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Abstract. We present the design and evaluation of a Datalog engine
for execution in Graphics Processing Units (GPUs). The engine eval-
uates recursive and non-recursive Datalog queries using a bottom-up
approach based on typical relational operators. It includes a memory
management scheme that automatically swaps data between memory in
the host platform (a multicore) and memory in the GPU in order to
reduce the number of memory transfers. To evaluate the performance of
the engine, four Datalog queries were run on the engine and on a single
CPU in the multicore host. One query runs up to 200 times faster on the
(GPU) engine than on the CPU.
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1 Introduction

The traditional view of Datalog as a query language for deductive databases
is changing as a result of the new applications where Datalog has been in
use recently [18], including declarative networking [19], program analysis [9],
information extraction [23] and security [20] — datalog recursive queries are
at the core of these applications. This renewed interest in Datalog has in turn
prompted new designs of Datalog targeting computing architectures such as
GPUs, Field-programmable Gate Arrays (FPGAs) [18] and cloud computing
based on Google’s Mapreduce programming model [7]. This paper presents a
Datalog engine for GPUs.

GPUs can substantially improve application performance and are thus now
being used for general purpose computing in addition to game applications.
GPUs are single-instruction-multiple-data (SIMD) [2] machines, particularly
suitable for compute-intensive, highly parallel applications. They fit scientific
applications that model physical phenomena over time and space, wherein the
“compute-intensive” aspect corresponds to the modelling over time, while the
“highly parallel” aspect corresponds to the modelling at different points in space.

M. Hanus and R. Rocha (Eds.): KDPD 2013, LNATI 8439, pp. 152-168, 2014.
DOI: 10.1007/978-3-319-08909-6_10, (© Springer International Publishing Switzerland 2014



A Datalog Engine for GPUs 153

Data-intensive, highly parallel applications such as database relational oper-
ations can also benefit from the SIMD model, substantially in many cases [11,
16,17]. However, the communication-to-computation ratio must be relatively low
for applications to show good performance, i.e.: the cost of moving data from
host memory to GPU memory and vice versa must be low relative to the cost
of the computation performed by the GPU on that data.

The Datalog engine presented here was designed considering various optimi-
sations aimed to reduce the communication-to-computation ratio. Data is pre-
processed in the host (a multicore) in order that: (i) data transfers between the
host and the GPU take less time, and (ii) data can be processed more efficiently
by the GPU. Also, a memory management scheme swaps data between host
memory and GPU memory seeking to reduce the number of transfers.

Datalog queries, recursive and non-recursive, are evaluated using typical rela-
tional operators, select, join and project, which are also optimised in various ways
in order to capitalise better on the GPU architecture.

Sections 2 and 3 present background material to the GPU architecture and
the Datalog language. Section 4 presents the design and implementation of our
Datalog Engine as a whole, and Sect.5 of its relational operators. Section 6
presents an experimental evaluation of our Datalog engine. Section 7 presents
related work. We conclude in Sect. 8.

2 GPU Architecture and Programming

GPUs are SIMD machines: they consist of many processing elements (PEs) that
run the same program but on distinct data items. This same program, referred
to as the kernel, can be quite complex including control statements such as if
and for statements. However, a kernel is run in bulk-synchronous parallelism [28]
by the GPU hardware, i.e.: each instruction within a kernel is executed across
all PEs running the kernel. Thus, if a kernel compares strings, PEs that compare
longer strings will take longer and the other PEs will wait for them.

Scheduling GPU work is usually as follows. A thread in the host platform
(e.g., a multicore) first copies the data to be processed from host memory to
GPU memory, and then invokes GPU threads to run the kernel to process the
data. Each GPU thread has a unique id which is used by each thread to identify
what part of the data set it will process. When all GPU threads finish their
work, the GPU signals the host thread which will copy the results back from
GPU memory to host memory and schedule new work.

GPU memory is organised hierarchically as shown in Fig.1. Each (GPU)
thread has its own per-thread local memory. Threads are grouped into blocks,
each block having a memory shared by all threads in the block. Finally, thread
blocks are grouped into a single grid to execute a kernel — different grids can
be used to run different kernels. All grids share the global memory.

The global memory is the GPU “main memory”. All data transfers between
the host (CPU) and the GPU are made through reading and writing global
memory. It is the slowest memory. A common technique to reducing the number
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Fig. 1. GPU memory organization.

of global memory reads is coalesced memory access, which takes place when
consecutive threads read consecutive memory locations allowing the hardware
to coalesce the reads into a single one.

Nvidia GPUs are mostly programmed using the CUDA toolkit, a set of
developing tools and a compiler that allow programmers to develop GPU appli-
cations using a version of the C language extended with keywords to specify
GPU code. CUDA also includes various libraries with algorithms for GPUs
such as the Thrust library [5] which resembles the C++ Standard Template
Library (STL) [21]. We use the functions in this library to perform sorting, pre-
fix sums [15] and duplicate elimination as their implementation is very efficient.

CUDA provides the following reserved words, each with three components
x,y and z, to identify each thread and each block running a kernel: threadIdx
is the index of a thread in its block; blockIdx is the index of a block in its
grid; blockDim is the size of a block in number of threads; and gridDim is the
size of a grid in number of blocks. With these identifiers, new identifiers can be
derived with simple arithmetic operations. For example, the global identifier of
a thread in a three-dimensional block would be:

unsigned int GID = threadIdx.x + threadIdx.y * blockDim.x +
threadIdx.z * blockDim.x * blockDim.z;

%,y and z are initialised by CUDA according to the shape with which a kernel
is invoked, either as a 1D Vector (y=2z=0), a 2D Matriz (z=0), or a 3D Volume.

3 Datalog

As is well known, Datalog is a language based on first order logic that has been
used as a data model for relational databases [26,27]. A Datalog program consists
of facts about a subject of interest and rules to deduce new facts. Facts can be
seen as rows in a relational database table, while rules can be used to specify
complex queries. Datalog recursive rules facilitate specifying (querying for) the
transitive closure of relations, which is a key concept to many applications [18].
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3.1 Datalog Programs

A Datalog program consists of a finite number of facts and rules. Facts and rules
are specified using atomic formulas, which consist of predicate symbols with
arguments [26], e.g.:

FACTS father relational table
father (harry, john). harry john

father (john, david). john david

RULE

grandfather(Z, X) :- father(Y, X), father(Z, Y).

Traditionally, names beginning with lower case letters are used for predicate
names and constants, while names beginning with upper case letters are used
for variables; numbers are considered constants. Facts consist of a single atomic
formula, and their arguments are constants; facts that have the same name must
also have the same arity. Rules consist of two or more atomic formulas with
the first one from left to right, the rule head, separated from the other atomic
formulas by the implication symbol ’:-’; the other atomic formulas are subgoals
separated by ’,’, which means a logical AND. We will refer to all the subgoals
of a rule as the body of the rule. Rules, in order to be general, are specified with
variables as arguments, but can also have constants.

3.2 Evaluation of Datalog Programs

Datalog programs can be evaluated through a top-down approach or a bottom-
up approach. The top-down approach (used by Prolog) starts with the goal which
is reduced to subgoals, or simpler problems, until a trivial problem is reached.
It is tuple-oriented: each tuple is processed through the goal and subgoals using
all relevant facts. It is not suitable for GPU bulk-synchronous parallelism (BSP)
because the processing time of distinct tuples may vary significantly.

The bottom-up approach first applies the rules to the given facts, thereby
deriving new facts, and repeating this process with the new facts until no more
facts are derived. The query is considered only at the end, to select the facts
matching the query. Based on relational operations (as described shortly), this
approach is suitable for GPU BSP because such operations are set-oriented and
relatively simple overall; hence show similar processing time for distinct tuples.
Also, rules can be evaluated in any order. This approach can be improved using
the magic sets transformation [8] or the subsumptive tabling transformation [25].
Basically, with these transformations the set of facts that can be inferred contains
only facts that would be inferred during a top-down evaluation.
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Fig. 2. Evaluation of a Datalog rule based on relational algebra operations.

3.3 Evaluation Based on Relational Algebra Operators

Evaluation of Datalog rules can be implemented using the typical relational
algebra operators select, join and projection, as outlined in Fig. 2. Selections are
made when constants appear in a rule body. Then a join is made between two
or more subgoals in the rule body using the variables as reference. The result of
a join becomes a temporary subgoal that must be joined to the other subgoals
in the body. Finally, a projection is made over the variables in the rule head.

For recursive rules, fixed-point evaluation is used. The basic idea is to iterate
through the rules in order to derive new facts, and using these new facts to derive
even more new facts until no new facts are derived.

4 Our Datalog Engine for GPUs

This section presents the design of our Datalog engine for GPUs.

4.1 Architecture

Figure 3 shows the main components of our Datalog engine. There is a single
host thread that runs in the host platform (a multi-core in our evaluation). The
host thread schedules GPU work as outlined in Sect. 2, and also preprocesses the
data to send to the GPU for efficiency, as described in Sect. 4.2.

The data sent to the GPU is organized into arrays that are stored in global
memory. The results of rule evaluations are also stored in global memory.

Our Datalog (GPU) engine is organised into various GPU kernels. When eval-
uating rules, for each pair of subgoals in a rule, selection and selfjoin kernels are
applied first in order to eliminate irrelevant tuples as soon as possible, followed
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Fig. 3. GPU Datalog engine organisation.

by join and projection kernels. At the end of each rule evaluation, duplicate
elimination kernels are applied. Figure3 (on the right) shows these steps.

A memory management module helps identifying most recently used data by
the GPU in order to keep it in global memory and to discard other data instead.

4.2 Host Thread Tasks

Parsing. To capitalise on the GPU capacity to process numbers and to have short
and constant processing time for each tuple (the variable size of strings entails
varying processing time), we identify and use facts and rules with/as numbers,
keeping their corresponding strings in a hashed dictionary. Each unique string
is assigned a unique id, equal strings are assigned the same id. The GPU thus
works with numbers only; the dictionary is used at the very end when the final
results are to be displayed.

Preprocessing. A key factor for good performance is preprocessing data before
sending it to the GPU. As mentioned before, Datalog rules are evaluated through
a series of relational algebra operations: selections, joins and projections. For the
evaluation of each rule, the specification of what operations to perform, including
constants, variables, facts and other rules involved, is carried out in the host (as
opposed to be carried out in the GPU by each kernel thread), and sent to the
GPU for all GPU threads to use. Examples:
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— Selection is specified with two values, column number to search and the
constant value to search; the two values are sent as an array which can include
more than one selection (more than one pair of values), as in the following
example, where columns 0, 2, and 5 will be searched for the constants a, b
and c, respectively:

fact1(’a’,X,’v’,Y,Z,’¢c’). -> [0, ’a’, 2, ’b’, 5, ’c’]

— Join is specified with two values, column number in the first relation to join
and column number in the second relation to join; the two values are sent as
an array which can include more than one join, as in the following example
where the following columns are joined in pairs: column 1in factl (X) with
column 1 in fact2, column 2in factl (Y) with column 4in fact2, and column
3 in factl (Z) with column Oin fact2.

fact1(A,X,Y,Z), fact2(Z,X,B,C,Y). -> [1, 1, 2, 4, 3, 0]

Other operations are specified similarly with arrays of numbers. These arrays
are stored in GPU shared memory (as opposed to global memory) because they
are small and the shared memory is faster.

4.3 Memory Management

Data transfers between GPU memory and host memory are costly in all CUDA
applications [1]. We designed a memory management scheme that tries to min-
imize the number of such transfers. Its purpose is to maintain facts and rule
results in GPU memory for as long as possible so that, if they are used more
than once, they may often be reused from GPU memory. To do so, we keep track
of GPU memory available and GPU memory used, and maintain a list with infor-
mation about each fact and rule result that is resident in GPU memory. When
data (facts or rule results) is requested to be loaded into GPU memory, it is first
looked up in that list. If found, its entry in the list is moved to the beginning
of the list; otherwise, memory is allocated for the data and a list entry is cre-
ated at the beginning of the list for it. In either case, its address in memory is
returned. If allocating memory for the data requires deallocating other facts and
rule results, those at the end of the list are deallocated first until enough memory
is obtained — rule results are written to CPU memory before deallocating them.
By so doing, most recently used fact and rule results are kept in GPU memory.

5 GPU Relational Algebra Operators

This section presents the design decisions we made for the relational algebra
operations we use in our Datalog engine: select, join and project operations for
GPUs. The GPU kernels that implement these operations access (read/write)
tables from GPU global memory.
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5.1 Selection

Selection has two main issues when designed for running in GPUs. The first issue
is that the size of the result is not known beforehand, and increasing the size
of the results buffer is not convenient performance-wise because it may involve
reallocating its contents. The other issue is that, for efficiency, each GPU thread
must know onto which global memory location it will write its result without
communicating with other GPU threads.

To avoid those issues, our selection uses three different kernel executions. The
first kernel marks all the rows that satisfy the selection predicate with a value
one. The second kernel performs a prefix sum on the marks to determine the
size of the results buffer and the location where each GPU thread must write
the results. The last kernel writes the results.

5.2 Projection

Projection requires little computation, as it simply involves taking all the ele-
ments of each required column and storing them in a new memory location.
While it may seem pointless to use the GPU to move memory, the higher mem-
ory bandwidth of the GPU, compared to that of the host CPUs, and the fact
that the results remain in GPU memory for further processing, make projection
a suitable operation for GPU processing.

5.3 Join

Our Datalog engine uses these types of join: Single join, Multijoin and Selfjoin. A
single join is used when only two columns are to be joined, e.g.: table; (X,Y)
tablea(Y, Z). A multijoin is used when more than two columns are to be joined:
table; (X,Y) < tablea(X,Y). A selfjoin is used when two columns have the same
variable in the same predicate: table; (X, X).

Single join. We use a modified version of the Indexed Nested Loop Join described
in [16], which is as follows:

Make an array for each of the two columns to be joined
Sort one of them

Create a CSS-Tree for the sorted column

Search the tree to determine the join positions

Do a first join"to determine the size of the result

Do a second join"to write the result

The CSS-Tree [22] (Cache Sensitive Search Tree) is very adequate for GPUs
because it can be quickly constructed in parallel and because tree traversal is
performed via address arithmetic instead of the traditional memory pointers.

While the tree allows us to know the location of an element, it does not tell
us how many times each element is going to be joined with other elements nor in
which memory location must each thread write the result, so we must perform
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a “preliminary” join. This join counts the number of times each element has
to be joined and returns an array that, as in the select operation, allows us to
determine the size of the result and write locations when a prefix sum is applied
to it. With the size and write locations known, a second join writes the results.

Multijoin. To perform a join over more than two columns, e.g., table; (X,Y) >
tables(X,Y), first we take a pair of columus, say (X, X), to create and search
on the CSS-Tree as described in the single join algorithm. Then, as we are doing
the first join, we also check if the values of the remaining columns are equal (in
our example we check if Y =Y') and discard the rows that do not comply.

Selfjoin. The selfjoin operation is similar to the selection operation. The main
difference is that, instead of checking for a constant value on the corresponding
row, it checks if the values of the columns involved by the self join match.

5.4 Optimisations

Our relational algebra operations make use of the following optimisations in
order to improve performance. The purpose of these optimisations is to reduce
memory use and in principle processing time — the cost of the optimisations
themselves is not yet evaluated.

Duplicate Elimination. Duplicate elimination uses the unique function of the
Thrust library. It takes an array and a function to compare two elements in the
array, and returns the same array with the unique elements at the beginning.
We apply duplicate elimination to the result of each rule: when a rule is finished,
its result is sorted and the unique function is applied.

Optimising Projections. Running a projection at the end of each join, as
described below, allows us to discard unnecessary columns earlier in the compu-
tation of a rule. For example, consider the following rule:

rulel (Y, W) :- facti(X, Y), fact2(Y, Z), fact3(Z,W).

The evaluation of the first join, fact; <y facts, generates a temporary table
with columns (X,Y,Y,Z), not all of which are necessary. One of the two Y
columns can be discarded; and column X can also be discarded because it is not
used again in the body nor in the head of the rule.

Fusing Operations. Fusing operations consists of applying two or more oper-
ations to a data set in a single read of the data set, as opposed to applying only
one operation, which involves as many reads of the data set as the number of
operations to be applied. We fuse the following operations.

— All selections required by constant arguments in a subgoal of a rule are per-
formed at the same time.
— All selfjoins are also performed at the same time.
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— Join and projection are always performed together at the same time.
To illustrate these fusings consider the following rule:
rulel(X,Z):- facti(X,’constl1’,Y,’const2’),fact2(Y,’const3’,Y,Z,Z).

This rule will be evaluated as follows. fact; is processed first: the selections
required by const; and const, are performed at the same time — fact; does not
require selfjoins. facts is processed second: (a) the selection required by consts
is performed, and then (b) the selfjoins between Y's and Zs are performed at
the same time. Finally, a join is performed between the third column of fact;
and the first column of facts and, at the same time, a projection is made (as
required by the arguments in the rule head) to leave only the first column of
fact; and the fourth column of facts.

6 Experimental Evaluation

This section describes our platform, applications and experiments to evaluate
the performance of our Datalog engine. We are at this stage interested in the
performance benefit of using GPUs for evaluating Datalog queries, compared
to using a CPU only. Hence we present results that show the performance of
4 Datalog queries running on our engine compared to the performance of the
same queries running on a single CPU in the host platform. (We plan to compare
our Datalog engine to similar GPU work discussed in Sect. 7, Related Work, in
another paper).

On a single CPU in the host platform, the 4 queries were run with the Prolog
systems YAP [10] and XSB [24], and the Datalog system from the MITRE Cor-
poration [3]. As the 4 queries showed the best performance with YAP, our results
show the performance of the queries with YAP and with our Datalog engine only.
YAP is a high-performance Prolog compiler developed at LIACC/Universidade
do Porto and at COPPE Sistemas/UFRJ. Its Prolog engine is based on the
WAM (Warren Abstract Machine) [10], extended with some optimizations to
improve performance. The queries were run on this platform:

Hardware. Host platform: Intel Core 2 Quad CPU Q9400 2.66GHz (4 cores
in total), Kingston RAM DDR2 6GB 800 MHz. GPU platform: Fermi GeForce
GTX 580 - 512 cores - 1536 MB GDDR5 memory.

Software. Ubuntu 12.04.1 LTS 64bits. CUDA 5.0 Production Release, gcc 4.5,
g++ 4.5. YAP 6.3.3 Development Version, Datalog 2.4, XSB 3.4.0.

For each query, in each subsection below, we describe first the query, and then
discuss the results. Our results show the evaluation of each query once all data
has been preprocessed and in CPU memory, i.e.: I/O, parsing and preprocessing
costs are not included in the evaluation.
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6.1 Join over Four Big Tables

Four tables, all with the same number of rows filled with random numbers, are
joined together to test all the different operations of our Datalog engine. The
rule and query used are:

join(X,Z) :- tablel(X), table2(X,4,Y), table3(Y,Z,Z), table4(Y,Z).
join(X,Z2)7?

Figure4 shows the performance of the join with YAP and our engine, in
both normal and logarithmic scales to better appreciate details. Our engine is
clearly faster, roughly 200 times. Both YAP and our engine take proportionally
more time as the size of tables grows. Our engine took just above two seconds to
process tables with five million rows each, while YAP took about two minutes
to process tables with one million rows each. Joins were the most costly oper-
ations with multijoin alone taking more than 70 % of the total time; duplicate
elimination and sorting were also time consuming but within acceptable values;
prefix sums and selections were the fastest operations.
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Fig. 4. Performance of join over four big tables (NB: log. scale on the right).

6.2 Transitive Closure of a Graph

The transitive closure of a graph (TCG) is a recursive query. We use a table with
two columns filled with random numbers that represent the edges of a graph [13].
The idea is to find all the nodes that can be reached if we start from a particular
node. This query is very demanding because recursive queries involve various
iterations over the relational operations that solve the query. The rules and the
query are:

path(X,Y) :- edge(X,Y).
path(X,Z) :- edge(X,Y), path(Y,Z).
path(X,Y)?
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Fig. 5. Performance of transitive closure of a graph (NB: log. scale on the right).

Figure 5 shows the performance of TCG with YAP and our engine. Similar
observations can be made as for the previous experiment. Our engine is 40x
times faster than YAP for TCG. Our engine took less than a second to process
a table of 10 million rows while YAP took 3.5s to process 1 million rows.

For the first few iterations, duplicate elimination was the most costly oper-
ation of each iteration, and the join second but closely. As the number of rows
to process in each iteration decreased, the join became by far the most costly
operation.

6.3 Same-Generation Program

This is a well-known program in the Datalog literature, and there are various
versions. We use the version described in [6]. Because of the initial tables and
the way the rules are written, it generates lots of new tuples in each iteration.
The three required tables are created with the following equations:

up = {(a, bi) e[, n]} U{(bs, ¢;) i, je[1, n]}. (1)
flat = {(ci, dj)[i, je[1, n]}. (2)
down = {(d;, ¢;)|i, je[1, n]} U {(es, f)lie[L, n]}. 3)

Where a and f are two known numbers and b, ¢, d and e are series of n random
numbers. The rules and query are as follows:

sg(X,Y) :- flat(X,Y).
sg(X,Y) :- up(X,X1), sg(X1,Y1), down(Y1,Y).
sg(a,Y)?

The results show (Fig.6) very little gain in performance, with our engine
taking an average of 827ms and YAP 1600ms for n = 75. Furthermore, our
engine cannot process this application for n > 90 due to lack of memory.

The analysis of each operation revealed that duplicate elimination takes more
than 80 % of the total time and is also the cause of the memory problem. The
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reason of this behaviour is that the join creates far too many new tuples, but most
of these tuples are duplicates (as an example, for n = 75 the first join creates
some 30 million rows and, after duplicate elimination, less than 10 thousand
rows remain).

6.4 Tumour Detection

Correctly determining whether or not a tumour is malignant requires analysing
and comparing a great amount of information from medical studies. Considering
each characteristic of a tumour as a fact, the rules and query below can be used
to determine, for each patient, if his/her tumour is malignant or not:

is_malignant(A):-

same_study(A,B), ’HO_BreastCA’ (B,hxDCorLC),
’MassPAQ’ (B,present), ’ArchDistortion’ (A,notPresent),
’Calc_Round’ (A,notPresent), ’Sp_AsymmetricDensity’ (A,notPresent),

’SkinRetraction’ (B,notPresent), ’Calc_Popcorn’(A,notPresent),
’FH_DCNOS’ (B,none) .
same_study(Id,01dId) :-

’IDnum’ (I4,X), ’MammoStudyDate’ (Id,D0),
>IDnum’ (01dId,X), ’MammoStudyDate’ (01dId,DO),
01dId \= Id.

is_malignant(A)?

The query asks for those studies which detect a malignant tumour. Some
tumour characteristics are taken from the most recent study, while others must
be taken from past studies. This restriction requires defining an additional rule
(same_study) to determine if two studies belong to the same person and if they
have different dates. The last subgoal of same_study (01dId \= Id) prevents a
study from referencing to itself, thus avoiding incorrect results. We evaluated
this program with 65800 studies, i.e., each table is composed of 65800 rows.
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Fig. 7. Performance of tumour detection.

Figure 7 shows the performance of tumour detection with YAP and our
engine. We used different sizes of input data through duplicating and triplicat-
ing each table, i.e.: each table had 65800 rows for the first test, and 131600 and
197400 rows for the second and third tests. We could thus increase processing
time while obtaining the same results thanks to duplicate elimination.

Our engine performs best for the first and second tests, but is surpassed in
the third test by YAP with tabling [25]. A detailed analysis showed that the mul-
tijoin required by same_study consumed almost 90 % of the total execution time,
and mostly in duplicate elimination, as follows. In the third test, same_study
generated 4095036 rows, which were reduced to 50556 after duplicate elimina-
tion. For is_malignant the results were similar: 4881384 rows were generated
but only 550 remained after duplicate elimination.

YAP with no tabling in the third test is so affected by duplicates that it
simply terminates after throwing an error — shown in the figure as zero execution
time. In contrast, YAP with tabling avoids performing duplicate work and thus
performs rather well.

7 Related Work

He et al. [17] have designed, implemented and evaluated GDB, an in-memory
relational query coprocessing system for execution on both CPUs and GPUs.
GDB consists of various primitive operations (scan, sort, prefix sum, etc.) and
relational algebra operators built upon those primitives.

We modified the Indexed Nested Loop Join (INLJ) of GDB for our single join
and multijoin, so that more than two columns can be joined, and a projection
performed, at the same time. Their selection operation and ours are similar
too; ours takes advantage of GPU shared memory and uses the Prefix Sum of
the Thrust Library. Our projection is fused into the join and does not perform
duplicate elimination, while they do not use fusion at all.
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Diamos et al. [11,12,29-31] have also developed relational operators for GPUs
for the Red Fox [4] platform, an extended Datalog developed by LogicBlox [14]
for multiple-GPU systems [31]. Their operators partition and process data in
blocks using algorithmic skeletons. Their join algorithm is 1.69 times faster than
that of GDB [11]. Their selection performs two prefix sums and the result is
written and then moved to eliminate gaps; our selection performs only one prefix
sum and writes the result once. They discuss kernel fusion and fission in [30]. We
applied fusion (e.g., simultaneous selections, selection then join, etc.) at source
code; they implemented it automatically through the compiler. Kernel fission,
the parallel execution of kernels and memory transfers, is not yet adopted in our
work. We plan to compare our relational operators to those of GDB and Red
Fox, and extend them to run on multiple-GPU systems too.

8 Conclusions

Our Datalog engine for GPUs evaluates queries based on the relational operators
select, join and projection. Our evaluation using 4 queries shows a dramatic
performance improvement for two queries, up to 200 times for one of them. The
other two queries did not perform that well, but we are working on the following
extensions to our engine in order to improve its performance further.

— Evaluation based on tabling [25] or magic sets [8] methods.

— Managing tables larger than the total amount of GPU memory.

— Mixed processing of rules both on the GPU and on the host multicore.

— Improved join operations to eliminate duplicates before writing final results.
— Extended syntax to accept built-in predicates and negation [6].

Acknowledgments. CMA thanks the support during his MSc studies from: the Uni-
versity of Porto, the Centre for Research and Postgraduate Studies of the National
Polytechnic Institute (CINVESTAV-IPN) of Mexico, and the Mexican Council of Sci-
ence and Technology (CONACyT). ICD and VSC were partially supported by: the
European Regional Development Fund (ERDF), COMPETE Programme; the Por-
tuguese Foundation for Science and Technology (FCT), project LEAP FCOMP-01-
0124-FEDER-015008; and project ABLe PTDC/EEI-SII/2094/2012.

References

1. CUDA, C Best Practices Guide. http://docs.nvidia.com/cuda/cuda-c-best-
practices-guide/index.html

2. CUDA, C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-program
ming-guide/index.html

3. Datalog by the MITRE Corporation. http://datalog.sourceforge.net/

4. Red Fox: A Compilation Environment for Data Warehousing. http://gpuocelot.
gatech.edu/projects/red-fox-a-compilation-environment-for-data-warehousing /


http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://datalog.sourceforge.net/
http://gpuocelot.gatech.edu/projects/red-fox-a-compilation-environment-for-data-warehousing/
http://gpuocelot.gatech.edu/projects/red-fox-a-compilation-environment-for-data-warehousing/

B2

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A Datalog Engine for GPUs 167

Thrust: A Parallel Template Library. http://thrust.github.io/

Abiteboul, S., et al.: Foundations of Databases. Addison-Wesley, Boston (1995)
Afrati, F.N., Borkar, V., Carey, M., Polyzotis, N., Ullman, J.D.: Cluster Comput-
ing, Recursion and Datalog. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A.
(eds.) Datalog 2010. LNCS, vol. 6702, pp. 120-144. Springer, Heidelberg (2011)
Beeri, C., Ramakrishnan, R.: On the power of magic. J. Log. Program. 10(3-4),
255-299 (1991)

Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: OOPSLA, pp. 243-262 (2009)

Costa, V.S., et al.: The YAP prolog system. TPLP 12(1-2), 5-34 (2012)

Diamos, G., et al.: Efficient relational algebra algorithms and data structures for
GPU. Technical report, Georgia Institute of Technology (2012)

Diamos G. et al.: Relational algorithms for multi-bulk-synchronous processors. In:
18th Symposium on Principles and Practice of Parallel Programming (2013)
Dong, G., Jianwen, S., Topor, R.W.: Nonrecursive incremental evaluation of dat-
alog queries. Ann. Math. Artif. Intell. 14(2-4), 187-223 (1995)

Green, T.J., Aref, M., Karvounarakis, G.: LogicBlox, Platform and Language: A
Tutorial. In: Barceld, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp.
1-8. Springer, Heidelberg (2012)

Harris, M., et al.: Parallel prefix sum (scan) with CUDA. In: Nguyen, H. (ed.)
GPU Gems 3, pp. 851-876. Addison Wesley, Boston (2007)

He, B., et al.: Relational joins on graphics processors. In: SIGMOD Conference,
pp. 511-524 (2008)

He, B., et al.: Relational query coprocessing on graphics processors. ACM Trans.
Database Syst. (TODS) 34(4), 21:1-21:39 (2009)

Huang, S.S., et al.: Datalog and emerging applications: an interactive tutorial. In:
SIGMOD Conference. pp. 1213-1216 (2011)

Loo, B.T., et al.: Declarative networking: language, execution and optimization.
In: SIGMOD Conference, pp. 97-108 (2006)

Marczak W.R., et al.: Secureblox: customizable secure distributed data processing.
In: SIGMOD Conference, pp. 723-734 (2010)

Musser, D.R., Derge, G.J., Saini, A.: STL Tutorial and Reference Guide: C++
Programming With The Standard Template Library, 2nd edn. Addison-Wesley
Longman Publishing Co. Inc., Boston (2001)

Rao, J., Ross, K.A.: Cache conscious indexing for decision-support in main memory.
In: 25th VLDB Conference, San Francisco., CA, USA, pp. 78-89 (1999)

Shen, W., et al.: Declarative information extraction using datalog with embedded
extraction predicates. In: VLDB, pp. 1033-1044 (2007)

Swift, T., Warren, D.S.: Xsb: Extending prolog with tabled logic programming.
TPLP 12(1-2), 157-187 (2012)

Tekle, K.T., Liu, Y.A.: More efficient datalog queries: subsumptive tabling beats
magic sets. In: SIGMOD Conference, pp. 661-672 (2011)

Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. 1. Com-
puter Science Press, Beijing (1988)

Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. 2. Com-
puter Science Press, Beijing (1989)

Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103-111 (1990)


http://thrust.github.io/

168 C.A. Martinez-Angeles et al.

29. Wu, H., et al.: Kernel weaver: Automatically fusing database primitives for efficient
GPU computation. In: 45th International Symposium on Microarchitecture (2012)

30. Wu, H., et al.: Optimizing data warehousing applications for GPUs using kernel
fusion/fission. In: IEEE 26th International Parallel and Distributed Processing
Symposium Workshops and PhD Forum (2012)

31. Young, J., et al.: Satisfying data-intensive queries using GPU clusters. In: 2nd
Annual Workshop on High-Performance Computing meets Databases (2012)



	A Datalog Engine for GPUs
	1 Introduction
	2 GPU Architecture and Programming
	3 Datalog
	3.1 Datalog Programs
	3.2 Evaluation of Datalog Programs
	3.3 Evaluation Based on Relational Algebra Operators

	4 Our Datalog Engine for GPUs
	4.1 Architecture
	4.2 Host Thread Tasks
	4.3 Memory Management

	5 GPU Relational Algebra Operators
	5.1 Selection
	5.2 Projection
	5.3 Join
	5.4 Optimisations

	6 Experimental Evaluation
	6.1 Join over Four Big Tables
	6.2 Transitive Closure of a Graph
	6.3 Same-Generation Program
	6.4 Tumour Detection

	7 Related Work
	8 Conclusions
	References


