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Abstract

Purpose — This paper aims to propose an automated framework for agile development and simulation of robotic palletizing cells. An automatic
offline programming tool, for a variety of robot brands, is also introduced.

Design/methodology/approach — This framework, named AdaptPack Studio, offers a custom-built library to assemble virtual models of palletizing
cells, quick connect these models by drag and drop, and perform offline programming of robots and factory equipment in short steps.

Findings — Simulation and real tests performed showed an improvement in the design, development and operation of robotic palletizing systems.
The AdaptPack Studio software was tested and evaluated in a pure simulation case and in a real-world scenario. Results have shown to be concise
and accurate, with minor model displacement inaccuracies because of differences between the virtual and real models.

Research limitations/implications — An intuitive drag and drop layout modeling accelerates the design and setup of robotic palletizing cells and
automatic offline generation of robot programs. Furthermore, A* based algorithms generate collision-free trajectories, discretized both in the robot
joints space and in the Cartesian space. As a consequence, industrial solutions are available for production in record time, increasing the
competitiveness of companies using this tool.

Originality/value — The AdaptPack Studio framework includes, on a single package, the possibility to program, simulate and generate the robot
code for four different brands of robots. Furthermore, the application is tailored for palletizing applications and specifically includes the components
(Building Blocks) of a particular company, which allows a very fast development of new solutions. Furthermore, with the inclusion of the Trajectory
Planner, it is possible to automatically develop robot trajectories without collisions.
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1. Introduction and decision making. Another significant aspect is that
products are being manufactured according to demand,
using adaptative and modular manufacturing cells, which
offers flexibility to modify machine tasks promptly (Do
etal.,2015).

These advancements have affected a special kind of
automated process, namely palletizing cells, since product life
cycle is shortening and dependent on the inconstant market.
Therefore, competition is fierce, and profits increase in
companies that conduct adaptable responses while producing a

Factory automation tasks have changed in the past few
years due to the increased demand for heterogeneous and
mixed assembly lines. These changes imply that
automation processes with short life cycles are more
common nowadays. All these advancements are happening
because of the Fourth Industrial Revolution, which has
brought improvements in artificial intelligence, robotics,
materials, among other fields. Distinct processes
throughout the plants are becoming connected in a way
that a virtual intelligence can operate. Virtualization is one
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vast collection of items, as indicated by the client’s
determinations. Production flexibility and volume are directly
related to the time spent in setting up a robotic cell. In
consequence, it is crucial to have tools that allow the rapid
programming of those robots. To accomplish the previous
requirements, using offline programming is the usual approach.
This type of programming can simulate the mechanized
environment, and the original idea is to use computer graphics
to create a reproduction of the working cell. Inside this
abstraction, it is possible to handle all tasks and variables,
corresponding to the real situation.

Robot-based palletizing cells have captured attention in the
last decade in the scientific sphere. Yu ez al. (2011) developed
an offline tool for stacking objects using a MOTOMAN-HP20
robot and the brand’s simulator (Yaskawa, 2020). On its turn,
Kito et al. (2017) produced an offline teaching tool for robots to
pick bolts from a pallet. However, there is no automation in the
previous solutions: the user still programs the robot manually,
and high efficiency is still not achieved. Following a different
approach, the work presented in Cheng and Chen (2013)
presents an autonomous smart robot with advanced sensing
and decision-making capabilities to teach “child” robots in the
production line. This last work, however, does not deal with the
palletizing problem. For the specific problem addressed in this
paper, Moura and Silva (2018) achieved automatic palletizing
solutions, but in the case of their work, the programs generated
are limited to the programming of Asea Brown Boveri (ABB)
robots, the path planning does not take into consideration
possible collisions and the pallet arrangement is not as flexible
as the solution presented here.

Although the previous solutions focus on a particular brand
of a robot and its native simulation software, there are several
manufacturers of generic offline programming software (Visual
Components, 2020; RoboDK, 2020; OCTOPUZ, 2020),
which can perform programming of global robotic platforms.
There are also alternative simulation software packages in the
market, such as the FlexSim (2020), Anylogic (2020) and
SIMIO(2020), but they do not perform detailed simulation of
robot motions and offline robot programming. The work
proposed by Silva er al. (2017) presents a solution for the
automatic offline generation of collision-free robot programs.
In their work, a framework that aids the programming and path
generation of palletizing routines has been developed. This
platform has its base on the Visual Components (VC)
simulation software (Visual Components, 2020), owing to its
capability to perform detailed simulations and offline
programming for several distinct robot brands, over other
candidates.

The present work focuses on the development of a software
framework responsible for aiding the design, development,
simulation and effective installation of robotic palletizing cells,
in the scope of a project named AdaptPack. The AdaptPack
project’s main objective is to develop a framework, based on
concepts of modularity, to expedite the programming of robots
for palletizing tasks. To address this problem, the following
project objectives were specified:

+ provide a solution to the design and simulation of robotic
cells, based on a library of existing components, allowing
the assembly of palletizing systems in a short time;

- strengthen a solution to generate automatic offline
routines for palletizing products with different
configurations, formats, and dimensions;

+ develop a robot path planning solution with collision
avoidance; and

« test and validate the framework in real-life processes.

The core result of this project was the AdaptPack Studio, a
modular system designed as an add-on to the VC simulation
software. This add-on attacks the presented challenges in three
modules:

1 palletizing cell design, modeling and simulation;

2 automatic offline palletizing routine generation; and

3 translation and exporting of generated programs to real
systems.

For this accomplishment, it was constructed three specific
systems inside the central platform to handle each module
individually. Those modules are connected and exchange data
among themselves, as illustrated in Figure 1.

Carrying the past impressions in mind, the remainder
organization of this paper is as follows. Section 2 describes
the general concepts behind this project and introduces the
central architecture of the proposed system. Section 3
presents the performed tests and results. Finally, in Section
4, the main conclusions of this work are exposed, followed
by a few ideas concerning possible future improvements.

2. AdaptPack Studio architecture

The AdaptPack Studio further divides into three modules,
which are the “Design and Modeling”, the “Palletizing Routine
Generation” and the “Translation”. Each one receives inputs
from the previous, as illustrated in Figure 1.

Figure 1 Overall system architecture

Visual Components
AdaptPack Studio

building blocks

Design and
Modeling Module

Robot Traj y
ion System

Routine
Generation Module

Robot Program

Translation Module

)
)
)
)
)
)
)
)
)

|_ Actuat
AT yirtyal
PLC

Sensors

Real Cell

% Actuators

Real
PLC

Translated Robot
Program
Sensors




Offline factory programming

Industrial Robot: the international journal of robotics research and application

André Luiz Castro et al.

2.1 AdaptPack modules

2.1.1 Design and modeling

The first module tackles solutions for structural and
architectural design. The VC software facilitates this process by
offering a Modeling tab in which components get connected as
blocks. Besides the broad set of default components, provided
by the VC library, in this work were developed models of
general components used in palletizing operations (specific for
custom requirements). Named “AdaptPack Building Blocks”,
these components, together with the Modeling Tab, form the
“Design and Modeling” module.

2.1.2 Palletizing routine generation

By interacting with a custom-developed Graphical User
Interface (GUI), targeted for palletizing operations, the
operator can set several custom parameters (explained in
Subsection 2.2) for the robot offline programming algorithm.
This GUI (called “ADAPTPACK?” tab) was developed using
the C# Application Programming Interface (API) provided by
VC, granting the possibility to program robot instructions
without writing any code or using the teach pendant (Figure 3).
Simple steps, like filling in text fields, clicking buttons, and
selecting components on the screen, are responsible for storing
the virtual cell configurations. This information is sent to the
Palletize.cs Class, responsible for computing the main
instructions, as observed in Figure 2. The code for the robot is
generated automatically after setting all configurations and
pressing the Init Routine button (depicted far-right in Figure 3).

Figure 2 Palletize Routine Generation module in details
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This process forms the “Palletizing Routine Generation”
module, which, on its turn, will receive information from the
“Robot Trajectory Generation System”, as illustrated in
Figure 1. The trajectory generation system aims to program the
robot movements between the pick and place points,
considering operations within the modeled cell, in a way that
results in collision-free trajectories. This last system is
implemented inside the PathPlanning.cs class (Figure 2).
Afterward, three dimensional (3D) simulation allows the
system validation. By simulating the robot’s virtual models and
the palletizing cells in which they operate, there may be a
significant improvement in the design efficiency of a robotic
cell. Also, considering the accuracy and level of detail offered by
VG, it is possible to achieve models behaving very close to live
equipment; this allows studying and testing a solution, with
accuracy, before its implementation.

2.1.3 Translation

After simulation validation, the robot’s program “code”,
written in the VC’s software proprietary language (Robot
Simulation Language — RSL), is translated into the ones used
by the different robots’ controllers (Asea Brown Boveri (ABB),
Keller und Knappich Augsburg (KUKA), Fuji Automatic
NUmerical Control (FANUC), and Yaskawa). For the
translation process the “Translation” module conducted the
main process. The approach used a different GUI, responsible
for receiving the auto programmed code and translating to the
proprietary languages, being this process described in detail in
Souza er al. (2019) (a video illustrating this process can be
found at http://bit.ly/2P]Jfzgh).

2.2 AdaptPack tab
To work along with the VC interface, which organizes itself in
tabs, the “AdaptPack” tab was inserted between the existing
ones (see Figure 3). Each tab is responsible for a specific task,
such as layout construction, components modeling/editing,
programming and others. This new tab, further divided into
subgroups, allows configuring robotic instructions intuitively.
The “Palletize Settings” subgroup contains buttons and
text fields that define the pick and place settings. The
determination of the Pick, Pallet, and Interlayer locations
occurs by clicking on the correspondent 3D component,
where the products, pallets, and interlayers are stored,
respectively. The place location sets up by clicking on the
element defined as the drop point. Since a gripper may have
multiple Tool Center Points (TCP), it is also available a
drop-down menu (“Tool”) with all the robot tools available
in the library. Furthermore, there is an option that
determines the methodology for the definition of the pick
and place approach points, in agreement with the kind of
gripper used. The ones that have a side approximation point
(involving toothed grippers), or the ones that have a top

Figure 3 GUI subdivided among Palletize, Mosaic, Simulation, and Path planning
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approximation point (for example, suction grippers) are
covered in this scope. As acknowledged as a good practice to
use approach points just before the grasping/dropping
location — the framework in study generates these points
when entering the distances in two provided text boxes
(“Pick Distance” and “Place Distance™).

The “Mosaic Settings” subgroup allows the operator to
select a file, written in the JavaScript Object Notation (JSON)
scripting language, containing a palletizing stack pattern
(mosaic). This file consists of structures that determine the
placing order and positions of the boxes to be stored in the
pallet. It also contains information about the boxes and pallet
dimensions, complemented with the number of product layers
on this pallet. The overall mosaics’ structure divides into layers,
each layer containing one or more groups of products, and each
group including one or more boxes. Consequently, the robot
can simultaneously handle one or multiple products,
depending on the mosaic layout defined by each customer. The
JSON file is generated automatically by a software developed in
collaboration with the AdaptPack Project team. Given input
settings such as pallet and product dimensions, the number of
layers, the use of interlayers and others (as depicted on the left
image of Figure 4), this software generates the palletizing
coordinates, as presented in the right image of Figure 4.

Finally, the last two subgroups, “Simulation Setting” and
“Path Planning”, are responsible for further improving the
simulation. The first presents text fields to perform adjustments
to the simulation environment, such as robot’s and conveyor’s
speeds, stop times, product production rate time, among
others. The last presents buttons which enable the activation of
the “Robot Trajectory Generation System”, based on the A*
search algorithm, developed by Tavares er al. (2016). Besides
the joint space trajectory generated by Silva ez al. (2017), the
current work introduces a Cartesian space trajectory
generation. This new approach allowed decreasing the
computation time and the smoothing of the robot trajectory.

After completing all the configurations, the system is ready to
compute and generate the palletizing routine automatically.
When the Init Rourine button is activated, the Pallerize.cs class
receives the configurations from the GUI, as pictured in
Figure 2. The pseudocode presented in Code Script 1 shows,
step by step, the computation steps that occur inside the class.

Figure 4 Representation of the palletizing mosaic in the JSON file

"Id": 1,
"length": 1200,
"width": 1000

"height": 220,
"MaxHeight": 2000,
"Layers": 4

3 Input Output

Note: Given the input, the software generates the JSON file
shown in Output

2.3 Automatic generation of the palletizing routine

Upon initializing, the “Palletizing Routine Generation”
module simulates the mobile components (boxes and pallets)
running on conveyors, until they arrive at the specific pick
points on the conveyors. After this procedure, happens the
extraction of the variables regarding the 3D geometric center of
those mobile components, followed by the calculation of their
precise pick locations. Moreover, it is also obtained information
about height, length, width, and the position/rotation matrices
of all components. For generating the placing positions,
according to the mosaic, the system interprets the content of
the JSON file. It calculates the points where to drop products
on the provided drop locations. This interpretation is made
recursively until each group has its placing location in the
simulation.

The “Robot Trajectory Generation System” was
implemented as a feature inside the “Palletizing Routine
Generation” module and, if activated, checks possible
collisions in the trajectory between the pick and place points.
This system was constructed inside a class called PathPlanning.
¢cs, as illustrated in Figure 1, and features two path planners

(Castroetal., 2019):
1 the first uses an A* algorithm discretized in the joint space
(Silvaer al., 2017); and

2 the second uses the A* discretized in the Cartesian space.

Using a collision detector algorithm, provided by the VC API,
the “Robot Trajectory Generation System” produces collision-
free paths. Following the A* logic, the simulated cell is
decomposed in units. If a unit highlights a collision between
components, it is automatically discarded, and the next one is
checked.

Furthermore, within the simulation scope, a custom
component was modeled with the purpose to simulate factory
Programmable Logic Controllers (PLC). This “virtual” PLC
has connections with robots and other components in the cell.
To further detail the simulation, the “Palletizing Routine
Generation” module generates robot operations and also
creates I/O signals from all components to this PLC. This
custom component should be programmed manually, to have
the correct logic to deal with the I/O signals. Different clients
may use different types of cell controllers for distinct demands;
thus, the programming of those should be made accordingly to
the different requirements.

3. Performed tests and evaluation results

This section presents the experimental scenarios and the
outcomes from the developed tests. Overall, experiments were
performed in two different situations: the first entirely in a
virtual space, based on simulations inside the AdaptPack
Studio; the second extended the previous scenario to the real
world, aiming to validate the simulation.

The AdaptPack Studio framework’s primary objective is to
help in the design and development stages of robotic palletizing
cells. Given this, it was necessary to create test cases that could
stage a virtual palletizing cell, and its live copy created in reality.
The cell considered in this discussion is depicted in Figure 5.
The main components which compose the cell are a product
feeding conveyor, pallet feeders, interlayers storage, a pedestal,
and a FANUC R-2000iC/270F robotic manipulator equipped
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with a custom modular gripper, capable of handling single or
multiple objects.

To improve the simulation graphics rendering performance,
the cell safety fences were invisible during the experiments; still,
these fences had collision properties enabled. Additional
equipment, such as conveyors, feeders, and pallets were
indispensable; they allowed the simulation to act realistically,
displaying the full capability to reproduce real operations. In
the test scenario, the robot was assigned to pick packs of cans/
cartoons and palletize them on top of the pallet. A live model of
the virtual cell was assembled with a prior objective to verify the
AdaptPack framework and support the system’s usefulness.
The live model presented in Figure 6 had the same components
positions.

3.1 Simulation tests

Simulation tests accompanied the usage of the new custom
component library modeled for this work, shown in Figure 7.
This library formed the main components inside the cell,
serving as a validation of the AdaptPack Studio concept. One of
the objectives intended when constructing the virtual cell was
to determine the components’ optimal positions, first to reduce
the steps from the pick to place points, and second to allow the
robot to reach the highest stacking height possible. Figure 8
presents the robot’s workspace envelope, one of the references
which served to optimize the position of other components

Figure 5 AdaptPack Studio simulated test cell

===l
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around it. Besides shorter distance between components, to
develop the optimal layout structure, also robot joint efforts,
dynamic compensation, total reach and collision avoidance
algorithms may improve the cell layout quality (Tavares ez al.,
2019).

After defining the optimal layout structure, the auto
programming step was ready to take action. As explained in
Section 2, interaction with the AdaptPack tab took action to
define pick and place points, gripper modules to use, the pallet
mosaic structure (uploaded as a JSON file), and the rest of the
general configurations. The auto generated robot code
followed the pseudo algorithm described in Code Script 1.

Initially the tools and base frames are defined, followed by
declarations of the pallet and interlayer routines. The pick and
place functions were subdivided into subroutines, to keep track
of the actions the robot is executing, so it always moves in steps.
The signals were defined to work along the simulated PLC.
This component works as a manager to the complete cell. For
example, before the Pick function, the robot interacts with the
PLC to get permission to continue the operation. The PLC
allows the robot to pick products only if the picking conveyor
has products ready to be picked. In Figure 9 is presented a
snippet of the auto generated robot routine, after passing
through the “Translation” module (Souza et al., 2019). This
figure depicts the Program Editor window, where the Main
method and subroutines are declared. The tool and the base

Figure 7 Components modeled for the custom library

Figure 8 Robot workspace envelope
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frames for the robot are defined inside the Main routine,
followed by the interlayer handling subroutine, and the
palletizing script. During the experiment, the robot was
designated to pick and place packs of cans in specific positions,
following the stack mosaic given as input to the system.

As presented in Castro ez al. (2019), the generation of the
trajectory intermediary points, here referred as Path
Planning, is optional from the programmer perspective.
Without the activation of the Path planning, the framework
only generates the pre-pick, pick, and pos-pick points,
followed by the pre-place, place, and pos-place points. As a
default, there are no delimited points between the pos-pick
and pre-place point; the robot performs the lowest cost
joint motion between these. For the test scenario
considered, the “Robot Trajectory Generation System”
befitted adequately. With the tight limits imposed by the
fences, there are collisions when there is no trajectory
computation. Considering this compact operational space,
the production of a linear trajectory, consisting of multiple
connected lines, was the outcome of the Path Planner. An
interval of 300 mm between each point established the
discretization parameter for the Cartesian algorithm. The
experiments consisted of packing three different products.
Figures 10 and 11 display snapshots of the blue and green
packing process. Figure 12 displays red packs. As

Figure 9 Generated palletizing code
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illustrated, the robot could successfully follow the
trajectory points and stacked the products according to the
mosaics provided.

3.2 Real world tests

One of the objectives of this work was to be able to perform the
offline programming of the real robots used in palletizing cells.
For this reason, the virtual cell presented in the last subsection
served as a model for the real-world cell (Figure 6). Before

Figure 10 Stacking packs of blue boxes
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exporting the generated code from the previous simulation to
the real system, it was necessary to correct minor displacements
from the virtual to the real cell. This step is called “Cell Model
Calibration”. It is hardly possible to assemble a robotic cell with
precise and exact measurements from the simulated cell. In the
design phase, external variables, not yet considered, have to be
examined after the real cell assemblage. For example, the floor
inclination scales rapidly when the distance between two points
increases, causing range and angular error from simulation to
the real world. However small those errors may remain, still is
risky for collisions to happen, since there is an absolute need for
millimeter accuracy in picking operations.

The calibration process used in the presented work is based
on the measurement of the coordinates of some relevant points
in the real robotized cell, using a specific robot tool (typically a
pointy rod) as the measurement “instrument”, and adjusting
the cell model, developed in the AdaptPack Studio, so that the
coordinates of the same relevant points in the simulation model
are the same as in reality. After performing the calibration
process, the experiment displayed in Figure 12 was again
generated automatically and translated to the real robot, with a
full guarantee of being collision-free (Figure 13). The
outcomes from the test scenario exhibited here confirm the
previous results in simulation. The robot followed the same
trajectory points and stacked the products with millimetric,
however inevitable, displacements.

4. Conclusion

The use of automatic palletizing solutions has been expanding
in the Fast Moving Consumer Goods (FMCGQG) business.
Owing to the diversity of production, palletizing processes are
changing from low assortment with high volume to large variety
with little amount. Often, these changes require modifying
machine tasks for different incoming supplies. It implies
updating all the programmed routines of robots, as well as
changing the palletizing mosaic. Accordingly, this work
proposed an answer related to the development of a qualified
framework to enhance automatic palletizing processes and
solve preceding issues. This paper described a software
framework for the automatic offline programming of palletizing
applications. This improvement speeds up the task of designing
palletizing cells, since it allows to model cells from scratch,
using the functionalities presented in the AdaptPack Studio

Figure 13 Stacking packs of cans in the real world

software. Besides, it also enables the integrated and modular
development of new component models, reducing the time to
design, develop, build, and install new equipment.

The automatic generation of robot programs, based on inputs
inside a GUI, has been detailed. These inputs consist of clicking at
picking and placing positions inside a 3D modeled cell, selecting
the mosaic which defines the product stacking aspect, and writing
general configurations in text fields. Also included inside this new
framework are two collision-free trajectory generators, based on
the A* informed search algorithm. The first searches a path in the
robot’s joints space, different from the second, which explores a
path in the Cartesian space of a palletizing cell. Finally, the “Robot
Trajectory Generation System” was tested with a simulated and a
real test cell simulation. Based on these tests, the system worked as
intended, being able to generate collision-free palletizing routines
automatically. This proposal improves the post-process procedure
during offline programming and supports engineers in the project
development. Furthermore, this methodology can handle the
present demands of companies for fast design of flexible solutions,
as verified during the tests at the JPM Industry facilities.

Concerning possible future enhancements to the AdaptPack
Studio framework, the focus will be on the A* Trajectory
Generator based on the Cartesian Discretization. The robot
path generated using this method resulted in straight line
trajectory segments between points, being appropriated to
smooth this path to reach one that resembles more the robot’s
joints natural movements.
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