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A B S T R A C T

Distribution system operators (DSO) are currently moving towards active distribution grid management. One
goal is the development of tools for operational planning of flexibility from distributed energy resources (DER) in
order to solve potential (predicted) congestion and voltage problems. This work proposes an innovative flex-
ibility management function based on stochastic and chance-constrained optimization that copes with forecast
uncertainty from renewable energy sources (RES). Furthermore, the model allows the decision-maker to in-
tegrate its attitude towards risk by considering a trade-off between operating costs and system reliability. RES
forecast uncertainty is modeled through spatial-temporal trajectories or ensembles. An AC-OPF linearization that
approximates the actual behavior of the system is included, ensuring complete convexity of the problem.
McCormick and big-M relaxation methods are compared to reformulate the chance-constrained optimization
problem. The discussion and comparison of the proposed models is carried out through a case study based on
actual generation data, where operating costs, system reliability and computer performance are evaluated.

1. Introduction

1.1. Background, methodology and aim

The use of conventional approaches to distribution grid manage-
ment (also known as reactive approaches) is becoming obsolete as the
strong penetration of distributed energy resources (DERs), especially
renewable energy sources (RES), introduces new challenges, as well as
flexibility, in the operation and management of the distribution grid.
Such a paradigm shift in the distribution grid management arises with
the concern of dealing with the RES forecast uncertainty that are pe-
netrating the distribution grid and changing the conventional direction
of the power flow [1]. Within this scope, traditional grid management
methodologies have difficulties in preventing and solving congestion
and voltage problems in the distribution grid and can lead to situations
were flexibility is not “reserved” to handle local problems. Thus, it
becomes crucial to replace or complement such reactive methodologies
with new predictive (or proactive) management methodologies that are
capable of dealing with the RES forecast uncertainty, and therefore,
identify flexibility needs for the next hours that can be later activated to
solve congestion and voltage problems [2].

Most of these new methodologies include DER controllability to
support grid management. That is, distribution system operators (DSOs)

could control generation or flexible loads (to some extent) through pre-
contracted flexibility [3]. Still, the DSO will keep the same role, en-
suring that congestion, voltage and energy delivery problems are solved
with adequate levels of safety, reliability and power quality. In fact, this
role can be met to high levels of RES integration by introducing sto-
chastic approaches to the multi-period optimal power flow (OPF).
Within this scope, this paper proposes a methodology to support the
DSO decisions in the management of the distribution grid under strong
penetration of renewable power producers, including stochastic and
chance-constrained approaches in a multi-period OPF. The approach
enables the DSO to move from reactive distribution management to
proactive distribution management, taking advantage of the benefits
that this methodology brings to the system reliability.

1.2. Literature review and specific contributions

In the literature, several approaches for distribution grid manage-
ment proposed different versions of the stochastic OPF problem. A
centralized active distribution network under uncertainty using a multi-
period backward/forward sweep OPF, and considering single chance-
constrained optimization to deal with PV uncertainty was proposed in
[4]. In contrast, [5] uses a decentralized stochastic approach based on
alternating direction method of multipliers to manage a distribution
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grid with PV. However, both models are effective only for distribution
grids under radial or weak meshed topology, considering iterative OPF
techniques. Many authors use stochastic and chance-constrained ap-
proaches to cope with the uncertain RES generation in distribution grid
management, whether for frequency or voltage control [4,6–9]. A
general stochastic framework for DER (including RES) scheduling at the
distribution level is shown in [6]. This approach aims to schedule the
energy and reserve of the DER in distribution grids, disregarding the
flexibility of RES and the use of static equipment in the distribution
grid. In contrast, [4] proposes an active distribution management based
on the DER control (such as distributed generation, controllable loads
and energy storage systems) and considering an iterative approach of
the backward and forward sweep power flow method. Reactive power
control is assured by the DER, while static equipment (e.g. capacitor
banks) in the distribution network is disregarded. Chance-constrained
programming is used to cope with uncertain power production, limiting
the probability of insecure operation. Similarly, [7] uses a chance-
constrained approach to address and mitigate the risk of variable over
voltage, excessive tap cunts, and voltage regulator runaway in the
distribution network under photovoltaic penetration. The chance-con-
straint is applied to limit the bus voltage violation, feeder current and
tap changing of the transformer, disregarding flexibility from DER. In

contrast, [8] introduces active distribution management directed to
voltage and reactive power control using chance-constrained to deal
with RES uncertainty. It proposes an iterative process in which the
validation of each individual scenario is performed primarily, followed
by the chance–constrained approach in case of scenario violation. A
chance-constrained approach for optimal power flow in distribution
networks is proposed in [9], using the two-point estimate method [10]
to determine the probabilistic load flow. Applies chance constraints to
state variables constraints instead of active and reactive power balance
constraints. These works end up using probabilistic load flow and OPF,
which most often results in a distribution of the decision variables,
instead of a single set of decision variables (or control set-points). Other
works argue that a single feasible distribution management solution for
all or a predefined set of scenarios would be the most suitable solution
for a DSO [11–13]. However, most of these stochastic/robust-based
techniques are generally very hard to converge, and therefore the
convexification of nonconvex nonlinearities is required.

In this context, the proposed work describes a two-stage stochastic
chance-constrained OPF that integrates RES forecast uncertainty,
sharing similar structure and formulation as in the well-known sto-
chastic unit-commitment problem under chance-constrained program-
ming [14–22]. In addition, the work follows a recent trend in the

Nomenclature

Parameters

PΔ Power deviation of the scenarios ω
η η,Ch Dch Charge and discharge efficiency
π Probability of scenario ω
ang Angle k of the piecewise linear slopes
B Imaginary part in admittance matrix
Bus Number of buses
C Cost
EBatCap Maximum capacity of energy storage systems
EMin Minimum energy in the energy storage system
G Real part in admittance matrix
M Large value – Big-M
N Number of unit resources
Px Maximum active power of piecewise linear slope
Py Maximum reactive power of piecewise linear slope
T Time horizon

Variables

θ Voltage angle
P Active power
∼P Active power – McCormick relaxation
PWL Piecewise linearization of cosine function
Q Reactive power
r Power flexibility used in the real-time stage
SOC State of charge of the battery
S Apparent power
V Voltage magnitude
Vsb Voltage at slack bus

VΔ Voltage level activated by the DSO in the transformer
X Binary variable
Z Auxiliary variable for absolute function linearization

Subscripts

ω Index of scenarios
cb Index of capacitor bank units
CB Capacitor bank abbreviation

Ch Storage charge process
Dch Storage discharge process
dg Index of distributed generation units
DG Distributed generation abbreviation
DR Demand response abbreviation
Flow Power flow in the line i,j
i j, Bus index
k Index of piecewise linear slopes
l Index of load consumers
L Load consumers abbreviation
lv Index of levels (tap changing) for capacitor banks and

transformers
pv Index of photovoltaic power units
PV Photovoltaic power abbreviation
st Index of energy storage system units
ST Energy storage system abbreviation
su Index of external supplier units
SU External supplier abbreviation
t Time index
trf Index of transformer units
TRF Transformer abbreviation
w Index of wind power units
W Wind power abbreviation

Superscripts

act Activation cost of resources in real-time stage
bid dw_ Maximum offer of downward flexibility
bid up_ Maximum offer of upward flexibility
CC Chance-constrained
cut Generation curtailment power for distributed generation
dw Downward flexibility
Max Maximum limit
Min Minimum limit
op Operating point of the power resource
shed Load shedding
spill Spillage of renewable energy
Total Total power of the unit
up Upward flexibility
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scientific community where the DSO preventively manages the dis-
tribution grid by contracting flexibility from DER ahead of the oper-
ating stage [9,23–25]. The problem is narrowed down to cope with the
characteristics of the distribution system (all assumptions for the OPF
are based on typical distribution network characteristics), taking into
account the DSO assets for the proactive management of the distribu-
tion system, such as in [3]. More precisely, the proposed work leads to
an extension of [3] using an alternative approach to cope with the RES
uncertain power production, while supporting the DSO with trade-off
solutions and improving the computational performance. The main
contributions of the study over the literature are threefold:

• To propose a distinct model for supporting the DSO management of
the distribution grid under high levels of variable power production.
The modelling of stochastic chance-constrained programming to
provide solutions based on trade-off analysis between operating cost
and risk (of technical constraints violation), rather than the worst-
case conditions modelled by robust optimization in [3];

• To implement a recent AC OPF linearization, improving the com-
putational performance without significantly losing the solution
accuracy, in contrast to the nonlinear and nonconvex AC OPF of [3];

• To analyze and compare two distinct linearization techniques when
determining the deterministic equivalent problem of the chance-
constrained distribution network management problem, high-
lighting computational and solution efficiency.

1.3. Paper organization

The paper is structured as follows. Section 2 describes the predictive
distribution management problem under RES forecast uncertainty.
Section 3 details the formulation of the predictive distribution man-
agement problem considering a stochastic chance-constrained ap-
proach. Section 4 evaluates the proposed model through a 37-bus dis-
tribution grid test case based on real data. Section 5 gathers the most
important conclusions.

2. Active distribution management

The current grid management procedures of a DSO are becoming
insufficient to cope with the uncertainty and variability of RES and
extract full value from DER flexibility. Wind and PV penetration into
the distribution grid often creates technical problems, such as branch
congestion and over/under-voltage problems, and standard DSO tools
(like OPF and network reconfiguration standard tools) have difficulties
mitigating these events. The research trend is to allow the DSO to seek
flexibility among DERs to solve potential congestion and voltage pro-
blems. That is, the DSO can pre-identify and use power flexibility from
DER (changing the DER operating point) to decongest lines and prevent
voltage limit violation.

Within this, the structure of a proactive distribution grid manage-
ment adapted from [3] is illustrated in Fig. 1. The structure comprises a
two-stage problem. The first-stage corresponds to a flexibility market in
which the DSO can contract upward and downward flexibility of all
available DER at day-ahead horizon. The second-stage is the operating
stage in which the DSO manages the grid considering the use of its
internal resources (like transformers with on-load tap-changing (OLTC),
capacitor banks and storage) and the activation of contracted flexibility
under uncertain power generation.

In more detail, the DSO can contract flexibility based on capacity
payments in the first-stage. The DER (including RES to some extent) can
provide flexibility bids to the DSO since they are actually enabled to
control their operating point for upward and downward. Note that RES
producers can define their flexibility bids based on their expected
availability while accounting for the costs of changing their operating
point [26].

In the second-stage, the DSO is responsible for managing the grid,

activating all the “reserved” flexibility necessary to solve potential
congestion and voltage problems. In this grid management, the DSO is
able to control its internal resources, such as transformers with OLTC,
capacitor banks and storage systems. We assume that storage systems
are owned or managed by the DSO, which provides additional multi-
temporal flexibility to the system. To some extent, storage systems are
used to reduce the impact of the uncertainty and variability of RES, by
absorbing and injecting power to correct the RES deviation in the
system.

Moreover, the goal of the proposed model is to enable the DSO to
preserve the grid operation and reliability by contracting sufficient
flexibility in advance to address potential technical problems that un-
certain generation can cause to the grid.

3. Mathematical formulation

In this section, we present the formulation of the predictive dis-
tribution management problem considering a two-stage stochastic
model based on chance-constrained programming. The aim is to mini-
mize the cost of DER flexibility contracted by the DSO for technical
constraints management.

3.1. General problem

The modeling of the distribution management problem must con-
sider the inherent characteristics of the network. Modelling active and
reactive power is essential in distribution systems, especially under
strong penetration of RES. However, the full AC OPF can be very hard
to compute when considering complex problems such as the stochastic
optimization with multiple scenarios for RES uncertainty. Thus, a
linear-programming approximation of the AC OPF proposed by [27] is
implemented.

3.1.1. Objective function
The objective function of the optimization problem can be modeled

into two-stages

+flex x flex ymin ( ) ( )
x y

DA RT
, (1)

Second Stage –Grid Management

Upward Downward

Technical Characteristics

Distribution
Network Limits

First Stage –Contracting Flexibility

Reserve Flexibility Bids

Wind + PV scenarios

AC OPF linearization

Uncertainty

Transformers (OLTC)

Capacitor Banks

DSO/network own resources

Storage Systems
(Charge/Discharge)

Fig. 1. Proactive distribution management (adapted from [3]).
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where flex DA represents the costs for DSO contracting DER flexibility at
first-stage to eventually be activated during real-time operation. The
flexibility costs at first-stage are defined by the capacity payments for
upward and downward flexibility, respectively.
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Several DERs (namely, DG, wind, PV and demand response (DR))
offers are considered. The decision variable vector× considers the first-
stage variables
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In contrast, the second-stage comprises the activation of the con-
tracted flexibility in any scenario ω, which is given by
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where additional operating costs for balancing the system are con-
sidered, using DSO owned resources. This might include storage units
(if regulatory framework allows), capacitor banks and transformers
with OLTC ability. More precisely, the activation of flexibility corre-
sponds to the amount of up/down power scheduled for scenario ω,
which changes the operating point of the resource. In what concerns to
the scenario generation and probabilities, quantile forecast of wind and
PV were used to generate scenarios considering spatial-temporal cor-
relation as in [28]. It is worth mentioning that scenario generation is
modeled independently for wind and PV, which means that wind and
PV uncertain variables are not related. Thus, a complete combination of
the two sets is determined by considering a uniform probability for each
scenario. Therefore, the scenario reduction of the full set of scenarios is
performed following [29] approach. The second-stage variables are
summarized in the vector y
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The objective function is subjected to several first-stage and second-
stage constraints.

3.1.2. First-stage constraints
The first-stage constraints consider the upper bound of upward (2.1)

and downward (2.2) flexibility offers transmitted by DG units.

⩽ ∀ ∈ ∀ ∈P P t T dg N{1, ..., }, {1, ..., },DG dg t
up

DG dg t
bid up

DG( , ) ( , )
_

(2.1)

⩽ ∀ ∈ ∀ ∈P P t T dg N{1, ..., }, {1, ..., },DG dg t
dw

DG dg t
bid dw

DG( , ) ( , )
_

(2.2)

Wind and PV aggregators also provide upward and downward
flexibility offers. Thus, it is assumed that wind power producers have
the ability to provide upward flexibility as in [30]. The wind power
producer is also able to reduce active power production when activated
by the DSO. However, the operating point PW(w,t)

op of the wind power
producer established in the electrical energy market limits the down-
ward wind power offer (2.3). The upper bound of the upward wind
power offer is given in (2.4).

⩽ ∀ ∈ ∀ ∈P P t T w N{1, ..., }, {1, ..., },W w t
dw

W w t
op

W( , ) ( , ) (2.3)

⩽ ∀ ∈ ∀ ∈P P t T w N{1, ..., }, {1, ..., },W w t
up

W w t
bid up

W( , ) ( , )
_

(2.4)

Note that both (2.3) and (2.4) constraints are also applied to PV
aggregators. In parallel, upper bounds for DR aggregators provide offers
for upward (2.5) and downward (2.6) flexibility are expressed as

⩽ ∀ ∈ ∀ ∈P P t T l N{1, ..., }, {1, ..., },DR l t
up

DR l t
bid up

L( , ) ( , )
_

(2.5)

⩽ ∀ ∈ ∀ ∈P P t T l N{1, ..., }, {1, ..., },DR l t
dw

DR l t
bid dw

L( , ) ( , )
_

(2.6)

where PDR l t
bid up

( , )
_ and PDR l t

bid dw
( , )
_ are the maximum amount of load that can be

reduced or increased, respectively. It is considered that the load can be
reduced PDR

up or increased PDR
dw , according to the system needs. Moreover,

the load reduction/increase is assumed to be based on the type of direct
load control of the demand response.

3.1.3. Second-stage constraints
The second-stage consider all the stochastic constraints dependent

of scenario ω. This includes equality and inequality constraints re-
presentative of: the upper bounds of upward and downward flexibility
of all resources (3.1)–(3.9); active and reactive power consumption
(3.10) and (3.11); energy storage systems limits and balance
(3.12)–(3.15); capacitor banks limits and tap-changing (3.16) and
(3.17); transformers limits with OLTC (3.18)–(3.23); active and reactive
power balance (3.24)–(3.28); limits of voltage magnitude (3.29); and
lines thermal capacity (3.30)–(3.32).

The activation of upward and downward flexibility for DG units is
limited by the upward and downward offer contracted in the first-stage,
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respectively. In parallel, the generation curtailment power is con-
strained by the difference between the current operating point and the
downward offer of the DG unit, hence

⩽ ∀ ∈ ∀
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r P t T dg

N ω N
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The reactive power production of DG units is dependent of the ac-
tive power production. This is modelled considering the operating point
established in the first-stage plus the upward and downward flexibility
and power curtailment in the second-stage with a fixed tan ϕ=0.3
[31].
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Similarly, the activation of upward and downward flexibility of
wind and PV aggregators is constrained by the contracted power in the
first-stage. Additionally, the wind spillage is modelled by the difference
between the wind operating point plus the wind power deviation, and
the wind downward activation (3.7). The modeling of PV aggregators
also includes these constraints.
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In contrast, the activation of upward and downward DR offers is
constrained by
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where (3.10) represents the load shedding constrained by the active
power consumption of the respective load. The reactive power con-
sumption is determined based on the active power consumption plus
the upward and downward flexibility of DR and load shedding of load l
considering tan ϕ=0.3 [32].
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Other network resources such as storage units, capacitor banks and
transformers concerns different characteristics and therefore modelling.
The ESS combines different constraints such as the upper and lower
limits for charging (3.12) and discharging (3.13), upper and lower
bounds of energy stored in the battery (3.14), and energy balance of the
battery (3.15).
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The energy balance of the storage takes into account the state of
charge in the previous period, thereby considering the multi-temporal
characteristics of modeling ESS. Another important component in dis-
tribution grids is the capacitor banks, located at the substation that
allows adjusting the injection of reactive power in the network. The
modelling of this resource assumes the tap-changing characteristics and
that the DSO owns the equipment. Thus, capacitor banks can be mod-
elled as
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Similarly, the DSO also owns transformers with OLTC ability. It is
assumed that the voltage impact of each tap-changing level in the
secondary bus of the transformer is known, and is constrained by
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where VΔ TRF trf t ω lv( , , , ) is the voltage level of the tap-changing in the
transformer, while VTRF trf t lv

levels
( , , ) sets all available levels of the OLTC

ability of that transformer. The selection and activation of the levels is
made through the binary variable XTRF trf t ω lv( , , , ). The transformer also
limits the active and reactive power that comes from upstream con-
nection to the grid. This condition is modelled through a quadratic
constraint. However, it is used a piecewise linear approximation of the
quadratic function, as in [27], to reduce the complexity of the problem.
Hence,
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where angk is a k number of angles between 0 and 2π representative of
the piecewise linear slopes. Following [27], four to seven piecewise
linear slopes are sufficient to fairly approximate the apparent power
quadratic function.

In this problem a linear programming approximation of the tradi-
tional AC OPF has been applied based on [27] and formulated on
equations (3.24)–(3.32). For more details on the assumptions of the AC
OPF linearization, interested readers are directed to [27]. Future work
may comprise the comparison of distinct convex relaxations of the AC
OPF, such as [33]. One of the main challenges of a DSO in conducting
active distribution management under uncertainty is to ensure in-
expensive solutions that keep the system operation under proper con-
fidence levels of operation. Chance-constrained programming allows to
model feasible regions of the problem under the probability level (risk)
defined by the DSO. Thus, chance-constrained optimization can con-
strain the impact of unusual operating scenarios with a low probability
of occurring in the solution. In other words, unusual operating sce-
narios can increase the contract of high flexibility levels, resulting in
high costs to the DSO to achieve low risk levels. In this scope, chance-
constrained optimization has been applied to the active power balance
constraint, since it ensures that the probability of load imbalance is less
than a predefined risk level ε. Therefore, the decision-maker can control
the risk level ε that gives the desired trade-off between cost and relia-
bility.

Nevertheless, the chance-constrained programming can be applied
to other constraints of the active distribution management problem,
such as reactive power balance. On the one hand, the inclusion of this
chance-constraint will bring more flexibility to the proposed solution,
however, it is not critical to this problem, since the DSO has static
equipment (e.g. capacitor banks) to solve reactive power issues, as well
as DER will bring more flexibility to the reactive power management
problem. On the other hand, the chance-constraint will bring more
complexity to the problem and, therefore, will increase the computa-
tional effort to obtain a good solution. Future work will focus on this
subject. Thus, the probability constraint of the active power balance is
given by
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where PFlow represents the active power that flows through the lines of
the network, which is given by
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and PWL is the piecewise linear approximation of the cosine function as
shown in [27]. θi,j is the phase angle difference between bus i and j. The

PWL is represented as
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where anga depicts the number of angles between −π/3 and π/3 re-
presentative of the piecewise linear slopes for the cosine function. In
parallel, the reactive power balance refers to the reactive power gen-
eration and consumption in the system and is modelled as
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where QFlow represents the reactive power that flows through he lines of
the network, which is modelled as
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and Vij is the voltage change on bus i,j. The voltage in each bus is
limited by the upward and downward bound as
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Similar to the apparent power constraint of transformers
(3.21)–(3.23), the thermal line limit takes into account both active and
reactive power flow. Thus, the piecewise linear approximation of the
quadratic function entails
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3.2. Chance-constrained reformulation

The chance-constrained programming can be formulated and solved
using many different ways [34–37]. One of the ways is to reformulate
and solve the chance-constrained problem through the formulation of
the deterministic equivalent problem via integer programming
methods. Within this variation of chance-constrained programming, the
deterministic equivalent of the chance constraint can be obtained by
using the Big-M method, introducing a binary variable [34] or through
bilinear reformulation [35]. Thus, the reformulation of the chance
constraint (3.24) through the Big-M method can be rewritten as follows
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where M is a sufficiently large number and XCC is the binary variable
that indicates if for a certain period t and scenario ω, the active power
balance equation is met (XCC=0) or if it is relaxed to the boundaries M
(XCC=1). It is well known that the Big-M method reformulation has
significant issues, like the challenging of estimating the value of M. The
value of M should be sufficiently high to allow for a good convergence
solution. In addition, the Big-M formulation slows down the computa-
tional performance, which may not be the best solution for the re-
formulation of the chance-constrained problem.

Another way to convert the chance-constrained problem to the de-
terministic one is to use bilinear reformulation. Following [34,35], the
bilinear mixed integer reformulation is given by
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where the balance equation is met when XCC=0, and ignored when
XCC=1. The bilinear reformulation makes the problem non-linear.
However, the constraint can be converted to linear by applying the
McCormick relaxation method [38]. For simplicity, let’s assume that all
distributed generation variables are reduced to
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Similar assumption is applied to the variables of external suppliers,
storage, wind, PV, loads and power flow in the lines, hence (4.3) is

reduced to
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then, McCormick relaxation can be applied assuming that the bilinear
term PTotalXCC=PTotal is linearized through including the constraints
(4.8)–(4.10)
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where PMin and PMax are the minimum and maximum limits of gen-
eration of the distributed generation dg, respectively. Note that Eqs.
(4.8)–(4.10) must also be applied to the remaining bilinear terms.

3.3. Absolute function reformulation

The absolute function modelled in the objective function can be
reformulated via linear programming by adding a new variable and two
additional constraints, like in [39]. Thus, the absolute function con-
sidering the tap position of the capacitor banks can be rewritten as

∑ ∑
= =

C Z

s t
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. .
cb

N

lv

N

CB cb t CB cb t ω lv
1 1

( , ) ( , , , )
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(5.3)

where Z is a positive variable limited by the positive and negative value
of the absolute function. This linear approximation is also used to lin-
earize the absolute function related to the tap changing of transformers
in the objective function.

4. Test case

A case study illustrating the applicability and performance of the
proposed model, accounting for a variety of uncertain situations is
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presented in this section.

4.1. Outline

The case study is based on the work presented in [3], which con-
siders a distribution network with an energy mix of 2050, as shown in
Fig. 2.

This 11 kV distribution network has 37 bus with a single upstream
connection to the high voltage network through two power transforms
of 10 MVA each. In this analysis, we assume that the DERs are ag-
gregated by technology, thus each aggregator represents a specific type
of DER technology. However, the model has been designed to cope with
aggregators considering mixed portfolio. In addition, 22 consumption
points with aggregated demand and DR programs are considered.
Consumption profiles and network location were taken from [3]. Fur-
thermore, it is assumed that the DSO operates transformers with OLTC,
capacitor banks and energy storage systems to support grid manage-
ment. Characteristics of transformers and capacitor banks, as well as
costs were taken from [3]. Capacitor banks can reach a maximum re-
active power of 0.8 MVAr. Similarly, ESS units share the same features
as in [3]. Both charge ̂I ·Ch and discharge ̂I ·Dch efficiency coefficients are
equal to 0.8. The general characteristics and operating point of all DER
aggregators are presented in Table 1.

The DER operating point represents their scheduled bids in the
energy market, which is used as the current state of the units in the
system before optimization of the grid management. All DERs provide
flexibility to the DSO based on their operating level. CHPs, external
suppliers and DR provide their entire flexibility, from their minimum to
their maximum level of output power as downward and upward flex-
ibility, respectively.

In contrast, renewable generation (PV and wind) provide upward
and downward flexibility according to their bids. The downward bid is
equal to the expected operating point dispatched in the energy market,
while the upward flexibility is determined through the use of the con-
stant strategy proposed in [26] and implemented in [3] considering the
wind and PV data from [40] and [41], respectively. A number of sce-
narios were generated from the probabilistic forecast data of wind and
PV, through the scenario generation process described in [28] with
corresponding probability of occurrence. In addition, some of the worst-
case scenarios modeled in [3] have been added to the scenario set (with
low probability of occurrence) to represent unusual operating system
scenarios. The costs associated to upward and downward flexibility of
the different type of aggregators; the costs for activation in real-time of
both upward and downward flexibility; and the CHP curtailment, re-
newable spillage and load shedding are shown in Table 2.

4.2. Results

The computations were carried out with CPLEX [42] as a MIP solver
on an Intel Xeon E3-1245 3.50 GHz processor with 32 GB RAM. All
modelling was performed in the GAMS [43] modelling language.

4.2.1. Base case
Several simulations were carried out for the proposed models con-

sidering different numbers of scenarios and risk levels. As a base case,
we considered the simulation of both stochastic models for 10 scenarios
under a risk level of 5%.

The contracted upward and downward flexibility throughout the
day from all available resources, for both the big-M and McCormick
approaches, is depicted in Fig. 3. One can see that the McCormick ap-
proach requires less flexibility in most periods when compared to the
big-M approach. This is because McCormick relaxation is stronger than
the big-M relaxation and therefore better approximate the nonlinear
behavior of the chance-constraint reformulation.

4.2.2. Sensitivity analysis
For a better understanding of both approaches, a sensitivity analysis

was performed. This allow us to validate the applicability of the pro-
posed models under different conditions. These conditions include (i)
distinct number of scenarios to evaluate the scalability of the solution,
and (ii) different risk levels of the chance constraint (applied to the
active balance equation) to quantify the cost of neglecting unusual
operating scenarios that reduce system reliability. Table 3 shows the
operating costs and computational performance of each model for 10,
50 and 100 scenarios under the 5% risk level. One can see that the
McCormick approach provides solutions with lower expected operating
costs than the big-M approach. For 10 scenarios, the McCormick ap-
proach is faster than the big-M approach to obtain a solution. As ex-
pected, computational effort grows significantly with increasing
number of scenarios. However, the McCormick approach generates
much more variables than the big-M method, and therefore, with the
increasing number of scenarios, loses the advantage of better compu-
tational performance. In fact, for 100 scenarios, the McCormick ap-
proach requires almost twice the computational time of the big-M ap-
proach.

Nevertheless, Table 4 shows the trade-off between the operating
cost and system reliability for 10 scenarios. That is, the operating cost
that the DSO can save, taking the risk of neglecting unusual operating
scenarios (reducing system reliability). For instance, taking a 20% risk
level, the DSO is assuming that 2 in 10 scenarios can be ignored. This
means that less upward and downward flexibility need to be reserved at
first-stage, since the two worst-case scenarios can be ignored, hence
reducing operating costs. However, the solution is not as reliable as
those that consider a lower risk level, since the optimal solution does
not cover all scenarios and therefore the full distribution of uncertainty.
Following the most drastic risk level for the big-M approach, DSO re-
duces system reliability by 20%, with an improvement of about 20% in
the operating costs. In parallel, the McCormick approach gets an im-
provement of about 8% in the operating costs reducing system relia-
bility by 20%.

Moreover, these results show that the McCormick approach pro-
vides closer solutions under the different conditions when compared to
the big-M approach.

Fig. 2. 37-Bus distribution network [3].
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An overview of the simulation considering both methods for dif-
ferent number of scenarios under different risk levels is depicted in
Fig. 4. Fig. 4(a) shows the computational effort of the big-M approach
accounting for different risk levels and scenarios number. Fig. 4(b)
represents operating costs under different numbers of scenarios and risk
levels for the big-M approach. Similarly, Fig. 4(c) and (d) depict the
computational effort and operating costs, depending on the scenarios
number and risk level for the McCormick approach, respectively. One
can see that McCormick approach presents better operating costs than
the big-M approach for most simulations, regardless of the number of
scenarios and risk level. However, the computational performance
through McCormick approach shows a different behavior. As the sce-
narios increase, the computational performance changes significantly.
In fact, the big-M approach performs better McCormick’s approach to a
high number of scenarios with low risk level. In contrast, for a high
number of scenarios and risk level, McCormick approach provides
better computational performance than the big-M approach.

5. Conclusions

This work proposes a full linear approach to the predictive dis-
tribution management problem (or operational planning of flexibility
activation) of the DSO. The DSO can contract power flexibility of DERs
in advance of a potential congestion and voltage problem that may arise
in the grid. The results show that this approach can provide savings to
the DSO, by accounting for the uncertain production of RES in the
distribution grid. In addition, results show that distinct convexifications
of the nonlinearities have an impact on the solution and computational
performance. An important conclusion of this work is that the proposed
method shows a preventive behavior when contracting flexibility to
cover congestion and voltage problems, accounting for the uncertainty
and variability of RES generation. Thus, the chance-constrained solu-
tions enables the DSO to have a trade-off between operating cost and
reliability.

Nevertheless, this study points out several directions for future
work. One the one hand, the computational performance can be im-
proved by using (i) decomposition techniques to decompose the pro-
blem into multiple sub-problems, (ii) iterative approaches and (iii)
meta-heuristics. On the other hand, the approximation to the natural
behavior of the distribution system can be improved using different
convexification techniques of the AC OPF. In addition, different chance-
constrained programming approaches can be studied to better assist the
decision-maker in assessing the trade-off between operational costs and
system reliability.
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Table 1
DER characteristics and operating point.

DER Number of
units

Total
installed
power

Operating point Pop (MW)

Max Mean Min

CHP 3 2.5 (Mva) 1.5 1.15 1
External supplier 1 20 (Mva) – – –
PV 22 7.74 (MWp) 5.55 1.96 0
Wind 2 2.5 (MW) 1.88 1.77 1.52
DR 22 4.65 (MW) 0.1 0.03 0

Table 2
Costs of flexibility, activation and spillage for DER.

DER Upward cost Cup(m.u./kWh) Downward cost Cdw(m.u./kWh) Activation cost Cact (m.u./kWh) Curtailment Ccut/spillage Cspill/load shedding CL
shed (m.u./kWh)

CHP 0.10 0.06 0.18 0.36
PV 0.11 0.06 0.13 0.30
Wind 0.10 0.05 0.12 0.30
DR – load 0.22 0.17 0.26 0.90

Fig. 3. Contracted flexibility by the DSO under McCormick and big-M ap-
proaches.

Table 3
Operating costs and computational performance with varied scenario sizes (risk
level of 5% - ε=0.05).

Scenario number Big-M McCormick

Time (s) O.C. (m.u.) Time (s) O.C. (m.u.)

10 300 1.246 227 0.877
50 4970 1.224 8955 0.842
100 7781 1.214 14,208 0.825

Table 4
Operating costs and computational performance under different risk levels
(scenario number: 10).

Risk level Big-M McCormick

Time (s) O.C. (m.u.) Time (s) O.C. (m.u.)

5% 300 1.246 227 0.877
10% 3678 1.216 3681 0.816
20% 3682 0.992 3680 0.800
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Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ijepes.2019.02.002.
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