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Abstract Building on probabilistic models for interval-valued variables, parametric classi-
fication rules, based on Normal or Skew-Normal distributions, are derived for interval data.
The performance of such rules is then compared with distance-based methods previously in-
vestigated. The results show that Gaussian parametric approaches outperform Skew-Normal
parametric and distance-based ones in most conditions analyzed. In particular, with hetero-
cedastic data a quadratic Gaussian rule always performs best. Moreover, restricted cases of
the variance-covariance matrix lead to parsimonious ruleswhich for small training samples
in heterocedastic problems can outperform unrestricted quadratic rules, even in some cases
where the model assumed by these rules is not true. These restrictions take into account
the particular nature of interval data, where observationsare defined by both MidPoints and
Ranges, which may or may not be correlated. Under homocedastic conditions linear Gaus-
sian rules are often the best rules, but distance-based methods may perform better in very
specific conditions.

Keywords Discriminant analysis· Interval data· Parametric modelling of interval data·
Symbolic Data Analysis

1 Introduction

In multivariate data analysis often each single observation contains some intrinsic variability.
This is the case when analyzing a group rather than a single individual, where within group
variability should not be overlooked, but taken into account, to avoid an important loss of
information. Consider, for instance, that we are interested in analyzing basketball teams, in
terms of age, height, points scored and nationality of players. If we just take averages or
mode values, much information is lost; in such case, the range or even the distribution of
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the players’ values in each team is of utmost importance. Also, when we observe a vari-
able along time and wish to record the set of observed values rather than just a specific one
(e.g., mean, maximum), then again a set rather than a single value must be recorded. The
same issue arises when analysing concepts instead of singlespecimen - a tree species and
not the specific tree in our garden; an accident scenario, andnot the particular accident we
have witnessed. Therefore, restrictive summarizations, e.g., by means, medians or modes, to
impose a fit to the classical representation structure should be avoided. Symbolic Data Anal-
ysis (see, e.g., [8], [9], [13], [27]) provides a framework where variability may explicitely
be taken into account in the data representation and analysis. To this aim, new variable types
have been introduced, whose realizations are no longer single real or categorical values, as
in the classical case, but finite sets, intervals or distributions on an underlying set. To this
day, many methods forsymbolic data, have been developed (see [27]); however, most of
those methods rely on exploratory non-parametric approaches.

In this paper, we are interested in the discriminant analysis of interval data, i.e., where
elements are characterized by variables whose values are intervals onIR. Interval data may
occur in many different situations. When describing rangesof variable values - for example,
daily stock prices or temperature ranges - we obtainnative interval data; in the aggregation
of huge data bases, when real values describe the individualobservations we obtain intervals
for the description of the aggregated data.

Discriminant analysis of interval data has been investigated in different contexts. Ishibuchi,
Tanaka and Noriko Fukuoka, in [17], determine interval representations in a discriminant
space for such data, using a mathematical programming formulation. The proposed method
is then applied to a chemical sensing problem. Jahanshahlooaet al [18] rely on mathematical
programming and goal programming to develop a data envelopment analysis-discriminant
analysis methodology designed for interval data. In [26] and [32] discriminant analysis of
interval data is developed based on imprecise probability theory. In [19], a generalization
of classical Factorial Discriminant Analysis to symbolic data (see, for instance, [27]) is
proposed. This method is based on a numerical analysis of thetransformed symbolic data,
followed by a symbolic interpretation of the results; it allows considering numerical, qual-
itative nominal or distribution-valued variables; classification rules are then based on prox-
imities in the factorial plane (see also [21]). This method is available in the Symbolic Data
Analysis software packageSODAS. Bayesian decision trees for the case when predictors
are interval variables are presented in [28]. Discriminantanalysis of interval data has also
been addressed using Support Vector Machines ([14], [11], [1]), as well as Artificial Neural
Networks, see [30], [31], [6] and [29]. Appiceet al [2] study the performace of the k-nearest
neighbor method for different types of data and using different distance measures.

Distance-based approaches to linear discriminant analysis of interval data are discussed
in [15]. These approaches rely on representations of interval data which are used in Symbolic
Data Analysis for different methodologies; they lead to representations in the discriminant
space in the form of intervals or single points, from which distance-based allocation rules
are derived. In [10] a parametric modelling for interval data, assuming multivariate Normal
or Skew-Normal distributions for the MidPoints and Log-Ranges of the interval variables,
is proposed. The intrinsic nature of the interval variablesmay lead to special structures
of the variance-covariance matrix, represented by five different possible cases. From these
models parametric classification rules may be derived. Thisapproach is implemented in an
R-package, MAINT.DATA, which also includes maximum likelihood estimation and statis-
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tical tests for the different considered cases1.

This paper evaluates the relative performance of differentclassification rules in the dis-
criminant analysis of interval-valued data, focusing on the classification performance. We
note that many proposals for the discriminant analysis in the context of interval data have
a dual objective of both obtaining a symbolic representation in a discriminant space and
classifying new elements with unknown origin. While both those goals are certainly worth-
while, here we are only concerned with comparision of classification accuracy for different
methods (under varying data conditions), which may be the most important goal in many
applications.

The remainder of the paper is organized as follows. Section 2briefly introduces inter-
val data, and its representations, and proceeds presentingdifferent methods for discriminant
analysis of interval data. In Section 3, an application of different methods to real data, on
interval quartely temperatures registered in chinese metereological stations, is presented and
discussed. Section 4 reports a simulation study designed tocompare the performance of dis-
tance and parametric based approaches under different setups. Finally, Section 5 discusses
the results and draws some conclusions.

2 Discriminant methods for interval data

2.1 Interval data

Let S = {s1, . . . ,sn} be the set ofn entities under analysis. An interval variable is defined by
an application

Y : S → T such thatsi → Y (si) = [li,ui],

whereT is the set of intervals of an underlying setO⊆ IR. Let I be ann× p matrix containing
the values ofp interval variables onS. Eachsi ∈ S is hence represented by ap-dimensional
vector of intervals,Ii = (Ii1, . . . , Iip), i = 1, . . . ,n, with Ii j = [li j,ui j], j = 1, . . . , p (see Table
1).

Table 1 Matrix I of interval data

Y1 . . . Y j . . . Yp

s1 [l11,u11] . . . [l1 j,u1 j] . . . [l1p,u1p]
. . . . . . . . . . . .
si [li1,ui1] . . . [li j,ui j] . . . [lip,uip]
. . . . . . . . . . . .
sn [ln1,un1] . . . [ln j,un j] . . . [lnp,unp]

The value of an interval variableYj for eachsi ∈ S is defined by the lower and up-
per boundsli j andui j of Ii j = Yj(si). For modelling purposes, however, an alternative pa-

rameterization consisting in representingYj(si) by the MidPointci j =
li j +ui j

2
and Range

ri j = ui j − li j of Ii j may be useful.

1 MAINT.DATA is available at the CRAN repository.
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To extend linear classical discriminant analysis to the case of interval data, appropriate
definitions of linear combinations, dispersion and association measures must be established.
However, as discussed in [15], there is no unequivocal manner of defining these concepts
and not all choices satisfy usual properties.

Let Z = I
⊗

β be r appropriately defined linear combinations ofI based onp× r real
coefficientsβ jℓ.

Definitions of linear combinations, dispersion and association measures ideally should
satisfy the following properties, for anyp× r real matrixβ :

P1:Ii
⊗

βℓ =
p

∑
j=1

β jℓ× Ii j whereβℓ denotes theℓ-th column of matrixβ

and
P2: SI

⊗

β = β tSIβ , i.e., the covariance between interval variables should bea symmetric
bilinear operator.

In [15] two distinct definitions of linear combinations are considered:
LC1 : Ii

⊗

A βℓ = ziℓA = [ziℓA,ziℓA], i = 1, . . . ,n, with


















ziℓA =
p

∑
j=1

β jℓ li j

ziℓA =
p

∑
j=1

β jℓ ui j

It is clear that whileLC1 satisfies property P2, it does not satisfy property P1 if at least
one element ofβℓ is negative.

On the other hand, the following alternative definition of linear combination of interval
variables always respects P1, and respects P2 for suitable definitions of dispersion and asso-
ciation measures:

LC2 : Ii
⊗

B βℓ = ziℓB = [ziℓB,ziℓB], i = 1, . . . ,n, with














ziℓB = ∑
β jℓ>0

β jℓ li j + ∑
β jℓ<0

β jℓ ui j

ziℓB = ∑
β jℓ>0

β jℓ ui j + ∑
β jℓ<0

β jℓ li j

Note thatLC2 is the definition that results from applying the rules of Interval Calculus
[23], since the resulting intervals include all possible values that are scalar linear combina-
tions of the values within the intervalsIi j.

2.2 Distance-based approaches

In [15] three different approaches for discriminant analysis of interval data are compared.
The first approach assumes an Uniform distribution in each observed interval (as in [7]),
derives the corresponding measures of dispersion and association, and appropriately defines
linear combinations of interval variables that maximize the usual discriminant criterion; a
second approach expands the original data set into the set ofall interval description vertices
(following [12]), and proceeds with a classical analysis ofthe expanded set; finally, a third
approach is based on the parametrization of each interval byits MidPoint and Range (as do
[20] and [24]). Representations in the discriminant space may then take the form of intervals
or single points from which distance-based allocation rules are derived.
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The first considered approach assumes that each interval variable represents the pos-
sible values of an underlying real-valued variable; following Bertrand and Goupil [7] an
equidistribution hypothesis is assumed, which consists inconsidering that the values of the
underlying variable are uniformly distributed; the empirical distribution function of an in-
terval variable is then defined as a uniform mixture ofn uniform distributions.

If the n observations are partitioned intok groups,C1, . . . ,Ck, then the global empirical
density functions are mixtures of the corresponding group specific functions. The global
variance and covariance can be decomposed in a within group component and a between
group component,W and B respectively. Variances and covariances obtained from these
matrices satisfy property P2.

As in the classical case, the discriminant functions coefficients are given by the eigenvec-
tors ofW−1B. Single point representations on a discriminant space are obtained directly, in-
terval representations may be determined by an appropriatelinear combination of the lower
and upper bounds (see Section 2.1 above).

An alternative approach is investigated, which consists inconsidering all the vertices of
the hypercube representing each of then individuals in thep-dimensional space, and then
perform a classical discriminant analysis of the resultingn×2p by p matrix, following [12]
for Principal Component Analysis.

A new matrix of single real valuesM is created from the interval data matrixI (see Table
1), where to each rowi of I correspond 2p rows ofM, obtained by all possible combinations
of the limits of intervals[li j,ui j], j = 1, . . . , p.

A classical discriminant analysis on matrixM then leads to a factorial representation
of points, one for each of the 2p vertices, from which an interval representation may be
obtained: letQi be the set of row indicesq in matrix M which refer to the vertices of the
hypercube corresponding tosi; for q ∈ Qi let ζqℓ be the value of theℓ-th real-valued discrim-
inant function for the vertex with row indexq; the value of theℓ-th interval discriminant
variatez for si, is then defined byziℓ = Min {ζqℓ,q ∈ Qi} andziℓ = Max {ζqℓ,q ∈ Qi}.

The third explored approach uses the representation of eachobserved interval by its
MidPoint and Range, as in [24] and [25] for Regression Analysis, and [20] for Principal
Component Analysis. Two separate classical discriminant analysis on these values are then
performed and the results combined in some appropriate way;alternatively MidPoints and
Ranges may also be considered conjointly.

In all three approaches allocation rules are based on point distances or distances between
intervals, according to whether the representations on thediscriminant space assume the
form of single points or intervals.

For the first considered approach, a natural rule based on point distances consists in al-
locating each observation to the group with nearest centroı̈d in the discriminant space, using
the Euclidean distance and correcting for distinct prior probabilities and/or misclassification
costs.

Alternatively, linear combinations of the interval variables may be determined, leading
to interval-valued discriminant variates, in which case allocation rules may be derived by
using distances between interval vectors.

In the vertices approach, discriminant variates are interval-valued, so this same type of
allocation rule is applied.

For the MidPoints and Ranges approach, only point distancesare used to define al-
location rules. When two separate analysis are performed for MidPoints and Ranges, the
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discriminant variates are generally correlated, and the Mahalanobis distance should be used;
when a single discriminant analysis is performed for both MidPoints and Ranges, the Eu-
clidean distance is adequate.

2.3 Parametric modelling of interval data

Consider each intervalIi j represented by its MidPointci j and Rangeri j. The Gaussian
model (see [10]) consists in assuming a multivariate Normaldistribution for MidPointsC
and the logs of the RangesR, R∗ = ln(R),(C,R∗) ∼ N2p(µ,Σ), with µ =

[

µ t
C,µ

t
R∗

]t
and

Σ =

(

ΣCC ΣCR∗

ΣR∗C ΣR∗R∗

)

whereµC andµR∗ arep-dimensional column vectors of the mean val-

ues of, respectively, the MidPoints and Log-Ranges, andΣCC,ΣCR∗ ,ΣR∗C andΣR∗R∗ arep× p
matrices with their variances and covariances.

We denoteXi =
[

Ct
i ,R

∗
i

t]t
the 2p dimensional column vector comprising all the Mid-

Points and Log-Ranges forsi, i = 1, . . . ,n.
This model has the advantage that it allows for a straightforward application of classi-

cal inference methods. It is important to keep in mind, however, that the MidPointci j and
the Rangeri j of the value of an interval variableIi j = Yj(si) are two quantities related to
one same variable, and must therefore be considered together. It follows that the global co-
variance matrix should take into account the link that may exist between MidPoints and
Log-Ranges of the same or different variables. Intermediate parameterizations between the
non-restricted and the non-correlation setup considered for real-valued data are relevant for
the specific case of interval data.

The most general formulation allows for non-zero correlations among all MidPoints
and Log-Ranges (Case 1); in another setup, interval variablesYj are uncorrelated, but for
each variable, the MidPoint may be correlated with its Range(Case 2); a third situation
allows for MidPoints (respectively, Ranges) of different variables to be correlated, but no
correlation between MidPoints and Ranges is allowed (Case 3); finally, all MidPoints and
Ranges are uncorrelated, both among themselves and betweeneach other (Case 4). In a full
complete setup another case could still be considered, namely, allowing for non-null corre-
lation between the MidPoint of each variable and its Log-Range, but not between MidPoints
and Log-Ranges of different variables. This case appears tobe less natural, and leads to
considerably computational complexity, and will therefore not be considered in the present
investigation. Table 2 summarizes the different cases considered in this paper.

Table 2 Different cases for the variance-covariance matrix

Case Characterization Σ

1 Non-restricted Non-restricted
2 Y j ’s non correlated ΣCC,ΣCR∗ = ΣR∗C,

ΣR∗R∗ all diagonal
3 C’s non-correlated withR∗’s ΣCR∗ = ΣR∗C = 0
4 All C’s andR∗’s are non-correlated Σ diagonal

It should be remarked that in cases 2, 3 and 4,Σ can be written as a diagonal by blocks
matrix, after a possible rearrangement of rows and columns.It follows that maximum like-
lihood estimates under these cases can be obtained directlyfrom the classical non-restricted
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estimates. Testing for the different models /configurations can be done in a straightforward
manner, using the likelihood-ratio approach.

The Gaussian model has many advantages, which explains its generalized applicability
in multivariate data analysis; in particular, it allows fora direct modelling of the covariance
structure between the variables. Neverthless it does present some limitations, namely the fact
that it imposes a symmetrical distribution on the MidPointsand a specific relation between
mean, variance and skewness for the Ranges. A more general model that overcomes these
limitations may be obtained by considering the family of Skew-Normal distributions (see,
for instance, [4]). The Skew-Normal generalizes the Gaussian distribution by introducing an
additional shape parameter, while trying to preserve some of its mathematical properties.

A random vectorX is said to follow a 2p-multivariate Skew-Normal distribution (see
[5]) if its density is given by

f (x;α ,ξ ,Ω) = 2φ2p(x−ξ ;Ω)Φ2p(α tω−1(x−ξ )),x ∈ IR2p (1)

whereξ and α are 2p-dimensional vectors,Ω is a symmetric 2p × 2p positive-definite
matrix, ω is a diagonal matrix formed by the square-roots of the diagonal elements ofΩ
andφ2p,Φ2p are, respectively, the density and the distribution function of a 2p-dimensional
standard Gaussian vector.

As an alternative to the Normal model, it may be considered that (C,R∗) follow jointly
a 2p-multivariate Skew-Normal distribution. Notice that the Skew-Normal model encom-
passes mixed models with marginal Normal random variables,for which the corresponding
shape parameter is null.

In the Gaussian model, for each case, an estimate of the optimum classification rule can
be obtained by directly generalisation of the classical linear (2) and quadratic (3) discrimi-
nant classification rules,

Y = argmaxg(µ̂g
t Σ̂−1X −

1
2

µ̂g
t Σ̂−1µ̂g + log π̂g) (2)

Y = argmaxg(−
1
2

X t Σ̂g
−1

X + µ̂g
t Σ̂g

−1
X + log π̂g −

1
2
(log detΣ̂g + µ̂g

t Σ̂g
−1µ̂g)) (3)

whereY ∈ 1, ...,k denotes the group assignments,g is a group index,µ̂g, Σ̂ , Σ̂g and π̂g are
the maximum likelihood estimates ofµg,Σ ,Σg for the corresponding cases, andπg are the
prior probabilities of group membership.

For the Skew-Normal model different alternatives may be considered. In particular, we
consider a Location model in which the groups differ only in terms of the location parameter
ξ , and a General Model, where the groups differ in terms of all parameters. The correspond-
ing classification rules are, respectively,

Y = argmaxg(ξ̂g
t
Ω̂−1X −

1
2

ξ̂g
t
Ω̂−1ξ̂g + log π̂g +ζ0(α̂ tω̂−1(X − ξ̂g))) (4)

Y = argmaxg(−
1
2

X tΩ̂g
−1

X + ξ̂g
t
Ω̂g

−1
X + log π̂g − (5)

1
2
(log det Ω̂g + ξ̂g

t
Ω̂g

−1ξ̂g)+ζ0(α̂g
t ω̂g

−1(X − ξ̂g)))

whereξ̂g,Ω̂ ,Ω̂g, α̂, α̂g are maximum likelihood estimates andζ0(w) = ln(2Φ(w)).
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3 Application: China temperatures data

This data set gathers temperatures measured in meteorological stations in China. The anal-
ysis is based on data consisting of the intervals of observedtemperatures (Celsius scale) in
each of the four quarters,Q1 to Q4, of the years 1974 to 1988 in 60 stations. Table 3 repro-
duces the original data for some stations and years. The fulltable comprisesn = 60×15−1
outlier2 = 899 rows and 4 columns.

Table 3 China temperatures interval data

Station Region Q1 Q2 Q3 Q4

Beijing-1974 North [−9.5,10.6] [6.5,29.8] [12.6,29.6] [−10.44,9.06]
Beijing-1975 North [−8.6,12.9] [7.9,30.2] [15.0,31.6] [−7.0,19.2]

. . . . . . . . . . . . . . . . . .
ZhangYe-1988 Northwest [−15.4,7.2] [2.3,26.4] [8.6,30.2] [−12.0,15.1]

The 60 meteorological stations belong to 6 different regions in China (North, Northwest,
Northeast, East, South Central, Southwest), which define a partition of the 899 stations-year
combinations. Figure 1 depicts the 60 stations according tothe defined partition. To control
for possible temporal auto-correlation, the global yearlyaverage temperature was subtracted
to the corresponding original values.

On a preliminary analysis to assess deviations from Normality, Q-Q plots did not reveal
any strong deviations, although for a few variables and classes Normality was rejected by
the Kolmogorov-Smirnov test (which is to be expected given the large sample sizes).

Twenty five different discriminant methods are applied and their results compared, namely:
nine distance-based approaches - classical linear discriminant analysis based on the inter-
vals’ MidPoints only, with allocation defined by Euclidean point-distances; linear discrim-
inant analysis using MidPoints and Ranges separately, withallocation defined by Maha-
lanobis point-distances, and using MidPoints and Ranges simultaneously, with allocation
defined by Euclidean point-distances; uniformity-basedLC1, uniformity-basedLC2, Ver-
tices method and Factorial Discriminant Analysis (FCA) (our implementation, following
[21]), all with allocation rules using Hausdorff interval distances, for FCA, versions with sin-
gle, average and complete linkage are considered; and sixteen parametric-based approaches,
eight using the Gaussian model - Linear and Quadratic Discriminant Analysis, and eight us-
ing Skew-Normal discriminant Analysis - Location and General model - always considering
cases 1 to 4 for the variance-covariance matrix (see Table 2). Table 4 presents the cross-
validation estimates (ten-fold cross-validation replicated 20 times) of the error-rates for the
first six distance-based methods; Table 5 for the FCA method,Tables 6 to 9 present the
cross validation estimates of the error-rates for the parametric methods and the four differ-
ent covariance structure cases, Linear and Quadratic Discriminant Analysis for the Gaussian
model (Tables 6 and 7, respectively), and Skew-Normal Discriminant Analysis - Location
and General models (Tables 8 and 9, respectively).

As it is usually the case, estimates of the error rates differfrom group to group; in
particular, the East and Northeast regions are in general better identified than the remaining
ones. In terms of global error rates, in general, parametricmethods perform better than
distance-based ones, Gaussian Quadratic Discriminant Analysis better than Gaussian Linear

2 The outlier is YinChuan in 1982, where a value of−999.99◦C is reported in July
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Fig. 1 The 60 metereological stations, according to region.

Table 4 China data: Error-rates (cross-validation) for distance-based methods

Region MidPoints Unif. Unif. Vertices Mid. Rng. Mid. Rng.
Point dist. LC1 LC2 Sep. Simul.

North 0.9882 0.0370 0.0583 0.0883 0.5724 0.5684
Northeast 0.1927 0.2220 0.2226 0.2222 0.1108 0.1135
Northwest 0.2558 0.9176 0.8741 0.7523 0.3191 0.3161

East 0.1750 0.2142 0.1740 0.2686 0.1453 0.1439
South Central 0.5667 0.5000 0.5000 0.5000 0.5471 0.5521

Southwest 0.4143 0.6670 0.6740 0.5893 0.4673 0.4650
GLOBAL 0.3551 0.4661 0.4496 0.4354 0.3206 0.3200

Discriminant Analysis and General Skew-Normal Model better than Location Skew-Normal
Model. More general models give best results, which was to beexpected given the large
sample size. Neverthless, the shape parameters introducedby the Skew-Normal Model made
almost no difference in classification results. Also, methods using interval distances in the
discriminant space, i.e. theLC1, LC2, the Vertices method and FCA perform poorly, tending
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Table 5 China data: Error-rates (cross-validation) for the FDA method

Region Single linkage Average linkage Complete linkage

North 0.8661 0.4227 0.0148
Northeast 0.4717 0.5338 0.9702
Northwest 0.5433 0.6168 0.9935

East 0.6572 0.8165 0.9700
South Central 0.8233 0.8875 0.8367

Southwest 0.5890 0.8020 0.9233
GLOBAL 0.6330 0.7050 0.8699

Table 6 China data: Error-rates (cross-validation) for the Gaussian parametric methods: Linear Discriminant
Analysis

Region LDA C1 LDA C2 LDA C3 LDA C4

North 0.5989 0.7204 0.6456 0.8637
Northeast 0.1248 0.2219 0.1577 0.2219
Northwest 0.2998 0.2799 0.2854 0.2284

East 0.1532 0.2446 0.1875 0.2340
South Central 0.5483 0.5000 0.5429 0.5000

Southwest 0.4570 0.6147 0.4873 0.6330
GLOBAL 0.3213 0.3844 0.3398 0.3857

Table 7 China data: Error-rates (cross-validation) for the Gaussian parametric methods: Quadratic Discrim-
inant Analysis

Region QDA C1 QDA C2 QDA C3 QDA C4

North 0.3371 0.3540 0.2638 0.3189
Northeast 0.1025 0.1926 0.1565 0.2221
Northwest 0.3203 0.3486 0.3688 0.3451

East 0.1079 0.2116 0.1585 0.2126
South Central 0.4463 0.5079 0.5000 0.5000

Southwest 0.2543 0.5310 0.3333 0.6263
GLOBAL 0.2414 0.3430 0.2814 0.3589

Table 8 China data: Error-rates (cross-validation) for the Skew-Normal Discriminant Analysis: Location
Model

Region SKLM C1 SKLM C2 SKLM C3 SKLM C4

North 0.8114 0.7135 0.6504 0.8952
Northeast 0.1058 0.2221 0.1521 0.2221
Northwest 0.2629 0.2789 0.2886 0.2214

East 0.1410 0.2470 0.1918 0.2484
South Central 0.5367 0.5008 0.5504 0.5000

Southwest 0.4507 0.6150 0.4880 0.6087
GLOBAL 0.3222 0.3844 0.3424 0.3862

to classify too many stations in one given region (varying from method to method). Point
distance approaches using MidPoints and Ranges provide results comparable to those of
Linear Discriminant Analysis.
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Table 9 China data: Error-rates (cross-validation) for the Skew-Normal Discriminant Analysis: General
Model

Region SKGM C1 SKGM C2 SKGM C3 SKGM C4

North 0.3121 0.3387 0.2574 0.3543
Northeast 0.1202 0.1684 0.1508 0.2291
Northwest 0.3059 0.3576 0.3771 0.3028

East 0.1000 0.2071 0.1581 0.2164
South Central 0.4621 0.5050 0.4738 0.5021

Southwest 0.2577 0.5107 0.3187 0.5720
GLOBAL 0.2397 0.3352 0.2816 0.3459

4 Simulation

To better understand the factors affecting the relative performance of the methods under
comparison, we performed a controlled simulation experiment. We considered a full facto-
rial design for problems with two groups, three interval variables, and the following seven
factors:

Classification method (CM – 22 levels): the 6 distance-based considered in [15], and
the 16 parametric methods under comparison.

Data Generating Process (DGP – 2 levels): MidPoints generated by transformations
using Gaussian and Skew-Normal variables.

Separation (Sep- 2 levels): the Mahalanobis distance between group centrois set at 1.0
(poorly separated groups) and 3.0 (well separeted groups).

Range heterogeneity (RHet - 2 levels): In one level (homogeneous Ranges) the Log-
Ranges had the same distribution across groups, and in the other one (heterogeneous Ranges)
the groups differed in terms of both the MidPoint and Log-Range distributions.

Training sample size (TSS- 4 levels): Total number of training sample observations, set
at 30, 60, 100 and 150.

Variance ratios (VR - 2 levels): Ratio between the variances associated with different
distributions across groups. Set at 1 (homocedastic problems) and 9 (heterocedastic prob-
lems).

True case (TConf - 4 levels): case of true covariance of the within-group distributions of
MidPoints and Log-Ranges. Set at the levels 1 (unrestricted), 2 (Uncorrelated Interval Vari-
ables), 3 (MidPoints uncorrelated with Log-Ranges) and 4 (all MidPoints and Log-Ranges
uncorrelated with each other).

For each data condition, defined by a combination of factorsDGP, Sep, TSS, RHet,
VR and TConf, we generated 100 independent balanced training samples, used them to
establish the empirical rules, and evaluated these rules onone balanced validation sample
with 1000 observations, independently generated.

Each observation was defined fromp independent Gaussian or Skew-Normal (X) andp
independent Uniform variates (U) where the means in the first group were set to zero and the
means in the second group ensured the desired level of Mahalanobis distance. In the Skew-
Normal case, one of the MidPoint variables has Fisher’s skewness coefficient set to 0.75, for
the remaining variables this coefficient is null. We note that for multivariate Skew-Normal
distributions, the admissible domain of the parameters is somehow restricted, in particular
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not allowing for high skewness in many variables [3]. We chose to concentrate skewness on
one variable, to maximize the deviation from the Gaussian model.

In the case of heterocedastic problems we used the average covariance matrix to find the
required Mahalanobis distances.

For Case 4, theX variables define the intervals’ MidPoints, and theU variables the
Log-Ranges. For Case 1, MidPoints (MP) and Log-Ranges (LR) were defined through the
transformationsMP = [L1|L2] [X tU t ]t , LR = L3 U t , where[L1|L2] and L3 are orthono-
mal matrices of independently generated Uniform loadings.For Case 2, MP and LR were
generated in the same way, but placing all required zeros in matrix L2 to ensure that only
MidPoints and Log-Ranges of the same interval variables hadnon-null correlations. Final-
lly, for Case 3 they were defined throughMP = L1 X t , LR = L3 U t . Notice that none of
these models coincides with the models adjusted to the data by the parametric classification
rules.

Table 10 presents, for each data condition, the method with lowest estimated expected
error rate; those indicated in bold perform better than all other methods by more than one
percentage point. Tables 11 and 12 gather the correspondingestimated error rates and stan-
dard errors. We note that the methods in bold have always error estimates lower than the
second best method by more than two standard errors.

Complete tables with average validation sample misclassification rates are available
from the authors upon request.

As expected, the average error rates for heterocedastic cases are always lower than the
corresponding values for the homocedastic values, the differences being particularly strik-
ing when the group centroids are badly separated - which may be explained by the fact that
in the former case differences in variances-covariances also contribute to the separation be-
tween the groups.

The relative standings of the different methods may be summarized as follows :

1. Heterocedastic conditions: Some of the most interesting results occur for heretocedas-
tic conditions. Under these conditions, one parametric Gaussian quadratic rule always
performs the best while linear rules and distance-based methods perform poorly. Re-
markably, for small training samples, the best results are often achieved by a model with
a more restricted case than the true generating process. In particular, under Case 1, for
samples with 30 or 60 observations, the quadratic Gaussian rule based on Case 3 (Mid-
Points uncorrelated with Log-Ranges) performs the best in all but one data condition.
More general quadratic rules work well for large samples butcan be disappointing in
small samples. Figure 2 illustrates this behaviour. Furthermore, the parametric Gaussian
quadratic rules usually perform better than the corresponding Skew-Normal rules even
when data is generated from a Skew-Normal distribution - as illustrated in Figure 3.

2. Homocedastic conditions: When MidPoints are correlated with Log-Ranges (Cases C1
and C2), the parametric Gaussian linear rule with the correct covariance case generally
performs the best. However, for large training samples the corresponding quadratic rule
comes close. Overparametrized but correct linear rules areusually also competitive.
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This situation is illustrated by Figure 4. However, the Skew-Normal parametric models
with non-satisfied restrictions may present a rather erratic behaviour; otherwise, their
performance exhibits a similar pattern - see Figure 5.
Among the distance-based methods, the Vertices and the Central-Points methods appear
to be the most competitive ones, the former particularly when interval-valued variables
are non-correlated (Cases 2 and 4), and the latter when Midpoints and LogRanges are
uncorrelated (Cases 3 and 4). However, in this latter case the differences are particularly
large for small sample sizes and tend to become negligeable for large samples. Figures
6 and 7 illustrate these points. In some specific situations,the Centers and the Vertices
methods are even the best ones. However, the Centers method deals badly with correla-
tion between MidPoints and Log-Ranges, and does not take much advantage of larger
samples. This is illustrated in Figure 8 where we can see thatthe Centers method is the
best one under Case C3 with 30 observations in the training sample and the second best
(after the Vertices method) under Case C4 with 30 observations in the training sample;
on the other hand its relative performance deteriorates under Cases C3 and C4 for large
samples, and is rather poor under Cases C1 and C2 for any sample size. The Vertices
method deals badly with correlation among different interval-valued variables. In Figure
9 we can see that while the performance of this method is the best one under Cases C2
and C4 with large training samples, it is not even competitive in cases C1 and C3.

5 Conclusions

In this paper, the relative performance of distance-based and parametric classification rules,
for discriminant analysis of interval-valued data, is evaluated. A thorough simulation study
as well as an application to real data showed that parametricbased rules outperform distance-
based ones for most data conditions, with a few exceptions invery specific cases. Vertices
and Centers methods can be competitive, or even the best, in some specific situations, but
they tend to require strong restrictions in the covariance configurations, and do not respond
well to heterocedastic data conditions. Furthermore, the parametric Gaussian rules usu-
ally perform better than the corresponding Skew-Normal rules even when data is generated
from a Skew-Normal distribution. As expected, in homocedastic problems, linear discrimi-
nant rules perform the best, while for large training samples and heterocedastic conditions
quadratic methods are usually superior. However, for smalltraining samples in heterocedas-
tic problems, unrestricted quadratic rules can be outperformed by restricted rules, even in
some cases where the model assumed by these rules is not true.It is known (see e.g. [22])
that traditional quadratic discrimination perform poorlywith small training samples, even
when covariance matrices clear differ, due to the large number of parameters that need to
be estimated. For that reason Fluryet al [16] proposed parsimonius quadratic rules that
constraint some parameters of the covariance matrices. In the case of interval data, Cases
2 through 4 provide a natural way of imposing constraints which, according to our simula-
tion results, appear to be quite effective in reducing expected error rates for heterocedastic
problems with small or moderate training samples.
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Table 10 Best methods by data condition
(in bold if all other methods present average error rates larger by more than 0.01).

Gaussian Skew-Normal
Homocedastic ; Equal Ranges ; Good Separation

30 60 100 150 30 60 100 150
C1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1
C2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 qdaC2 ldaC2
C3 ldaC4 ldaC4 Vrt LocC3 CP CP CP ldaC3
C4 Vrt ldaC4 Vrt Vrt Vrt ldaC4 Vrt LocC4

Heterocedastic ; Equal Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 qdaC3 qdaC1 qdaC1 qdaC1 qdaC3 qdaC3 qdaC1 qdaC1
C2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2
C3 qdaC4 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3
C4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4

Homocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1
C2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2
C3 ldaC3 ldaC3 ldaC3 ldaC3 ldaC3 qdaC3 qdaC3 ldaC3
C4 ldaC4 ldaC4 ldaC4 ldaC4 ldaC4 ldaC4 ldaC4 ldaC4

Heterocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 qdaC3 qdaC3 qdaC1 qdaC1 qdaC3 qdaC3 qdaC1 qdaC1
C2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2
C3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3
C4 qdaC4 qdaC4 qdaC2 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4

Homocedastic ; Equal Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 ldaC1 ldaC1 ldaC1 Vrt ldaC1 ldaC1 ldaC1 ldaC1
C2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2
C3 CP ldaC3 CP CP CP CP LocC4 ldaC3
C4 ldaC4 ldaC4 Vrt ldaC4 Vrt CP Vrt ldaC4

Heterocedastic ; Equal Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 qdaC3 qdaC3 qdaC3 qdaC1 qdaC3 qdaC3 qdaC1 qdaC1
C2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC4 qdaC2 qdaC2 qdaC2
C3 qdaC4 qdaC3 qdaC3 qdaC3 qdaC4 qdaC3 qdaC3 qdaC3
C4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4

Homocedastic ; Different Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1
C2 Vrt Vrt Vrt Vrt ldaC2 ldaC2 ldaC2 CpRgCmb
C3 ldaC3 ldaC3 ldaC3 ldaC3 ldaC3 LocC3 ldaC3 qdaC3
C4 ldaC4 ldaC2 Vrt Vrt CpRgSep ldaC4 qdaC4 CpRgSep

Heterocedastic ; Different Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 qdaC3 qdaC3 qdaC1 qdaC1 qdaC3 qdaC3 qdaC1 qdaC1
C2 qdaC4 qdaC2 qdaC2 qdaC2 qdaC4 qdaC2 qdaC2 qdaC2
C3 qdaC4 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3
C4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4
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Table 11 Average and standard error (in brackets) error rates for thebest methods by data condition: a) Good
separation of group centroids
(in bold if all other methods present average error rates larger by more than 0.01).

Gaussian Skew-Normal
Homocedastic ; Equal Ranges ; Good Separation

30 60 100 150 30 60 100 150
C1 0.1015 0.0800 0.0626 0.0741 0.0924 0.0800 0.0585 0.0621

(.00237) (.00137) (.00069) (.00063) (.00247) (.00116) (.00086) (.00063)
C2 0.0858 0.0705 0.0727 0.0505 0.0732 0.0666 0.0643 0.0635

(.00145) (.00084) (.00048) (.00055) (.00147) (.00084) (.00059) (.00039)
C3 0.0685 0.0743 0.0721 0.0726 0.0792 0.0658 0.0574 0.0634

(.00353) (.00414) (.00047) (.00095) (.00122) (.00071) (.00072) (.00036)
C4 0.1670 0.1505 0.1491 0.1295 0.1566 0.1538 0.1311 0.1414

(.00142) (9e-04) (6e-04) (.00064) (.00152) (.00158) (.00062) (.00100)

Heterocedastic ; Equal Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 0.0784 0.0369 0.0211 0.0168 0.0660 0.0326 0.0350 0.0212
(.00236) (.00196) (.00088) (.00077) (.00439) (.00237) (.00108) (7e-04)

C2 0.0485 0.0241 0.0178 0.0118 0.0381 0.0180 0.0228 0.0096
(.00263) (.00103) (.00048) (.00062) (.00194) (.00085) (.00059) (.00046)

C3 0.0537 0.0226 0.0155 0.0148 0.0733 0.0327 0.0215 0.0218
(.00244) (.00096) (.00068) (.00043) (.00290) (.00101) (.00071) (5e-04)

C4 0.0207 0.0145 0.0111 0.0093 0.0290 0.0170 0.0237 0.0207
(.00243) (.00105) (.00098) (.00062) (.00274) (.00178) (.00125) (.00116)

Homocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 0.0981 0.0760 0.0774 0.0739 0.0998 0.0844 0.0870 0.0726
(.00217) (.00108) (.00071) (.00048) (.00220) (.00098) (.00049) (.00069)

C2 0.0680 0.0785 0.0669 0.0703 0.0922 0.0718 0.0653 0.0646
(.00150) (.00083) (.00037) (.00028) (.00135) (.00055) (.00045) (5e-04)

C3 0.0868 0.0874 0.0650 0.0640 0.0852 0.0837 0.0751 0.0680
(.00156) (.00084) (.00058) (.00047) (.00186) (.00113) (.00079) (.00053)

C4 0.0865 0.0763 0.0790 0.0777 0.0772 0.0682 0.0638 0.0580
(.00132) (.00064) (.00052) (.00037) (.00138) (.00077) (.00051) (.00032)

Heterocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 0.0757 0.0343 0.0246 0.0259 0.0770 0.0343 0.0298 0.0171
(.00337) (.00155) (.00104) (.00071) (.00227) (.00222) (8e-04) (.00084)

C2 0.0364 0.0233 0.0193 0.0148 0.0391 0.0224 0.0143 0.0120
(.00225) (.00092) (.00048) (.00037) (.00228) (.00088) (.00059) (.00054)

C3 0.0518 0.0222 0.0158 0.0196 0.0738 0.0391 0.0224 0.0232
(.00254) (.00115) (.00073) (.00059) (.00334) (.00113) (.00079) (.00067)

C4 0.0168 0.0119 0.0078 0.0049 0.0274 0.0135 0.0185 0.0093
(.00184) (.00068) (.00055) (4e-04) (.00206) (.00095) (.00071) (.00046)
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Fig. 8 Error rates for selected methods on Skew-Normal data, in the validation sample for the homocedastic
condition for all cases, with homogenous Ranges and bad-separated classes.
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Fig. 9 Error rates for selected methods on Gaussian data, in the validation sample for the homocedastic
condition for all cases, with heterogenous Ranges and bad-separated classes.


