
Locating Energy Hotspots in Source Code

Rui Pereira
HASLab/INESC TEC & Universidade do Minho, Portugal

ruipereira@di.uminho.pt

I. MOTIVATION

We as a society have built our exceptional development
pace on top of a widespread use of energy resources. Un-
fortunately, over the past number of years we have begun to
understand this problem of growing energy demands and con-
cern ourselves over the impact is has done to the environment,
such as global warming.

Much of this can be attributed to the exponential growth we
are witnessing in the ICT sector. A contribution of 8% of the
overall energy consumption comes from this [1], as does 50%
of the energy costs of an organization [2]. While computer sci-
ences and environmentalism isn’t a common pair, this specific
context has raised awareness [3], [4], and the realization of the
need for sustainable software development [5].

As a matter of fact, software developers have shown to
be eager to develop energy-efficient software [6], with recent
efforts including [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19] to provide libraries, measurement
tools, techniques and data to help energy-aware development.
Even so, the green computing research area is still in initial
stages with continuous issues, challenges, and opportunities to
tackle [20], [21], [22].

Research has defined many techniques to improve software
developers’ programs with optimal runtime, for example, par-
tial and/or runtime compilation, advanced garbage collectors,
parallel execution, etc. Additionally, techniques to improve
their productivity such as advanced type and modular systems,
IDEs, and testing and debugging framework have also been
developed. Comparing this to energy-aware software engi-
neering, we see a clear deficit with the former being clearly
complete in terms of what it has achieved [21].

Studies have shown how different design patterns, using
Model-View-Controller, information hiding, implementation of
persistence layers, code obfuscations, refactorings, and differ-
ent Java based collections have a statistically significant impact
on energy usage [23], [24], [25], [10], [14], [11], [12].

While developers have several ways of obtaining energy
consumption readings [7], [24], [26], [27], [28], [29], or model
based energy estimation [30], [31], the notion of what they
mean, how to interpret, and what relevance the consumption
of certain software components have in the program’s con-
sumption is yet to be provided and analyzed.

This work is financed by the ERDF – European Regional Development
Fund through the Operational Programme for Competitiveness and Interna-
tionalisation - COMPETE 2020 Programme and by National Funds through
the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia
within project POCI-01-0145-FEDER-016718; and by FLAD/NSF under the
project Software Repositories for Green Computing, ref. 300/2015. The first
author is also sponsored by FCT grant SFRH/BD/112733/2015.

This paper briefly touches on a in development technique
named SPELL - SPectrum-based Energy Leak Localization, to
identify critical red (energy hotspots) areas in software. This
technique is both language and context independent, and based
on the spectrum-based fault localization technique, a state of
the art technique to identify program faults in program execu-
tion [32], [33]. SPELL uses a statistical method to associate
different percentage of responsibility for the energy consumed
to the different source code components of a software system,
thus pinpointing the developer’s attention on the most critical
“red” spots in his code. Initial studies have also showed that
using this technique helped developers identify and optimize
energy problems in 50% less time and optimizing the energy
consumption on average by 18% when compared to those who
did not use SPELL [34].

II. SPECTRUM-BASED LOCALIZATION

A. Spectrum-based Fault Localization

Our technique, SPELL, is based on spectrum-based fault
localization [32], [33], a state of the art technique which uses
statistical analysis [35] and execution trace to identify faults in
a program’s implementation (source code). SFL uses a simple
hit spectrum (flag which reflects if a certain component is
used or not in a particular execution) to build a matrix A of
dimension n×m, where m represents the different components
(e.g. methods, classes,etc.) of a program during n independent
test executions. Complementing the hit spectrum, SFL uses an
error vector to indicate whether each of the n tests succeeded
or not. Finally, it applies a coefficient of similarity to calculate
which component is the most probable to be faulty.

B. Spectrum-based Energy Leak Localization

In this context, a parallel is made between the detection
of faults in the execution of a program with the detection of
anomalies in the energy consumption of a program. Having
this parallelism established, these fault detection techniques,
often used to detect software bugs or failures, were adapted to
detect energy leaks1.

In SPELL, while it too uses the concept of m components
(e.g. programs, packages, classes, methods, statements) and
n independent tests (which can be test cases or program
simulations), it differs in several ways. The hit spectrum
elements for our SPELL matrix is not a single flag, but
holds a triple of three categories: (Energy, T ime, Number).
These are expressed in Joules, milliseconds, and number of

1In this context, an energy leak is essentially a part of the program where it
is consuming energy more than it probably should. As if one were to imagine
a cup of water, with water leaking over when it should not.

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.151

89

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.151

89

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.151

89

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.151

89

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.151

89

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.151

88

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.151

88

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.151

88

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.151

88

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.151

88

executions respectively. Additionally, our Energy category is
too a tuple which may represent the consumption by each
different hardware component (CPU, DRAM, GPS, GPU,
screen, etc.) if the chosen energy measurement technique
allows this differentiation.

Another difference lies in how the oracle is calculated.
While in SFL there is an error vector to reason about the
validity of the output obtained during a test, the SPELL
analysis does not receive this as an input. This is attributed
to there being no clear signal as to what can be seen as
an excess of energy consumption. Therefore, an error vector
is calculated by this technique, a criterion to represent the
greenness of a component instead of a binary decision, and
two different perspectives to calculate the oracle and similarity.
These perspectives are called Component Category Similarity
and Global Similarity, an analysis on one specific category
(for example only considering energy consumption) or a global
analysis considering all three, respectively.

A software developer can now, for example, use
jRAPL [29] or the ODROID-XU32 to measure his/her pro-
gram’s energy consumption on a method level (here a com-
ponent m would be a method), with various simulations or
tests (n), and obtain a ranking of components sorted by
their likelihood of being responsible for the program’s energy
leak, pinpointing and prioritizing the developer’s attention on
the most probably hot spot. This gives him/her more useful
information to better support the decision making of what and
where to optimize.

This language independent technique only requires an
input matrix representing the tests, components, and category
values. SPELL is currently implemented in Java as a tool-kit
containing the implementation of the core technique along with
other helpful tools, such as a jRAPL method instrumentation
tool and can be found by following the link in the footnote3.

C. Integrated Development Environment

The current implementation of the SPELL technique dis-
plays the responsibility percentages and analysis in a textual
format. As the main motivation of this work was to produce a
tool to help developers become energy-aware while developing
software, different ways of how to display this information
is being discussed. Currently, a prototype linking SPELL and
GZoltar has been developed [36] so that we freely inherit
a graphical visualization tool which allows, with the aid
of a sunburst graph and flagging (as shown in Figure 1),
hierarchical navigation of code. Using colors (red for problems
and green otherwise), it shows immediate information on the
status of different parts of the code.

III. CONCLUSION

This paper briefly introduces SPELL, a spectrum-based
energy leak localization technique to identify inefficient energy
consumption in source code. Using a statistical method to
associate different percentages of responsibility to different
components within a program, it can help focus the developer’s
attention on the most critical areas. This technique is both

2https://www.hardkernel.com
3https://github.com/greensoftwarelab/SPELL

Fig. 1: SPELL embedded Gzoltar graphic visualization tool

language independent, and context independent (applicable on
any level of a program: packages, classes, methods, etc.). This
paper also shows a possible way to represent the information
from SPELL’s analysis in an easy to understand graphical
representation to further help the developer become energy-
aware.

The main difference between this technique and those
aforementioned or existing, is that it is not a new form
of estimating or measuring the energy consumption, but a
technique which using various energy measurements calculates
the probability of a component having an energy problem,
and presents this directly to the developer. The technique is
for developers, unlike works such as [19], to essentially debug
their programs, independent of language and applicable on any
abstract level (class, method, line, etc.); and without needing
to know energy inefficient practices a priori such as [37]. It
does not give energy readings, but reasons about variables
such as energy and time to present a target area of where one
should focus their attention to optimize, parallel to how SFL
digests test cases to attribute a probability to a component as
being faulty. This reasoning can be focused on one category
(Energy, T ime, or Number), for an optimization on any of
the three, or focused on a global analysis of all three.

Preliminary empirical studies with Java programmers
showed that not only can this technique be used in various
contexts, but also that developers who used SPELL were
able to find and optimize a program’s energy consumption
and performance, spending 50% less time and improving the
consumption on average by 18% when compared to those who
did not use SPELL [34]. These studies also showed that some
of the energy optimization that were achieved by programmers
actually produced more energy efficient while degrading the
runtime performance. This further helps show that the already
existing profilers are not enough for energy consumption
optimization, as optimizing for energy consumption does not
always implicate performance optimization.

REFERENCES

[1] H. T. Mouftah and B. Kantarci, “Chapter 11 - Energy-Efficient Cloud
Computing: A Green Migration of Traditional {IT},” in Handbook
of Green Information and Communication Systems, M. S. Obaidat,
A. Anpalagan, and I. Woungang, Eds. Academic Press, 2013, pp.
295–330.

[2] R. R. Harmon and N. Auseklis, “Sustainable it services: Assessing the
impact of green computing practices,” in Management of Engineering
& Technology, 2009. PICMET 2009. Portland International Conference
on. IEEE, 2009, pp. 1707–1717.

90909090908989898989

[3] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded
software: a first step towards software power minimization,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 2, no. 4,
pp. 437–445, Dec 1994.

[4] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu schedul-
ing for mobile multimedia systems,” in Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles. ACM, 2003.

[5] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, M. Mahaux,
B. Penzenstadler, G. Rodrı́guez-Navas, C. Salinesi, N. Seyff, C. C.
Venters, C. Calero, S. A. Koçak, and S. Betz, “The karlskrona manifesto
for sustainability design,” CoRR, vol. abs/1410.6968, 2014.

[6] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software
energy consumption,” in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014, pp. 22–31.

[7] M. A. Ferreira, E. Hoekstra, B. Merkus, B. Visser, and J. Visser,
“Seflab: A lab for measuring software energy footprints,” in Green and
Sustainable Software (GREENS), 2013 2nd International Workshop on.
IEEE, 2013, pp. 30–37.

[8] G. Pinto, F. Castor, and Y. D. Liu, “Understanding energy behaviors
of thread management constructs,” in Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications. ACM, 2014, pp. 345–360.

[9] T. Yuki and S. Rajopadhye, “Folklore confirmed: Compiling for speed=
compiling for energy,” in Languages and Compilers for Parallel Com-
puting. Springer, 2014, pp. 169–184.

[10] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: an empirical study,” in Proceedings of the
11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 2–11.

[11] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect
energy usage?” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.
ACM, 2014, p. 36.

[12] C. Sahin, P. Tornquist, R. McKenna, Z. Pearson, and J. Clause, “How
does code obfuscation impact energy usage?” in Software Maintenance
(ICSM), 2013 29th IEEE International Conference on. IEEE, 2014.

[13] M. Couto, T. Carção, J. Cunha, J. P. Fernandes, and J. Saraiva,
Programming Languages: 18th Brazilian Symposium, SBLP 2014,
Maceio, Brazil, October 2-3, 2014. Proceedings. Cham: Springer
International Publishing, 2014, ch. Detecting Anomalous Energy
Consumption in Android Applications, pp. 77–91. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11863-5 6

[14] I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s
energy-optimization decision support framework,” in Proceedings of the
36th International Conference on Software Engineering. ACM, 2014.

[15] A. Hindle, “Green mining: a methodology of relating software
change and configuration to power consumption,” Empirical Software
Engineering, vol. 20, no. 2, pp. 374–409, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10664-013-9276-6

[16] S. Li and S. Mishra, “Optimizing power consumption in multicore
smartphones,” Journal of Parallel and Distributed Computing, pp. –,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0743731516000198

[17] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P.
Fernandes, “Haskell in green land: Analyzing the energy behavior of
a purely functional language,” in 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
vol. 1, March 2016, pp. 517–528.

[18] R. Pereira, M. Couto, J. a. Saraiva, J. Cunha, and J. a. P.
Fernandes, “The influence of the java collection framework on
overall energy consumption,” in Proceedings of the 5th International
Workshop on Green and Sustainable Software, ser. GREENS ’16.
New York, NY, USA: ACM, 2016, pp. 15–21. [Online]. Available:
http://doi.acm.org/10.1145/2896967.2896968

[19] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou,
L. K. Saul, and G. M. Voelker, “edoctor: Automatically diagnosing
abnormal battery drain issues on smartphones,” in Proceedings
of the 10th USENIX Conference on Networked Systems Design
and Implementation, ser. nsdi’13. Berkeley, CA, USA: USENIX

Association, 2013, pp. 57–70. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2482626.2482634

[20] A. E. Trefethen and J. Thiyagalingam, “Energy-aware software: Chal-
lenges, opportunities and strategies,” Journal of Computational Science,
vol. 4, no. 6, pp. 444 – 449, 2013.

[21] P. Lago, “Challenges and opportunities for sustainable software,”
in Proceedings of the Fifth International Workshop on Product
LinE Approaches in Software Engineering, ser. PLEASE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 1–2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2820656.2820658

[22] A. Hindle, “Green software engineering: the curse of methodology,”
PeerJ PrePrints, vol. 3, p. e1832, 2015.

[23] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “The impact of
source code transformations on software power and energy consump-
tion,” Journal of Circuits, Systems, and Computers, 2002.

[24] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Proceedings
of the 2013 International Symposium on Software Testing and Analysis.
ACM, 2013, pp. 78–89.

[25] C. Sahin, F. Cayci, I. L. M. Gutierrez, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh, “Initial explorations on design pattern energy usage,”
in Green and Sustainable Software (GREENS), 2012 First International
Workshop on. IEEE, 2012, pp. 55–61.

[26] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy
consumption for short code paths using RAPL,” SIGMETRICS
Performance Evaluation Review, vol. 40, no. 3, pp. 13–17, 2012.
[Online]. Available: http://doi.acm.org/10.1145/2425248.2425252

[27] A. Noureddine, R. Rouvoy, and L. Seinturier, “Monitoring energy
hotspots in software,” Automated Software Engineering, pp. 1–42, 2015.

[28] N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and
K. Eder, “Static analysis of energy consumption for llvm ir programs,”
in Proceedings of the 18th International Workshop on Software
and Compilers for Embedded Systems, ser. SCOPES ’15. New
York, NY, USA: ACM, 2015, pp. 12–21. [Online]. Available:
http://doi.acm.org/10.1145/2764967.2764974

[29] K. Liu, G. Pinto, and Y. D. Liu, “Data-oriented characterization of
application-level energy optimization,” in Fundamental Approaches to
Software Engineering. Springer, 2015, pp. 316–331.

[30] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Proc.
of the 8th Int. Conf. on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2010, part of ESWeek ’10 Sixth Embedded
Systems Week, Scottsdale, AZ, USA, October 24-28, 2010.

[31] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE,
2013, pp. 92–101.

[32] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” pp. 89–98, 2007.

[33] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “Spectrum-based
multiple fault localization,” in Proc. of the 2009 IEEE/ACM Int. Conf.
on Automated Software Engineering, ser. ASE ’09. Washington, USA:
IEEE Computer Society, 2009, pp. 88–99.

[34] R. Pereira, T. Carção, M. Couto, J. Cunha, J. ao Paulo Fernandes, and
J. ao Saraiva, “Mind the leak: Helping programmers improve the energy
efficiency of source code,” in Proceedings of the 39th International
Conference on Software Engineering, 2017, to appear.

[35] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken, “Statistical
debugging of sampled programs,” in Advances in Neural Information
Processing Systems, 2003, p. None.

[36] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in IEEE/ACM International Con-
ference on Automated Software Engineering, ASE’12, Essen, Germany,
September 3-7, 2012, M. Goedicke, T. Menzies, and M. Saeki, Eds.
ACM, 2012, pp. 378–381.

[37] Y. Liu, C. Xu, S.-C. Cheung, and J. Lü, “Greendroid: Automated
diagnosis of energy inefficiency for smartphone applications,” IEEE
Transactions on Software Engineering, vol. 40, no. 9, pp. 911–940,
2014.

91919191919090909090

