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Abstract. The problem of Label Ranking is receiving increasing at-
tention from several research communities. The algorithms that have
developed/adapted to treat rankings as the target object follow two
different approaches: distribution-based (e.g., using Mallows model) or
correlation-based (e.g., using Spearman’s rank correlation coefficient).
Decision trees have been adapted for label ranking following both ap-
proaches. In this paper we evaluate an existing correlation-based ap-
proach and propose a new one, Entropy-based Ranking trees. We then
compare and discuss the results with a distribution-based approach. The
results clearly indicate that both approaches are competitive.

1 Introduction

Label Ranking (LR) is an increasingly popular topic in the machine learning
literature [18,19,7,8,24]. LR studies a problem of learning a mapping from in-
stances to rankings over a finite number of predefined labels. It can be considered
as a natural generalization of the conventional classification problem, where only
a single label is requested instead of a ranking of all labels [6]. In contrast to
a classification setting, where the objective is to assign examples to a specific
class, in LR we are interested in assigning a complete preference order of the
labels to every example.

There are two main approaches to the problem of LR: methods that trans-
form the ranking problem into multiple binary problems and methods that were
developed or adapted to treat the rankings as target objects, without any trans-
formation. An example of the former is the ranking by pairwise comparison of
[11]. Examples of algorithms that were adapted to deal with rankings as the tar-
get objects include decision trees [23,6], naive Bayes [1] and k -Nearest Neighbor
[3,6].

Some of the latter adaptations are based on statistical distribution of rankings
(e.g., [5]) while others are based on rank correlation measures (e.g., [23,19]). In
this paper we carry out an empirical evaluation of decision tree approaches for LR
based on correlation measures and compare it to distribution-based approaches.



We implemented and analyzed the algorithm previously presented in [17]. We
also propose a new decision tree approach for LR, based on the previous one,
which uses information gain as splitting criterion. The results clearly indicate
that both are viable LR methods and are competitive with state of the art
methods.

2 Label Ranking

The Label Ranking (LR) task is similar to classification. In classification, given
an instance x from the instance space X, the goal is to predict the label (or class)
λ to which x belongs, from a pre-defined set L = {λ1, . . . , λk}. In LR, the goal
is to predict the ranking of the labels in L that are associated with x [11]. A
ranking can be represented as a total order over L defined on the permutation
space Ω. In other words, a total order can be seen as a permutation π of the set
{1, . . . , k}, such that π(a) is the position of λa in π.

As in classification, we do not assume the existence of a deterministic X→ Ω
mapping. Instead, every instance is associated with a probability distribution over
Ω [6]. This means that, for each x ∈ X, there exists a probability distribution
P(·|x) such that, for every π ∈ Ω, P(π|x) is the probability that π is the ranking
associated with x. The goal in LR is to learn the mapping X→ Ω. The training
data is a set of instances D = {〈xi, πi〉}, i = 1, . . . , n, where xi is a vector
containing the values xji , j = 1, . . . ,m of m independent variables describing
instance i and πi is the corresponding target ranking.

Given an instance xi with label ranking πi, and the ranking π̂i predicted by
an LR model, we evaluate the accuracy of the prediction with a loss function on
Ω. One such function is the number of discordant label pairs,

D(π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) < π̂(b)}

If normalized to the interval [−1, 1], this function is equivalent to Kendall’s τ co-
efficient [12], which is a correlation measure where D(π, π) = 1 and D(π, π−1) =
−1 (π−1 denotes the inverse order of π).

The accuracy of a model can be estimated by averaging this function over a
set of examples. This measure has been used for evaluation in recent LR studies
[6,21] and, thus, we will use it here as well. However, other correlation measures,
like Spearman’s rank correlation coefficient [22], can also be used.

2.1 Ranking Trees

One of the advantages of tree-based models is how they can clearly express infor-
mation about the problem because their structure is relatively easy to interpret
even for people without a background on learning algorithms. It is also possible
to obtain information about the importance of the various attributes for the
prediction depending on how close to the root they are used. The Top-Down In-
duction of Decision Trees (TDIDT) algorithm is commonly used for induction of



decision trees [13]. It is a recursive partitioning algorithm that iteratively splits
data into smaller subsets which are increasingly more homogeneous in terms of
the target variable (Algorithm 1).

It starts by determining the split that optimizes a given splitting criterion. A
split is a test on one of the attributes that divides the dataset into two disjoint
subsets. For instance, given a numerical attribute x2, a split could be x2 ≥ 5.
Without a stopping criterion, the TDIDT algorithm only stops when the nodes
are pure, i.e., when the value of the target attribute is the same for all examples
in the node. This usually leads the algorithm to overfit, i.e., to generate models
that fit not only to the patterns in the data but also to the noise. One approach
to address this problem is to introduce a stopping criterion in the algorithm that
tests whether the best split is significantly improving the quality of the model.
If not, the algorithm stops and returns a leaf node. This node is represented
by the prediction that will be made for new examples that fall into that node.
This prediction is generated by a rule that solves potential conflicts in the set
of training examples that are in the node. In classification, the prediction rule
is usually the most frequent class among the training examples. If the stopping
criterion is not verified, then the algorithm is executed recursively for the subsets
of the data obtained based on the best split.

Algorithm 1 TDIDT algorithm

BestSplit = Test of the attributes that optimizes the SPLITTING CRITERION
if STOPPING CRITERION == TRUE then

Determine the leaf prediction based on the target values of the examples in D
Return a leaf node with the corresponding LEAF PREDICTION

else
LeftSubtree = TDIDT(D¬BestSplit)
RightSubtree = TDIDT(DBestSplit)

end if

An adaptation of the TDIDT algorithm for the problem of learning rank-
ings has been proposed [23], called Ranking Trees (RT) which is based on the
clustering trees algorithm [2]. Adaptation of this algorithm for label ranking in-
volves an appropriate choice of the splitting criterion, stopping criterion and the
prediction rule.

Splitting Criterion The splitting criterion is a measure that quantifies the quality
of a given partition of the data. It is usually applied to all the possible splits of
the data that can be made based on individual tests of the attributes.

In RT the goal is to obtain leaf nodes that contain examples with target rank-
ings as similar between themselves as possible. To assess the similarity between
the rankings of a set of training examples, we compute the mean correlation
between them, using Spearman’s correlation coefficient. The quality of the split
is given by the weighted mean correlation of the values obtained for the subsets,
where the weight is given by the number of examples in each subset.



Table 1. Illustration of the splitting criterion

Attribute Condition Negated condition
values rank corr. values rank corr.

x1 a 0.3 b, c -0.2
b 0.2 a, c 0.1
c 0.5 a, b 0.2

x2 < 5 -0.1 ≥ 5 0.1

The splitting criterion of ranking trees is illustrated both for nominal and
numerical attributes in Table 1. The nominal attribute x1 has three values (a,
b and c). Therefore, three binary splits are possible. For the numerical attribute
x2, a split can be made in between every pair of consecutive values. In this case,
the best split is x1 = c, with a mean correlation of 0.5 for the training examples
that verify the test and a mean correlation of 0.2 for the remaining, i.e., the
training examples for which x1 = a or x1 = b.

Stopping Criterion The stopping criterion is used to determine if it is worthwhile
to make a split to avoid overfitting [13]. A split should only be made if the
similarity between examples in the subsets increases substantially. Let Sparent
be the similarity between the examples in the parent node and Ssplit the weighted
mean similarity in the subsets obtained with the best split. The stopping criterion
is defined in [17] as follows:

(1 + Sparent) ≥ γ(1 + Ssplit) (1)

Note that the significance of the increase in similarity is controlled by the γ
parameter.

Prediction Rule The prediction rule is a method to generate a prediction from
the (possibly conflicting) target values of the training examples in a leaf node.
In RT, the method that is used to aggregate the q rankings that are in the leaves
is based on the mean ranks of the items in the training examples that fall into
the corresponding leaf. The average rank for each setting is π (j) =

∑
i πi (j) /n.

The predicted ranking π̂ will be the average ranking π after assigning ranks to
π (j). Table 2 illustrates the prediction rule used in this work.

Table 2. Illustration of the prediction rule.

λ1 λ2 λ3 λ4

π1 1 3 2 4
π2 2 1 4 3

π 1.5 2 3 3.5
π̂ 1 2 3 4



2.2 Entropy Ranking Trees

Decision trees, like ID3 [15], use Information Gain (IG) as a splitting criterion
to look for the best split points.

Information gain IG is a statistical property that measures the difference in
entropy, between the prior and actual state relatively to a target variable [13].
In other words, considering a set S of size nS , as entropy - H - is a measure of
disorder, IG is basically how much uncertainty in S is reduced after splitting on
attribute A:

IG (A, T ;S) = H (S)− |S1|
nS

H (S1)− |S2|
nS

H (S2)

where |S1| and |S2| are the number of instances on the left side (S1) and the
number of instances on the right side (S2), respectively, of the cut point T in
attribute A.

Using the same tree generation algorithm, the TDIDT (Section 2.1), we pro-
pose an alternative approach of decision trees for ranking data, the Entropy-
based Ranking Trees (ERT). The difference is on the splitting and stopping
criteria. ERT use IG to assess the splitting points and MDLPC [10] as stop-
ping criterion. Using the measure of entropy for rankings [20], the splitting and
stopping criteria come in a natural way.

The entropy for rankings [20] is defined as:

Hranking (S) =

K∑
i=1

P (πi, S) log (P (πi, S)) log
(
kt (S)

)
(2)

where K is the number of distinct rankings in S and kt (S) is the average nor-
malized Kendall τ distance in the subset S:

kt (S) =

∑K
i=1

∑n
j=1

τ(πi,πj)+1
2

K × nS
where K is the number of distinct target values in S.

As in Section 2.1 the leafs of the tree should not be forced to have pure leafs.
Instead, they should have a stop criterion to avoid overfitting and be robust to
noise in rankings. As shown in [20], the MDLPC Criterion can be used as a
splitting criterion with the adapted version of entropy Hranking. This entropy
measure also works with partial orders, however, in this work, we only use total
orders.

One other ranking tree approach based in Gini Impurity, which will not be
presented in detail in this work, was proposed in [25].

3 Experimental setup

The data sets in this work were taken from KEBI Data Repository in the Philipps
University of Marburg [6] (Table 3). Two different transformation methods were



used to generate these datasets: (A) the target ranking is a permutation of the
classes of the original target attribute, derived from the probabilities generated
by a naive Bayes classifier; (B) the target ranking is derived for each example
from the order of the values of a set of numerical variables, which are no longer
used as independent variables. Although these are somewhat artificial datasets,
they are quite useful as benchmarks for LR algorithms.

The statistics of the datasets used in our experiments is presented in Table 3.
Uπ is the proportion of distinct target rankings for a given dataset.

Table 3. Summary of the datasets

Datasets type #examples #labels #attributes Uπ
autorship A 841 4 70 2%
bodyfat B 252 7 7 94%
calhousing B 20,640 4 4 0.1%
cpu-small B 8,192 5 6 1%
elevators B 16,599 9 9 1%
fried B 40,769 5 9 0.3%
glass A 214 6 9 14%
housing B 506 6 6 22%
iris A 150 3 4 3%
pendigits A 10,992 10 16 19%
segment A 2310 7 18 6%
stock B 950 5 5 5%
vehicle A 846 4 18 2%
vowel A 528 11 10 56%
wine A 178 3 13 3%
wisconsin B 194 16 16 100%

The code for all the examples in this paper has been written in R ([16]).
The performance of the LR methods was estimated using a methodology

that has been used previously for this purpose [11]. It is based on the ten-
fold cross validation performance estimation method. The evaluation measure is
Kendall’s τ and the performance of the methods was estimated using ten-fold
cross-validation.

4 Results

RT uses a parameter, γ, that can affect the accuracy of the model. A γ ≥ 1 does
not increase the purity of nodes. On the other hand, small γ values will rarely
generate any nodes. We vary γ from 0.50 to 0.99 and measure the accuracy on
several KEBI datasets.

To show in what extent γ affects the accuracy of RT we show in Figure 1 the
results obtained for some of the datasets in Table 3. From Figure 1 it is clear



Table 4. Results obtained for Ranking Trees on KEBI datasets. (The mean accuracy
is represented in terms of Kendall’s tau, τ)

RT ERT LRT

authorship .879 .890 .882
bodyfat .104 .183 .117
calhousing .181 .292 .324
cpu-small .461 .437 .447
elevators .710 .758 .760
fried .796 .773 .890
glass .881 .854 .883
housing .773 .704 .797
iris .964 .853 .947
pendigits .055 .042 .935
segment .895 .902 .949
stock .854 .859 .895
vehicle .813 .786 .827
vowel .085 .054 .794
wine .899 .907 .882
wisconsin -.039 -.035 .343

that γ plays an important role in the accuracy of RT. It seems that the best
values lie between 0.95 and 0.98. We will use γ = 0.98 for the Ranking Tees
(RT).

Table 4 presents the results obtained by the two methods presented in com-
parison to the results for Label Ranking Trees (LRT) obtained in [6]. Even
though LRT perform better in the cases presented, given the closer values to it,
both RT and ERT give interesting results.

To compare different ranking methods we use a method proposed in [4] which
is a combination of Friedmans test and Dunns Multiple Comparison Procedure
[14]. First we run the Friedman’s test to check whether the results are different
or not, with the following hypotheses:

H0 There is no difference in the mean average correlation coefficients for the 3
methods

H1 There are some differences in the mean average correlation coefficients for
the three methods

Using the friedman.test function from the stats package [16] we got a p-value
< 1%, which shows strong evidence against H0.

Now that we know that there are some differences between the 3 methods
we will test which are different from one another with the Dunns Multiple Com-
parison Procedure [14]. Using the R package dunn.test [9] with a Bonferroni
adjustment, as in [4], we tested the following hypotheses for each pair of of
methods a and b:

H0 There is no difference in the mean average correlation coefficients between
a and b



Table 5. P-values obtained for the comparison of the 3 methods

RT ERT LRT

RT 1.0000 0.2619
ERTt 1.0000 0.1529
LRT 0.2619 0.1529

H1 There is some difference in the mean average correlation coefficients between
a and b

The p-values obtained are presented in Table 5. Table 5 indicates that there is no
strong statistically evidence that the methods are different. One other conclusion
is that both RT and ERT are very equivalent approaches. While RT and ERT
does not seem to outperform LRT in most of the cases studied, from the statical
tests we can say that both approaches are competitive.

5 Conclusions

In this work we implemented a decision tree method for Label Ranking, Ranking
Trees (RT) and proposed an alternative approach Entropy-based Ranking Trees
(ERT). We also present an empirical evaluation on several datasets of correlation-
based methods, RT and ERT, and compare with the state of the art distribution-
based Label Ranking Trees (LRT). The results indicate that both RT and ERT
are reliable LR methods.

Our implementation of Ranking Trees (RT) shows that the method is a com-
petitive approach in the LR field. We showed that the input parameter, γ, can
have a great impact on the accuracy of the method. The tests performed on
KEBI datasets indicate that the best results are obtained when 0.95 < γ < 1.

The method proposed in this paper, ERT, which uses IG as a splitting cri-
terion achieved very similar results to the RT presented in [17]. Statistical tests
indicated that there is no strong evidence that the methods (RT, ERT and
LRT) are significantly different. This means that both RT and ERT are valid
approaches, and, since they are correlation-based methods, we can also say that
this kind of approaches is also worth pursuing.

References

1. Aiguzhinov, A., Soares, C., Serra, A.P.: A similarity-based adaptation of naive
bayes for label ranking: Application to the metalearning problem of algorithm
recommendation. In: Discovery Science - 13th International Conference, DS 2010,
Canberra, Australia, October 6-8, 2010. Proceedings. pp. 16–26 (2010)

2. Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees.
CoRR cs.LG/0011032 (2000), http://arxiv.org/abs/cs.LG/0011032

http://arxiv.org/abs/cs.LG/0011032


3. Brazdil, P., Soares, C., Costa, J.: Ranking Learning Algorithms: Using IBL and
Meta-Learning on Accuracy and Time Results. Machine Learning 50(3), 251–277
(2003)

4. Brazdil, P., Soares, C., da Costa, J.P.: Ranking learning algorithms: Using IBL
and meta-learning on accuracy and time results. Machine Learning 50(3), 251–277
(2003), http://dx.doi.org/10.1023/A:1021713901879
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Fig. 1. Comparison of the accuracy obtained on some datasets by RT as γ varies from
0.5 to 0.99.
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