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Abstract. With new trends like 3D and deep learning alternatives for
face recognition becoming more popular, it becomes essential to establish
a complete benchmark for the evaluation of such algorithms, in a wide
variety of data sources and non-ideal scenarios. We propose a new RGB-
depth-infrared (RGB-D-IR) dataset, RealFace, acquired with the novel
Intel® RealSense  collection of sensors, and characterized by multiple
variations in pose, lighting and disguise. As baseline for future works, we
assess the performance of multiple deep and “shallow” feature descrip-
tors. We conclude that our dataset presents some relevant challenges and
that deep feature descriptors present both higher robustness in RGB im-
ages, as well as an interesting margin for improvement in alternative
sources, such as depth and IR.

1 Introduction

Over the past few years, the issue of face recognition has been on the spotlight
of many research works in pattern recognition, due to its wide array of real-
world applications. The face is a natural, easily acquirable, trait with a high
degree of uniqueness, representing one of the main sources of information during
human interaction. These marked advantages, however, fall short when images
of limited quality, acquired under unconstrained environments, are presented to
the system. The fact that humans perform and rely on face recognition routinely
and effortlessly throughout their daily lives leads to an increased interest in
replicating this process in an automated way, even when above limitations are
known to frequently occur.

Whereas technological improvements in image capturing and transmitting
equipment managed to attenuate most noise factors, partial face occlusions, se-
vere illumination changes and extreme pose variations still represent genuine
challenges to automated face recognition [1,2]. Approaching these issues will,
therefore, be a matter of either exploring new sources of data, to compensate
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the more traditional alternatives in less ideal scenarios, or designing more robust
algorithms, capable of encompassing such limitations.

Recently, a new trend has been observed in face recognition works, with
information from the three-dimensional structure of the face being incorporated
in recognition frameworks, in an attempt to grant higher robustness in scenarios
such as critically low illumination, where the extraction of color information
is severely limited, or extreme pose variations. In conjunction with the more
traditional color images, 3D data can be used to develop more robust multimodal
approaches [3].

Research in automated face recognition has also found an interesting new al-
ternative in methodologies based on Deep Learning, such as deep Convolutional
Neural Networks (CNN). These approaches have shown increased performance
in a multiplicity of image recognition tasks, due to their capacity to learn ab-
stract and invariant high-level features when compared to the more traditional
application-tailored features [4].

The development of biometric recognition systems is generally limited by the
shortage of large public databases acquired under real unconstrained working
conditions. Database collection represents a complicated process, in which a high
degree of cooperation from a large number of participants is needed. For that
reason, nowadays, the number of existing public databases that can be used to
evaluate the performance of biometric recognition systems in real-life acquisition
conditions and making use of multiple sources of information is quite limited.

Motivated by this need and the growing interest of the research community
in both 3D and deep learning strategies for face recognition, we present a new
database, named RealFace, acquired using the novel Intel® RealSense  collec-
tion of sensors. In addition to this new dataset, we also establish an experimental
setup and a performance baseline using a set of more traditional tailored feature
descriptors as well as some deep learning alternatives. We aim to assess the ac-
curacy, robustness and generalization capability of such features with regards to
both color and 3D information, as well as establishing a solid baseline for further
research in the biometrics scientific community. Finally, we present a new CNN,
trained specifically for face recognition using depth representations of the 3D
structure of the face, validated both on the state-of-the-art EURECOM dataset,
as well as our proposed RealFace dataset.

2 Related Work

Following the good results obtained in object recognition by Krizhevsky et al. [5]
using deep CNNis, their use has shown promising performance in many computer
vision related tasks, as they can achieve more correct assumptions about the im-
age’s local pixel dependencies. This approach showed an absolute decrease in
the error rate of about 10% when compared with densely-sampled SIFT key-
point descriptors applied to the same tasks [5]. In the field of face recognition,
DeepFace [4] has achieved 97.35% accuracy and FaceNet [6] from Google has
achieved 99.63% recognition accuracy on the benchmark Labeled Faces in the
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Wild dataset. These results surpass those achieved with “shallow” methods like
Local Binary Patterns (95.15% accuracy) [7] and SIFT [8] (93.03% accuracy),
due to the ability of deep neural networks to better handle the large amounts of
data present in such datasets, extracting and learning more high dimensional,
invariant features. This translates in increased robustness of the system to vari-
ations in occlusion, pose and illumination.

Simpler networks have also been proposed, achieving results comparable to
the state-of-the art, such as the VGG-Face network by Parkhi et al. [9]. This
network has the advantage of being one of the few pre-trained, publicly available,
deep CNNs. To the extent of our knowledge only a few approaches have made use
of this network [10,11], as of the writing of this paper. All these works conclude
that the VGG-Face can outperform more hand-crafted feature extraction meth-
ods, as it extracts highly discriminative and invariant face descriptors. This was
further noted in the recent International Challenge on Biometric Recognition
in the Wild (ICB-RW), where all the top-ranked algorithms made use of face
descriptors extracted by the VGG-Face. A more thorough exploration of deep
learning approaches in this field is deemed necessary, especially when new data
sources, such as 3D and infrared data, are being made more easily accessible.

Recent technological advances have made it feasible to deploy low-cost alter-
natives to the more traditional high-cost 3D scanners, such as Minolta, Inspeck,
CyberWare and 3dMD [12]. The appearance of Microsoft Kinect has opened a
wide array of opportunities to include three-dimensional information in com-
puter vision solutions that were, otherwise, limited by the wider availability of
color images. These sensors provide two types of data: depth images and 3D
models, that can be point clouds (PC) or meshes. 3D models consist in a repre-
sentation that retains all geometric information of the head. On the other hand,
depth images, or 2.5D, are bi-dimensional representations of a set of 3D points,
in which each pixel in the XY plane stores the depth z value. While the use
of multiple sources of information has been shown to improve performance in a
vast number of biometric recognition works [?], the potential of using a single
sensor to acquire multiple representations of the same data makes it worth to
invest on such alternatives.

A number of datasets have already been built using RGB-D sensors. Some of
these databases include the Aalborg University RGB-D Face Database, the Flo-
rence Superface Dataset, CurtinFaces, FaceWarehouse, EURECOM Kinect Face
database, IIIT-D face database and the Labeled Infrared-Depth Face. A more
detailed state-of-the-art-review regarding these datasets is presented in our pre-
vious work [?]. While the aforementioned datasets present a wide variety of con-
ditions, there is still not enough available relevant public data that uses the more
recent sensors like the Kinect v2 or the Inte]® RealSense = models. Data ac-
quired with these sensors could present useful alternatives for the face biometrics
research community. The scientific relevance of the Intel® RealSense  sensor is
even higher considering that, to the extent of our knowledge, no publicly avail-
able dataset was built on this novel sensor. Intel® provides two models, the
SR300 (previously named F200) for short range applications, and the R200 for
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long range acquisitions. Both sensors, similarly to Kinect v2, also provide IR
images. Both models are based on the same technology, consisting in 3 streams
that provide RGB images, stereoscopic IR and its resulting depth-map repre-
sentations of 3D shape. The prospect of designing a dataset that comprises all
these modalities in conjunction with simulated real-world acquisition environ-
ments would certainly result in a strong contribution to the field. With this
prospect in mind, the next section will serve as a detailed presentation of our
proposed RealFace multimodal face dataset, with regards to both the acquisition
setup as well as its final composition.

3 RealFace Dataset Description

The RealFace dataset was acquired from a set of 42 volunteers, with different
ethnicities, ages and genders. ! Ages ranged from 18 to 40 years, gender distribu-
tion was 22 male and 20 female, while regarding nationality 41 were Portuguese
and 1 was Venezuelan. After signing an agreement for the sole use of the im-
ages for scientific research purposes, each of these individuals carried out the
acquisition protocol detailed below.

The acquisition protocol followed in the present work was designed so that
the environmental conditions presented to the sensor would closely simulate a
realistic set of real-world unconstrained conditions. With this in mind variations
in pose (frontal, left/right profile and left/right +45°), facial expression (neu-
tral and open mouth), occlusions (handkerchief and glasses) and illumination
(natural, artificial and darkness) were considered in the acquisition setup. All
combinations of occlusion (2) and facial expression (2) were replicated for every
illumination (3) and pose (5, plus an extra neutral) conditions, and acquisition
was made in a sequential way so as not to render the whole process too long
and tedious for the volunteers. Due to the different optimal operating ranges,
the whole process was repeated for each sensor, with the distance to the sensor
being varied from 0.5 m, for the SR300 model, to 1.3 m, for the R200. The full
acquisition setup is depicted in Fig. 1 and the whole acquisition process took
approximately 12 minutes per subject, resulting in a total of 72 conditions. Some
representative examples are depicted in Fig. 2.

To take advantage of all data streams made available by the Intel® RealSense
sensors, for each of the aforementioned conditions, we acquired an RGB image
and its respective Point Cloud, as well as the IR images provided by the inte-
grated sensors (two for the R200 and one for the SR300) and the corresponding
depth maps. This wide array of modalities and conditions confers our dataset a
high versatility regarding its possible uses within the biometrics research com-
munity. A representative example of the data obtained with the SR300 model
for a single acquisition is depicted in Fig. 3.

Additionally to the multiple data sources, for each RGB/Point Cloud/IR
group, a set of facial keypoints were also manually annotated, to both facilitate

L All volunteers were gathered from the students and staff community of the Faculty
of Engineering of the University of Porto, Portugal).
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Fig. 1: RealFace dataset acquisition setup: (a) subject; (b) acquisition control

software; (¢) SR300 model and (d) R200 model.
m

Fig.2: Representative examples of the poses, occlusion, illumination and ex-
pression variations considered for each subject during the RealFace acquisition
process.

the region-of-interest (ROI) segmentation, as well as allowing the dataset to be
used as a benchmark for keypoint detection in any of the presented modalities.
The amount and nature of the annotated keypoints depended on the variations
that characterized each image. In frontal images, both eye centers, the nose tip
and both mouth corners were annotated, except for the handkerchief occlusion
scenario, where both nose tip and mouth corners were not considered. In profile
and rotated pictures, the closest visible eye center, the nose tip and the clos-
est visible mouth corner were considered, as well as the visible ear lobe. The
handkerchief occlusion limitations were also verified here, with no nose tip and
mouth corners being considered. When hair occlusion resulted in no visible ear
lobe this point was also left out from the annotation. A visual example of the
manual annotation in each of these scenarios is depicted in Fig. 4.

Al

Fig. 3: Multimodal data from a single acquisition in the RealFace dataset: (a)

RGB; (b) Depth-map; (c¢) Point-Cloud and (d) Infrared.



6 Authors Suppressed Due to Excessive Length

AT
K wlll woill wlll

Fig.4: Manual annotation on the RealFace dataset: (a) Frontal neutral; (b)
Frontal occlusion; (c) Profile neutral and (d) Profile occlusion.

The whole RealFace dataset will be made publicly available for research
purposes. For more information regarding its availability contact the mailing
author.

4 Experimental setup for the RealSense dataset

In this section we set an experimental setup for performance assessment in the
RealFace dataset. The baseline results obtained following the setup will be pre-
sented afterwards in this section. We will cover data partitioning and region-of-
interest segmentation, as well as the shallow and deep feature representations
chosen for the baseline performance assessment. We start this analysis by pre-
senting some global considerations regarding some cases we chose to leave out
of the present work, but could be the focus of future endeavors on this dataset.

Global considerations: We chose to work solely on frontal poses, leaving both
the £45° and the profile images out of our baseline analysis. We felt that in-
cluding this kind of images would dilute the focus of the paper. The R200 model
was also left out of this work due to the fact that we confirmed what it had been
previously reported in literature: the quality of the depth images acquired with
this model is still very low and unfit for object recognition problems [13]. Nev-
ertheless, we propose a region-of-interest segmentation strategy for non-frontal
images, and the whole setup is easily extrapolated for future work with the R200
images.

Pre-processing: The manually annotated keypoints were used to crop a region-
of-interest (ROI) around the nose. In frontal images, a square ROI was consid-
ered, with the center corresponding to the nose tip and the side set to twice the
distance between the eye centers. For £45° variations, on the other hand, we
considered a square box centered on the horizontal line passing through the nose
tip, and with side corresponding from 1.5x the distance between the nose tip
and the ear lobe. For the profile images a similar strategy was followed, but the
side corresponded to 1x the aforementioned distance.

Data partitioning: We chose images characterized by both neutral expression
and artificial illumination to serve as training data for each individual. This
decision is based on the fact that we want the most controlled scenarios to be
used during training, and the most complicated ones be left for testing. It is
intuitive to understand that training an algorithm to encompass all possible
acquisition scenarios is unfeasible, when real-world applications are considered.
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Thus, by using the more stable images during training we aim to assess the
capability of algorithms of presenting robust behaviour when more complicated
challenges are presented to them. All other combinations of conditions were
assessed individually during testing: illumination (natural - N; artificial - A;
darkness - D), occlusion (S - scarf; G - glasses) and expression (N - neutral;
OpM - open mouth).

Shallow features: From an extensive list of state-of-the-art feature extraction
methods for face recognition using RGB images, the top performances were ob-
served for PHOW, TPLBP and FHOG. A similar analysis was carried out for
depth images, with both PHOW and FHOG presenting consistently better per-
formances, while 3D-LBP finished the top-ranked descriptors. TPLBP (Three-
Patch LBP) and 3DLBP are variants of traditional LBP. Presented in [14],
3DLBP was proposed as a variation of traditional LBP, for depth images, where
depth differences are encoded in the final descriptor. In [15] TPBLP was pro-
posed as an upgrade of traditional LBP descriptor for face identification. Here,
three patches are considered to produce a single bit value for each pixel. The
Felzenszwalb’s HOG (FHOG) descriptor has been described in [16] as a variant
of traditional HOG for object detection, where a feature pyramid is calculated for
a finite number of scales, using repeated smoothing and sub-sampling. PHOW,
presented in [17] consists in a variation of dense-SIFT which is applied at multi-
ple scales and combined with VLAD (Vector of Linearly Aggregated Descriptors)
enconding.

Deep features: Using the pre-trained model provided by [18], we tested the
VGG-Face CNN for all modalities, by extracting features from the fc7 layer and
using them to train a logistic regression classifier, as described in the following
paragraph. For depth images, we also decided to train a new CNN from scratch.
To serve as training we used data from 195 subjects obtained from all the avail-
able datasets presented in Section 2 (except EURECOM and RealFace, which
were left for performance assessment). To avoid the class unbalance caused by
the high degree of heterogeneity in the original number of samples per individ-
ual, we chose to generate synthetic depth maps, by flipping and rotating the
original point clouds, until a total of 1000 samples per subject were obtained.
The tested architecture consisted in 5 conv-relu-conv-relu-pool blocks followed
by 2 fully connected layers. All conv layers include 3 x 3 filters, whereas the
number of filters for each block is 8 — 16 — 32 — 64, respectively. Finally the
two fully connected layers consist of 256 units each. A batch size of 256 and a
logarithmically decaying learning rate from 10~! to 10~% were considered, for a
total of 50k iterations.

Classification: A set of logistic regression models was trained for classifica-
tion, using each of the aforementioned shallow and deep feature descriptors. The
model choice was motivated by its simplicity, leaving a considerable margin for
improvement for future works on the dataset, as well as the good performance
that it revealed when compared to other alternatives, such as SVM and k-nearest
neighbors. The fact that class probabilities can be easily obtained was also a rul-
ing factor of this choice, as it facilitated the multimodal fusion process described
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in the next section. Decision for a single feature representation and modality is
carried out by maximum probability, with regards to all possible IDs.

Multimodal fusion: As referred earlier, the joint use of multiple data sources
to solve the biometric recognition problem has shown improved performance in
a multiplicity of recent works. To evaluate such effect in the RealFace dataset,
we combine the individual logistic regression probabilities for a given ID from
the RGB, depth and IR representations of a single test sample, pp,oa(ID|xz;),
using a weighted-sum rule, p(ID|x;) = wrep - pre(ID|z;) + wq - pa(ID|x;) +
wrg - prr(ID|z;), with > wmeq = 1 and wpmeq optimized by grid search.
Decision is then carried out by maximizing the fusion probability p(ID|x;) with
regards to all possible IDs. To overcome the loss of performance in the case of
RGB in darkness conditions, a new method is proposed to deal with severely
low illumination conditions. For all test images, the individual mean intensity
of gray-scale converted RGB image, u;, is calculated and, depending on this
value, a corrected weight for RGB-modality, whp, is calculated, using a logistic
function, whop = WM - WreB, Where 6 was empirically set to 20
as it was observed to be the mean transition intensity between fair and poor
illumination conditions. This adaptation allows the algorithm to self-adapt its
performance, by adjusting the RGB weight to be higher in better illumination,
and lower in less ideal low illumination conditions. The weight loss wiop —wWraB
is then divided equally between the other modalities.

Following the experimental setup described throughout this section the base-
line performance for the RealFace dataset will be presented next. Furthermore,
some experiments were also carried out on the RGB-D EURECOM dataset, so
as to better understand the challenges of our proposed dataset when compared
with a state-of-the-art alternative.

5 Results and Discussion

In this section we start by giving some insight into the EURECOM dataset and
the experimental setup used for performance assessment in this alternative. We
then proceed with the discussion of the results obtained for each tested dataset,
with regards to the specific challenges that each one poses.

5.1 EURECOM Dataset

Composition: The EURECOM dataset, acquired with the Microsfot Kinect
v1 sensor, is composed by a set of well-aligned 2D, 2.5D, 3D and video data.
It includes scans from 52 subjects (38 males and 14 females) from two sessions
interleaved from 5 to 14 days. Each session has nine types of scans that include:
neutral face (N), open mouth (OpM), smile (S), strong illumination (LO), occlu-
sion with sunglasses (OE), occlusion by hand (OM), occlusion by paper (OP),
right face profile and left face profile. The acquisition environment is controlled
in terms of luminosity, with the individuals always in a range from 0.7 to 0.9
meters to the sensor. A blank background was chosen to make the processing of
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the data easier. An example of the 2D and 2.5D images from a single individual
is presented in Fig. 5.

Fig.5: Example RGB (a)-(g) and depth (h)-(o) images from the multiple subsets
of the EURECOM dataset.

2228 )
annnn

Experimental setup: We chose to follow a setup similar to the one we proposed
for the RealFace dataset. The neutral images from both sessions were, therefore,
chosen for training and all other subsets were considered individually for testing.
ROI segmentation was carried out using the keypoints provided by the dataset,
using a methodology analogous to the one described in Section 4 for both RGB
and depth images. Resizing was carried out to 96 x 96 and 224 x 224, for depth
and RGB data respectively. These dimensions were chosen to correspond to the
inputs expected by the CNNs used in this work.

5.2 Performance analysis

The results for the EURECOM dataset are summarized in Table 1. In RGB
images, shallow and deep features presented similar high performance for all
tested conditions. PHOW with VLAD encoding was the shallow descriptor with
better overall performance, and showed great versatility in image description
by achieving the highest overall performance also for depth images. For such
images, the overall performance drop comparatively to their RGB counterparts
is clear. In this case, shallow features outperform deep features by a considerable
margin. This drop in performance can be understood by the fact that only RGB
images were considered during the training of the VGG-Face CNN. As there is
no trivial visual similarity between the two types of images, it is logic to conclude
that the filters learnt for the RGB problem are not directly applicable to depth
inputs. This observation is also corroborated by the fair results presented by
the proposed pre-trained CNN (PTen ) evaluated in the non-occlusion cases.
Clearly, the learnt filters are able to achieve some discrimination, unlike the
VGG-face alternative, but fail to adapt to non-ideal cases related to occlusions.
When both modalities are combined, as referred in the state-of-the-art, the global
performance is slightly increased, although not statistically relevant due to the
already very high performances obtained by the RGB modality alone.

Table 2 presents the main results obtained for the RealFace dataset. As
expected from being a more challenging dataset than EURECOM, the overall
performance drop is evident. In RGB images, deep features clearly present a
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Table 1: Performance comparison of shallow (S) and deep (D) features on the
RGB and depth modalities of the EURECOM dataset.

Depth
Feat L E[OM]OP [OpM]| Sm LOJOE[OMJOP[OpM][ Sm [ G
FHOG 100 96.2 84.6 63.5 88.5 98.1(88.5((89.4 89.4 23.1 6.7 87.5 100 |66.0
3 PHOW 99.0 96.2 100 97.1 100 100{98.7[[98.1 92.3 52.9 26.0 89.4 99.1 [76.3
LBP 100 95.2°95.2 88.5 95.2 98.1[95.7| — — — — — — —
3D-LBP — — — — — — — 1/90.4 93.3 12.5 4.8 89.4 99.1 [64.9
VGG-F_O 100 98.1 95.2 96.2 100 100(98.2((34.6 12.5 18.3 13.5 16.4 38.46(19.1
D PTonN — — — — — — — 1|85.6 82.7 6.7 2.9 49.0 84.6 [51.9

VGG+PHOW [100 98.1 96.2 96.2 100 100|98.4
PHOW+PHOW|100 99.1 100 97.1 100 100 |99.4

more robust behaviour, when presented to more variable illumination and oc-
clusion conditions. The PHOW shallow descriptor, however, keeps the highest
performance for depth images, proving to be an interesting alternative for object
description in this type of data. The same observations regarding the VGG-Face
and our proposed CNN for depth images can be made for this dataset, with the
occlusion scenarios severely compromising global performance. In the IR modal-
ity some interesting observations can also be made. First, both PHOW and the
deep descriptors from VGG-Face achieve the best overall performances. While
the obtained performance is still significantly lower than the observed for RGB
images, it is interesting to note how the filters learnt by VGG-Face still carry
some of the discriminative power to this new modality. As referred above, for
depth images, the visual similarity between RGB and IR images might translate
into similar responses to the pre-trained filters, thus justifying the similar ob-
served behaviour. The improvement caused by multimodal fusion in this dataset
is more clearly noted than in EURECOM. It should be considered that no dark-
ness conditions were evaluated for the RGB modality alone and, therefore, direct
comparison of multimodal performance can only be carried out with the remain-
ing modalities.

6 Conclusion and Future Work

The growing interest in 3D information for face recognition, as well as the emer-
gence of new low-cost sensors, such as the Intel RealSense, has motivated the
creation of the RealFace dataset, a multimodal set of images acquired under a
wide array of non-ideal conditions to be used for performance assessment in a
multiplicity of applications. Even though we only assessed its use in biometric
recognition, we acknowledge that its usability can extend to fields such as face
alignment, gender and age prediction as well as face detection in depth and IR
images. The manually annotated keypoints, as well as the defined ROI segmenta-
tion methodologies, make the performed experiments easily replicable and confer
the presented performance baseline a strong starting point for further research
in the community. However, the number of enrolled subjects is still not as high
as desirable, and an extended version of the dataset would be an interesting line
of research in the future. The inclusion of more intermediate non-frontal poses
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Table 2: Performance comparison of shallow (S) and deep (D) features on the
RGB, depth and IR modalities of the RealFace dataset.

mNNNpMNN pM DN DOpM DS D

Feat /SS

FHOG 54.8 39.3 26.2 66.7|] 96.4 42.9 90.5|| — - - - 159.5
PHOW 42.9 33.3 14.3 42.9]] 100 54.8 97.6|] — — -  — [55.1

LBP 64.3 42.9 27.4 65.5]] 96.4 56.0 95.2[] — — — — [64.0
VGG-F_o 98.8 96.4 81.0 89.3[] 100 88.1 95.2|] — — — - 192.7

Depth

Feat /SS NN NOpM NS NG[[AOpM AS AG[[DN DOpM DS DGJ| G
FHOG 71.4 46.4 28.6 79.8|| 78.6 33.3 76.2{|90.5 66.7 32.1 70.2(61.3
PHOW 76.2 66.7 46.4 66.7|] 88.1 48.8 65.5(|88.1 77.4 36.9 54.8(65.0
3D-LBP 54.8 47.6 26.2 66.7|] 76.2 21.4 61.9(|83.3 60.7 16.7 57.1[52.1
VGG-F_o 17.9 13.1 6.0 15.5|[ 11.9 9.5 14.3([[19.1 9.5 9.5 15.5[12.9
PTcnnN 48.8 44.1 15.5 66.7|] 72.6 16.7 56.0[[58.3 51.2 13.1 53.6[45.1
Feat /SS P P )

FHOG 88.1 75.0 45.2 89.3|| 94.1 53.6 89.3([95.2 79.8 44.1 82.1(76.0
PHOW 97.6 94.1 60.7 90.5|| 100 66.7 96.4[[98.8 91.7 48.8 88.1(84.9

LBP 84.5 76.2 42.9 85.7[] 94.1 45.486.9[[92.9 77.4 33.3 81.0[72.8
VGG-F_o 100 96.4 76.2 78.6[] 96.4 75.0 73.8[|98.8 95.2 61.9 71.4|84.0
Feat/SS 5 P P

VGG+PHOW+VGG [100 100 89.3 91.7|[ 98.8 90.5 95.2{|98.8 95.2 63.1 76.2(90.8
VGG+PHOW+PHOW|(98.8 96.4 81.0 89.3|| 100 88.1 95.2|| 100 90.5 58.3 90.5(89.8

would further extend the usability of the dataset for alternative applications
such as pose quantification.

Regarding the comparative analysis between deep and shallow features we
observed that a few challenges are still unsolved. While the publicly available
VGG-face network showed excellent performance in the RGB modality for all
tested scenarios in both datasets, surpassing all alternative shallow feature al-
ternatives, performance dropped considerably for depth images. The pre-trained
CNN that we presented showed increased performance in some scenarios, but still
stays below the results obtained with specific tailored features such as PHOW
and FHOG. The fact that the amount of data used to train VGG-Face is consid-
erably higher than the amount of depth data used to train our CNN may account
for these observations. With the appearance of more datasets based on depth
representations of faces, and the consequent growth in the amount of available
data, an improved version of the proposed CNN could also be easily obtained,
namely by augmenting the training dataset to better deal with the presence of
occlusions.
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