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ABSTRACT

Novelty detection has been presented in the literature as
one-class problem. In this case, new examples are classified
as either belonging to the target class or not. The examples
not explained by the model are detected as belonging to a
class named novelty. However, novelty detection is much
more general, especially in data streams scenarios, where
the number of classes might be unknown before learning and
new classes can appear any time. In this case, the novelty
concept is composed by different classes. This work presents
a new algorithm to address novelty detection in data streams
multi-class problems, the MINAS algorithm. Moreover, we
also present a new experimental methodology to evaluate
novelty detection methods in multi-class problems. The data
used in the experiments include artificial and real data sets.
Experimental results show that MINAS is able to discover
novelties in multi-class problems.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION

Novelty detection has been presented as a one-class prob-
lem where the goal is to discriminate examples from the
“Normal” and not “Normal” classes. The learning phase is
based only on examples from one class (the normal concept).
In the application phase, the stream of unlabeled examples
can be classified as either normal, belonging to the normal
concept learned in the training phase, or unknown, not be-
longing to the normal concept. The unknown examples can
indicate the presence of a new class, a novelty, which was
not learned in the training phase.

We understand that novelty detection is much more gen-
eral than the one class-problem. In novelty detection prob-
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lems, the normal concept may be composed by different
classes, and novel classes may appear in the course of time,
resulting in a concept evolution. Thus, the decision model
cannot be static, but it should rather evolve to represent
the new emergent classes. Therefore, we understand that
novelty detection is a multi-class classification problem.

Data streams are an important scenario for novelty de-
tection techniques. A data stream is a sequence of objects
that are continuously produced according to a probability
distribution, which can change in the course of time. In this
scenario, new concepts may appear and known concepts may
change [14]. Since concepts are hardly ever constant, the ap-
plication of novelty detection in data streams represents an
important challenge [7].

In this study, we propose a new algorithm, named MINAS
(MultI-class learNing Algorithm for data Streams), to deal
with novelty detection in data streams multi-class problems.
MINAS has five major contributions: i) the decision model
that represents the known concept about the problem can
address multi-class problems; ii) the use of a set of cohesive
examples, not explained by the current model, to learn new
concepts or extensions of the known concepts, making the
decision model dynamic; iii) detection of different novelties
and their learning by a decision model, representing there-
fore a multi-class scenario where the number of classes is not
fixed, iv) the use of only one decision model (composed by
different clusters) representing the classes of the problem,
either learned in the training phase, or learned in the course
of time and v) in the presence of outliers, isolated examples
are not considered as a novelty, because a novelty is com-
posed by a cohesive and representative group of examples.
We also propose a new experimental methodology to evalu-
ate the novelty detection methods for multi-class problems.

The paper is organized as follows. Section 2 describes the
main related works. Section 3 presents the problem formu-
lation and explains the main aspects of the our approach.
Section 4 introduces the new experimental methodology for
multi-class problems, the experiments carried out and the
results obtained for different data sets. Finally, Section 5
summarizes the conclusions and discusses future works.

2. RELATED WORK

Most techniques treat novelty detection as a one-class
classification problem [9, 14]. Thus, the decision model is
learned using a single concept and new examples are classi-
fied as either member of this concept or not [7]. Several tech-
niques were used for one-class-classification in novelty de-
tection like Artificial Neural Networks (ANN) [10], Support



Vector Machine (SVM) [5] and kernel based approaches [2].
The most popular techniques are non-parametric, including
Parzen windows [15] and kNN based approaches [4]. These
techniques present at least one of the following problems:
i) treat the novelty detection as one-class problem; ii) the
presence of a single new example, not explained by the cur-
rent decision model, indicates a novelty; iii) classify a new
example as normal or novelty, but only one novelty exists
iv) the decision model representing each class is statistic.

One algorithm that tries to overcome some of these prob-
lems, OLINDDA (OnLIne Nowvelty and Drift Detection Algo-
rithm) [14], continuously detects and incorporates novel con-
cepts from data streams using data clustering. OLINDDA
uses offline and online learning phases and creates three
main models: normal, extension and novelty. Each model is
represented by a set of clusters. The normal model is static
and built in the offline phase. The extension model iden-
tifies a small change in the normal concept. The novelty
model is composed by examples that are distant from the
normal model. In the OLINDDA algorithm, a new novelty
is detected using a set of cohesive examples and the normal
model can be extended using the extension model. How-
ever, OLINDDA is not suited to multi-class problems and
only the normal model, learned in the training phase, can
be extended over the stream.

Masud et al. [11] proposed ECSMiner, a supervised learn-
ing algorithm for data stream classification that integrates
novel concepts in a concept drift data stream scenario. An
ensemble of classifiers was used and the stream was divided
into equal-size chunks, which were used to train a classifica-
tion model as soon as all instances in a chunk were labeled.
The ensemble is continuously updated, replacing the model
with the highest error by a new model. The error of each one
of the existing models was computed using the set of exam-
ples labeled in the last chunk. A new class is detected when
all classifiers discover it. This approach addresses novelty
detection in data stream multi-class problems. However, a
new model is obtained only when all examples in the chunk
are labeled. Different from MINAS, which uses an unsuper-
vised learning based approach, ECSMiner uses a supervised
learning algorithm. Thus, it is not possible to experimen-
tally compare them. Masud et al. [12] also proposed a sys-
tem to deal with recurring classes, a special case of concept
evolution, where a class may appear and later disappear in
the data stream.

Hayat et al. [8] proposed DETECTNOD, an approach for
novelty detection that uses a clustering algorithm to model
the normal concept. This approach relies on DCT (Discrete
Cosine Transform) to build a compact representation of the
clusters. In an online phase, examples that do not belong to
the normal concept are considered unknown. At the end of a
chunk k clusters are obtained from the unknown data, using
k-Means. DETECTNOD compares these clusters with the
normal model to detect drifts and novelties, using a thresh-
old value. DETECTNOD has a few limitations. First, there
is no validation criterion to identify the cohesion of the clus-
ters obtained from the unlabeled examples in a chunk. Sec-
ond, only the normal concept can be extended. Third, the
clusters that are distant from the normal concept are labeled
as novelty, but DETECTNOD does not identify if a set of
clusters compose one or more than one novelty (class).

The approach proposed in this work addresses multi-class
data stream problems using a unified decision model which

represents all the knowledge learned until the current mo-
ment composed by the classes learned in the training phase
and detected as novelty from the stream. This approach
updates this model whenever a new class is discovered or
an extension of the known class is identified. Besides, it de-
tects new concepts (or extensions) using a cohesive cluster of
examples that are distant from (or near to) all concepts pre-
viously learned. This work also proposes a new experimental
methodology to evaluate the performance of the algorithm
in a multi-class scenario.

3. MINAS ALGORITHM

3.1 Formalization of the problem

Let Dy = {(X1,11), (X2,Y2), ..y (Xm,ym)} be a training
set with m objects, where X is the vector of input attributes
for the i*" examples and y; is the corresponding target at-
tribute. The class y; € Y*", with Y = {c1, ¢2, .., ¢}, where
[ is the current number of classes. After training, a decision
model is created, representing the known concept. As new
data arrive, new classes can be detected, expanding the set
of class labels to Y = {c1, ca, .., ¢, ..., ¢k }, where the value
of k, with k > [, is previously unknown.

The data stream classification goal is to classify a new
example X, in one of the classes from the set Yo 1f Ynew
€ Y, we have a classical classification problem. Otherwise,
a consistent group of examples must be analyzed to identify
new classes that can be incorporated to the model and used
to classify new examples.

3.2 Overview

This section introduces MINAS, a new approach for nov-
elty detection in data streams multi-class problems. In data
stream multi-class problems, the normal concept can be
composed by more than one class and different classes can be
discovered in the stream. Thus, it is not enough to classify
a new example as belonging to the normal concept or the
novelty concept, since there can be more than one normal
concept class and more than one novelty concept class.

MINAS divides the learning process into two phases: of-
fline and online. The offline phase learns a decision model
based on the known concept about the problem. It is exe-
cuted only once. Next, the online phase receives new exam-
ples and classifies them either as one of the known classes
or as unknown. The algorithm also looks for cohesive group
of unknown examples to detect new classes or extensions of
the known classes. The decision model incorporates these
new classes and extensions. Moreover, the algorithm also
allows the model to forget outdated data and to automati-
cally adapt to concept drift. Figure 1 illustrates the online
phase. The details of each phase are described as follows.

3.3 Offline phase

The offline phase (see Algorithm 1) receives as input a
labeled data set containing examples from different classes.
This training data set is divided into subsets, each one rep-
resenting one class of the problem. A clustering algorithm,
like k-Means, can be used in each subset to create kin; clus-
ters, representing each class.

Although k-means algorithm has a low computational cost,
it may not be suitable for large data sets. We propose the use
of the CluStream [1] algorithm for the creation of the clus-
ters representing the classes, which was developed for data
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Figure 1: Overview of the online phase

streams clustering and can deal with large data sets. The
CluStream algorithm stores a statistic summary about data
in a structure called micro-clusters. These micro-clusters
are subjected to a clustering process (the authors suggest
the use of k-Means) in order to create the final clusters. In
this work, we use CluStream to select, for each subset of the
training set, a group of representative elements, the micro-
cluster centroids, and apply the k-Means algorithm to them
obtaining k;,; clusters for each class.

In the offline phase, the number of clusters (kin;)for each
training set class is automatically detected using the OMRE
method [13]. The initial model is composed by the union of
the k;n; clusters obtained for each class. As k-Means finds
spherical clusters, this work propose to represent each hy-
persphere by a center, a radius and a label (class associated
with the hypersphere).

Algorithm 1 MINAS: Offline Phase

Require: k;,;, algorithm, TrainingSet
1: for all classes C; in TrainingSet do
2: ModelT'mp <+ Clustering(TrainingSetCLass=c7., Kinis
algorithm) )
for all hyperspheres h in ModelTmp do
Labelh, < C,,
end for
Model + Model U ModelTmp
end for
return Model

3.4 Online phase

The online phase (see Algorithm 2 and 3) receives as input
an unlabeled data stream. MINAS checks each new example
to verify if it can be explained by the current model. If
the Euclidean distance between the new example and the
centroid of any hypersphere is less than the radius of this
hypersphere, then the example is considered to be covered
by this hypersphere and classified with the hypersphere label
(step 3 and 4, Algorithm 1). Otherwise, the example is
marked with the unknown profile and moved to a short-time
memory for further analysis (steps 6 and 7, Algorithm 1).

MINAS classifies a new example as either unknown, not
explained by the current model, or as belonging to a class,
which can be learned in the offline or online phase. Thus,
each hypersphere has a label. If the hypersphere is learned
in the offline phase, it receives a concept class label. For
hyperspheres learned in the online phase, it is necessary to
choose between two options. If the hypersphere represents

an extension of a known class, then its label is the same
label of the extended class. If the hypersphere represents a
novelty, then a new label must be created.

Algorithm 2 MINAS: Online Phase

Require: T, Model, Stream, NumMinExamples
1: ShortTimeMem +
2: for all elem in Stream do

3: if elem is inside an hypersphere h of Model then

4. Classify elem in Class Labely,

5: else

6: Classify elem as Unk

7 ShortTimeMem < ShortTimeMem U elem

8: if |ShortTimeMem| > NumMinExzamples then

9: Model < Novelty-Extension-Detection (Model, T,
ShortTimeMem)

10: end if

11:  end if

12: end for

3.5 Identifying novel concepts and determin-
ing the nature of new concepts

Every time a new example is labeled as unknown, it is nec-
essary to check if a minimum number of unknown examples
has already been found. If so, MINAS applies a cluster-
ing algorithm to the examples with unknown profile in the
short-time memory to discover new clusters (step 8 and 9,
Algorithm 2). Each new cluster is evaluated to verify if it
represents a valid cluster (step 3, Algorithm 3).

A new cluster is considered valid if its cohesiveness, de-
fined by the sum of squared distances between examples and
centroid divided by the number of examples, is at least half
of the cohesiveness of the normal model. If a new cluster
is valid, it is necessary to decide if it represents an exten-
sion or a novelty. Otherwise, it is necessary to update the
value of k (step 13, Algorithm 3). The value of k is adjusted
whenever a cluster is considered invalid, according to the
following conditions [14]: i) If most of clusters are invalid
because they have low density, the value of k is increased.
ii) If most of clusters are invalid because they have few ex-
amples, the value of k is decreased. iii) If all clusters are
valid, the k value is not adjusted.

If a valid cluster is detected, the next step is to find the
distance d between the centroid of the new hypersphere hy
and the centroid of its nearest hypersphere h (step 5, Algo-
rithm 3). If this distance is smaller than a threshold T', the
new cluster is labeled as an extension. Its label is the same
label of the hypersphere h (step 7, Algorithm 3). Other-
wise, the algorithm labels the new cluster as a new concept
(novelty) and creates a new label (step 9, Algorithm 3). In
both cases, the algorithm updates the model to incorporate
this new cluster (step 11, Algorithm 3). A hypersphere rep-
resenting a new class can overlap part of one of the hyper-
spheres of the model. In this case, MINAS does not consider
this hypersphere as a new class, but as an extension.

MINAS uses only one model representing the knowledge
learned until the current moment. This model is composed
by the clusters representing each one of the classes. In con-
trast to the majority of approaches in the literature that
discovers a new extension or novelty only using the model
learned in the offline phase, MINAS uses of only one model
representing the knowledge acquired in the offline and online
phases. Thus, it is possible, to extend concepts learned in
the online phase. Additionally, in the presence of noise and



outliers it is necessary to distinguish between the appear-
ance of a novel concept and the noise/outlier, represented by
sparse examples. Thus, MINAS applies a validation crite-
rion in order to guarantee that a novel concept is represented
by a cohesive and representative set of examples.

Algorithm 3 Novelty-Extension-Detection

1: ModelTemp < k-Means(ShortTimeMem,k)
2: for all hypersphere h; in ModelTemp do

3 if Validation-Criterion(h;) then

4 Let h the nearest hypersphere to h1 (h € Model)
5: Let d the distance between hy and h

6: if d < T then

7: Labely, < Label;, {Extension}

8 else

9: Labely, < new label {New concept}
10: end if

11: Model <+ Model U h;y

12: else

13: k = update()

14: end if

15: end for

16: return Model

In the online phase, each cluster stores the arrival time
stamp of the last example clustered by it. The clusters that
do not receive new examples for a given period are moved
to a sleep-memory, allowing the model to forget outdated
clusters. When a new cluster is validated, the sleep-memory
is consulted to decide between a new concept or an exten-
sion. If the distance between the centroid of the new cluster
and the centroid of one of the clusters in the sleep-memory
is lower than a threshold, this new cluster represents an ex-
tension of the concept represent by the cluster in the sleep-
memory. This may indicate the reoccurrence of a concept.

3.6 Heuristics used to select the value T

This study uses different strategies to select the best value
of T. The first uses an absolute threshold value, given by
the user. However, a good value can vary according to the
data set. Additionally, it is difficult to find a threshold able
to separate novelties from extensions properly. In general,
small values of T" produce many novelties and few exten-
sions; high values of T, on the other hand, produce many
extensions and few novelties. The second strategy is based
on cluster cohesion. In a cluster with high cohesion, small
values of T' must be used to distinguish extensions from nov-
elties. High values of T" must be used in a cluster with low
cohesion. The cohesion measure employed here is the sum
of the squared distances between the examples and the cen-
troid divided by the number of examples. The threshold
value used is the cohesion value multiplied by a factor f.
The value of f varies according to the data set. In the ex-
periments carried out, we used the value 1.1.

4. EXPERIMENTAL EVALUATION

4.1 Data sets and Test Setup

MINAS was implemented in Java. The experiments were
run on a PC with Intel Core 2 Duo processor with 2GHz and
3GB RAM. The code for k-means and Clustream were ob-
tained from MOA [3]. In Table 1, we describe the data sets
used in the experiments (all from UCI repository [6]). The
experiments analyze the performance of MINAS to detect
new concepts in a multi-class scenario. The first experi-
ments compare the performance of MINAS with OLINDDA

Table 1: Data sets used in the experiments

#Att. | #Exa. Classes (#Exa.)

Data set Normal Others
R (288)
s]%aé ance- 4 625 | L (288) B (49)
Biomed 5 194 | normal (127) | carrier (67)
Breast- 9 683 | benign (444) | malignant (239)
wisconsin
. Versicolor (50)
Iris 4 150 | Setosa (50) Virginica (50)
C1 (36,002) | O3 (18,180)
MOA 41 100,000 | o5 (35'831) | C4 (99.87)
Spruce-Fir Pond. Pine (35,754)
Forest (211,840) Cotton/Willow (2,747)
Cover 54 | 581,012 | Lodgepole Aspen (9,493)
Pine Douglas-fir (17,367)
(283,301) Krummbholz (20,510)

using classical data sets (rows 1 to 4 of the Table 1). After,
we used artificial data sets generated by the MOA frame-
work [3]. This framework allows deciding when new con-
cepts will appear/disappear. Finally, we evaluate MINAS
in a real multi-class scenario using the Forest Cover Type
data set [6].

The proposed methodology considers a subset of the prob-
lem classes as the normal concept, represented in bold in the
result tables, and uses the remaining classes as novel con-
cepts (see Table 1) that will be identified by the algorithm.
Each data set is divided into two subsets: training and test.
The training set contains only examples from the normal
concept classes. This set is used in the offline phase. The
test set contains examples from all classes, including the nor-
mal concept. This set is used in the online phase. the test
set contains the true class of each example and this infor-
mation is used only to compute the accuracy measures. The
training and test data sets were normalized.

For the initial decision model learning, we evaluated two
options. The first uses the k-Means algorithm in each set
that represents each normal concept class, creating the ini-
tial decision model. The second uses the CluStream algo-
rithm to extract a data statistic summary for each class —
micro-clusters — and use the k-Means algorithm in these
micro-clusters to obtain the cluster set that composed the
initial model. The last option is the fastest and may help
to prevent overfitting problems, once it uses only represen-
tative elements. The first option was used in small data sets
and the second in large data sets.

4.2 Experimental Methodology

This study proposes a new experimental methodology to
evaluate the performance of algorithms for novelty detection
in multi-class problems. It observes how the examples from
each class are classified: belonging to a class of the decision
model, learned in the offline/online phase, or unknown. The
label of the classes learned in the offline phase is available in
the training set and classes learned in the online phase are
represented by NV;, where ¢ is a sequential number. In con-
trast to the methodology used in the literature, the number
of examples classified to the class C; also includes the exam-
ples classified to an extension of the class C;. The examples
classified as unknown include those not explained by the cur-
rent model and those used to build the clusters representing
the novelties and extensions. Differently, the methodology
used in the literature does not consider the examples used
to build the novelties and extensions clusters as unknown.

In the proposed methodology, when the online process



Table 2: MINAS performance for the Iris data set
Class [ Final Class Distribution (variance)
Set. N1 N2 Unk
0.00 0.06(0.04)
0.06(0.01) | 0.39(0.02)
0.00 0.49(0.01)

starts, only the classes learned in the offline phase compose
the decision model. Thus, it is possible to classify a new ex-
ample as either belonging to one of the classes of the model
or as unknown. After a valid set of examples is processed
and a new concept is discovered, the decision model is up-
dated. Whenever MINAS detects a new concept, it adds a
new column to the confusion matrix to represent this new
concept. In this matrix, the rows represent the classes ob-
served in the stream and the columns the classes learned so
far by MINAS (used to classify new instances). The number
of columns increases as new concepts are discovered. Each
cell m;; of the matrix represents the number of examples of
the class i classified by MINAS to the class j.

This methodology allows the evaluation of the classifica-
tion process over the stream. In contrast to the batch-mode,
where the evaluation measures are presented at the end of
the classification process. In a data streams scenario, it is
important to use measures that evolve over the stream. Spe-
cially, when a new class is detected, it is important to eval-
uate the behavior of the system until this moment and to
increment the confusion matrix to support this new class.

4.3 OLINDDA vs MINAS

We analyzed the performance of OLINDDA (O) and MI-
NAS (N) in the following data sets: Balancescale, Biomed,
Breastwisconsin, and Iris. In the experiments, only one class
represents the normal concept (training set). The other
classes were used in the test set. The 10-fold-cross-validation
was used and the examples from each test set were shuf-
fled to prevent many consecutive examples from the same
class. The folds and the examples order are the same in
all executions. Figure 2 shows the experimental results for
OLINDDA (O) and MINAS (N) for these data sets. The
horizontal axis, X, represents the problem classes and the
vertical axis, Y, represents the percentage of examples clas-
sified into the classes normal, novelty and unknown by each
algorithm. Because the training set contains a small num-
ber of examples, only the k-means algorithm was used to
produce the clusters representing the classes.

MINAS classified more examples from the new concept
classes as novelty than OLINDDA. For such, MINAS used a
different approach to identify novelties/extensions. On the
other hand, the two algorithms classified a similar propor-
tion of examples as normal, probably because both use the
k-means algorithm to represent the normal concept. Table
2 shows the detailed accuracy results for the Iris data set,
where N1 and N2 represent two new classes (novelties) de-
tected by MINAS. Although MINAS found two new classes,
most of the examples from Ver. and Vir. were classified as
belonging to the class N1. According to these results, the
threshold value was not able to separate these two classes.

4.4 Artificial Data Sets

We generate the artificial data using the radial basis func-
tion (RBF) generator from MOA (Massive Online Analysis)

L R B normal carrier

Normal @ Novelty @ Unknow
(a) Balancescale (b) Biomed
[} M

bening malignant Set. Vers. Virg.

(d) Iris

Normal & Novelty @ Unknow

(c) Breastwisconsin

Figure 2: Experimental results for the OLINDDA
and MINAS algorithms.

Table 3: MINAS performance for the MOA data set
Class [ Final Class Distribution
C1 N2 | Unk
0.00 | 0.01
0.00 | 0.01
0.00 | 0.01

0.00 | 0.00 | 0.00

toolkit [3]. A fixed number of random centroids was gener-
ated, each with a random position and a class label. All
centers share the same initial standard deviation value (i.e.,
the centroid radius), which can vary with time. This creates
a normally distributed hypersphere of examples surround-
ing each center with (possibly) varying densities. Drift is
introduced by moving the centroids with constant speed.
We tuned the generator settings to introduce at most two
new classes along the time. The new event (class appear-
ance/disappearance) frequency was set to 30,000 and the
clusters move a distance of 0.01 at every 1,500 examples.
This data set was divided into two subsets, training (first
10%) and test (the remaining). The training set contains
only examples from the C7 and C5 classes. The test set
contains examples from all classes (C1, Cs, C3, C4).

Table 3 shows the accuracy results obtained by MINAS
for this data set (here, k-fold-cross-validation was not used).
It shows that 99% of the examples from the classes C'3 and
C4 were classified as novelty (represented by the classes Ny
and Ns in the MINAS algorithm) . Thus, only 1% of the
examples were classified as unknown, and as a result used to
model the novelties. Here, the CluStream algorithm could be
used because the training data set contains 3,000 examples.

4.5 Forest Cover data set

The Forest Cover data set [6] contains information about
seven different types of forests. Each example has 54 nu-
meric attributes. All attributes were normalized and used.
As proposed in [11], the offfine phase used 6,000 examples
and the rest of examples were used in the online phase. The



Table 4: MINAS performance for the Forest Cover
data set

Class

Final Class Distribution
Cl1 [ C2 [ N1 [ N2 [ N3 | N4 | N5 [Unk

C1 0.62 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
C2 0.28 | 0.71 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
C3 0.0 | 0.40 0.59 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01
C4 0.00 | 0.0 [0.97 | 0.03 | 0.01 | 0.01 | 0.00 | 0.02
C5 0.29 | 0.69 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
C6 0.01 | 0.41 [ 0.57 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00
Cc7 0.92 | 0.07 | 0.0 | 0.03 | 0.02 | 0.00 | 0.00 | 0.01

offline phase contains examples from two classes, Spruce-
Fir and Lodgpole Pine, here called C'1 and C2, respectively.
The online phase contains examples from all classes, includ-
ing C1 and C2. The classes Pond Pine, Cotton/Willow,
Aspen, Douglas-Fir and Krummholz are named here C3,
C4, C5, C6 and C7, respectively.

Table 4 shows the accuracy performance of MINAS for
this data set. It can be seen that MINAS identified exam-
ples from the classes C3, C4, and C6 as novelty. MINAS
obtained the best results for the class C'4, where 97% of the
examples were classified as novelty. However, MINAS was
not able to distinguish between different novelties, suggest-
ing that the threshold value was not adequate to separate
different classes. Moreover, the examples from the classes
C5 and C6 were incorrectly classified as belonging to the
normal concept, indicating that the decision model needs to
be improved. An alternative to deal with this is to use other
clustering techniques, especially non-spherical techniques.

S.  CONCLUSIONS

This study presented a new novelty detection algorithm
for data streams multi-class problem, called MINAS. This
algorithm builds only one model to represent the classes
and their extensions. Each class is represented by a set of
clusters that are later used to classify new examples. The
examples not explained by the current model are classified
as unknown. A cohesive and representative set of unknown
examples is used to discover new concepts or extensions to
the known concepts. The differentiation between novelty
and extension is made by a threshold value. We also pro-
posed a new experimental methodology to evaluate novelty
detection algorithms in multi-class problems.

Experimental results show that MINAS presented better
results than OLINDDA for five UCI data sets. Using an
artificial data set, MINAS was capable to differentiate two
new concepts in the online phase and to correctly classify
new examples with accuracy of 0.99. Results for the Cover
Forest data set were promising. FExamples of the classes
learned in the online phase were classified as novelty and
different novelties were detected. The next steps include the
investigation of non-spherical clustering techniques to better
represent the classes, and the development new approaches
for the automatic choice of the threshold value.
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