
Storm: Rateless MDS Erasure Codes

Pedro Moreira da Silva(B), Jaime Dias, and Manuel Ricardo

INESC TEC, Faculdade de Engenharia, Universidade do Porto,
Rua Dr. Roberto Frias, 378, 4200-465 Porto, Portugal

{pmms,jdias,mricardo}@inesctec.pt

Abstract. Erasure codes have been employed in a wide range of appli-
cations to increase content availability, improve channel reliability, or
to reduce downloading time. For several applications, such as P2P file
sharing, MDS erasure codes are more suitable as the network is typi-
cally the most constrained resource, not the CPU. Rateless MDS erasure
codes also enable to adjust encoding and decoding algorithms as function
of dynamic variables to maximize erasure coding gains. State-of-the-art
MDS erasure codes are either fixed-rate or have practical limitations.
We propose Storm erasure codes, a rateless MDS construction of Reed-
Solomon codes over the finite field Fp2 , where p is a Mersenne prime.
To the best of our knowledge, we are the first to propose a rateless con-
struction (n can be increased in steps of k) with Θ (n log k) encoding time
complexity and min

{
Θ (n log n) , Θ

(
k log2 k

)}
upper bound for decod-

ing time complexity. We provide the complexity analysis of encoding and
decoding algorithms and evaluate Storm’s performance.

1 Introduction

Erasure codes have been employed in a wide range of applications to increase
content availability, improve channel reliability, or to reduce downloading time.
An erasure code generates a set of n symbols, from a set of k symbols at a rate
given by k/n, so that any subset of k (1 + ε(k)) is enough to reconstruct the
original information, where ε(k) is the erasure coding overhead. Erasure codes
are usually classified according to three orthogonal properties: (1) systematicity,
(2) rate fixedness, and (3) coding overhead. An erasure code is systematic if the
input symbols are embed into output symbols, and non-systematic otherwise.
If n is static and need to be known before encoding, the erasure code is fixed-
rate. If n can be dynamically increased and the amount of symbols that can be
generated does not impose any practical limitation, the erasure code is rateless.
Finally, an erasure code is said MDS (Maximum Distance Separable) if any k
symbols out of n are enough to reconstruct the original information [ε(k) = 0], or
non-MDS if additional symbols are required [ε(k) > 0]. Non-MDS erasure codes
introduce coding overhead for reducing significantly the encoding and decoding
time complexities. LT codes [1] and Raptor codes [2] are the most prominent
examples of non-MDS erasure codes because they are rateless and asymptotically
optimal [ε (k) → 0 as k → ∞], and the latter is able to achieve linear coding and
decoding time complexities.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Mumtaz et al. (Eds.): WICON 2014, LNICST 146, pp. 153–158, 2015.
DOI: 10.1007/978-3-319-18802-7 22



154 P.M. da Silva et al.

For several applications, such as P2P file sharing, MDS erasure codes are
more suitable as the network is typically the most constrained resource, not
the CPU [3]. Rateless MDS erasure codes also enable to set n as a function of
dynamic variables, such as peer participation dynamics and content popularity,
to maximize erasure coding gains. Classic Reed-Solomon (RS) codes [4], the
most well-known class of MDS codes, are systematic, fixed-rate and have Θ (nk)
encoding, and Θ

(
k2

)
decoding time complexities, which limits their practical

application to 255 symbols. ROME [5] is a rateless MDS construction but one
with equivalent time complexity and practical limitations. To overcome these
limitations, Didier [6] proposed encoding and decoding algorithms for RS codes
over the binary finite field F2m with, respectively, Θ (n log n) and Θ

(
n log2 n

)

time complexities, where n = 2m and is fixed to the size of the binary finite
field. Soro [7] presented encoding and decoding algorithms with Θ (n log n) time
complexity over a finite field Fp, where p is a Fermat prime

(
p = 22

m

+ 1
)
. Lin [8]

extended the work of Didier [6] and proposed Θ (n log k) encoding and Θ (n log n)
decoding algorithms over F2m with n also fixed to the finite field size.

Despite their merits, [6–8] still create fixed-rate codes because all encoding
symbols must be generated at once for achieving such encoding time complex-
ities. Also, their practical use is limited to about 216 symbols: 216 + 1 is the
largest Fermat number prime up to 22048 + 1; multiplications over binary finite
fields are performed using a lookup table, as carry-less multiplication is not as
efficient on current CPUs, and large lookup tables severely degrade performance.

We propose a rateless MDS construction of Reed-Solomon codes over the
finite field Fp2 , where p is a Mersenne prime (p = 2m − 1), which we name
Storm. Although the construction of RS codes over such field has already been
proposed [9], to the best of our knowledge, we are the first to propose a rate-
less construction (n can be increased in steps of k) with Θ (n log k) encoding
time complexity and min

{
Θ (n log n) , Θ

(
k log2 k

)}
upper bound for decoding

time complexity. We provide the complexity analysis of encoding and decoding
algorithms and evaluate Storm’s performance.

The remaining of this paper is structured as follows. Storm erasure codes
are presented in Sect. 2. The performance assessment is conducted on Sect. 3.
Section 4 concludes this paper and presents the future work.

2 Storm Erasure Codes

Let s = (s0, s1, . . . , sk−1) be a source vector of size k, s(x) =
∑k−1

i=0 si · xi its
associated polynomial, and e = (e0, e1, . . . , en−1) an encode vector of size n. The
transformation (s0, . . . , sk−1)

F−→ (e0, . . . , en−1) over F
n
p , with ej =

∑k−1
i=0 si · xi

j ,
can be performed as a multipoint polynomial evaluation at the points (code loca-
tors) xj , i.e., ej = s(xj). The inverse transformation, F−1, given that a poly-
nomial of degree <k is uniquely determined by any k unique pairs (xi, ei), can
be performed as a polynomial interpolation. Let the Lagrange basis polynomial

be L(x) =
∏k−1

i=0 x − xi, the barycentric weights be wi =
(∏k−1

j=0,j �=i xi − xj

)−1

,



Storm: Rateless MDS Erasure Codes 155

and s(x) is defined by

s(x) =
k−1∑

i=0

ei ·
k−1∏

j=0, j �=i

x − xj

xi − xj
= L(x) ·

k−1∑

i=0

ei · wi

x − xi
. (1)

Let M(k) represent the time complexity of multiplying two polynomials of
degree <k over a finite field Fp. The encoding and decoding algorithms at arbi-
trary points takes M(k) log k time. We refer the reader to [10] for a description
of the multipoint evaluation and interpolation algorithms at arbitrary points.

Let r be an nth root of unity of a non-binary finite field Fp, i.e., n | p − 1
so that rn ≡ 1 mod p and ri �≡ 1 mod p, 0 < i < n. Let rzj be the power
representation of xj , it follows that ej = s(rzj ) =

∑k−1
i=0 si · ri·zj . As so, the fast

Fourier transform (FFT) is an efficient method for evaluating a polynomial of
degree <n at all of the n roots of unity in Θ (n log n) time. The FFT can also
be used to perform efficient multiplication of polynomials in Θ (k log k) time
[M(k) = Θ (k log k)]: multiplying two polynomials of degree <k takes two FFTs
of size 2k and one inverse FFT (IFFT) of size 2k.

2.1 Finite Field

The finite field Fp2 , where p is a Mersenne prime (p = 2m − 1), can be con-
structed as Fp2 = {a + bı̂ | a, b ∈ Fp}, where ı̂ =

√−1, given that every irre-
ducible quadratic polynomial over Fp must split over Fp2 [9]. Moreover, in Fp2

there is always a multiplicative group of size 2m+1, as 2m+1 | p2−1, whose root, r,
is 22

m−2
+(−3)2

m−2
[11], and the components of the 8th unity roots are fixed pow-

ers of two, only involving additions and circular shifts, enabling efficient radix-8
FFTs. Let c = 2

(m−1)/2, the set of 8th roots of unity is {1,−1, ı̂,−ı̂, c(1+ı̂), c(1−ı̂),
c(−1+ı̂), c(−1−ı̂)}. For improved performance, when performing FFT and IFFT,
the unity roots must be pre-calculated. Given that in Fp2 the inverse of a unity
root z is its complex conjugate

(
z · z−1 = z · z = 1

)
, the set of unity roots can

be shared by the FFT and the IFFT. Finally, there is no known file size limit
for Fp2 , being 257885161 − 1 the largest known Mersenne prime.

2.2 Mapping

Elements of Fp2 are pairs of Fp elements. Therefore, we map each m bits of
source data into an Fp element. Yet, 0 has to be distinguished from 2m − 1 as
2m − 1 ≡ 0 mod p. A transformation on F

p/2−1
p2 has, at most, p − 2 elements

of Fp [2 · (p/2 − 1)]. Thus, for the set of source elements, s, there is at least one
element of Fp, a, that is not in the set: ∀s ∈ F

p/2−1
p2 , ∃a ∈ Fp : a �∈ s. This

element can be used to replace 2m − 1 in the source data whenever it occurs,
before encoding, and do the reverse after decoding. A transformation on F

n
p2 ,

where n ≥ p/2, can be treated the same way by dividing it in several F
p/2−1
p2

transformations.



156 P.M. da Silva et al.

2.3 Encoding

Let s = (s0, s1, . . . , sk−1) be a source vector of size k, and e = (e0, e1, . . . , en−1)
an encoded vector of size n. Extending s with n − k zeros to make it of size n,
s = (s0, s1, . . . , sk−1, 0, . . . , 0), enables n symbols to be generated, at once, using
a size n FFT (FFTn). However, this approach does not enable e to increase
as needed, at least not efficiently. To make Storm rateless, we developed an
encoding algorithm that enables e to increase in steps of k elements. Let rn be
the nth root of unity in Fp2 , i.e., rn = r

2m+1
n , ∀n : n | 2m+1. Considering that,

ej′=g+(n/k)j =
k−1∑

i=0

si · ri(g+(n/k)j)
n =

k−1∑

i=0

(
si · rign

) · rijk (2)

k innovative symbols can be generated using an FFTk by applying rign factors
to each si, 0 ≤ i < k, where 0 ≤ g < n/k. The generation of n symbols can
be performed in n/k independent steps, and has Θ (n log k) time complexity. Let
Rn =

{
r0n, . . . , rn−1

n

}
be the set of nth roots of unity. Given that Rn/2 ⊂ Rn,

increasing n has no impact on the previously encoded symbols. A transmission
data unit of d symbols, such as an IP packet or a P2P chunk, is composed by
the evaluation of d source vectors of size k at a given code locator xi.

2.4 Decoding

The decoding algorithm consists in five main steps: (1) calculate L(x); (2) com-
pute L′(x); (3) evaluate the barycentric weights as wi = L′(xi); (4) compute
all yi = ei · wi; (5) perform the interpolation. Given that any set of k points is
a subset of a set of n roots of unity, the interpolation can be performed either
at k arbitrary points or at n unity roots. Let Y (x) =

∑k−1
i=0 yi · xzi , and using

the Taylor series of 1/(x − rzi) = −∑
j rzi(−j−1) · xj , Lagrange’s interpolation

formula becomes [7]

s(x) = −L(x) ·
k−1∑

i=0

⎛

⎝
n−1∑

j=0

yi · (rzi)−j−1 · xj

⎞

⎠ = −L(x) ·
n−1∑

j=0

Y (r−j−1) · xj . (3)

Considering FFT2k ≈ 2FFTk, step 1) takes M(k) log k time: log k stages
each taking 3FFT2k ≈ 6FFTk. Step 2) takes Θ(k) time. Step 3) takes M(n)
time at n roots of unity – 1FFTn – or M(k) log k time at arbitrary points –
log k stages of 6FFTk. Step 4 has also linear time complexity. Step 5), using
Eq. 3, takes M(n) time at n unity roots because evaluating Y (x), evaluating∑n−1

j=0 Y (r−j−1)·xj , and multiplying the result by L(x) are all performed in M(n)
time: 1FFTn +3FFT2n ≈ 7FFTn. At arbitrary points, step 5) takes M(k) log k
time: log k stages of 6FFTk. Therefore, step 5) has min {M(n),M(k) log k} time
complexity. The overall time complexity is M(k) log k+min {M(n),M(k) log k}.
However, in practice, the overall time complexity is just min {M(n),M(k) log k}
because steps 1–3, since they only depend on xi, are only performed once, while



Storm: Rateless MDS Erasure Codes 157

steps 4 and 5 are performed several hundreds or thousands of times for an IP
packet or a P2P file sharing chunk. L(x) also depends only on xi and only needs
to be computed once per packet or chunk, thus step 5) can be performed in
5FFTn at n roots of unity. Therefore, the decoding has min {M(n),M(k) log k}
practical time complexity: min {5FFTn, log k · 6FFTk}.

3 Results

Complexity analysis is important to understand how an algorithm behaves as
the input grows; still, it hides constant factors that may alter significantly the
algorithms real performance. To assess Storm erasure codes performance, and to
compare them with Soro’s [7] – the only ones with Θ (n log n) time complexity
that admit any power of two for n and k, k ≤ n –, we implemented them in
C++, and ran them on an Intel Core i5-560M under Ubuntu 13.10 64 bits.
For evaluation, the Fermat field is F216+1 and the Mersenne extension field is
F(231−1)2 . The results shown are for a single thread.

Fig. 1. Encoding throughput for radix-2, radix-4, radix-8, and mixed radix over
Mersenne extension field, and for radix-2 over Fermat field [left]. Decoding throughput
using interpolation at arbitrary points (A suffix), and at roots of unity with n = 2k
and n = 4k over Mersenne and Fermat fields [right].

It can be seen in Fig. 1 the performance improvement provided by radix-
8 FFT in comparison to radix-2 FFT. The mixed radix FFT over Fp2 , which
uses higher radices whenever possible, nearly doubles the throughput provided
by radix-2 FFT over Fermat fields. When comparing only radix-2 FFTs, the
larger symbols of Fp2 (62 vs 16 bits) improve performance despite multiplications
being slightly more expensive (four integer multiplications and two additions).
Identical results were obtained for decoding: the throughput for n = 2k over
Mersenne extension field, which is about twice the throughput for n = 4k over
that field, is slightly greater than twice the throughput for n = 2k over F216+1.
The decoding algorithm at arbitrary points is more advantageous for small values
of k and, for k up to 8192 when n/k > 2.



158 P.M. da Silva et al.

4 Conclusions

We presented Storm erasure codes, rateless MDS erasure codes based on RS
codes with Θ (n log k) encoding time complexity and min {M(n),M(k) log k}
upper bound for decoding time complexity, and assessed their practical perfor-
mance. These codes are able to saturate a Gigabit interface on a four years old
CPU, and are able to provide nearly twice the throughput of equivalent codes
defined over Fermat fields. Unlike Fermat fields, there is no known field size limit
for Fp2 . For evaluation, we only considered a single thread, so we intend to create
a parallel multi-core CPU and GPU implementation.

Acknowledgments. This work was supported by Fundação para a Ciência e Tec-
nologia (FCT) under grant SFRH/BD/69388/2010.

References

1. Luby, M.: LT codes. In: 2002 Proceedings of the 43rd Annual IEEE Symposium
on Foundations of Computer Science, pp. 271–280 (2002)

2. Shokrollahi, A.: Raptor codes. IEEE Trans. Inf. Theory 52(6), 2551–2567 (2006)
3. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-

to-peer systems. In: Proceedings of the Twenty-First Annual Symposium on Prin-
ciples of Distributed Computing, PODC 2002, pp. 233–242. ACM (2002)

4. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. J. SIAM 8(2),
300–304 (1960)

5. He, N., Xu, Y., Cao, J., Li, Z., Chen, H., Ren, Y.: ROME: rateless online MDS
code for wireless data broadcasting. In: Global Telecommunications Conference
(GLOBECOM 2010), pp. 1–5. IEEE, December 2010

6. Didier, F.: Efficient erasure decoding of Reed-Solomon codes. CoRR, abs/0901.1886
(2009)

7. Soro, A., Lacan, J.: FNT-based Reed-Solomon erasure codes. In: Proceedings of the
7th IEEE Conference on Consumer Communications and Networking Conference,
CCNC 2010, Piscataway, NJ, USA, pp. 466–470. IEEE Press (2010)

8. Lin, S.-J., Chung, W.-H., Han, Y.S.: Fast encoding/decoding algorithms for Reed-
Solomon erasure codes. CoRR, abs/1404.3458 (2014)

9. Reed, I., Truong, T., Welch, L.: The fast decoding of Reed-Solomon codes using
number theoretic transforms. To The Deep Space Network Progress Report, pp.
42–35 (1976)

10. Crandall, R.E., Pomerance, C.: Prime Numbers: A Computational Perspective,
2nd edn. Springer, New York (2005)

11. Creutzburg, R., Tasche, M.: Parameter determination for complex number-
theoretic transforms using cyclotomic polynomials. Math. Comput. 52(185), 189–
200 (1989)




