PrologCheck — Property-Based Testing in Prolog

Clédudio Amaral®2, Mério Florido"2, and Vitor Santos Costa!3

! DCC - Faculty of Sciences, University of Porto, Porto, Portugal
2 LIACC - University of Porto, Porto, Portugal
3 CRACS - University of Porto, Porto, Portugal
{coa,amf,vsc}@dcc.fc.up.pt

Abstract. We present PrologCheck, an automatic tool for property-
based testing of programs in the logic programming language Prolog
with randomised test data generation. The tool is inspired by the well
known QuickCheck, originally designed for the functional programming
language Haskell. It includes features that deal with specific character-
istics of Prolog such as its relational nature (as opposed to Haskell) and
the absence of a strong type discipline.

PrologCheck expressiveness stems from describing properties as Prolog
goals. It enables the definition of custom test data generators for random
testing tailored for the property to be tested. Further, it allows the use
of a predicate specification language that supports types, modes and
constraints on the number of successful computations. We evaluate our
tool on a number of examples and apply it successfully to debug a Prolog
library for AVL search trees.

1 Introduction

Software testing consists of executing a program on a pre-selected set of inputs
and inspecting whether the outputs respect the expected results. Each input
tested is called a test case and the set of inputs is a test suite. Testing tries to
find counter-examples and choosing the test cases to this effect is often a difficult
task. The approach used can be manual, with the tester designing test cases one
by one, or it can be automated to some extent, in this case resorting to tools for
case generation. Ideally, the best approach would be automatic testing.

In a property-based framework test cases are automatically generated and
run from assertions about logical properties of the program. Feedback is given
to the user about their evaluation. Property-based testing applications include
black-box, white-box, unit, integration and system testing [3] [6,7].

Property-based testing naturally fits the logic programming paradigm. Asser-
tions are first order formulas and thus easily encoded as program predicates.
Therefore, a property based approach to testing is intuitive for the logic pro-
graminer.

In this paper we introduce PrologCheck!, a property-based testing framework
for Prolog. We further discuss two main contributions: a specification language
for Prolog predicates and a translation procedure into testable properties.

! The PrologCheck tool is available at www.dcc.fc.up.pt/~coa/PrologCheck.html

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 1-17, 2014.
© Springer International Publishing Switzerland 2014

{coa,amf,vsc}@dcc.fc.up.pt
www.dcc.fc.up.pt/~coa/PrologCheck.html

2 C. Amaral, M. Florido, and V.S. Costa

In most programming languages interfaces to testing frameworks rely on
boolean functions, such as equality, to determine primitive properties.
PrologCheck states properties through a domain-specific language that naturally
supports domain quantification. In this language primitive properties are Prolog
goals which can be composed by PrologCheck property operators.

PrologCheck testing consists on repetitively calling the goal for a large number
of test cases. Input to such goals is based on PrologCheck value abstraction,
quantification over a domain represented by a randomised generator of terms. We
implement randomised test case generation, which frees the user from choosing
input manually. We include a number of predefined generators for relevant sets
of terms, such as integers, and combinators to help define new generators. Thus
other generation techniques [10] [16] [18] can be implemented to complement the
power of built-in generators.

We also define a language of testable predicate specifications including types,
modes and multiplicity, which the tester can use to encode interesting properties
of the predicate under test. By specifying some aspects of a predicate in a proper
specification language it is possible to generate a PrologCheck property and check
it. This allows us to use PrologCheck and its predicate specification to test a
number of non-trivial programs.

The rest of this paper is organised as follows. We proceed with motivating
examples in Sec. 3. Section 2 encloses the presentation of related work. In Sec. 4
we introduce property definitions and their testing in PrologCheck and in Sec. 5
we discuss details about test case generation. Section 6 describes the predicate
specification language and how to test the specifications. A case study of AVL
trees is presented Sec. 7. We finalise with the conclusions in Sec. 8.

2 Related Work

There is some previous support for automated testing in the logic programming
community: SWI-Prolog supports unit testing through plunit [20]; the Ciao Pro-
log System [13] has an assertion language integrating run-time checking and
unit testing [15]. We use a property specification language but in an automatic
property-based randomly generated testing context. Property specification lan-
guages for Prolog were used before [9] [15] [19] in different contexts.

Automated testing is supported in several languages and paradigms. The three
most influential tools for our work were QuickCheck [5] for the functional pro-
gramming language Haskell, PropEr [17] for the functional programming language
Erlang and EasyCheck [4] for the functional-logic language Curry.

Easycheck is an automated tool for specification-based testing of declarative
programs, which deals with logic programming features. It is written in the
functional-logic programming language Curry and it is based on the view of free
variables of an appropriate type as non-deterministic generators [1] and mech-
anisms to specify properties of non-deterministic operations by generalizing the
set of combinators for non-deterministic operations of QuickCheck. In our work
we focus on Prolog and, in contrast with EasyCheck, non-deterministic generators

PrologCheck — Property-Based Testing in Prolog 3

are implemented by non-deterministic Prolog programs, types are implemented
by monadic logic programs [11,12], and we use a specification language for stan-
dard features of logic programming such as modes and number of answers [9].

There are several automatic testing tools for functional programming lan-
guages, namely QuickCheck, PropEr, SmallCheck [18], and GVST [14]. The first
and most preeminent tool is QuickCheck. QuickCheck uses a domain specific lan-
guage of testable specifications as does PropEr. We define a specification language
in PrologCheck but with differences related to the relational nature of Prolog. As
in QuickCheck, we use random testing - we choose this method compared to sys-
tematic methods due to its success in QuickCheck. QuickCheck generates test data
based on Haskell types. In Erlang, types are dynamically checked and PropEr, as
does as ErlangQuickCheck, guides value generation by functions, using quantified
types defined by these generating functions. Prolog is an untyped language, but
type information is crucial in PrologCheck test data generation as well. Similarly
to the Erlang tools, we adopt the view of types defined by test case generators.
Our types are intended to construct test cases that depict input instantiations.
Thus we would not take advantage of the use of restricted type languages based
on regular types [11,12] [21,22].

3 DMotivating Examples

3.1 Append

Consider the well-known concatenation predicate.

app([], ¥s, ¥s).
app ([X|X8], ¥YS, [XI|AS]) :- app(XS, YS, AS).

We specify the predicate behaviour through the predicate specification language
presented in Sec. 6. The properties and predicates to be tested are in module m.
app(A,B,C) is used in a functional way in many programs, i.e., by giving it two
lists as input and getting their concatenation as output. The directionality is
determined by the modes of each parameter: ground, ground, variable to ground,
ground, ground. The range of answers for a predicate with a (total) functional
behaviour is exactly one. This behaviour is specified in PrologCheck as:
app of_type (A-(listOf(int)), B-(listO0f (int)), C-(variable))
where (i(g, g, v), o(g, g, g)) has_range {1,1}.
The property originated by this specification clause passes the tests generated
by the tool.
?- prologcheck (m:prop(spec_app)).
OK: Passed 100 test(s).
app/3 may be used in other situations. One can use it to create an open list
bound to the third parameter by calling it with a variable in the second input
parameter, which remains uninspected. The result is a list with the ground ele-
ments of the list in the first parameter and the variable in the second parameter
as the tail, therefore it is neither ground nor variable. This usage also behaves
as a function. We state this as specification clause 1 of predicate app.

4 C. Amaral, M. Florido, and V.S. Costa

{app, 1} of_type (A-(1listOf (int)), B-(variable), C-(variable))
where (i(g, v, v), o(g, v, ngv)) has_range {1,1}.

Testing reveals that the out part of the directionality is not satisfied.

?- prologcheck (m:prop(spec_app_1), [noshrink]).
{failed_out_modes ,[[o,g,v,ngv]], [[],_10258,_102581}
Failed: After 3 test(s).

Counterexample found: [[[],_10258,_102601]]

The counterexample shows that the output modes do not respect the specifi-
cation when the first input parameter is the empty list. One way to solve this
issue is to add the missing directionality (i(g, v, v), olg, v, ngv)), olg,v,v). Al-
though, the correct choice in general is to split the input types, since this is a
matter between disjoint sets of terms. Multiple output directionalities are mainly
intended for multiple modes of multiple answers.

{app, 1a} of_type (A-(listO0Of1(int)), B-(variable), C-(variable))
where (i(g, v, v), o(g, v, ngv)) has_range {1,1}.

{app, 1b} of_type (A-(value([]l)), B-(variable), C-(variable))
where (i(g, v, v), o(g, v, v)) has_range {1,1}.

3.2 List Reverse

Let us explore an example of list reversing predicates. The reversing procedure
relates two lists and is polymorphic in the type of the list’s elements. It is usu-
ally sufficient to check the behaviour for a single type of elements. Moreover,
sometimes even a type with a finite number of values suffice, but we can safely
overestimate the size of the type [2]. Therefore, we use the generator for integers,
int, as the elements of the parametric list generator, 1ist0f (int).

rev([],[1).
rev([X|XS], YS) :- rev(XS,ZS), append(ZS, [X], YS).

We express the symmetry of the reversing relation in terms of its intended use:
given a ground list in one input parameter retrieve a result in the other.

prop(d_rev) :- for_all(listOf (int), XS, (rev(XS, RX), rev(RX, XS)))

Prologchecking the property bears no surprises.

?7- prologcheck (m:prop(d_rev)).
0K: Passed 100 test(s).

We could have mis-typed the property, making it impossible to be satisfied:

prop(wrong_dr) :-
for_all (1listOf (int), XS, (rev(XS,RX), rev(RX,RX))).

We mistakenly make the second call to rev/2 with rRx as the second parameter.

?- prologcheck (m:prop(wrong_dr)).
Failed: After 11 test(s).
Shrinking (6 time(s))
Counterexample found: [[0,6]]

PrologCheck — Property-Based Testing in Prolog 5

A counterexample is found and shrunk to the presented counter-example [0,6].
To check that the order is being reversed we can randomly choose an ele-
ment (or a set of elements) and inspect its position in the parameters. Choosing
random elements prevent us from checking the whole list.
prop(rev_i) :- plgc:for_all(
suchThat (structure ({1ist0f (int), int}), m:valid_index),

{L,I}, m:prop({double_rev_i_body, L, I})).
valid_index ({L, I}) :- length(L,X), I<X.

prop ({double_rev_i_body, L, I}) :-
m:rev(L, LR), length(L,X), Index is I+1, RevIndex is X-I,
lists:nth(Index, L, Val), lists:nth(RevIndex, LR, Val).

When performing a large number of tests this method should randomly choose
enough indexes to give good element coverage.

?7- prologcheck (m:prop(rev_i)).
0K: Passed 100 test(s).

We have another implementation of reverse, using an accumulator instead of
concatenation. The previous properties can be adapted to this implementation
with the same results.

rev_acc ([], LR, LR).
rev_acc ([X|XS], Acc, LR) :- rev_acc (XS, [X|Accl, LR).

rev_acc (L, LR) :- rev_acc(L, [], LR).

Since we have two implementations of the same concept we can explore this
by stating and testing a property comparing their behaviours.

prop(eqv_acc_app) :-
for_all(listOf (int), L, (rev_acc(L,LR),rev(L,LR))).

The comparison succeeds if both have the same behaviour.

?- prologcheck (m:prop(eqv_acc_app)).
OK: Passed 100 test(s).

4 Properties

Property-based testing extends program code with property definitions. Prop-
erties are specifications in a suitable language and are tested automatically by
generating test cases.

PrologCheck is a property-based testing framework. Given a specification it
randomly generates test cases for the properties to be tested, executing them
to assess their validity. A primitive property is a Prolog goal, hence, the whole
language can be used to define properties. Properties may then be composed
according to composition rules described later in the paper. This enables the
specification of a wide range of properties. Next, in this section we introduce
PrologCheck through the append example.

6 C. Amaral, M. Florido, and V.S. Costa

We will go through the process of using the tool, beginning by turning a logical
statement of a property into a PrologCheck testable property. An example of a
property of app/3 is that, assuming the first two input parameters are lists, after
its execution a variable given in the third input parameter is instantiated with
a list. This property can be represented by the first order formula

Vi,ly € list. (ll +H 1y € lZSt)

where [; and [y denote lists given as input and H is interpreted as list con-
catenation. The primitive property in the formula, ly+ Iy € list, can then be
represented by the goal

app(L1, L2, L), (L = [1; L = [_I_1).

The next step is optional. We explicitly parametrise the property into a first
order object. The resulting property is written as a clause for the special predi-
cate prop/1 and parametrised accordingly.

prop({appLLL, L1, L2}) :- app(L1l, L2, L), (L = [1; L = [_I_1).

This is PrologCheck’s predicate for labelling properties. The parametric label,
{appLLL, L1, L2} in the example, uniquely identifies the property and holds the
variables for all the input required. The symbol appLLL is the “append of lists
results in list” property identifier and the variables L1, 12 the input. The body
of labelled properties is inspected by PrologCheck, making it possible to abstract
long or frequently used properties.

A last step is needed to verify properties with PrologCheck. In order to enable
random testing, we define a domain of parameter instantiations. Values from
this domain are used as test cases.

prop(appL) :- for_all(listOf (int), L1, for_all(listOf (int), L2,
prop ({appLLL, L1, L2})))

This more precise definition states that the property appL is appLLL over two
lists of integers. More accurately, we use for_all/3 to represent PrologCheck’s
universal quantification. The first input parameter describes the type of terms
we want to generate randomly, in this case lists of integers, 1ist0f (int), and the
second input parameter names the variable they will bind to, in this case L1 and
12. The third is the property we want to verify. To check the property we can call
PrologCheck using the alias prop(appL). It starts with the outer for_all quantifier,
generates a random list of integers, unifies it with L1 and repeats the process for
the inner quantifier, unifying 12 with the second generated list.

?- prologcheck (m:prop (applL)).
0K: Passed 100 test(s).

The prologcheck/1 predicate is the simplest property tester in PrologCheck, taking
a property as a parameter and checking it for a large number (100 is the default
number) of generated test cases.

We could have mis-typed the property, making it impossible to be satisfied:

prop (wrong_appL) :- for_all(listOf (int), L1,
for_all(listO0f (int), L2, (app(L1, L2, L), (L=[], L=[_1_1)))).

PrologCheck — Property-Based Testing in Prolog 7

We mistakenly determine L to be both [1 and [_|_].

?- prologcheck (m:prop(wrong_dr)).
Failed: After 1 test(s).
Shrinking (1 time(s))
Counterexample found: [[],[]]

A counterexample is found and showed. We observe at this point that a coun-
terexample is immediately found. There is no possible value that can satisfy the
written condition.

Often we want to find concise counterexamples. To do this we use a shrinking
predicate that tries to reduce the counterexample found. To improve the proba-
bility of finding smaller counter-examples the tool keeps track of a growing size
parameter. This parameter starts at an initial value and is updated with each
successful test. Its purpose is to control the size of produced test cases and it is
used in test case generation. The definition of the actual size of a term is flexible
and definable by the generating procedure.

We can define general properties or define sub-properties individually. We can,
for example, separate property appLLL into appLLE and appLLC to state the empty
list and cons cell separately and compose them with property operators.

prop ({appLLE, L1, L2}) :- append(Ll, L2, L), L = [].
prop ({appLLC, L1, L2}) :- append(Ll, L2, L), L = [_I_].

Property operators currently include conjunction (Propt and Prop2), disjunc-
tion (Propt or Prop2), conditional execution (if Cond then Propl else Prop2)) and
quantification (for_all(Gen, Var, Prop)). Property labelling (prop(Label)) is con-
sidered an operation. PrologCheck inspects its body for the occurrence of other
tool specific operations. Using property connectives one can compose labelled
properties or other PrologCheck property operations.

We now define other properties of app/3, such as the relation of lists’ lengths
and the left and right identity element of concatenation.

prop ({appLLLen, L1, L2}) :- app(L1l, L2, L),

length (L1, K1), length(L2, K2), length(L, K), K is K1 + K2.
prop ({applLZ,L1,L2}) :- if Li=[] then (app(L1,L2,L), L=L2).
prop ({appRZ,L1,L2}) :- if L2=[] then (app(L1,L2,L), L=L1).

Conjunction and disjunction is used as expected. The conditional statement
if A then B else C performs a conditional execution on A. If A runs successfully
the tool continues by executing B and in case it fails executing ¢ instead. a,
B and ¢ are PrologCheck properties. In the example shown the else branch is
omitted. This is equivalent to having the property true in the omitted branch.
The conditional statement enables conditional properties without cut.
prop(appAll) :- for_all(listOf (int),L1, for_all(listOf (int),L2,
(prop({appLLLen, L1, L2}) and prop({appLZ, L1, L2})

and prop({appRZ, L1, L2}) and prop({appLLL, L1, L23})
and (prop({appLLE,L1,L2}) or prop({appLLC,L1,L2}))))).

Primitive properties are Prolog goals. In a strongly typed language (such as
Haskell) only safe properties, pure functions or predicates, are allowed. In Pro-
logCheck the user is free to use simpler or more involved properties. This provides

8 C. Amaral, M. Florido, and V.S. Costa

extra flexibility but, ultimately, the user is responsible for guaranteeing the safety
of impure code in a property.

5 Generators

Input for testing properties is randomly generated through explicitly defined
procedures: generators. There are differences between PrologCheck generators
and the generators in a strongly typed version of the tool. In Haskell QuickCheck,
or any language with strong types, generators pick values inside a preexisting
type according to some criteria. In PrologCheck generators represent procedures
that randomly construct elements according to the shape of the term. In fact,
the generators themselves define a set by the elements they generate, with non-
zero probability. Thus, they define a set of terms, here denoted as a type. Note
that this set of terms is not necessarily composed of only ground terms, instead
it exactly represents the form of an input parameter to a property.

PrologCheck has generators and generator predicates. Generators specify the
input parameters of properties. One example generator is 1ist0f (int). Generator
predicates are the predicates responsible for the generation of test cases. The cor-
responding example of a call to a generator predicate is 1ist0f (Type, Output, Size)
where Type would be bound to int, Output would be instantiated with the pro-
duced test case and size would be used to control the size of produced test cases.
The value is passed to the property by the PrologCheck quantification through
unification.

choose/4 and elements/3 are examples of generator predicates. Picking an in-
teger in an interval is probably the most common operation in generators. The
choose/4 predicate discards the size parameter and randomly chooses an integer
between the inclusive range given by the first two input parameters. elements/3
randomly chooses an element from a non-empty list of possible elements. They
are implemented as follows:

elements (AS, A, S) :-
length (AS, Cap), choose(1,Cap,I,S), nth(I, AS, A).

choose (Min,Max, A, _) :- Cap is Max+1l, random(Min,Cap,A).

Combinators. We extend generator predicates with generator combinators
that allow us to define more complex generators. More precisely, combinators
are generator predicates that are parametrised by generators. This is shown in
the app/3 example, where the generator for lists, 1ist0f (int), is parametrised by
a generator for integers. Generator predicates can have several parameters, but
the two last must always be, in this order, the generated value and the size.
When a generator predicate uses another generator predicate to build a value,
the parameter is passed in generator form.

PrologCheck combinators enable the generation of complex data and can tune
the probability distribution of the generated values to better fit the needs of the
tester. Next, we present some combinators distributed with the tool.

PrologCheck — Property-Based Testing in Prolog 9

To generate lists we provide generators for arbitrary and fixed length lists.
They are parametrised by a generator for the list elements. Random size lists
can be generated by 1ist0f/3, which randomly chooses a list length and uses
vector0f/4. Non-empty lists are generated by the 1ist0f1/3 variation. vector0f/4
is a fixed length generator predicate that recurs on the integer given as the first
input parameter, generating each element.

1istOf (GenA, AS, S) :- choose(0, S, K, S),vector0Of (K, GenA, AS, S).

list0f1 (GenA, AS, S) :- max_list ([1,S8], Cap),
choose(1, S, K, S), vectorOf (K, GenA, AS, S).

vector0f (0, _GenA, [], _Size) :- !.
vectorOf (K, GenA, [A|AS], Size) :-
call(GenA, A, Size), K1 is K-1, vectorOf (K1, GenA, AS, Size).

Combinators can interact and, for example, create lists of random length in an
interval ([2,5]) and create lists whose elements are in an interval ([0, 9]).

for_all(choose(2,5),I, for_all(vectorOf(I,int),L1,
for_all(1listOf (choose(0,9)),L2, (prop({appLLC, L1, L23}))))

Generating specific values, ground or not, fresh variables and terms with a
certain structure is possible with value/3, variable/2 and structure/3 respectively.
With such generators/combinators we can describe and therefore test a different
input mode.

for_all(structure ([1listO0f (int), value(v), variable]),[L1,X,L],
app (L1, X, L))

If the values or part of the values to be generated have to be of a certain size,
we override the size parameter with the resize/4 combinator.

resize (NewSize , GenA, A, _Size) :- call(GenA, A, NewSize).

Resizing can contribute to better chances of fulfilling a condition, e.g., a size
near zero improves the chances of generating empty lists.

for_all(resize(0,1istO0f(int)), L1,
for_all(1istO0f (int), L2, (prop({applLZ, L1, L23}))))

The suchThat/4 combinator restricts the values of a generator. If not all gener-
ated elements for a generator are useful, wrapping it with suchThat/4 will select
the elements of the generator in the first input parameter that satisfy the pred-
icate in the second. If a generated value is valid it is returned; if not, the size
parameter is slowly increased to avoid a size without valid values. This is a
dangerous combinator in the sense that it can loop indefinitely if the the valid
values are too sparse. We can restrict a list generator so that it only generates
non-empty lists.

posLen([_1_1).

for_all(suchThat (listOf (int), posLen), L1,
for_all (1istO0f (int) ,L2, (prop({appLLC, L1, L2}))))

10 C. Amaral, M. Florido, and V.S. Costa

Often, it is hard to find a good generator. Choosing from a set of generators
that complement each other is a good way to generate values with a desired
distribution. Grouping generators can be done in several ways. We can randomly
choose from a list of generators with oneof/3. The list of generators given in the
first input parameter must be non-empty.

oneof (LGenA, A, S) :- length(LGenA, Cap), choose(1,Cap,I,S),
nth(I, LGenA, GenA), call(GenA, A, S).

If an uniform distribution between the generators is not suitable one can specifi-
cally state the proportions of the probabilities to choose each generator. The first
input parameter of frequency/3 is a list of pairs {weight, generator} representing
such proportions. The input list must be non-empty. A frequency-index list is
created with the correct proportions and a generator is then randomly chosen
from that list to be called.

frequency (FGL, A, S) :- checkFreqWeights(FGL, FIL, Cap),
choose(1,Cap,I,S), nth(I, FIL, GenA), call(GenA, A, S).

We can use both combinators to randomly choose generators for each test case.

Genl
Gen2

resize (0,1ist0f (int))
suchThat (1istO0f (int), posLen)

for_all (frequency ([{4,1ist0f (int)}, {1,Gen2}]), L1,
for_all (oneof ([Genl,Gen2],L2, (prop({appLLC, L1, L23}))))

Shrinking. When a test fails the tool may try to simplify the failing input to
a smaller and easier to understand counterexample. Shrinking is a process by
which a shrinker predicate returns a possibly empty list of smaller elements than
the one given as input.

Similarly to generator predicates, shrinkers are calls to the corresponding
generator. To trigger shrinking a generator is called with the value to shrink,
the flag shrink and a variable to store the list of shrunk values. An example of
a shrinker behaviour for lists is to remove an element. The following auxiliary
predicate builds a list of the possible shrunk lists.

genL (GenA, A, Size) :- 1listOf (GenA, A, Size).
genL (GenA, L, shrink, Shrs) :- shrL(L, Shrs).
shrL ([1, [1).

shrL ([A], [[11) :- !.

shrL ([A|AS], [AS|Shrs]) :-
shrL (AS, Shrs1), maplist (cons(A), Shrsl, Shrs).

cons (X, XS, [XI|Xs]).

Most combinators do not have a default shrinking procedure. Since it is hard
to decide, for example, what is a proper shrink for values generated by a random
choice between generators, we default the shrinking of many combinators to an
empty list of shrunk values. Instead of directly using combinators in a property
quantification the user can wrap them in a generator predicate with a mean-
ingful name, implementing the shrink behaviour for this specific type. This is

PrologCheck — Property-Based Testing in Prolog 11

exemplified by the genL generator predicate, which is a redefinition of 1istof and
can therefore implement a different shrinking process.

6 Specification Language

In this section we describe our predicate specification language. Throughout, we
follow some of the principles presented by Deville [9]. There are several ways to
state a predicate’s specification, we do not argue that our specification process
is superior to other approaches. We do believe that this approach fits naturally
our needs, namely as a form to express testable predicate features.

The general specification form of a predicate p/n consists, at its core, of a set
of uniquely identified specification clauses about input types or the shape of the
parameters when evoking the predicate. Various aspects of the predicate for the
particular input type in question can be added to a specification clause. If there
is a parameter relation or a relation that input parameters must fulfil one can
implement it as a predicate which checks if such a relation is valid for the list
of input parameters given. The modes of each parameter can be given for the
input parameters and for output answers. The language also allows stating the
number of answers of a predicate, or its range. Last, the user may state invariant
properties that should hold both before and after the predicate is executed as
pre- and post-conditions. Next, we discuss the main properties that we allow in
our framework.

Types. Types are the mandatory part of the specification. They are required to
guarantee that the specification may be automatically tested. We define a type
as follows:

Definition 1. A type is a non-empty set of terms.
A term t belongs to a type T (t € T) if it belongs to the set of terms that define
the type.

Types are not defined as a set of ground terms but rather by a set of terms.
Note that types defined in this manner depict perfectly possible forms of pred-
icate input. This approach for types already encloses, by definition, the type
precondition, where the input must be compatible with the specified types.

The types mentioned in a predicate specification clause correspond to Pro-
logCheck generators used to automatically create individual test cases. This
means that the type in a specification clause is partial in the sense that it only
specifies that the predicate should succeed when given elements of such types
as parameters. It states nothing about parameters of other types. Other input
types can be covered by other specification clauses with different generators.
The behaviour of a procedure for types not covered by any of the specification
clauses is considered undefined /unspecified.

We can now easily specify input types for program predicates like app/3. We
identify the specification clauses as {app,K}, specification clause x of predicate
app, and declare the PrologCheck types. The specifications can be tested and the
predicate checked to succeed for the corresponding input types.

12 C. Amaral, M. Florido, and V.S. Costa

{app,1} of_type (1listOf (int), value(v), variable)
{app,2} of_type (1listOf (int), variable, variable)
{app,3} of_type (listOf (int), 1listO0f (int), variable)

Domain. Correct typing of parameters is crucial but may be insufficient to
express the allowed input. Sometimes the input parameters must obey a relation
extending type information, based on the actual values of the parameters. The
domain of a predicate is the set of parameters accepted by a predicate [9]. The
domain precondition is a restriction over the set of parameters of a predicate.
Suppose that minimum(4,B,C) is a predicate that succeeds when c is the minimum
of A and B. The predicate has the type (int, int, int) and the domain is the
restriction (C==A; C==B),(C<=A, C<=B).

Definition 2. A domain of a procedure p/n is a set of term n-tuples such that
<t1, ...,tn> S (7’1 X ... X T,L)
(t1,...,tn) satisfies the input parameter relation

This definition of a domain, similarly to what happens with types, is different
from the usual notion of domain. It focus on the shape of the input to a predicate
and not the accepted answer set. The PrologCheck domain of a predicate is then
any set of terms produced by the generator that fulfils the domain precondition.
In the absence of a domain precondition relating parameters the domain is the set
of terms generated. A specification clause can thus be engineered to represent a
subset of a more general type. An example could be that we want to test app with
at least one non-empty list input. This can be used, for example, to guarantee
that the variable given in the third input parameter will be instantiated with a
non-empty list.

non_empty ¢ [[_1_1,_,_1).
non_empty ([_,[_1_1,_1).

{app,3b} of_type (1listO0f (int), 1listO0f (int), variable)
such_that m:non_empty.

Directionality. The directionality of a predicate describes its possible uses by
specifying the possible forms of the parameters before and after execution. We
follow Deville [9] where the main modes for a parameter are ground, variable and
neither ground nor variable. Conjunction of modes is possible and all combina-
tions are achieved by the notation for ground (g) and variable (v) as well as the
negation (n?). This results in the main modes and their pairwise combinations:
g, v, gu, ng, nv, ngv. A parameter that can be used in any form is denoted by
the mode identifier any.

Definition 3. The modes or forms a term may present are denoted by
Modes = g,v, gv,ng, nv, ngv, any

There are two components to a directionality: input and output. They must
hold for a predicate’s parameters before and after execution, respectively. This
means a full directionality denotes a pre- and a post-condition to the execution

PrologCheck — Property-Based Testing in Prolog 13

of the specified predicate. In PrologCheck these properties are checked for each
test case when specified before and after calling the predicate.

Input directionality acts as a sanity check for the elements of the domain,
meaning that the generators must be constructed to conform to the specified
input modes. Each specification clause is allowed one input directionality. If the
user wishes to specify more than one input form the clause should be divided
into the number of input forms and its generators adapted accordingly. This
results in bigger predicate specifications with possibly duplicated code, but is a
very simple way to express what happens to the parameters in finer detail.

Each input may have more than one answer and therefore more than one
output form. For this reason we adopted a schema where an input directionality
is paired with a list of output forms.

Definition 4. A directionality of a specification clause of a predicate p/n is
a sequence of predicate modes, with one input mode followed by one or more
output modes.

A predicate mode of p, or just mode of p, is denoted as

—i(my,...,my)

- O(Ml, ceey Mn)
where m;, M; € Modes and i,0 respect to input and output modes respectively.

The specification of input and output modes is important to state predicate
behaviours that may be oblivious to a library user. From using the predicate
app/3 with a list and two variables, for example, two distinct directionalities may
arise. This is due to the fact that an empty list in the first input parameter does
not contribute to instantiate any part of the third parameter.

{app, 4} of_type (1ist0f (int), variable, variable)
where (i(g, v, v), o(g, v, ngv), o(g, v, v)).

PrologCheck does not check the specification for consistency. A parameter
with modes such that in is ground and out is variable is caught during testing.
Output modes that are redundant or invalid will not be exposed when part
of a set of output directionalities since they are interpreted as a disjunction.
Directionalities should be constructively defined and not over-specified. They
should be separated according to disjoint input types and incremented as needed.

Multiplicity. The number of answers a predicate call has can be valuable infor-
mation. Knowing a predicate has a finite search space is a termination guarantee
for predicates using it. Conventionally, multiplicity information, or range, is given
for each directionality [19]. In PrologCheck we do not require that directionality
is given, in which case no tests are performed regarding parameter form and the
any mode is assumed for all parameters. The multiplicity is tied to the domain
of each specification clause where defined.

The range of answers is given with two bounds: Min and Max. These values
are the lower and upper bounds to the number of answers. The lower bound
should not exceed the upper bound and they both take non-negative integer

14 C. Amaral, M. Florido, and V.S. Costa

values up to infinity (denoted by the atom int). When no explicit multiplicity is
given the default we follow is (1,inf). When testing a specification clause, the
default minimal expected behaviour is that the domain is successfully accepted
by the predicate. Therefore we try to mirror this when there are other features
specified but no multiplicity, expecting at least one solution. It is necessary to
impose a limit when the upper bound is infinity or an excessively large number.
One can state the maximum number of answers necessary to assume that the
answer range is sufficiently close to the upper bound with a positive integer. We
can complement the previous specification clause with a statement about the
predicate behaviour regarding the number of answers. In this case we have a
total function behaviour, always yielding one and only one answer.
{app, 4b} of_type (listOf (int), variable, variable)
where (i(g, v, v), o(g, v, ngv), o(g, v, v))
has_range {1,1}.
{app, 4c} of_type (variable, 1listOf (int), variable)

where (i(v, g, v), o(g, g, g), o(ngv, g, ngv))
has_range {1,inf} limit 50.

Pre and Post-conditions. Along with all the other features of a predicate
we can have a connection between the relations represented by the predicate
being specified and other predicates. These relations can be valid prior to or
after execution. In the predicate specification language they are pre- and post-
conditions and are expressed as PrologCheck properties.

A pre-condition is a property that only inspects its input. It does not change
the generated values to be applied to the specified predicate. Post-conditions
can use any of the specified parameters. Since they are no longer used, it does
not matter if they are changed by the answer substitution. Now we can describe
the property relating the lengths of app/3’s parameters in a post-condition of a
specification clause of the respective type. We identify the parameters of app so
that we can use them in the post-condition as 4, B and c.

{app, 5} of_type (A-(1listO0f (int)), B-(1listO0f (int)), C-(variable))
post_cond (length(A,K1), length(B,K2), length(C,K), K is K1+K2).

7 AVL Trees Case Study

We have described AVL properties and performed black-box testing of an imple-
mentation of AVL trees in a Yap [8] module, avl.yap, with PrologCheck?. Due to
space restrictions we present a general description of the process and its results.

The module interface is small, with predicates to create an empty tree, in-
sert an element and look up an element, respectively avl_new/1, avl_insert/4 and
avl_lookup/3. When performing this kind of test one does not simply test indi-
vidual predicates but rather usages of the module. To do this we must be able
to create sequences of interface calls and inspect intermediate results for com-
pliance with AVL invariants. Knowledge about the shape of input/output terms
can be gathered manually if it is not previously known.

2 All the details can be found in the tool’s website.

PrologCheck — Property-Based Testing in Prolog 15

Generator. Creating a valid sequence of interface calls is not difficult, but
requires attention to detail. First, we only want to generate valid sequences to
save effort of checking validity and not suffer from sparse valid values. Using the
avl module implies the existence of two sets of important terms: key terms, and
value terms, which we represent as generators. In order to test the correct failure
of wrong look-ups, a set of values for failed look-ups disjoint from the regular
values is implemented.

The generator starts by creating the tree, independently of the size parameter,
using avl_new/1. This implies that when size is 0 an empty AVL-tree is still
created. Thus, we always append the tree creation to a sequence of calls to
insert and look-up values. Each element of the sequence is obtained by randomly
choosing between insert and look-ups.

When an insert command is added to the sequence, the value to be inserted
is kept so that it can be used in later look-ups. Look-ups are divided between
valid look-up and invalid look-up. Valid look-ups are only generated after the
corresponding insert and invalid look-ups are based in a set of values that is
never inserted. Valid look-ups can be further distinguished between looking up
a key-value pair and looking up a key and retrieving its value. These elements
are branded by a command identifier to recognise their correct behaviour during
testing. The relative probabilities are such that we get a big variety of commands
within relatively small sequences.

Property. The definition of the AVL property depends on several factors. It is
necessary to have operations to extract information from trees, such as current
node’s key, key comparison, left and right sub-trees and empty tree test.

A tree may be empty, in which case it is an AVL tree of height 0. In the case
of a non-empty tree we retrieve its key and sub-trees. They are used in recursive
checks of the property. The recursive calls accumulate lists of keys that should be
greater and less then the keys in the sub-trees. If the sub-trees are individually
compliant with the property, we proceed with the last check, comparing the
returned heights for balance and computing the current tree height. This is how
the property is outlined in PrologCheck:
prop({avl, T, Gs, Ls, H}) :- if (not isNil(T)) then

((getKey (T, K), left(T, L), right(T, R),
((forall (member (X, Ls), cmpKeys(X, K, gt))) -> erroril),
((forall (member (X, Gs), cmpKeys (X, K, 1lte))) -> error2))
and prop({avl, L, [Keyl|Gt]l, Lt, H1})
and prop({avl, R, Gt, [Keyl|Lt], Hr})
and ((abs(H1-Hr)>1 -> error3), H is 1+max(H1l,Hr)))
else (H = 0).

We complete the property by inserting it into a loop that consumes the opera-
tions in the quantified module uses.

Table 1 summarises some relevant results of our tool applied to the AVL
library. Each line corresponds to a different module version: line 1 to the original
version; line 2 to a bug in the re-balancing strategy inserted by the tester; line
3 to a different bug in the re-balancing strategy inserted by someone that was
not involved with the tests. The column Tests is the number of tests needed

16 C. Amaral, M. Florido, and V.S. Costa

to achieve a particular counter-example. For the purpose of readability we will
represent only the key and value input parameters of the AVL operations. Thus
consider i(N,v) as insert an element with key ¥ and value v, and 1(n,v) as look
up the pair (v,v) in the tree.

Note that the counter-example found in the original version corresponds to
an unspecified behaviour in the case of two insertions with the same key. After
several runs of the tool (10 for the first bug and 20 for the second) we managed
to find a pattern on the counter-examples which led to the identification of the
pathological behaviour caused by the bugs.

Table 1. AVL testing summary

Version Tests Counter-example

Original 732 i(1,a), i(1,b), 1(1,b)

Error 1 51 1i(3,a), i(1,b), i(2,c)

Error 2 213 i(5,a), i(2,b), i(3,c), i(4,d), i(1,e)

8 Conclusion

We present PrologCheck, an automatic tool for specification based testing of
Prolog programs.

Compared to similar tools for functional languages, we deal with testing of
non-deterministic programs in a logic programming language. We provide a lan-
guage to write properties with convenient features, such as quantifiers, condi-
tionals, directionality and multiplicity. PrologCheck also includes the notion of
random test-data generation.

We show that specification based testing works extremely well for Prolog. The
relational nature of the language allows to specify local properties quite well
since all the dependencies between input parameters are explicit in predicate
definitions.

Finally note that our tool uses Prolog to write properties, which, besides its
use in the tool for test specification, increases the understanding of the program
itself, without requiring extra learning for Prolog programmers.

Acknowledgements. This work is partially financed by the ERDF - European
Regional Development Fund through the COMPETE Program and by National
Funds through the FCT - Fundagao para a Ciéncia e a Tecnologia (Portuguese
Foundation for Science and Technology) within project ADE/PTDC/EIA-
ETA/121686/2010 and by LIACC through Programa de Financiamento Pluri-
anual, FCT. Cldudio Amaral is funded by FCT grant SFRH/BD/65371/20009.

References

1. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Etalle, S., Truszczytiski, M. (eds.) ICLP 2006. LNCS, vol. 4079,
pp. 87-101. Springer, Heidelberg (2006)

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

PrologCheck — Property-Based Testing in Prolog 17

Bernardy, J.-P., Jansson, P., Claessen, K.: Testing polymorphic properties. In: Gor-
don, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 125-144. Springer, Heidelberg
(2010)

Boberg, J.: Early fault detection with model-based testing. In: Proc. of Workshop
on Erlang, pp. 9-20. ACM (2008)

Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322-336. Springer,
Heidelberg (2008)

Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. In: Proc. of ICFP, pp. 268-279. ACM (2000)

Claessen, K., Hughes, J., Palka, M., Smallbone, N., Svensson, H.: Ranking pro-
grams using black box testing. In: Proc. of AST, pp. 103-110. ACM (2010)
Claessen, K., Patka, M., Smallbone, N., Hughes, J., Svensson, H., Arts, T., Wiger,
U.: Finding race conditions in erlang with quickcheck and pulse. In: Proc. of ICFP,
pp. 149-160. ACM (2009)

Costa, V.S., Rocha, R., Damas, L.: The yap prolog system. TPLP 12(1-2), 5-34
(2012)

Deville, Y.: Logic programming: systematic program development. Addison-Wesley
Longman Publishing Co. Inc., Boston (1990)

Duregard, J., Jansson, P., Wang, M.: Feat: functional enumeration of algebraic
types. In: Proc. of Haskell Symposium, pp. 61-72. ACM (2012)

Florido, M., Damas, L.: Types as theories. In: Proc. of post-conference workshop
on Proofs and Types, JICSLP (1992)

Frithwirth, T.W., Shapiro, E.Y., Vardi, M.Y., Yardeni, E.: Logic programs as types
for logic programs. In: Proc. of LICS, pp. 300-309 (1991)

Hermenegildo, M.V., Bueno, F., Carro, M., Lépez-Garcia, P., Mera, E., Morales,
J.F., Puebla, G.: An overview of ciao and its design philosophy. In: TPLP, pp.
219-252 (2012)

Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic auto-
mated software testing. In: Pena, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84-100. Springer, Heidelberg (2003)

Mera, E., Lopez-Garcia, P., Hermenegildo, M.: Integrating software testing and
run-time checking in an assertion verification framework. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281-295. Springer, Heidelberg (2009)
Naylor, M.: A logic programming library for test-data generation (2007)
Papadakis, M., Sagonas, K.: A proper integration of types and function specifi-
cations with property-based testing. In: Proc. of Workshop on Erlang, pp. 39-50.
ACM (2011)

Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy smallcheck: auto-
matic exhaustive testing for small values. In: Proc. of Haskell Symposium, pp.
37-48. ACM (2008)

Somogyi, Z., Henderson, F.J., Conway, T.C.: Mercury, an efficient purely declar-
ative logic programming language. Australian Computer Science Communica-
tions 17, 499-512 (1995)

Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. TPLP 12(1-2),
67-96 (2012)

Yardeni, E., Shapiro, E.: A type system for logic program. J. Log. Program. 10(2),
125-153 (1991)

Zobel, J.: Derivation of polymorphic types for prolog programs. In: Proc. of ICLP,
pp. 817-838 (1987)

	PrologCheck – Property-Based Testing in Prolog
	1 Introduction
	2 Related Work
	3 Motivating Examples
	3.1 Append
	3.2 List Reverse

	4 Properties
	5 Generators
	6 Specification Language
	7 AVL Trees Case Study
	8 Conclusion
	References

