
Energy-efficient node selection in application-driven WSN

Bruno Marques1,2 • Manuel Ricardo2

Published online: 19 January 2016

� Springer Science+Business Media New York 2016

Abstract The growth of wireless networks has resulted in

part from requirements for connecting people and advances

in radio technologies. Wireless sensor networks are an

example of these networks in which a large number of tiny

devices interacting with their environments may be inter-

networked together and accessible through the Internet. As

these devices may be scattered in an unplanned way, a

routing protocol is needed. The RPL protocol is the IETF

proposed standard protocol for IPv6-based multi-hop

WSN. RPL requires that communication paths go through a

central router which may provide suboptimal paths, not

considering the characteristics of the applications the nodes

run. In this paper is proposed an Application-Driven

extension to RPL which enables to increase the WSN

lifetime by limiting the routing and forwarding functions of

the network mainly to nodes running the same application.

As nodes may join a network at a non predictable time,

they must be synchronized with respect to their application

duty cycles. Therefore, nodes have to wake up and sleep in

a synchronized way. In this paper it is also proposed such

synchronization mechanism. The results confirm that the

proposed solutions provide lower energy consumption and

lower number of packets exchanged than the conventional

RPL solution, while maintaining fairness and the packet

reception ratio high.

Keywords Wireless sensor network (WSN) � Energy
efficiency � Nodes synchronization � Cross-layer

1 Introduction

The growth of wireless networks has resulted in part from

requirements for connecting people and advances in radio

technologies. Wireless personal networks (WPANs) are an

example of these networks, and wireless aensors networks

(WSN) [2] are an example of WPANs. Several communi-

cations protocols have been defined making use of the

IEEE 802.15.4 Physical and MAC layers [18], being the

6LoWPAN Network Layer adaptation protocol [14] an

example which bridges the gap between low power devices

and the IP world. Since its release, the design of routing

protocols became increasingly important [40] and RPL

[42] emerged as the IETF proposed standard protocol for

IPv6-based multi-hop WSN.

Our work is focused on the design of an extension to the

RPL routing protocol with the purpose of making the

network aware of the traffic generated by applications. We

assume that sensors form a large IPv6 network and that a

sensor is enabled to run one or more applications. We also

assume that the applications and the nodes to which they

are associated are not always active, alternating between on

and off states. By jointly considering the neighbors of each

node, the applications that each node runs, and the for-

warding capabilities of a node, we developed a commu-

nications solution which enables the data of every

application and node to be transferred while keeping the

overall energy consumed by the network low. Our solution,

& Bruno Marques

bmarq@estgv.ipv.pt

Manuel Ricardo

mricardo@inesctec.pt

1 Departamento Engenharia Eletrotécnica, Escola Superior de

Tecnologia e Gestão, Instituto Superior Politécnico de Viseu,

Viseu, Portugal

2 INESC TEC, Faculdade de Engenharia, Universidade do

Porto, Porto, Portugal

123

Wireless Netw (2017) 23:889–918

DOI 10.1007/s11276-016-1194-2

http://orcid.org/0000-0002-3795-337X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-016-1194-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-016-1194-2&domain=pdf

which we named RPL-BMARQ, assumes that every node

will primarily select its parent from a set of nodes running

the same application to which the data is associated. For

that purpose, the application layer of each node shares

information with other layers of the communication stack.

Since the nodes may join the network at a non pre-

dictable and different times, they must share some kind of

time reference which allow them to be synchronized with

respect to the life cycle of the applications they run.

Therefore a synchronization mechanism is also imple-

mented in the proposed solution which will help the nodes

to wake up and to go asleep in a synchronized manner so

they can successfully send, receive, and forward packets.

1.1 Our contributions

This paper provides two contributions using cross-layer

concepts. The first contribution is characterized as an

extension to the RPL routing protocol, which uses infor-

mation shared by the application and routing layers to

construct Directed Acyclic Graphs (DAGs), allowing the

nodes to select parents by considering the applications they

run. The second contribution is a synchronization mecha-

nism, which synchronizes nodes with respect to their

application life cycles, enabling nodes to wake up and

going asleep in synchronism. Both contributions help

reducing the network energy consumption since they

restrict radio communication activities and synchronize the

nodes, while maintaining fairness and packet reception

ratio high.

The paper is organized in six sections. Section 2 pre-

sents the related work. Section 3 describes the rationale of

our solution. Section 4 characterizes the applications and

scenarios selected for the study, describes the methodology

adopted for validating the proposed solution, and discusses

the results obtained. Section 5 presents and characterizes

the scenarios selected for a real testbed implementation,

and discusses the results obtained. Finally, Sect. 6 draws

the conclusions and presents future work.

2 Related work

We classify the related work in four areas: node energy

consumption, routing protocols, node synchronization, and

cross-layering.

2.1 Energy consumption

Sensor nodes are usually battery powered and deployed in

large areas in which changing or replacing batteries may be

impractical or even unfeasible. Therefore, minimizing the

power consumption in a node is a primary issue to be

considered, and the use of solutions for increasing the

nodes lifetime is fundamental in WSN. It is well known

that energy consumed by nodes in data sensing or pro-

cessing functions may be negligible [35]. In contrast, data

communication has a strong impact on the nodes battery

mainly because of two aspects: (1) the radio transceiver

implies a high power consumption when compared to the

other components of the node; and (2), the communications

phase is associated with phenomena such as collisions,

overhearing, overemitting, and idle listening, which sub-

stantially reduce the nodes battery [7]. Furthermore, in a

WSN, each node plays the dual role of data originator and

data router. The failure of a few nodes can cause topo-

logical changes and might require rerouting of data packets

and reorganization of the network. In this regard, power

conservation and management take on additional signifi-

cance. Therefore, some discussion and models on energy

efficiency in WSN can be found on the literature, where

technical approaches for prolonging the lifetime of battery-

powered sensors have been the focus. These approaches

include energy-aware protocol development and hardware

optimizations, such as power consumption models for

WSN devices and sleeping schedules to keep electronics

inactive most of the time. Pantazis et al. [35] provide a

good overview on this topic. They discuss a number of

developed energy efficient routing protocols and models,

and provide directions to select the most appropriate to be

used in different WSN applications.

With respect to energy consumption, G. Anastasi et al.

[3] present a survey on energy consumption based on the

hardware of a typical sensor node. They divide the sensor

node into four main components: a sensing subsystem

including one or more sensors for data acquisition, a pro-

cessing subsystem including a microcontroller and memory

for local data processing, a radio subsystem for wireless

data communication, and a power supply unit. This archi-

tecture and its associated power breakdown are used to

propose a solution for reducing consumption in WSN.

They also describe different approaches for energy man-

agement and conclude that the energy consumption of the

radio is much higher than the energy consumption due to

data sampling or data processing. Dunkels et al. [12], in the

same approach, propose Eq. 1 which models the energy

consumption based on the hardware components of a typ-

ical sensor node, E (J), as

E ¼ ðIm � tm þ Il � tl þ It � tt

þ Ir � tr þ
Xn

i¼1

Ici
� tci

Þ � V
ð1Þ

where Im is the current consumed by the microprocessor in

the time tm during which the microprocessor is running, Il

and tl are the current and time when the microprocessor is

890 Wireless Netw (2017) 23:889–918

123

in low power mode, It and tt are the current and the time

when the device communication is in transmit mode, Ir and

tr are the current and the time when the device commu-

nication is in receive mode, Ici
and tci

are the current and

the time consumed by other components (e.g. LEDs,

ADCs, DACs), and V the sensor supply voltage. This

equation is used in some operating systems such as Contiki

[11] to estimate the energy consumption of a node when it

reduces the energy consumption by powering off the

microcontroller or other hardware components when they

are not used.

One technique that tries to increase the nodes lifetime

uses the design of duty cycle schemes to schedule the nodes

radios states depending on network activity. According to

G. Anastasi et al. [3] duty cycling can be achieved through

two different and complementary approaches: power

management, and topology control. In the case of the

power management approach, it is possible to exploit node

redundancy, and adaptively select only a minimum subset

of nodes to remain active for maintaining connectivity;

nodes that are not currently needed for ensuring connec-

tivity can go to sleep and save energy. In the case of the

topology control approach, finding the optimal subset of

nodes that guarantee connectivity is the main objective.

Therefore, the basic idea behind topology control is to

exploit the network redundancy to prolong the network

longevity. Moreover, active nodes do not need to maintain

their radio continuously on. They can switch off the radio

when there is no network activity, thus alternating between

sleep and wakeup periods. These two approaches are

complementary and implement duty cycling. The concept

of topology control is associated with that of network

redundancy. Large WSN typically have some degree of

redundancy. In many cases network deployment is done at

random. Therefore, it may be convenient to deploy a

number of nodes greater than necessary to cope with pos-

sible node failures occurring during or after the deploy-

ment. Topology control protocols are thus aimed at

dynamically adapting the network topology, based on the

application needs, so as to allow network operations while

minimizing the number of active nodes. There are there are

some criteria to decide which nodes to activate/deactivate,

and when. So, topology control protocols are classified in

two categories: location driven protocols, and connectivity

driven protocols. Location driven protocols define which

node to turn on and when, based on the location of sensor

nodes which is assumed to be known. Connectivity driven

protocols, dynamically activate/deactivate sensor nodes so

that network connectivity, or complete sensing coverage

[23], are fulfilled. A detailed survey on topology control in

wireless ad hoc and sensor networks is available in [38].

The concept of power management is associated with

sleep/wakeup schemes which can be defined for a the radio

subsystem of the sensor node, without relying on topology

or connectivity aspects. On-demand protocols are exam-

ples. The basic idea is that a node should wakeup only

when another node wants to communicate with it. The

main problem associated is how to inform the sleeping

node that some other node is willing to communicate with

it. A possible solution consists in using a scheduled ren-

dezvous approach. The basic idea is that each node should

wake up at the same time as its neighbors, according to a

wakeup schedule, and remain active for a short time

interval to communicate with their neighbors. Then, they

go sleep until the next rendezvous time. The major

advantage of such scheme is that when a node is awake it is

guaranteed that all its neighbors are awake as well. This

allows sending link-local multicast messages to all neigh-

bors. On the opposite, scheduled rendezvous schemes

require nodes to be synchronized in order to wake up at the

same time. This scheme, as others such as On-demand and

Asynchronous are surveyed and discussed in [3].

Other techniques that try to increase the nodes lifetime

use data-driven approaches, such as the data aggregation

scheme. This scheme tries to address the case of unneeded

samples, aimed at reducing the energy spent by the sensing

subsystem. Some of these schemes can also reduce the

energy spent for communication as well, as they reduce the

amount of data to be delivered to the sink node. Data

aggregation is achieved at intermediate nodes between the

sources and the sink to reduce the amount of data

traversing the network towards the sink. The most appro-

priate data aggregation technique depends on the specific

application and must be tailored to it. Therefore, being

application-specific, in [13] we can find a comprehensive

and up-to-date survey about them.

As a conclusion, Duty cycle schemes and data-driven

approaches help reducing the nodes energy consumption

by placing nodes sleeping as much time as possible, and

reducing the amount of data to be transferred between the

nodes. Equation 1 captures well the energy consumed by a

node as it explicitly addresses the times associated to the

transmission and reception of packets.

2.2 Routing

In the recent past, the ZigBee Alliance introduced a com-

munication stack for wireless sensor networks meeting the

typical requirements of low data-rate lossy links intercon-

necting low-power devices. Based on IEEE 802.15.4,

ZigBee [33] specifies the application and network layers.

The application layer framework consists of a set of

application objects. The ZigBee network layer defines how

the network is formed and how the network address is

assigned to each participating node. Two routing schemes

are available in ZigBee networks: mesh routing, and tree

Wireless Netw (2017) 23:889–918 891

123

routing. The mesh routing is similar to the AODV [19]

routing algorithm, while the tree routing scheme resembles

the cluster tree routing algorithm described in [15]. How-

ever, ZigBee was not able to easily plug that kind of net-

works into the IP-based Internet [1]. As a matter of fact, the

Internet Engineering Task Force (IETF) 6LoWPAN

addresses control and sensor networks working over

wireless technologies [10], having designed a standard

which defines how IP communications are performed over

low-power WPAN [14] and it uses IPv6. 6LoWPAN [31]

addresses the challenge of enabling wireless IPv6 com-

munications over wireless sensor networks. A question

which often arises is the following: is not the IP protocol

too big for low-bandwidth networks? According to [16],

resource conservation is the key factor for low-power

wireless sensor applications. The resources that matter to

achieve deployment ubiquity, long-lived power autonomy,

and cost effective devices include: low protocol overhead

over the wireless links, low program and data memory

requirements, and low power usage in intermittent and

infrequent sensor operation. On all these dimensions

6LoWPAN achieves efficiencies comparable to those

obtained by non-IP based architectures such as ZigBee,

while offering the benefits of end-to-end communication to

a huge range of devices. Recently, with the increasing trend

towards the Internet-of-Things, the ZigBee alliance

designed the ZigBee IPv6-based stack [39] for 802.15.4

networks. This changed the ‘‘traditional’’ ZigBee stack to

use 6LoWPAN, to use RPL as routing protocol, and to use

UDP.

RPL [42] is a IPv6 routing protocol that organizes nodes

along a Destination Oriented Directed Acyclic Graph [29]

(DODAG), normally rooted at a border router node or at a

sink node. As described in [43], the DODAG root initiates

the DODAG formation by periodically sending DODAG

Information Object (DIO) messages which it advertises by

using link-local multicast addresses [4]. DIO messages

carry information such as the DODAG root’s identity, the

routing metrics in use, and the rank of the originating node

rank in the DODAG. A node joins the DODAG by taking

into consideration these factors, and determines its own

rank in the DODAG based on the information advertised

by its neighbors in their DIOs. The node chooses as parent

in the DODAG the neighbor having the smallest rank.

Once a node has joined the DODAG, it sets a path to the

root through its parent and starts generating its own DIO

messages. RPL provides paths from nodes to a root while

requiring these nodes to store little forwarding and routing

information. In order to keep the size of forwarding and

routing tables small, RPL does not provide by default paths

from the border router back to the nodes. To overcome this

issue, a RPL router that requires a path from itself to a node

must send a Destination Advertisement Object (DAO)

message all the way which will lead to the installation of

the path to the node. Moreover RPL provides paths that are

often much longer than the shortest available paths and the

constraint to route only along a DODAG may potentially

cause traffic congestion near the DODAG root [4]. Also,

the constraint for every possible destination in the DODAG

to originate a DAO may be a problem because it is a

proactive destination-initiated process which involves

sending and receiving many control messages [4].

2.3 Node synchronization

WSN are energy-limited so usually the nodes cannot keep

radios active during all the time, having to sleep and to

wake up periodically [26]. Addressing this issue, there

were proposed several MAC protocols which were cate-

gorized into synchronous MAC protocols and asyn-

chronous MAC protocols. Although asynchronous

protocols are simple, they tend to consume more energy

because they use a long preamble to ensure that receivers

can get the packet. In WSN where energy must be saved, a

different approach may be used. One possible way is to use

synchronous methods. In the literature we can find several

proposed synchronous methods, namely the S-MAC [44]

and the T-MAC [41]. These protocols transmit a SYNC

packet to notify neighbors of their schedule and to syn-

chronize the clocks of all nodes in the network. The

method only compensates for clock offset and does not

consider clock drift [26]. Synchronous methods can be

characterized as one-way method. Normally, senders

broadcast a reference message and receivers upon the

reception of the message, record the arrival time by their

own clocks, and exchange this information among each

other to compensate clock offset between them. In [26] is

proposed a synchronous method in which clocks in the all

network are not modified. Instead, the nodes are synchro-

nized with their own clocks. Since the periodic broadcast

event in the network is the same for all the detecting

clocks, although they have different measurement results

for this period by their own clock unit independently, they

are able to interact with each other at the same physical

time. Without complicating the estimation process, and

without modifying the clock of a node, this synchronization

method is simpler and more energy-efficient than the tra-

ditional synchronization method [26].

2.4 Cross-layer

According to [22], cross-layer optimization in WSN has

been addressed by multiple studies in different scenarios.

The main idea is to design communications layers such that

they can share and react to information from other layers.

In recent years cross-layer design was used to increase the

892 Wireless Netw (2017) 23:889–918

123

efficiency of WSN communication systems. In [30] cross-

layering for WSN is surveyed. WSNs consider the appli-

cation, network, medium access control, and physical lay-

ers. Routing protocols attract special attention by their

impact on the network lifetime. In the cross-layer design

proposed in [32], a new adaptive MAC (A-MAC) requires

a change in the used routing protocol. New metrics that

depend on the duty cycle (the ratio between a sensor active

and sleep times) influence the routing decisions. A-MAC

changes the nodes duty cycle dynamically to achieve a

predetermined network lifetime.

3 RPL-BMARQ

WSN, being constituted by sensor nodes which are known

to be energy constrained, depends on their nodes lifetime.

Thus, in order to reduce nodes energy consumption, routing

strategies capable of finding energy-efficient paths are

demanded. We assume that routing protocols must find

routes in which the nodes may be kept asleep the maximum

amount of time they can. For that purpose, we use the

concept of application duty cycle time, characterized by

states wake and sleep, and their times. We also assume that

WSN forms a mesh network, and that nodes may run

multiple applications. Two main questions then arise: (1)

How to use mainly the nodes running the application

associated to the data being transferred by the network, so

that the nodes associated with other applications can con-

tinue sleeping? (2) How to synchronize nodes so that they

can wake and going asleep simultaneously?

We define Application-Driven WSN (ADWSN) as a

cross-layer solution aimed to help reducing the energy

consumed by a network of sensors executing a set of

applications. This paradigm assumes that each application

defines its own network and set of nodes so that the

exchanged information can be confined to the nodes

associated with the application. The nodes share informa-

tion about the applications they run, and also their duty-

cycles. Our solution, RPL-BMARQ, stands for RPL By

Multi-Application ReQuest. It tries to insure that data of an

application is relayed mainly by the nodes running that

application. When sink nodes query the other nodes,

routing paths should involve preferentially nodes running

the same application. For that purpose, each query packet

includes information about the associated application

(APPID), which is known by the nodes running that

application. Our routing scheme tries to insure that data of

an application is relayed mainly by the nodes running that

application. When the sink node queries the other nodes

running the same application, routing paths follow the

DAG created. This DAG is created and maintained by a

change in the RPL protocol scheme which will choose

mainly the nodes running that application as parent; the

nodes not associated to this application will not be selected

as parent, in a first attempt. The nodes are put asleep when

there is no activity related to their applications. When

nodes receive a query packet they know exactly when they

must wake up on the next period. In our solution the nodes

alternate between the wake and sleep states. The amount of

time of each phase is determined by the applications duty

cycle. When a node is awake it performs activities

including waiting for a sink query and forwarding packets

to neighbors. When the wake up time expires, the node

switches to the sleep state, waking up again by the time

computed by the proposed synchronization mechanism.

3.1 Cross-layer information

RPL-BMARQ uses application layer information in order to

create DAGs and to synchronize the nodes using a syn-

chronous method mechanism. Each ICMPv6 RPL DIO

message has information about: (1) the application the

node runs and application duty-cycle, i.e. the time cycle of

the application and the time the nodes are expected to be

woken; (2) the number of neighbors; (3) the number of

neighbors running this application. This information is

used by a node to maintain its neighbor table (see Table 1),

to maintain routing tables and to create and maintain

DAGs. From a neighbor table a node knows its neighbors

IPv6 addresses (global and link-local), what kind of node

they are (DAG root, sink, sensor, or other), what applica-

tions they run, and their correspondent duty-cycles. Fig-

ure 1 shows the DAG metric container object used by RPL-

BMARQ which needs to be included as an extension to any

RPL objective function metric container object. A DAG

metric container object [42] is a RPL control message

option used to compute the rank of a node, and to help the

selection of the best parent. In RPL-BMARQ, this metric

object includes information from the application layer with

respect to: the identification of the application that the node

runs (APPID), which may also be used to identify groups

of applications with the same duty cycles so that multiple

applications running with the same duty cycle can be

included in the same DAG; the total application cycle time

(TCYCLE); the total time the node is expected to be waked

(TON); the number of neighbors that the node has (NBR1);

and the number of neighbors which are running his appli-

cation (NBR2). The metric container object is mandatory

for the RPL-BMARQ solution because it carries all neces-

sary information to create and maintain DAGs and neigh-

bor tables. Each time a query packet is sent by sinks the

packet is ‘‘disseminated’’ into the network according to the

RPL-BMARQ routing mechanism. This packet (see Fig. 2)

is constituted by the APPID field; by the SEQNO field; by

the TTX field; by the CMD field; and by the DATA field.

Wireless Netw (2017) 23:889–918 893

123

The APPID field identifies the application to which the

packet corresponds; the SEQNO field is used to sequence a

packet; the TTX field carries the timestamp (this time

corresponds to the originator clock time); the CMD field

specifies the type of the message (query, reply, or other);

finally, the DATA field contains application data. This

information is used not only to know if a packet is to be

forwarded in the network layer, but also if it must be

replied at the application layer. The APPID, SEQNO and

TTX fields are also used by the synchronization mechanism

to maintain the nodes synchronized, as described in

Sect. 3.3.

Figure 3 shows RPL-BMARQ communications stack.

Each time a query is sent by a sink node, the node con-

structs a message packet with the structure shown if Fig. 2

where in the APPID field it identifies the application it

runs, in the SEQNO field it includes the application data

packet query sequence, in the TTX field is included the

timestamp the query was sent. The CMD field contains

information which identifies the data packet as a query.

This structure is sent through a particular UDP socket and

included in the data field of a transport layer segment.

Then, this segment is sent to the network layer using an

IPv6 link-local address FE80:: as destination. Since nodes

can receive more then one query from neighbors, an

incoming query buffer is used by the RPL-BMARQ routing

mechanism which will help to decide if the received query

is to be forwarded again to other neighbor nodes, to decide

if the query is to be discarded in case of already have been

received, and to decide if the query is to be replied back.

The node consults its neighbor table to see if it has

neighbors running the application from which the query

was received. If there exist at least one neighbor, the query

is forwarded again using the same link-local address (ex-

cept if the query was sent by this neighbor); if not, the

packet is discarded. Also, if this node runs the application

from which the query was received, the datagram is passed

up to the transport layer which will use the same earlier

UDP socket to send the query packet to the application

level. At this level, upon the reception of the query mes-

sage, the node processes it according to the information

asked and sends back a reply by constructing a similar

message packet (Fig. 2). This message is sent to the

transport layer using another UDP socket, which will

construct a new segment to be used by the network layer to

sent a datagram to the sink global IPv6 address. It has to be

noted that queries are sent to a link-local IPv6 multicast

address, whereas replies are sent to global IPv6 unicast

addresses.

Table 1 RPL-BMARQ neighbor information

IPADDR LLADDR TYPE APPID TCYCLE TON NBR1 NBR2

Fig. 1 RPL-BMARQ metric container object

Fig. 2 RPL-BMARQ application layer packet

Fig. 3 RPL-BMARQ communications stack

894 Wireless Netw (2017) 23:889–918

123

3.2 DAG creation

The DAG creation scheme will use mainly the nodes

running the same application; the nodes not associated to

the application will not participate in DAG creation pro-

cess, in a first attempt [28]. Algorithm 1 shows how to

create DAGs in our solution. A root node starts to create

the DAG by sending DIO messages. The nodes surround-

ing the root use the information carried in these DIO

messages, compute their rank and join the DAG, in the

same way as in regular RPL. The computed rank is jointly

sent with the identification and duty-cycle of the applica-

tion, in DIO messages. This information is used by other

nodes to update their neighbor tables, compute their own

rank, and advertise their presence by sending new DIO

messages. All node’s neighbor tables record the neighbors

IP address, the application that they run and its duty-cycle.

This information is used to help the node to join the DAG,

by looking into its neighbor table. If the node runs the

same application of its neighbor and if the latter has a

lower rank, the former may choose it as parent, joining the

DAG through it. If the node has neighbors which do not run

its application, but have in turn at least one neighbor run-

ning this application, one of them can be selected as parent.

As example, if the neighbor has two neighbors, one root

and the other sink, the root node will be always selected.

Therefore, the node will not change parent depending on

packets arrival. Otherwise, a node will always select a sink

node neighbor as parent. If a node has only sensor nodes as

neighbors it will select for parent the sensor running the

same application which has lower rank. Moreover, if the

sensor has neighbors not running the same application but

in turn they have other neighbors which run its application,

the former will select as parent a neighbor with lower rank.

In other situations, the mechanism switches to regular RPL.

This mechanism is introduced inside a RPL Objective

function to create the DAGs accordingly.

3.3 Synchronization mechanism

It is unlikely that all the sensor nodes would join a network

at the same time. Having the nodes active during all the

time would deplete their batteries, so nodes have to go

sleep and to wake up periodically. All the nodes need to be

awake at same times in order to receive sink queries and to

forward them to the other nodes. As a result, nodes must be

synchronized according to the application cycle they run.

To synchronize all the nodes in the network our proposed

synchronization mechanism uses a synchronous method

which includes two phases: the synchronization setup

phase and the synchronization maintenance phase, descri-

bed below.

3.3.1 The synchronization setup phase

When a node joins the network, it remains in the wake state

and waits for the reception of its first query packet sent by

the sink node and forwarded by other nodes. Upon its

reception, the node adjusts a virtual clock to the timestamp

carried by the query (see Fig. 4). This information is

extracted from the query packet itself (TTX field). It is

known that this corresponds to setting the time’s nodes to a

time value which does not consider the transmission delay

nor the propagation delay, but this fact has no impact on

the mechanism.

3.3.2 The synchronization maintenance phase

Since all the nodes know the characteristics of the appli-

cations they run, after the reception of their first query

packet they would expect to receive the second query

packet by t02 ¼ t1 þ TON þ TOFF . However, because net-

work delays are variable, the nodes will receive this second

query packet not in t02 but in t2, as shown in Fig. 5. There is

a difference between the expected value t02 and the real

value t2, d2 ¼ t02 � t2. For example, if a node is expected to

receive a query packet by t02 ¼ 100 and receives it by

t2 ¼ 102, then d2 ¼ �2; if the same node expected to

receive the query packet by t02 ¼ 100 and receives it by

t2 ¼ 98, then d2 ¼ þ2. A negative value means that a

query was received in delay, and a positive value means

that the query was received in advance. In general, the

Wireless Netw (2017) 23:889–918 895

123

difference between the expected time to receive the next

query and the time it is really received is computed by

Eq. 2

t0k ¼ tk�1 þ TON þ TOFF

dk ¼ ð1� aÞ � dk�1 þ a � ðt0k � tkÞ
ð2Þ

where t0k is the expected packet reception time, and tk is the

real packet reception time. dk is evaluated according to an

exponential moving average with a reflecting the weight of

last observation. The dk value is dynamically adjusted

every time a node wakes and receives a query packet, and it

is used to control the time the node would sleep in the next

cycle, given by Eq. 3.

TSleepk
¼ TOFF � b � jdkj ð3Þ

In this Eq. 3, the b factor is used to amplify the dk value in

order to guarantee that the nodes will be awake in time in the

next application cycle to successfully receive and forward

packets, maintaining them synchronized. Following current

IETF recommendations for managing TCP timers [36] we

selected b ¼ 10. Algorithm 2 shows how RPL-BMARQ

synchronization mechanism is implemented.

Fig. 4 Synchronization setup

phase

Fig. 5 Synchronization

maintenance phase

896 Wireless Netw (2017) 23:889–918

123

4 RPL-BMARQ evaluation

4.1 Applications characterization

Two different applications are used in our experiments.

These applications and their topology are characterized by

the following aspects: static, organized, pre-planned, no

mobility, 16 nodes deployed in a square lattice topology,

all sensor nodes battery-powered, except for the sink nodes.

Additionally we consider multi-hop communications, the

traffic pattern is point-to-multipoint when data is queried,

and point-to-point when queries are replied by nodes. The

first application (App. A) has a duty-cycle of 1 h; every

sensor node running this application wakes every hour

remaining awake during one minute for receiving the query

and send data back to the sink. The second application

(App. B) has a duty-cycle of 15 min; the sensor nodes also

wakes for one minute to sense and to send data to the sink

and to communicate. As shown in Fig. 6a, the period of

App. A is 4 times the period of App. B. All sensor nodes

are expected to be awake when data is queried and replied,

and sleeping when there is no activity.

4.2 Scenarios studied and evaluated

In order to evaluate the RPL-BMARQ solution, a square

lattice of 4�4 nodes was used. The nodes are distributed as

shown in Fig. 7, where the four scenarios evaluated are also

shown. All the nodes are within a distance of 25 m for a

transmission range of 30 m, and support one of the two

applications. Each application is running in eight nodes,

and each node runs a single application. Sink nodes

placements where chosen in order to allow long routing

paths, since long paths consume more energy. In Scenario

1 the nodes running App. A were selected in a way that a

long path could be obtained. In Scenario 2 both applica-

tions have the same node distribution; in these scenarios we

aim to investigate the influence of the application duty-

cycle in energy consumption. Scenarios 3 and 4 are used to

investigate situations where at least one node from other

application is required to relay data. In the scenarios sim-

ulated, sink nodes are always awake, and sink node running

App. B (node 9) was chosen as DAG root because of its

application duty-cycle. Since our solution constrains the

paths to the nodes associated to the application, a node

needs to be woken up only when its applications run and

not for generic routing and forwarding purposes. In con-

trast, RPL was used as shown in Fig. 6b; in this case

despite the applications having different periods, all the

nodes would have to wake up every 15 min in order to

Fig. 6 Applications activity

cycle

Wireless Netw (2017) 23:889–918 897

123

process routing messages. In our solution, a query is

‘‘multicasted’’ only to the nodes associated to the appli-

cation and not the entire WSN. When the application nodes

reply, only the nodes running the application will send and

forward unicast packets. So, using the RPL-BMARQ

solution, the routing paths are chosen not only according to

RPL objective functions, but also considering the nodes

belonging to the application for which the paths are

required, and the total number of neighbors a node has, at

least in the first attempt. Figure 7c shows a case of node

deployment where some of the nodes of App. A (nodes 7

and 8) are unable to receive sink queries because they are

isolated. Figure 7d shows a very particular node deploy-

ment, where nodes 10, 13, and 16 running application B are

unable to receive sink queries because they are isolated. In

this case, node 8 would be selected to participate in the

routing and forwarding process, being selected by node 16

as parent. This last scenario raises a routing issue and it is

discussed separately in Sect. 4.5.

In order to evaluate the performance gains of our solu-

tion, first we present a theoretical study to estimate the

magnitude of energy consumption improvements intro-

duced by our solution. Then, we present simulation results

of four scenarios each simulated 10 times and, finally, we

present the results from two real testbed implementations.

4.3 Theoretical evaluation

4.3.1 Packet energy consumption

Considering that a node is implemented as a CrossBow

TelosB [9] sensor hardware, and the energy is consumed by

its CPU and RF transceiver, the total energy consumed can

be described as follows:

E ¼ Eon þ ETXBcast
þ ERXBcast

þ ETXUcast

þ ERXUcast
þ EIdle þ ESleep

ð4Þ

where Eon is the energy consumed during the time that

node is waked, ETXBcast
is the energy consumed when

sending ‘‘broadcast’’ packets, ERXBcast
is the energy con-

sumed when receiving ‘‘broadcasted’’ packets, ETXUcast
is

the energy consumed when sending unicast packets, ERXUcast

is the energy consumed when receiving unicast packets,

EIdle is the total energy consumed when the node is in the

idle state (the state where a node has its radio on and

waiting to send or to receive a data packet), and ESleep is the

total energy consumed when the node is sleeping. The

energy consumed by a node in idle state is computed by

EIdle ¼ IIdleðAÞ � V � tIdleðsÞ, considering IIdle ¼
365 lA;V ¼ 3:6 V , and tIdle the time the node is idle,

which depends on the communications scenario. The

energy consumed by a sleeping node is computed as

ESleep ¼ ISleepðAÞ � V � tSleepðsÞ, considering ISleep ¼
5:1 lA;V ¼ 3:6 V, and tSleep the total time the node is

sleeping. The values are extracted from Table 2, extracted

from [8].

For theoretical evaluation purposes, we assume the

simplest case of having no collisions and all the packets

being correctly received. We also assume that a unicast

packet is acknowledged at the MAC Layer, whilst a

Fig. 7 Nodes deployment in different square lattice mesh topologies

Table 2 TelosB specification

Nominal

Current in transmit (0 dBm) mode (mA) 19.5

Current in receive mode (mA) 21.8

Current in MCU on, radio off (mA) 1.8

Current in MCU on, radio on-idle mode (lA) 365

Current in sleep mode (lA) 5.1

Power supply (V) 3.6

Transmit bit rate (kbit/s) 250

Transmit symbol rate (ksymbol/s) 62.5

898 Wireless Netw (2017) 23:889–918

123

‘‘broadcast’’ packet is not. The energy consumed per

packet considering the information of Table 2, and the

IEEE 802.15.4 specification [17], can be computed as

follows.

Transmission of ‘‘broadcast’’ packet: non-beacon

enabled IEEE 802.15.4 networks use an unslotted CSMA-

CA channel access mechanism [21, 24]. We assume that

each time a device needs to transmit, it waits for a random

number of unit backoff periods in the range f0; 2BE � 1g
before performing the Clear Channel Assessment CCA. If

the channel is found to be idle, the device transmits. If the

channel is found to be busy, the device waits another

random period before trying to access the channel again.

Assuming the channel is found to be free, and also

assuming that the backoff exponent BE is set to macMinBE

which has the default value of 3, and the access time can be

computed as

TCA ¼ InitialBackoffPeriod þ CCA

¼ ð23 � 1Þ � aUnitBackoffPeriod þ CCA

¼ 7� 320 lsþ 128 ls

¼ 2:37ms

ð5Þ

The CCA detection time is defined as 8 symbol periods.

aUnitBackoffPeriod is defined as 20 symbol periods, where

1 symbol corresponds to 16 ls.
As shown in Fig. 8, the energy consumed is computed as

ETXBcast
¼ Ei þ EPTX

; Ei is the energy consumed during the

Channel Access period (CA) which is TCA � PIdle; PIdle is

the power consumed by the node in the idle mode which is

1.31 mW. EPTX
is the energy consumed during the time

required to send the packet of size S (in octets).

EPTX
¼ S � Toctet � PTX; Toctet is the time required to send

one octet, which is 32 ls, and PTX is the power consumed

in the transmission of the same octet, which is 70.2 mW.

Reception of ‘‘broadcast’’ packet: when a node receives

a ‘‘broadcast’’ packet of size S, the energy consumed is

ERXBcast
¼ EPRX

¼ S � Toctet � PRX where Toctet is the time

required to receive one octet, which has the same value as

the time required to send one octet. PRX ¼ 78:5 mW is the

power consumed by receiving the same octet, as shown in

Fig. 9.

Transmission of unicast packet: when a node sends a

unicast packet, the amount of energy consumed is com-

puted as the energy required to transmit the packet plus the

energy consumed during the reception of the acknowledge

frame. The transmission of an acknowledgment frame in a

non-beacon enabled network commences aTurnar-

oundTime symbols after the reception of the data frame,

where aTurnaroundTime is equal to 192 ls. This gives the
device enough time to switch between transmit and receive

mode.

As shown in Fig. 10, the total energy consumed is

ETXUcast
¼ Ei þ EPTX

þ ETAck
þ EMAck

; Ei is the energy con-

sumed during the Channel Access period; EPTX
is the

energy consumed during the time required to transmit the

packet of size S; ETAck
is the energy consumed while

waiting for the reception of the acknowledgment, which is

0:252 lJ, and corresponds to aTurnaroundTime times the

power consumed in the idle mode which is 1.31 mW; EMAck

is the energy consumed during the time required to receive

the complete MAC acknowledgment frame which has a

size of 11 bytes, and corresponds to 27:6 lJ.
Reception of unicast packet: the energy consumed to

receive a unicast packet of size S is ERXUcast
¼ EPRX

þ
ETAck

þ EMAck
. EPRX

is the energy consumed during the time

needed to receive the packet of size S; ETAck
is the energy

consumed during the TAck time to wait before sending the

acknowledge packet (this value is the same as the waiting

time before receiving the acknowledge packet); EMAck
is the

energy consumed during the time of the transmission of the

acknowledge MAC frame - TMack times the power con-

sumed in the transmission mode which is 70.2 mW, cor-

responding to 24:7 lJ, (see Fig. 11).

4.3.2 Energy gain estimation

We define the energy gain of our routing solution as:

ERPL � EBMARQ

ERPL

� 100 ð6Þ

Fig. 8 Energy consumed by a node when transmitting a ‘‘broadcast’’

packet of size S octets

Fig. 9 Energy consumed by a node when receiving a ‘‘broadcast’’

packet of size S octets

Wireless Netw (2017) 23:889–918 899

123

where ERPL is the total energy consumed by the nodes for

the RPL routing solution, and EBMARQ is the total energy

consumed by the nodes for our routing solution. The values

are given in %.

4.3.3 DAGs used

Figure 12 shows the DAGs selected for theoretical evalu-

ation. For RPL-BMARQ solution we have manually

selected the DAGs so that the nodes may send and received

packets as expected. For RPL the DAGs were selected in

order to allow for shortest paths considering the hop count

metric.

4.3.4 Results and discussion

We characterized the energy consumed by the nodes run-

ning simultaneously both applications, we take into

account the number of ‘‘broadcast’’ (more exactly, link-

local multicast) and unicast packets, and the time the nodes

are wake, sleeping, or in idle mode during 1 h. We also

compare our solution against the generic RPL routing

solution. The analysis was performed based on packets of

127 octets (application data size of 81 octets, plus the IEEE

802.15.4 MAC layer header and PHY layer header size of

46 octets). The packet size chosen reflects worst cases in

the analysis performed. MAC layer collisions were not

considered. For simplicity we assumed that all packets

were sent and received with no errors and no

retransmissions. The calculus was made using a C program

that implements both solutions.

Energy: Figure 13 shows the total energy consumed by

each node. As can be seen, our solution always consumes

less energy. The total of energy consumed is computed as

the sum of the energies consumed by individual nodes. The

energy consumed by each node is given by Eq. 4, and

Fig. 14 shows the total of energy gains using de RPL-

BMARQ solution in each scenario. The gain is computed

using Eq. 6. Figure 15 shows the energy consumption by

each solution in the scenarios studied. As it can be seen,

nodes using the Standard RPL solution always consume

more energy. In the selected scenarios the mean energy

consumed for the RPL-BMARQ solution considering the 4

scenarios, is 5.95 J, and for the RPL solution is 8.76 J. The

mean gain, considering the 4 scenarios, is 32.7 %. Con-

cerning to the time the nodes are sleeping, results show that

for the RPL-BMARQ solution, nodes sleep more time than

for the RPL solution. For the selected scenarios, and for the

RPL-BMARQ solution, the sum of time the nodes are

sleeping is 57,000 s, while for the RPL solution is 56,640 s.

In the idle mode energy is also consumed.

Application packets transmitted and received: Figure 16

shows the distribution of the ‘‘broadcast’’ packets gener-

ated by each node in the four scenarios. As shown, the

number of ‘‘broadcast’’ packets sent using our solution is

lower than the number of packets sent using the RPL

solution. In scenarios 3 and 4, the RPL-BMARQ solution

needs node 9 and node 8, respectively, to forward packets.

Those nodes forward 5 ‘‘broadcast’’ packets in scenarios 3

and 4. The total number of ‘‘broadcast’’ packets sent in

each scenario corresponds to the packets sent when sink

nodes issue queries. In our solution, only the nodes

belonging to the application forward the packets, thus

network flooding is bounded to the nodes of the applica-

tion. In the case of the RPL solution, when a sink issues a

query the packets are ‘‘broadcasted’’ to the entire network.

Since there are two applications running, the network is

‘‘broadcasted’’ twice. For example in scenario 1 our solu-

tion sends 40 packets, while the RPL solution sends 80

packets. Figure 17 shows the distribution of ‘‘broadcast’’

packets received by each node. As shown, the number of

‘‘broadcast’’ packets received with our solution is lower

than the number of packets received using the RPL solu-

tion. For the RPL solution, in the scenarios considered, 4

nodes are used more often (nodes 5, 6, 7, and 12). They are

placed in the middle of the topology and receive more

packets than the others, since they have more neighbors.

With the RPL-BMARQ solution, the distribution of the

nodes inside the topology has influence. Looking at sce-

nario 1, node 10 receives more packets than the others

nodes (16 packets). This node runs application B, thus it is

used 4 times per hour. It also receives more packets since it

Fig. 10 Energy consumed by a node when transmitting a unicast

packet of size S octets

Fig. 11 Energy consumed by a node when receiving a unicast packet

of size S octets

900 Wireless Netw (2017) 23:889–918

123

has more neighbors. In the case of scenario 4, there are 2

nodes (11, 15) which receive respectively 12 and 8 packets,

because node 8 relays packets from nodes running appli-

cation B.

When analyzing Figs. 16 and 17, we also conclude that

with the RPL-BMARQ solution application B generates

more ‘‘broadcast’’ packets than application A, since queries

are four fold. With RPL, all nodes are waked in order to

receive and to send ‘‘broadcast’’ packets, so the node dis-

tribution does not influence the number of ‘‘broadcast’’

packets. Moreover with RPL, queries are issued 5 times per

hour (one from application A, and 4 from application B).

Figures 16 and 17 also show ‘‘broadcast’’ ‘‘hotspots’’.

Figure 18 shows the distribution of unicast packets sent by

each node in the four scenarios considered. We can verify

that the total number of unicast packets sent in each sce-

nario is lower for RPL-BMARQ than for RPL, except for

scenario 4, where RPL-BMARQ needs to send more unicast

packets. In this scenario nodes need to forward more

packets in order to reply to sink queries. Since RPL-

BMARQ uses mainly the nodes belonging to the applica-

tions, node 11 is more often used. In the scenarios con-

sidered, and analyzing the DAGs used (see Fig. 12) the

paths selected by the RPL-BMARQ solution are longer

Fig. 12 DAGS used in theoretical evaluation

Wireless Netw (2017) 23:889–918 901

123

than those selected by the RPL solution, which makes no

distinction between nodes. In the case of scenario 4, node 8

is also used to forward packets from nodes running other

application. In this situation, node 8 transmits 13 packets.

Since for the RPL solution all nodes must be awake, in

scenario 4, node 11 is the node with more activity, and it

transmits 26 packets per query. The number of the unicast

packets received in our solution is smaller than in RPL, as

shown in Fig. 19). As example, in scenario 1 the total

number of unicast packets received for the RPL-BMARQ

solution is 191, while for the RPL solution is 290. The

results are summarized in Table 3. They show that, for the

scenarios studied, our solution provides significant energy

gains.

Analysis for large networks: the above theoretical results

were obtained for small topologies. But one could ask how

the proposed solution could lead to non-optimal path when

large networks are involved. Let us take as example a large

network, characterized by a square lattice topology of 100

nodes and consider two limit node distributions: (1) 50

nodes running application A and 50 nodes running appli-

cation B (Fig. 20a), and (2) 10 nodes running application A

and 90 nodes running application B (Fig. 20b). These

topologies represent large WSNs with different node dis-

tributions by applications (ratios 1/1 and 1/9) and, simul-

taneously, the usage of several nodes of running one

application being used to relay packets generated by nodes

running the other application. To perform this study we

used the same method employed in Sect. 4.3.4. Results are

summarized in Table 4. As it can be observed, in both

topologies the energy consumed by RPL-BMARQ is always

lower than the energy consumed by RPL.

Fig. 13 Total of energy consumed in each scenario for the RPL-

BMARQ and the RPL solutions

Fig. 14 RPL-BMARQ energy gains in each scenario (in %)

Fig. 15 Energy consumption in each scenario (in J)

902 Wireless Netw (2017) 23:889–918

123

In Fig. 20a, b we can observe that our solution presents

gains respectively of 30 and 90 %. This difference comes

from the sensors nodes distributions: in (a) the application

distribution ratio is the same (same number of sensor nodes

for each application); in (b) 90 % of the sensor nodes run

one application which is four times grater then the duty

cycle of the application running in the other 10 % of the

nodes.

Analyzing the total number of layer 3 packets sent and

received, we observed that the RPL-BMARQ solution

presents lower values than RPL. In (a) the total number of

broadcast packets received by RPL-BMARQ and RPL are

respectively 848 and 930; the total number of unicast

packets received by RPL-BMARQ and RPL are respec-

tively 5, 339 and 5, 998. With respect to topology (b) the

Fig. 16 Total number of ‘‘broadcast’’ packets generated in each

scenario for the RPL-BMARQ and the RPL solutions
Fig. 17 Total number of ‘‘broadcast’’ packets received in each

scenario for the RPL-BMARQ and the RPL solutions

Wireless Netw (2017) 23:889–918 903

123

total number of broadcast packets sent by RPL-BMARQ

and RPL are respectively 379 and 500; the total number of

broadcast packets received by RPL-BMARQ and RPL is

are respectively 1, 324 and 1, 800; The total number of

unicast packets sent by both solutions is the same (5, 607)

and the total number of unicast packets received by RPL-

BMARQ is lower (20, 953) than RPL (21, 109).

From these results we can conclude that for large WSNs

the number of hops does not affect our solution as it still

provides significant energy gains.

Fig. 18 Total number of unicast packets transmitted in each scenario

for the RPL-BMARQ and the RPL solutions
Fig. 19 Total number of unicast packets received in each scenario for

the RPL-BMARQ and the RPL solutions

904 Wireless Netw (2017) 23:889–918

123

4.4 Simulations

In order to study the behavior of the RPL and the RPL-

BMARQ solutions, both have been implemented in

ContikiOS [11], which is an operating system used for

wireless sensor networks. ContikiOS 2.6 was chosen

because it includes an IPv6 stack with 6LoWPAN support,

as well as ContikiRPL, which is a basic RPL

Table 3 Theoretical results

Scenario 1 Scenario 2 Scenario 3 Scenario 4

BMARQ RPL BMARQ RPL BMARQ RPL BMARQ RPL

Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx

BCast (packets) 40 94 80 240 40 90 80 240 41 84 80 240 44 88 80 240

UCast (packets) 84 191 90 88 100 249 106 347 51 119 120 383 124 262 106 344

Time waked (s) 600 960 600 960 600 960 645 960

Time sleeping (s) 57,000 56,640 57,000 56,640 57,000 56,640 56,955 56,640

Time idle (s) 597.43 955.88 596.93 955.35 598.21 955.01 641.66 955.37

Energy consumed (J) 5.86 8.73 5.88 8.76 5.82 8.78 6.24 8.76

Energy gain (%) 33.0 33.0 33.8 28.9

Fig. 20 Impact on large networks: a 50 nodes running application A and 50 nodes running application B; b 10 nodes running application A and

90 nodes running application B

Table 4 Results obtained for

large networks
Topology (a) Topology (b)

BMARQ RPL BMARQ RPL

Tx Rx Tx Rx Tx Rx Tx Rx

BCast (packets) 255 848 255 930 379 1324 500 1800

UCast (packets) 1707 5339 1707 5998 5607 20,953 5607 21,109

Time waked (s) 14,700 23,520 22,200 324,000

Time sleeping (s) 338,100 336,000 203,400 336,000

Energy consumed (J) 28.24 40.05 42.42 441.66

Energy Gain (%) 29.5 90.4

Wireless Netw (2017) 23:889–918 905

123

implementation. The communication between the nodes is

achieved using the CSMA/CA access scheme with

NullRDC, which means that the Mac Layer, by it-self, does

not put the nodes in the on and off states. The simulations

were performed using Cooja [34], a simulator for Con-

tikiOS, which allows developers to test code and systems

before running it on a target hardware. The hardware

platform selected was TelosB [9] which uses IEEE

802.15.4 radios. The 2.4 GHz radio model chosen was the

Unit Disk Graph Medium (UDGM). UDGM models the

transmission range between the nodes as an ideal disk; the

nodes outside it do not receive packets, while the nodes

within the transmission distance receive all the messages.

UDGM confirms the functionality and behavior of our

solution. Packets have a IPv6 Payload of 82 bytes, except

for signaling.Table 5 shows the code-size in bytes for sink

and sensor nodes for RPL and for RPL-BMARQ solutions.

As it can be verified, code-size overhead resulting from

RPL-BMARQ implementation is about 7.1 % for sinks, and

6.4 % for sensor nodes. In contrast, code in RAM size is

reduced by about 9.6 % for sinks and 10 % for sensor

nodes.

4.4.1 Results and discussion

We have simulated RPL-BMARQ solution in two situa-

tions. The first corresponds to a situation where all the

nodes join the network at same time, so that the designed

nodes synchronization mechanism is not used, being rep-

resented in figures as BMARQ (no sync). In the second

situation, the nodes will join the network at different time,

and it is represented in the figures as BMARQ (sync). The

later implies the use of the synchronization mechanism in

order to keep the nodes synchronized with respect to the

applications they run. The nodes join the network at dif-

ferent times which was randomly generated, and the

expected random time value for a node to join a network is

defined as

E½tc� ¼
1

2
� MaxðTCycleA

;TCycleB
Þ;

tc�½0;MaxðTCycleA
; TCycleB

Þ�:
ð7Þ

For the evaluated scenarios, TCycleA
equals 1 h and

TCycleB
15 min. So, the average delay for a node to join the

network is 1800 s. Table 6 shows the time required to boot

the network in these conditions.

DAGs created: Figure 21 shows the DAGs generated

during simulations. For each scenario the simulations ran

constructed the same DAGs. In this figure it can be verified

that RPL-BMARQ solution constructs the DAGs as

expected. A particular attention must be given to scenario 4

where node 16 choses node 8 as parent which does not run

its application. In this situation, node 8 should not send

packets from nodes 10, 13 and 16 to its parent (node 7), but

use other link, sending them directly to node 15 which will

forward them so that the node 9 (sink) can receive the

packets. This aspect raised some issues and therefore it is

discussed separately.

Energy: we consider energy consumption related only to

communication aspects, e.g. packet transmission, recep-

tion, radio ‘‘idle’’ the state where a node has its radio on

and is waiting to send or to receive a data ‘‘packet’’, and

radio interferences. We aim to investigate how much

energy is consumed by the nodes in these states, as shown

by Eq. 8.

E ¼ ETX þ ERX þ EIdle þ EInt ð8Þ

ETX is the total energy consumed when sending packets,

ERX is the total energy consumed when receiving packets,

Table 5 Code-size for RPL and RPL-BMARQ solutions

RPL RPL-BMARQ

ROM RAM ROM RAM

Sink 42,280 186 7400 45,492 186 6688

Sensor 42,260 186 7400 45,170 186 6662

Shown is ROM (.text) and RAM (.bst ? .data) in bytes

Table 6 Nodes association time randomly generated for each

scenario

Scen. Node type App. Node Boot (in s)

1 Sensor A 2, 3, 4 561

5, 6, 7, 8 1027

B 10, 12, 15 940

11, 13, 14, 16 1102

2 A 2, 3, 5, 6 561

4, 7, 8 1027

B 10, 11, 13, 14 940

12, 15, 16 1102

3 A 2, 3, 4, 5 561

6, 7, 8 1027

B 10, 11, 12, 13 940

14, 15, 16 1102

4 A 2, 3, 5 561

4, 6, 7, 8 1027

B 11, 12, 14, 15 940

10, 13, 16 1102

All Sink A 1 399

B 9 317

906 Wireless Netw (2017) 23:889–918

123

EIdle is the total energy consumed by a node when it has the

radio in the idle state, and EInt is the total energy consumed

by a node when it suffers radio interferences from it’s

neighbors. Generically, we compute energy Estate as

Istate � V � tstate, considering Istate the current consumed by

the node in the state, V the voltage supplied to the node,

and tstate the total time the node is in that state. The Istate

and V values depend on existing platforms (e.g. TelosB

[9]), and a generic energy model defining the total energy

consumed by the nodes is detailed in [27]. From the results

obtained, we extracted data related to communications time

which is shown in Fig. 22. This figure shows the total time,

for 95 % confidence intervals, in which nodes radios were

in their different considered states. As one can observe, the

permanence time in each state is lower for RPL-BMARQ

(both no sync and sync implementations) than for RPL.

Using RPL-BMARQ, the time where radios are in the idle

state is less then that using RPL, which reflects the major

contribution of RPL-BMARQ design. Applying the infor-

mation of Table 2, which was extracted from [9], to Eq. 8,

we can compute the total energy consumed by the nodes

(see Fig. 23). Results show that the total energy consumed

by the nodes considering those states, and using the RPL-

BMARQ solution using both implementations is very low,

Fig. 21 DAGs generated during simulations

Wireless Netw (2017) 23:889–918 907

123

Fig. 22 Mean total radio activity time (in seconds)

Fig. 23 Energy consumed by

each solution in each scenario

(in J)

908 Wireless Netw (2017) 23:889–918

123

as it turns the node’s radio off during more time than RPL.

Using Eq. 6 we compute the energy gain for RPL-BMARQ

and results show that, using the RPL-BMARQ solution not

implementing the synchronization mechanism, the nodes

spend about 92 % less energy than the same nodes running

RPL. In the case of the second implementation of RPL-

BMARQ in which the synchronization mechanism is used,

the nodes spend about 85 % less of energy than RPL. The

difference in gain between the two implementations of

RPL-BMARQ is due to the excess time the nodes in the

synchronized implementation need to be awaked, thus

spending more energy. Even though, this enables us to

conclude that RPL-BMARQ extends the network lifetime.

Synchronization: each time a node receives a query it

computes the time it must be wake before the next appli-

cation cycle in order to be able to receive and forward

packets, and to reply back to the sink successfully. For that

purpose, it uses the synchronization mechanism described

in 3.3, where b value from Eq. 3 was empirically obtained,

and set to 10. Figure 24 shows the mean value of the

synchronization adjusting time used by the nodes in the

scenarios evaluated. As it can be seen, the nodes would

sleep not the correspondent Toff time, but in average Toff �
15:7 s, corresponding to the second implementation of

RPL-BMARQ.

Query Success Ratio: we define Query Success Ratio

(QSR) as the ratio between the number of reply packets

received by a sink node in response to a query packet, and

the number of replies the sink expects to receive (see

Eq. 9).

QSR ¼ number of received replies

number of expected replies
;

0�QSR� 100%

ð9Þ

Adapting Eq. 9 to our case, the number of received replies

is 7. Figure 25 shows simulation results with 95 % confi-

dence interval. One can conclude that RPL presents better

result than RPL-BMARQ, although the values from both

solutions are very close. Please note that in Fig. 25 we are

representing QSR values between 96 and 100 %. We can

conclude that with RPL-BMARQ, QSR does not suffer

much, presenting a average value of 98.5 %, when com-

pared to RPL, which presents a similar value of 99.5 %. At

the end, the difference value of 1 % has no great

significance.

QSR fairness: fairness metrics are used in network

engineering to determine whether users or applications are

receiving a fair share of system resources. There are sev-

eral definitions of fairness. Jain’s fairness index is an

example, and it is defined in Eq. 10 [20], and it describes

the fairness of a set of values where there are n users and xi

is the throughput for the ith user. A straightforward com-

putation shows that the fairness measure c ranges from 1
n

(maximum unfairness) to 1 (all xi are equal) [6]. In the

evaluation of our proposed solution also we want to know

if the sensor nodes have the same opportunity to receive

and to reply to query packets. We also use the Jain’s

fairness index as it is independent of scale, it applies to any

number of sensor nodes, and it is bounded between 0 and 1,

where c = 1 indicates a totally fair network.

c x1; x2; . . .; xnð Þ ¼
Pn

i¼1 xi

� �2

n �
Pn

i¼1 x2i
ð10Þ

Applying Eq. 10 to our case, xi corresponds to the QSR per

node. In average, values obtained from simulations for the

3 scenarios show that all solutions present fairness indexes

above 99 %.

Delay: we define delay (D) as the time interval between

the time instant a query was sent by a sink node and the

time the sink receives the correspondent reply, as shown in

Fig. 26. We compute this delay as

Dk;n ¼ tRk;n
� tQk

ð11Þ

where Dk;n is the delay for the reply from the node n to a

query k, tQk
is the time the query k was sent, and tRk;n

is the

time the reply k from the node n was received. Figure 27

shows delay values with 95 % confidence for the simulated

scenarios using both solutions and implementations. These

values were computing as defined in Fig. 26. We note that

with RPL-BMARQ we can achieve higher mean delays. For

instance, in Scenario 3, the mean delay value is 1.524 s for

RPL-BMARQ with the synchronization mechanism imple-

mented, 1.539 s for RPL-BMARQ not using the synchro-

nization mechanism, and 1.375 s for RPL. This is expected

since nodes using RPL-BMARQ have bigger processing

times. Also, analyzing the DAGs generated (Fig. 21) we

note that, in average, RPL-BMARQ creates longer DAGs so

the packets would take more time to reach their destina-

tions. In average, the delay value for RPL is 1.24 s, the

delay value for RPL-BMARQ (no sync) is 1.39 s, and theFig. 24 Mean synchronization adjusting time (b � jdkj, in s) for each

scenario

Wireless Netw (2017) 23:889–918 909

123

delay value for RPL-BMARQ (sync) is 1.36 s. This corre-

sponds to more 10.8 and 8.8 % of delay time, respectively

for RPL-BMARQ (no sync) and RPL-BMARQ (sync)

implementations. Finally, analyzing delays for both RPL-

BMARQ implementations, when nodes use the synchro-

nization mechanism, they would not be active all at same

time, but as necessary. This has the effect of reducing

communication activities, occupying the transmission

media for less time.

One problem that our solution may raise is related to

load balancing between nodes. There are applications

which require the transmission of more packets per time

unit than others and, as a consequence, nodes belonging to

the subnetwork defined by the high packet rate applications

are required to process more packets. This may create load

balancing related issues such as higher network delays

through some of the network paths. These delays may be

higher in our solution than in regular RPL. However, if the

offered loads are low and stable, as it is the case of the

traffic scenarios envisaged, these differences should not be

relevant for our claims that are related to energy savings, as

may be observed for instance in Fig. 27 and in Fig. 33,

where one application demands the transmission of more

packets than the other; therefore, the nodes in the subnet-

work defined by the high packet rate application process

more packets and delays become higher. RPL does not

subdivide the network and routing paths do not depend on

applications and, for this reason, RPL presents lower

delays. Figures 27 and 33 enable us to estimate the mag-

nitude of increasing delays (in %) introduced by our

solution. Analyzing Fig. 27 and comparing to regular RPL

we can verify that: for scenario 1, and not using the

Fig. 25 Mean Query Success

Ratio—QSR (in %)

Fig. 26 Delay definition

910 Wireless Netw (2017) 23:889–918

123

synchronization mechanism, RPL-BMARQ presents 10:8%

more delay, whereas using the synchronization mechanism

the same is 10%; for scenario 2, and not using the syn-

chronization mechanism, RPL-BMARQ presents 10:2%

more delay, whereas using the synchronization mechanism

the increase is 7:2%; and for scenario 3, and not using the

synchronization mechanism, RPL-BMARQ presents 10:7%

more delay, whereas using the synchronization mechanism

the increase is 9:8%. For the case of scenario 4, from

Fig. 33 we can observe that, when not using the synchro-

nization mechanism, RPL-BMARQ presents an increase of

delay of 17:7%, whereas using the synchronization

mechanism the same increase is 16:8%. In this scenario

delays are higher because there is a node running one

application which is required also to process packets from

the other application. From the above analysis we may

conclude that our solution makes delays to increase about

10%, in average, but our claims on energy still hold.

Packets per query: in the simulations performed, the

sink node running App. A generates a total of 24 queries,

whilst sink node running App. B generates 96 queries.

Analyzing the data extracted from simulations we could

investigate on a per-query basis, how many Layer 3 mul-

ticast and unicast packets were sent and received by all the

nodes. We consider also routing packets. Table 7 summa-

rizes simulation results showing the total number of mul-

ticast and unicast packets transmitted and received by the

nodes in each network solution. For all the scenarios, both

RPL-BMARQ solutions implementation present lower

mean number of total Layer 3 multicast packets, sent and

received. For example in Scenario 1, using RPL-BMARQ

(no sync), and per-query, the mean number of total packets

sent is 10 and the mean number of total packets received is

25; using RPL-BMARQ (sync), the mean number of total

packets sent is 8 and the mean number of total packets

received is 17; using RPL, the mean number is higher (15

packets sent and 45 packets received). From the results we

conclude that the major gain of the RPL-BMARQ solution

relies on the total number of both multicast and unicast

packets sent and received, which is lower than the equiv-

alent RPL.

Reaction to topology changes: RPL-BMARQ solution

behaves just like RPL where the time to converge, and the

reaction to network topology changes are similar to those

observed for RPL. RPL-BMARQ uses the same Trickle

timer mechanism. When a node does not agree with its

neighbors, that node communicates quickly to resolve the

inconsistency. On the other and, when nodes agree they

slow their communication rate exponentially, and end by

exchanging packets very infrequently. Instead of flooding a

Fig. 27 Mean delay (in s)

Table 7 Mean total number of packets per query (with 95 % confi-

dence interval)

Scenario Solution Mulicast Unicast

TX RX TX RX

1 RPL 15 45 45 135

BMARQ (no sync) 10 25 33 77

BMARQ (sync) 8 17 29 49

2 RPL 15 45 50 141

BMARQ (no sync) 9 24 36 76

BMARQ (sync) 7 17 32 69

3 RPL 15 45 53 144

BMARQ (no sync) 10 26 37 59

BMARQ (sync) 7 6 33 53

Wireless Netw (2017) 23:889–918 911

123

network with packets, the algorithm controls the sending

rate so that each node hears a small trickle of packets, just

enough to stay consistent [25].

4.5 Special case: scenario 4

We have simulated this scenario as the others, and while

running and analyzing preliminary results, this scenario

presented an issue: node 9 (sink from application B) does

not receive replies from nodes 10, 13 and 16, although

queries are received and replied by them. This behavior

have the root cause in node 8 which, although running

application A, is also parent of node 16 and therefore

responsible to forward packets from nodes 16, 13 and 10.

Since node 8 selects node 7 as parent (see Fig. 21d), reply

packets are never forwarded by node 7 because it does not

run the application of nodes 10, 13 and 16. To solve this

issue, node 8 upon the reception of nodes 10, 13 and 16

reply packets, should forward them directly not to node 7,

but to node 15, which runs their application, to allow for

node 9 the reception of all expected reply packets. In this

kind of scenarios, every node being parent of nodes not

running the same application, and having selected as parent

a node running the same application, should send directly

all received reply packets to a neighbor node running the

same application from which reply packets where origi-

nated. A close snapshot of this is showed in Fig. 28 where

node 8 has selected node 7 (fe80::212:7407:7:707) as

parent, but detecting that a reply packet is, as example,

from node 10 and node 16 (aaaa::212:740a:a:a0a and

aaaa::212: 7410:10:1010) from the application it doesn’t

run, changes the link to node 15 (fe80::212:740f:f:f0f).

Energy consumption: we also consider energy con-

sumption related only to communications aspects and from

the results obtained we extracted data from communication

time which is shown in Fig. 29. This figure shows the total

time, for 95% confidence intervals, in which nodes radios

were in their different considered states. As one can

observe, the permanence time in each state is lower for

RPL-BMARQ (both no sync and sync implementations)

than for RPL. We have computed the total energy

consumed by the nodes using Eq. 8, and presented results

in Fig. 30. They show that the total energy consumed by

the nodes running RPL-BMARQ is very low, as it turns the

nodes radio off during more time than RPL. We have also

computed the energy gain for RPL-BMARQ as described in

Sect. 4.3.2. Results show that, when the synchronization

mechanism is not used the nodes spend about 93% less

energy than the same nodes running standard RPL. On the

other hand, if the synchronization mechanism is used, the

nodes still spend less energy (about 85%) (Fig. 31).

Synchronization: Figure 24 shows the mean value of the

synchronization adjusting time used by the nodes in this

scenario. As it can be seen, the nodes would sleep less

about 15.7 seconds per application cycle, making them

staying wake more time.

Query Success Ratio: Figure 32 shows simulation results

with 95 % confidence interval. Although the values from

both solutions are very close, RPL presents better result

than RPL-BMARQ. In this figure we are representing QSR

values between 96 and 100 %, and considering that the

difference value is about 1 %, so we can conclude that with

RPL-BMARQ QSR does not suffer much.

QSR fairness: For scenario 4, mean QSR fairness values

obtained from simulations present similar fairness indexes

(about 99.9 %) for both solutions.

Delay: Figure 33 shows 95 % confidence intervals for

delay values using both solutions. We note that with RPL-

BMARQwe achieve higher delays. Themean delay value for

RPL-BMARQ is 1.55 s, and 1.28 s for RPL. This is also

expected since in this scenario RPL-BMARQ constructs a

longer DAG (see Fig. 21), so nodes use more hops to com-

municate. Also, in each node is used more processing time.

Packets per query: in the simulations performed, the

sink node running App. A generates a total of 24 queries,

whilst sink node running App. B generates 96 queries.

Analyzing the data extracted from simulations we could

investigate on a per-query basis, how many Layer 3 mul-

ticast and unicast packets were sent and received by all the

nodes. We consider also routing packets.

Figure 34 shows for 95 % confidence intervals, an per-

query basis, the number of packets transmitted and

Fig. 28 Changing link-local address to correctly forward reply packets

912 Wireless Netw (2017) 23:889–918

123

received. Both RPL-BMARQ solutions present lower

mean number of total Layer 3 multicast packets, sent and

received. Using RPL-BMARQ (no sync), the mean number

of total packets sent is 11 and the mean number of total

packets received is 29; using RPL-BMARQ (sync), the

mean number of total packets sent is 9 and the mean

number of total packets received is 22; using RPL, the

mean number is higher (15 packets sent and 45 packets

received). For the mean number of total Layer 3 unicast

packets sent and received, the results show that also both

RPL-BMARQ implementations present lower numbers.

The mean number of total unicast packets sent using

RPL-BMARQ (in both implementations) is 44, whilst

using RPL this value is 50; the mean number of total

unicast packets received using both implementations of

RPL-BMARQ is 82 and using RPL the same is 135.

From the above analysis we conclude that the RPL-

BMARQ presents the same behavior as in the other sce-

narios, and that the major gain introduced by RPL-

BMARQ solution is the capability to wake and to sleep

the sensor nodes in an synchronized manner, reducing

radio activity time, while maintaining QSR and fairness

ratios high.

Fig. 29 Mean total radio activity time in scenario 4 (in s)

Fig. 30 Energy consumed by

each solution in scenario 4 (in J)

Fig. 31 Mean synchronization adjusting time (b � jdkj, in s) for

scenario 4

Wireless Netw (2017) 23:889–918 913

123

Fig. 32 Mean Query Success

Ratio (QSR) for scenario 4

(in %)

Fig. 33 Mean delay for

scenario 4 (in s)

Fig. 34 Mean total number of

packets per query for scenario 4

914 Wireless Netw (2017) 23:889–918

123

5 Testbed experiments

5.1 Scenarios deployed

In order to confirm the results obtained from simulations, it

was necessary to test RPL-BMARQ in a real environment.

For that purpose, two of the scenarios studied were select

(scenarios 1 and 3) and deployed. Since it was not possible

to reproduce them at same scale, the scenarios deployed

correspond to a 3x3 square lattice topology, while keeping

all the assumptions of the evaluated scenarios. Figure 35

shows both deployments, which were realized in an Audi-

torium inside Escola Superior de Tecnologia e Gestão de

Viseu facilities (see Fig. 36). The nodes were placed at a

distance of 5 m, and the radio transmission power was

reduced to �7 dBm in order to reduce nodes radio influ-

ence space. Application A runs in five nodes (1, 2, 3, 4 and

5), while application B in four nodes (9, 10, 11 and 12).

Node 9, is at the same time the root of the DAGs and sink.

Node 1 is the other sink.

5.2 Energy metering

It was necessary to measure real power consumption to

compare with the energy consumption resulted from sim-

ulations. Again, a node (node 5) was randomly selected to

measure real power consumption. For this, it was necessary

to implement a small Energy meter, which could measure

in real time the energy consumed by this node. Figure 37

shows this implementation which uses a BeagleBone Black

platform [5] responsible to acquire analog values from the

measured node. These values are acquired using an

instrumentation amplifier which samples the voltage drop

of a serial shunt resistor, supplied to the measured node.

This platform runs a python program which acquires every

second 25 samples, returning their mean value, and uses it

to compute power consumption. For accuracy it was nec-

essary to measure real values, compare and correct them

from the nodes datasheet [9], and use them in the

simulations to reflect real values. As such, for power sup-

ply the value was corrected to 3 V; and the power con-

sumption when MCU is on and the Radio Off to 12 mA.

Fig. 35 Scenarios deployed

Fig. 36 Local of testbed deployment

Fig. 37 Energy meter implemented

Wireless Netw (2017) 23:889–918 915

123

5.3 Results and discussion

The experiments were carried for 4 h, and the obtained

results are presented and discussed as following. To log

some real time data, two Raspberry Pi platforms [37] were

used, connected to both sink nodes via a serial connection.

Inside each Raspberry Pi platform was a python program

running, responsible to get timestamp data from each sink

with respect to queries sent, replies received; and signaling

and routing packets sent and received, which were used to

obtain the following results.

Energy consumption: simulation and real implementa-

tion results for the scenarios deployed demonstrated that, in

the real testbed implementations, the node consumes a little

more energy than in simulations. Additionally the energy

recorded corresponds not only to other hardware compo-

nents consumption that the nodes have (e.g. LEDs, ADCs)

which were not considered in the simulation platform, but

also to the total number of transmitted and received packets

by the node which was not possible to record. In the first

deployment, simulation showed that the node consumes

485.83 J, and in the second 534.26 J. Node real measure-

ments have shown a consumption of 567.73 and 552.41 J.

In the first deployment the node consumes more 16:8% of

energy whereas in the second the same node consumes

more 3:4% of energy, when compared to simulations

results. From these results, and considering that some

hardware platform components were not considered in the

simulations, we can conclude that the real node energy

consumption in each deployment can be considered as

valid.

Query Success Ratio: Figure 38 shows simulation and

real implementation results. As it can be seen, both present

same values (100%), which means that also in real test-

beds, the nodes reply to all the queries sent by sinks,

maintaining their synchronization.

QSR fairness: in average, QSR fairness values obtained

from simulations and testbeds implemented present same

values (100%). This also means that in real testbeds, the

nodes have the same opportunity to reply to all the queries

sent by the sinks, as all the queries are equally received by

all the nodes.

Delay: Figure 39 shows simulation and real implemen-

tation delay results. As one can observe, both present

almost the same values (about 900 ms), which means that

nodes in the testbeds have the same behavior as in the

simulation environment. Note that in this figure we are

representing delay between 600 and 950 ms.

From the above results we can conclude that there are no

major differences between what was observed in the sim-

ulation environment and that what was expected in the

testbed environment, and consider valid the testbeds, con-

firming the usability of RPL-BMARQ.

6 Conclusions and future work

In this paper we proposed a solution named (RPL-BMARQ)

to deploy WSN defined by the applications the nodes run.

The paper presents and discusses the performance of RPL

and RPL-BMARQ by simulating sensor devices using IEEE

802.15.4 radios. The work presented reflects a theoretical

analysis of a solution which assumes that the nodes may

run different applications inside the same WSN with multi-

hop connectivity. The solution tackles the problem by

restricting routing and forwarding functions mainly to the

nodes running the same applications, letting other nodes

sleeping and waking in a synchronized manner, and

avoiding their utilization. RPL-BMARQ was evaluated

against RPL by means of simulations using ContikiOS and

Cooja, and confirmed that the proposed solution reduces

overall network energy consumption, thus increasing the

network lifetime. Our results show that when designing

WSN applications with the RPL-BMARQ solution, the

nodes will not retransmit data packets from applications

which they do not run; nodes not involved in

Fig. 38 Query Success Ratio (QSR) for the scenarios selected (in %) Fig. 39 Delay for the scenarios selected (in %)

916 Wireless Netw (2017) 23:889–918

123

communications are kept sleeping as much as possible.

Finally, real testbed experiments confirmed some simula-

tions results, proving that RPL-BMARQ can be used in real

applications to extend a WSN lifetime. Further experiments

with RPL-BMARQ may need to be performed using sce-

narios were hundred of nodes are randomly deployed.

Acknowledgments This work was financed by the Project

‘‘NORTE-07-0124-FEDER-000056’’ by the North Portugal Regional

Operational Programme (ON.2 - O Novo Norte), under the National

Strategic Reference Framework (NSRF), through the European

Regional Development Fund (ERDF), and by national funds, through

the Portuguese funding agency, Fundação para a Ciência e a Tec-

nologia (FCT) within the fellowship ‘‘SFRH/BD/ 36221/2007’’.

Authors would like to thank also the support from Faculty of Engi-

neering, University of Porto, to thank the support from the INESC

TEC, and to thank the support from the School of Technology and

Management of Viseu.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict

of interest.

Human and animal rights The work does not contain any studies

with human participants or animals performed by any of the authors.

References

1. Accettura, N., & Piro, G. (2014). Optimal and secure protocols in

the IEFT 6TiSCH communication stack. In Proceedings of IEEE

international symposium on industrial electronics (ISIE).

2. Akyildiz, I. F., Vuran, M. C., Akan, O. B., & Su, W. (2006).

Wireless sensor networks: A survey revisited. Computer Network

Journal (Elsevier Science).

3. Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A.

(2009). Energy conservation in wireless sensor networks: A

survey. Ad Hoc Networks, 7(3), 537–568. doi:10.1016/j.adhoc.

2008.06.003.

4. Baccelli, E., Philipp, M., & Goyal, M. (2011). The P2P-RPL

routing protocol for IPv6 sensor networks: Testbed experiments.

In: 2011 19th international conference on software, telecommu-

nications and computer networks (SoftCOM) (pp. 1–6) (2011).

5. BeagleBone Black. (2014). http://beagleboard.org/BLACK.

6. Boudec, J. (2010). Performance evaluation of computer and

communication systems. Computer and communication sciences.

EFPL Press. http://books.google.pt/books?id=nibpCdEjUEYC.

7. Catarinucci, L., Colella, R., Del Fiore, G., Mainetti, L., Mighali,

V., Patrono, L., et al. (2014). A cross-layer approach to minimize

the energy consumption in wireless sensor networks. Interna-

tional Journal of Distributed Sensor Networks, 2014, 11. doi:10.

1155/2014/268284.

8. Chipcon Products and Texas Instruments. (2006). 2.4 GHz IEEE

802.15.4/ZigBee-ready RF transceiver. Document SWRS041.

9. Crossbow TelosB. (2004). http://www.memsic.com/userfiles/

files/Datasheets/WSN/6020-0094-02_B_TELOSB.pdf.

10. Culler, D. E. (2008). Wireless mesh networks promise low power

ip-based connectivity. Industrial Ethernet Book, 49, 16–22.

11. Dunkels, A. (2013). Contiki OS, open source, highly portable,

multi-tasking operating system for memory-efficient networked

embedded systems and wireless sensor networks. http://www.

contiki-os.org.

12. Dunkels, A., Osterlind, F., Tsiftes, N., & He, Z. (2007). Software-

based on-line energy estimation for sensor nodes. In EmNets ’07:

Proceedings of the 4th workshop on Embedded networked sen-

sors (pp. 28–32). New York, NY: ACM. doi:10.1145/1278972.

1278979.

13. Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network

aggregation techniques for wireless sensor networks: A survey.

Wireless Communications, IEEE, 14(2), 70–87. doi:10.1109/

MWC.2007.358967.

14. Montenegro, G., Kushalnagar, N., & Culler, D. (2007). Trans-

mission of IPv6 packets over IEEE 802.15.4 networks. In IETF.

15. Hester, L., Huang, Y., Andric, O., Allen, A., & Chen, P. (2002)

NeuRon netform: A self-organizing wireless sensor network. In

Proceedings of the eleventh international conference on com-

puter communications and networks (pp. 364–369).

16. Hui, J., & Culler, D. (2008). Extending ip to low-power, wireless

personal area networks. Internet Computing, IEEE, 12(4), 37–45.

doi:10.1109/MIC.2008.79.

17. IEEE Computer Society. (2006). IEEE Standard for Information

technology— Telecommunications and information exchange

between systems—Local and metropolitan area networks—

Specific requirements—Part 15.4: Wireless Medium Access

Control (MAC) and Physical Layer (PHY) Specifications for

Low-Rate Wireless Personal Area Networks (WPANs).

18. IEEE-Computer-Society. (2006). IEEE Std 802.15.4: Wireless

Medium Access Control (MAC) and Physical Layer (PHY)

Specifications for Low-Rate Wireless Personal Area Networks

(WPANs). Revision of IEEE Std 802.15.4-2003.

19. IETF Network Working Group. (2003). Ad-hoc on-demand dis-

tance vector (AODV) routing algorithm. http://tools.ietf.org/html/

rfc3561.

20. Jain, R., Chiu, D. M., & Hawe, W. (1998). A quantitative mea-

sure of fairness and discrimination for resource allocation in

shared computer systems. CoRR cs.NI/9809099 (1998). http://

dblp.uni-trier.de/db/journals/corr/corr9809.html#cs-NI-9809099.

21. JENNIC. (2006). Calculating 802.15.4 data rates. Application

Note: JN-AN-1035.

22. Khan, M. R. H., Hossain, M. A., & Mukta, M. S. H. (2008).

Zigbee cross layer optimization and protocol stack analysis on

wireless sensor network for video surveillance. In International

conference on electronics, computer and communication (ICECC

2008) (pp. 795–799). Bangladesh: University of Rajshahi.

23. Koushanfar, F., Taft, N., & Potkonjak, M. (2006) Sleeping

coordination for comprehensive sensing using isotonic regression

and domatic partitions. In INFOCOM 2006. Proceedings of 25th

IEEE international conference on computer communications (pp.

1–13). doi:10.1109/INFOCOM.2006.276.

24. Latré, B., Mil, P. D., Moerman, I., Dhoedt, B., Demeester, P., &

Dierdonck, N. V. (2006). Throughput and delay analysis of

unslotted IEEE 802.15.4. JNW, 1(1), 20–28.

25. Levis, P., Clausen, T., Hui, J., Gnawali, O., & Ko, J. (2011). The

trickle algorithm. RFC 6206 (Proposed Standard). http://www.

ietf.org/rfc/rfc6206.txt.

26. Ma, T., Xu, Z., Hempel, M., Peng, D., & Sharif, H. (2014).

Performance analysis of a novel low-complexity high-precision

timing synchronization method for wireless sensor networks.

Wireless Communications, IEEE Transactions on, 13(9),

4758–4765. doi:10.1109/TWC.2014.2331286.

27. Marques, B. F., & Ricardo, M.P. (2011). Application-driven

design to extend WSN lifetime. In Proceedings of 1st Portuguese

national conference on sensor networks (CNRS2011), Coimbra,

Portugal.

28. Marques, B. F., & Ricardo, M. P. (2014). Improving the energy

efficiency of WSN by using application-layer topologies to

constrain RPL-defined routing trees. In Ad Hoc networking

Wireless Netw (2017) 23:889–918 917

123

http://dx.doi.org/10.1016/j.adhoc.2008.06.003
http://dx.doi.org/10.1016/j.adhoc.2008.06.003
http://beagleboard.org/BLACK
http://books.google.pt/books?id=nibpCdEjUEYC
http://dx.doi.org/10.1155/2014/268284
http://dx.doi.org/10.1155/2014/268284
http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0094-02_B_TELOSB.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0094-02_B_TELOSB.pdf
http://www.contiki-os.org
http://www.contiki-os.org
http://dx.doi.org/10.1145/1278972.1278979
http://dx.doi.org/10.1145/1278972.1278979
http://dx.doi.org/10.1109/MWC.2007.358967
http://dx.doi.org/10.1109/MWC.2007.358967
http://dx.doi.org/10.1109/MIC.2008.79
http://tools.ietf.org/html/rfc3561
http://tools.ietf.org/html/rfc3561
http://dblp.uni-trier.de/db/journals/corr/corr9809.html#cs-NI-9809099
http://dblp.uni-trier.de/db/journals/corr/corr9809.html#cs-NI-9809099
http://dx.doi.org/10.1109/INFOCOM.2006.276
http://www.ietf.org/rfc/rfc6206.txt
http://www.ietf.org/rfc/rfc6206.txt
http://dx.doi.org/10.1109/TWC.2014.2331286

workshop (MED-HOC-NET), 2014 13th annual Mediterranean

(pp. 126–133). doi:10.1109/MedHocNet..6849114.

29. Martin, J. (1965). Distribution of the time through a directed

acyclic network. European Journal of Operations Research, 13,

44–66.

30. Mendes, L. D., & Rodrigues, J. J. (2011) A survey on cross-layer

solutions for wireless sensor networks. Journal of Network and

Computer Applications 34(2), 523–534. doi:10.1016/j.jnca.2010.

11.009. http://www.sciencedirect.com/science/article/pii/

S1084804510002079. Efficient and Robust Security and Services

of Wireless Mesh Networks.

31. Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (2007).

RFC 4944—Transmission of IPv6 packets over IEEE 802.15.4

networks. In IETF RFC.

32. Nam, Y., Kwon, T., Lee, H., Jung, H., & Choi, Y. (2007).

Guaranteeing the network lifetime in wireless sensor networks: A

MAC layer approach. Computer Communications, 30(13),

2532–2545. doi:10.1016/j.comcom.2007.05.031.

33. Organization, Z. S. (2008). Zigbee specification. http://www.zig

bee.com. Document 053474r17.

34. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T.

(2006). Cross-level sensor network simulation with COOJA. In

Proceedings 2006 31st IEEE conference on local computer net-

works (pp. 641–648). doi:10.1109/LCN.2006.322172.

35. Pantazis, N., Nikolidakis, S., & Vergados, D. (2013). Energy-

efficient routing protocols in wireless sensor networks: A survey.

Communications Surveys Tutorials, IEEE, 15(2), 551–591.

doi:10.1109/SURV.2012.062612.00084.

36. Paxson, V., Allman, M., Chu, H. J., & Sargent, M. (2011).

Computing TCP’s retransmission timer. http://tools.ietf.org/html/

rfc6298.

37. RaspBerry Pi. (2014). http://www.raspberrypi.org.

38. Santi, P. (2005). Topology control in wireless ad hoc and sensor

networks. ACM Computing Surveys, 37(2), 164–194. doi:10.

1145/1089733.1089736.

39. Sturek, D. (2009). ZigBee IP stack overview. ZigBee Alliance.

40. Tang, C. M., Zhang, Y., & Wu, Y. P. (2012). The P2P-RPL

routing protocol research and implementation in contiki operating

system. In 2012 Second international conference on instrumen-

tation, measurement, computer, communication and control

(IMCCC) (pp. 1472–1475). doi:10.1109/IMCCC.2012.345.

41. van Dam, T., & Langendoen, K. (2003). An adaptive energy-

efficient mac protocol for wireless sensor networks. In Pro-

ceedings of the 1st international conference on embedded net-

worked sensor systems, SenSys ’03 (pp. 171–180). New York,

NY: ACM. doi:10.1145/958491.958512.

42. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P.,

et al. (2012) RPL: IPv6 routing protocol for low-power and lossy

networks. In RFC 6550 (Proposed Standard). http://www.ietf.org/

rfc/rfc6550.txt.

43. Xie, W., Goyal, M., Hosseini, H., Martocci, J., Bashir, Y., Bac-

celli, E., et al. (2010) A performance analysis of point-to-point

routing along a directed acyclic graph in low power and lossy

networks. In 2010 13th International conference on Network-

based information systems (NBiS) (pp. 111–116). doi:10.1109/

NBiS.2010.65.

44. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient

MAC protocol for wireless sensor networks. In INFOCOM 2002.

Proceedings of twenty-first annual joint conference of the IEEE

computer and communications societies (Vol. 3, pp. 1567–1576),

IEEE. doi:10.1109/INFCOM.2002.1019408.

Bruno Marques received in

2001 a M.Sc. degree in Electri-

cal and Computers Engineering

from University of Porto. He is

presently studying for a Ph.D.

degree. He is an assistant pro-

fessor at School of Technology

and Management of Viseu,

where he gives courses in

industrial communications and

computer networks. He also is

an invited collaborator at the

Centre for Telecommunications

and Multimedia of the INESC

TEC research institute.

Manuel Ricardo received in

2000 a Ph.D. degree in Electri-

cal and Computers Engineering

from Porto University. He is an

associate professor at the Fac-

ulty of Engineering of Univer-

sity of Porto, where he gives

courses in mobile communica-

tions and computer networks.

He also leads the Centre for

Telecommunications and Mul-

timedia of the INESC TEC

research institute.

918 Wireless Netw (2017) 23:889–918

123

http://dx.doi.org/10.1109/MedHocNet..6849114
http://dx.doi.org/10.1016/j.jnca.2010.11.009
http://dx.doi.org/10.1016/j.jnca.2010.11.009
http://www.sciencedirect.com/science/article/pii/S1084804510002079
http://www.sciencedirect.com/science/article/pii/S1084804510002079
http://dx.doi.org/10.1016/j.comcom.2007.05.031
http://www.zigbee.com
http://www.zigbee.com
http://dx.doi.org/10.1109/LCN.2006.322172
http://dx.doi.org/10.1109/SURV.2012.062612.00084
http://tools.ietf.org/html/rfc6298
http://tools.ietf.org/html/rfc6298
http://www.raspberrypi.org
http://dx.doi.org/10.1145/1089733.1089736
http://dx.doi.org/10.1145/1089733.1089736
http://dx.doi.org/10.1109/IMCCC.2012.345
http://dx.doi.org/10.1145/958491.958512
http://www.ietf.org/rfc/rfc6550.txt
http://www.ietf.org/rfc/rfc6550.txt
http://dx.doi.org/10.1109/NBiS.2010.65
http://dx.doi.org/10.1109/NBiS.2010.65
http://dx.doi.org/10.1109/INFCOM.2002.1019408

	Energy-efficient node selection in application-driven WSN
	Abstract
	Introduction
	Our contributions

	Related work
	Energy consumption
	Routing
	Node synchronization
	Cross-layer

	RPL-BMARQ
	Cross-layer information
	DAG creation
	Synchronization mechanism
	The synchronization setup phase
	The synchronization maintenance phase

	RPL-BMARQ evaluation
	Applications characterization
	Scenarios studied and evaluated
	Theoretical evaluation
	Packet energy consumption
	Energy gain estimation
	DAGs used
	Results and discussion

	Simulations
	Results and discussion

	Special case: scenario 4

	Testbed experiments
	Scenarios deployed
	Energy metering
	Results and discussion

	Conclusions and future work
	Acknowledgments
	References

