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Abstract Building on probabilistic models for interval-valued \ales, parametric classi-
fication rules, based on Normal or Skew-Normal distribugicare derived for interval data.
The performance of such rules is then compared with distaased methods previously in-
vestigated. The results show that Gaussian parametrioagipes outperform Skew-Normal
parametric and distance-based ones in most conditiongzatalin particular, with hetero-
cedastic data a quadratic Gaussian rule always performsNdeseover, restricted cases of
the variance-covariance matrix lead to parsimonious nukgsh for small training samples
in heterocedastic problems can outperform unrestrictediigic rules, even in some cases
where the model assumed by these rules is not true. Thesitiess take into account
the particular nature of interval data, where observatamaslefined by both MidPoints and
Ranges, which may or may not be correlated. Under homodedastditions linear Gaus-
sian rules are often the best rules, but distance-baseddtethay perform better in very
specific conditions.
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1 Introduction

In multivariate data analysis often each single obsermatimtains some intrinsic variability.
This is the case when analyzing a group rather than a sindi@duoial, where within group

variability should not be overlooked, but taken into acdptm avoid an important loss of
information. Consider, for instance, that we are intekgteanalyzing basketball teams, in
terms of age, height, points scored and nationality of play we just take averages or
mode values, much information is lost; in such case, theaamgven the distribution of
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the players’ values in each team is of utmost importanceo,Alhen we observe a vari-
able along time and wish to record the set of observed vahtherthan just a specific one
(e.g., mean, maximum), then again a set rather than a siagle must be recorded. The
same issue arises when analysing concepts instead of sppgtémen - a tree species and
not the specific tree in our garden; an accident scenarionanthe particular accident we
have witnessed. Therefore, restrictive summarizatiags, ley means, medians or modes, to
impose a fit to the classical representation structure shmibvoided. Symbolic Data Anal-
ysis (see, e.g., [8], [9], [13], [27]) provides a frameworkeve variability may explicitely
be taken into account in the data representation and asalysthis aim, new variable types
have been introduced, whose realizations are no longelesiegl or categorical values, as
in the classical case, but finite sets, intervals or distidims on an underlying set. To this
day, many methods fasymbolic data, have been developed (see [27]); however, most of
those methods rely on exploratory non-parametric appesach

In this paper, we are interested in the discriminant anslgsinterval data, i.e., where
elements are characterized by variables whose valuestaredts onR. Interval data may
occur in many different situations. When describing raragfesriable values - for example,
daily stock prices or temperature ranges - we obtative interval data; in the aggregation
of huge data bases, when real values describe the indivathgalvations we obtain intervals
for the description of the aggregated data.

Discriminant analysis of interval data has been investigat different contexts. Ishibuchi,
Tanaka and Noriko Fukuoka, in [17], determine interval espntations in a discriminant
space for such data, using a mathematical programming fation. The proposed method
is then applied to a chemical sensing problem. Jahanshabted[18] rely on mathematical
programming and goal programming to develop a data envedapanalysis-discriminant
analysis methodology designed for interval data. In [2@] EB2] discriminant analysis of
interval data is developed based on imprecise probabhigpty. In [19], a generalization
of classical Factorial Discriminant Analysis to symboliata (see, for instance, [27]) is
proposed. This method is based on a numerical analysis dfahsformed symbolic data,
followed by a symbolic interpretation of the results; itoss considering numerical, qual-
itative nominal or distribution-valued variables; cldisition rules are then based on prox-
imities in the factorial plane (see also [21]). This methedvailable in the Symbolic Data
Analysis software packagBODAS Bayesian decision trees for the case when predictors
are interval variables are presented in [28]. Discrimireamdlysis of interval data has also
been addressed using Support Vector Machines ([14], [1D],4s well as Artificial Neural
Networks, see [30], [31], [6] and [29]. Appiatal [2] study the performace of the k-nearest
neighbor method for different types of data and using déffieidistance measures.

Distance-based approaches to linear discriminant aisadysnterval data are discussed
in [15]. These approaches rely on representations of iatelata which are used in Symbolic
Data Analysis for different methodologies; they lead torespntations in the discriminant
space in the form of intervals or single points, from whichtaince-based allocation rules
are derived. In [10] a parametric modelling for intervalajatssuming multivariate Normal
or Skew-Normal distributions for the MidPoints and Log-Bas of the interval variables,
is proposed. The intrinsic nature of the interval variabiesy lead to special structures
of the variance-covariance matrix, represented by fiveedfiit possible cases. From these
models parametric classification rules may be derived. appgoach is implemented in an
R-package, MAINT.DATA, which also includes maximum likedibd estimation and statis-



tical tests for the different considered cases

This paper evaluates the relative performance of diffeckstsification rules in the dis-
criminant analysis of interval-valued data, focusing oa thassification performance. We
note that many proposals for the discriminant analysis énabntext of interval data have
a dual objective of both obtaining a symbolic representaiiva discriminant space and
classifying new elements with unknown origin. While botbgh goals are certainly worth-
while, here we are only concerned with comparision of cfasdion accuracy for different
methods (under varying data conditions), which may be thstrimeportant goal in many
applications.

The remainder of the paper is organized as follows. Sectibriedly introduces inter-
val data, and its representations, and proceeds preseliffieignt methods for discriminant
analysis of interval data. In Section 3, an application dfedént methods to real data, on
interval quartely temperatures registered in chinesem@e@legical stations, is presented and
discussed. Section 4 reports a simulation study designeahtpare the performance of dis-
tance and parametric based approaches under differepssé&inally, Section 5 discusses
the results and draws some conclusions.

2 Discriminant methods for interval data
2.1 Interval data

LetS= {si,...,5} be the set oh entities under analysis. An interval variable is defined by
an application

Y :S— T such thas — Y(s) = [li, ui],

whereT is the set of intervals of an underlying €2€ IR. Letl be ann x p matrix containing
the values op interval variables ois. Eachs € Sis hence represented bypadimensional
vector of intervals); = (lit,...,lip),i = 1,...,n, with Il = [lij,uij],j = 1,..., p (see Table
1).

Table 1 Matrix | of interval data

(N | R A PN I R I OO
st || [Maguad) | oo | Dajougg] | oo | [ap,Uzp)
S li,win] | - | Dijsuig] | oo | [lip, i)
S [|n17 Unl] e [Inj ) Unj] e [lnp, Unp]

The value of an interval variablg for eachs € Sis defined by the lower and up-
per boundd;; andu;j of ljj = Y;(s). For modelling purposes, however, an alternative pa-
o o A lij + Uij
rameterization consisting in representiigs) by the MidPointc;; = iy
rij = uj — ljj of Ij may be useful.

and Range

1 MAINT.DATA is available at the CRAN repository.



To extend linear classical discriminant analysis to thes @dsnterval data, appropriate
definitions of linear combinations, dispersion and assimeianeasures must be established.
However, as discussed in [15], there is no unequivocal nravingefining these concepts
and not all choices satisfy usual properties.

LetZ =1 ber appropriately defined linear combinationsidfased orp x r real
coefficientsB;,.

Definitions of linear combinations, dispersion and assmriameasures ideally should
satisfy the following properties, for arnyx r real matrixQ3:

p

PLIiQB = ZBM x lij wheref,; denotes thé-th column of matrix3
]:

and
P2:Sgp = B'S B, i.e., the covariance between interval variables should bgmmetric
bilinear operator.

In [15] two distinct definitions of linear combinations arensidered:

LCL: i®aBr = Zia = [Zyp- Zien),i = 1,...,n, with
p

Zp = ) Biclij
=1
p
Zyp = Z Bje uij
=

It is clear that whileLC1 satisfies property P2, it does not satisfy property P1 iéast
one element of; is negative.

On the other hand, the following alternative definition oilar combination of interval
variables always respects P1, and respects P2 for suitefitétions of dispersion and asso-
ciation measures:

LC2 Ii®BB€:Zi[B:LZi[’Byz/BLi :17"'7n7 Wlth
Zig= > Bielij+ > Bjruj

Bj(>0 Bj[<0
Zs= Y Bieujt+ Y Biclij
ﬁjg>0 le<0

Note thatLC2 is the definition that results from applying the rules okehwal Calculus
[23], since the resulting intervals include all possibléues that are scalar linear combina-
tions of the values within the intervallg.

2.2 Distance-based approaches

In [15] three different approaches for discriminant analys interval data are compared.
The first approach assumes an Uniform distribution in eadeied interval (as in [7]),

derives the corresponding measures of dispersion andiassncand appropriately defines
linear combinations of interval variables that maximize tlsual discriminant criterion; a
second approach expands the original data set into the a#timtierval description vertices
(following [12]), and proceeds with a classical analysishaf expanded set; finally, a third
approach is based on the parametrization of each inteniéd BidPoint and Range (as do
[20] and [24]). Representations in the discriminant spaag then take the form of intervals
or single points from which distance-based allocationgales derived.



The first considered approach assumes that each intervablarepresents the pos-
sible values of an underlying real-valued variable; foilogvBertrand and Goupil [7] an
equidistribution hypothesis is assumed, which consistoirsidering that the values of the
underlying variable are uniformly distributed; the emgati distribution function of an in-
terval variable is then defined as a uniform mixtureainiform distributions.

If the n observations are partitioned inkagroupsCy, .. .,Cx, then the global empirical
density functions are mixtures of the corresponding grqugxrsic functions. The global
variance and covariance can be decomposed in a within grompanent and a between
group componentV and B respectively. Variances and covariances obtained frorsethe
matrices satisfy property P2.

As in the classical case, the discriminant functions cdefiis are given by the eigenvec-
tors ofW~1B. Single point representations on a discriminant spacelstedried directly, in-
terval representations may be determined by an approginate combination of the lower
and upper bounds (see Section 2.1 above).

An alternative approach is investigated, which consistoimsidering all the vertices of
the hypercube representing each of thiedividuals in thep-dimensional space, and then
perform a classical discriminant analysis of the resulting2P by p matrix, following [12]
for Principal Component Analysis.

A new matrix of single real valugd is created from the interval data mattixsee Table
1), where to each rowof | correspond Rrows ofM, obtained by all possible combinations
of the limits of intervalglij, uij], j = 1,..., p.

A classical discriminant analysis on matfif then leads to a factorial representation
of points, one for each of theP2vertices, from which an interval representation may be
obtained: letQ; be the set of row indiceg in matrix M which refer to the vertices of the
hypercube corresponding $g for q € Q; let {y be the value of thé-th real-valued discrim-
inant function for the vertex with row indeg; the value of the/-th interval discriminant
variatez for s, is then defined bg,, = Min {{y,q€ Q;} andz, = Max {{y,q€ Qi}.

The third explored approach uses the representation of @astrved interval by its
MidPoint and Range, as in [24] and [25] for Regression Arialyand [20] for Principal
Component Analysis. Two separate classical discriminaalyais on these values are then
performed and the results combined in some appropriate aynatively MidPoints and
Ranges may also be considered conjointly.

In all three approaches allocation rules are based on pistaintes or distances between
intervals, according to whether the representations ordig&riminant space assume the
form of single points or intervals.

For the first considered approach, a natural rule based an gigiances consists in al-
locating each observation to the group with nearest cehindhe discriminant space, using
the Euclidean distance and correcting for distinct priababilities and/or misclassification
costs.

Alternatively, linear combinations of the interval varie® may be determined, leading
to interval-valued discriminant variates, in which cadeddtion rules may be derived by
using distances between interval vectors.

In the vertices approach, discriminant variates are ialeralued, so this same type of
allocation rule is applied.

For the MidPoints and Ranges approach, only point distanoesised to define al-
location rules. When two separate analysis are performedidPoints and Ranges, the



discriminant variates are generally correlated, and thbaléaobis distance should be used;
when a single discriminant analysis is performed for botllR&iints and Ranges, the Eu-
clidean distance is adequate.

2.3 Parametric modelling of interval data

Consider each intervd|; represented by its MidPoirt; and Rangej. The Gaussian
model (see [10]) consists in assuming a multivariate Nomdigtribution for MidPointsC
and the logs of the Rangéy R* = In(R), (C,R*) ~ Npp(l, ), with u = [ué,u}&]t and
s ( 2cc 2er

2RrC ZRR
ues of, respectively, the MidPoints and Log-Ranges ad>cr-, Zr<c andZr:r- arepx p
matrices with their variances and covariances.

We denoteX; = [C},Ri*t}t the 2p dimensional column vector comprising all the Mid-
Points and Log-Ranges fgri =1,...,n.

This model has the advantage that it allows for a straigiveiod application of classi-
cal inference methods. It is important to keep in mind, havgethat the MidPoint;; and
the Rangej; of the value of an interval variablg; = Yj(s) are two quantities related to
one same variable, and must therefore be considered togktiedows that the global co-
variance matrix should take into account the link that maigtexetween MidPoints and
Log-Ranges of the same or different variables. Intermediarameterizations between the
non-restricted and the non-correlation setup considererktl-valued data are relevant for
the specific case of interval data.

The most general formulation allows for non-zero correladi among all MidPoints
and Log-Ranges (Case 1); in another setup, interval vassablare uncorrelated, but for
each variable, the MidPoint may be correlated with its Raf@@@se 2); a third situation
allows for MidPoints (respectively, Ranges) of differeatiables to be correlated, but no
correlation between MidPoints and Ranges is allowed (Cgsinally, all MidPoints and
Ranges are uncorrelated, both among themselves and betaeleother (Case 4). In a full
complete setup another case could still be considered, Ipaatiewing for non-null corre-
lation between the MidPoint of each variable and its Log-ggatut not between MidPoints
and Log-Ranges of different variables. This case appeare tless natural, and leads to
considerably computational complexity, and will therefoiot be considered in the present
investigation. Table 2 summarizes the different casesidered in this paper.

wherepc andpr- are p-dimensional column vectors of the mean val-

Table 2 Different cases for the variance-covariance matrix

| Case| Characterization | s |
1 Non-restricted Non-restricted
2 Yj’'s non correlated 2CC, 2CR* = 2RC»
Zrr all diagonal
3 C’s non-correlated withR*’s Scr=2rc=0
4 All C's andR*’s are non-correlated 2 diagonal

It should be remarked that in cases 2, 3 and 4an be written as a diagonal by blocks
matrix, after a possible rearrangement of rows and coluihfdlows that maximum like-
lihood estimates under these cases can be obtained difrectiythe classical non-restricted



estimates. Testing for the different models /configuratican be done in a straightforward
manner, using the likelihood-ratio approach.

The Gaussian model has many advantages, which explainsnesalized applicability
in multivariate data analysis; in particular, it allows #direct modelling of the covariance
structure between the variables. Neverthless it doesmresme limitations, namely the fact
that it imposes a symmetrical distribution on the MidPogmtsl a specific relation between
mean, variance and skewness for the Ranges. A more genedlal that overcomes these
limitations may be obtained by considering the family of 8kdormal distributions (see,
for instance, [4]). The Skew-Normal generalizes the Gamsdistribution by introducing an
additional shape parameter, while trying to preserve sdrite mathematical properties.

A random vectorX is said to follow a p-multivariate Skew-Normal distribution (see
[5]) if its density is given by

f(xa,8,Q)=2pp(x— & Q)Dp(a'w t(x—&)),x € IRPP (1)

whereé and a are Z-dimensional vectors(2 is a symmetric P x 2p positive-definite
matrix, w is a diagonal matrix formed by the square-roots of the diajelements ofQ
andgp, Pop are, respectively, the density and the distribution furctif a 20-dimensional
standard Gaussian vector.

As an alternative to the Normal model, it may be considerat(t®, R*) follow jointly
a 2p-multivariate Skew-Normal distribution. Notice that thke8/-Normal model encom-
passes mixed models with marginal Normal random varialdesyhich the corresponding
shape parameter is null.

In the Gaussian model, for each case, an estimate of the uptittassification rule can
be obtained by directly generalisation of the classicadin(2) and quadratic (3) discrimi-
nant classification rules,

ol 1 .04 ~
Y = argmaxg(fig'> 1)(—5;19‘2 1y +1og %) 2)

loie-1 ~pe -1 .1 P
Y:argmaxg(—éxtzg X+ fg' Zg X+Iogng—§(logdetzg+ugtzg fg)) (3

whereY € 1,....k denotes the group assignmergss a group indexﬁg727fg and 7y are
the maximum likelihood estimates pf;, >, 54 for the corresponding cases, arglare the
prior probabilities of group membership.

For the Skew-Normal model different alternatives may bes@tered. In particular, we
consider a Location model in which the groups differ onlyemts of the location parameter
¢, and a General Model, where the groups differ in terms ofaidmeters. The correspond-
ing classification rules are, respectively,

At A Lata 1n R o R

Y = argmeg(§y 07X - Sy QMg log g+ (@' @ X~ &) (@)
1,51 pts -1 .

Y = argmaxg(—éx Qy X+& Qy "X+log g — (5)

%(Iog det Qg+ &5 Oy &) + o(dg' dy (X — &y))

Wherefg, Q, ég, @, dg are maximum likelihood estimates afig{w) = In(2®(w)).



3 Application: China temperatures data

This data set gathers temperatures measured in mete@allstations in China. The anal-
ysis is based on data consisting of the intervals of obsetemaperatures (Celsius scale) in
each of the four quarterQ; to Qq, of the years 1974 to 1988 in 60 stations. Table 3 repro-
duces the original data for some stations and years. Th@ahl# comprisea =60x 15— 1
outlie = 899 rows and 4 columns.

Table 3 China temperatures interval data

| Station || Region | Q1 | Q2 | Q3 | Q4 |
Beijing-1974 North | [-9.5,106] | [6.5,29.8] | [12.6,29.6] | [—10.44,9.06]
Beijing-1975 North | [-8.6,129] | [7.9,30.2] | [150,316] | [~7.0,19.2]
ZhangYe-1988|| Northwest | [-15.4,7.2] | [2.3,264] | [8.6,302] | [-120,151)

The 60 meteorological stations belong to 6 different regiorChina (North, Northwest,
Northeast, East, South Central, Southwest), which defireatdipn of the 899 stations-year
combinations. Figure 1 depicts the 60 stations accorditigg@efined partition. To control
for possible temporal auto-correlation, the global yeavgrage temperature was subtracted
to the corresponding original values.

On a preliminary analysis to assess deviations from Notyn&d-Q plots did not reveal
any strong deviations, although for a few variables andseladNormality was rejected by
the Kolmogorov-Smirnov test (which is to be expected givenlarge sample sizes).

Twenty five different discriminant methods are applied dradrtresults compared, namely:
nine distance-based approaches - classical linear disairhanalysis based on the inter-
vals’ MidPoints only, with allocation defined by Euclideaoimt-distances; linear discrim-
inant analysis using MidPoints and Ranges separately, alitication defined by Maha-
lanobis point-distances, and using MidPoints and RangesaltEineously, with allocation
defined by Euclidean point-distances; uniformity-bat€d, uniformity-based-C2, Ver-
tices method and Factorial Discriminant Analysis (FCA)r(ouplementation, following
[21]), all with allocation rules using Hausdorff intervasthnces, for FCA, versions with sin-
gle, average and complete linkage are considered; an@sipgrametric-based approaches,
eight using the Gaussian model - Linear and Quadratic Discent Analysis, and eight us-
ing Skew-Normal discriminant Analysis - Location and Gehenodel - always considering
cases 1 to 4 for the variance-covariance matrix (see Tabl€ab)e 4 presents the cross-
validation estimates (ten-fold cross-validation regkech20 times) of the error-rates for the
first six distance-based methods; Table 5 for the FCA metfables 6 to 9 present the
cross validation estimates of the error-rates for the patacnmethods and the four differ-
ent covariance structure cases, Linear and QuadraticiBiseamt Analysis for the Gaussian
model (Tables 6 and 7, respectively), and Skew-Normal Disoant Analysis - Location
and General models (Tables 8 and 9, respectively).

As it is usually the case, estimates of the error rates dfffan group to group; in
particular, the East and Northeast regions are in geneti@rbdentified than the remaining
ones. In terms of global error rates, in general, parametethods perform better than
distance-based ones, Gaussian Quadratic Discriminanygis®etter than Gaussian Linear

2 The outlier is YinChuan in 1982, where a value-é999.99°C is reported in July
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Fig. 1 The 60 metereological stations, according to region.

Table 4 China data: Error-rates (cross-validation) for distanhased methods

Region MidPoints | Unif. Unif. Vertices | Mid. Rng. | Mid. Rng.
Point dist. LC1 LC2 Sep. Simul.
North 0.9882 0.0370 | 0.0583 | 0.0883 0.5724 0.5684
Northeast 0.1927 0.2220 | 0.2226 | 0.2222 0.1108 0.1135
Northwest 0.2558 0.9176 | 0.8741 | 0.7523 0.3191 0.3161
East 0.1750 0.2142 | 0.1740 | 0.2686 0.1453 0.1439
South Central 0.5667 0.5000 | 0.5000 | 0.5000 0.5471 0.5521
Southwest 0.4143 0.6670 | 0.6740 | 0.5893 0.4673 0.4650
GLOBAL 0.3551 0.4661 | 0.4496 | 0.4354 0.3206 0.3200

Region

O East

[ North

X Northeast

A Northw est
=+ South central
0 Southw est

Discriminant Analysis and General Skew-Normal Model betian Location Skew-Normal
Model. More general models give best results, which was texpected given the large
sample size. Neverthless, the shape parameters introbytld Skew-Normal Model made
almost no difference in classification results. Also, mdthasing interval distances in the
discriminant space, i.e. the€1, LC2, the Vertices method and FCA perform poorly, tending
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Table 5 China data: Error-rates (cross-validation) for the FDA rodth

| Region || Single linkage| Average linkage| Complete linkage|
North 0.8661 0.4227 0.0148
Northeast 0.4717 0.5338 0.9702
Northwest 0.5433 0.6168 0.9935
East 0.6572 0.8165 0.9700
South Central 0.8233 0.8875 0.8367
Southwest 0.5890 0.8020 0.9233

| GLOBAL | 06330 | 07050 | 08699 |

Table 6 China data: Error-rates (cross-validation) for the Gaursparametric methods: Linear Discriminant
Analysis

| Region || LDACL | LDAC2 | LDAC3 | LDAC4 |

North 0.5989 | 0.7204 | 0.6456 | 0.8637
Northeast || 0.1248 | 0.2219 | 0.1577 | 0.2219
Northwest | 0.2998 | 0.2799 | 0.2854 | 0.2284

East 0.1532 | 0.2446 | 0.1875 | 0.2340
South Central| 0.5483 | 0.5000 | 0.5429 | 0.5000
Southwest || 0.4570 | 0.6147 | 0.4873 | 0.6330

| GLOBAL || 0.3213 | 0.3844 | 0.3398 | 0.3857 |

Table 7 China data: Error-rates (cross-validation) for the Garspiarametric methods: Quadratic Discrim-
inant Analysis

| Region || QDACL | QDAC2 | QDAC3 | QDACA4 |

North 03371 | 0.3540 | 0.2638 | 0.3189
Northeast || 0.1025 | 0.1926 | 0.1565 | 0.2221
Northwest || 0.3203 | 0.3486 | 0.3688 | 0.3451

East 0.1079 | 0.2116 | 0.1585 | 0.2126
South Central|| 0.4463 | 05079 | 0.5000 | 0.5000
Southwest || 0.2543 | 0.5310 | 0.3333 | 0.6263

| GLOBAL || 0.2414 | 0.3430 | 0.2814 | 0.3589 |

Table 8 China data: Error-rates (cross-validation) for the Skewral Discriminant Analysis: Location
Model

| Region || SKLMCL | SKLMC2 | SKLMC3 | SKLMC4 |

North 0.8114 0.7135 0.6504 0.8952
Northeast 0.1058 0.2221 0.1521 0.2221
Northwest 0.2629 0.2789 0.2886 0.2214

East 0.1410 0.2470 0.1918 0.2484

South Central| 05367 | 05008 | 05504 | 0.5000
Southwest || 04507 | 06150 | 04880 | 0.6087
| GLOBAL || 03222 | 03844 | 03424 | 03862 |

to classify too many stations in one given region (varyirgrfrmethod to method). Point
distance approaches using MidPoints and Ranges providése®smparable to those of
Linear Discriminant Analysis.
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Table 9 China data: Error-rates (cross-validation) for the Skewrfhal Discriminant Analysis: General
Model

|  Region || SKGMC1 | SKGMC2 | SKGMC3 | SKGM C4 |
North 0.3121 0.3387 0.2574 0.3543
Northeast 0.1202 0.1684 0.1508 0.2291
Northwest 0.3059 0.3576 0.3771 0.3028
East 0.1000 0.2071 0.1581 0.2164
South Central 0.4621 0.5050 0.4738 0.5021
Southwest 0.2577 0.5107 0.3187 0.5720

| GLOBAL || 0.2397 | 03352 | 0.2816 | 0.3459 |

4 Simulation

To better understand the factors affecting the relativéoperance of the methods under
comparison, we performed a controlled simulation expenimé@/e considered a full facto-
rial design for problems with two groups, three intervalighles, and the following seven
factors:

Classification methodGM — 22 levels): the 6 distance-based considered in [15], and
the 16 parametric methods under comparison.

Data Generating ProcesBGP — 2 levels): MidPoints generated by transformations
using Gaussian and Skew-Normal variables.

Separation$ep- 2 levels): the Mahalanobis distance between group censegiat 1.0
(poorly separated groups) and 3.0 (well separeted groups).

Range heterogeneityRHet - 2 levels): In one level (homogeneous Ranges) the Log-
Ranges had the same distribution across groups, and inttbeaste (heterogeneous Ranges)
the groups differed in terms of both the MidPoint and Log-gadistributions.

Training sample sizel(SS- 4 levels): Total number of training sample observatioes, s
at 30, 60, 100 and 150.

Variance ratios\{(R - 2 levels): Ratio between the variances associated withrdiit
distributions across groups. Set at 1 (homocedastic praleand 9 (heterocedastic prob-
lems).

True caseTConf - 4 levels): case of true covariance of the within-groupribstions of
MidPoints and Log-Ranges. Set at the levels 1 (unrestjicBeUncorrelated Interval Vari-
ables), 3 (MidPoints uncorrelated with Log-Ranges) andldM@Points and Log-Ranges
uncorrelated with each other).

For each data condition, defined by a combination of fadiigd, Sep TSS, RHet,

VR and TConf, we generated 100 independent balanced training samed, them to
establish the empirical rules, and evaluated these rulemerbalanced validation sample
with 1000 observations, independently generated.

Each observation was defined frgmindependent Gaussian or Skew-Normé) énd p
independent Uniform variate® § where the means in the first group were set to zero and the
means in the second group ensured the desired level of Madiatadistance. In the Skew-
Normal case, one of the MidPoint variables has Fisher’s sks® coefficient set to 0.75, for
the remaining variables this coefficient is null. We note fioa multivariate Skew-Normal
distributions, the admissible domain of the parametersisehow restricted, in particular
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not allowing for high skewness in many variables [3]. We @&tmsconcentrate skewness on
one variable, to maximize the deviation from the Gaussiadaho

In the case of heterocedastic problems we used the averegearae matrix to find the
required Mahalanobis distances.

For Case 4, th& variables define the intervals’ MidPoints, and thevariables the
Log-Ranges. For Case 1, MidPoints (MP) and Log-Ranges (L&gwefined through the
transformationdMP = [L1|L2] [X'U!]!, LR = L3 U!, where|[L1|L2] and L3 are orthono-
mal matrices of independently generated Uniform loadifgs.Case 2, MP and LR were
generated in the same way, but placing all required zerosaitnixrlL2 to ensure that only
MidPoints and Log-Ranges of the same interval variablesnwednull correlations. Final-
lly, for Case 3 they were defined throughP = L1 X', LR = L3 U'. Notice that none of
these models coincides with the models adjusted to the gateetparametric classification
rules.

Table 10 presents, for each data condition, the method witledt estimated expected
error rate; those indicated in bold perform better than tleomethods by more than one
percentage point. Tables 11 and 12 gather the correspoedimgated error rates and stan-
dard errors. We note that the methods in bold have always estonates lower than the
second best method by more than two standard errors.

Complete tables with average validation sample misclassifin rates are available
from the authors upon request.

As expected, the average error rates for heterocedasts eas always lower than the
corresponding values for the homocedastic values, therdiftes being particularly strik-
ing when the group centroids are badly separated - which reaxplained by the fact that
in the former case differences in variances-covariancsaintribute to the separation be-
tween the groups.

The relative standings of the different methods may be suizethas follows :

1. Heterocedastic conditions: Some of the most interesting results occur for heretocedas
tic conditions. Under these conditions, one parametricsSian quadratic rule always
performs the best while linear rules and distance-basetiadstperform poorly. Re-
markably, for small training samples, the best results #em@chieved by a model with
a more restricted case than the true generating procesartioytar, under Case 1, for
samples with 30 or 60 observations, the quadratic Gaussiamased on Case 3 (Mid-
Points uncorrelated with Log-Ranges) performs the besl ibua one data condition.
More general quadratic rules work well for large samplesdaut be disappointing in
small samples. Figure 2 illustrates this behaviour. Furtiee, the parametric Gaussian
guadratic rules usually perform better than the corresipgn8kew-Normal rules even
when data is generated from a Skew-Normal distribution Hastiated in Figure 3.

2. Homocedastic conditions: When MidPoints are correlated with Log-Ranges (Cases C1
and C2), the parametric Gaussian linear rule with the coomariance case generally
performs the best. However, for large training samples tieesponding quadratic rule
comes close. Overparametrized but correct linear rulesusweally also competitive.
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This situation is illustrated by Figure 4. However, the Skdarmal parametric models
with non-satisfied restrictions may present a rather ertahaviour; otherwise, their
performance exhibits a similar pattern - see Figure 5.

Among the distance-based methods, the Vertices and theaG@&uints methods appear
to be the most competitive ones, the former particularlymiméerval-valued variables
are non-correlated (Cases 2 and 4), and the latter when Migpand LogRanges are
uncorrelated (Cases 3 and 4). However, in this latter casditferences are particularly
large for small sample sizes and tend to become negligeablarfe samples. Figures
6 and 7 illustrate these points. In some specific situatitresCenters and the Vertices
methods are even the best ones. However, the Centers methalscbadly with correla-
tion between MidPoints and Log-Ranges, and does not také maeantage of larger
samples. This is illustrated in Figure 8 where we can sedltiea€enters method is the
best one under Case C3 with 30 observations in the traininglseand the second best
(after the Vertices method) under Case C4 with 30 obsemsiiothe training sample;
on the other hand its relative performance deterioratesnu@dses C3 and C4 for large
samples, and is rather poor under Cases C1 and C2 for anyesaimpl The Vertices
method deals badly with correlation among different indémalued variables. In Figure
9 we can see that while the performance of this method is thiedme under Cases C2
and C4 with large training samples, it is not even competitivcases C1 and C3.

5 Conclusions

In this paper, the relative performance of distance-basdcparametric classification rules,
for discriminant analysis of interval-valued data, is eadéd. A thorough simulation study
as well as an application to real data showed that parantetsied rules outperform distance-
based ones for most data conditions, with a few exceptioneriy specific cases. Vertices
and Centers methods can be competitive, or even the bestimia specific situations, but
they tend to require strong restrictions in the covariamardigurations, and do not respond
well to heterocedastic data conditions. Furthermore, t@mpetric Gaussian rules usu-
ally perform better than the corresponding Skew-Normas@ven when data is generated
from a Skew-Normal distribution. As expected, in homoc#dgsoblems, linear discrimi-
nant rules perform the best, while for large training samgled heterocedastic conditions
guadratic methods are usually superior. However, for straatling samples in heterocedas-
tic problems, unrestricted quadratic rules can be outpekd by restricted rules, even in
some cases where the model assumed by these rules is ndt tsuamown (see e.g. [22])
that traditional quadratic discrimination perform poowith small training samples, even
when covariance matrices clear differ, due to the large rarrobparameters that need to
be estimated. For that reason Flwy al [16] proposed parsimonius quadratic rules that
constraint some parameters of the covariance matricebeledse of interval data, Cases
2 through 4 provide a natural way of imposing constraintscivhaccording to our simula-
tion results, appear to be quite effective in reducing etqrberror rates for heterocedastic
problems with small or moderate training samples.
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Table 10 Best methods by data condition
(in bold if all other methods present average error rateefarg more than 01).

Gaussian Skew-Normal
Homocedastic ; Equal Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1l IdaC1 ldaC1 IdaC1 IdaC1 IdaC1 IdaCl1 | IdaC1 IdaC1
C2 IdaC2 IdaC2 | IdaC2 | IdaC2 IdaC2 IdaC2 | gdaC2 IdaC2

C3 IdaC4 IdaC4 Vrt LocC3 CP CP CP IdaC3
Cc4 Vrt ldaC4 Vrt Vrt Vrt IdaC4 Vrt LocC4
Heterocedastic ; Equal Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 qdaC3 | qdaCl | gqdaCl | qdaCl gdaC3 | qdaC3 | gqdaCl qdaCl1
C2 || gdaC2 | gdaC2 | gqdaC2 | qdaC2 gdaC2 qdaC2 | gdaC2 qdaC2
C3 gqdaC4 | qdaC3 | gqdaC3 | qdaC3 gdaC3 qdaC3 | gdaC3 qdaCs3
C4 qdaC4 | qdaC4 | qdaC4 | gdaC4 gdaC4 qdaC4 | gdaC4 qdaC4
Homocedastic ; Different Ranges ; Good Separation

30 60 100 150 30 60 100 150
C1 ldaC1 ldaC1 [daC1l | IdaC1 IdaC1 IdaC1 ldaC1 IdaC1
c2 IdaC2 IdaC2 IdaC2 IdaC2 IdaC2 IdaC2 IdaC2 IdaC2

C3 IdaC3 IdaC3 | IdaC3 | IdaC3 IdaC3 qdaC3 | gdaC3 IdaC3
C4 ldaC4 IdaC4 | IdaC4 | IdaC4 IdaC4 IdaC4 | IdaC4 IdaC4
eterocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

Cl || gqdaC3 | qdaC3 | gqdaCl | qdaCl gdaC3 qdaC3 | gdaC1 qdaCl1
C2 || gqdaC2 | gqdaC2 | gqdaC2 | qdaC2 gdaC2 | qdaC2 | gdaC2 gqdaC2
C3 qdaC3 | qdaC3 | gqdaC3 | qdaC3 qdaC3 gdaC3 | gdaC3 qdaC3
Cc4 gdaC4 | qdaC4 | qdaC2 | gdaC4 gdaC4 gdaC4 | qdaC4 qdaC4
Homocedastic ; Equal Ranges ; Bad Separation

I

30 60 100 150 30 60 100 150
C1l IdaC1 ldaC1 IdaC1 Vrt IdaC1 ldaCl1l | IdaC1 ldaC1
c2 IdaC2 IdaC2 | IdaC2 | IdaC2 IdaC2 IdaC2 | IdaC2 IdaC2
C3 CP IdaC3 CP CP CP CP LocC4 IdaC3
C4 ldaC4 ldaC4 Vrt IdaC4 Vrt CP Vrt ldaC4
Heterocedastic ; Equal Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1l || gqdaC3 | qdaC3 | gqdaC3 | qdaCl gqdaC3 qdaC3 | gdaC1 qdaCl
c2 gqdaC2 | qdaC2 | gqdaC2 | qdaC2 gdaC4 qdaC2 | gdaC2 qdaC2
C3 || gdaC4 | qdaC3 | qdaC3 | gdaC3 gdaC4 | gdaC3 | gdaC3 qdaC3
C4 || gqdaC4 | qdaC4 | qdaC4 | gdaC4 gqdaC4 qdaC4 | gdaC4 qdaC4
Homocedastic ; Different Ranges ; Bad Separation

30 60 100 150 30 60 100 150
C1 [daCl | IdaCl | IdaCl | IldaC1l ldaC1 [daC1l | IdaC1l ldaC1
c2 Vrt Vrt Vrt Vrt IdaC2 IdaC2 | IdaC2 | CpRgCmb
C3 IdaC3 IdaC3 | IdaC3 | IdaC3 IdaC3 LocC3 | IdaC3 gdaC3
C4 ldaC4 ldaC2 Vrt Vrt CpRgSep| IdaC4 | qdaC4 | CpRgSep
Heterocedastic ; Different Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1l || gqdaC3 | qdaC3 | gqdaCl | qdaCl gdaC3 qdaC3 | gdaC1 qdaCl1
c2 gqdaC4 | qdaC2 | gqdaC2 | qdaC2 gdaC4 gqdaC2 | gdaC2 qdaC2
C3 qdaC4 | qdaC3 | gqdaC3 | qdaC3 gqdaC3 gdaC3 | gdaC3 qdaCs3
C4 || qdaC4 | qdaC4 | qdaC4 | gdaC4 gdaC4 qdaC4 | gqdaC4 qdaC4
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15

Table 11 Average and standard error (in brackets) error rates fdsésemethods by data condition: a) Good
separation of group centroids
(in bold if all other methods present average error rateefdsg more than @1).

Gaussian Skew-Normal
Homocedastic ; Equal Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 0.1015 | 0.0800 | 0.0626 | 0.0741 0.0924 | 0.0800 | 0.0585 | 0.0621
(.00237) | (.00137) | (.00069) | (.00063) || (.00247) | (.00116) | (.00086) | (.00063)
Cc2 0.0858 | 0.0705 | 0.0727 | 0.0505 0.0732 | 0.0666 | 0.0643 | 0.0635
(.00145) | (.00084) | (.00048) | (.00055) || (.00147) | (.00084) | (.00059) | (.00039)
C3 0.0685 | 0.0743 | 0.0721 | 0.0726 0.0792 | 0.0658 | 0.0574 | 0.0634
(.00353) | (.00414) | (.00047) | (.00095) || (.00122) | (.00071) | (.00072) | (.00036)
C4 0.1670 0.1505 0.1491 0.1295 0.1566 0.1538 0.1311 0.1414
(.00142) | (9e-04) | (6e-04) | (.00064) | (.00152) | (.00158) | (.00062) | (.00100)
Heterocedastic ; Equal Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 0.0784 | 0.0369 | 0.0211 | 0.0168 0.0660 | 0.0326 | 0.0350 | 0.0212
(.00236) | (.00196) | (.00088) | (.00077) | (.00439) | (.00237)| (.00108) | (7e-04)
Cc2 0.0485 | 0.0241 | 0.0178 | 0.0118 0.0381 | 0.0180 | 0.0228 | 0.0096
(.00263) | (.00103) | (.00048) | (.00062) || (.00194) | (.00085) | (.00059) | (.00046)
C3 0.0537 | 0.0226 | 0.0155 | 0.0148 0.0733 | 0.0327 | 0.0215 | 0.0218
(.00244) | (.00096) | (.00068) | (.00043) | (.00290) | (.00101) | (.00071) | (5e-04)
Cc4 0.0207 | 0.0145 | 0.0111 | 0.0093 0.0290 | 0.0170 | 0.0237 | 0.0207
(.00243) | (.00105) | (.00098) | (.00062) || (.00274) | (.00178) | (.00125) | (.00116)

Homocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 0.0981 | 0.0760 | 0.0774 | 0.0739 0.0998 | 0.0844 | 0.0870 | 0.0726
(.00217) | (.00108) | (.00071) | (.00048) || (.00220) | (.00098) | (.00049) | (.00069)
Cc2 0.0680 | 0.0785 | 0.0669 | 0.0703 0.0922 | 0.0718 | 0.0653 | 0.0646
(.00150) | (.00083) | (.00037) | (.00028) || (.00135) | (.00055) | (.00045) | (5e-04)
C3 0.0868 | 0.0874 | 0.0650 | 0.0640 0.0852 | 0.0837 | 0.0751 | 0.0680
(.00156) | (.00084) | (.00058) | (.00047) | (.00186) | (.00113) | (.00079) | (.00053)
C4 0.0865 | 0.0763 | 0.0790 | 0.0777 0.0772 | 0.0682 | 0.0638 | 0.0580
(.00132) | (.00064) | (.00052) | (.00037) | (.00138) | (.00077) | (.00051) | (.00032)
Heterocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 0.0757 | 0.0343 | 0.0246 | 0.0259 0.0770 | 0.0343 | 0.0298 | 0.0171
(.00337) | (.00155) | (.00104) | (.00071) || (.00227) | (.00222) | (8e-04) | (.00084)
C2 0.0364 | 0.0233 | 0.0193 | 0.0148 0.0391 | 0.0224 | 0.0143 | 0.0120
(.00225) | (.00092) | (.00048) | (.00037) || (.00228) | (.00088) | (.00059) | (.00054)
C3 0.0518 | 0.0222 | 0.0158 | 0.0196 0.0738 | 0.0391 | 0.0224 | 0.0232
(.00254) | (.00115) | (.00073) | (.00059) || (.00334) | (.00113) | (.00079) | (.00067)
Cc4 0.0168 | 0.0119 | 0.0078 | 0.0049 0.0274 | 0.0135 | 0.0185 | 0.0093
(.00184) | (.00068) | (.00055) | (4e-04) || (.00206) | (.00095) | (.00071) | (.00046)
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Table 12 Average and standard error (in brackets) error rates foodisemethods by data condition: b) Bad
separation of group centroids
(in bold if all other methods present average error rateeldsg more than ©1).

Gaussian Skew-Normal
Homocedastic ; Equal Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 | 0.3696 | 0.3465 | 0.3225 | 03393 || 0.3691 | 0.3256 | 0.3255 | 0.3176
(.00418) | (.00201) | (.00182) | (.00277) || (.00393)| (.00315) | (.00177)| (.00128)
C2 || 03613 | 0.3422 | 03371 | 03114 || 0.3656 | 0.3448 | 0.3038 | 0.3065
(.00325) | (.00256) | (.00166) | (.00116) || (.00396) | (.00246) | (.00176) | (.00178)
C3 |[ 03314 | 0.3270 | 0.3153 | 03025 || 0.3216 | 0.3199 | 0.3166 | 0.3064
(.00437) | (.00267) | (.00125) | (.00111) || (.00465)| (.00178) | (.00077)| (.00132)
C4 || 0.4168 | 0.3939 | 0.3779 | 0.3638 || 0.4034 | 0.3574 | 0.3707 | 0.3800
(.00301) | (.00236) | (.00174) | (.00187) || (.00346) | (.00287) | (.00174) | (.00133)

Heterocedastic ; Equal Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 0.0950 | 0.0462 | 0.0321 | 0.0273 0.0781 | 0.0463 | 0.0400 | 0.0215
(.00192) | (.00232) | (.00158) | (.00217) || (.00336) | (.00321) | (.00246) | (.00186)
Cc2 0.0615 | 0.0293 | 0.0231 | 0.0209 0.0500 | 0.0325 | 0.0197 | 0.0183
(.00374) | (.00293) | (.00215) | (.00149) || (.00274) | (.00276) | (.00205) | (.00189)
C3 0.0630 | 0.0364 | 0.0257 | 0.0299 0.0779 | 0.0330 | 0.0260 | 0.0307
(.00205) | (.00322) | (.00238) | (.00176) || (.00182) | (.00277) | (.00188) | (.00195)
C4 0.0401 | 0.0221 | 0.0226 | 0.0258 0.0591 | 0.0380 | 0.0327 | 0.0220
(.00291) | (.00269) | (.00259) | (.00208) || (.00332) | (.00273) | (.00227) | (.00164)

Homocedastic ; Different Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 0.3676 | 0.3600 | 0.3295 | 0.3367 0.3796 | 0.3305 | 0.3246 | 0.3194
(.00357) | (.00275) | (.00181) | (.00165) || (.00417) | (.00215) | (.00194) | (.00157)
Cc2 0.3424 | 0.3489 | 0.3101 | 0.3027 0.3430 | 0.3420 | 0.3180 | 0.3019
(.00259) | (.00185) | (.00135) | (8e-04) || (.00380) | (.00197) | (.00152) | (.00156)
C3 0.3607 | 0.3329 | 0.3451 | 0.3319 0.3653 | 0.3576 | 0.3609 | 0.3174
(.00470) | (.00267) | (.00134) | (.00151) || (.00343) | (.00445) | (.00116) | (.00155)
C4 0.3516 | 0.3250 | 0.3243 | 0.3275 0.3579 | 0.3417 | 0.3266 | 0.3150
(.00406) | (.00197) | (.00211) | (.00169) || (.00470) | (.00170) | (.00165) | (.00108)
Heterocedastic ; Different Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 0.0898 | 0.0525 | 0.0336 | 0.0286 0.0822 | 0.0471 | 0.0309 | 0.0245
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C3 0.0521 | 0.0263 | 0.0192 | 0.0256 0.0595 | 0.0377 | 0.0319 | 0.0252
(.00168) | (.00300) | (.00178) | (.00192) || (.00380) | (.00220) | (.00171) | (.00155)
Cc4 0.0336 | 0.0211 | 0.0238 | 0.0207 0.0498 | 0.0344 | 0.0377 | 0.0321
(.00414) | (.00241) | (.00185) | (.00144) || (.00357) | (.00204) | (.00165) | (.00150)
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