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Abstract— With the liberalization of the electricity markets, 

price forecasting has become crucial for the decision-making 

process of market agents. The unique features of electricity 

price, such as non-stationary, non-linearity and high volatility 

make this a very difficult task. For this reason, rather than a 

simple point forecast, market participants are more interested in 

a probabilistic forecast that is essential to estimate the uncer-

tainty involved in the price. By focusing on this issue, the aim of 

this paper is to analyze the impact of external factors in the elec-

tricity price and present a methodology for probabilistic fore-

casting of day-ahead electricity prices from the Iberian electrici-

ty market. The models are built using regression techniques and 

aim to obtain, for each hour, the quantiles of 5% to 95% by 

steps of 5%. 

Index Terms—Day-ahead forecast; Iberian electricity market; 

machine learning; probabilistic forecasting; quantile regression. 

I. INTRODUCTION  

The exchange electricity markets are characterized mainly 
by the extreme price volatility. Electricity price time series 
exhibit specific characteristics such as daily, weekly and an-
nual seasonality, non-stationarity, positive skewness, high 
kurtosis, intra- and inter-day correlation, and  short-lived mean 
reverting price spikes [1]. Many of these characteristics result 
from the unique features of electricity as commodity, with 
such is economically non-storable and therefore production 
have to match constantly and instantaneously the demand.  

The market risk is therefore quite high, so for the various 
market participants involved, it is essential to have reliable 
and accurate electricity price forecasts that enable risk assess-
ment of its bidding strategies and investment decisions. By far 
most of the researchers in this field focus on point forecasting, 
determining the expected value of the price at each time point 
for a given horizon [2]. But now, this information is not 
enough to make a proper risk analysis. Rather than forecasting 
the value, market participants are more interested in estimating 
the uncertainty involved in the price, knowing the degree of 
dispersion of the predicted value and their probabilities. Thus, 
it has been proved that it is increasingly important to conduct 
probabilistic forecasts. However relatively little attention has 
been paid to probabilistic forecasting of electricity prices. The 

different approaches used in the few studies are  prediction 
intervals or density forecasts, with the first being the most 
common approach [2].  Serinaldi [3] introduced the General-
ized Additive Models for Location, Scale and Shape 
(GAMLSS) to model the distribution of electricity price, 
whose parameters varies  dynamically according to explanato-
ry variables via a number of linear and/or  nonlinear relation-
ships. These models forecast the entire distribution of price 
and allow the incorporation of the seasonality, trends and ab-
rupt changes both in terms of location parameter (expected 
value) as the scale and shape (linked to price volatility, skew-
ness and kurtosis).  Wan et al. [4] proposes a hybrid method  
to construct prediction intervals. First use an extreme learning 
machine for estimate point forecasts and model uncertainties 
via a complex bootstrapping approach, and then the noise var-
iance of forecasting results is estimate using a neural network 
trained with the maximum likelihood method. The prediction 
intervals are constructed based on the variance of model un-
certainty and the noise, and are evaluated with respect to cali-
bration and sharpness. Recently, Jónsson et al. [5] presented a 
semi-parametric methodology to estimate the density of the 
day-ahead electricity prices. It includes a time-adaptive quan-
tile regression model for quantiles ranging from 5% to 95%, 
and a description of the distribution tails by exponential distri-
butions.  

It is a known fact that electricity prices are influenced by 
the level of demand, which in turn depends on the intensity of 
business activities and weather. However, that is no longer the 
only variable to be considered. Generation from renewable 
energies has been growing significantly, especially the wind 
power generation, and has taken particular importance, in pe-
riods of high generation, the price of electricity tends to drasti-
cally fall. By focusing on this issue, the aim of this paper is to 
analyze the impact of external factors, such as wind power 
generation and weather variables, in the electricity prices and 
present a methodology for probabilistic forecasting of day-
ahead electricity prices from the Iberian Electricity Market 
(MIBEL). 

The rest of paper is organized as follow: Section II pre-
sents a brief description of the probabilistic forecast algo-
rithms; the test case results are presented in Section III and 
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Section IV presents the conclusions and suggestions for future 
research. 

II. QUANTILE REGRESSION FRAMEWORK 

A. Definition of Quantile Forecast 

A prediction interval
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 denotes, respectively, the lower and 

upper bounds of the prediction interval. In central prediction 
intervals these bounds correspond to the quantiles with pro-

portion ( )2α  and ( )21 α
− of the predictive distribution [6]. 

B. Linear Quantile Regression(LQR) 

In the quantile regression, introduced by Koenker et Basset 

[7], the quantile
( )

Q
τ

is modelled as 
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where x
•
  are  explanatory variables and  ( )β τ

•
are unknown 

coefficients depending of τ , to be determined from the data. 

Given the loss function, 
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and considering ( )β τ  as the vector containing the unknown 

coefficients, the best  estimator of ( )β τ is the solution of the 

loss optimization problem 
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Since in practical applications strictly linear processes are 
rare, should be allowed some flexibility to the model. For that, 

one possible solution is to consider ( )
Q

τ

as an additive model: 
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where ( )α τ is a constant and each of the functions ( );f x τ
• •

 

can be approximated by linear combinations of known basis 
functions of the corresponding explanatory variable [8]. 

The LQR is available in the R package quantreg [9]. For the 
basis functions were considered cubic splines, with four de-
grees of freedom using the function bs from the R package 
splines. 

C. Quantile Regression Boosting 

Another approach for the estimation of quantile regression 
additive models is the implementation of  boosting algorithms, 
such as the component-wise gradient boosting (GB) [10], an 
optimization method that combines base learners via gradient 
descent techniques for fitting linear  (LM-GB) and linear addi-
tive models (LAM-GB). This algorithm can be used for a 
large number of different loss functions, and for quantile re-
gression the choice is the function defined in (3). A great ad-
vantage of the algorithm is that performs automatic variable 
selection during the fitting process. The GB is implemented in 
the R package mboost [11]. The step length is fixed at 0.1 and 
the optimal number of iterations was determined by evaluating 
the empirical risk through 5-fold cross-validation. For the 
LAM-GB we used cubic-penalized spline base learners with 
four degrees of freedom, a second-order difference penalty 
and 20 inner knots. 

D. Quantile Regression Forests (QRF) 

Quantile regression forests, introduced by Meinshausen 
[12], is a generalization of machine learning algorithm random 
forests. Unlike other techniques, quantile regression forests 
does not directly employ minimization of the loss function 
defined in (3), and  estimate the full conditional distribution 
function in one step. QRF are implemented in the R package 
quantregForest [13]. The size of random subset of the explan-
atory variables was determined by 5-fold cross-validation us-
ing the function train from the R package caret [14]. 

E. Quantile Regression Neural Networks (QRNN) 

Neural networks for quantile regression were introduced 
by Taylor [15] , and consist in adopting the function defined in 
(3), as a special case of cost function of standard neural net-
work algorithm. However, the optimization process theoreti-
cally requires a differentiable function at all points, which is 

not the case for the function ( )
τ

ρ ε that is not differentiable at 

the origin. To address this problem Cannon [16] replace the 

loss function ( )
τ

ρ ε by a differentiable approximation  defined 

as 
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where ( )h u is the Huber norm. Software for QRNN is availa-

ble in the R package qrnn [17]. The number of hidden nodes  
and weight penalty for weight decay regularization are deter-
mined by 3-fold cross-validation using the function train from 
the R package caret [14]. 

F. Quantile Regression on Reproducing Kernel Hilbert 

Space (KQR) 

The quantile regression on Reproducing Kernel Hilbert 
Space  is intrinsically connected to the framework of support 
vector machine and is defined as [18] 

 ( )( )
2

1

1
min x

2

n

i i
f

i

y f g
n

τ

λ
ρ

∈

=

− +∑ HH
 (7) 



where H is a Reproducing Kernel Hilbert Space (RKHS) 

generated by a kernel, f g b= + with b∈R  and g∈H ,  

.

H
is RKHS norm and λ  a regularization parameter to pre-

vent overfitting. KQR is implemented in the R package 
kernlab [19]. The kernel selected was the Gaussian Radial 
Basis with automatic estimation of the hyper-parameter sigma.  

III. CASE STUDY 

A. Description 

The Iberian Electricity Market covers the Iberian Peninsu-
la (Portugal and Spain control areas), and started its operation 
with a common platform for both countries in, July 1, 2007. 

 The data used include historical prices of electricity in 
Portugal, and forecasts of electricity demand, wind power 
generation, wind speed, precipitation, temperature and solar 
irradiance. They refer to each 24-hour period between 1 Janu-
ary 2013 and 15 September 2014. The market prices were 
obtained from the Iberian Energy Market Operator website 
[20].The forecasts of demand and wind power generation are 
for the total in the Iberian Peninsula and were obtained from 
Red Eléctrica de España website [21]. Weather forecasts were 
generated by the Weather Research & Forecasting Model 
(WRF) [22] and reports to eight different regions of Iberian 
Peninsula. 

The data from 2013 were used to estimation of parameter 
of the models. The remaining data were used as an independ-
ent test set. The explanatory variables are lagged values of 
price (with lags of 1, 24, 48,72 and 168h), time of the day, 
month, day of the year, forecasts of electricity demand, wind 
power production, wind speed, precipitation and average of 
forecasted temperatures. 

Solar irradiance data were not used because they presented 
a weak correlation with the price, and installed capacity (in 
relative terms) of photovoltaic power generation in Iberian 
Peninsula, especially in Portugal, is minimal. 

The quantile forecast, at time step t , for each look-ahead 

time t k+ , 1,.., 24k = , was forecasted with a iterative strate-

gy. For the weather variables at look-ahead time t k+ were 

considered available forecasts at time step t  and for the varia-

ble “price lag” at look-ahead time t k+ , 2k ≥  was adopted 
the value of forecasted median (quantile 50%). 

Probabilistic prediction of the electricity price for each of 
the 24 hours of the following day is generated in the form of a 
set of quantiles between 5% and 95 % by increments of 5%, 
using the techniques described in Section II. 

Point forecast results, associated to the quantile 50%, are 
evaluated with the Root Mean Square Error (RMSE) normal-
ized by the maximum price. For evaluation purpose of proba-
bilistic forecasts were considered three metrics: calibration, 
sharpness and continuous ranked probability score (CRPS). A 
completed description of these metrics is given in [5],[23].  

B. External Factors Impacting the Energy Prices 

Wind power production differs substantially from conven-
tional energy sources. Relying exclusively on wind, it is very 

volatile and the absence of fuel costs allows a very low mar-
ginal cost, which has a strong influence on the market-close 
price.  

In order to perform the analysis of the external factors in 
the price distribution, the dataset was divided into bins and the 
properties are estimated within each bin. In Fig.1 is presented 
the histogram of the electricity prices for different levels of 
forecasted wind power production.  
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Figure 1.  Distribution of prices for different levels of forecasted wind 
power production. 

The Fig.1 shows that an increase in the forecasted wind 
power production leads to a decrease of the mean price and 
the weights of the tails of the price distribution. Therefore, the 
probability of occurrence of extremely high prices is much 
lower when is predicted to be high the wind power production. 
The differences in distribution properties are summarized in 
Table I. 

TABLE I.  PROPERTIES OF PRICE DISTRIBUTION FOR DIFFERENT LEVELS 

OF FORECASTED WIND POWER PRODUCTION (MW) 

 <1620 1620-3532  3532-6196 6196-9231 >9231 

Mean 55.78 53.23 46.36 40.04 30.28 
Std. Dev. 18.68 16.29 18.69 20.03 19.32 
Skewness -0.44 -0.14 -0.47 -0.06 0.08 
Kurtosis 3.22 3.37 1.25 0.37 -0.53 

 

Linked to wind power production, wind speed has a strong 
impact in the electricity price. From Table II is obvious that 
the average spot price tend to decrease as the forecasted wind 
speed increase, which becomes more significantly for values 
above 3.96 m/s. For that values it is also observable an in-
crease in the skewness and a decrease in the kurtosis. 

TABLE II.  PROPERTIES OF PRICE DISTRIBUTION FOR DIFFERENT LEVELS 

OF FORECASTED WIND SPEED (m/s) 

 <1.42 1.42-3.96 3.96-6.44 6.44-9 >9 

Mean 52.49 50.87 45.36 36.31 26.59 
Std. Dev. 19.38 18.23 17.67 21.23 20.57 
Skewness 0.03 -0.02 -0.35 -0.15 0.30 
Kurtosis 1.18 1.79 1.03 -0.31 -0.47 
 



The temperature is another weather factor impacting the 
price of electricity, especially when it is high. For predicted 
values above 20ºC there is a significant increase in the average 
price and a significant reduction of the standard deviation, 
which indicates a high concentration of values around the 
mean. The last two lines in Table III also show that the distri-
butions are rather skewed and with high kurtosis as the pre-
dicted temperature increases. 

TABLE III.  PROPERTIES OF PRICE DISTRIBUTION FOR DIFFERENT LEVELS 

OF FORECASTED TEMPERATURE (ºC) 

 <5 5-20 >20 

Mean 42.44 42.08 52.73 

Std. Dev. 24.93 20.69 7.73 

Skewness 0.12 -0.16 -0.89 

Kurtosis -0.36 1.40 2.11 
 

For short-term forecasting, the precipitation does not have 
the same importance as the other weather factors since the 
impact on the water level of hydropower plants reservoirs is 
“slow”. 

C. Forecasting Evaluation Results 

Fig. 2 depicts the RMSE for each look-ahead time step. 
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Figure 2.  Root Mean Square normalized by maximum price. 

There is no model that surpasses the others in all look-ahead 
time steps, and the LM-GB and QRF models clearly stand out 
negatively. In the first seven hours the best performance, in 
terms of RMSE, is obtained by QRNN. But from there, it is 
supplanted in most time horizons by the LQR and the LAM-
GB, which generally is the one with better performance. The 
growing trend of error over the time horizon can be partially 
explained by the forecast iterative strategy. The sharp increase 
between 18th and 21st hours could be associated with the exist-
ence of many outliers in those hours. 

Fig.3 depicts the difference from the “perfect calibration” for 
the whole time horizon. 
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Figure 3.  Calibration diagram. 

The QRF presents the lowest deviations for the quantiles be-
tween 15-40%, however for higher quantiles presents the 
worst results of all models considered.  For the extreme quan-
tiles – 5, 10 and 95% – the KQR present the lowest deviations 
and for the quantiles between 65-90% the lowest deviations 
are obtained by LQR. On average, the models underestimate 
the quantiles for values below the 50% quantile and overesti-
mate the quantiles for greater values.  

In terms of sharpness, depicted in Fig. 4, is desired to have 
intervals with smaller size for all coverages rates. 
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Figure 4.  Sharpness diagram. 

The KQR present the worst performance, while the re-
maining have a similar performance, although QRNN present-
ed a slightly lower sharpness.  

Fig. 5 depicts the CRPS for each look-ahead time step.  
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Figure 5.  CRPS diagram. 

In the first four and the last five hours the QRNN present 
the best performance. In the remaining hours prevail the 
LAM-GB or the LQR. Note that as in RMSE, between the 
18th and 21st hour there is a significant increase in the values 
of CRPS. 

IV. CONCLUSIONS 

The analysis of the relation between the external factors 
and the price leads to the conclusion that they significantly 
influence not only the average price, but also the shape and 
form of the price distribution, highlighting the wind power 
levels.  Scenarios that wind production is high leading to a 
decrease in prices, resulting even, on many occasions, in zero 
or close to zero.  

In terms of calibration, important in this context for the 
bidding problem, the KQR model, with values between 11.7% 
and 17%, has the best performance. However, still slightly 
higher than what would be ideal. 

The quality of the estimated models shows that the use of 
quantile regression methods is a plausible strategy for obtain-
ing probabilistic forecasts. The LAM-GB, slightly stand out 
above the rest. In addition to presenting on average the best 
CRPS performance, performs automatic variable selection, 
compared with the QRNN and KQR require less computation-
al effort and produce models much easier of understanding.  

This paper does not address the potential use of this infor-
mation by different market participants. Since the value of 
information depends entirely on the decision-making process 
and decision-maker attitude towards risk. 

 For future work, since the occurrence of extreme prices 
appears to have a strong impact on the quality of the predic-
tion, the employment of a spike detection/forecast method 
may lead to improved results. Another possibility involves the 
application of multiple models for combination of different 
quantiles forecasts. Finally, the inclusion of forecasted solar 
irradiance should be considered in a near future due to the 
massive deployment of self-consumption strategies in the Ibe-
rian Peninsula.  
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