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Abstract—This paper addresses the use of heterogeneous sen-
sors for target detection and recognition in maritime environment.
An Unmanned Aerial Vehicle payload was assembled using hy-
perspectral, infrared, electro-optical, AIS and INS information to
collect synchronized sensor data with vessel ground-truth position
for conducting air and sea trials. The data collected is used
to develop automated robust methods for detect and recognize
vessels based on their exogenous physical characteristics and their
behaviour across time. Data Processing preliminary results are
also presented.
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I. INTRODUCTION

The need of using autonomous systems in this case Un-
manned Aerial Vehicles (UAVs) for maritime border surveil-
lance is becoming more relevant due to the lack of piloted
means and the need to achieve 24/24 hours surveillance. In
civil applications, its important that the UAVs cope with the
capability to automatically detect and recognize attributes of
the type of vessel and also classify their behaviour. The goal
is to use the UAV to perform active sensing by processing
heterogeneous sensor information on the fly in order to be
able to detect and track targets in flight.

One of simplest but at the same time technically complex
way of achieving such objective, is to carry a sensor payload
that enables the designed system to cope with the extraction
of physical characteristics of the target in order to extract
vessel information, e.g. shape, type, dimensions, colour, cargo
or even type of vessel building material. To do so, all of this
information needs to be registered and synchronized within a
common framework to be useful not only for on-board data
processing but also for trasmission to other centres of data
processing on the ground.

The use of vision sensors in the visible [1] [2] and infrared
spectre [3] [4] [5], is becoming widespread for surveillance
operations. However, most of the UAVs that carry this type
of sensor payload use for streaming video to land for human
classification of the target, while others record data that is only
processed after landing. There are few applications which goal
is to perform an automated real-time detection and recogni-
tion of vessels in maritime environment. With the objective
to pre-process all data on-board and then disseminate it to
other higher hierarchical abstraction levels. Specially, if one
considers the heterogeneous use of visual sensors cameras with
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different image spectres e.g. visible, infrared and hyperspectral
imaging at the same time.

In this work, we present a UAV multi-spectral image
acquisition setup that is used in the detection and classification
of maritime targets in real-time. The objective was to equip
a UAV with reasonable payload capability ~ 15kg, with a
sensor payload capable of collecting visible, infrared and
hyperspectral imaging information combined with a common
synchronized GPS based timestamp. The payload also contains
a Inertial Navigation System that provides the UAV position,
velocity and attitude to the recording system, as well as, an
Automatic Identification System (AIS) receiver to record the
emitter vessel periodical AIS messages.

To validate our data acquisition setup, we conduct air
and sea trials in collaboration with the Portuguese Air Force
and the Portuguese Navy to record datasets for algorithm
development. For purposes of ground-truth and to be able to
correctly geo-reference the vessel coordinates, a RTK GPS
receiver, was placed in the target vessel to instantly recorded
the vessel position during the UAV missions. Preliminary
results of the target detections using the data collect by all
sensors in the air and sea trials are displayed in the results
section.

The remaining of the paper has the following organization:
Section II contains the sensor payload description, in section
IIT a brief introduction to type of data processing that is
required for each individual sensor is presented. In section
IV we describe the sea and air trials data collection and some
results obtained from individually processing each sensor data.
Finally, in section V we present some conclusions of the results
obtained and detail some of the future steps of our research.

II. PAYLOAD DESCRIPTION

In this section, we are going to describe the payload
hardware and its main characteristics. The sensor and data
collection hardware contains the following components:

e A CPU unit (Intel NUC ML100G-30 i5 2.30 GHz):
that is used to record the E/O camera images, IR
images and AIS transmitted messages;

e A E/O camera (Point-Grey BFLY-PGE-31S4C-C 3.2
MP): that acquires 24-bit RGB images, with synchro-
nized timestamp.



e IR camera (Xenics Gobi-640-CL): that acquires im-
ages in the infrared spectrum, 640x480 resolution,
with synchronized timestamp;

e  Frame Grabber (Pleora CL-U3): Acquires frames from
the infrared camera via Camera Link interface, making
them accessible to the processing unit by USB3.0.

e  AIS (Yacht AISI00PRO): receive data from the trans-
mitter AIS installed on vessels.

e  Processing unit (SPECIM DPU): for data acquisition
of the hyperspectral camera, inertial navigation and
GPS information;

e  Hyperspectral camera (SPECIM AisaKESTREL 16):
acquires data in the electromagnetic spectrum from
ultraviolet to long-infrared.

e Inertial and GPS (OXTS xNav550): dual GNSS re-
ceivers and a Inertial measurement unit.

e  Wi-fi communications: 700 MHz module, for ground
UAV payload communications. Used for start/stop
recording and debug purposes.

e External antennas (antenna Wi-Fi, antenna GPS and
antenna AIS).

e  Power supply: LifePO4 battery and DC/DC for regu-
lated voltage.

In Figure 1 is possible to see the payload wiring diagram
where all sensors and equipments wiring connections are illus-
trated. Our system consists of two processing units. The NUC
PC runs a Ubuntu 14.04 operating system environment with the
Robotic Operating System(ROS) as middleware framework.
This equipment is used to acquire and process images from the
E/O camera, IR Camera, and also from the AIS receiver. It also
records Inertial Measurements from the IMU unit via Ethernet
connection for geo-reference all the data to the UAV position.
In parallel to this setup, we have the hyperspectral camera
acquisition setup that contains, the other DPU that currently
runs a Windows 7 operation system and is used to receive and
trigger the image acquisition of the hyperspectral camera and
also receive the IMU sensor information via serial port. The
two processing units are synchronized using the signal PPS
received from the OXTS system.

In Figure 2, we can see the payload as it is assembled
and mounted inside the UAV. The sensors are all placed in
the bottom structure so that all the cameras can be placed
near/outside the bottom fuselage of the UAV. While the data
recording CPUs, for the EO camera and the IR camera and
the hyperspectral are placed on top layer.

III. SENSORS

In this section we will introduce what type of processing
is going to be performed with each sensor information, and
how this information will be combined into a integrated data
acquisition/processing setup.

A. Hyperspectral Camera

The use of an hyperspectral camera is becoming ubiquitous
in remote sensing operations [6], [7]. Its use in data collection
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Fig. 1. Payload Wiring diagram

a)

Fig. 2.
the payload, with imaging sensors and IMU unit; b) Side view of the full
payload; c¢) Bottom view of the payload, showing all imaging sensors and the
AIS antenna.

UAV payload used in the data collection trials: a) Side view of

campaigns is becoming frequent in applications that range
from agriculture, landscaping geo-referencing to others such
as surveillance and inspection tasks [8],[9]. In our maritime
target detection, recognition and identification application,
hyperspectral data allows us to acquire image data of a target
scene over the electromagnetic spectrum, from ultraviolet to
long-infrared. Based on this information, we are able to obtain
detailed information about the scene, which facilitates the
detection of the vessel building material e.g fibre, aluminium,
wood, rubber, persons on-board and also the cargo carried by
the vessel. When all image data is associated, it generates a
hyperspectral image cube, consisting of a set of images layered
on top of one another, as can be seen in Figure 3. Each image
corresponds to one wavelength. Therefore, the hyperspectral
cube has a spectral dimension equal to the number of data
wavelengths that the hyperspectral camera is able to acquire.

Given that an image corresponds to one wavelength (in
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Fig. 3. Hyperspectral Cube

spectral dimension \), each pixel (in spatial dimension XY)
consists of a spectrum over the different wavelengths observed
by the camera. This characteristic is named “spectral signa-
ture”. If one compares the spectral signature to a previously
known material one can identify the type of vessel building
material.

There are two distinct ways of detecting a target using a
hyperspectral data: using a pushbroom camera or by using a
tunable spectral filter. In this work, we used a hyperspectral
pushbroom camera.

The pushbroom camera allows to collect simultaneously
full spectral data using a single scan line over time. The
sensor is able to acquire all spectral information exactly at the
same time, while being insensitive to sensor/sample movement.
Also, there is no moving parts in the sensor, and so it can
collect light from sample to camera 5 to 20 times more
efficiently than a tunable spectral filter. Furthermore, only a
line across the sample needs to be illuminated, which leads
to 10 to 30 times more light and consequently more speed.
So, the data is received line by line, for all wavelengths at the
same time. Which means that for a single scan line, we are to
able to obtain the spectrum response for each pixel.

However, when you get data from the hyperspectral sensor
camera, these spectral signature is nothing more than raw
data, i.e., digital numbers. This measures are commonly used
to describe pixel values that have not yet been calibrated
into physically meaningful units. This means that if we want
a material spectrum, this values need to be corrected in
order to obtain a measurement of radiance or reflectance. In
hyperspectral imaging, when we have raw data, this means
that this values have the influence of different factors, such
as: light source, sensor, atmosphere and surface material. The
only factor that contains only characteristics of the material is
the surface material, whereas all others should be eliminated.

Radiance refers to the amount of radiation coming from an
area. In order to derive a radiance value from a digital number,
a gain and offset must be applied. In hyperspectral imaging,
this calculation is performed for all pixels, and the gain and
offset to be applied depend on the wavelength. This values
are typically retrieved from the images metadata or received
from the data provider. Radiance values normally have units of

w/(m2 SR nm). Transforming the digital numbers to radiance
is called calibration. In order to perform this step, is necessary
to calculate the radiance values for each pixel:

Ly = Gain x Pizelvalue + Of fset 1)

With radiance, in addition to surface material, we have
influence of light source and atmosphere. In some applications,
this value may be sufficient for the desired implementation.
However, if we want to get sufficient information about a
material spectrum in order to identify which material are
we seeing, its necessary to determine the reflectance of the
spectrum. Reflectance is the proportion of the radiation striking
a surface to the radiation reflected of it.

Our objective for the hyperspectral data use in our maritime
target detection application is twofold: First, we want to be
able to detect the changes in spectrum pixel by pixel in
near real time, that way we can easily try and remove the
foreground for the background, meaning vessels from water.
This process, can only be achieved since or designated targets
are much smaller than the dominant background, thus allowing
to detect changes in the radiance spectrum; Second, since
the UAV due to payload computational limitations does not
have the required computational capability to further process
all the hyperspectral data information. We want to store this
spectral information of a given target and only transmit the
target information to a control centre on the ground where the
data can be further processed (in reflectance spectrum), and
atmospheric effects will be removed.

For this data to be useful the detected candidate targets
(spectrum shifts other than water) need to be georeferenced
in terms of their GPS coordinates position at sea. Therefore,
we need to be able to relate the pushbroom camera image
coordinates, with the obtained target GPS coordinates.

For a pushbroom camera, this can relation can be obtained
using the following equation:

UTrTM geo
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Y = fgeo Y +s- RyED
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where:

0 Sensor

-f
target position in the image. x is 0 due to line
concept of pushbroom cameras, and y; corresponds to
Y = —% + ¢, where N is the number of samples
(pixels) 4 is the pixel to be analysed. f is the focal
length in pixels;

° <yl> is the vector that corresponds to the
Object

o RIMU' is the rotation matrix between the IMU and

the sensor; This rotation matrix needs to be calibrated
or obtained priorly, based on the IMU and sensor



assembly in terms of IMU position related to the
sensor reference frame

e RINED is the rotation matrix that corresponds to the

UAV attitude position in terms of roll, pitch and yaw
angles, this information is obtained using the Inertial
Measurement Unit;

o RYTM s the rotation matrix from the IMU (NED
reference frame) which is the UAV reference frame
to UTM coordinates that are used as world target
coordinates.

e s corresponds to the scale factor. The scale factor by
approximation using the Ground sampling distance,
which corresponds to the resolution that is on the
floor. The Ground sampling distance in y is given by:
GSPy = Ay-my = Ay? where Ay is the pixel size
and 2 is considered an approximation for the scale (h
is the altitude of the UAV, and f is the focal length
in pixels). Other way of obtaining this value is if we
use stereo vision techniques or a Digital Evelevation
Model (DEM);

T geo
UurMmM
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z
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position at the time of the detection in World Coordi-

nates (UTM);

is the vector that contains the UAV

Based on this equation and in the spectral analysis pro-
cedure in terms of radiance, we are able to separate the
foreground from the background pixels and establish a relation
between the hyperspectral camera position and the matching
spectral information of a candidate target at sea in real time.

B. Infrared Camera

The infrared camera is probably the most utilized sensor
for vessel detection using UAV at sea. Its high contrast
foreground/background pixels makes target vessels easily de-
tectable for intensity, saliency based image processing methods
allowing easy target detection with a low false positive rate.
The infrared camera utilized is a LWIR camera, and it was
calibrated based on a procedure detail in [10].

C. Electro Optical Camera

For the Electro Optical Camera, we utilized a low sen-
sitivity Pointgrey Blackfly camera. The E/O camera was a
dual purpose use in our application: First, is to extract static
images of a potential target to transmit it to land for human
classification; Second, use the collected images for process
and identify possible target candidates in the image (using
saliency based and feature based methods) that can be feed
to a higher level hierarchical classifier that discriminates if
its a target or not based on its extrinsic characteristics and
trajectory behaviour.

D. Navigation

For Navigation purposes, the system used the hyperspectral
system Inertial Measurement Unit, that was configured to pro-
vide the scan line acquisition inertial measurements (NCOM
messages) via serial port to the DPU, and also to provide the

Fig. 4. UAV trajectory (red line) and vessel trajectory (green line)

other CPU with the inertial measurements (NCOM messages)
via Ethernet port.

For synchronizing both the processing units the PPS signal
generated by GPS/IMU system is received in both units. We
used the gpsd service daemon [11] for monitoring and receive
the gps data. With the data received in the gpsd and the pps
signal, we then use the Chrony clock synchronization daemon
[12] in order to synchronize internal clock of the processing
unit to GPS time, assuring precise timing information. In
relation to the synchronization between the IR camera and the
EO camera, an external trigger out generated by the IR camera
acts like an input to trigger the E/O camera, thus obtaining
synchronized images between the two E/O and IR cameras.

IV. AIR AND SEA TRIALS

The air and sea trials took place in Santa Cruz, Peniche in
the west coast of Portugal over a week, and consisted on a UAV
performing a pre-defined flight plan carrying a heterogeneous
sensor payload and record synchronized information of an
hyperspectral, infrared and electro-optical camera, as well as,
AIS and Inertial Navigation System Information.

A. Missions

The missions were performed to collect synchronized data
of three types of cameras as well as inertial navigation infor-
mation. The missions consisted on having a UAV performing
U-shape movements at approximately 300 meters high above
sea level, while passing over the vessel that was acting as as
intended target, as seen in Figure 4.

In Figure 4, we can see in red the UAV trajectory, and
in green the vessel trajectory. The vessel was equipped with
is own GPS-RTK receiver collecting GPS data for external
ground-truth validation.

In terms of flight plan a compromise had to be estab-
lished in order to perform the data collection. The performed
trajectory is far from ideal for detection purposes with the
E/O and infrared Camera since the UAV goes over the vessel
in a few seconds and so the E/O and IR cameras have few



Fig. 5.
of vessels based on a combination of color, intensity and entropy detectors.
In the middle row, we can see the image complement of the output of the
detection.

Results for E/O camera: each image corresponds to the detection

image frames with vessels in the image for each passage.
However, our intentioned objective was to put the UAV in
a direct route over the vessel, so hyperspectral data could
be directly georeferenced and compared with visible spectre
data. In order to foster algorithm development and spectral
evaluation of materials using hyperspectral data.

B. Results

The data collection allows us to individually start to de-
velop image processing methods for the three types of images
that were collected. For the E/O images, we utilize saliency
detectors based on colour, intensity and entropy at different
images scales, to separate the foreground pixels belonging to
the vessel from the background. Even though we worked for
most of the image sequences, see Figure 5. The detection in
the E/O needs to be more robust to wave crest effects and sun
glare on the water, that produce image saturation, on the vessel
current trajectory. Temporal analysis consistency and motion
compensation algorithms are currently being implemented to
diminish the effects of these image artefacts in the output of the
E/O iamge processing pipeline. These detections even though
quite simple to conduct in the image processing domain are to
be performed in real-time on-board the UAV, and their outputs
used to feed a ground station classifier that will perform the
recognition of the vessel type based on these detections and
target image crops.

In the infrared image domain the objective is to detect the
vessel(s) in the image sequence and obtain the vessel size. The
vessel detection in infrared images (LWIR camera) is intensity
based, and an adaptive threshold is used to detect the vessel in
the images and discard other artefacts based on their size and
consistency over time. The precision rate of detection is near
100%, we only drop the detections that go across the image
boundaries, see Figure 6. In future work these detections will
also be checked for temporal consistency.

As for the hyperspectral detection, the develop image
processing methods consists on analysing a determined band
and detect the transitions over the radiance spectrum. We
are looking to classify pixels material in a binary manner
as being non-water/water pixels. Afterwards, the pixels are
geo-referenced, and the raw data of the detections is to be

Image with target
detected

Cropped image of

Original i
nginal image the detected target

Fig. 6. Results obtained during the target detection phases of the IR cameram,
the images refer to three different passages over the vessel.

transmitted to the ground station, where the data can be
removed of atmospheric effects and processed in terms of
reflectance for material identification, see Figure 7.

The geo-reference results for the hyperspectral limits are
still with an average error of ~ 6 meters. But this results were
obtained without boresight calibration. We are now developing
a re-projection method using ground control points to diminish
this error.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented an heterogeneous sensor setup
for target detection and recognition in maritime environment.
For being able to perform such task an hyperspectral camera,
infrared camera and E/O camera were assembled in a single
UAV payload to perform the target detection. An air and sea
campaign was performed to collect the data from all sensors for
algorithm development, external ground-truth validation was
also obtained during the dataset campaign. The preliminary
results indicate that we are able to extract valuable synchronize
information of all the sensors, process the sensor data and
obtain the target information.

In future work, we will continue to develop image process-
ing methods for processing the images in real-time. We will
add temporal consistency and target tracking capabilities to our
system. We also plan to transmit the detections and the images
crops to a ground station and perform target classification,
recognition based on a learning model interaction between the
UAV and the ground station.

ACKNOWLEDGMENTS

The authors would like to thank the Portuguese Air Force
and the Portuguese Navy for providing the UAV and the
boats for the data collection. The authors would also like to
thank SPECIM and XENICS for providing the Hyperspectral
camera and the IR camera for the payload used in this dataset
campaign.

This work is financed by the ERDF - European Regional
Development Fund through the Operational Programme for



Detection 1 Detection 1 - Water

Detection 1 - Boat

n#!w‘

A
Wy

W
' m\\rﬂwﬂ’v‘yw Wl\\'wlw

%l

Radiance (WimSR"im)

e (Wim= SR m)

Radiant

i
\

o 0 00 000 o w0 w0 10
Wavelength (nm)

Detection 2 - Water

fance (Wim*SA".m)

Radi

-
q b WM\"M*’ W‘" n

jance (Wim™SR".m)

Radi

A
A
- / LS
f IJ LI
‘\ \ Groundimruthl
i
“ A
e
. ol
U
\j/(
e o
Detoction 2- Boat
/W\{W
200 | W VVL‘
“ | L, IS » 7.01m
i 2 eroundiTrt
“' \\ ind Tiruth 2
“ [
Vo
“ \

000 1200 T 200
Wavelength (nm)

Detection 3 - Water

Detection 3 - Boat

|
f

Radiance (WimAwSR*m)

W‘V'W'.‘vv ',
| "Iy *W‘*’*’WWW

Radiance (WimAwSR*m)

M 11.5m
N
| Groundrutht3

P
Lo

‘o0 &0 0 000 o w00 800
Wavelength (nm)

0 0 000 7200 T
Wavelength (nm)

Fig. 7. Results for hyperspectral camera: each line of pictures corresponds to one detection. The first column displays the image obtained using the band 20 of
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