
Adaptive Learning for Dynamic Environments:
a Comparative Approach

Joana Costa1,2, Catarina Silva1,2, Mário Antunes1,3, Bernardete Ribeiro2

1 School of Technology and Management, Polytechnic Institute of Leiria, Portugal
{joana.costa,catarina,mario.antunes}@ipleiria.pt

2 Center for Informatics and Systems (CISUC), University of Coimbra, Portugal
{joanamc,catarina,bribeiro}@dei.uc.pt

3 Center for Research in Advanced Computing Systems (CRACS), INESC-TEC University
of Porto, Portugal

mantunes@dcc.fc.up.pt

Abstract

Nowadays most learning problems demand adaptive solutions. Current chal-

lenges include temporal data streams, drift and non-stationary scenarios, often

with text data, whether in social networks or in business systems. Various efforts

have been pursued in machine learning settings to learn in such environments,

specially because of their non-trivial nature, since changes occur between the

distribution data used to define the model and the current environment.

In this work we present the Drift Adaptive Retain Knowledge (DARK)

framework to tackle adaptive learning in dynamic environments based on re-

cent and retained knowledge. DARK handles an ensemble of multiple Support

Vector Machine (SVM) models that are dynamically weighted and have distinct

training window sizes. A comparative study with benchmark solutions in the

field, namely the Learn++.NSE algorithm, is also presented. Experimental re-

sults revealed that DARK outperforms Learn++.NSE with two different base

classifiers, an SVM and a Classification and Regression Tree (CART).

Keywords: Dynamic environments, Ensembles, Learn++.NSE, Twitter

1. Introduction

Streaming sources are becoming ubiquitous. Ranging from data generated

by sensors on the Internet of Things (IoT) to social media platforms increasin-

Preprint submitted to Engineering Applications of Artificial Intelligence March 5, 2017

Figure 1: Different types of drift

gly accessed with mobile devices, such deluge of data streams is becoming one

of the greatest challenges in terms of learning and information extraction [1].5

Hence, nowadays most learning problems demand dynamic models, adaptive to

new circumstances as they emerge. Paradigmatic to this setting are social net-

works as Twitter, where new information appears all the time. Albeit we can

undoubtedly benefit from all these data, one major drawback of such overflow is

the inability to easily perceive important, significant and accurate information.10

This challenge arises not only because the amount of data is overwhelming to

process, but also because time plays an important role by fast out-dating infor-

mation [2].

To handle such challenges of dynamic environments we have to address some

innovative models that are able to deal with models ageing as, so far, the de-15

ployed models performance is reduced because they are not able to deal with

dynamic environments.

Additionally, drifts can have different patterns and thus must be treated

differently. The most significant types of drifts are depicted in Figure 1, namely

sudden, gradual, incremental and reoccurring [3]. Sudden drift is present when20

the occurring rate of the drift is high and a concept appears or disappears

abruptly. Although it is mostly stated as sudden or abrupt drift, it can also

be referred as concept change. Gradual drift is characterized by a low drift

2

rate and occurs when the probability of a given context to be associated with

a concept increases or decreases during a certain period of time. Additionally,25

the probability to be associated with another context increases proportionally.

Incremental drift can be considered as a subgroup of gradual drift, through the

main difference is that the change between the two concepts is much slower

and only perceived when looking to what is occurring during longer periods of

time. Reoccurring drift occurs when a previously active concept reappears after30

a period of time. It is important to refer that although it appears seasonally its

periodicity must be unknown, otherwise the core assumption of the uncertainty

about the future could be compromised.

Different approaches have been pursued with the above goals, like ensemble

systems for classification problems [4], proposed and discussed in this work. We35

present the DARK framework, Drift Adaptive Retain Knowledge framework,

that uses an ensemble of Support Vector Machines with dynamic weighting

schemes and variable training window sizes for text classification scenarios. A

comparative study with benchmark solution in the field is also put forward and

the experimental results attest the potential of DARK, as it outperforms both40

Learn++.NSE with two different base classifiers, an SVM and a Classification

and Regression Tree (CART).

There are tree main contributions in this paper: to infer about the influence

of recent examples for the overall learning and classification performances; to

validate the DARK framework with text classification scenarios, by applying it45

to text datasets based on Twitter social network public stream and present a

comparative study with benchmark solutions in the field, namely Learn++.NSE

algorithm.

The rest of the paper is organized as follows. Section 2 presents active

and passive approaches for handling drift in dynamic environments. Section 350

defines and details the proposed DARK framework. In Section 4 we introduce

the experimental setup, including the Twitter case study and a description of

Learn++.NSE. Section 5 presents and discusses the obtained results. Finally,

we address conclusions and future lines of research in Section 6.

3

2. Approaches for drift detection, adaptation and learning55

Different approaches exist for learning in nonstationary environments that

can be casted as active or passive approaches, that are described and summa-

rized in Table 1.

2.1. Active approaches

Active approaches for learning in nonstationary and dynamic environments60

are used to detect changes in the environment and react adaptively, updating or

building a new classifier. Features are extracted for change detection and, once

a change is detected, the classifier model is updated or rebuilt by discarding the

obsolete knowledge and adapting to the new environment. The whole process

involves change detection and adaptation methods [37].65

Change detection approaches inspect extracted features and variations in

the underlying distribution data using theoretically-grounded statistical tech-

niques and include [37]:

1. Hypothesis Tests assess the validity of a hypothesis by controlling the

false positive rate in change detection based on predetermined confidence70

calculations and using statistical techniques. The confidence threshold can

be based on the mean value with which a set of samples has been drawn

from a specific distribution as in [5] and [6];

2. Change-Point Methods use a fixed data sequence to verify if a given se-

quence contains a change-point, by analysing all possible partitions of the75

data stream. This statistical technique is highly computational bounded,

nevertheless it has the ability to detect the presence of a change and esti-

mate the instant where the change occurred, as in [7];

3. Sequential Hypothesis Tests inspect sequentially incoming examples, one

at a time, until there are enough examples to determine the presence of80

a change or not. Some examples of this technique are probability ratio

test [8] and repeated significance test [9];

4

C
a
te
g
o
ry

T
y
p
e

A
p
p
ro

a
ch

e
s

R
e
fe
re

n
c
e
s

A
ct

iv
e

C
h

an
ge

D
et

ec
ti

on

B
a
se

d
o
n

th
eo

re
ti

ca
ll
y
-g

ro
u
n
d
ed

st
a
-

ti
st

ic
a
l

te
ch

n
iq

u
es

:
H

y
p

o
th

es
is

T
es

ts
,

C
h
a
n
g
e-

P
o
in

t
M

et
h
o
d
s,

S
eq

u
en

ti
a
l

H
y
p

o
th

es
is

T
es

ts
,

a
n
d

C
h
a
n
g
e

D
et

ec
ti

o
n

T
es

ts
.

[5
]

[6
]

[7
]

[8
]

[9
]

[1
0
]

[1
1
]

A
d

ap
ta

ti
on

A
d
a
p
ti

n
g

th
e

cl
a
ss

ifi
er

b
y

le
a
rn

in
g

fr
o
m

th
e

n
ew

ly
av

a
il
a
b
le

in
fo

rm
a
ti

o
n

a
n
d

d
is

ca
rd

in
g

th
e

o
b
so

le
te

o
n
e.

M
a
in

m
ec

h
a
n
is

m
s:

w
in

d
ow

in
g
,

w
ei

g
h
ti

n
g

a
n
d

ra
n
d
o
m

sa
m

p
li
n
g
.

[1
2
]

[1
3
]

[1
4
]

[1
5
]

[1
6
]

[1
7
]
[1

8
]
[1

9
]
[2

0
]
[2

1
]

P
as

si
ve

S
in

gl
e

M
o
d

el
s

A
p
p
li
ed

in
b
ig

d
a
ta

sc
en

a
ri

o
s.

P
a
ra

d
ig

-
m

a
ti

c
m

o
d
el

s
in

cl
u
d
e

d
ec

is
io

n
tr

ee
s

(D
T

),
v
er

y
fa

st
d
ec

is
io

n
tr

ee
s

(V
F

D
T

).
O

th
er

a
p
p
ro

a
ch

es
in

cl
u
d
e

ex
tr

em
e

le
a
r-

n
in

g
m

a
ch

in
e

(E
L

M
).

[2
2
]
[2

3
]
[2

4
]
[2

5
]
[2

6
]

E
n

se
m

b
le

M
o
d

el
s

E
x
tr

em
el

y
a
p
p
ro

p
ri

a
te

fo
r

le
a
rn

in
g

in
d
y
n
a
m

ic
en

v
ir

o
n
m

en
ts

.
R

ed
u
ct

io
n

in
th

e
va

ri
a
n
ce

o
f

th
e

er
ro

r
a
n
d

a
tt

a
in

th
e

fl
ex

ib
il
it

y.
A

p
p
ro

a
ch

es
in

cl
u
d
e

b
o
o
st

in
g
,

b
a
g
g
in

g
o
r

ra
n
d
o
m

fo
re

st
s.

[2
7
]

[2
8
]

[2
9
]

[3
0
]

[3
1
]

[3
2
]
[3

3
]
[3

4
]
[3

5
]
[3

6
]

T
a
b

le
1
:

S
u

m
m

a
ry

o
f

co
m

p
a
ri

so
n

b
et

w
ee

n
a
ct

iv
e

a
n

d
p

a
ss

iv
e

a
p

p
ro

a
ch

es

5

4. Change Detection Tests overcome limitations of the previous technique

by sequentially analysing the statistical behaviour of data streams. This

method consists on a change detection based on a threshold as in [10,85

11]. The limitation of this method is the difficulty to set the threshold

to an optimal value with which we may have a reasonable classification

performance.

The Adaptation phase occurs after a change in environment is observed and

detected. It consists on adapting the classifier to the change by learning from90

the new available information and discarding the obsolete [38]. Adaptation

mechanisms can be grouped into the following three main categories [37]:

• Windowing is the most used and easiest mechanism. It is based on a

sliding window that includes, at each given moment, the most recent and

up-to-date examples, while the obsolete ones are discarded. With this95

mechanism the up-to-date examples are used to retrain the classifier and

thus enhance its performance for the next batch(es). The choice of the

appropriate window length is a critical issue and can itself be adaptively

calculated [12, 13, 14] or determined by the expected change ratio [15, 16].

Just-In-Time (JIT) adaptive classifier, a new generation of adaptive clas-100

sifiers that are able to operate in nonstationary environments is proposed

in [15].

• Weighting, unlike windowing mechanisms, takes into account all the exam-

ples weighted according to some rule, like their age or relevancy with

respect to the recent classification accuracy performance [17]. Several105

approaches can be found in the literature regarding the weighting me-

chanisms used: gradual forgetting [17]; time-based weighting [18], change

index which measures the variation of data processing over time [19]; and

based on the accuracy/error calculated in the last batch of supervised

data [20];110

• Sampling, more precisely reservoir sampling [21], uses randomization and

6

is able to select a subset of unique examples from the data stream.

Active approaches in dynamic and nonstationary environments, like those re-

lated with change detection in temporal data streams, can be easily observed

in some real-world applications like network intrusion [39, 40] and spam detec-115

tion [41, 42].

2.2. Passive approaches

Passive approaches, unlike active approaches, do not aim at detecting the

presence of changes or drifts in the environment, but assures a natural path of

continuous adaptation of the model parameters every time new data arrive [37].120

The complexity of such adaptation methods varies, but the main goal is to keep

the final model as close as the state of reality brought by current data. Passive

approaches can be divided in single models and ensemble models:

Single models are constituted by only one model, presenting a lower com-

putational burden that is often appropriate for massive data streams. As a125

consequence, less complex models, e.g. decision trees (DT) can be used, in fact,

decision trees are the mostly common classifiers used for data stream mining

with the very-fast decision tree (VFDT) learner being one of the most popular

[22]. A sliding-window approach was also proposed to take different options into

consideration at each tree node split [23, 24].130

Other examples of single models include a fuzzy-logic based approach that

also exploits a sliding window over the training data stream [25] and an online

extreme learning machine (ELM) combined with a time-varying neural network

for learning from nonstationary data [26].

Ensemble models are one of the best researched methods for adaptive135

learning in dynamic environments. Ensembles of classifiers integrate multiple

classifiers and are based on the idea that, given a task that requires expert

knowledge, k experts (baseline classifiers) may perform better than one, if their

individual judgements are appropriately combined. A classifier committee is

then characterized by (i) a choice of k classifiers, and (ii) a choice of a com-140

7

bination function, sometimes denominated a voting algorithm. The classifiers

should be as independent as possible to guarantee a large number of inductions

on the data. Using different classifiers to exploit diverse patterns of errors to

make the ensemble better than just the sum (or average) of the parts, we can

obtain a gain from synergies between the ensemble classifiers.145

The simplest combination function is just a majority voting mechanism with

an odd number of baseline classifiers. However, other more advanced strategies

have been pursued. In [43],a theoretical study on six classifier fusion strategies

is presented. The authors analyse the classification error for different fusion

methods: average, minimum, maximum, median, majority vote, and oracle.150

There are many approaches for ensemble of classifiers, such as boosting [27],

bagging [28], or random forests [29], but their original form is usually applied in

static environments. However, ensembles are specially adequate to tackle with

dynamic evolving settings, given their modular nature. Ensembles are cutting-

edge solutions to many different learning challenges and different researchers155

have been studying ensembles and their applications in various fields [32, 31, 33,

34, 30]. In [35] and [36] two approaches of incremental learning of concept drift

in nonstationary environments are presented. The authors describe ensemble-

based approaches of classifiers for incrementally learning from new data drawn

from a distribution that changes in time and generate a new classifier using160

each additional dataset that becomes available from the changing environment.

A popular batch-based learning algorithm for non-stationary environments is

Learn++.NSE (NSE for NonStationary Environments) [44] that will be detailed

further later in this paper.

3. DARK Framework165

This section describes the Drift Adaptive Retain Knowledge (DARK) frame-

work. We will firstly describe its aim, and then detail its characteristics.

We are focusing on dynamic environments in text classification scenarios,

where the model must adapt to deal with changes usually dependent of hidden

8

contexts. One of the major challenges is the amount of data, specially when170

dealing with streams. It is sometimes unfeasible to store all the previously seen

data, although it may carry substantial information for future use.

The goal of DARK framework is to build an ensemble of Support Vector Ma-

chines (SVM) with dynamic weighting schemes and variable train size windows

for model adaptation in incremental learning, and therefore effectively learn in175

dynamic environments in text classification scenarios.

The rationale of DARK is to use ensembles of classifiers to integrate multiple

experts with different characteristics and thus benefit from their multitude, spe-

cially as they are created in different moments. Due to its modular structure,

which enables temporal adaptation to new incoming examples on the basis of180

the data sampling real distribution over time, we have a built-in memory mech-

anism that is inherited from the (recent) past, and thus we can achieve an

improvement in classification performance that otherwise would be dependent

on more examples and computational burden.

Figure 2: DARK framework (time window size=3 and size of ensemble=4)

9

Figure 2 depicts the DARK framework. The framework can be divided in185

three parts, from top to bottom: (i) models’ construction; (ii) learning process

and (iii) models’ combination.

The construction of the models (i) is carried out by defining time-windows

and learning models for each time-window. Different settings can be con-

structed, i.e., the examples that are considered in each time-window depend190

on the specific approach. The timestamp of the example can be used, but other

approaches may consider its relevance though the choice of the best samples [2].

In order to perceive the importance of past examples in the classification

process we use a batch learning strategy that retains previously seen examples

during a prefixed period. So, we aim to evaluate for how long it is relevant195

to keep information according to the different types of drift. This is the first

memory mechanism that is present in our framework.

Algorithm 5 defines the basic steps to create one single base classifier. For

each collection of documents T in a time-window t, T t = {x1, . . . , x|T t|} with

labels {y1, . . . , y|T t|} → {−1, 1}, and by considering the training window size200

j, the dataset Dt is updated incrementally until the training window size is

complete. By updating the documents collection Dt based on a training time

window we retain the information during a defined amount of time, discarding

the examples that occur before that moment. A base classifier Ct is then trained

with Dt and can be used for classification purposes.205

The learning process (ii) focuses on the definition of the k baseline classifiers

according to this algorithm. Notice that, in dynamic environments, the ensemble

must adapt to deal with changes usually dependent on hidden contexts, and it

is usually infeasible to store all previously seen data, although it may carry

substantial information for future use. Hence, not all previously constructed210

models are kept in the ensemble and, the learning process determines which

should be kept (or added) and which should be discarded [45, 46].

Algorithm 12 presents the DARK framework learning process. Besides the

base classifier model creation that is detailed in Algorithm 1, we also have the

combination of models in the ensemble. Firstly, for each time-window t we215

10

Algorithm 1: Base classifier model creation

Input:
For each collection of documents T in a time window t,
T t = {x1, . . . , x|T t|} with labels {y1, . . . , y|T t|} → {−1, 1} t = 1, 2, . . .

Training window size j

1 for i=1,2,. . . j do
2 Dt ← Dt ∪ T t−j
3 i+ +

4 end

5 Classifier Ct : Learn (Dt), obtain: ht: X → Y

Algorithm 2: DARK Framework learning process

Input:
For each collection of documents T in a time window t,
T t = {x1, . . . , x|T t|} with labels {y1, . . . , y|T t|} → {−1, 1} t = 1, 2, . . .

Training window size j

Ensemble size k

1 for t=1,2,. . . T do
2 for i=1,2,. . . j do
3 Dt ← Dt ∪ T t−j
4 i+ +

5 end

6 Classifier Ct : Learn (Dt), obtain: ht: X → Y
7 Ensemble Et ← Ct

8 if t − k > 0 then
9 Et ← Et \ Ct−k

10 end

11 Ensemble Et : Classify (T t+1) using: et: X → Y

12 end

11

add the base classifier Ct to the ensemble Et. Secondly, as with examples, we

also consider that models can be outdated, so the ensemble Et is pruned so

that all classifiers Ct−k that match the condition t − k > 0 are discarded and

not included in the ensemble final decision. Finally, we use the ensemble Et

to classify the document collection T t+1. The purpose of the classification is220

to define the unknown mapping function et : X → Y, that predicts the class

label yi, according to xi, the document message. In a timeline perspective, et

uses the historical data {x1, . . . , xt} to predict xt+1 by combining the unknown

prediction function ht : X → Y provided by each base classifier model that

composes the ensemble. The prediction function et can use different combining225

strategies for the output ht of each classifier in the model’s combining phase

(iii), e.g. a majority voting strategy, where et =
∑

t h
t(T t+1)

|
∑

t h
t(T t+1)| . Other combining

schemes use performance metrics as we will mention further, which account for

each individual contribution of the classifier in previous time windows.

4. Experimental Setup230

This section describes the experimental setup used in the comparative study.

We will firstly present the Twitter case study and then proceed by detailing the

Drift Oriented Tool System (DOTS), a framework developed to create drift text-

based datasets. We then describe the dataset created to evaluate the framework

along with the representation and preprocessing and detail the classifiers used235

in this comparative study. Finally, the performance metrics used to evaluate

the framework are described.

4.1. Social networks: Twitter case study

Twitter stream is a paradigmatic example of a text-based application where

drift phenomena commonly occur. Twitter is a micro-blogging service where240

users post text-based messages up to 140 characters, also known as tweets. It is

also considered one of the most relevant social networks, along with Facebook,

as millions of users are connected to each other by a following mechanism that

allows them to read each others posts.

12

Twitter is also responsible for the popularization of the concept of hashtag.245

An hashtag is a single word started by the symbol “#” that is used to classify

the message content and to improve search capabilities. Besides improving

search capabilities, hashtags have been identified as having multiple and relevant

potentialities, like promoting the phenomenon described in [47] as micro-meme,

i.e., an idea, behavior or style that spreads from person to person within a250

culture [48]. By tagging a message with a trending topic identified by a certain

hashtag, a user expands the audience of the message, compelling more users to

express themselves about the subject [49].

Considering the importance of the hashtag in Twitter, it is relevant to study

the possibility of evaluating message contents to predict its hashtag. If we can255

classify a message based on a set of tweets-hashtags, we are able to suggest

an hashtag for a given tweet, bringing a wider audience into discussion [50],

spreading an idea [51], get affiliated with a community [52], or bringing together

other Internet resources [53].

The classification of Twitter messages can be described as a multi-class260

problem that can be cast as a time series of tweets. It consists of a con-

tinuous sequence of instances, in this case, Twitter messages, represented as

X = {x1, . . . , xt}, where x1 is the first occurring instance and xt the latest. Each

instance occurs at a time, not necessarily in equally spaced time intervals, and is

characterized by a set of features, usually words, W = {w1,w2, . . . ,w|W|}. Con-265

sequently, the instance xi is represented by the feature vector {wi1,wi2, . . . ,wi|W|}.

If xi is a labeled instance it can be represented by the pair (xi, yi), where

yi ∈ Y = {y1, y2, . . . , y|Y|} is the class label for instance xi.

In [54] we defined semantic hashtags, where the Twitter message hashtag

is used to label the content of the message. In other words, it means that yi270

represents the hashtag that labels the Twitter message xi.

4.2. DOTS: Drift Oriented Tool System

DOTS is a drift oriented framework [55] developed to dynamically create

textual datasets with drift.

13

The main purpose of DOTS framework is to represent drift patterns in a text-275

based dataset. Therefore, the input of the DOTS framework is two-fold: text

documents and a frequency table, as depicted in Figure 3. Each text document

file represents the documents of the same class and the frequency table is used

to define the drift patterns. A major characteristic of DOTS is the possibility

of defining the exact time, more precisely the exact time window, where each280

document appears, being thus possible to define time drifts. This is done by

the frequency table that is a mandatory input of the DOTS framework (see

Figure 3). The main idea is to use the frequency to reproduce drifts.

The frequency table must be in the CSV format and each row corresponds

to a time instance. As stated above, it is not important whether a time instance285

represents a minute, an hour, or a day, but it is assumed that all of them

correspond to the same amount of time. The first row contains the identification

of the class, and each cell of all the other rows contain the number of documents

of a given class that occur in a given time instance. Figure 4 depicts a task being

added to the framework, in which the first time-window has, respectively, one,290

three and four documents of the classes nfl, jobs and android.

Figure 3: The DOTS framework

The DOTS framework includes preprocessing methods commonly used in

text processing, such as stopwords removal and stemming, that will be described

further in the paper. The framework also includes two important stemming al-

gorithms: the Porter algorithm [56] and Krovetz algorithm [57].295

It is also possible to define the weighting scheme used to represent each word of

a document, that is the weight of each feature of a document. Two weighting

14

schemes were defined, namely term frequency (tf) and term frequency-inverse

document frequency, commonly known as tf-idf. Considering the setup configu-

ration, DOTS will create a word index, the INDRI index, provided by INDRI300

API, from the Lemur Project1. It allows users to use different strategies of fil-

tering and analyzing data. By outputting an INDRI index, DOTS provides all

the features presented by the INDRI project, a powerful query interface, that

provides state-of-the-art text search, field retrieval and text annotation.

It is also possible to define multiple training window sizes and multiple export305

file formats. The training window size will define in each time-window how

many previous time-windows will be taken into account, as this is important

to test learning models with memory capabilities. For instance, to perceive for

how long it is relevant to keep previously gathered information and how that

can affect the learning model capabilities. By exporting in multiple file formats,310

DOTS allows for creating datasets that can be used in different classification

frameworks, like SVM Light and Weka. Three output formats were implemented:

Comma-Separated Values (CSV) file format, the Attribute-Relation File Format

(ARFF) used in the widely used WEKA software, and the SVM Light file format.

The versatility of using the concept of training windows extends the framework,315

as users can define the previous amount of data for each time-window. By de-

fining different training window sizes, memory characteristics can be cast into

the training models, thus inducing a storage mechanism. Additionally, one can

also test the performance of a given learning model if the examples of more than

one time window are used as training set, which can be seen as the importance320

of previously seen examples in future classifications.

As it is often relevant to define various testing settings, DOTS permits adding

tasks using INI files. These are structured files with ‘‘key=value’’ pairs, that

contain the definition of multiple tasks. By using an INI file as input, users are

able to define more than one task at a single time, thus optimizing the time325

spent on task setup.

1http://www.lemurproject.org/

15

Figure 4: DOTS interface

Finally, DOTS is a simple and easy to use freeware application with a friendly

interface as shown in Figure 4. The application and a complete tutorial can also

be download from http://dotspt.sourceforge.net/.

330

4.3. Dataset

The dataset uses 10 different hashtags that represent the different drifts,

based on the assumption that they correspond mutually exclusive concepts, like

#realmadrid and #android. By trying to use mutually exclusive concepts we

intent to avoid misleading a classifier, as two different tweets could represent the335

same concept. To obtain a relevant number of tweets, and consequently diver-

sity, we have chosen trending hashtags like #syrisa and #airasia. Table 2 shows

the chosen hashtags and the corresponding drift they represent. This correspon-

dence was arbitrarily done and does not correspond to any possible occurrence

in the real Twitter environment, since as stated above, no information is known340

about the occurrence of drifts in Twitter.

The Twitter API2 was then used to request public tweets that contain the

defined hashtags. The requests have been carried out between 28 December

2014 and 21 January 2015 and tweets were only considered if the user language

2https://dev.Twitter.com/

16

http://dotspt.sourceforge.net/

Drift Hashtag
Sudden #1 #syrisa
Sudden #2 #airasia
Gradual #1 #isis
Gradual #2 #bieber

Incremental #1 #android
Incremental #2 #ferrari

Reoccurring #realmadrid
Normal #1 #jobs
Normal #2 #sex
Normal #3 #nfl

Table 2: Mapping between type of drift and hashtag

was English. We have requested more than 75000 tweets for the given hashtags,345

even though some of them were discarded, like for instance those containing

no message content besides the hashtag. The hashtag was then removed from

the message content to be exclusively used as the document label. The tweets

matching these constraints were considered labeled and suited for classification

purposes, and were used by their appearing order in the public feed.350

We have simulated the different types of drift by artificially defining times-

tamps to the previously gathered tweets. Time is represented as 100 continuous

time windows, in which the frequency of each hashtag is altered in order to

represent the defined drifts. Each tweet is then timestamped so it belongs to

one of the defined time windows. Due to space constraints we refrain to present355

herein the complete table with the frequency of each hashtag in each time win-

dow but, for instance, Sudden #1 is represented by the appearance of 500 tweets

with the hashtag #syrisa in each time window from 25 to 32, and in any of the

other time windows this hashtag appear. Differently from Sudden #1, Sudden

#2 is represented with only 200 tweets with the hashtag #airasia in each time360

windows from 14 to 31, we tried to simulate a softer occurring drift, but with

a more long-standing appearance. By making both concepts disappear, in time

windows, 32 and 31, respectively, we also intended to simulate the opposite way

of the proposed sudden drift [3]. Our final dataset contains 34240 tweets.

17

4.4. Representation and Preprocessing365

A tweet is represented as one of the most commonly used document repre-

sentation, which is the vector space model, also known as Bag of Words. The

collection of features is built as the dictionary of unique terms present in the

documents collections. Each tweet of the document collection is indexed with

the bag of the terms occurring in it, i.e., a vector with one element for each term370

occurring in the whole collection. The weighting scheme used to represent each

term is the term frequency - inverse document frequency, also know as tf-idf.

The use of vector space model can cause computational problems due to

high dimensional space, and overfitting can also occur, which can prevent the

classifier to generalize and thus the prediction ability becomes poor. In order to375

reduce feature space preprocessing methods were applied. These techniques aim

at reducing the size of the document representation and prevent the mislead clas-

sification as some words, such as articles, prepositions and conjunctions, called

stopwords, are non-informative words, and occur more frequently than informa-

tive ones. An english-based stopword dictionary was used, but Twitter related380

words like “rt” or “http” were also considered as they can be seen as stopwords

in the Twitter context. Stopword removal was then applied, preventing those

non informative words from misleading the classification.

Stemming method was also applied. This method consists in removing case

and inflection information of each word, reducing it to the word stem. Stemming385

does not alter significantly the information included, but it does avoid feature

expansion.

4.5. Classifiers

We are focusing on learning models that can cope with dynamic environ-

ments, where models must adapt to deal with changes usually dependent of390

hidden contexts. We will present two classifiers that are used in our experiments:

Support Vector Machines and Learn++.NSE. Support Vector Machines consti-

tute currently the best of breed kernel-based technique, exhibiting state-of-the-

art performance in diverse application areas, such as text classification [58, 59],

18

and are used as the base classifier of both DARK and Learn++.NSE. To per-395

form the comparative approach of DARK with other frameworks, we will use

Learn++.NSE [35], which will be detailed further.

Support Vector Machines

Support Vector Machines (SVM) is a machine learning method introduced

by [60], based on his Statistical learning Theory and Structural Risk Minimiza-400

tion Principle. The underlying idea behind the use of SVM for classification,

consists on finding the optimal separating hyperplane between the positive and

negative examples. The optimal hyperplane is defined as the one giving the

maximum margin between the training examples that are closest to it. Support

vectors are the examples that lie closest to the separating hyperplane. Once405

this hyperplane is found, new examples can be classified simply by determining

on which side of the hyperplane they are.

The output of a linear SVM is u = w×x− b, where w is the normal weight

vector to the hyperplane and x is the input vector. Maximizing the margin can

be seen as an optimization problem:410

minimize
1

2
||w||2,

subjected to yi(w.x + b) ≥ 1,∀i,
(1)

where x is the training example and yi is the correct output for the ith training

example. Intuitively the classifier with the largest margin will give low expected

risk, and hence better generalization.

To deal with the constrained optimization problem in (1) Lagrange multi-

pliers αi ≥ 0 and the Lagrangian (2) can be introduced:

Lp ≡
1

2
||w||2 −

l∑
i=1

αi(yi(w.x + b)− 1). (2)

Learn++.NSE

Learn++.NSE (NSE stands for Non Stationary Environments)[35] is one of415

the most relevant passive solutions for learning in the presence of drift. In [35] it

19

is stated that it is not only able to learn in the presence of drift without explicit

knowledge, but also that Learn++.NSE can accommodate a wide variety of drift

settings, regardless of the drift nature, which is not common in most learning

algorithms that try to deal with dynamic environments.420

Learn++.NSE is then a popular batch-based algorithm that trains one new

classifier for each batch of data it receives, and combines these classifiers using

a dynamically weighted majority voting. According to its authors, the novelty

of the approach is based on determining the voting weights, for each classifier’s

time-adjusted accuracy on current and past environments. It aims to act ac-425

cordingly to the changes in underlying data distributions, as well as to a possible

reoccurrence of an earlier distribution. In Learn++.NSE all classifiers are main-

tained and reweighted on the most recent training data, and thus the learning

time increases linearly.

Learn++.NSE software implementation for Matlab, with a classification and430

regression tree (CART) base classifier, was made available by authors at the

website http://github.com/gditzler/IncrementalLearning.

4.6. Performance Metrics

The evaluation of our approach was carried out with the previously described

dataset and using the Support Vector Machine (SVM). Notwithstanding it is a435

multi-class problem in its essence, it can be decomposed into multiple binary

tasks in a one-against-all binary classification strategy. In this case, a classifier

ht is composed by |Y | binary classifiers. In order to evaluate a binary decision

task we first define a contingency table representing the possible outcomes of

the classification, as shown in Table 3.440

Several measures have been defined based on this table, such as, error rate

(b+c
a+b+c+d), recall (R = a

a+c), and precision (P = a
a+b), as well as combined

measures, such as, the van Rijsbergen Fβ measure [61], which combines recall

and precision in a single score:

Fβ =
(β2 + 1)P ×R
β2P +R

. (3)

20

http://github.com/gditzler/IncrementalLearning

Class Positive Class Negative

Assigned Positive a b

(True Positives) (False Positives)

Assigned Negative c d

(False Negatives) (True Negatives)

Table 3: Contingency table for binary classification

Fβ is one of the best suited measures for text classification used with β = 1,445

i.e. F1, a harmonic average between precision and recall (4), since it evaluates

well unbalanced scenarios that usually occur in text classification settings and

particularly in text classification in the Twitter environment.

F1 =
2× P ×R
P +R

. (4)

Considering the proposed approach, the fact that we are working with a

time series, and that we use a one-against all strategy, we will have a classifier450

for each batch of the time series that is composed by |Y | binary classifiers,

being |Y | the collection of possible labels. To perceive the performance of the

classification for each drift pattern, we will consider all the binary classifiers that

were created in all the time series batches. To evaluate the performance obtained

across time, we will average the obtained results. Two conventional methods455

are widely used, specially in multi-label settings, namely macro-averaging and

micro-averaging. Macro-averaged performance is obtained by computing the

scores for each learning model in each batch of the time series and then averaging

these scores to obtain the global means. Differently, micro-averaged performance

is computed by summing all the previously introduced contingency matrix values460

(a,b,c and d), and then use the sum of these values to compute a single micro-

averaged performance that represents the global performance.

As mentioned above, performance metrics can also be used as the combining

strategies for the output of each classifier in an ensemble, which account for

each individual contribution of the classifier in previous time windows.465

21

5. Experimental Results and Analysis

In this section we evaluate the performance obtained with the Twitter data

set using the approach described in Section 3 in comparison with Learn++.NSE

benchmark algorithms.

We have tested both DARK framework and Learn++.NSE with different470

settings. Firstly, we tested the classifier used by Learn++.NSE authors as base

classifier, a classification and regression tree (CART), namely Learn++.CART,

and we have implemented the SVM as an alternative base classifier, so we can

have similar base classifiers in Learn++.NSE and DARK. As the implemen-

tation provided by Learn++.NSE is in Matlab code, and the base classifier475

must report a single output, we have used a multiclass SVM strategy provided

by Matlab called ClassificationECOC, which is an error-correcting output codes

(ECOC) classifier for multiclass learning by reduction to multiple, binary classi-

fiers like SVM. We have named this approach as Learn++.SVM. A one-against-

all strategy is used both in this approach and in DARK.480

Secondly, we have set up DARK with two different configurations: an en-

semble composed by 4 models, namely DARK.4.InverseFN and a solution that

retains all models previously created, namely DARK.All.InverseFN. The per-

formance metric used to combine the ensemble in DARK was the Inverse False

Negative (1
FN).485

All SVM models processed in our experiments have linear kernels, and

DARK implements the SVM Light application provided by [58] and available

at http://svmlight.joachims.org/ with cost-factor equal to 2. We have

tested both algorithms with two distinct setups: using a training window of

size 1 and a training window of size 4. The rationale of using training window490

size equal to 4 is detailed in [45], where we have studied the importance of past

examples in the classification process by presenting a batch learning model that

retained previously seen examples during a defined period. By retaining exam-

ples during different periods we aimed to evaluate for how long it is relevant to

keep information according to the different types of drift, and thus best tailoring495

22

http://svmlight.joachims.org/

the memory mechanism needed for classification purposes. Training window size

equal to 4 was revealed to have the best cost benefit relation between perfor-

mance and computational burden. Table 4 summarises the performance results

obtained by classifying the dataset. Three performance metrics of each model

are presented, namely precision, recall, and F1, and all presented values are in500

percentage. We have highlighted (in bold) the micro-averaged values.

Considering a training window of size 1 means that the models are trained

using exclusively the documents seen in the previous time window. All docu-

ments that have been seen prior to that are discarded.

By inspecting the results obtained and presented in Table 4, Learn++.NSE505

outperforms DARK, with both SVM as base classifiers and CART and consi-

dering the micro-averaged F1. DARK scores 74.86% and 75.62%, with an en-

semble size of 4 and without pruning, respectively, while Learn++.NSE scores

77.69% and 79.01% with SVM as base classifier and CART, respectively. As

it can be stated, using CART as the base classifiers is better than using an510

SVM. Even thought the performance of DARK is worst than the performance

of Learn++.NSE in this scenario, one must notice that DARK precision is far

superior, 77.69% and 79.01% against 99.14% and 99.12%. It means that even

though we miss to classify more positive examples than Learn++.NSE, we have

fewer false positives. It is also important to observe that the implementation515

of Learn++.NSE is set to achieve the micro-averaged break-even point bet-

ween precision and recall, as in all settings micro-averaged precision is equal to

micro-averaged recall.

In the second setting, as stated above, we have used a training window of

size 4. Table 5 summarises the performance results obtained by classifying the520

dataset, considering the micro-averaged measures in this new setting.

The results revealed that DARK, performing 86.13% and 86.53%, micro-

averaged F1, outstands both Learn++.NSE with an SVM as base classifier,

with 85.47%, as also with CART as base classifier, with 84.62%. It is important

to note that the training dataset is exactly the same for all the algorithms,525

i.e., we have shown to them all examples from the 4 previously occurring time

23

L
e
a
rn

+
+
.N

S
E
.S
V
M

L
e
a
rn

+
+
.N

S
E
.C

A
R
T

D
A
R
K
.4
.I
n
v
e
rs
e
F
N

D
A
R
K
.A

ll
.I
n
v
e
rs
e
F
N

D
ri
ft

P
re

c
is
io
n

R
e
c
a
ll

F
1

P
re

c
is
io
n

R
e
c
a
ll

F
1

P
re

c
is
io
n

R
e
c
a
ll

F
1

P
re

c
is
io
n

R
e
c
a
ll

F
1

S
u

d
d

en
#

1
70

.6
4%

87
.4

8%
78

.1
6%

90
.5

7%
80

.6
5%

85
,3

2%
99

.7
8%

78
.8

0%
88

.0
6%

99
.7

8%
78

.8
0%

88
.0

6%
S

u
d

d
en

#
2

64
.8

5%
87

.7
8%

74
.5

9%
92

.7
9%

86
.8

1%
89

.7
0%

99
.8

3%
83

.7
5%

91
.0

9%
99

.8
3%

83
.7

5%
91

.0
9%

G
ra

d
u

al
#

1
79

.3
5%

65
.9

6%
72

.0
4%

72
.6

4%
61

.6
3%

66
.6

8%
99

.9
0%

40
.0

8%
57

.2
1%

99
.9

0%
40

.0
8%

57
.2

1%
G

ra
d

u
al

#
2

86
.6

7%
75

.2
9%

80
.5

8%
92

.9
9%

72
.4

6%
81

.4
5%

99
.8

7%
62

.8
8%

77
.1

7%
99

.8
7%

63
.1

7%
77

.3
9%

In
cr

em
en

ta
l

#
1

85
.9

1%
84

.0
0%

84
.9

5%
94

.1
2%

87
.6

6%
90

.7
7%

99
.2

9%
76

.8
8%

86
.6

6%
99

.1
4%

79
.0

3%
87

.9
5%

In
cr

em
en

ta
l

#
2

65
.2

4%
80

.2
0%

71
.9

5%
60

.5
7%

84
.9

2%
70

.7
0%

97
.0

3%
49

.0
9%

65
.2

0%
97

.2
7%

54
.3

0%
69

.6
9%

R
eo

cc
u

rr
in

g
79

.3
9%

57
.2

7%
66

.5
4%

73
.5

0%
52

.3
3%

61
.1

4%
99

.2
9%

46
.7

3%
63

.5
5%

99
.2

9%
46

.7
3%

63
.5

5%
N

or
m

al
#

1
98

.0
7%

55
.3

5%
70

.7
6%

95
.5

2%
68

.0
8%

79
.5

0%
10

0.
00

%
16

.6
9%

28
.6

0%
10

0.
00

%
16

.6
9%

28
.6

0%
N

or
m

al
#

2
90

.3
6%

88
.8

5%
89

.6
0%

95
.8

8%
87

.4
5%

91
.4

7%
98

.5
0%

71
.6

6%
82

.9
6%

98
.5

0%
71

.7
2%

83
.0

0%
N

or
m

al
#

3
83

.0
0%

64
.1

1%
72

.3
4%

51
.3

7%
74

.3
1%

60
.7

5%
99

.2
0%

40
.1

1%
57

.1
2%

99
.2

0%
40

.1
1%

57
.1

2%

M
ic
ro

-a
v
e
ra

g
e
d
F
1

7
7
.6
9
%

7
7
.6
9
%

7
7
.6
9
%

7
9
.0
1
%

7
9
.0
1
%

7
9
.0
1
%

9
9
.1
4
%

6
0
.1
3
%

7
4
.8
6
%

9
9
.1
2
%

6
1
.1
3
%

7
5
.6
2
%

T
a
b

le
4
:

P
er

fo
rm

a
n

ce
re

su
lt

s
fo

r
tr

a
in

in
g

w
in

d
o
w

si
ze

=
1

L
e
a
rn

+
+
.N

S
E
.S
V
M

L
e
a
rn

+
+
.N

S
E
.C

a
rt

D
A
R
K
.4
.I
n
v
e
rs
e
F
N

D
A
R
K
.A

ll
.I
n
v
e
rs
e
F
N

D
ri
ft

P
re

ci
si
o
n

R
e
ca

ll
F
1

P
re

ci
si
o
n

R
e
ca

ll
F
1

P
re

ci
si
o
n

R
e
ca

ll
F
1

P
re

ci
si
o
n

R
e
ca

ll
F
1

S
u
d
d
en

#
1

84
.1

2%
84

.8
8%

84
.4

9%
90

.8
7%

84
.1

0%
87

.3
5%

99
.8

2%
81

.7
3%

89
.8

7%
99

.8
2%

81
.7

3%
89

.8
7%

S
u
d
d
en

#
2

75
.2

8%
89

.0
8%

81
.6

0%
97

.1
4%

85
.7

5%
91

.0
9%

99
.8

1%
87

.8
3%

93
.4

4%
99

.8
1%

87
.8

6%
93

.4
6%

G
ra

d
u
al

#
1

92
.0

7%
70

.1
3%

79
.6

1%
80

.1
9%

70
.3

3%
74

.9
4%

99
.7

0%
54

.7
9%

70
.7

2%
99

.7
0%

55
.2

9%
71

.1
3%

G
ra

d
u
al

#
2

94
.7

8%
84

.0
4%

89
.0

9%
97

.4
1%

83
.0

0%
89

.6
3%

99
.2

1%
67

.7
1%

80
.4

9%
99

.1
6%

68
.8

3%
81

.2
6%

In
cr

em
en

ta
l

#
1

93
.1

3%
85

.8
7%

89
.3

5%
97

.3
9%

89
.3

5%
93

.2
0%

99
.4

7%
87

.3
5%

93
.0

2%
99

.3
8%

87
.5

9%
93

.1
1%

In
cr

em
en

ta
l

#
2

73
.7

3%
92

.6
6%

82
.1

2%
72

.0
4%

89
.4

7%
79

.8
2%

97
.8

6%
71

.7
8%

82
.8

2%
97

.8
9%

74
.9

9%
84

.9
3%

R
eo

cc
u
ri

n
g

88
.0

0%
51

.8
0%

65
.2

1%
75

.9
4%

53
.6

7%
62

.8
9%

97
.9

5%
54

.0
7%

69
.6

7%
97

.9
5%

54
.0

7%
69

.6
7%

N
or

m
al

#
1

97
.9

3%
84

.0
4%

90
.4

5%
92

.4
7%

78
.8

7%
85

.1
3%

99
.8

6%
59

.2
7%

74
.3

9%
99

.8
6%

59
.4

7%
74

.5
5%

N
or

m
al

#
2

86
.8

8%
94

.4
4%

90
.5

0%
96

.0
7%

91
.7

6%
93

.8
6%

99
.4

8%
85

.7
0%

92
.0

8%
99

.0
9%

86
.0

6%
92

.1
2%

N
or

m
al

#
3

89
.4

8%
86

.9
5%

88
.2

0%
61

.5
9%

89
.5

8%
73

.0
0%

99
.2

3%
76

.0
8%

86
.1

3%
99

.2
3%

76
.4

3%
86

.3
5%

M
ic
ro

-a
v
e
ra

g
e
d
F
1

8
5
.4
7
%

8
5
.4
7
%

8
5
.4
7
%

8
4
.6
2
%

8
4
.6
2
%

8
4
.6
2
%

9
9
.3
0
%

7
6
.0
4
%

8
6
.1
3
%

9
9
.2
1
%

7
6
.7
2
%

8
6
.5
3
%

T
a
b

le
5
:

P
er

fo
rm

a
n

ce
re

su
lt

s
fo

r
tr

a
in

in
g

w
in

d
o
w

si
ze

=
4

24

windows. The major difference seems to be that DARK makes a better use of the

extra information that is provided when more examples are available, specially

longstanding examples. It is also important to note that DARK.4.InverseFN

is a lightweighted solution, as it discards all the information more than 4 time530

windows old. It discards not only the examples but also models created more

than 4 time windowns old.

6. Conclusions and Future Work

In this paper we have presented the DARK framework to tackle adaptive

learning with drifts in dynamic environments based on recent and retained535

knowledge. DARK supports distinct training window sizes and processes an

ensemble of multiple SVM models that are dynamically weighted.

We have achieved a three-fold contribution with this paper: (i) to infer

about the influence for the overall learning and classification performances, of

having recent examples retained during more than one time window. That is, to540

analyse the impact of using longstanding examples by the classifiers models and

how they can contribute positively to the ensemble classification; (ii) to validate

the DARK framework with text classification scenarios, by applying it to text

datasets based on Twitter social network public stream and (iii) to present a

comparative study with benchmark solutions in the field, namely Learn++.NSE545

algorithm.

The evaluation of DARK framework reinforced the emerging need to invest

on ensemble frameworks deployment for learning, that may cope with flexible

and adjustable time windows of recent knowledge. We were able to contribute

on that through DARK, as we may test datasets processing with different time550

window sizes of recent examples in order to infer about its impact on ensemble

classification. We were also able to reinforce the effectiveness of using DOTS [55]

to create multiple realistic text classification datasets with drift patterns, corres-

ponding to others such well known drift types.

Regarding experimental results, we have processed the same dataset with555

25

DARK framework and Learn++.NSE algorithm, being the later processed with

both SVM and CART as base classifiers. For both processing we have used two

distinct window sizes: 1 and 4. The results calculated for micro-averaged F1

revealed that as we increased the window size, DARK framework became more

precise and accurate.560

Regarding computationally demands we observed that DARK.4.InverseFN

is a lightweighted solution and competitive with the Learn++.NSE algorithm.

Future research directions will be carried out in the investigation of different

learning machines and heterogeneous ensembles along with refine DARK to have

a dynamic and JIT window size adaptation for NSE text-related applications.565

References

[1] P. Huijse, P. A. Estevez, P. Protopapas, J. C. Principe, P. Zegers, Computa-

tional intelligence challenges and applications on large-scale astronomical

time series databases, IEEE Computational Intelligence Magazine 9 (3)

(2014) 27–39.570

[2] J. Costa, C. Silva, M. Antunes, B. Ribeiro, Choice of best samples for

building ensembles in dynamic environments, in: Proceedings of the 17th

International Conference on Engineering Applications of Neural Networks

(EANN), 2016, pp. 35–47.

[3] I. Zliobaite, Learning under concept drift: an overview, Tech. rep., Faculty575

of Mathematics and Informatic, Vilnius University, Latvia (2010).

[4] L. Kuncheva, Combining Pattern Classifiers, Methods and Algorithms, Wi-

ley, 2004.

[5] J. P. Patist, Optimal window change detection, in: Proceedings of the 7th

IEEE International Conference on Data Mining Workshop (ICDMW 2007),580

IEEE, 2007, pp. 557–562.

26

[6] K. Nishida, K. Yamauchi, Detecting concept drift using statistical testing,

in: International conference on discovery science, Springer, 2007, pp. 264–

269.

[7] G. J. Ross, D. K. Tasoulis, N. M. Adams, Nonparametric monitoring of585

data streams for changes in location and scale, Technometrics 53 (4) (2011)

379–389.

[8] A. Wald, Sequential Tests of Statistical Hypotheses, Springer New York,

1992, pp. 256–298.

[9] P. Armitage, Sequential Medical Trials, Blackwell Scientific Publications,590

1960.

[10] M. Harel, S. Mannor, R. El-Yaniv, K. Crammer, Concept drift detection

through resampling, in: Proceedings of the 31st International Conference

on Machine Learning, 2014, pp. 1009–1017.

[11] A. Haque, L. Khan, M. Baron, Semi supervised adaptive framework for595

classifying evolving data stream, in: Pacific-Asia Conference on Knowledge

Discovery and Data Mining, Springer, 2015, pp. 383–394.

[12] C. Alippi, G. Boracchi, M. Roveri, Just-in-time classifiers for recurrent

concepts, IEEE transactions on neural networks and learning systems 24 (4)

(2013) 620–634.600

[13] C. Alippi, G. Boracchi, M. Roveri, Just-in-time ensemble of classifiers, in:

The 2012 International Joint Conference on Neural Networks (IJCNN),

IEEE, 2012, pp. 1–8.

[14] A. Bifet, R. Gavalda, Learning from time-changing data with adaptive

windowing, in: International Conference on Data Mining, 2007.605

[15] C. Alippi, M. Roveri, Just-in-time adaptive classifiers - part ii: Designing

the classifier, IEEE Transactions on Neural Networks 19 (12) (2008) 2053–

2064.

27

[16] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, O. Kipersztok, Real-

time data mining of non-stationary data streams from sensor networks,610

Information Fusion 9 (3) (2008) 344–353.

[17] I. Koychev, Gradual forgetting for adaptation to concept drift, Proceedings

of ECAI 2000 Workshop on Current Issues in Spatio-Temporal Reasoning,,

2000.

[18] M. Datar, R. Motwani, The sliding-window computation model and results,615

in: Data Stream Management, Springer, 2016, pp. 149–165.

[19] C. Alippi, G. Boracchi, M. Roveri, Just in time classifiers: managing the

slow drift case, in: 2009 International Joint Conference on Neural Networks,

IEEE, 2009, pp. 114–120.

[20] R. Klinkenberg, Learning drifting concepts: Example selection vs. example620

weighting, Intelligent Data Analysis 8 (3) (2004) 281–300.

[21] J. S. Vitter, Random sampling with a reservoir, ACM Transactions on

Mathematical Software (TOMS) 11 (1) (1985) 37–57.

[22] P. Domingos, G. Hulton, Mining high-speed data streams, in: Proceedings

of the 6th ACM SIGKDD International Conference on Knowledge Discov-625

ery Data Mining, 2000, pp. 71–80.

[23] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams,

in: Proceedings of the 7th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2001, pp. 97–106.

[24] J. Liu, X. Li, W. Zhong, Ambiguous decision trees for mining concept-630

drifting data streams, Pattern Recognition Letters 30 (15) (2009) 1347–

1355.

[25] L. Cohen, G. Avrahami, M. Last, A. Kandel, Info-fuzzy algorithms for

mining dynamic data streams, Applied Soft Computing 8 (4) (2008) 1283–

1294.635

28

[26] Y. Ye, S. Squartini, F. Piazza, Online sequential extreme learning machine

in nonstationary environments, Neurocomputing 116.

[27] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line

learning and an application to boosting, Journal Computer and Systems

Science 55 (1) (1997) 119–139.640

[28] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.

[29] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.

[30] R. D. Bagul, B. D. Phulpagar, Survey on approaches, problems and appli-

cations of ensemble of classifiers, International Journal of Emerging Trends

& Technology in Computer Science 5 (1) (2016) 28–30.645

[31] G. Ditzler, R. Polikar, Incremental learning of concept drift from streaming

imbalanced data, IEEE Transactions on Knowledge and Data Engineering

25 (10) (2013) 2283–2301.

[32] N. Tabassum, T. Ahmed, A theoretical study on classifier ensemble meth-

ods and its applications, in: Proceedings of the 3rd International Confer-650

ence on Computing for Sustainable Global Development, 2016, pp. 67–78.

[33] Y. Ren, L. Zhang, P. N. Suganthan, Ensemble classification and regression

- recent developments, applications and future directions, IEEE Computa-

tional Intelligence Magazine 1 (1) (2016) 41–43.

[34] M. P. P. Jr., Combining classifiers: from the creation of ensembles to the655

decision fusion, in: 24th Conference on Graphics, Patterns and Images,

2011, pp. 1–10.

[35] R. Elwell, R. Polikar, Incremental learning of concept drift in nonstationary

environments, IEEE Transactions on Neural Networks (2011) 1517–1531.

[36] M. Karnick, M. D. Muhlbaier, R. Polikar, Incremental learning in non-660

stationary environments with concept drift using a multiple classifier based

29

approach, in: International Conference on Pattern Recognition, 2008, pp.

1–4.

[37] G. Ditzler, M. Roveri, C. Alippi, R. Polikar, Learning in nonstationary

environments: a survey, IEEE Computational Intelligence Magazine 10 (4)665

(2015) 12–25.

[38] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on

concept drift adaptation, ACM Computing Surveys (CSUR) 46 (4) (2014)

44.

[39] J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, J. Twycross,670

Immune system approaches to intrusion detection–a review, Natural com-

puting 6 (4) (2007) 413–466.

[40] M. E. Haque, T. M. Alkharobi, Adaptive hybrid model for network intru-

sion detection and comparison among machine learning algorithms, Inter-

national Journal of Machine Learning and Computing 5 (1) (2015) 17.675

[41] M. I. Ahsan, T. Nahian, A. A. Kafi, M. I. Hossain, F. M. Shah, Review spam

detection using active learning, in: Information Technology, Electronics and

Mobile Communication Conference (IEMCON), 2016 IEEE 7th Annual,

IEEE, 2016, pp. 1–7.

[42] E. Lughofer, M. S. Mouchaweh, Adaptive and on-line learning in non-680

stationary environments., Evolving Systems 6 (2) (2015) 75–77.

[43] L. Kuncheva, A theoretical study on six classifier fusion strategies, IEEE

Transactions on Pattern Analysis and Machine Intelligence 24 (2) (2002)

281–286.

[44] R. Polikar, L. Upda, S. S. Upda, V. Honavar, Learn++: an incremental685

learning algorithm for supervised neural networks, IEEE Transactions on

Systems, Man, and Cybernetics (4) (2001) 497–508.

30

[45] J. Costa, C. Silva, M. Antunes, B. Ribeiro, The impact of longstanding

messages in micro-blogging classification, in: Proceedings of the Interna-

tional Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8.690

[46] J. Costa, C. Silva, M. Antunes, B. Ribeiro, Concept drift awareness in

Twitter streams, in: Proceedings of the 13th International Conference on

Machine Learning and Applications, 2014, pp. 294–299.

[47] J. Huang, K. M. Thornton, E. N. Efthimiadis, Conversational tagging in

Twitter, in: Proceedings of the 21st ACM Conference on Hypertext and695

Hypermedia, 2010, pp. 173–178.

[48] Merriam-webster’s dictionary (October 2012).

[49] M. Zappavigna, Ambient affiliation: A linguistic perspective on Twitter,

New Media & Society 13 (5) (2011) 788–806.

[50] S. Johnson, How Twitter will change the way we live, Time Magazine 173700

(2009) 23–32.

[51] O. Tsur, A. Rappoport, What’s in a hashtag?: content based prediction of

the spread of ideas in microblogging communities, in: Proceedings of the

5th International Conference on Web Search and Data Mining, 2012, pp.

643–652.705

[52] L. Yang, T. Sun, M. Zhang, Q. Mei, We know what @you #tag: does the

dual role affect hashtag adoption?, in: Proceedings of the 21st International

Conference on World Wide Web, 2012, pp. 261–270.

[53] H.-C. Chang, A new perspective on Twitter hashtag use: diffusion of inno-

vation theory, in: Proceedings of the 73rd Annual Meeting on Navigating710

Streams in an Information Ecosystem, 2010, pp. 85:1–85:4.

[54] J. Costa, C. Silva, M. Antunes, B. Ribeiro, Defining semantic meta-

hashtags for Twitter classification, in: Proceedings of the 11th Interna-

tional Conference on Adaptive and Natural Computing Algorithms, 2013,

pp. 226–235.715

31

[55] J. Costa, C. Silva, M. Antunes, B. Ribeiro, DOTS: Drift Oriented Tool

System, in: Proceedings of the 22nd International Conference on Neural

Information Processing (ICONIP), 2015, pp. 615–623.

[56] P. Willett, The porter stemming algorithm: then and now, Program 40 (3)

(2006) 219–223.720

[57] R. Krovetz, Viewing morphology as an inference process, in: Proceedings

of the 16th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, 1993, pp. 191–202.

[58] T. Joachims, Learning Text Classifiers with Support Vector Machines,

2002.725

[59] S. Tong, D. Koller, Support vector machine active learning with applica-

tions to text classification, The Journal of Machine Learning Research 2

(2002) 45–66.

[60] V. Vapnik, The Nature of Statistical Learning Theory, 1999.

[61] C. van Rijsbergen, Information Retrieval, 1979.730

32

	Introduction
	Approaches for drift detection, adaptation and learning
	Active approaches
	Passive approaches

	DARK Framework
	Experimental Setup
	Social networks: Twitter case study
	DOTS: Drift Oriented Tool System
	Dataset
	Representation and Preprocessing
	Classifiers
	Performance Metrics

	Experimental Results and Analysis
	Conclusions and Future Work

