banner above paper title

Generation of Efficient C Code from
MATLAB Using SSA-based Optimizations

Luis Reis

Departamento de Engenharia Informatica
Faculdade de Engenharia (FEUP)
Universidade do Porto, Porto, Portugal
INESC-TEC, Porto, Portugal

€i09030@fe.up.pt

Abstract

Many fields of engineering, science and finance use models that
are developed and validated in high-level languages such as MAT-
LAB. However, as these systems are moved to environments with
resource constraints or portability challenges, these models often
have to be rewritten in lower-level languages such as C. Doing
so manually is costly and error-prone, but automated approaches
tend to generate code that can be substantially less efficient than
the handwritten equivalents. Additionally, it is usually difficult to
read and improve code generated by these tools.

In this paper, we describe how we improved our MATLAB-
to-C compiler, based on the MATISSE framework, to be able to
compete with handwritten C code. We describe our new IR and
the most important optimizations that we use in order to obtain
acceptable performance. We also analyze multiple C code versions
to see where our generated code still trails behind and identify a few
key improvements that could be made to our optimizers to generate
code capable of outperforming handwritten C. We evaluate our
results using the Disparity benchmark, from the San Diego Vision
Benchmark Suite, on a desktop computer and on an embedded
device.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors Code generation, Compilers, Optimization,
Retargetable compilers

General Terms Algorithms, Performance, Languages

Keywords MATLAB, source-to-source compiler, SSA, optimiz-
ing compiler

1. Introduction

MATLAB (MathWorks 2016a) is a high-level programming lan-
guage that is widely used in several scientific and engineering do-
mains, notably for prototyping programs and algorithms. Often,
MATLAB users wish to deploy their programs to devices in which
the MATLAB runtime is not available, does not have acceptable
performance or consumes too many resources. In these cases, pro-

[Copyright notice will appear here once *preprint’ option is removed.]

Generation of Efficient C Code from MATLAB Using SSA-based Optimizations

Jodo Bispo

Departamento de Engenharia Informatica
Faculdade de Engenharia (FEUP)
Universidade do Porto, Porto, Portugal
INESC-TEC, Porto, Portugal

jbispo@fe.up.pt

Joao M. P. Cardoso

Departamento de Engenharia Informatica
Faculdade de Engenharia (FEUP)
Universidade do Porto, Porto, Portugal
INESC-TEC, Porto, Portugal

jmpc@fe.up.pt

grammers may either spend time and resources to manually rewrite
their programs in languages such as C, or rely on automated tools
to do so. Unfortunately, generating code as efficient as handwrit-
ten C remains a challenge, in part due to the dynamic nature of
MATLAB, and in part because some efficient C idioms have no
MATLAB counterpart.

There are several approaches that compile a subset of MATLAB
to other languages, namely Fortran (DeRose 1996) or C (Prasad
et al. 2011). MATISSE (Bispo et al. 2013), a compiler framework
on top of which we built a MATLAB-to-C compiler, is capable
of generating efficient C code for a non-trivial subset of MATLAB,
and we are continuously working to expand this subset. Other goals
include generating readable C code, support for Aspect-Oriented
Programming (AOP) concepts (Kiczales et al. 1997) and offering
fine-grained control over the generated C code, such as control
over whether dynamic memory allocation is used. MATISSE also
features a working prototype for a MATLAB-to-OpenCL code
generator (Bispo et al. 2015b).

As we expanded our supported subset of MATLAB and started
working on more demanding benchmarks and features, we found
ourselves increasingly constrained by the architecture of our com-
piler. In order to improve the compiler, we redesigned some por-
tions of the C backend by introducing an SSA intermediate repre-
sentation, on which most of our analyses and optimizations are now
based. We also revamped various components to use this represen-
tation.

In this paper we introduce several transformations used in our
system, and compare our automatically generated code with an
equivalent handwritten version in C. This paper makes the follow-
ing contributions:

e It describes our SSA approach for MATLAB-to-C compilation;
e An SSA-based iterative type inference algorithm;

e Important optimizations necessary to generate efficient low-
level code, namely the use of a Z3-based solver to remove
redundant runtime checks, and how to transform MATLAB
expressions into efficient loops;

e A set of improvements to SSA-to-C code generation, to ensure
that the generated code is efficient and to account for our MAT-
LAB extensions;

e An evaluation of how automatically generated code compares
to handwritten C code.

The remainder of this paper is structured as follows. Section 2
describes our SSA representation for MATLAB. Section 3 de-
scribes the most important SSA optimizations MATISSE applies

2016/3/31

in order to generate efficient code, including a type and shape in-
ference algorithm. Section 4 describes how to obtain C code from
this IR and Section 5 evaluates our compiler based on a number of
metrics. Section 6 describes related work and Section 7 concludes
this paper and suggests future work.

2. Matrix-Based SSA

Previous versions of MATISSE (Bispo et al. 2015a) had two in-
termediate representations: an AST based on MATLAB (which we
call "MATLAB IR”) and another tree-based representation that at-
tempts to closely mimic C concepts and semantics, solely used for
C code generation (which we call the ”’C IR”). The MATLAB IR
was directly converted to C IR statement by statement, and type
inference occurred during this process. This limited the scope of
many analysis and transformations, including type inference. This
is undesirable because we often want to apply function-wide opti-
mizations or code transformations that rely on type information but
for which the C IR is too low-level.

To solve this problem, we developed a new SSA representation
to MATISSE, between the MATLAB IR and the C IR, and built
a pass-based system for it. The type inference mechanism, the
optimizations and the C IR generator are now based on the SSA
IR. Because the IR is built before type inference, it has both typed
and untyped variants.

Figure 2 shows the SSA representation for the simple MATLAB
program presented in Figure 1, before type inference has been ap-
plied. In this IR, each function is composed of one or more blocks,
and each block has zero or more instructions. Each instruction per-
forms a simple operation, such as a matrix set or a function call, so
complex statements are often translated to multiple instructions that
use temporary variables. The control flow mechanisms of this IR
are close to their MATLAB counterparts, so concepts like for loops
and breaks have explicit instructions, and unconditional jumps do
not exist. In the SSA, matrices are first-class values, meaning that
any modification (such as a matrix set) must be assigned to a new
variable. Conceptually, every matrix set copies the entire matrix be-
fore setting the appropriate value, but in practice the variable allo-
cator prevents this from happening by assigning multiple versions
of the matrix to the same variable whenever possible. MATLAB
operators (e.g., +, -, /) are converted to the equivalent function calls.

Variables that start with a $ symbol are temporaries. The re-
maining variables have a direct equivalent in the original MAT-
LAB source code, with the variable prefix before the $ being the
corresponding MATLAB name (e.g., xyz$1 corresponds to xyz).
Return values are stored in variables ending in $ret. The SSA IR
has instructions to efficiently express both high-level MATLAB id-
ioms (such as matrix sets that may resize matrices, matrix_set)
and lower-level optimized constructs (e.g., simple_set, that rep-
resents matrix sets that are known to be in range, and therefore
never resize the matrix and do not need additional checks).

The compiler has also been improved in several ways. It now in-
cludes an iterative type and shape inference system, automatic per-
formance diagnostics that statically indicate parts of the program
that may be inefficient, and support for matrix resizes through out-
of-range sets (e.g., A(4) = 1; where A has fewer than 4 elements
or has not been previously declared at all).

3. Optimizations

We describe some of our most important optimizations introduced
with the SSA system.

3.1 Improvements to Type and Shape Inference

Type and shape inference is essential because MATISSE requires
accurate type information in order to generate efficient C. Many

Generation of Efficient C Code from MATLAB Using SSA-based Optimizations

function y = f()
y = zeros(l, 10);
for i = 1:10,
y(l, i) =1 + 1;

end
end
Figure 1. Simple MATLAB program.
block #0:
$zeros_argl$l =1
$zeros_arg2$1 = 10

y$2 = untyped_call zeros $zeros_argl$l,
$zeros_arg2$1

$start$1 =1

$interval$l = 1

end1 = 10

for $start$l , $interval$1l , end1, #1, #2
block #1:

y$3 = phi #0:y$2, #1:y$4

i$2 = iter

$plus_arg2$1l =1

$plus$1l = untyped_call plus i$2,
$plus_arg2$1

$y_index1$1 = 1

y$4 = matrix_set y$3, Sy_index1$1, i$2,
$plus$1
block #2:

y$ret = phi #0:y$2, #1:y$4

Figure 2. SSA representation of the program shown in Figure 1.

MATLAB operations have different semantics depending on the
types of the inputs, so knowing which ones should be used helps
reducing the number of runtime checks. With the transition to the
SSA system, we made substantial changes to the type inference
system.

First of all, it is now possible for a MATLAB variable to change
types in a function, provided it has only a single type at each point
of the program. This is possible because each MATLAB variable
can have multiple corresponding SSA variables, and each of those
can have its own type.

For code without loops, the new type inference system behaves
similarly to the old one. Each instruction type has an associated
type inference rule to determine the types of the output variables.
When a ¢ instruction for a branch is found, then the types of
the input variables are combined and the result is used for the
output variable. When equal variables are combined, the result is
an identical type. If compatible variable types are combined (e.g.,
a 2D double matrix and a 3D double matrix), the result is the
general variable type that covers all combined types (e.g., a double
matrix with an unknown number of dimensions). If the types are
incompatible, then the type inference emits an error.

When the type inference pass reaches a loop, it visits its contents
multiple times until the result of the inference stabilizes. To do so,
it uses a queue pending start blocks. For every start block N, there
is a list of inferred variable types (the fype context for N) and a list
where it stores the results of the algorithm (the end data). Initially,
the pending start blocks queue contains only the ID of the block

2016/3/31

that contains the loop. The instructions in the loop are then visited
iteratively until the pending start blocks queue is empty:

e Remove an element from the pending start blocks queue. We
refer to this as the loop entry point.

e The current variable types are those in the context for the entry
point.

e When a ¢ instruction is found at the beginning of the loop, set
the type of the output variable to be the same as the variable
coming from the loop entry point.

e Every time a break instruction is found, add the current vari-
able type information to the end data.

e Every time a continue instruction is found, add the current
variable information to the type context for the block containing
the continue instruction. If this results in any changes to
that context, add the ID of the block containing the continue
instruction to the pending start blocks. If the current loop is
a for loop (as opposed to a while), then also perform the
operation described for break instructions.

e Treat the end of the loop as an implicit continue instruction.

When adding type information to a type context that does not
exist, the compiler creates a new type context with that information.
When a variable type is added to a type context, the compiler
combines the new type with the type that was previously in that
context and use the result as the new type for that context.

3.2 Loop Conversion Passes

The previous version of MATISSE implemented an optimization to
convert element-wise operations, such as matrix addition, into for
loops. Our SSA system also performs this transformation, but we
broke it into a larger set of interacting transformations, rather than a
single one. We call this group of transformations ’Loop Conversion
Passes™:

1. Conversion of certain instructions, such as range matrix ac-
cesses (e.g., A(:, 1:4)), element-wise (e.g., A + B) and re-
duction (e.g., sum(X) function calls) to loops;

. Loop fusion;

. Elimination of reads after writes to the same address;

Dead-Code Elimination;

. Loop matrix dependency elimination.

Step 1 translates expressions such asX = A(:);,Y = A + B;
or x = sum(A) (where A is a 1D matrix) into the equivalent for
loops. At the SSA stage the concept of statements no longer ex-
ists, so this captures operations that appear in subexpressions such
as £(A + B). However, complex expressions will result in more
loops that necessary. For instance, the statement x = sum(A(:) +
B .* C) will generate 4 loops: one for the range access, one for
the addition, one for the multiplication and one for the sum. Addi-
tionally, we will also allocate three unnecessary temporary matrices
(one for A(:),one for A(:) + BandoneforA(:) + B .x C).

Step 2 merges multiple for loops. For loops can be fused if
a number of conditions are met, notably related to side-effects,
number of iterations and existence of instructions such as break.
Our loop fusion pass is capable of merging loops with different
depths (e.g., a 2D loop with a 1D loop).

Figure 3 shows the equivalent MATLAB code for the statement
x = A(:) + B .x C,after loop fusion. We can see that now there
is only one loop, and we still have temporary matrices which are
written to, and then immediately read at the same index. Step 3
replaces the reads to the temporary matrices with an access to the
original value, so that Step 4 can delete the temporary matrices.

Generation of Efficient C Code from MATLAB Using SSA-based Optimizations

for i = 1:iters ,
tmpl (i) A(i);
tmp2(i) = tmpl(i) + B(i);
x(i) = tmp2(i) .x C(i);

end

Figure 3. MATLAB code representing the behavior of the IR code
forx = A(:) + B .x C after loop fusion.

At this point, the SSA code for statements such as A(i, :) =
A(i - 1, :); consists of a single for loop. However, the matrix
read still references the version of the matrix from before the loop,
asinA_in_loop(i, j) = A_before_loop(i - 1, j).Inthis
case, the variable allocator can’t assign both variables to the same
C matrix because their lifetimes intersect (see Section 4). This re-
sults in unnecessary matrix copies and suboptimal performance. To
avoid this, we apply Step 5 (Loop Matrix Dependency Elimination)
that replaces A_before_loop with A_in_loop whenever it detects
that doing so is valid.

3.3 Use of the Z3 Theorem Prover

As we expanded the supported MATLAB subset, a number of
runtime checks are necessary to ensure correctness. For instance,
every matrix set can potentially trigger a matrix resize so we must
check whether an index is out-of-range. Even if those resizes never
happen at runtime, the mere presence of the checks in the code
can take a significant amount of time and inhibit valuable compiler
optimizations.

We handle these situations in two manners: MATISSE features
an “Unchecked” mode that turns off most of these checks. This
mode can be applied per-function, or to an entire program at once.
Additionally, we attempt to statically check whether certain checks
are necessary at all using a solver. We try to remove as many
runtime checks as possible, and convert complex SSA instructions
(e.g., matrix_set) into simpler ones (e.g., simple_set).

Our solver code is separated in two parts: The Shape Solver
and the Scalar Solver. The shape solver keeps track of the relative
shapes of variables and finds statements suchas A = zeros(N, M);
to discover facts such as size (A, 1) == N.Italso identifies when
multiple matrices have identical sizes and that certain variables
contain the size of other matrices (e.g., x = size(4) ;). However,
the shape solver is unable to know how scalar values relate to each
other. For those tasks, it uses the scalar solver.

The scalar solver receives function-wide information such as
i = a - 2 to determine whether statements such as i < a are
necessarily true. MATISSE features two scalar solvers: a fast naive
solver developed by us for test purposes, and a second higher
quality solver based on third-party libraries. We initially considered
using Symja (Symja 2016), but we found it unsuitable for our
purposes. For instance, it failed to identify thata < a + 1 or that
a<b & b < cimpliesa < c.

For these reasons, we decided to try Z3 (De Moura and Bjgrner
2008), a full-fledged theorem prover by Microsoft Research that
can be used to check theorems for satisfiability. In MATISSE,
we want to determine whether certain expressions are necessary,
not satisfiable (possible). To test an expression X, we assert =.X
and see if the result is satisfiable. If it is not, we know that X is
necessarily true.

We only use a small subset of Z3’s features. Notably, we do not
currently use any of Z3’s array or bitvector operations. In addition,
we rely on Z3’s soft timeouts to prevent excessive compilation
times.

2016/3/31

jmpc
Riscado

jmpc
Texto digitado
Simplification?

3.4 Matrix Preallocation

MATLAB does not require programmers to initialize matrices be-
fore writing values to them, but doing so can still be tremendously
beneficial for performance reasons. If a matrix set refers to a posi-
tion out of index, then a resize operation is triggered. If this hap-
pens inside a loop, this can have a substantial negative impact on
performance. The MathWorks Code Analyzer identifies and warns
against this performance anti-pattern (Shure 2012) but, neverthe-
less, it still appears in some examples, such as the Disparity bench-
mark mentioned in Section 5.

MATISSE automatically identifies some simple variants of this
anti-pattern and preallocates the matrix, with significant perfor-
mance improvements.

3.5 Pass by Reference

When MATLAB matrices are used as function arguments, they
are passed by value. Conceptually, this means that if the matrix is
modified by the function, such changes are not visible to the caller,
which still has access to the original matrix. We handle this case by
having the callee copy any matrix arguments that may be modified
in its body.

This approach prevents some copies and is compatible with
MATLAB semantics, but it’s not sufficient to match C perfor-
mance. We extended MATISSE to identify directive comments of
the form %!by_ref VarName, to identify which arguments should
be passed by reference. We wanted this approach to be both com-
patible with MATLAB, consistent with our SSA IR semantics and
resilient to user errors. Based on these constraints, we designed the
directive to work as follows:

e If a function input X is passed by reference, then there must be
a single function output with the same name (the order of the
inputs/outputs does not matter).

If a function has a % ! by_ref output, then whenever it is called,
its nargouts must be large enough to cover that output.

The inferred type of the output must be compatible (in terms of
C signature) with the type of the corresponding input.

Arguments passed by reference in MATLAB must be simple
variables, not complex expressions.

In the caller, the inputs passed by reference and their matching
outputs must correspond to the same MATLAB variable.

Currently, only matrix types are supported. It does not make
sense to pass scalars by reference as there is no gain to be had.

Even then, it is not always possible to avoid using a separate
matrix. We emit a performance warning when the variable allocator
is unable to properly handle %!by_ref, but we ensure that the
generated code is still correct in these cases.

The modified code still works correctly in MATLAB, but users
can use this feature to reduce the number of matrix allocations in
the C code that MATISSE generates.

3.6 Other Optimizations
MATISSE includes a number of other optimizations, including:
¢ Elimination of branches, when the boolean value of the condi-
tion is known at compile time.

e Elimination of loops with O or 1 iterations. We effectively per-
form a full loop unroll in these cases.

e Loop Interchange for some simple cases where loop iterations
are only used for matrix accesses, and each iteration does not
depend on the results of any other iterations.

Generation of Efficient C Code from MATLAB Using SSA-based Optimizations

® Bounds check motion for matrix_get instructions inside
loops.

e Reduction operations [!!! Adicionar description, “feature” que
est na tabela 1]

In total, the MATISSE MATLAB-to-C compiler now has more
than 30 different optimization passes, in addition to various other
support analyses and transformations.

3.7 Comparison of MATISSE versions

Table 1 shows how the current version of MATISSE compares to
previous ones. Most optimizations are still supported, the excep-
tions being weak types and matrix views (Bispo et al. 2015a). Weak
types is a technique that allows some limited multi-pass type in-
ference behavior when performing only a single-pass. Since MA-
TISSE now uses iterative type-inference, this technique is no longer
needed. Matrix views are less useful now due to the improvements
described in Section 3.2, but they could still yield improvements
in some examples, so we may reintroduce this optimization in the
future.

Overall, we now support a larger subset of MATLAB and fea-
ture a wider range of optimizations that cover most of the cases that
the previous system was able to handle, in addition to several new
ones.

4. Code Generation

After applying the SSA passes, we generate C code. We first con-
vert some of our more complicated SSA instructions into their sim-
pler counterparts. Then, we determine which C variables corre-
spond to which SSA variables and eliminate ¢ nodes. To do so,
we use an algorithm based on (Boissinot et al. 2009), which we
adapted to better fit our needs. Since this stage is not our bottleneck,
we skipped the performance improvements aimed at JIT compilers
and implemented a simpler but slower version of the algorithm.

1. We convert our IR to CSSA form by adding parallel copy
instructions, as described in Method I of (Sreedhar et al. 1999);

2. We then determine which SSA variables should be grouped into
a single C variable, using a method which we describe in more
detail later in this section;

3. We generate a C variable name for each group of SSA variables;
4. We generate the C IR one instruction at a time;

5. Once the C IR for all functions is constructed, we apply a set of
code cleanup passes;

6. Finally, we generate the C code from the C IR.

In order to determine which SSA variables can be grouped to-
gether, we construct the liveness sets for each SSA instruction and
build the interference graph. This is similar to the approach de-
scribed by Boissinot et al. (Boissinot et al. 2009), but with an im-
portant exception: output variables of function calls may sometimes
interfere with the inputs, even if the input variables are never used
again in the caller function.

To understand why this happens, consider a C function with sig-
nature void f(int x[10], int y[10]), where x is the input of
the function and y is the output. Without examining the implemen-
tation of £, we cannot know if it safe to assign these two variables
to the same C one. As such, we assume that input variables are live
at the end of a function call unless they are scalars or marked as
%!'by_ref.

Once we know the interference graph, we create groups of SSA
variables that should be assigned together:

2016/3/31

ARRAY’14

ARRAY’15

Feature (Bispo et al. 2014) (Bispo et al. 2015a) SSA System
MATLAB IR
Intermediate Representations (IRs) MATLAB IR MATLAB IR SSA-based IR
CIR CIR CIR
During MATLAB IR to C IR translation Separate phase on SSA IR

Type and Shape Inference

Transformation of Element-wise Operations No
Support for Weak Types No
Support for Matrix Views No
Transformation of Reduction Operations No
Loop Fusion No
Loop Interchange No
Algebraic Analysis No
BLAS support No
Support for matrix resizing No
Matrix preallocator N/A

Forward-only
Statement-based

Iterative (Forward with backtracking)
Yes, including sub-expressions

Yes No

Yes No

No Yes

No Yes

No Simple cases only

Based on Symja Based on Z3

Yes Yes

No Optional
N/A Trivial loops only

Table 1. Comparison of MATISSE versions

1. First, we assign all variables in ¢ nodes to a single group, as
required by Boissinot et al.’s algorithm (Boissinot et al. 2009).

2. Then, we visit all instructions, and try to group variables in
assignments, parallel copies and simple_set instructions.

3. Finally, we visit all instructions again, and try to group variables
inmatrix_set instructions and % ! by_ref function arguments.

Ensuring that matrix variables are grouped together is very
important, as matrix copies are expensive operations. We are not
concerned about grouping scalar variables, as C compilers will
typically perform their own allocations.

Once we have groups of SSA variables, we assign a C variable
name to each group. We try to use the original MATLAB names
when possible. For temporary variables, we use a name based on
its role (e.g., iter$1 has role iter). If two C variables have the
same name, or if a variable has an invalid name (i.e. a C keyword
or library function), we add a numeric suffix to avoid any conflicts.

At this stage the C code has a number of readability issues, so
we apply a few cleanup passes over the C IR. The construction of
C code from C IR is mostly unmodified from previous MATISSE
versions, with only minor adjustments to account for the existence
of % !by_ref parameters.

5. Experimental Results

We present two sets of results, 1) a set of benchmarks that were
used in a previous version of MATISSE (Bispo et al. 2015a) and
2) an in-depth analysis using the Disparity benchmark of the San
Diego Vision Benchmark Suite (SDVBS) (Venkata et al. 2009).
The SDVBS includes both MATLAB and C versions of the same
programs. The C version is not a direct translation of the MATLAB
code, giving us the ability to compare automatically generated code
with handwritten versions.

All MATLAB and C versions were tested on a desktop computer
running Windows 10 Enterprise 64-bits, with an AMD A10-7850K
CPU and 8GB of DDR3 RAM. We tested the program with the Full
HD image included in the Disparity benchmark.

Our raw results and code versions for Disparity can be obtained
athttp://specs.fe.up.pt/publications/arrayl6.zip.

5.1 Benchmarks in previous versions of MATISSE
Eeoy our previous benchmark suite, we-gotmixed-results—Although

some benchmarks are now faster other exhibited performance re-
gressions or failed to compile.

Generation of Efficient C Code from MATLAB Using SSA-based Optimizations

/ For the benchmarks we were able to test, the new system was
fa

ster in 9 examples, but slower in 11. In particular, in most of
the cases where the new system outperformed the old one, the
difference was small, whereas in most cases where the old system
outperformed the SSA one, the difference-was sebstartiod”

~This 1s unsurprising because these benchmarks have received
substantial attention when optimizing our system, and we
have not yet done this for the SSA system.

5.2 Analysis of the MATLAB version of Disparity

The MATLAB version of the Disparity benchmark is composed
of 3 files: script_run_profile.m, a function that behaves as an
entry point for the program, getDisparity.m, that contains the
actual algorithm implementation, and refineDisparity.m. This
last file does not appear to be used by script_run_profile.m
and as such was excluded from further analysis. We modified
script_run_profile.m to be better integrated with our testing
environment, but no other code was modified, except in the code
versions explicitly labelled as such.

The original getDisparity.m file has a total of 47 non-empty
lines of code, of which 3 are comments. This file relies on only
a few built-in MATLAB functions. Aside from matrix allocation,
type casting and built-in operators, only padarray, min and size
are used.

According to the MATLAB R2015a profiler, the MATLAB
version takes approximately 261.8s to complete. Nearly all of that
time (91.5%) is spent on a single line of code, a matrix set in a 2D
loop (corresponding to the C function computeSAD). This happens
because the matrix was not allocated before the loop, so the matrix
will be continuously resized, as explained in Subsection 3.4.

We then added a single line of code to allocate the entire matrix
before the loop. This version (matlab_modified) takes approx-
imately 28.0s to run. We tried some other approaches to reduce
the execution time in MATLAB and found that the best approach
(matlab_modified3) was to remove the computeSAD loop alto-
gether and use matrix operations instead. This last version takes
about 12.2s to run.

5.3 C versions

The San Diego Vision Benchmark Suite includes handwritten C
versions for each benchmark. We refer to this the "Handwritten”
version. Whereas the MATLAB version of disparity uses double-
precision floats, the Handwritten C version uses integers and single-
precision floats instead. To measure the impact of this difference,

2016/3/31

=

jmpc
Texto digitado
[ref]

jmpc
Riscado

jmpc
Texto digitado
Considering

jmpc
Riscado

jmpc
Linha

jmpc
Nota
don't start a new paragraph

jmpc
Linha

jmpc
Nota
include the geomean obatined in terms of speedup new vs old

jmpc
Riscado

jmpc
Comentário do texto
backtracking?

or
Forward and backwards?

we modified the Handwritten version to use double-precision floats
as well. We call this modified version the "Handwritten (Double)”
version.

Based on the techniques described previously in this paper, we
have obtained 6 versions derived from MATLAB:

e Original MATLAB (w/o Z3) - C version generated from the
original MATLAB code, with runtime checks enabled and using
a simple placeholder solver'.

Original MATLAB (w/ Z3) - Similar to ”w/o Z3”, but using a
solver based on Z3.

Original MATLAB (Unchecked) - C version generated from the
original MATLAB code, with fewer runtime checks and using
a solver based on Z3.

e Modified 1 - Similar to "Unchecked”, but the MATLAB code
was modified so that the generated code was more efficient, as
described later in this section.

Modified 2 - Similar to "Modified 17, but using the %!by_ref
directive described earlier to reduce the number of memory al-
locations. This version is still mostly compatible with MAT-
LAB, though.

Manually Improved A - Based on ”Modified 2”, but the gen-
erated C code was modified to remove 4 unnecessary matrix
allocations.

e Manually Improved B - Based on "Manually Improved B”, but
with a manual application of a loop interchange.

The performance improvements to the MATLAB version de-
scribed in the previous section were not used here. As such, the
”Original” MATLAB version refers to the code without the explicit
matrix allocation.

Version "Modified 1” has the following improvements over
”Unchecked”: 1) replacement of a 2D loop with an equivalent 1D,
2) MATLAB code modifications to more closely resemble the C
code, 3) removed calculations for outputs that are known to be un-
used, and 4) computation of partial results on each iteration of the
program, instead of keeping track of the output of every iteration
and performing a full computation near the end of the program.
This final change did introduce a MATISSE-exclusive feature (ma-
trix allocation functions without default values), but creating a fall-
back for MATLAB is trivial, and MATISSE provides a MATLAB
implementation of the function. This is also the only part of the
”Modified 2” version that is not compatible with MATLAB.

Table 2 shows how many lines of MATLAB code were changed
in the getDisparity.m file in order to obtain the 2 modified
versions. All line counts exclude comments and empty lines, but
include directives. The total number of changed lines is substantial
(more than half of the total lines of code), but a most of these
(23) can be attributed to a single change: the replacement of the
min function call with the C-like partial computation approach.
Regardless, all 3 versions have the same number of functions in
this file (and no other files were changed, added or removed).

The Manually Improved versions are based on the "Modified
2” C code, but with manual changes to evaluate optimizations that
we could add to MATISSE in the future, to evaluate whether those
optimizations are worth the effort.

5.4 Analysis of the C code

We analyzed and extracted metrics from the original handwritten
version, as well as the MATISSE-generated C files. The results can

! An online version of MATISSE that generates the equivalent of this ver-
sion can be tested at http://specs.fe.up.pt/tools/matisse-new/.

Generation of Efficient C Code from MATLAB Using SSA-based Optimizations

Metric ‘ Original Modified 1 Modified 2
Total Code Lines 44 52 57
Added, Removed or
Modified Lines 0 32 4
Directives 0 0 2
Total Functions 3 3 3

(getDisparity.m)

Table 2. Differences between MATLAB versions.

be seen in Table 3. A function is considered to be part of the com-
putation ("Comp.”) if it is part of the specific operations required
to compute the result. Functions that serve a generic system pur-
pose (such as memory allocation), that exist in MATLAB (such
as padarray) or that are part of the MATISSE system (such as
MATISSE_raw_ind2sub) are considered to be ’Support”.

Functions to import data files or to perform benchmarking were
ignored, and so were calls to external C functions, such as stan-
dard library or Windows API calls. Only reachable functions were
counted, i.e., functions that are never called directly or indirectly by
the main function were excluded from this table. We also excluded
the main function itself, as it contains substantial data loading and
benchmarking code that we did not consider to be relevant for this
analysis.

The handwritten versions have substantially fewer “support”
functions than the generated ones. Part of the reason is that MAT-
LAB functions such as size are implemented as C functions (one
per used matrix type, with more combinations for each of the vari-
ants that this MATLAB function has), whereas this does not hap-
pen in the handwritten versions. Additionally, matrix allocation in
MATISSE causes the generation of several C functions, where the
handwritten version uses only 6.

The handwritten version also has fewer lines of code for the
computation part of the program than the generated versions. The
two main causes of this are:

e MATISSE-generated variable declarations consist of a single
variable per line. In contrast, the handwritten version declares
multiple variables of the same type in a single line.

e Several subexpressions are assigned to temporary variables in
MATISSE, whereas in the handwritten version they tend to be
part of more complex expressions.

Version Functions Lines of Code
Comp. Support (*.c Comp. Files)
Handwritten 6 8 166
Handwritten (Double) 6 5 166
Original MATLAB
(wlo Z3) 5 43 826
Original MATLAB
(Wl Z3) 5 42 514
Original MATLAB
(Unchecked) 3 42 481
Modified 1 4 33 300
Modified 2 4 28 301
Manually Improved A 4 21 258
Manually Improved B 4 21 258

Table 3. Comparison of the various C versions, in terms of number
of functions and non-empty lines of code.

2016/3/31

14.84
16.00 13.88

14.00
12.00

10.00
8.00

6.00 7536 4.30

3.43 2.84
4.00 275

2.00

Average Execution Time (in seconds)

0.00

Original
Double
(w/o0 Z3)
(w/23)
(Unchecked)
Modified 1
Modified 2
Improved A
Manually
Improved B

Handwritten [N,
3
o
~
Handwritten [N _
©o
0
Original MATLAB
©
w Original MATLAB ‘w&
- -
9]
~
Original MATLAS N =
Y
&
»
I
N
A
o
w
Manually -ww
rS
B

<)
N
o
@

Figure 4. Average execution times for the various versions, run-
ning on a desktop computer.

42.43

. 45.00 .27
2 40.00
S
$ 35.00
g0 #8545
£ - 21.53
£ 2500 1729 7152
S 20.00 '16.68 14.25 1219
$ 15.00 10-5388 1421 2575 20
- 7
g 10.00 58 &7
3
g 500 I
< 000
c c @ @ - o~ < @
g _] 2 N > =
R - A S T & N
£ 2 & &
3® 33 3SR 33 3 3 §5 §s
§° 5° 33 55 s s s g Sg
T T £ = £ c = =
& @S
S S
u-02 03

Figure 5. Average execution times for the various versions, run-
ning on an Odroid device.

5.5 Performance Analysis

We compiled the code with MinGW-W64, a 64-bits version of
MinGW based on GCC 4.9.2, with -02 and -03. We ran each
version 30 times and computed the average and the standard
deviation of the execution times, as measured by the Windows
QueryPerformanceCounter function. We found the estimated
error for 95% confidence to be negligible.

The average execution times for the desktop system can be seen
in Figure 4. As we can see, we can achieve execution times around
1.54 times slower than the handwritten version without changes to
the MATLAB code (Unchecked, with -03). If we are willing to
optimize the MATLAB code, even to the point of using MATISSE-
exclusive features, then MATISSE can generate code that is about
55% slower than the handwritten version (Modified 2, with -03).
There is still potential for further MATISSE improvements, as the
optimizations proposed in the manually improved versions should
be possible to implement in the MATISSE compiler, which would
further lower the slowdown to approximately 1%, even though the
code generated by MATISSE is using doubles where the handwrit-
ten version uses floats and integers. When we modify the handwrit-
ten version to also use doubles, we see that MATISSE is already
very close (Modified 2 compared to Handwritten Double, with any
optimization level) and with some tweaks, the generated code is
able to outperform the handwritten version.

Additionally, we tested the C versions of Disparity on an Odroid
XU+E, containing an Exynos5 Octa CPU (with 4 Cortex A15 and
4 Cortex A7 cores) and 2 GB LPDDR3 RAM, running Ubuntu
14.04.2 LTS with GCC 4.8.2. The results can be seen in Figure 5.

Generation of Efficient C Code from MATLAB Using SSA-based Optimizations

SAD integrallmage2D
Compute Final = #1 #2 #3

Handwntten Yes No Yes Yes No
(Original)
Handwritten
(Double) Yes No Yes Yes No
Modified 1 Yes Yes Yes No Yes
Modified 2 Yes Yes N/A No Yes
Manually Yes Yes N/A No Yes
Improved A
Manually Yes Yes N/A No Yes
Improved B

Table 4. Vectorization of loops in various code versions.

The Original MATLAB version without Z3 could not be executed
due to lack of memory on the device, as this version generated too
many temporary variables. On this device we are able to generate
code (Modified 2) that is faster than the Handwritten (Double)
version. We can also see that on this device, the impact of -03 is
negligible, and loop interchange has a very substantial impact.

We have also checked whether the C compiler was able to vec-
torize the loops of our best 4 generated versions, as well as the
handwritten one, using GCC’s -fopt-info-vec diagnostics. The
results can be seen in Table 4. Even though there is not a 1-to-1
function correspondence between the handwritten version and the
generated versions, we can still identify which handwritten loops
match which generated loops. We focused on three C functions
- computeSAD, finalSAD and integrallmage2D2D - which corre-
spond roughly to the correlateSAD and integrallmage2D MATLAB
functions. Additionally, we ignored loops present in the generated
version but not in the handwritten one. In integralImage2D, the
#1, #2 and #3 refer to the 3 loops in the C version. For multi-
dimensional loops, the vectorization results refer to the inner-most
loops. We include the results for -03 only, as GCC does not vec-
torize by default on -02.

GCC is able to vectorize the MATISSE generated equivalent
to finalSAD, even though it could not vectorize the handwritten
version. The loops seem very similar, with the most significant
difference being that the generated versions use double instead of
single-precision floats and that some values are computed outside
the innermost loop (though loop invariant code motion should be
able to do the same), so it is not clear what is causing this.

The first loop in integralImage2D has no equivalent in the last
3 versions as it was made redundant due to changes introduced by
%1by_ref. The reason the loops in integrallmage2D that are vec-
torized in the generated versions are different from the handwritten
versions is because MATLAB is column-major, whereas C is row-
major. Since each of the loops reads values along a dimension, the
two loops effectively swap places in the generated versions. The
decision to use double-precision in the handwritten version has no
impact on vectorization.

Overall, we consider these results to be positive, since we were
able to obtain results very close to the handwritten version, us-
ing automatically generated code and a few modifications in MAT-
LAB. If we are willing to manually tweak the generated C code, it
is possible to go further than the handwritten version (1.4-1.6 times
speedup).

6. Related Work

The compilation of MATLAB to lower-level languages has been
the subject of multiple research projects. One of these projects
is FALCON (DeRose 1996), which compiles MATLAB to FOR-

2016/3/31

TRAN, using an SSA IR. The way they deal with matrix sets is
similar to our own, but their IR has a number of substantial dif-
ferences, notably related to its structure (AST-based as opposed to
block/instruction-based) and the way ¢ nodes are handled.

MATLAB Coder (MathWorks 2016b) is a MATLAB-to-C com-
piler by MathWorks that is capable of generating efficient C code
from a large subset of MATLAB. However, there is little to no pub-
lic information about which optimizations they apply.

MEGHA (Prasad et al. 2011) is a compiler capable of gener-
ating C++ or CUDA source code from MATLAB programs. They
also use an SSA-based IR but with some substantial differences.
They do not create new variables for matrix sets (which suggests
that their SSA works only for scalars) and they optimize the inser-
tion of ¢ nodes to ensure that these only happen for live variables.
In contrast, we found that creating new variables on matrix sets is
not a problem, provided that the final variable allocation code is
sufficiently aggressive. We do not take particular care about ¢ node
insertion, as any redundant ¢ nodes are removed by dead-code-ebim

Sci2C (David et al. 2016) is a Scilab to C compiler. Sci2C works
by parsing directive comments that indicate the type, size and pre-
cision of variables. Aside from the different source language, Sci2C
differs from MATISSE in that it does not support dynamically sized
matrices. Additionally, in MATISSE all directives are strictly op-
tional.

7. Conclusion

In this paper, we described improvements to our MATLAB-to-C
compiler framework, including an SSA-based IR, an iterative type
inference algorithm, a set of optimizations for improving perfor-
mance and our code generation mechanism.

As part of our evaluation, we used a representative benchmark
from the San Diego Vision Benchmark Suite, and we compared
the results of MATISSE to handwritten C code in a number of
metrics, notably performance and code size, and examined which
optimizations we should implement in the future to reach the level
of performance of the handwritten code.

We found that automatically generated C code can match or
even outperform handwritten code, provided that a number of im-
portant optimizations are implemented and certain modifications
are made to the MATLAB code.

In the future, we intend to improve our optimizers to reach the
level of performance of the handwritten versions, so that the gen-
erated code can be comparable to the manually improved code ver-
sions. Additionally, we intend to expand our analysis to more appli-
cations of the San Diego’s Vision Benchmark Suite, to see which
additional optimizations are needed to achieve good performance
in other examples. We will also analyze our previous benchmarks
to identify and fix the causes of performance regressions. Finally,
we will apply the lessons we learned to our OpenCL backend, so
that MATISSE can generate parallel code compatible with GPUs
and FPGAs.

Acknowledgments

This research has been supported by the Portuguese Fundagdo
para a Ciéncia e Tecnologia (FCT), through a PhD scholarship
(PD/BD/105804/2014).

References

J. Bispo, P. Pinto, R. Nobre, T. Carvalho, J. M. P. Cardoso, and P. C.
Diniz. The MATISSE MATLAB Compiler - A MATrix(MATLAB)-
aware compiler InfraStructure for embedded computing SystEms. In
IEEE International Conference on Industrial Informatics (INDIN2013),
Bochum, Germany, 29-31 July 2013.

Generation of Efficient C Code from MATLAB Using SSA-based Optimizations

J. Bispo, L. Reis, and J. M. P. Cardoso. Multi-Target C Code Generation
from MATLAB. In Proceedings of ACM SIGPLAN International Work-
shop on Libraries, Languages, and Compilers for Array Programming,
ARRAY’ 14, pages 95:95-95:100, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2937-8.

J. Bispo, L. Reis, and J. M. P. Cardoso. Techniques for Efficient MATLAB-
to-C Compilation. In Proceedings of the 2Nd ACM SIGPLAN Inter-
national Workshop on Libraries, Languages, and Compilers for Array
Programming, ARRAY 2015, pages 7-12, New York, NY, USA, 2015a.
ACM.

J. Bispo, L. Reis, and J. M. P. Cardoso. C and OpenCL Generation from
MATLAB. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, SAC ’15, pages 1315-1320, New York, NY, USA,
2015b. ACM.

B. Boissinot, A. Darte, F. Rastello, B. D. de Dinechin, and C. Guillon.
Revisiting Out-of-SSA Translation for Correctness, Code Quality and
Efficiency. In Proceedings of the 7th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’09, pages
114-125, Washington, DC, USA, 2009. IEEE Computer Society.

C. David, A. Cornet, and M. Baudin. Scilab 2 C - Translate Scilab code into
C code. http://forge.scilab.org/index.php/p/scilab2c/,
2016. Accessed: March 25th, 2016.

L. De Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In Proceed-
ings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, pages 337-340, Berlin, Heidelberg, 2008.
Springer-Verlag.

L. A. DeRose. Compiler Techniques for MATLAB Programs. Technical
report, Champaign, IL, USA, 1996.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, ECOOP’97 — Object-Oriented Programming:
11th European Conference Jyviskyld, Finland, June 9-13, 1997 Pro-
ceedings, pages 220-242. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1997.

MathWorks. MATLAB - The Language of Technical COmputing. http://
www.mathworks.com/products/matlab/, 2016a. Accessed: March
25th, 2016.

MathWorks. MATLAB Coder - Generate C and C++ code from MATLAB
code. http://www.mathworks.com/products/matlab-coder/,
2016b. Accessed: March 29th, 2016.

A. Prasad, J. Anantpur, and R. Govindarajan. Automatic Compilation
of MATLAB Programs for Synergistic Execution on Heterogeneous
Processors. SIGPLAN Not., 46(6):152—-163, June 2011. ISSN 0362-
1340.

L. Shure. Understanding Array Preallocation - Loren on the Art of
MATLAB. http://blogs.mathworks.com/loren/2012/11/29/
understanding-array-preallocation/, 2012. Accessed: March
23rd, 2016.

V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santhanam. Translating
Out of Static Single Assignment Form. In A. Cortesi and G. Filé,
editors, Static Analysis: 6th International Symposium, SAS’99 Venice,
Italy, September 22-24, 1999 Proceedings, pages 194-210. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1999.

Symja. Symja - Java Computer Algebra Library. https://bitbucket.
org/axelclk/symja_android_library/wiki/Home, 2016. Ac-
cessed: March 23rd, 2016.

S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie,
and M. B. Taylor. SD-VBS: The San Diego Vision Benchmark Suite.
In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC), ISWC ’09, pages 55-64, Washington, DC,
USA, 2009. IEEE Computer Society.

=

2016/3/31

jmpc
Riscado

jmpc
Texto digitado
our simplification pass?

jmpc
Nota
if it fits include a ref to one of the most related papers of Laurie (it can be in the introduction)

