 30
samples in order to have reliable correlations between genes
as mentioned in [19, 25]. We also retrieve two datasets of a
normal “healthy” tissue microarray.

4.2 Weighted Network Construction
In the classic unweighted scenario, the co-expression net-

work is constructed with nodes representing genes, and two
nodes are connected if the corresponding genes are signif-
icantly co-expressed across chosen tissue samples. How-
ever, in such network construction it is important to know
at what level of correlation two nodes must be connected
to be biologically meaningful. Instead of a binary defi-
nition of connections between genes (connected=1, uncon-
nected=0), we use a “soft thresholding” framework, as pro-
posed by Zhang and Horvat et al. [33], to build weighted
gene co-expression networks, where associated connections
have a strength value. We should mention that our pro-
posed motif mining method is independent of the network
construction method and the input network can be built by
any other method.

The similarity of genes, measured regarding their gene
expression profiles, is used as the weight of connections in
the network. Given two genes i and j, the similarity between



Table 1: The microarray datasets used for gene co-
expression network construction.

GSE NO. CancerType SampleSize

GSE12460 neuroblastoma 64

GSE2570 neuroblastoma 38

GSE18864 breast cancer all types 84

GSE21653 medullary breast cancers 266

GSE10445 lung adenocarcinoma 72

GSE3141 lung 111

GSE10245 lung 58

GSE19804 lung 120

GSE10072 lung 107

GSE5056 lung 44

GSE1643 normal 40

GSE13564 normal 44

them, sij , is defined as the absolute value of the Pearson
correlation sij = |cor(i, j)|. Then, the similarity matrix by
S = [sij ] is transformed to an adjacency matrix using a
thresholding function defined as:

aij = |sij |β

where aij is the weight of the connection between nodes
i and j and β is the parameter chosen with the scale-free
topology criterion. This is based on the fact that metabolic
networks in all organisms have been suggested to be scale-
free networks [5, 8, 9].

For each of the microarray dataset in Table 1, we build the
adjacency matrix of all genes and then extract the network
of 500 most connected genes in each dataset. We limit our
study to this number of genes as our main concern in this
paper is showing the applicability of our method and not
computational issues. The larger the network, the longer
the motif mining process will be.

4.3 Weighted Motif Results and Evaluation
We constructed weighted gene co-expression networks for

all datasets using the method we already described. After
that, we enumerated all 29 subgraphs types, stored the re-
spective set of weights and we proceeded by computing the
weighted score of each subgraph. Finally, we aggregated all
the scores in one feature vector per network, creating an
individual fingerprint for each co-expression network.

In order to evaluate the feasibility of our approach, we fol-
low a network comparison scenario, by using the constructed
weighted motif profiles to compare the structural patterns
of healthy and disease-associated networks. Fig. 3 shows the
average motif profiles we found on each type of network.

Fig. 4 is a heat map showing the similarity of gene co-
expression networks for healthy tissues and cancer associ-
ated networks. The similarity of two networks is measured
in terms of Euclidean distance of their weighted motif pro-
files. From this figure we can clearly see that the weighted

Figure 3: Weighted motif profiles of gene co-expression net-
works for each network type. The subgraphs score is the
average for each network type .

motif profile is capable of distinguishing between different
network classes. Each network type, including breast cancer,
lung cancer, neuroblastoma and healthy tissues, are clearly
separated into different groups.

Fig. 5 shows the most outstanding subgraphs (or mo-
tifs) in terms of differentiating gene co-expression networks.
These subgraphs are selected based on principle component
study over the motif profiles of networks. These subgraphs
are those that make the most difference between network
types regarding motif profiles in Fig. 3. Less dense sub-
graphs (4-3) and (5-2) are more significant in normal net-
works than the other types. Although in all cancer associ-
ated networks dense subgraphs like (5-21) are significant,
there are some other types of subgraphs that distinguishes
them between themselves. Subgraph (5-7) for breast cancer,
subgraphs (5-15) and (5-16) for neuroblastoma and sub-
graph (tt 3-2) for lung cancer are outstanding.

In the next section, we study the significance of weighted
network motifs in biological terms and compare binary mo-
tifs against our weighted motif profile.

4.4 Domain Based Evaluation
We use the domain-based metric to evaluate the discov-

ered motif regarding their biological relevance. Every gene
product is described in terms of their association to biologi-
cal processes, cellular components and molecular functions.
A biological process refers to entities at both the cellular
and organism levels of granularity, cellular component refers
to the localization of proteins inside the cell and molecular
function refers to shared activities at the molecular level.
The Gene Ontology (GO) 1 database provides vocabularies
to describe functions of genes. We use GO term enrichment
analysis to find out what function every motif is enriched in.

Only finding the relevant GO terms associated with a
given gene list of each motif does not reveal the statisti-

1http://www.geneontology.org/GO.ontology.structure.shtml



Figure 6: Domain base score of motif profiles for three types of cancer and an instance of normal gene co-expression networks
.

cal and biological significance of a function. Hence, we use
p-values to assess the chance of observing a particular GO
term [1, 3]. If the set of genes participating in motif sg is of
size n and m genes have a particular biological annotation
then the probability of observing m or more genes, anno-
tated with the same GO term out of n genes is given by:

p-value =

n∑
i=m

(
M
i

)(
N−M
n−i

)(
N
n

) (4)

where N is the number of genes in the database and M
is the number of genes that have the same annotation. In
other words we are testing the hypothesis of a motif be-
ing associated to a particular biological annotation or not.
Smaller p-values show that the association is not random
and is biologically more significant than one with a higher
p-value. We distinguish biologically significant motifs from
non-significant ones using a cutoff value, then we compare
different motif profiles (binary and weighted) regarding the
scoring function:

Motif profile score = 1−
∑nS
i=1 min(pi) + nI ∗ cutoff

(nS + nI) ∗ cutoff
(5)

where nS and nI are respectively the number of significant
and insignificant motifs and min(pi) denotes the smallest
p-value of the significant motif i. A motif with a p-value
less than a cutoff is significant. We used the recommended
cut-off of 0.05 for all our validations.

The motif profiles (binary/weighted) are compared us-

ing the score function across three ontologies vocabularies
namely biological, cellular and molecular. Fig. 6 shows the
comparison between weighted and binary profiles of three
cancer types and normal networks. We can see that the
weighted profile of a network has higher biological score i.e.
the number of motifs discovered by our weighted method are
also biologically significant.

5. CONCLUSIONS
We proposed a novel method for motif mining in edge

weighted networks. The weighted method assesses the qual-
ity and strength of the connection between objects. The
subgraphs for which a relation between nodes is differently
weighted than the whole network are considered as motifs.
We use statistical testing to compare the weight distribu-
tion of edges in the whole network to edges inside a particu-
lar subgraph. This definition is well suited for applications
such as gene co-expression networks where the goal is to find
groups of genes differentially expressed. In the end we are
able to construct a characteristic weighted fingerprint of a
network.

We applied our method on several healthy and cancer re-
lated datasets to compare the gene networks in terms of
their structural patterns, showing that our fingerprint is ca-
pable of distinguishing different types of networks. We also
showed that the discovered weighted motifs are more biolog-
ically relevant when compared to the discovered traditional
binary motifs.



Figure 4: Similarity matrix of gene co-expression networks
for datasets with 3 types of cancers and 2 healthy cases. The
similarity is calculated by Euclidean distance of networks
based on their weighted motif profiles.

In the near future we would like to apply our technique to
more scenarios where edge weight is important and where
a weighted network is a suitable representation. We also
intend to use a larger set of subgraphs as motif candidates
to understand if we are able to gain even more information.
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