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Abstract One fundamental question in biology is population extinction and persis-
tence, i.e., stability/instability of the extinction equilibrium and of non-extinction
equilibria. In the case of nonlinear matrix models for structured populations, a bifurca-
tion theorem answers this question when the projection matrix is primitive by showing
the existence of a continuum of positive equilibria that bifurcates from the extinction
equilibrium as the inherent population growth rate passes through 1. This theorem
also characterizes the stability properties of the bifurcating equilibria by relating them
to the direction of bifurcation, which is forward (backward) if, near the bifurcation
point, the positive equilibria exist for inherent growth rates greater (less) than 1. In
this paper we consider an evolutionary game theoretic version of a general nonlinear
matrix model that includes the dynamics of a vector of mean phenotypic traits subject
to natural selection. We extend the fundamental bifurcation theorem to this evolution-
ary model. We apply the results to an evolutionary version of a Ricker model with
an added Allee component. This application illustrates the theoretical results and, in
addition, several other interesting dynamic phenomena, such as backward bifurcation
induced strong Allee effects.
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1 Introduction

We consider a discrete time model

x̂(t + 1) = P(x̂(t))x̂(t), t ∈ N0 = {0, 1, 2, . . .} (1)

for the dynamics of a biological population whose individuals are classified into a
finite number of discrete classes. Here x̂ : N0 → R

m
+ is a sequence of m-dimensional

column vectors consisting of class specific population densities, where R
m
+ is the

closure of the positive cone R
m+ in m-dimensional Euclidean space R

m . Recursive
formulas (1), called matrix models, are widely utilized to describe the dynamics of
populations in which individuals are classified according to age, size, life cycle stage,
spatial location, genetic composition, etc., indeed virtually any classification scheme
of interest (Caswell 2001; Cushing 1998).

The entries pi j (x̂) of the projectionmatrix P(x̂) are chosen by amodeler to describe
class-specific, per capita (individual) birth and survival rates and to account for tran-
sitions of individuals from one class to another. As indicated, these entries can be
dependent on the densities in the demographic vector x̂ , dependencies that make the
dynamic model nonlinear. Classic examples of matrix models for structured popu-
lation dynamics include the age, size, and stage structured models of Leslie (1945,
1948), Lewis (1942), Usher (1966), and Lefkovitch (1965).

Of fundamental importance to a biological population is its avoidance of extinction.
We refer to the equilibrium x̂ = 0̂ solution of (1) as the extinction equilibrium. If the
extinction equilibrium is an attractor, then the population is threatened with extinction.
This leads to the study of the stability properties (local and global) of the extinction
equilibrium. The linearization principle (Elaydi 1996) leads one to consider the eigen-
values of the Jacobian obtained from (1) evaluated at the extinction equilibrium, which
is the inherent projection matrix P(0̂) (inherent means density free). If all eigenvalues
of P(0̂) lie in the complex unit circle, then the extinction equilibrium is locally asymp-
totically stable,1 which threatens the model population with (asymptotic) extinction.
If at least one eigenvalue is outside the complex unit circle, then the extinction equi-
librium is unstable, which opens the possibility of population persistence. The nature
of the bifurcation that occurs when the extinction equilibrium loses stability2 forms a
fundamental bifurcation theorem in population dynamics. We describe this theorem
below (Theorem 1).

In the matrix model (1), the vital rates and transitions modeled by the entries pi j (x̂)
of the projection matrix P(x̂) change temporally only due to changes in the demo-

1 An equilibrium x̂ is locally stable if given any ε > 0 there exists a δ > 0 such that for any initial
condition satisfying

∣
∣x̂ (0) − x̂

∣
∣ < δ it follows that the solution satisfies

∣
∣x̂ (t) − x̂

∣
∣ < ε for all t ∈ N0. An

equilibrium is a local attractor if there exists a δ0 > 0 such that
∣
∣x̂ (0) − x̂

∣
∣ < δ implies limt→+∞ x̂ (t) = x̂ .

An equilibrium is locally asymptotically stable if it is both locally stable and a local attractor.
2 Throughout this paper stable (or stability)means local asymptotically stable (or local asymptotic stability).
Unstable means not locally asymptotically stable.
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graphic vector x̂ = x̂(t). There are, of course, numerous other reasons why these
vital rates and transitions might change in time, for example, they might fluctuate
randomly due to demographic or environmental stochasticity or periodically due to
regular environmental oscillations (seasonal, monthly or daily fluctuations). Another
reason these vital rates and transitions might change in time is that they are subject to
selective pressures from Darwinian evolution. Our goal in this paper is to investigate
an extension of the fundamental bifurcation theorem for the non-evolutionary model
(1), as given in Theorem 1 below, to an evolutionary game theoretic version of (1). We
describe the evolutionary model in Sect. 3, study the stability of an extinction equilib-
rium in Sect. 4, and in Sect. 5 determine the nature of the bifurcation that occurs when
extinction stability is lost. In Sect. 6 an application is made to an evolutionary version
of a Ricker model with an added Allee component (low density positive feedback
effect).

2 A bifurcation theorem for the matrix model (1)

We make the following assumptions on the entries pi j (x̂) in the projection matrix
P(x̂). Let � ⊆ R

m denote an open neighborhood of 0̂ ∈ R
m and C2(� → R+)

denote the set of twice continuously differentiable functions that map � to R+.

H1: P(x̂) = [

pi j
(

x̂
)]

is primitive for all x̂ ∈ � and pi j ∈ C2(� → R+).

Recall that a nonnegative matrix (i.e. one all of whose entries are nonnegative) is
primitive if it is irreducible and has a strictly dominant eigenvalue. Perron-Frobenius
theory implies that the spectral radius ρ [A] of a primitive matrix A is a strictly dom-
inant, positive and simple eigenvalue which possesses a positive eigenvector in R

m+.
Moreover, no other eigenvalue has a nonnegative eigenvector, i.e. an eigenvector in
R
m
+. See Bernman and Plemmons (1994). We denote the strictly dominant eigenvalue

of P(x̂) by

r(x̂) := ρ
[

P
(

x̂
)]

.

Observe that r (·) ∈ C2(� → R
1+). The number r(0̂) is the inherent growth rate of the

population (the growth rate in the absence of density effects). For notational simplicity
we denote this number by

r0 := r(0̂).

For our purposes, we normalize the entries of P in a way that

P(x̂) = r0Q(x̂)

where the normalized matrix Q
(

x̂
) = [

qi j
(

x̂
)]

satisfies H1 and

ρ[Q(0̂)] = 1.
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Then the matrix equation (1) becomes

x̂(t + 1) = r0Q(x̂(t))x̂(t), t ∈ N0. (2)

We denote the entries of the matrix Q(x̂) by qi j (x̂).

Definition 1 We say that a pair (r0, x̂) ∈ R × � is an equilibrium pair of (2) [or
equivalently of (1)] if x̂ = r0Q(x̂)x̂ . Observe that (r0, 0̂) is an equilibrium pair for
every r0 ∈ R; we call (r0, 0̂) an extinction equilibrium pair. An equilibrium pair (r0, x̂)
is a positive equilibrium pair if x̂ ∈ Rm+ and it is stable if x̂ is a locally asymptotically
stable equilibrium of (2) [equivalently (1)].

We need the quantity

κ := −ŵT
L

[

∇0
x̂ q

T
i j ŵR

]

ŵR

where T denotes transposition, the gradient∇x̂ of qi j (x̂)with respect to x̂ is a column
m-vector, and ∇0

x̂ q
T
i j denotes the transpose of the gradient evaluated at the bifurcation

point (r0, x̂) = (1, 0̂).With this superscript notational convention,we can equivalently
write

κ = −ŵT
L

[

∇0
x̂ p

T
i j ŵR

]

ŵR . (3)

Here the vectors ŵT
L and ŵR are the (positive) left and right eigenvectors of Q(0̂)

(equivalently of P(0̂) when r0 = 1) associated with eigenvalue 1, normalized so that

ŵT
L ŵR = 1.

Note that [∇0
x̂ p

T
i j ŵR] is anm×mmatrix. The derivative ∂0xk pi j measures the effect that

an increase in the density of class k has on the entry pi j of the population projection
matrix P (at low population density). The number ŵT

L [∇0
x̂ p

T
i j ŵR]ŵR is a weighted

sum (with positive coefficients) of all density effects on all entries pi j . This number
therefore represents a summary measure of the effects that (low level) class densities
have on the population (as does κ, the minus sign being introduced only for notational
convenience in Theorem 1).

From the linearization principle and from Theorems 1.2.4 and 1.2.5 in Cushing
(1998) we have the following result.

Theorem 1 Assume the matrix P(x̂) in (1) satisfies H1.

(a) The extinction equilibrium (r0, 0̂) is stable for r0 < 1 and is unstable for r0 > 1.
(b) There exists a continuum C of positive equilibrium pairs (r0, x̂) ∈ R+ ×R

m+ of the
matrix equation (1) which bifurcates from (1, 0̂) (i.e. contains the extinction pair
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(1, 0̂) in its closure). Near the bifurcation point, the positive equilibrium pairs on
C have the parameterization

x̂(ε) = ŵRε + O(ε2)

r0(ε) = 1 + κε + O(ε2)

for ε � 0.
(c) We say the bifurcation of positive equilibria is forward (respectively, backward) if,

in a neighborhoodof (1, 0̂), the positive equilibriumpairs onC are such that r0 > 1
(respectively, r0 < 1). If κ > 0 then the bifurcation of C at (1, 0̂) is forward and
the equilibrium pairs on C in a neighborhood of (1, 0̂) are (locally asymptotically)
stable. If κ < 0 then the bifurcation is backward and the equilibrium pairs on C
in a neighborhood of (1, 0̂) are unstable.

Note how, in this Theorem, the direction of the bifurcation determines the stability
of the bifurcating equilibria. A forward bifurcation, occurring when the extinction
equilibrium loses its stability as r0 increases through 1 (removing the threat of extinc-
tion), creates stable positive (non-extinction) equilibrium states.

Theorem 1 asserts stability or instability of the bifurcating positive equilibria C
locally only, i.e. for equilibrium pairs on C near the extinction equilibrium (1, 0̂) only.
However, the continuum C is known to exist globally in the sense that it connects to
the boundary of the set on which the matrix model is defined, i.e., it connects to the set
{+∞} × (∂� ∩ R

m+), where ∂� denotes the boundary of � . In most applications, �
includes the closure R

m
+ of the positive cone, which implies that either the component

r0 is unbounded or the norm |x̂ | is unbounded in R+ (or both). When r0 is unbounded
we have that there is at least one non-extinction equilibrium for each r0 > 1 (Cushing
1998, 2009).

A derivative ∂xk pi j is often negative in populationmodels because of an assumption
that an increase in density xk will have a deleterious effect on some vital rate (birth
rate, survival probability, growth rate, metabolic rates, and so on). These kinds of
negative feedback phenomena are common in population models that describe density
regulation mechanisms for population growth. If all the derivatives ∂0xk pi j are negative
(or zero), that is to say, if all density effects in a model are negative feedback effects,
then clearly κ > 0 and the bifurcation of the continuum C is forward and hence
stable.

A positive derivative ∂0xk pi j is called a component Allee effect (Courchamp et al.
2008). Clearly, the existence of a component Allee effect is necessary for a back-
ward bifurcation (i.e. for κ < 0). If all component Allee effects are sufficiently large
so that κ < 0, then the bifurcation of positive equilibria at (1, 0̂) is backward and
hence unstable. A common occurrence in this case is the creation of a strong Allee
effect, i.e. the presence of two attractors, one of which is an extinction equilibrium
and the other of which is positive. Thus, population survival is initial condition depen-
dent. This scenario can only occur when r0 < 1 and the extinction equilibrium is
stable. A backward bifurcation does not create a stable positive equilibrium, how-
ever. A strong Allee effect usually arises in models with backward bifurcations. This
is because it is usually assumed that negative feedback effects predominate at high
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densities (even if they do not at low densities) which has the consequence of “turn-
ing” the continuum C around at a critical (saddle-node bifurcation) value of r0 < 1
with a concomitant stabilization of the positive equilibria. We will not pursue this
phenomena here, which occurs outside a neighborhood of the bifurcation point. See
Cushing (2014).

In this paper we extend the fundamental bifurcation Theorem 1 to an evolutionary
version of thematrixmodel (2) under the assumption that the projectionmatrix depends
on a suite of phenotypic traits subject to natural selection. This generalizes the results
in Cushing (2010) where models with only a single trait are considered.

3 Darwinian dynamics with multiple evolutionary traits

We consider an evolutionary version of the matrix model (1) developed in Vincent
and Brown (2005). In that modeling methodology a (focal) individual’s vital rates, as
described by the entries of the projectionmatrix, are influenced by a collection of scalar
traits v̂ = (v1, . . . , vn)

T and the population means of these traits û = (u1, . . . , un)T .
By this assumption, an individual’s fitness depends on both its own suite of traits v̂ and
the traits possessed by other individuals in the population û (frequency dependence).
We indicate this by the notation P(x̂, û, v̂), which in turn implies that the spectral
radius of P(x̂, û, v̂) is also dependent on v̂ and û:

r(x̂, û, v̂) := ρ[P(x̂, û, v̂)].

Darwinian dynamics track the dynamics of the structured population x̂(t) and the
vector of population mean traits û (t) = (u1(t), . . . , un(t))T , the latter by means of
the assumption that changes in the mean trait are proportional to the fitness gradient
of the focal individual (Abrams 2001, 2005; Dercole and Rinaldi 2008; Lande 1976,
1982; McGill and Brown 2007; Vincent and Brown 2005). We extend the resulting
evolutionary matrix model, as found in Vincent and Brown (2005), to include a vector
of traits v̂ = (v1, . . . , vn)

T . Different fitness functions can be found throughout the
literature, but the most common choice is the exponential growth rate ln r (Roff 1992).
Another choice used by some researchers is the net reproduction number R0(x̂, û, v̂).
We use ln r(x̂, û, v̂), but note that by the results in Cushing (2011) our results remain
unchanged if r(x̂, û, v̂) is replaced by R0(x̂, û, v̂).

The model equations for the coupled population and trait dynamics provided by
evolutionary game theory are (McGill and Brown 2007; Vincent and Brown 2005)

x̂(t + 1) = P(x̂, û, v̂)
∣
∣

(x̂,û,v̂)=(x̂(t),û(t),û(t))
x̂(t) (4)

û(t + 1) = û(t) + M ∇v̂ ln r(x̂, û, v̂)|(x̂,û,v̂)=(x̂(t),û(t),û(t)) (5)

where M = (

σi j
)

is a symmetric n × n variance-covariance matrix for trait evolution
and the gradient ∇v̂ ln r(x̂, û, v̂) is a column n-vector, whose i th entry is

∂vi
ln r(x̂, û, v̂) := ∂ ln r(x̂, û, v̂)

∂vi
.
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The entry σi j of M , i �= j , is the covariance of the i th phenotypic trait and the j th
phenotypic trait. The diagonal entries

σ 2
i := σi i ≥ 0

are the variances of the i th trait (from its mean ui ) occurring in the population at each
time t (which are assumed constant). We assume the usual conditions for a covariance
matrix, namely that M is positive semi-definite and symmetric.3 If the matrix M is the
null matrix, then no evolution occurs and û(t) remains constant for all t . In this case
Theorem 1 holds when applied to (4) with the mean trait û(t) ≡ û(0) held fixed.

We write (4) and (5) as

x̂(t + 1) = P(x̂(t), û(t), û(t))x̂(t) (6a)

û(t + 1) = û(t) + M ∇v̂ ln r(x̂ (t) , û (t) , û (t)) (6b)

where we use the simplifying notation

P(x̂(t), û(t), û(t)) := P(x̂, û, v̂)
∣
∣

(x̂,û,v̂)=(x̂(t),û(t),û(t))

∇v̂ ln r(x̂(t), û(t), û(t)) := [∇v̂ ln r(x̂, û, v̂)
]∣
∣
(x̂,û,v̂)=(x̂(t),û(t),û(t)) .

Remark 1 We will need to differentiate functions of the three variables (x̂, û, v̂) after
letting v̂ = û with respect to the components ui of û and from them construct gradients
and Jacobians with respect to û. Such a derivative is the sum of the partial derivatives
with respect to ui and vi . For example, the derivative of r(x̂, û, û) := r(x̂, û, v̂)|v̂=û
with respect to ui is

∂

∂ui

[

r(x̂, û, v̂)|v̂=û
] + d

dvi

[

r(x̂, û, v̂)|v̂=û
]

which we write as

∂r(x̂, û, û)

∂ui
+ ∂r(x̂, û, û)

∂vi
.

With this notation, the gradient of r(x̂, û, û) with respect to the components ui of û
constructed from these partial derivatives is

∇ûr(x̂, û, û) + ∇v̂r(x̂, û, û).

Let V be an open connected set in Rn and let � ⊆ Rm be an open set containing
the origin 0̂ ∈ Rm . We assume the following about the projection matrix P(x̂, û, v̂)

and the variance-covariance matrix M .

3 M is positive semi-definite means v̂T M v̂ ≥ 0 for all v̂ ∈ Rm . M is symmetric means σi j = σ j i for all
1 ≤ i, j ≤ m.
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H2. P(x̂, û, v̂) is primitive for (x̂, û, v̂) ∈ �×V ×V , pi j ∈ C2(�×V ×V →
R+), pi j (x̂, û, v̂) = p̃i j (v̂) p̄i j (x̂, û, v̂) such that p̄i j (0̂, û, v̂) ≡ 1, and M is
invertible.

Remark 2 The assumption on pi j in H2 implies that trait frequency dependence has
no effect in the absence of density effects. Specifically, pi j (0̂, û, v̂) = p̃i j (v̂). A
mathematical implication of this assumption is that all derivatives of pi j (0̂, û, v̂) with
respect to components ui of û are identically equal to 0 for all v̂ :

∇û pi j (0̂, û, v̂) ≡ 0̂n . (7)

This means the inherent projection matrix P(0̂, û, v̂) is independent of û and hence
so is its dominant eigenvalue r(0̂, û, v̂). Thus ∇ûr(0̂, û, v̂) ≡ 0̂n for all v̂ hence

∇û

[

r(0̂, û, v̂)

∣
∣
∣
v̂=û

]

≡ 0̂n . Using the notation convention in Remark 1 we have

∇ûr(0̂, û, û) ≡ 0̂n . (8)

Remark 3 The assumption on M in H2, that it is invertible, is for example satisfied if
traits are not strongly correlated.

Our approach is to consider the bifurcation of equilibria from an extinction equi-
librium which, by definition, is an equilibrium

(

x̂, û
) = (0̂, û) of (6). From (6b) we

find that (0̂, û∗) is an equilibrium if and only if

∇v̂r(0̂, û
∗, û∗) = 0̂n

(where 0̂n is the origin inR
n), inwhich casewe say û∗ is a critical trait. As a bifurcation

parameter we use the dominant eigenvalue of P(0̂, û∗, û∗), which we denote by

r∗
0 := ρ[P(0̂, û∗, û∗)].

This is the inherent growth rate of the population when the trait is held fixed at the
critical trait û = û∗. As in the non-evolutionary case, we normalize the entries of the
projection matrix so that

P(x̂, û, v̂) = r∗
0Q(x̂, û, v̂)

where Q satisfies H2 and

ρ[Q(0̂, û∗, û∗)] = 1.

Letting

r̄(x̂, û, v̂) := ρ[Q(x̂, û, v̂)]
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we have

r(x̂, û, v̂) = r∗
0 r̄(x̂, û, v̂), r̄(0̂, û∗, û∗) = 1. (9)

The Darwinian equations (6) are now

x̂(t + 1) = r∗
0 Q(x̂(t), û(t), û(t))x̂(t) (10a)

û(t + 1) = û(t) + 1

r̄(x̂(t), û(t), û(t))
M ∇v̂ r̄(x̂(t), û(t), û(t)). (10b)

Note that the bifurcation parameter r∗
0 does not appear in the trait equation (10b). This

is because in the trait equation (6b) we have

∇v̂ ln r(x̂, û, û) = 1

r(x̂, û, û)
∇v̂r

(

x̂, û, û
) = 1

r∗
0 r̄(x̂, û, û)

r∗
0∇v̂ r̄

(

x̂, û, û
)

in which r∗
0 cancels.

We say that a pair (r∗
0 , (x̂, û)) ∈ R × (� × V ) is an equilibrium pair if

x̂ = r∗
0 Q(x̂, û, û)x̂ (11a)

0̂n = ∇v̂ r̄(x̂, û, û). (11b)

Note that

∇v̂ r̄(x̂, û, û) = 0̂n if and only if ∇v̂r(x̂, û, û) = 0̂n .

Definition 2 We say an equilibrium pair (r∗
0 , (x̂, û)) is a positive equilibrium if x̂ ∈

R
m+. An extinction equilibrium pair is an equilibrium pair of the form (r∗

0 , (0̂, û)).

Observe that (r∗
0 , (0̂, û)) is an extinction equilibrium pair if and only if û = û∗

is a critical trait and, conversely, if û = û∗ is a critical trait, then (r∗
0 , (0̂, û∗)) is an

extinction equilibrium pair for all values of r∗
0 .

4 Stability of extinction equilibria

We want to analyze the stability properties of an extinction equilibrium pair.

Definition 3 We say that an equilibrium pair (r∗
0 , (x̂, û)) is stable if (x̂, û) is (locally

asymptotically) stable as an equilibrium of the Darwinian dynamics (6).

To use the Linearization Principle, we compute the Jacobian matrix for the system
(10a) and (10b)

J (r∗
0 , x̂, û) =

(

r∗
0 J (x̂, û, û) r∗

0	(x̂, û, û)

ϒ(x̂, û, û) �(x̂, û, û)

)
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where J (x̂, û, û) is the m × m Jacobian matrix of Q(x̂, û, û)x̂ with respect to x̂ and
	(x̂, û, û) is the m × n matrix whose n columns are

∂ui Q(x̂, û, û)x̂ + ∂vi Q(x̂, û, û)x̂, i = 1, 2, . . . , n. (12)

The dynamics of the i th mean trait ui are given by

ui (t + 1) = ui (t) +
n

∑

k=1

σik∂vk ln r̄(x̂(t), û(t), û(t)).

and therefore ϒ(x̂, û, û) is the n × m matrix whose i th row (i = 1, 2, . . . , n) is the
transpose of the gradient

∇x̂

n
∑

k=1

σik∂vk ln r̄(x̂, û, û) =
n

∑

k=1

σik∇x̂∂vk ln r̄(x̂, û, v̂)

∣
∣
∣
∣
∣
v̂=û

and

�(x̂, û, û) = In×n + MH(x̂, û, û) (13)

where H(x̂, û, û) is a n × n matrix whose k j th entry is the uk derivative of
∂v j ln r̄(x̂, û, û), i.e.

H(x̂, û, û) :=
[

∂ukv j ln r̄(x̂, û, v̂)
∣
∣
v̂=û

+ ∂vkv j ln r̄(x̂, û, v̂)
∣
∣
v̂=û

]

By assumption H2, the projection matrix P(0̂, û, v̂) = [ p̃i j (v̂)] is independent of û
and as a result

∂ukv j ln r̄(x̂, û, v̂)
∣
∣
(x̂,û,v̂)=(0̂,û,û)

≡ 0

for all û. It follows that

H(0̂, û∗, û∗) =
[

∂0vkv j
ln r̄

]

(14)

where we have adopted the superscript notation

∂0vkv j
ln r̄ := ∂vkv j ln r̄(x̂, û, v̂)

∣
∣
(x̂,û,v̂)=(0̂,û∗,û∗) .

Thus, thematrix H(0̂, û∗, û∗) is theHessian of ln r̄(x̂, û, v̂)with respect to v̂ evaluated
at

(

x̂, û, v̂
) = (0̂, û∗, û∗).
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The Jacobian J evaluated at an extinction equilibrium pair (r∗
0 , (x̂, û)) =

(r∗
0 , (0̂, û∗)) is

J (r∗
0 , 0̂, û∗) =

(

r∗
0 J (0̂, û∗, û∗) 0m×n

ϒ(0̂, û∗, û∗) �(0̂, û∗, û∗)

)

=
(

r∗
0 Q(0̂, û∗, û∗) 0m×n

ϒ(0̂, û∗, û∗) �(0̂, û∗, û∗)

)

(15)

where 0m×n denotes the null matrix with dimensionm×n.We note that J (0̂, û∗, û∗) is
the Jacobianwith respect to x̂ of (10a)when the trait is held fixed at û∗. The eigenvalues
of (15) are them eigenvalues of r∗

0 Q(0̂, û∗, û∗) and the n eigenvalues of�(0̂, û∗, û∗).
Recall that r∗

0 is the (strictly) dominant eigenvalue of r∗
0 Q(0̂, û∗, û∗). Thus, if

r∗
0 > 1 the extinction equilibrium (0̂, û∗) is unstable. On the other hand, if r∗

0 < 1
then stability (by linearization) is determined by the n eigenvalues of �(0̂, û∗, û∗).
Using the linearization principle for discrete dynamical systems (Elaydi 1996), we
obtain the following result, which is an extension, for the evolutionary case with
multiple traits, of the first statement in Theorem 1.

Theorem 2 Assume H2 holds and that û∗ ∈ V is a critical trait.

(a) If r∗
0 < 1 and ρ[�(0̂, û∗, û∗)] < 1, then the extinction equilibrium pair

(r∗
0 , (0̂, û∗)) is stable.

(b) If r∗
0 < 1 and ρ[�(0̂, û∗, û∗)] > 1, then the extinction equilibrium pair

(r∗
0 , (0̂, û∗)) is unstable.

(c) If r∗
0 > 1, then the extinction equilibrium pair (r∗

0 , (0̂, û∗)) is unstable.

To investigate the spectral radius ρ[�(0̂, û∗, û∗)], which appears in Theorem 2, we
make further assumptions on the matrix M .

H3. The variance-covariance matrix M is diagonally dominant: σ 2
i ≥

∑

j �=i

∣
∣σi j

∣
∣ .

In Veprauskas and Cushing (2016) it is shown, under assumption H3, that ρ[�(0̂, û∗,
û∗)] < 1 if H(0̂, û∗, û∗) is negative definite and that ρ[�(0̂, û∗, û∗)] > 1 if
H(0̂, û∗, û∗) is positive semi-definite or indefinite provided the variances σ 2

i are small.

Corollary 1 Assume H2 and H3 hold and that û∗ ∈ V is a critical trait. If the
variances σ 2

i are small, then the extinction equilibrium pair (r∗
0 , (0̂, û∗)) is

(a) stable if r∗
0 < 1 and the Hessian (14) is negative definite;

(b) unstable if r∗
0 > 1 or if the Hessian (14) is either indefinite or positive semi-

definite.

With regard to the variances, the assumption σ 2
i < 1/ρ[H(0̂, û∗, û∗)] is sufficient in

Corollary 1. We are particularly interested in the case when the extinction equilibrium
(r∗

0 , (0̂, û∗)) loses stability as r∗
0 increases through 1. This occurs in Theorem 2 when
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ρ[�(0̂, û∗, û∗)] < 1. It also occurs in Corollary 1, when H(0̂, û∗, û∗) is negative
definite. This suggests the possibility that the (transcritical) bifurcation occurring at
r∗
0 = 1 can result in a branch of stable positive (non-extinction) equilibria. We address
this question in Sect. 5.

As an example consider the case when there is no covariant evolution of the traits
(i.e. that the off diagonal terms in M are all equal to 0 and the diagonal terms σ 2

i are
positive) and when

∂0viv j
r̄ = 0 for i �= j, (16)

so that traits evolve nearly independently in a neighborhood of
(

x̂, û
) = (0̂, û∗).

With these assumptions the matrix �(0̂, û∗, û∗) is diagonal and its eigenvalues are
1 + σ 2

i ∂0vivi r̄ . From Theorem 2 we obtain the following corollary.

Corollary 2 Assume H2 holds and that û∗ ∈ V is a critical trait. Further assume
σi j = 0 and (16) for all i �= j . The extinction equilibrium pair (r∗

0 , (0̂, û∗)) is

(a) stable if r∗
0 < 1 and

∣
∣1 + σ 2

i ∂0vivi r̄
∣
∣ < 1 for all i ;

(b) unstable if r∗
0 > 1;

(c) unstable for any r∗
0 > 0 if

∣
∣1 + σ 2

i ∂0vivi r̄
∣
∣ > 1 for at least one i .

Note. In Corollary 2(c) the extinction equilibrium pair (r∗
0 , (0̂, û∗)) is unstable, for

any value of r∗
0 , if ∂0vivi r̄ > 0 for at least one i . On the other hand, if ∂0vivi r̄ < 0 for

all values of i , then extinction equilibrium pair (r∗
0 , (0̂, û∗)) is stable for r∗

0 < 1 and
small variances σ 2

i .

5 A bifurcation theorem for the evolutionary model (10)

The loss of stability by the extinction equilibrium pair when r∗
0 increases through

1 suggests the possibility of a (transcritical) bifurcation at the value r∗
0 = 1 (see

Keilhöfer 2004). This is due to the fact that an eigenvalue of the Jacobian leaves the
complex unit circle as r∗

0 increases through 1. In this section we establish a bifurcation
theorem for the evolutionary model (10).

We begin by assuming that û can be expressed as a function of x̂ by means of the
equilibrium equation (11b).

H4. Let û∗ ∈ V be a critical trait. Assume there exists a function ξ̂ ∈ C2(N →
V ), where N is a open neighborhood of 0̂ in R

m , such that ξ̂ (0̂) = û∗ and
∇v̂ r̄(x̂, ξ̂ (x̂), ξ̂ (x̂)) = 0̂n for x̂ ∈ N .

Let J 0û (∇v̂ r̄) and J 0x̂ (∇v̂ r̄) denote the Jacobian matrices of the gradient ∇v̂ r̄(x̂, û, û)

with respect to û and x̂ respectively evaluated at (x̂, û, û) = (0̂, û∗, û∗).The following
assumption and the Implicit Function Theorem guarantee that H4 holds.

H5. Let u∗ ∈ V be a critical trait for which J 0û (∇v̂ r̄) is a non-singular matrix.
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Remark 4 The product rule (31) applied to

∇v̂ ln r̄(x̂, û, v̂)|v̂=û = 1

r̄
∇v̂ r̄(x̂, û, v̂)|v̂=û

evaluated at x̂ = 0̂ implies, together with r̄0 = 1 and ∇0
v̂
r̄ = 0̂ (by the definition of a

critical trait), that J 0û ∇v̂ ln r̄ = J 0û ∇v̂ r̄ or

J 0û ∇v̂ ln r̄ =
[

∂0vkv j
ln r̄

]

.

Thus, under assumption H2 we see (from (14)) that in H5

J 0û (∇v̂ r̄) = H(0̂, û∗, û∗).

Theorem 3 Assume û∗ ∈ V is a critical trait. Assume H2 and H4 hold and that
κ∗ �= 0.

(1) There exists a continuum C∗ of positive equilibrium pairs (r∗
0 , (x̂, û)) ∈ R+ ×

(Rm+ × V ) of (10) that bifurcates from the extinction pair (1, (0̂, û∗)) (i.e. that
contains the extinction pair in its closure).

(2) Assume H2 and H5 hold. In a neighborhood of (1, (0̂, û∗)), the positive equilib-
rium pairs have the parametric representation

x̂(ε) = ŵRε + O(ε2) (17a)

û(ε) = û∗ + û1ε + O(ε2) (17b)

r∗
0 (ε) = 1 + κ∗ε + O(ε2) (17c)

for small ε � 0where ŵR is a positive right eigenvector of Q(0̂, û∗, û∗) associated
with eigenvalue 1 (equivalently of P(0̂, û∗, û∗) when r∗

0 = 1) and

û1 := −
[

J 0û (∇v̂ r̄)
]−1

J 0x̂ (∇v̂ r̄)ŵR . (18)

κ∗ := −ŵT
L

([

∇0
x̂ q

T
i j ŵR

])

ŵR . (19)

Furthermore, we have the following alternatives.

(a) If ρ[�(0̂, û∗, û∗)] < 1 and κ∗ > 0, then the bifurcation of C∗ is forward and the
positive equilibrium pairs on C∗ are stable.

(b) If ρ[�(0̂, û∗, û∗)] < 1 and κ∗ < 0, then the bifurcation is backward and the
positive equilibrium pairs on C∗ are unstable.

(c) If ρ[�(0̂, û∗, û∗)] > 1, then positive equilibrium pairs in the continuum C∗ are
unstable regardless of the direction of bifurcation.

Remark 5 Because κ∗ is calculated from evaluations at the bifurcation point
(r∗

0 , (x̂, û)) = (1, (0̂, û∗)) and because only the sign of κ∗ is involved in determining
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the direction of bifurcation and stability, Theorem 3, parts (a) and (b), remains valid
if in the formula (19) and in H4 and H5 we replace qi j by pi j and r̄ by r .

Proof (1) Under H4, the equilibrium equations (11) reduce to the single equation

x̂ = r∗
0 Q(x̂, ξ̂ (x̂), ξ̂ (x̂))x̂ (20)

for x̂ ∈ N . Theorem 1 applies to this equation with matrix Q(x̂, ξ̂ (x̂), ξ̂ (x̂)) in
place of Q(x̂) (and N in place of�). This results in the existence of a continuum C
of positive solution pairs (r∗

0 , x̂) of (20) that bifurcates from (1, 0̂).The continuum
C in turn gives rise to a continuum

C∗ := {(r∗
0 , (x̂, û)) | (r∗

0 , x̂) ∈ C, û = ξ̂ (x̂)}

of equilibrium pairs (r∗
0 , (x̂, û)) of (10) that bifurcates from the extinction equi-

librium (1, (0̂, û∗)) at r∗
0 = 1.

(2) The parameterization of C in Theorem 1 implies that, near the bifurcation point,
the positive equilibrium pairs on the continuum C∗ have a parameterization (17).
The coefficient κ∗ is given by the formula (3) for κ but with pi j (x̂) replaced
by pi j (x̂, ξ̂ (x̂), ξ̂ (x̂)). To make this calculation we note that the coefficient
û1 = ∇0ξ̂ T ŵR can be calculated by an implicit differentiation of the equation
∇v̂ r̄(x̂(ε), ξ̂ (x̂(ε)), ξ̂ (x̂(ε))) = 0̂n with respect to ε and a subsequent evaluation
at ε = 0. From this calculation we obtain (18). From (3) and Lemma 1 in the
Appendix, but with pi j (x̂) replaced by pi j (x̂, ξ̂ (x̂), ξ̂ (x̂)), we obtain (19).
To investigate the stability of bifurcating positive equilibrium pairs we make
use of the parametrization (17) which allows us to parameterize by ε the Jaco-
bian J (r, x̂, û) when it is evaluated at the equilibria (17) and, subsequently, to
parameterize this Jacobian’s eigenvalues by ε. From this parameterization we can
approximate the eigenvalues of the Jacobian for ε � 0.
At ε = 0 the eigenvalues of the Jacobian J (1, 0̂, û∗) are the eigenvalues of
J (0̂, û∗, û∗) and the eigenvalues of �(0̂, û∗, û∗). The spectrum of the Jacobian
J (r∗

0 (ε), x̂(ε), û(ε)) approaches, by continuity, the spectrum of J (1, 0̂, û∗) as
ε tends to 0. Therefore, if ρ[�(0̂, û∗, û∗)] > 1 then for ε � 0 the Jacobian
J (r∗

0 (ε), x̂(ε), u(ε)) also has spectral radius greater than 1. Consequently, the
positive equilibria are unstable near the bifurcation point. This establishes 2(c).
Suppose ρ[�(0̂, û∗, û∗)] < 1. Since the strictly dominant eigenvalue of
J (0̂, û∗, û∗) is 1, it follows that the dominant eigenvalue of J (1, 0̂, u∗) is
1. To determine stability of the bifurcating positive equilibria, by means of
the linearization principle, we must investigate if the dominant eigenvalue of
J (r∗

0 (ε), x̂(ε), û(ε)), which equals 1 when ε = 0, is greater or less than 1 for
ε � 0. Let

μ(ε) = 1 + μ1ε + O(ε2)

denote the dominant eigenvalue of J (r∗
0 (ε), x̂(ε), û(ε)). Whether μ (ε) is less

than or greater than 1 for ε � 0, and hence whether the bifurcating positive
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equilibria are stable or unstable near the bifurcation point, can be determined by
the sign of μ1: for ε � 0, the bifurcating positive equilibria are stable if μ1 < 0
and unstable if μ1 > 0.
To calculate a formula for μ1 we begin by letting

ŴR(ε) = ŴR0 + ŴR1ε + O(ε2)

denote a right eigenvector of the Jacobian J associated with the dominant eigen-
value μ(ε), so that

J (r∗
0 (ε), x̂(ε), û(ε))ŴR(ε) = μ(ε)ŴR(ε). (21)

Setting ε = 0 in (21) we obtain

J (1, 0̂, û∗)ŴR0 = ŴR0.

We can write

ŴR0 =
(

ŵm
R0

ŵn
R0

)

where ŵm
R0 and ŵn

R0, are column vectors with m and n entries respectively. The
vector ŵm

R0 is a right eigenvector of J (0̂, û∗, û∗) = Q(0̂, û∗, û∗) associated with
the eigenvalue 1 and consequently ŵm

R0 = ŵR . A calculation shows

ŴR0 =
(

ŵR

û1

)

.

The vector Ŵ T
L0 where

ŴL0 =
(

ŵL

0̂n

)

is a left eigenvector ofJ (1, 0̂, û∗) (where ŵT
L is a left eigenvector of J (0̂, û∗, û∗)).

Note that Ŵ T
L0ŴR0 = ŵT

L ŵR = 1.
If we differentiate (21) with respect to ε and set ε = 0 in the result, we obtain

(

J (1, 0̂, û∗) − Im+n

)

ŴR1 = μ1ŴR0 − d

dε
J (r∗

0 (ε), x̂(ε), û(ε))

∣
∣
∣
∣
ε=0

ŴR0

where Im+n denotes the identity matrix of size m + n. According to Fredholm
alternative, this equation is solvable for ŴR1 if and only if the right hand side is
orthogonal to the kernel of (J (1, 0̂, û∗) − Im+n)

T . This kernel is spanned by the
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left eigenvectors of J (1, 0̂, û∗) associated with the eigenvalue 1. Therefore, the
right hand side must be orthogonal to ŴL0. This implies

μ1 = Ŵ T
L0

d

dε
J (r∗

0 (ε), x̂(ε), û(ε))

∣
∣
∣
∣
ε=0

ŴR0

=
(

ŵL

0̂n

)T d

dε

(

r∗
0 (ε) J (x̂(ε), û(ε), û(ε)) r∗

0 (ε) 	(x̂(ε), û(ε), û(ε))

ϒ(x̂(ε), û(ε), û(ε)) �(x̂(ε), û(ε), û(ε))

)∣
∣
∣
∣
ε=0

(

ŵR

û1

)

or

μ1 = ŵT
L

d

dε

[

r∗
0 (ε) J (x̂(ε), û(ε), û(ε))

]
∣
∣
∣
∣
ε=0

ŵR

+ ŵT
L

d

dε

[

r∗
0 (ε) 	(x̂(ε), û(ε), û(ε))

]
∣
∣
∣
∣
ε=0

û1.

We consider the two terms in this sum one at a time. With regard to the first term
in μ1, the product and chain rules imply

ŵT
L

d

dε

[

r∗
0 (ε) J (x̂(ε), û(ε), û(ε))

]
∣
∣
∣
∣
ε=0

ŵR

= κ∗ŵT
L Q(0̂, û∗, û∗)ŵR + ŵT

L
d

dε
J (x̂(ε), û(ε), û(ε))

∣
∣
∣
∣
ε=0

ŵR

= κ∗ + ŵT
L

([

∇0
x̂ q

T
i j ŵR

]

+
[

∇0
û q

T
i j û1

]

+
[

∇0
v̂
qTi j û1

]

+
[

∂0xi q j ŵR

])

ŵR

where we have defined the row vector

∂0xi q j := [

∂0xi q j1 ∂0xi q j2 . . . ∂0xi q jm
]

.

With regard to the second term inμ1, we recall that	(x̂, û, û) is them×n matrix
whose n columns are (12) and as a result, upon evaluation at the bifurcation point,
the only contribution to the derivative in the second term arises from the derivatives
of 	(x̂, û, û) = [

ψi j (x̂, û, û)
]

with respect to the components of x̂ . Therefore
the second term in μ1 is

ŵT
L

d

dε

[

r∗
0 (ε) 	(x̂(ε), û(ε), û(ε))

]
∣
∣
∣
∣
ε=0

û1 = ŵT
L

[

∇0
x̂ψ

T
i j ŵR

]

û1

= ŵT
L

([

∂0ui q j ŵR

]

+
[

∂0vi q j ŵR

])

û1

where we have defined the row vectors

∂0ui q j := [

∂0ui q j1 ∂0ui q j2 . . . ∂0ui q jm
]

, ∂0vi q j := [

∂0vi q j1 ∂0vi q j2 . . . ∂0vi q jm
]

.

123



A bifurcation theorem for evolutionary matrix models... 507

H2 implies ∂0uk qi j = 0 for all uk and all i, j, and

μ1 = κ∗ + ŵT
L

[

∇0
x̂ q

T
i j ŵR

]

ŵR + ŵT
L

[

∇0
v̂
qTi j û1

]

ŵR + ŵT
L

[

∂0xi q j ŵR

]

ŵR

+ ŵT
L

[

∂0vi q j ŵR

]

û1.

Noting that

ŵT
L

[

∇0
x̂ q

T
i j ŵR

]

ŵR = ŵT
L

[

∂0xi q j ŵR

]

ŵR, ŵT
L

[

∇0
v̂
qTi j û1

]

ŵR = ŵT
L

[

∂0vi q j ŵR

]

û1

we have

μ1 = κ∗ + 2
(

ŵT
L

[

∇0
x̂ q

T
i j ŵR

]

ŵR + ŵT
L

[

∇0
v̂
qTi j û1

]

ŵR

)

.

By Lemma 1 in the Appendix we get

μ1 = κ∗ + 2ŵT
L

[

∇0
x̂ q

T
i j ŵR

]

ŵR

which, by (18), implies μ1 = −κ∗. As a result, κ∗ > 0 implies both that the
bifurcation is forward and that the bifurcating positive equilibria are stable for
ε � 0. On the other hand, κ∗ < 0 implies that the bifurcation is backward and
that the bifurcating positive equilibria are unstable for ε � 0. 
�

From (13) we obtain [as in Veprauskas and Cushing (2016)] the following corollary
of Theorem 3.

Corollary 3 Assume H2, H3 and H5 hold and that û∗ ∈ V is a critical trait. Let
C∗ be the continuum of positive equilibrium pairs that bifurcates from the extinction
pair (1, (0̂, û∗)) guaranteed by Theorem 3. If the variances σ 2

i are small, then in a

neighborhood of the bifurcation point (1, (0̂, û∗)) we have the following alternatives.

(a) The bifurcation of C∗ is forward and stable if the Hessian (14) is negative definite
and κ∗ > 0.

(b) The bifurcation of C∗ is backward and unstable if the Hessian (14) is negative
definite and κ∗ < 0.

(c) The positive equilibrium pairs in the continuum C∗ are unstable if theHessian (14)
is positive semi-definite or indefinite (regardless of the direction of bifurcation).

For the case of no trait covariance considered inCorollary 2,we obtain the following
result from Corollary 3.

Corollary 4 Assume H2 and H5 hold and that û∗ ∈ V is a critical trait. Further
assume σi j = 0 and (16) for all i �= j . Let C∗ be the continuum of positive equilibrium
pairs that bifurcates from the extinction pair (1, (0̂, û∗)) guaranteed by Theorem 3.
Then in a neighborhood of the bifurcation point (1, (0̂, û∗)) we have the following
alternatives.
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(a) The bifurcation of C∗ is forward and stable if κ∗ > 0 and
∣
∣1 + σ 2

i ∂0vivi r̄
∣
∣ < 1 for

all i .
(b) The bifurcation of C∗ is backward and unstable if κ∗ < 0 and

∣
∣1 + σ 2

i ∂0vivi r̄
∣
∣ < 1

for all i .
(c) Thepositive equilibriumpairs in the continuumC∗ areunstable if

∣
∣1 + σ 2

i ∂0vivi r̄
∣
∣ >

1 for at least one i (regardless of the direction of bifurcation).

Note In Corollary 4 we see that the positive equilibrium pairs in the continuum C∗ are
unstable if ∂0vivi r̄ > 0 for at least one i . On the other hand, if ∂0vivi r̄ < 0 for all values
of i , then the positive equilibrium pairs in the continuum C∗ are stable if κ∗ > 0 and
the variances σ 2

i are small enough so that
∣
∣1 + σ 2

i ∂0vivi r̄
∣
∣ < 1, i.e. σ 2

i < −2/∂0vivi r̄ .

6 An application

Consider the single difference equation

x (t + 1) = bx (t) exp (−cx (t)) exp

(

− α

1 + sx (t)

)

(22)

with coefficients b, c > 0 and α, s ≥ 0. When α = 0 this map is the famous Ricker
equation which is one of the most well known equations that incorporates negative
effects that population density can have on population growth. Equation (22) is studied
in Schreiber (2003) as a model equation that incorporates a positive effect of increased
population density [a so-called component Allee effect (Courchamp et al. 2008)] in the
presence of a predator. This is the well-known predator-saturation effect in ecology
and is one of the most commonly attributed causes of Allee effects (Dennis 1989;
Courchamp et al. 2008).

The factor exp (−α/ (1 + sx)) in (22) is an increasing function of x and represents
the probability of escaping predation. We can interpret α as the intensity of predation
and s ameasure of how effective the protection from predation attributed to population
density x, which we will refer to as the predation protection factor. Re-writing (22)
as

x (t + 1) = r0r̄(x)x (t) (23)

with

r0 := b exp (−α) , r̄(x) := exp

(

−cx (t) + α
sx (t)

1 + sx (t)

)

we see that r0 is the inherent (density-free) per capita birth rate, which equals b in
the absence of predation α = 0. This equation, studied in Schreiber (2003), not sur-
prisingly can exhibit the same kind of period-doubling route-to-chaos as r0 increases
as does the famous Ricker equation when α = 0. (The right side of (23) defines a
unimodal map.) The bifurcation that occurs at r0 = 1 where the extinction equilib-
rium x = 0 destabilizes is, according to Theorem 1, forward and therefore stable if
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κ = c − αs > 0. This inequality holds if the effect of predation, as measured by the
product of the predation intensity α and (per capita) predation protection factor s, is
small compared to that of the negative density effects measured by c. This occurs, of
course, for the Ricker equation when α = 0.

On the other hand, if the reverse is true and the effect of predation αs is large
compared to c, then by Theorem 1 the bifurcation at r0 = 1 is backward and unstable.
In this case, i.e. when αs > c, we can also say some things about the bifurcating
continuum C of positive equilibrium pairs (r0, x) outside the neighborhood of the
bifurcation point (r0, x) = (1, 0). The equation

1 = r0 exp

(

−cx + α
sx

1 + sx

)

satisfied by positive equilibria x > 0, when re-written as

r0 = exp

(

cx − α
sx

1 + sx

)

describes the continuum C of positive equilibrium pairs (r0, x). The graph of r0 as a
function of x contains the point r0 = 1 at x = 0, decreases as x increases to a unique
critical point xcr > 0 at which r0 attains a global minimum rcr > 0, and increases
without bound for x > xcr . See Fig. 1. From the parabola-like shape of this graph,
we see that the inverse function, treating x as a function of r0, has two branches: an
upper branch of positive equilibria x2 (r0) for r0 ≥ rcr and a lower branch of positive
equilibria x1 (r0) < x2(r0) for rcr ≤ r0 < 1 which satisfies x1(1) = 0. The value
r0 = rcr is a saddle-node (blue-sky) bifurcation (or tipping) point at which the lower
branch x1 (r0) and and upper branch x2 (r0) coalesce. The following facts follow from
general results in Cushing (2016): for r0 < rcr0 the extinction equilibrium is globally
asymptotically stable; the equilibria x1 (r0) are unstable and the equilibria x2(r0) are
(locally asymptotically) stable for r0 � rcr . The upper branch x2(r0)might not remain
stable for all r0 > rcr , however, but might undergo a period doubling cascade to chaos.
If a destabilization of x2(r0) occurs at a point r0 ≥ 1, then on the interval rcr < r0 < 1
there are two stable equilibria, the extinction equilibrium and the positive equilibrium
x2(r0). This scenario is called a strong Allee effect. It asserts that survival is possible
for some r0 < 1 provided a population’s initial condition lies outside the basin of
attractor of the extinction equilibrium (the Allee basin). If, on the other hand, x2(r0)
loses stability at a point in the interval rcr < r0 < 1, then there still occurs a strong
Allee effect but one with a non-equilibrium survival attractor (e.g. a periodic cycle or
a more complicated attractor).

Sample forward and backward bifurcation diagrams are shown in Fig. 2. That
secondary period-doubling bifurcations cascade to complex (presumably chaotic)
dynamics in both cases is not unexpected, given that (23) is based on the Ricker
nonlinearity. The backward bifurcation in Fig. 2b is an example illustrating a saddle-
node bifurcation (at r0 ≈ 0.4) that results a multi-stable equilibrium (strong Allee)
scenario, as shown in Fig. 1. In this example the positive equilibria destabilize (into a
period doubling route to chaos) just outside the Allee interval 0.4 < r0 < 1. In other
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rcr

xcr

x

r00
0 1

x2(r0)

x1(r0)

stable unstable

stable

unstable

?
C

Fig. 1 Shown is a generic plot of the bifurcating continuumC for Eq. (23) when αs > c and, consequently,
a backward (unstable) bifurcation occurs at the point (r0, x) = (1, 0). The question mark indicates that
although the positive equilibria on the upper branch x2(r0) are (locally asymptotically) stable near the
saddle-node bifurcation point (rcr , xcr ), they can, depending onmodel parameter values, destabilize further
along the continuum C

5

10

15

20

x

0
10842 121

(A)

0

x

0

4

8

12

16

r0r0 0.40 1.0 1.4

(B)

Fig. 2 Sample bifurcation diagrams for equation (23)with c = 0.3 andα = 3. a s = 0.05 and κ = c−αs =
0.15 > 0 so that the bifurcation at r0 = βe−3 = 1 is forward and stable. b s = 1 and κ = −2.7 < 0 so
that the bifurcation at r0 = βe−3 = 1 is backward and unstable (dashed line)

examples, using different parameter values, this destabilization can occur at a value of
r0 < 1 so that the multi-attractor scenario of the strong Allee effect involves a stable
cycle or even more complicated attractor. For examples and further results concerning
the relationship between backward bifurcations and strong Allee effects, see Cushing
(2014). The complex dynamics that can arise in this model, particularly when positive
non-equilibrium attractors are present for r0 < 1 are studied in Schreiber (2003),
although not from this bifurcation point-of-view.

We now consider an evolutionary version of equation (23) to which we can apply
the results of Sects. 4 and 5. For our application we consider the case when the inherent
(density and predation free) per capita birth rate b and the predation protection factor
s are subject to evolutionary adaptation. We think of these per capita quantities as
characteristics of an individual and that they are determined by a suite of phenotypic
traits v̂ of the individual. Thus, b = b

(

v̂
)

and s = s
(

v̂
)

. We assume that there
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is a trait vector that maximizes b and one that maximizes s, but these optimizing
trait vectors are not the same. The idea is that there are trade-offs in the allocation
of energy, behavioral activities, and resources towards reproduction and towards the
avoidance of predators. For example, traits that promote physiological and behavioral
characteristics promote successful herding or flocking or schooling in order to avoid
predation are not necessarily traits that make for optimal reproduction.

Since we have set no units or scales for the traits, we assume without loss in
generality that b is maximal at v̂ = 0̂ and s is maximal at v̂ = (1, 1, . . . , 1)T .

Specifically, we assume [as is often done in evolutionary models (Vincent and Brown
2005)] that these coefficients have a multi-variate Gaussian-type distribution about
these maximal points:

b(v̂) = β exp

(

−
n

∑

i=1

v2i

2bi

)

, s(v̂) = s0 exp

(

−
n

∑

i=1

(vi − 1)2

2si

)

where bi and si are positive real numbers (variances), β > 0 is the maximal possible
value of b(v̂), and s0 ≥ 0 is the maximal possible value of s(v̂). The resulting 1 × 1
projectionmatrix P

(

x, û, v̂
)

for (23) is independent of û and its single entry p11
(

x, v̂
)

equals the dominant eigenvalue, i.e. p11
(

x, v̂
) = r(x, v̂) where

r(x, v̂) = βe−α exp

(

−
n

∑

i=1

v2i

2bi

)

exp

(

−cx + α
s(v̂)x

1 + s(v̂)x

)

.

The Darwinian equations (6) are

x (t + 1) = r
(

x (t) , û (t)
)

x (t)

û(t + 1) = û(t) + M ∇v̂ ln r(x (t) , û (t))

with

∇v̂ ln r
(

x, v̂
) = −

⎛

⎜
⎝

v1
b1
...
vn
bn

⎞

⎟
⎠ − α

s
(

v̂
)

x
(

1 + s
(

v̂
)

x
)2

⎛

⎜
⎜
⎝

v1−1
s1
...

vn−1
sn

⎞

⎟
⎟
⎠

.

Since

∇v̂ ln r
(

0, v̂
)∣
∣
v̂=û = −

⎛

⎜
⎝

u1
b1
...
un
bn

⎞

⎟
⎠

we see that the only critical trait is

û∗ = 0̂
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and hence the only extinction equilibrium is (x, û) = (0, 0̂). Our bifurcation parameter
r∗
0 = r(0, 0̂) reduces to

r∗
0 = βe−α.

Under the added assumption that the traits are not correlated, so that the variance-
covariance matrix M = diag

(

σ 2
i

)

is a diagonal matrix, the model equations for our
evolutionary version of (23) are

x (t + 1) = r∗
0 exp

(

−
n

∑

i=1

u2i (t)

2bi

)

x (t) exp

(

−cx (t) + α
s(û (t))x (t)

1 + s(û (t))x (t)

)

(24a)

ui (t + 1) = ui (t) − σ 2
i

(

ui (t)

bi
+ α

ui (t) − 1

si

s(û (t))x (t)
(

1 + s(û (t))x (t)
)2

)

(24b)

for i = 1, . . . , n.Our goal is to apply Corollary 4 to these difference equations, toward
which end we must consider H2 and H5.

H2 holds with p̃11(v̂) = r0(v̂) and p̄(x, û, v̂) = r̄
(

x, v̂
)

, since r̄
(

0, v̂
) ≡ 1. A

calculation shows that the Hessian H(0, û∗, û∗) = [∂0viv j
ln r̄ ] is the diagonal matrix

H(0, û∗, û∗) = diag

[

− 1

bi

]

Thus, H5 holds (see Remark 4). By Theorem 3 the bifurcating continuum of positive
equilibrium pairs (r∗

0 , (x, û)), near the bifurcation point (1, (0, 0̂)), has the parametric
representation

r∗
0 (ε) = 1 + κ∗ε + O(ε2) (25a)

x (ε) = ε + O(ε2) (25b)

û (ε) = û1ε + O(ε2) (25c)

for ε � 0 where, by the formulas (18) and (19),

κ∗ = c − αs0 exp

(

−
∑n

i=1

1

2si

)

(26)

û1 = αs0 exp

(

−
∑n

i=1

1

2si

)

⎛

⎜
⎜
⎝

b1
s1
...
bn
sn

⎞

⎟
⎟
⎠

∈ R
n+.
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By Corollary 4(a, b), the direction of bifurcation determines the stability of the bifur-
cating positive equilibria provided

σ 2
i < 2bi for all i = 1, . . . , n

that is to say, provided the speed of evolution is not too fast. Under this assumption, we
have the following conclusions concerning the bifurcation at r∗

0 = 1 for the Darwinian
model (24).

1. (Forward bifurcations) The bifurcation of the continuum C of positive equilibria
for (24b) is forward and consequently stable if

αs0 exp

(

−
∑n

i=1

1

2si

)

< c. (27)

This occurs if the negative density effects, as described by the Ricker coefficient c,
are large enough to dominate the positive effects from the Allee effect attributed to
density protection from predation, as encapsulated by the quantity on the left side
of the inequality (27 ). Thus, mechanisms that promote a forward bifurcation are:
a low predation intensity α, a low maximum possible predation protection coef-
ficient s0, and small variances si (i.e. the largest predator protection coefficients
s
(

v̂
)

are attained only for trait vectors narrowly distributed around the maximal
trait vector v̂ = (1, . . . , 1)T ).
Note that the entries in û1 in (25c) are positive if αs0 > 0, i.e. if both predation
and predation protection are present. In this case, we see that near the bifurcation
point, the trait components ui (ε) of the bifurcating positive equilibria are positive.
As a result, for r∗

0 � 1 the stable, positive equilibria have trait components that do
not maximize the inherent birth rate. Indeed, an even stronger conclusion follows
directly from the trait equilibrium equations (24b):

ui
bi

+ α
ui − 1

si

s(û)x
(

1 + s(û)x
)2 = 0 for all i = 1, . . . , n. (28)

This shows, when α > 0 and s0 > 0, that for any positive equilibrium (x, û) of
(24), the equilibrium trait components ui cannot equal 0 or 1. For those equilibrium
pairs from the continuum C the trait components form a continuum of equilibrium
trait vectors û which must, therefore, have components that lie entirely in the
interval 0 < ui < 1 (whether the equilibria are stable or not). It follows that
for those positive equilibria from C which are in fact stable (such as those for
r∗
0 � 1), we can say that evolution selects a vector of traits that neither maximizes
the inherent birth rate b

(

û
)

(which occurs at û = 0̂) nor the predator protection
coefficient s

(

û
)

(which occurs at û = (1, 1, . . . , 1)T ). One might say, then,
that evolution trades-off a smaller inherent birth rate in favor of some predator
protection.
When predation and/or predation protection is absent (α = 0 and/or s0 = 0) in the
model, then clearly inequality (27) holds and the bifurcation at r∗

0 = 1 is forward
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and stable. In this case, the equilibrium equation (28) for the traits ui implies
ui = 0 for any positive equilibrium pair and, not surprisingly, evolution selects to
maximize the inherent birth rate b

(

û
)

. 
�
2. (Backward bifurcations) The bifurcation of the continuum C of positive equilibria

for (24b) is backward and consequently unstable if

αs0 exp

(

−
n

∑

i=1

1

2si

)

> c. (29)

This occurs only if predation is present α > 0 and density protection from preda-
tion is also present s0 > 0. Inequality (29) holds if predation intensity α and/or
predator protection s0 are large (relative to the negative density effects c). Also
promoting a backward bifurcation are large variances si , that is to say, when a
high level of predator protection s(v̂) is attained for a wide distribution of trait
vectors v̂. 
�

Our general results in Sect. 5 concern equilibrium properties in a neighborhood of
the bifurcation point and do not imply anything about the dynamics outside such a
neighborhood. As in the non-evolutionary model (23), we expect it to be true that
the positive equilibria on the continuum C for the evolutionary model (24) do not
necessarily retain the stability properties that they possess near the bifurcation point.
In particular, in the case of a forward/stable bifurcation we would expect that, at least
for some model parameter values, the stable positive equilibria will destabilize with
increasing r∗

0 and even give rise to a sequence of bifurcations that result in complicated,
chaotic dynamics. In the case of a backward/unstable bifurcation, in addition to this
phenomenon, we would also anticipate the potential for strong Allee effects on an
interval of r∗

0 values less than 1. We will not study these questions about the dynamics
of (24) in this paper where our theory is focussed on the local bifurcation at r∗

0 = 1.
However, we can provide a few selected numerical simulations that, in addition to

illustrating the local bifurcation predicted by our theorems, also illustrate the kinds
of secondary bifurcations and strong Allee effects seen in the non-evolutionary case
(cf. Figure2). Figure3 shows two sample bifurcation diagrams for the evolutionary
model (24) with two traits, i.e. n = 2. The plots in Fig. 3a are from parameter values
for which κ∗ > 0 and, hence, a forward, stable bifurcation occurs at r∗

0 = 1. As with
the non-evolutionary version of the model in Fig. 1, further increases in r∗

0 result in
the familiar period doubling route to chaotic dynamics. In Fig. 3b the same parameter
values are used except that the predator protection coefficient s0 is increased to the
extent that κ∗ < 0 and, as a result, a backward, unstable bifurcation occurs. The
result is a bifurcation diagram that shows a saddle-node bifurcation (at r∗

0 ≈ 0.4)
creating an interval of strong Allee effects with both a stable extinction equilibrium
(

x, û
) = (0, 0̂) and a stable positive equilibrium. In this example, one sees fromFig.3b

that the positive equilibrium loses stability through a period doubling at a value of r∗
0

less than 1 (Fig. 4). This results in an interval of r∗
0 values less than 1 for which there

is a strong Allee effect that involves a stable positive 2-cycle instead of a positive
equilibrium (See Fig. 4b). (Note: the oscillations in the traits ui are small amplitude
in Fig. 3.)
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Fig. 3 Sample bifurcation diagrams for equations (24) with c = 0.3, α = 3, b1 = 3, b2 = 1, s1 = 1, and
s2 = 3. a s0 = 0.1 and κ∗ = 0.3−0.3e−2/3 ≈ 1.46×10−1 > 0 so that the bifurcation at r∗

0 = βe−3 = 1 is

forward and stable. b s0 = 1 and κ∗ = 0.3−3e−2/3 ≈ −1.24 < 0 so that the bifurcation at r∗
0 = βe−3 = 1

is backward and unstable (dashed lines)

7 Concluding remarks

A fundamental property of population dynamic models, when the extinction state
destabilizes due to a change in a model parameter, is the occurrence of a bifurcation
which results in the presence of positive equilibria. Typically the stability of these
bifurcating equilibria depend on the direction of bifurcation (Theorem 1). In this
paper we investigate this basic bifurcation phenomenon for an evolutionary version
of a general matrix model for the dynamics of a structured population. The model
assumes that the entries of the model’s projection matrix (i.e. the per capita birth,
survival and class transition rates) depend on a vector of phenotypic traits, each of
which is subject to Darwinian evolution, and tracks the dynamics of the population
and the vector of mean traits (Vincent and Brown 2005). We define the notion of a
critical trait vector, which is associated with the existence of an extinction equilibrium
in the model, and obtain conditions under which an extinction equilibrium destabilizes
(Theorem 2) and conditions under which a continuum of positive equilibria bifurcates
from the extinction equilibrium, as the inherent population growth rate (at the critical
trait) increases through 1 (Theorem 3). We further obtain conditions under which
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Fig. 4 Shown are sample orbits for equations (24) with the same parameter values used in Fig. 3b when a
backward bifurcation creates an interval of r∗

0 < 1 for which there is a strong Allee effect. Here σ 2
1 = σ 2

1 =
0.05. a For r∗

0 = βe−3 = 0.4 the bifurcation diagram Fig. 3b shows a stable extinction equilibrium and a
stable positive equilibrium. The upper graph in column a shows plots of the solution with initial conditions
x = 2.35, u1 = u2 = 1 that tends to the positive equilibrium. The lower graph shows plots of the solution
with initial conditions x = 2.33, u1 = u2 = 1 that tends to the extinction equilibrium (x, û) = (0, 0̂). b For
r∗
0 = βe−3 = 0.9 the bifurcation diagram Fig. 3b shows a stable extinction equilibrium and a stable2-cycle.
The upper graph in column b shows plots of the solution with initial conditions x = 2.35, u1 = u2 = 1
that tends to the positive 2-cycle. The lower graph in column b shows plots of the solution with initial
conditions x = 0.35, u1 = u2 = 1 that tends to the extinction equilibrium (x, û) = (0, 0̂)

stability of the bifurcating equilibria is determined by the direction of bifurcation and
conditions under which it is not (Theorem 3).

It is shown in Meissen et al. (2016) that the bifurcating continuum C∗ of positive
equilibria in Theorem 3 has a global extent in R+ × (Rm+ × V ) in that it connects to
the boundary of this cone (∞ is included in the boundary). In general, however, the
stability/instability results in Theorem 3 hold only in a neighborhood of the bifurcation
point. This is illustrated in the example studied in Sect. 6 where secondary bifurcations
occur outside the neighborhood of the bifurcation point. Whether or not such bifurca-
tions occur are model dependent (which is true in non-evolutionary matrix models as
well).

In non-evolutionary matrix models, backward bifurcations are often associated
with strong Allee effects, i.e. multiple attractors for values of r∗

0 < 1 one of which is
extinction and the other which is a survival attractor (Cushing 2014).While conditions
sufficient for the occurrence of a backward bifurcation are given in Sect. 5, its relation

123



A bifurcation theorem for evolutionary matrix models... 517

to strong Allee effects is not investigated in this paper. A backward induced strong
Allee effect is shown to occur, by simulations, in the example studied in Sect. 6.
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Appendix

Lemma 1 Assume H2 and H5 hold. Then ŵT
L [∇0

v̂
qTi j û1]ŵR = 0.

Proof Consider the equality

P(0̂, û, û)ŵR(0̂, û) = r(0̂, û, û)ŵR(0̂, û). (30)

which holds by the definition of r(0̂, û, û) as an eigenvalue with a positive right
eigenvector ŵR(0̂, û). Let p̂i = p̂i (0̂, û, û) denote the i-th column of P = P(0̂, û, û).
We want to take the Jacobian of both sides of equation (30) with respect to û. To do
this we let Jŷ[ω̂(ŷ)] denote the Jacobian of a vector valued function ω̂(ŷ) of a vector
ŷ.

The right side of (30) is a vector valued function of the form τ(ŷ)ω̂(ŷ) for a scalar
valued function τ(ŷ). Applying the general formula

Jŷ[τ(ŷ)ω̂(ŷ)] = ω̂(ŷ)∇ŷτ(ŷ)T + τ(ŷ)Jŷ[ω̂(ŷ)] (31)

and recalling (8) in Remark 2, we find that the Jacobian of the right side of (30) with
respect to û is

ŵR(0̂, û)
(

∇ûr
T + ∇v̂r

T
)

+ r Jû[ŵR(0̂, û)] = ŵR(0̂, û)∇v̂r
T + r Jû[ŵR(0̂, û)].

To calculate the Jacobian of the left-hand side of (30), we write

PŵR(0̂, û) =
m

∑

i=1

wR
i (0̂, û) p̂i
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where wR
i (0̂, û) are the components of the vector ŵR(0̂, û) and apply the product rule

(31) to each term. Noting (7) in Remark 2 we get

P Jû[ŵR(0̂, û)] +
m

∑

i=1

wR
i (0̂, û)Jv̂[ p̂i ].

Equating the Jacobians of the left and right sides of (30) we have

P Jû[ŵR(0̂, û)] +
m

∑

i=1

wR
i (0̂, û)Jv̂[ p̂i ] = ŵR(0̂, û)∇v̂r

T + r Jû[ŵR(0̂, û)]. (32)

or

(P − r Im)Jû[ŵR(0̂, û)] = ŵR(0̂, û)∇v̂r
T −

m
∑

i=1

wR
i (0̂, û)Jv̂[ p̂i ]

which in turn can be rewritten as the n equations

(P − r Im)∂ui (ŵR(0̂, û)) = (∂vi r Im − ∂vi P)ŵR(0̂, û) for 1 ≤ i ≤ n.

The matrix P−r Im is singular and by the Fredholm alternative, the solubility of these
equations imply the n orthogonality conditions

ŵT
L (0̂, û)(∂vi r Im − ∂vi P)ŵR(0̂, û) = 0

are satisfied. Solving for ∂vi r and recalling that the eigenvectors are normalized so
that ŵL(0̂, û)T ŵR(0̂, û) = 1, we find

∂vi r = ŵT
L (0̂, û)∂vi PŵR(0̂, û) for 1 ≤ i ≤ n.

Since ∂0vi r = 0 by definition of a critical trait vector û∗, when setting û = û∗ and
r∗
0 = 1 in these expressions we get

ŵT
L ∂0vk QŵR = 0 for 1 ≤ k ≤ n. (33)

Let u1,k denote the scalar components of the vector û1. Then

∇0
v̂
qTi j û1 =

n
∑

k=1

u1,k∂
0
vk
qi j

and

[

∇0
v̂
qTi j û1

]

=
n

∑

k=1

u1,k
[

∂0vk qi j
]

=
n

∑

k=1

u1,k∂
0
vk
Q.
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From

ŵT
L [∇0

v̂
qi j û1]ŵR =

∑

k

u1,k
(

ŵL∂0vk QŵR

)

and (33) it follows that ŵT
L [∇0

v̂
qi j û1]ŵR = 0.


�
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