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Abstract. Connectors describe how to combine independent compo-
nents by restricting the possible interactions between their interfaces. In
this work, connectors are specified using an existing calculus of connec-
tors for Reo connectors. Currently there are no tools to automatically
analyse these connectors, other than a type-checker for a embedded do-
main specific language. A collection of tools for different variations of
Reo connectors exists, but most use a heavy Eclipse-based framework
that is not actively supported.
We propose a set of web-based tools for analysing connectors—named
ReoLive—requiring only an offline Internet browser with JavaScript sup-
port, which also supports a client-server architecture for more complex
operations. We also show that the analysis included in ReoLive are cor-
rect, by formalising the encoding of the connector calculus into Port
Automata and into mCRL2 programs. We include extensions that gen-
erate such automata, mCRL2 processes, and graphical representations of
instances of connectors, developed in the Scala language and compiled
into JavaScript. The resulting framework is publicly available, and can
be easily experimented without any installation or a running server.

1 Introduction

Proença and Clarke [9] investigated how one can specify and combine
connector families, and how to check if the interfaces of these families
match. Their core calculus is a monoidal category, where connectors are
morphisms composed sequentially with the morphism composition ‘;’,
and in parallel with the tensor operator ‘⊕’. This calculus was formalized
with a tile semantics that describes the behaviour of a connector, and
how to combine tiles between two connectors.
We pursue this work by building tools to analyse and verify a calculus of
Reo connectors, focusing on its subset without variability. More concre-
tely, we build a framework—ReoLive—that draws instances of connec-
tors, and encodes connectors into automata and into a process algebra
used by the mCRL2 model checker. This paper formally shows the cor-
rectness of these encodings, closely following the encoding of Reo con-
nectors (seen as Constraint Automata) into mCRL2 by Kokash et al. [7].
Consider the connector in Fig. 1, known in the literature as the exclusive
router. The left side presents its usual graphical representation, while
the right side uses its representation in the calculus of connectors used
in this paper, c.f. [9]. Intuitively, each basic element of the calculus is



∆;∆⊕ id;
(lossy;∆)⊕ (lossy;∆)⊕ id;
id⊕∇⊕ id⊕ id;
id⊕ id⊕ γ1,1;
id⊕ drain⊕ id

Fig. 1: The exclusive router connector: its graphical representation (left) and its
algebraic representation using the calculus of Reo connectors (right).

a primitive connector with a fixed sequence of source and sink ports,
composed sequentially with ‘;’ and composed in parallel with ⊕. More
details on this calculus will be given in the next section.

The key challenges of this paper consist of presenting a framework to
analyse connectors specified in this calculus, providing a set of different
widgets that help the developer understand the graphical structure and
its semantics. More specifically, the ReoLive framework receives algebraic
specifications of connectors and (1) calculates and depicts a graphical
representation with a easy-to-understand layout, (2) calculates and de-
picts an automata representing its semantics, based on constraint auto-
mata [2] without data constraints, and (3) produces a mCRL2 specifi-
cation [5] that can be used for model checking with external tools. While
the first contribution is less scientific and mainly technical, the other
two contributions include correctness proofs, based on the formalisation
of the encodings into automata and mCRL2.

Section 2 formalises Reo connectors using this calculus of connector.
Section 3 translates the calculus into port automata, and Section 4 into
mCRL2, following the work by Kokash et al. [7]. Section 5 describes the
ReoLive framework for our calculus of connector, and Section 6 concludes
and discusses future work.

2 Calculus of Reo Connector (CRC)

The input of our ReoLive framework are Reo connectors [1] specified
using a calculus of connectors, following Proença and Clarke [9]. We start
by describing this calculus, disregarding the notion of families presented
originally, and will later show that they are indeed equivalent to two
other existing semantic models: Port Automata (Section 3) and mCRL2
programs (Section 4).

2.1 Syntax

The syntax of a core connector is given by the grammar in Fig. 2. We use
a simplified version from our previous publication [9] by using natural
numbers for the input and output interfaces, where the tensor is the
sum. This makes the category of our connectors more specific—a Prop
category with traces [8]. This simplification has been made also in our



c ::= idn identities
| γn,m symmetries
| p ∈ P primitive connectors
| c1 ; c2 sequential composition
| c1 ⊕ c2 parallel composition
| Trn(c) traces (feedback loops)

p ∈ P ::=∆n duplicator into n ports
| ∇n merger of n inputs
| drain synchronous drain
| fifo buffer
| . . . user-defined connectors

Fig. 2: Grammar for core connectors, where n,m ∈ N.

id1 ; fifo :
1→ 1

drain :
2→ 0

γ2,1 :
3→ 3

(id1 ⊕ fifo) ;∇2 :
2→ 1

Tr1(γ1,1) :
2→ 1

Fig. 3: Connectors, their interfaces, and their visualisation.

previous work, when describing the implementation of a type-inference
algorithm.
Fig. 3 depicts some examples of connectors. Each box contains (1) a
connector on top, (2) its interfaces in the middle, and (3) its visual rep-
resentation below depicting inputs on the left and outputs on the right.
Intuitively, each connector has a sequence of input ports and a sequence
of output ports, which we number incrementally from 1. Composing two
connectors sequentially c1; c2 means connecting the i-th sink port c1 to
the i-th source port of c2, for every sink port of c1 and source port of
c2; composing connectors in parallel c1 ⊕ c2 means combining all source
and sink ports of both c1 and c2; wrapping a connector c by a trace over
n means connecting the last n sink ports of c to its last n source ports.
The semantics of Reo connectors, written using this calculus, uses the
Tile Model [4], following the original publication of this calculus [9].
The sintax and semantics of the calculus of connector families is not
introduced in this document, as it is not refered throughout the document
(except in Section 5). In [9] we can find a more detailed description of
this calculus.

2.2 Tile Semantics

Each connector in the Tile Model consists of a set of tiles, one for each
possible behaviour, as defined in Fig. 4. Each of these tiles contains at
most 4 morphisms between shared objects, belonging to two different
categories over the same objects: natural numbers, which we call H for
the a horizontal category and V for a vertical category. The horizontal
category H is the category of connectors used for the our connector
calculus—with a tensor, symmetries, and traces. The vertical category V
is a new category with the same objects N, and with only the morphisms
fl : 1 → 1 and nofl : 1 → 1, also with a tensor product, where nofl acts
as the identity and the composition is represented by ‘◦’.



id1 =
{

id1
fl−→
fl

id1 , id1
nofl−→
nofl

id1

}
γ1,1 =

{
γ1,1

fl⊕nofl−→
nofl⊕fl

γ1,1 , γ1,1
nofl⊕fl−→
fl⊕nofl

γ1,1 , γ1,1
fl⊕fl−→
fl⊕fl

γ1,1 , γ1,1
nofl⊕nofl−→
nofl⊕nofl

γ1,1

}
∆2 =

{
∆2

fl−→
fl⊕fl

∆2 , ∆2
nofl−→

nofl⊕nofl
∆2

}
∇2 =

{
∇2

fl⊕nofl−→
fl
∇2 , ∇2

nofl⊕fl−→
fl
∇2 , ∇2

nofl⊕nofl−→
nofl

∇2

}
drain =

{
drain

fl−→
fl

drain , drain
nofl−→
nofl

drain
}

lossy =
{

lossy
fl−→
fl

lossy , lossy
fl−→

nofl
lossy , lossy

nofl−→
nofl

lossy
}

fifo =
{

fifo
fl−→

nofl
fifofull , fifo

nofl−→
nofl

fifo
}

fifofull =
{

fifofull
nofl−→

fl
fifo , fifofull

nofl−→
nofl

fifofull
}

Fig. 4: Behaviour of primitive connectors using tiles.

Composing Tiles Tiles can be composed in three ways: in parallel
with ‘⊕’, horizontally with ‘;’, and vertically with ‘◦’.

c1
v1−→
v
c2 ; c′1

v−→
v2

c′2 = (c1; c′1)
v1−→
v2

(c2; c′2) (horizontal)

c1
v1−→
v2

c ◦ c
v′
1−→

v′
2

c2 = c1
v′
1◦v1−→

v′
2◦v2

c2 (vertical)

c1
v1−→
v2

c2 ⊕ c′1
v′
1−→

v′
2

c′2 = c1 ⊕ c2
v1⊕v′

1−→
v2⊕v′

2

c′1 ⊕ c′2 (parallel)

For example, the tiles tl = lossy
fl−→
fl

lossy and tf = fifo
fl−→

nofl
fifofull can

be composed horizontally producing the new tile tl; tf = (lossy; fifo)
fl−→

nofl

(lossy; fifofull). This new tile captures data going through the lossy and
into the fifo. Similarly, tl can be composed vertically with the tile t′l =

lossy
fl−→

nofl
lossy yielding the new tile tl ◦ t′l = lossy

fl◦fl−→
fl◦nofl

lossy, which

captures two steps of the same lossy: first by having data flowing from
its source to its sink, and later by having dataflow only on its source end.

3 Connectors as Port Automata

The semantics of the calculus of Reo connectors (CRC) is given by a
set of tiles. This section encodes the tile semantics of CRC as Port Au-
tomata [6], which can be regarded as data-agnostic Constraint Auto-
mata [2], showing this encoding is correct.



a b

id1 q0

{a, b}
a b

lossy q0

{a, b}

{a}

a

b
c

∇2 q0

{a, c}

{b, c}

a b

drain q0

{a, b}
a b

fifo
q0 q1

{a}

{b}

b
c

a

∆2 q0

{a, b, c}

Fig. 5: Port Automata of primitive connectors.

3.1 Port Automata (PA)

Following Koehler and Clarke [6], composing two automata is done by
the product operation ./, forcing shared ports to occur together, while
hiding ports from a connector removes them from the transitions, disal-
lowing further communications. We define port substitution of a by b in
an automaton A as the automaton A{a 7→b} = (Q,N{a 7→b} , 99K, q0),

where qi
X{a7→b}
99K qj iff qi

X−→ qj , and X{a 7→b} denotes the set X replac-
ing a by b.

For simplicity, we write qi
N−→ qj to denote → (qi, N, qj). Fig. 5 depicts

examples of a set of primitive automata commonly found in the litera-
ture, including also the corresponding notation in our calculus.

3.2 Encoding CRC into Port Automata

The semantics of CRC is given by the Tiles Model, where a tile c1
src−→
snk

c2

means that the connector c1 can evolve to a new state given by the con-
nector c2, by firing its source ports based on src and its sink ports based
on snk . Here src and snk are morphisms built by composing simpler
morphisms fl and nofl, indicating which ports have flow and no-flow.

The encoding of a connector c into a PA is written as PA(c), defined
below. Each port is a pair (n, s) where n ∈ N is the order number of its
source or sink node, and s ∈ {sr, sk,mx} is a constant that marks it as
being a source (sr) or a sink (sk) port, or temporarily marking it as a
mixed port during composition.

Definition 1 (Tiles of a connector). Given a core connector c, we
write T (c) to represent all tiles for c and for the reachable states from c.

Formally, T (c) is the smallest set such that, for every tile t =
(
c

sr−→
sk

c′
)

we have that t ∈ T (c) and T (c′) ⊆ T (c).

Definition 2 (Reachable connectors). Given a connector c, we write
Reach(c) to represent all reachable connectors from c, i.e., Reach(c) is
the smallest set such that c ∈ Reach(c), and for every tile c

sr−→
sk

c′ we

have that Reach(c′) ⊆ Reach(c).



Definition 3 (Encoding PA(c)). Let c be a connector from n to m.
Its port automaton PA(c) is (Q,N,→, q0) where

– Q = Reach(c)
– N = {(i, sr) | i ∈ {1 . . . n}} ∪ {(j, sk) | j ∈ {1 . . .m}}
– q

Xsr∪Xsk−−−−−→ q′ ⇔ ∃t ∈ T (c) : t = c1
src−→
snk

c2 ∧
Xsr = {(i, sr) | src = v1 ⊕ · · · ⊕ vn, i ∈ {1 . . . n}, vi = fl}
Xsk = {(i, sk) | snk = v1 ⊕ · · · ⊕ vm, j ∈ {1 . . .m}, vj = fl}

For example, the fifo channel can be encoded as PA(fifo) = ({fifo, fifofull},
{(1, sr), (1, sk)},→, fifo), where

fifo
(1,sr)−−−→ fifofull fifofull

(1,sk)−−−→ fifo fifo
∅−→ fifo fifofull

∅−→ fifofull.

3.3 Correctness of PA(·)

We defined how to encode any connector c into a PA PA(c). We say this
encoding is correct with respect to an automaton A if PA(c) is strongly
bisimilar to A, written PA(c) ≈ A. I.e., there exists a bisimulation
relation R between states such that any transition from PA(c) can be
matched by a transition in A leading to states in R (and its dual for
transitions from A). For simplicity, we ignore all reflexive transitions
with empty sets as labels in PA(c), which must exist for all primitive
connectors – because the Port Automata semantics assumes that connec-
tors can decide not to have dataflow and remain in the same state.
We show that this definition is correct using an inductive argument.
We show that (1) the encodings of primitive channels from Section 2 are
correct with respect to the automata from Section 3, and (2) the encoding
of a connector built with the sequential, parallel, or trace operators is
correct with respect to the automata of their parts after composing the
appropriate ports. Note that γ and idn are regarded here as primitive
connectors.

Lemma 1 (Correctness of primitive’s encodings). Any primitive
from Fig. 4 is correct w.r.t. its corresponding automaton from Fig. 5,
after renaming ports in the latter to follow the same convention as in the
encoding (e.g., (1, sr) instead of a).

Proof. We will only show that this lemma holds for one of the connectors,
the fifo, because the other connectors can be shown in a similar way.
Recall that after Definition 3 we defined PA(fifo) as an example. The
resulting automaton has 4 transitions, and after ignoring the reflexive
and empty transitions only two remain. Recall also the port automaton of
the fifo in Fig. 5. It is enough to observe that R = {〈fifo, q0〉, 〈fifofull, q1〉}
is a strong bisimulation between the two automata, after replacing a by
(1, sr) and b by (1, sk).

Lemma 2 (Correctness of PA(c1; c2)). If PA(c1) and PA(c2) are
correct with respect to A1 and A2, respectively, and c1; c2 is well-typed,
then PA(c1; c2) is correct with respect to (A1σ1 ./ A2σ2)\X, where σ1,



σ2 and X define port renamings and hiding of ports that mimic the con-
necting of ports from c1 to c2:

σ1 = {(i, sk) 7→(i,mx) | (i, sk) ∈ N1}
σ2 = {(i, sr) 7→(i,mx) | (i, sr) ∈ N2}

X = {(i,mx) | (i, sk) ∈ N1}

Proof. We provide only a sketch of the proof. This proof follows in two

phases. First, by considering a transition (p, q)
K−→ (p′, q′) in (A1σ1 ./

A2σ2)\X, one can conclude by performing a case analysis that ∃(p; q) K′
−−→

(p′; q′) in PA(c1; c2). Second, by verifying that the dual also holds.

Lemma 3 (Correctness of PA(c1 ⊕ c2)). If, for i ∈ {1, 2}, PA(ci) is
correct with respect to Ai = (Qi, Ni,→i, q0,i), ci : ni → mi, and c1 ⊕ c2
is well-typed, then PA(c1 ⊕ c2) is correct with respect to A1 ./ (A2σ),
where σ defines port renamings:

σ = {(i, sr) 7→(i+ n1, sr) | (i, sr) ∈ N2}
∪ {(j, sk) 7→(j +m1, sr) | (j, sk) ∈ N2}

Proof. We provide only a sketch of the proof. This proof follows the same
strategy as the proof for the sequential composition. Start by considering

a transition (p, q)
K−→ (p′, q′) in (A1 ./ A2)σ. By analysing the possible

cases, it is possible to conclude that ∃(p⊕ q) K′
−−→ (p′⊕ q′) in PA(c1⊕ c2)

that mimics this transition. A similar argument for its dual can also be
made.

Theorem 1 (Correctness of PA). Given a well-typed connector c,
PA(c) is correct with respect to some port automaton A built by compos-
ing the automata of the primitive connectors within c.

Proof. This result follows by induction on the structure of connectors,
whereas the base case is captured by Lemma 1, and the inductive steps
are captured by Lemmas 2 and 3, and by the fact that the trace opera-
tion can also be shown correct with respect to some port automaton –
due to space restrictions, and because the proof follows similar steps to
Lemma 2, we omit here that proof.

4 Connectors as mCRL2 Specifications

The mCRL2 toolset consists of a collection of tools to analyse systems
specified in a dedicated process algebra of communicating processes. In
a given mCRL2 model, the atomic element of processes are actions. By
defining and combining actions we create processes. We describe the core
subset of the mCRL2 specification language, focusing on the relevant
constructs to understand the encoding of our calculus to mCRL2. A
process can be one of the following.

– a1| . . . |an . P – atomic execution of n actions (a1 until an), where
n ≥ 1, followed by the execution of P ;



id1 Id1 = a|b . Id1
fifo Fifo = a . b . Fifo
drain Drain = a|b . Drain

lossy Lossy = (a + a|b) . Lossy
∆2 Dupl = a|b|c . Dupl
∇2 Merger = (a|c + b|c) . Merger

Table 1: mCRL2 processes of primitives, for some actions a, b, c.

– P +Q – non-deterministic choice between two processes P and Q;
– P ‖Q – parallel execution of a process P and a process Q (interleaved

or at the same time);
– δH(P ) – encapsulation, blocking the actions in H when executing P ;
– ΓC(P ) – communication of ports, where C is a mapping from groups

of atomic actions a1| . . . |an to another action b (with n ≥ 2), replac-
ing all groups of actions a1| . . . |an by b in the execution of P .

– Reference to a process name P defined in the scope of the process.
An mCRL2 program consists of a pair (P, π) with a process P and a map-
ping π from process names to process definitions (with possibly recursive
definitions), as described above.
The full language is rich enough to capture aspects such as data types and
parametrised actions, which we do not explore here. Given a specification
in mCRL2 one can, for example, compile and visualise its corresponding
labelled transition system, and can verify properties in a dedicated dyna-
mic calculus with fix points.

4.1 Encoding CRC into mCRL2 programs

We adapt the translation by Kokash et al. [7]. Although the authors en-
code different connector semantics into mCRL2 programs, we focus on
their encoding into constraint automata, for which they have a correct-
ness proof (which ignores data constraints, similarly to CRC).
Table 1 presents the mCRL2 process definitions for the primitives used
in Fig. 5. These can be combined in parallel to produce more complex
connectors, as exemplified below.

Example 1. Consider the connector c = id1;∆2; (fifo⊕ lossy). Each chan-
nel in the connector maps to the following processes:

Id1 = (a|b) . Id1 Fifo = f . g . Fifo

Dupl = c|d|e . Dupl Lossy = (h+ h|i) . Lossy

Let πc be the set of definitions above. A program for c can be built by
placing these definitions in parallel, by imposing communication with Γ ,
and by encapsulating internal ports with δ. For example, the program
(Pc, πc), with Pc defined below, provides a (naive) encoding of the beha-
viour of c, which only exposes the ports a, g, and i.

Pc = δ{b,c,d,e,f,h}

(Γ{b|c→bc,d|f→df ,e|h→eh}(Sync ‖ Dupl ‖ Fifo ‖ Lossy))



This naive approach to combine connectors leads to an exponential in-
crease of combinations of actions as the connector grows, which quickly
becomes untreatable by the mCRL2 tools. This problem is addressed by
performing communication and encapsulation as soon as possible, i.e.,
everytime a new primitive is connected to a connector [7]. Our encoding
follows the same ideas, performing encapsulation as soon as possible.

Definition 4 (Encoding MC). The encoding MC follows a similar
approach to PA, where actions follow the pattern (n, sr)`, (n, sk)`, or
(n,mx)` to indicate that n-th source, sink, or mixed port, using the unique
identifier ` to distinguish between actions from different basic automata.
We start by defining auxiliary functions Block, Hide, and Com, used to
describe ports that are blocked, are hidden, and communicate. Ni,` is the
name we give to processes denoting nodes that connect pairs of ports.

Block(n, `1, `2) =
⋃

1≤i≤n

{(i, sk)`1 , (i, sr)`2} Hide(n, `1) =
⋃

1≤i≤n

{(i,mx)`1}

Com(n, `1, `2, `) =
⋃

1≤i≤n

{(i, sk)`1 |(i, sr)`2 → (i,mx)`}

Given a connector c and a unique identifier `, MC(c)` is defined below.

MC(p)` = (P`, {P` = Primitive(p, `)})
where Primitive(p, `) is the process of primitive p (c.f. Table 1),

using the proposed notation for actions marked by `.

MC(c1; c2)` = (P`, {P` = τHide(n,`)(∂Block(n,`1,`2)(ΓCom(n,`1,`2,`)

(P1‖P2)))} ∪ π1 ∪ π2)

where c1 : n1 → n c2 : n→ n2

(P1, π1) =MC(c1)`1 (`1 is fresh)

(P2, π2) =MC(c2)`2 (`2 is fresh)

MC(c1 ⊕ c2)` = (P` , {P` = (P1 ‖ P2)} ∪ π1 ∪ π′2)

where c1 : n1 → m1 c2 : n2 → m2

(P1, π1) =MC(c1)`

(P2, π2) =MC(c2)`2 (`2 is fresh)

π′2 = π2 {(i, sr)`2 7→ (i+ n1, sr)` | 1 ≤ i ≤ n2}∪
{(j, sk)`2 7→ (j +m1, sk)` | 1 ≤ j ≤ m2}

The definition of MC(Trn(c))` is omitted here, and follows a similar
structure to the encoding of MC(c1; c2)`.

We illustrate this encoding using a simplified version of Example 1.



Example 2. Let x = ∆2; (fifo⊕ lossy) and a, b, c, d, e be unique identifier:

MC(fifo⊕ lossy)a = (Pa, πa)

πa = {Pa = Fifoa ‖ Lossya

,Fifoa = (1, sr)a|(1, sk)a . Fifoa

,Lossya = ((2, sr)a + (2, sr)a|(2, sk)a) . Lossya}
MC(x)b = (Pb, πb)

πb = {Pb = τ{(1,mx)b,(2,mx)b}(δ{(1,sk)c,(1,sr)a,(2,sk)c,(2,sr)a}

(Γ{(1,sk)c|(1,sr)a→(1,mx)b,(2,sk)c|(2,sr)a→(2,mx)b)}

(∆2,c‖Pa)))

, ∆2,c = (1, sr)c|(1, sk)c|(2, sk)c . ∆2,c} ∪ πa

4.2 Correctness of MC`(·)

Kokash et al. [7] have shown the correctness of a similar encoding from
Port Automata (which they call data-agnostic Constraint Automata) to
mCRL2. We claim that the correctness of our encoding follows from
the correctness of CRC with respect to Port Automata, and from the
correctness by Kokash et al. regarding mCRL2 specifications, as depicted
in Fig. 6. We defined the encodingMC from CRC—and not from the PA
model—to preserve the parallel structure of the communicating compo-
nents, which would be lost if our starting point would be the (flatten)
tile semantics followed by the PA encoding.

Calculus of Reo Connectors

Port Automata mCRL2≈
(c.f. [7])

≈
(c.f. Section 3) PA

MC

Fig. 6: Relation between CRC, PA, and mCRL2.

Fig. 6 highlights the two correctness results, via bisimulations, between
the connector calculus, the PA semantcs, and mCRL2 programs. Note
that we do not formally show that our encoding matches precisely the
encoding from Kokash et al. [7], and only explain that our encoding
follows the same ideas as the previous encoding to mCRL2.

5 ReoLive framework

The ReoLive framework combines tools that analyse connectors and
families of connectors under a single web-based front-end. The project



and a compiled snapshot can be found online in https://github.com/

ReoLanguage/ReoLive. This section focuses on what the framework cur-
rently offers, and gives less how to extend it with new plug-ins. More
concretely, it describes how to specify connectors and how to visualise it
and analyse it using the Port Automata and the mCRL2 encodings.

5.1 Architecture

This project combines software artefacts in more than one program-
ming languages. The core tools to parse and analyse connectors are
implemented in Scala by the Preo project,1 which is either compiled
into JavaScript, using the Scala.js compiler,2 or into a client-server pair
of programs. In the latter, the client is compiled also into JavaScript and
the server is based on the Play framework,3 and is compiled into Java
binaries. Furthermore, both JavaScript programs use the D3 JavaScript
libraries4 to produce the graph layouts, which manipulate SVG-based
diagrams.

Preo 
(Scala)

ReoLive 
(Scala)

Lightweight 
(JavaScript)

Client 
(JavaScript)

Server 
(JVM)D3 

(JavaScript)
used by compiled

Fig. 7: Architecture of the ReoLive implementation.

The overall architecture is summarised in Fig. 7. The code can be compi-
led in two different ways: by producing a standalone JavaScript library
(bottom right rectangle), or by producing a client-server architecture
(top right rectangle). The former has the advantage of being easier to
distribute (a snapshot of our implementation can be found online), while
the latter has the advantage of being more powerful and complete (cur-
rently using an SMT solver for more complex families of connectors,
but the server has to be compiled and executed locally). The ReoLive
project website keeps a snapshot of a recent version of the standalone
version, depicted in Fig. 8. This web front-end is subdivided into differ-
ent containers we call widgets: (1) where the user specifies connectors,
(2) displays the connector’s type, (3) displays a concrete instance and its
type, (4) presents example connectors to help knowing the syntax, (5)
depicts graphically the instance from 3, (6) depicts the Port Automata
of that instance (c.f. Section 3), and (7) outputs the mCRL2 program
(c.f. Section 4), ready to be analysed by mCRL2 tools.

1 https://github.com/ReoLanguage/Preo
2 https://www.scala-js.org
3 https://www.playframework.com
4 https://d3js.org

https://github.com/ReoLanguage/ReoLive
https://github.com/ReoLanguage/ReoLive
https://github.com/ReoLanguage/Preo
https://www.scala-js.org
https://www.playframework.com
https://d3js.org


Fig. 8: Screenshot of the standalone version of ReoLive’s website.

5.2 The Preo Language

The Preo language is a concrete language for the calculus described in [9],
given by the grammar below.

c = p ∈ P | id | sym(n1, n2) | c;c′ | c*c′ | Tr(n)(c) | c^n | ...

The rest of the syntax, corresponding to the ellipsis, concern families
of connectors, i.e., how to define and restrict parameters that, once in-
stantiated, lead to different connectors of a same family. This is out of
the scope of this paper. Furthermore, the language includes the reader

and writer constructs, describing Reo reader and writer components,
and supports the definition of named subconnectors. The set of primi-
tives P include mergers, duplicators, fifo channels, lossy channels, and
synchronous drains, but others can be easily included. The complete list
of primitives can be found by exploring the examples in widget (4) from
Fig. 8. Our running example in widget (1) “dupl;fifo*lossy” corres-
ponds to the connector ∆2; (fifo⊕ lossy), also used in Example 2.

5.3 Interconnecting widgets

The content of the website is subdivided into widgets, as highlighted in
Fig. 8. Internally a widget is a statefull object that can interact with the
user, and produces a value when fired, possibly using values produced
by other widgets. Each widget defines its own firing behaviour: the Type
widget (2) produces a typed connector and its type from the value of the
Input widget (1); the Instance widget (3) calculates a concrete instance
con based on the connector from the Type widget; the Circuit widget (5)
calculates and depicts a graph structure of con in the Instance widget;
the Automaton widget (6) calculates and depicts a Port Automaton of
con, as described in Section 3; and the mCRL2 widget (7) calculates and
displays the mCRL2 program of con, as described in Section 4.



A special event may trigger a sequence of firings—in our case, pressing
shift-enter triggers the firing of all widgets in order except widget (4).
More complex orchestration mechanisms of widgets, based on the concept
of reactive programming, are left for future work. Furthermore, widgets
can be active or inactive; to toggle between these one only needs to press
the header of the widget, and when inactive the content of the widget
is not displayed. Only active widgets are fired, and when a widget is
fired when it becomes active. In the client-server architecture widgets
can further possess a callback function with a dedicated firing behaviour
triggered by the server.

Example 3. We use the example in Fig. 8 to guide a more detailed ex-
planation of each widget. The user starts by specifying the connector
“dupl;fifo*lossy” in the Input widget. When pressing Shift-Enter, the
Input Widget stores the string internally, so that other widgets can access
it. The Type widget accesses this string, parses it, produces the connector
∆2; fifo⊕ lossy, and type checks it. The resulting type 1 7→ 2 is depicted,
and the connector is stored and made available to other widgets.

The Instance widget simplifies this connector, removing some syntactic
sugar – if the connector had parameters, not addressed in this paper, it
would search for valid assignments for this parameters, replacing them by
the assignment found. This widget then stores and displays the simplified
connector alongside its type. In the client-server architecture the Type
and Instance widgets are combined: the server receives the string from
the Input widget, producing both a type and an instance and sending
this information to the corresponding widget.

All the 3 right widgets access the connector stored in the Instance wid-
get. The Circuit widget generates a graph containing a Reo representa-
tion of this connector. Some simplifications from the original connector
are made, e.g., removing redundant Sync channels, or combining nested
mergers into a single merger. The Automaton widget depicts the associa-
ted port automaton, using the rules explained in Section 3 to generate
the automaton. This widget uses an abstraction of the names for read-
ability, using only the name of the primitives they refer to enhanced with
a downward arrow depicting the entry of data into the primitive, an up-
ward arrow depicting data leaving the primitive, and a double arrow
to depict both cases. Finally, the mCRL2 widget contains the mCRL2
model of the connector, following the encoding from Section 4. In this
model each action is identified by the name and a unique identifier of
the primitive it refers to, as well as information about the type of port.
For example, the action fifo2in1 refers to the first source (input) port
of the fifo, and 2 is the unique identifier of that fifo primitive connector.

5.4 Towards verification of connector families

The Preo language, as well as the full version of the connector calculus
from Proença and Clarke [9], describe families of connectors. In this paper
we did not consider the families aspect, although the existing tools to
type-check Preo connectors are included in ReoLive.



We experimented on how to verify the full calculus of connector fam-
ilies using the mCRL2 toolset, following the ideas from Beek and de
Vink [3]. Unfortunately, mCRL2 requires the number of processes run-
ning in parallel to be fixed and known upfront, limiting the analysis to
only a bounded set of families. The latest experiments consist of gener-
ating a small number of instances of a connector and include them in a
single mCRL2 model, which can be used for model checking. However,
we did not find a satisfactory approach to either select an interesting set
of candidates for instances, or to give some control over the instances
being selected. Furthermore, modelling families of connectors can easily
produce a state explosion that is hard to control. Hence we left these ex-
periments out of the existing framework, although they can be found in
experimental branches on our GitHub project. Future work will involve
providing some control over the instances that could be of interest when
analysing families of connectors, and investigating a suitable (modal)
logic to describe properties over families of connectors.

6 Conclusion and Future Work

This paper describes a semantic model for the connector calculus using
the port automata. Based on this model we encode our connector cal-
culus into mCRL2, following Kokash et al. [7]. These two encodings are
included in the ReoLive framework, animating our calculus with our web
framework which implements the calculus, the port automata semantics,
and the mCRL2 of each connector.

Our future work is many-fold. We expect to extend the portfolio of avail-
able modules; for example, add support for a dedicated modal logic to
verify connectors, analyse different semantics of Reo connectors other
than Port Automata (incorporation of the IFTA tools is planned soon),5

and add support for the Treo language to specify connectors.6

Orthogonally, we also plan to improve the client-server version of Reo-
Live, by taking advantage of the server capabilities. For example, we plan
on automatically processing the mCRL2 model encoded, which the user
may download, or use to verify the dedicated modal logic for connectors.
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