
Bridging Automation and Robotics: an Interprocess
Communication between IEC 61131-3 and ROS

Tiago Pinto, Rafael Arrais, and Germano Veiga
INESC TEC - INESC Technology and Science, FEUP campus, Rua Dr. Roberto Frias, Portugal

Email: {tiago.f.pinto, rafael.l.arrais, germano.veiga}@inesctec.pt

Abstract—The contemporary adoption of Cyber-Physical Sys-
tems and improvements in robotic applications in industrial
scenarios demands for horizontal integration mechanisms with
already existing automation equipment, controlled by PLCs. This
paper aims to shorten the gap between the automation and
robotics domain, by proposing an Interprocess Communication
method to establish interoperability between robotic systems and
automation equipment in a reliable and straightforward manner.
In particular, this paper introduces a novel approach for linking
ROS and IEC 61131-3 by way of shared memory interfaces,
enabling and promoting their interactions. Moreover, this paper
addresses the applied synchronization mechanism for handling
concurrent accesses to the shared memory location, explores data
type mapping between ROS and IEC 61131-3, and identifies some
practical industrial applications.

I. INTRODUCTION

In recent years, an ever-increasing interest for robotic ap-
plications in industrial contexts accelerated the development
of more flexible and adaptive Cyber-Physical Systems (CPS)
[1]. With the industrial emergence of such systems, great
challenges and opportunities appear in terms of their verti-
cal integration with Manufacturing Execution System (MES)
and Enterprise Information Systems (EIS) [2], and horizontal
integration with a vast array of automation equipment.

The current manufacturing paradigm enhances the obliga-
tion for companies to respond quickly to customer needs and
market changes, increasing demand diversity, products with
shorter life cycles, and low volumes per order, while still
managing costs and maintaining, if not improving, quality and
reliability. In order to cope with these requirements, companies
need responsive robotics and automation solutions, which must
not only have effective communication methods, but also be
quickly re-programmable and re-allocable to different man-
ufacturing tasks. Moreover, the advent of flexible industrial
robotic solutions, that vastly diverge from the classical fenced
approach, increase the necessity of methods for expediting
the intercommunication with automation equipment, as to
empower the Plug'n'Produce concept [3].

In contrast with current needs, the interoperability between
robotics and automation equipment is still an open-ended
problem. In fact, even on the automation scope, there are
still many challenges on integrating industrial hardware from
different vendors, due to proprietary protocols, communication
interfaces, and buses. Most frequently than desired, in order to
not expose the system to the risk of incompatibility, integrators

opt for equipment from the same vendor, due to the usual
inconvenience of combining hardware from different suppliers.

Initiatives such as OPC-Unified Architecture (OPC-UA) [4]
are being proposed with the goal of improving interoperability
amongst automation equipment and support connectivity with
MES, EIS and Human-Machine Interfaces (HMIs). Although
promising, their reach has not yet fully expanded to the
robotics community and to practical horizontal integration
efforts.

As a consequence, connectivity between robots and indus-
trial hardware is often limited to communications through
fieldbuses. Indeed, the Robot Operating System (ROS) com-
munity and initiatives such as ROS-Industrial currently provide
support for interoperability with some fieldbuses, such as
Modbus, CANopen, EtherNET/IP, and EtherCAT. Although
possible, the usage of fieldbus-based communication in ROS
can still be a cumbersome task, on account of the inherent de-
velopment overhead imposed by the aforementioned protocols.
Furthermore, this support represents a significant development
effort for the robotics community, and practical results can
easily become outdated or originate unstable interfaces.

To overcome these limitations, this paper proposes a
communication method between automation equipment and
robotic systems that facilitates the establishment of an ef-
fective, bidirectional, reliable, and structured interoperability
between robotic systems and software-based Programmable
Logic Controllers (PLCs). Specifically, this paper explores a
method for establishing bidirectional communication between
ROS and CODESYS, a softPLC based on the IEC 61131-3
standard running on an embedded system. In the proposed ap-
proach, an Interprocess Communication (IPC) method, based
on a publisher-subscriber messaging pattern is employed.
The achieved implementation explores the existing style for
transmitting information between ROS nodes and extends it
to support IPC through a shared memory methodology. As
such, the proposed application allows a ROS node to publish
a message to a topic and have its content written on a
shared memory location, that can then be read by CODESYS.
Inversely, it also makes possible for CODESYS to write data
on a shared memory location, that is then propagated through
a ROS topic for the ROS system. This paper also addresses
the measures adopted to handle process synchronization in the
perspective of concurrent access to a shared memory location,
using a semaphores-based approach.

Thus, the proposed approach is able to establish interop-

978-1-5386-4829-2/18/$31.00 ©2018 IEEE 1085

erability between robotic systems and automation equipment.
Furthermore, it allows ROS systems to use CODESYS as a
communication bridge, taking advantage of its natural ability
to establish effortless communication with fieldbuses and even
to protocols not yet supported by ROS, such as OPC-UA. Also,
it enables and promotes interaction between the robotics and
the automation domains, making the best use of both worlds.
Examples of possible applications include the possibility for
a ROS system to take advantage of tools such as motor
drivers that are known for being stable in CODESYS, or the
possibility to re-program robot tasks using IEC 61131-3, which
might be appealing for automation technicians who do not
possess the required skills to delve into complicated robotic
systems and architectures.

The remainder of this paper is organized as follows: Section
II describes related work, Section III details the developed
approach, Section IV explores potential applications of the
proposed approach, and, finally, Section V draws the conclu-
sions.

II. RELATED WORK

Developing a completely new robotic application can be
discouraging if the developer has to start programming from
driver-level up to the high-level tasking. Besides being time
consuming, this whole spectrum of knowledge is usually
beyond the capabilities of researchers and robotic enthusiasts.
Given these problems, there is a need for a unified software
architecture that simplifies the development of new robotic
applications. Due to its modularity, helpful tools and active
community, in the last years, ROS has become a de facto
framework for robot development, and is expanding its indus-
trial presence over time.

A typical ROS architecture is modular, in the sense that
each component of the system can be decomposed in an
arrangement of nodes, each responsible for a particular feature
in the global robotic system. Therefore, ROS systems are
typically composed by multiple nodes that are interconnected
by communication mechanisms in a distributed fashion [5].
Even though ROS supports other means of internal com-
munication, usually it is accomplished through a publisher-
subscriber pattern [6]. By using this pattern, messages are
published on topics which have a specific name in the ROS
network. Other nodes can access data published on these
topics, by subscribing them by their names. Each topic has
a message type, which determines the type of data to be
transmitted. Some of these types are already predefined as
standard messages, nonetheless it allows users to create their
own custom messages.

In what concerns to industrial automation, one of the most
important standards is the IEC 61131 which defines all the
aspects of PLC development. The third part of this standard,
IEC 61131-3, deals with the programming aspect of PLCs and
defines the programming model, composed of three Program
Organization Units (POUs) and five programming languages
[7]. This standard has brought unification among PLC man-
ufacturers, allowing more compatibility and code portability

between devices, taking advantage of the modern concepts of
software technology. Even though PLC vendors have generally
accepted this standard, they are adopting it at their own
pace and with some modifications, which results in programs
created for different PLC brands not being fully compatible.
A broader acceptance came from softPLC vendors, since the
recentness of the technology allowed for an outright disregard
of maintaining backward compatibility with existing PLC
programs [8].

Currently, sofPLCs are replacing traditional PLCs in many
fields. Its hardware agnostic framework allows costumers to
choose the most suitable device for its application. SoftPLCs
can be implemented in a vast number of devices, ranging
from smaller embedded devices to robust industrial computers.
Usually, devices running softPLCs are provided with powerful
and flexible communication systems and its instructions can
be easily updated [9].

One of the most known names in the sofPLCs market is
CODESYS, from the German company 3S-Smart Software
Solutions GmbH. Besides its softPLC that runs on Windows
and Linux, CODESYS also offers an Integrated Development
Environment (IDE) for PLC programming that implements
to a great extent the IEC 61131-3 standard and allows users
to program not only the CODESYS softPLC, but also PLCs
from multiple vendors. CODESYS is hardware-independent,
nonetheless, there are more than 250 hardware manufacturers
who have chosen to use CODESYS as a development tool for
their equipment [10]. Besides being IEC 61131-3 compliant,
CODESYS supports a vast variety of fieldbuses such as
PROFIBUS, CANopen, EtherCAT, PROFINET, EtherNet/IP
and MODBUS.

Traditionally, these fieldbuses are the main way of bridging
PLCs or softPLC applications to the non-automation domain.
Nonetheless, softPLCs are applications running on PC-based
devices which can support other applications running in
parallel. Therefore, the communication with non-automation
software by softPLCs can also be achieved through IPC
methods. The advantage of using IPC instead of fieldbuses
is that by using the later, data must be routed through all
the network layers inherent to network-based communication,
introducing unnecessary overheads. These overheads can be
avoided by implementing IPC methods which usually outper-
form network-based ones.

The fieldbus approach can be observed in a multitude
of robotic applications, where there is an implicit need to
interconnect the automation and robotic disciplines. One ex-
ample is the Rollin'Justin robot, a mobile platform coupled
with a humanoid upper body [11]. In this robot, a TwinCAT
sofPLC from BECKHOFF was installed and used as a data
logger, communicating with the mobile platform and a real-
time control computer using EtherCAT and communicating
with the robot arms and torso using SERCOS. Although not
frequent, similar approaches as the one proposed by this paper
were already pursued. An example is the control of a parallel
cable robot used for large scale assembly of solar power plants
[12]. In this case the control of the robot was implemented

1086

on a PC-based real-time operating system, where the softPLC
communicates with a numeric control kernel through shared
memory.

Both of the aforementioned practical approaches were ef-
fective in solving their own problems, but the developed
solutions could not be easily applied in different systems
with different configurations, since they were developed in
an ad hoc fashion, i.e., programmed to interchange problem-
specific variables. Contrary to the problem-oriented approach
described in the previous examples, this paper proposes to
maximize the re-usability of the bridge between ROS and
CODESYS by sharing variables using an IPC method in a
dynamic way.

Additionally, a communication system between ROS and
an open source softPLC, BEREMIZ, was proposed in [13]. In
this work, the authors achieved successful interoperability by
mapping variables between a ROS system and a BEREMIZ
softPLC application. Adapting this approach to CODESYS
is not straightforward, since, unlike BEREMIZ, CODESYS
is not open source. As such, one is bounded to imple-
ment this communication interface using libraries provided by
CODESYS.

An IPC method that CODESYS supports by default is
the POSIX shared memory. This library provides functions
for accessing a memory area that can be shared by multiple
processes. In order to avoid data corruption, it is necessary to
assure that only a single process accesses the shared memory at
a given time [14]. This can be achieved by implementing a syn-
chronizing mechanism. In the CODESYS side of the equation,
there is a library that implements POSIX semaphores, which
can guarantee the shared memory access synchronization. Both
POSIX shared memory and POSIX semaphores can also be
implemented on ROS, making this communication method
a viable solution to accomplish data transmission between a
ROS system and a CODESYS softPLC running on the same
device.

III. IPC BETWEEN ROS AND CODESYS

In order to achieve the proposed IPC communication be-
tween ROS and CODESYS, two independent interfaces must
be implemented: one on ROS side and other on CODESYS
side. These interfaces are mutually responsible for capturing
and writing data to the shared memory location, and conse-
quently, reading and transmitting data located on the shared
memory location to processes that will use it. Thus, this
method is bidirectional, in the sense that both CODESYS and
ROS must be able to transfer and access data located on the
shared memory location.

The most primitive approach to implement this methodology
would be individually mapping each variable to share on both
sides, i.e., on ROS nodes and on CODESYS programs. This
approach would grant read and write access to a common
variable mapped on the ROS and CODESYS systems. Al-
though the complexity of this implementation is not daunting,
for each variable to be shared by both processes there is an
implicit need to repeat the shared memory implementation

S
h

a
re

d
 M

em
o
ry

ROS System

Node 1

Node 2

Node n

Topic 1.1

Topic 1.2

Topic 2.1

Topic 2.2

Topic n.1

Topic n.2

Topic n.n

R
O

S
 R

ea
d

 &
 W

ri
te

 N
o

d
es

Program 1

Progam 2

Program n

FB 1.1

FB 1.2

FB 2.1

FB 2.2

FB n.1

FB n.2

FB n.n

C
O

D
E

S
Y

S
 G

V
L

 (
F

u
n

ct
io

n
 B

lo
ck

s)

CODESYS softPLC

S
em

a
p

h
o

re
s

S
em

a
p

h
o

re
s

Fig. 1. High-level overview of the proposed ROS-CODESYS interprocess
communication interface architecture. In the proposed architecture, a syn-
chronization mechanism based on semaphores handles concurrent accesses to
the shared memory location. Figures 2 and 4 will present in more detail the
proposed ROS and CODESYS interfaces, respectively.

code. Besides not being feasible and scalable in large systems
with multiple variables, this basic approach could be error-
prone and problematic when applied to complex ROS and
CODESYS systems.

To tackle these limitations, this paper proposes a more sys-
tematic approach to allow an intuitive and fast implementation
of a shared memory interface between ROS and CODESYS
systems. The proposed approach aims to be easily adaptable to
fit already existing robotic and industrial automation systems.
Moreover, unlike the aforementioned procedure, the proposed
approach allows data transferring through shared memory in
a dynamic way, taking advantage of ROS and CODESYS
features. The proposed ROS and CODESYS interfaces will be
described in Sections III-A and III-B, respectively. Moreover,
Section III-C dissects how the proposed approach implicitly
addresses the synchronization mechanism that handle con-
current accesses to the shared memory location, using a
semaphore-based approach. Finally, Section III-D will portray
how data types between ROS and IEC61131-3 were mapped
and will delve into user-defined custom message types.

A. ROS Interface

One of the main features of ROS is its implementation
of the publisher-subscriber pattern that allows communica-
tion between nodes. As such, there are obvious advantages
in connecting ROS topics to the proposed shared memory
methodology: on one hand, developers could create new ROS
packages with capabilities to connect with CODESYS using
the topic-based interfaces that they are already used to work
with. On the other hand, adapting existing ROS packages to
work with CODESYS would be an easy task, since existing
packages are already compliant with the publisher-subscriber
ideology. An additional benefit would be the fact that ROS
nodes could communicate with CODESYS programs without
being aware that it is out of the ROS system. Furthermore,
since the publisher-subscriber pattern has a many-to-many data

1087

model, the data shared with CODESYS could be read and
modified by multiple ROS nodes.

Therefore, a shared memory interface that is capable of pub-
lishing and subscribing the appropriate topics was conceptual-
ized. The proposed interface is able to read messages published
by the ROS system and write its content to the shared memory
location, that is then accessible by the CODESYS interface.
Similarly, on the other way around, it is also able to read
what the CODESYS system had written in the shared memory
location and publish it to a topic, making the data available
for being subscribed by any ROS node. A representation of
the adopted architecture is depicted in Figure 1. In it, it is
possible to observe that by using an interface interconnected
dynamically with ROS topics it is possible to have multiple
nodes sharing data with CODESYS programs.

In practical terms, the implementation on the ROS side was
developed around a C++ template class. Each instance of this
class corresponds to a subclass associated with a ROS message
type and its relative CODESYS compatible structure. This data
type mapping will be further addressed in Section III-D.

As such, whenever a developer needs to transmit data
between a ROS topic and the shared memory, an instance of
a subclass of the template needs to be created, matching the
message type of the corresponding topic. This subclass takes
the name of the topic as an input to its constructor method,
and uses this information not only to identify the topic, but
also to identify the named shared memory location and its
corresponding semaphore. Internally, within this subclass, in
order to read and publish the content of the named shared
memory location, a method responsible for triggering all the
pipeline of operations needed to route the data from the shared
memory to the desired topic is called. This pipeline includes
operations such as reading data from the shared memory,
mapping it to the structure which is equivalent to the respective
ROS message, convert the structure into a real ROS message,
and, finally, publish it on the topic. Similarly, to write data to
the shared memory, an internal method triggers the pipeline to
route the data from the ROS topic to the named shared memory
location. This pipeline encompasses all the operations that are
necessary to route the data published on a given ROS topic,
transform it into a CODESYS compatible data structure, and
then map this structure to the shared memory named after the
subscribed topic.

On these operations it is crucial to synchronize the access
to the shared memory in order to maintain the integrity of the
data. Therefore, all interactions with the shared memory are
preceded by a semaphore lock and followed by a semaphore
release, in order to avoid data corruption. When the semaphore
is locked, if the CODESYS application tries to access the
shared memory, it will have to wait until the ROS node finishes
the operation and releases the semaphore. Section III-C will
present further details on this synchronization mechanism.

Even though the proposed mechanism can be instantiated in
any ROS node, it was idealized to be used on isolated nodes
that are only responsible for handling this IPC method. This
way, other nodes on the system can be completely unaware

that the information that is subscribed or published to a topic
is being shared with CODESYS. A representation of the
idealized communication node is depicted on Figure 2, where
on a single node there are multiple instances of the interface
objects, corresponding to various topics. Each object has a
read or write method that can be called to execute the desired
goal.

Shared Memory

ROS Interface Node

R
O

S
 T

o
p

ic

shared_memory_topic_interface

ROS Message

subscribe() publish()

CODESYS compatible struct

Convertion methods

write() read()

Semaphores

R
O

S
 T

o
p

ic

Fig. 2. Conceptual overview on the proposed ROS shared memory interface.

B. CODESYS Interface

On the industrial automation side, since the IEC 61131-3
standard does not define any publisher-subscriber messaging
pattern, it was necessary to implement a system that mimics
this pattern, using tools available on CODESYS. In order to
make the interchanged data available to all programs on the
CODESYS project, it was decided to use Global Variable Lists
(GVLs). GVLs are components of the IEC 61131-3 standard
that allow variables to be declared and made available to all
POUs of a project.

Following the pattern of the ROS implementation, two
Function Blocks (FBs) were assigned to handle each ROS
message type. On this idealization, one FB is responsible for
reading data from the shared memory (the subscriber), while
the other is responsible for writing data to the shared memory
(the publisher). Having the publisher and the subscriber in
separate FBs simplifies the implementation of ROS communi-
cation using the graphical programming languages of the IEC
61131-3 standard. In Figure 3, there is a representation of the
FBs used for reading and writing an equivalent data structure
of a ROS Pose message.

In Figure 4, the interaction between CODESYS elements
can be analyzed. The FBs responsible for reading and writing
data to ROS topics are declared on a GVL. The data read
by the reading method of the FB will be mapped to a data
structure that will be available to be used by CODESYS
programs and FBs under the same project. Similarly, data from
programs and FBs in the CODESYS project can be used as
input to the analogous writing FBs.

In what regards implementation, since the CODESYS in-
terface is going to read and write data to the shared memory
which will, in turn, be related to the corresponding ROS topics,

1088

Fig. 3. ROS Pose message represented as graphical FBs on IEC 61131-3. On
the left side, the FB used for reading the ROS Pose message from the shared
memory is shown, while on the right side, the FB employed for writing the
referred data to the shared memory is depicted.

a data structure similar to the one used on the ROS interface
must be also declared in the CODESYS domain, using the IEC
61131-3 nomenclature. Due to limitations related with object-
oriented programming in IEC 61131-3, creating a template
class, as was done in the ROS implementation, was not
feasible. Therefore, attending also to the usability of the
graphical languages of the IEC 61131-3 standard, two FBs
were created for each type of message, one responsible for
reading data from the shared memory location, and the other
responsible for writing data to it. The instantiation of both
types of FBs is done on a GVL, using the name corresponding
to the associated ROS topic. Besides being the name of the
topic, this denomination will also identify the respective shared
memory and semaphore.

Similarly to the implementation on ROS, these FBs contains
variables and methods. Variables are used to implement the
semaphores, the shared memory mechanisms, and the structure
related with the ROS messages. Methods are responsible for
initializing the shared memory and the semaphore with the
appropriate topic name, and to trigger the operations needed
to access the shared memory and read its content or to write
data to it.

In order to use the proposed CODESYS interface, a devel-
oper must add to its project three kinds of objects: GVLs,
where the FBs used as interface with the shared memory
are declared, a program to call the methods responsible to
access and modify the shared memory, and a task to trigger
the preceding program periodically.

C. Synchronizing the Access to the Shared Memory

The POSIX shared memory library by itself does not
have any synchronizing mechanism. To avoid data cor-
ruption, a synchronizing mechanism must be implemented.
For this purpose, CODESYS offers the SysSem and
the SysSemProcess libraries. Both libraries implement
semaphores described on POSIX.1b standard. The main differ-
ence between them is that SysSem library creates semaphores
associating them to a pointer and the SysSemProcess
creates semaphores associating them to a string, therefore it is
commonly known as named semaphore.

CODESYS Project

Main Program

GVL

Reading FB Writing FB

Data Structure

Read()

Data Structure

Write()

Shared Memory

Semaphores

Fig. 4. Conceptual overview on the proposed CODESYS shared memory
interface.

Both functionalities are also available to implement on
the ROS side through the API for C/C++ of the Realtime
Extension library of the POSIX standards. Among other fea-
tures, this library implements shared memory and semaphore
functions compatible with the CODESYS ones.

The usage of the same string to identify semaphores and
shared memory locations is a simplification to the proposed
implementation, allowing efficient and reliable synchroniza-
tion between ROS and CODESYS without a previous agree-
ment of a specific memory location. The role of the synchro-
nization mechanism in the overall architecture of the system
can be seen in Figure 1.

D. Mapping Data Types

In order to ensure the exchange of information through
the proposed IPC method, it was necessary to check the
compatibility of the data types between ROS and CODESYS.
As will be analyzed, in some cases where the data types were
not compatible, a conversion mechanism was developed in
order to establish a reliable communication.

The conducted analysis mapped which IEC 61131-3 data
types corresponded to ROS message primitive data types in
C++. Table I presents the relation between the ROS message
primitive data types and the data types of IEC 61131-3.

TABLE I
CORRESPONDENT DATA TYPES BETWEEN ROS, C++ AND IEC61131-3

Description ROS C++ IEC 61131-3
Boolean bool bool BOOL

Signed 8-bit Integer int8 int8 t SINT
Unsigned 8-bit Integer uint8 uint8 t USINT
Signed 16-bit Integer int16 int16 t INT

Unsigned 16-bit Integer uint16 uint16 t UDINT
Signed 32-bit Integer int32 int32 t DINT

Unsigned 32-bit Integer uint32 uint32 t UINT
Signed 64-bit Integer int64 int64 t LINT

Unsigned 64-bit Integer uint64 uint64 t ULINT
32-bit IEEE Float float32 float REAL
64-bit IEEE Float float64 double LREAL

ASCII String string std::string STRING
Time (secs/nsecs) time ros::Time TIME
Time (secs/nsecs) duration ros::Duration TIME

1089

Generally, ROS message primitive data types are mapped to
C++ data types by the ROS C++ API, and, therefore, could be
directly mapped to the corresponding IEC 61131-3 data type.
Time related variables and strings are exceptions, in the sense
that they are mapped differently. Consequently, conversion
mechanisms were developed to handle these exceptions.

ROS uses strictly typed data structures as messages, which
can be composed not only of all standard primitive types,
but also its arrays and nested messages. IEC 61131-3 also
supports data aggregation by similar means, therefore the
implementation of the interface described on this paper was
developed in order to confine all messages into C structures
and map them to different shared memory locations. POSIX
shared memory objects are created in a virtual filesystem. In
Figure 5 there is a representation of the virtual filesystem as
a strip, where the data to be shared is disposed. Each shared
memory location is related to a message that is enclosed to
a structure, carries its own data fields and is identified by
a string. Each message can have single fields (struct 3),
multiple fields (struct 1) or even nested messages between
other fields (struct 2).

Shared Memory 1 Shared Memory 2 SM 3

Nested struct

struct 1 struct 2 struct 3

in
t

a

in
t

b

fl
o

a
t

c

b
o

o
l

a

in
t

b

fl
o

a
t

c

b
o

o
l

d

struct data

c
h

a
r

a

fl
o

a
t

b

u
in

t
c

in
t

d

fl
o

a
t

a

Fig. 5. Schematic representation of a shared memory virtual filesystem:
struct 1 represents a message with multiple fields, while struct 2 and
struct 3 represent messages with a single field and a nested message,
respectively.

ROS provides predefined messages to be used promptly:
std_msgs that contains wrappers for ROS primitive types
and common_msgs created for specific robotic tasks, which
include messages for ROS actions actionlib_msgs,
diagnostics diagnostic_msgs, geometric primitives
geometry_msgs, robot navigation nav_msgs, and
common sensors sensor_msgs. All predefined messages
were mapped from ROS to CODESYS except the ones that
uses multidimensional arrays with a non-defined length, due
to limitations imposed by IEC 61131-3 when dealing with
arrays of variable size.

Even though ROS common messages are frequently used
in robotic applications, in a complex system it is a recurring
practice to define new types of messages, composed by ROS
primitive data types that are more appropriate to a certain task
[6]. The proposed approach allows for an easy introduction
of user-defined custom messages in the system. On ROS, to
add a custom type of messages on the interface, the developer
needs to create a data structure compatible with CODESYS,
create a subclass of the template class derived by the type of
the new message, and, finally, overload the methods used for
reading and writing to the shared memory. On the CODESYS
side, the developer needs to create the FBs used to access and

modify the shared memory, based on generic shared memory
FBs already implemented.

The introduction of user-defined custom messages is a
systematic process that can be even automated with a custom
script that generates code based on the message type informa-
tion.

IV. PRACTICAL APPLICATION EXAMPLES

The IPC method proposed in this paper was idealized for a
BeagleBone Black running the CODESYS softPLC runtime
v3.5.10.30 and ROS Kinetic on Ubuntu 16.04. Since both
CODESYS and ROS are supported by multiple devices run-
ning Linux, the proposed interfaces could be easily achieved
using other embedded devices. Therefore, the reach of prac-
tical applications for the proposed IPC method is indubitably
broad, as demonstrated in Figure 6. In this section, three
examples of potential practical applications are portrayed.

Embedded Device

ROS CODESYS
Shared

Memory
I/O Board

Industrial Equipment

Embedded Device

ROS CODESYS
Shared

Memory
PLC

Industrial Equipment

Industrial

Communication

Fig. 6. Potential application examples of the proposed ROS-CODESYS
bridge: on the top, ROS can directly actuate on an industrial equipment
through the proposed interfaces; on the bottom, a ROS system running in
parallel with CODESYS on an embedded device, such as a BeagleBone Black,
can interact via industrial communication with an external PLC.

A. Using CODESYS as Communication Bridge

CODESYS framework has tools that make the implemen-
tation of fieldbuses and other industrial network protocols
effortless. Even though there are already some packages imple-
menting these protocols on ROS, the development processes
can be difficult and slow.

In order to facilitate the communication between a ROS
system and a device using fieldbuses, a CODESYS project
could be developed just to handle the external communications
in an uncomplicated way. The information to be transmitted
to the device could be published on a ROS topic, subscribed
and mapped to a shared memory, read by CODESYS and then
handled by the CODESYS fieldbus implementation. It could
also work on the other way, where the device transmits data via
a fieldbus to CODESYS, that is then responsible for mapping
that information through the shared memory mechanism to be
read and published on a ROS topic.

This approach could be specially handy if it is neces-
sary to communicate with a device trough a protocol not
yet implemented on ROS, such as OPC-UA. OCP-UA is
currently supported on CODESYS and it would be easy to
share information between ROS and an OPC-UA device, even
maintaining the structural composition of ROS messages.

1090

B. Horizontal Integration between ROS and CODESYS

CODESYS is not only helpful in dealing with network
connections, a robot developed in ROS can also take advantage
of other tools and plug-ins provided by CODESYS, such as ad-
vanced motion control, which implementation is simpler than
developing controllers for motor drivers on ROS. CODESYS
also offers a simple way to create visualizations for HMIs
that can be accessed through the web that could facilitate the
integration of an user interface for a robot.

An industrial machine can also be programmed using
CODESYS as softPLC. Therefore, using the proposed bridge,
effective horizontal integration between machines and robots
can be achieved. For example, a mobile manipulator can have
the task of machine tending on multiple industrial machines
controlled by CODESYS. When each machine finishes its
task, it can communicate with the mobile manipulator to
signalize that the finished product is ready for pick up using
the proposed ROS-CODESYS bridge.

C. Programing robotic tasks in IEC 61131-3 programming
languages

The parametrization of robotic applications can also be
done using CODESYS. To achieve this configuration, robotic
applications developed on ROS must be expecting data coming
from the CODESYS system. In this way, robotic tasks can be
activated and parameterized using CODESYS.

This can be helpful in industrial contexts due to the lack
of robotic specialists in the shop floor of an industrial plant.
In contrast, it is common to have operators familiar with
the IEC 61131-3 programming languages. Therefore, these
operators can use their knowledge to reprogram robots using
IEC 61131-3, without the necessity of delving into complex
robotic systems or programming tools.

V. CONCLUSION

This paper proposes an IPC method to establish interoper-
ability between robotic systems and automation machinery, in
the form of a shared memory interface implemented on ROS
and CODESYS. Besides specifying the development approach
followed in the implementation of both interfaces, this paper
also delves into mapping data types between ROS and IEC
61131-3, and the conceived synchronization mechanisms to
handle concurrent access to the shared memory location.

It is expected that the proposed approach can play an
important role in linking PLCs, programmed in conformity
with the IEC 61131-3 standard, and robotic systems, developed
with the ROS framework. This can not only promote the
horizontal communication between robots and industrial ma-
chines, answering the contemporary industrial needs, but also
make robot re-programming easier to automation technicians,
contributing to a better acceptance of robotics in industry.

Future work will include automated scripts to handle the
integration of user-defined custom messages autonomously,
assessments with diverse industrial equipment and robotic
systems in practical industrial scenarios, and integration with

service-oriented communications, for a broader scope of uti-
lization.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 - The EU Frame-
work Programme for Research and Innovation 2014-2020,
under grant agreement No. 723658.

This work is financed by the ERDF European Regional
Development Fund through the Operational Programme for
Competitiveness and Internationalisation - COMPETE 2020
Programme, and by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e Tecnolo-
gia, within project SAICTPAC/0034/2015- POCI-01-0145-
FEDER-016418

REFERENCES

[1] P. Leitão, V. Mařı́k, and P. Vrba, “Past, present, and future of industrial
agent applications,” IEEE Transactions on Industrial Informatics, vol. 9,
no. 4, pp. 2360–2372, 2013.

[2] W. He and L. Da Xu, “Integration of distributed enterprise applications:
A survey,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1,
pp. 35–42, 2014.

[3] G. Reinhart, S. Krug, S. Hüttner, Z. Mari, F. Riedelbauch, and
M. Schlögel, “Automatic configuration (plug & produce) of industrial
ethernet networks,” in Industry Applications (INDUSCON), 2010 9th
IEEE/IAS International Conference on. IEEE, 2010, pp. 1–6.

[4] T. Hannelius, M. Salmenpera, and S. Kuikka, “Roadmap to adopting opc
ua,” in Industrial Informatics, 2008. INDIN 2008. 6th IEEE International
Conference on. IEEE, 2008, pp. 756–761.

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.

[6] A. Santos, A. Cunha, N. Macedo, R. Arrais, and F. N. Dos Santos,
“Mining the usage patterns of ros primitives,” in Intelligent Robots and
Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE,
2017, pp. 3855–3860.

[7] M. Tiegelkamp and K.-H. John, “Iec 61131-3: programming industrial
automation systems,” 1995.

[8] M. De Sousa, “Proposed corrections to the iec 61131-3 standard,”
Computer Standards & Interfaces, vol. 32, no. 5-6, pp. 312–320, 2010.

[9] M. Zhang, Y. Lu, and T. Xia, “The design and implementation of virtual
machine system in embedded softplc system,” in Computer Sciences and
Applications (CSA), 2013 International Conference on. IEEE, 2013,
pp. 775–778.

[10] D. H. Hanssen, Programmable Logic Controllers: A Practical Approach
to IEC 61131-3 Using CODESYS. John Wiley & Sons, 2015.

[11] M. Fuchs, C. Borst, P. R. Giordano, A. Baumann, E. Kraemer, J. Lang-
wald, R. Gruber, N. Seitz, G. Plank, K. Kunze et al., “Rollin’justin-
design considerations and realization of a mobile platform for a hu-
manoid upper body,” in Robotics and Automation, 2009. ICRA’09. IEEE
International Conference on. IEEE, 2009, pp. 4131–4137.

[12] A. Pott, C. Meyer, and A. Verl, “Large-scale assembly of solar power
plants with parallel cable robots,” in Robotics (ISR), 2010 41st Inter-
national Symposium on and 2010 6th German Conference on Robotics
(ROBOTIK). VDE, 2010, pp. 1–6.

[13] M. de Sousa and H. Sobreira, “On adding iec61131-3 support to ros
based robots,” in Emerging Technologies & Factory Automation (ETFA),
2013 IEEE 18th Conference on. IEEE, 2013, pp. 1–4.

[14] R. Benosman, K. Barkaoui, and Y. Albrieux, “A new dynamic ipc-
memory allocator based on a paging approach,” in High Performance
Computing and Simulation (HPCS), 2013 International Conference on.
IEEE, 2013, pp. 382–389.

1091

Powered by TCPDF (www.tcpdf.org)

