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Abstract— In this paper is analyzed a real case study based on 
an islanding power grid where there is the necessity of wind 
power curtailment during the operation of the power grid. This 
curtailment skews the wind power production database and 
creates a huge challenge to the overall power production 
forecast. Thus is presented a solution which allowed making 
more accurate forecasts in order to improve the renewable 
production and the reduction of fuel consumption in thermal 
power plants. 

Index Terms-- Kernel Density Estimator, Power curtailment, 
Power forecasting. 

I. INTRODUCTION  
One of the issues of an optimal power systems scheduling 

is the correct forecasting. A few decades ago the main 
concerning was with the load demand and some hydro power 
production. With the increase of other renewable energy 
sources (RES) as wind, solar and mini hydro new challenges 
arise leading to several research works[1],[2]. When the 
explanatory variables results from meteorological forecasts 
there are always associated errors. These errors can result 
from several factors, such as incorrect or incomplete models, 
incorrect starting conditions, wrong parameters, extreme 
events, variations of sources dynamics over the forecast 
period, amongst others.  

The models developed for load forecast generally get 
good results with lower deviations from the measured values 
because load profiles follow a characteristic pattern. 
Comparing with load forecast, the prediction of RES, due to 
its variability and intermittence, presents much bigger 
challenges. Thus, beyond the developed point forecasts 
techniques there is the necessity to incorporate uncertainty in 
the forecasting. Though addressing other types of RES 
(namely solar and hydro), wind generation is presented as the 
main source of generation uncertainty in power systems 
scheduling, grid operation and market environment. There are 
three major factors which have influence on the uncertainty 
of wind power forecast, namely, the Numerical Weather 
Prediction (NWP), the conversion of wind to power (due to 

the nonlinearity of the power curve) and terrain complexity. 
On the other hand, the NWP and the clouds dynamic are the 
main source of uncertainty in the case of solar photovoltaic 
since conversion is well defined. In the case of hydro power 
forecasting systems, the uncertainty generally propagates 
from the NWP model through the rainfall-run-off model. The 
rainfall-run-off models are limited by their representation of 
flow dynamics, whose main problem is not the representation 
of the dynamic but knowing the local parameters [3]. 
However, due to its high installed power capacity all over the 
World, wind power forecast gathers the majority of the 
attention of researchers, and the major number of published 
works. 

The uncertainty created by these errors has a great impact 
on power systems scheduling since the forecasted values at 
the beginning of the scheduling process can be quite different 
from those in the operation periods. In a traditional and 
conservative point of view, generally, the uncertainties are 
compensated using conservative decisions, like over-
designing the equipment or overestimating the operational 
parameters basing them on worst-case. This approach, though 
being secure, may lead to significant results’ deterioration 
from the optimization problem. To overcome this situation, 
several uncertainty models are provided in literature, as 
moments of distributions, set of quantiles or interval 
forecasts, probability mass functions and probability density 
functions (parametric and non-parametric)[4],[5]. 

 
II. PROBLEM CHARACTERIZATION 

The scheduling challenges are enhanced in islanding 
systems with low rated power, without connection to the 
large continental grids and without storage capacity. Large 
variations on renewable production can introduce stability 
problems in the network, which can originate generation or 
load shed and, at limit, black-outs. The island power system 
under study is composed by one thermal power plant with 8 
units based on heavy fuel plus 2 geothermal, 7 mini-hydro 
and 1 wind power plants.  



The yearly average geothermal power production is  
19,2 MW (meaning approximately 42% of the yearly average 
load). This generation acts as base of the load diagram and do 
not contributing to the load follow. On the other hand hydro 
generation (3 MW of rated power) is inexpressive. Therefore 
the effective load following has to be done by an efficient 
management between thermal and wind production. 
Analyzing the production datasets it is verified that all this 
renewable production helps to decrease the thermal 
production during peak load periods, but during off-peak 
periods the system is already saturated with renewable power 
production. Additionally, to the system operator, for 
operational security reasons it is mandatory that, at least, two 
thermal units must be on-line. It is to avoid the complete loss 
of thermal production due to outages and represents a 
minimum production of 12,85 MW. In fig. 1, the hourly 
average thermal production, as well as the sum of minimum 
technical limits of 2 units, since 0h00 of December 1st up to 
23h of December 31st of 2013 is shown. 
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Figure 1.  Thermal production and minimum technical limits 

As can be seen in fig.1, during the off-peak periods, 
generally the renewable production is so high (or the load so 
low) that obligates the thermal units work below the minimum 
technical limits with poor efficiency and high fuel 
consumption. During 2012 the thermal machines worked 
below their minimum limits 17% of the year while in 2013, 
20,6%. To minimize this situation, especially during off-peak 
periods, the wind power production is preventively limited 
with consequent waste of renewable resources (which 
happened during 30,5% of the set of 2012 and 2013). On the 
other hand, an extreme reduction of the thermal committed 
capacity can lead to a situation wherein the spinning reserves 
are not sufficient to handle with great variations of load, 
renewable production or generation outages. Therefore, due to 
the uncertainty in load and renewable production, generally, 
sometimes is hard to find a completely robust/economic 
scheduling solution. To face this problem, it is clear the 
necessity of an efficient method to forecast load and 
renewable production in order to know the real thermal 
production necessities. It allows costs and emissions reduction 
and the optimization of the number and the allocated power of 
the on-line thermal units. 

The wind power limitation does not occur only in this case 
study, in [6] are described several case concerning wind power 
curtailment, where it is stated that wind curtailment occurs for 
two primary reasons: 1) lack of available transmission during 
a particular time to incorporate some or all of the wind 

generation; or 2) high wind generation at times of minimum or 
low load, and excess generation cannot be exported to other 
balancing areas due to transmission constraints. In these 
instances, wind generation may be curtailed after other 
generation is running at minimum and imports reduced or 
curtailed as well.  

III. FORECASTING METHODOLOGY 
The thermal production forecasting is characterized as net 

load [7],[8] and it is calculated by the differences between 
forecasted load and the sum of forecasted renewable 
production. These forecasts, further than spot values, 
incorporate uncertainty by probabilistic forecasting with the 
net load resulting from the convolution of the various 
forecasting probabilistic distributions. The forecasted pdf 
were based on the Nadaraya-Watson estimator (1) which 
allows estimating a random variable Y, when the explanatory 
random variable X is equal to x [9]. This conditional density 
estimation can be seen as a generalization of regression, since 
conditional density estimation aims at obtaining the full 
probability density function fy|x(y|x) [10]. In the case of power 
forecast, it consists on the estimation of the future conditional 
pdf of power for each look-ahead time step t+k (pt+k|t), given 
a set with N pairs of samples (pn,xn) summarizing all 
information available up to instant t. Each pair consists on a 
set of explanatory variables Xn and the corresponding value of 
variable to be predicted Pn. In this process it is assumed that 
explanatory variables xt+k|t are known for each time-step 
ahead and pt+k is the power forecasted for look ahead time 
t+k. 
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is the marginal density of X. However, 

since the joint and marginal densities are not known, they can 
be determined with a nonparametric kernel estimator [9]. As 
the random variable can depend on several explanatory 
variables a multivariate KDE can be used, and applied to the 
Nadaraya-Watson estimator of (1). The conditional density 
estimator results from (2)[9],[11]. 
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In (2) N is the number of samples, D is the number of 
variables and Kj is the kernel function to each variable j. The 
parameter hj is the bandwidth of each kernel around each 
sample Xij and controls the smoothness of the estimation. For 
all explanatory variables the kernel function chosen was the 
normal distribution though in the case of wind direction a 
wrapped normal distribution was chosen. The optimization of 



the bandwidth hj was done with Leave-One-Out Cross 
Validation (LOOCV) technique [12]. 

To develop this process, the datasets used in this work 
contain hourly average values since 0:00 of 1st January 2012 
up to 23h00 of 30th June 2014. The training/parameterization 
dataset contain 17520 hourly average values since 0:00 of 1st 
January up to 23h00 of 31st December 2013 and the 
test/validation set is composed by 4344 hourly average values 
since 0:00 of 1st January 2014 up to 23h00 of 30th June 2014. 
The NWP forecasts have 1 hour of temporal resolution and 
the forecast are available at 00h00 for 00h00 up to t+24[13]. 

The load, hydro and geothermal production forecasts do 
not exhibit considerable challenges since they all are based 
NWP and historical datasets strongly connected with the 
explanatory variables. In the case of load greater errors may 
arise if the real conditions are not sufficiently envisaged in 
the dataset for a certain forecast moment. For instance, 
national or regional holidays, abnormal temperatures for a 
certain period of the year, general strike, among others. In the 
case of geothermal units, the power production is dependent 
on a renewable, but easy to control, resource. The production 
is defined by set points and it remains relatively constant 
around the set point. In this case, the main source of the 
deviation between what was forecasted and the real 
production was the unexpected outages of some units. The 
hydro power plants present a negligible storage capacity 
meaning the power production cannot be delayed from the 
moment when it rains until the moment when there is the 
necessity of power production. On the other hand, as the 
watersheds are not big enough to introduce a significant delay 
between the rain period and the production, the hydro power 
forecast depends only from the rain forecasts, which are the 
main source of errors being necessary an accurate forecast. 

The wind power forecasts introduce a different kind of 
challenges, because the measured values of production could 
not be fully linked with the explanatory variables due to wind 
power curtailment. Even with accurate forecasts of the 
explanatory variables, remarkable errors can occur. In fig. 2 
the measured hourly average wind speed and measured power 
is shown. It is clear that there is a large amount of wind 
power values which do not correspond to measured wind 
values. These differences can result from malfunctions of the 
measuring equipment, unexpected units outages and wind 
power curtailment. Very high values of wind speed are 
another source of uncertainty, since the installed turbines are 
equiped with “software for storm regulation”. Instead of 
cutting the production to velocities above the maximum, it 
regulates the pitch angle of the blades in order to reduce the 
rotation velocity and, consequently, the power production. 
Without this information, the power forecasts for velocities 
above the maximum values become hard to forescast. From 
the above, it is clear that the curtailment process will 
introduce very significant errors between the wind speed 
prediction and the measured power, skewing the dataset. In 
this case it was necessary to do some data pre-processing, 
gathering the information disclosed by the system operator 
about wind generation limits in each hour. Thus, there was 
the necessity to filter all these situations in the dataset, 

replacing the wind power curtailed values by ”real” values 
which should be measured in absence of limitation. 
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Figure 2.  Measured wind speed and power with outlier filtering 

This can be achieved computing a theorectic wind-to-
power (W2P) function. As shown in fig. 2 , to overcome some 
of these problems, two sigmoid functions were modelled in 
order to act as filters. With this fuctions, it was intended to 
filter “abnormal” wind power production values. This process 
was applied with measured wind speed in order to avoid 
forecasting and W2P errors. After filtering the values outside 
the limits, with the least squared method, it was possible to 
achieve a “theorectical” relation between wind speed and 
power production, given by (3) as shown in fig. 3. 
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Figure 3.  Resulting “theorectical” power curve 

One of the informations given by the system operator, 
behind the power produced and wind measured is the wind 
power limitation. After the remotion of the values resulting 
from bad measurements and outages, is possible, knowing the 
periods where there was curtailment, and applying (3) to 
those periods, to have an ideia of the wind power forecast in 
absence of curtailment. By this way the skewness of the 
dataset can be minimized reducing the non-controlable errors 
and focusing only in the errors that deliveried from the 
forecatings. In fig. 4 the wind power production, the wind 
power limitation, as well as the theoretical wind power 
production which results from equation (3) from 0h00 of 28th 
January up to 23h00 of 3rd February is depicted. It is 
observable that there are notorious differences mainly during 
off-peak periods. The theoretical wind power production 
should be understood as the wind power values that would be 
measured in the absence of limitation. The difference 



between the theoretical and the measured wind energy during 
this period was approximately 278 MWh. 
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Figure 4.  Measured and theorectical wind power 

This is a clear sign that curtailment introduces remarkable 
errors in dataset and the potential wind power production that 
is wasted.  

IV. CASE STUDY 
To demonstrate the results of the proposed technique was 

done a net load forecast for 24 hours ahead during a week 
since 0h00 of 28th January up to 23h00 of 3rd February. Fig. 5 
shows the spot forecasted net load with the respective 
uncertainty interval, as well as the measured values. The 
nominal coverage rate of interval is 0.8. To feature the wind 
curtailment accomplished during the period under study, the 
wind power limitations decided by the system operator are 
also depicted. Additionally, the possible measured values that 
net load could present, in absence of wind curtailment are 
shown too. 
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Figure 5.  Forecasted and measured net lod 

In a first analysis it is clear that the system operator opted 
for wind power limitation during all off-peak periods. 
Considering that when there is an effective power 
curtailment, the net load tends to grow, it is explained why, in 
all off-peak periods the net load with wind power curtailment 
tends to be higher than those forecasted. Notice that this 
analysis is done under the assumption that there were no 
notable errors in the remaining load, hydro and geothermal 
forecasts. Excluding some cases, as 30th January and 3rd 
February, the forecasts outside the off-peak periods present a 
reasonably fitting with the measures. The measured values 
also are reasonably covered by the uncertainty interval. The 
performances of the spot forecasts can be assessed by some 
indicators as the BIAS, Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE) and Standard Deviation of 
Errors (SDE). In table I the results of spot forecasts are 
shown [14]. 

TABLE I.  SPOT FORECASTS ASSESSMENT 

 BIAS MAE RMSE SDE 

measured 2,18 3,19 3,91 4,02 

theoretical 0,79 2,14 2,75 3,22 
 

On the other hand, the performances of probabilistic 
forecast can be assessed by other indicators such as 
reliability, sharpness and resolution [4],[11],[15],[16]. The 
dataset under study was composed by hourly forecasted and 
measure values of net load with and without wind 
curtailment, between January 1st and June 30th 2014. In fig. 6 
the reliability of the net load probabilistic forecast is shown 
as well as the “ideal” reliability. The reliability is calculated 
with the real measured net load and the theoretical net load 
that should be measured in absence of curtailment. 
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Figure 6.  Reliability diagram 

It is clear that the forecasting method used in this 
approach tends to systematically underestimate the 
uncertainty [11],[15],[17] since forecasted quantiles 
proportions are lower than the empirical ones. Thus, the 
values of net load outperform all estimated quantiles, 
meaning that the probabilistic forecasts have an associated 
bias. A more intuitive way to analyze the bias of the 
probabilistic forecasting methods is representing it as a 
deviation from the “ideal” reliability. It is done subtracting 
the nominal proportion a to the empirical coverage ( )ˆka a  
resulting the reliability diagram shown in fig. 7. 
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Figure 7.  Reliability diagram (deviation from “ideal” relaiability) 

It is visible that the uncertainty was underestimated for all 
predicted quantiles. It should be noticed that the net load 
results from four different variables forecasts, with different 
values and profiles of uncertainty. For the same dataset, it 
was calculated the sharpness, as shown in fig. 8. The values 
of the sharpness are relatively low, with a nominal coverage 
of 0.9, corresponding to 25,8% of the rated net load. For rated 
net load, it was considered the highest value registered in the 



dataset (36,8 MW). Analyzing the results it is clear that it 
must be a trade-off between the reliability and the sharpness, 
because improving reliability will usually worsen the 
sharpness [11],[15],[17]. Low values of sharpness can lead to 
“narrow” uncertainty intervals which can result in 
underestimation or overestimation of the uncertainty, with 
consequent degradation of the reliability. 
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Figure 8.  Sharpness diagram of the probabilistic net load forecast 

Another criterion which can be used for the evaluation of 
probabilistic forecasts is the resolution [16]. It represents the 
capacity of the forecasting model to provide situation 
dependent forecasts. It can be measured by the standard 
deviation of the predictive intervals size since it is not 
possible to directly verify this property. Fig. 9 shows the 
resolution of the probabilistic net load forecast. In general  
and contrarily to sharpness, increasing the resolution gives 
more value to the probabilistic forecasting method [19]. 
Large standard deviations reveal that the probabilistic 
forecasting method has the capacity to represent a wide set of 
real situations. 
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Figure 9.  Resolution of the probabilistic net load forecast 

As seen in fig. 9 the standard deviation interval size is 
relatively low with a resolution of 6,5% to a nominal 
coverage of 0.9. This value results from the smoothing effect 
of the aggregation of renewable production and load 
forecasts. Throughout the dataset it is verified that the net 
load does not reveal notable changes when submitted to 
identical inputs and, consequently, the uncertainty profile 
does not significantly change along the dataset. 

V. CONCLUSIONS 
This work presented a real case study which by its own 

characteristics presents several challenges to the system 
operator. The wind power curtailment skewed the dataset 
which makes the forecasting quite challenging. With the 
proposed filtering technique it is already possible to do wind 

power forecasts with less error and forecast the net load with 
more accuracy. With these forecasts is possible to improve 
the scheduling of the power system in order to optimize the 
number and the allocated power for each thermal unit.  
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