

1

Topic: Human-Computer Interaction, Computer Systems 1

 2

Development and validation of a Descriptive Cognitive Model for 3

predicting usability issues in a Low Code Development Platform 4

Carlos Silva1, Joana Vieira1, José C. Campos2,3, Rui Couto2,3, António N. Ribeiro2,3 5

1Center for Computer Graphics, Guimarães, Portugal 6

2Department of Informatics, University of Minho, Braga, Portugal 7

3HASLab/INESC TEC, Braga, Portugal 8

 9

Corresponding author: Rui Couto, rmscouto@gmail.com 10

Word count: 9468 (text) + 1010 (references) 11

Manuscript type: Special Section Article 12

PRÉCIS 13

This study proposes and evaluates a Descriptive Cognitive Model (DCM) for the identification 14

of initial usability issues in a low-code development platform (LCDP). By applying the 15

proposed DCM we were able to predict the interaction problems felt by first-time users of the 16

LCDP. 17

ABSTRACT 18

Objective: Development and evaluation of a Descriptive Cognitive Model (DCM) for the identification of three 19

types of usability issues in a low-code development platform (LCDP). 20

Background: LCDPs raise the level of abstraction of software development by freeing end-users from 21

implementation details. An effective LCDP requires an understanding of how its users conceptualize 22

programming. It is necessary to identify the gap between the LCDP end-users' conceptualization of 23

programming, and the actions required by the platform. It is also relevant to evaluate how the conceptualization 24

of the programming tasks varies according to the end-users’ skills. 25

Method: DCMs are widely used in the description and analysis of the interaction between users and systems. 26

We propose a DCM which we called PRECOG that combines task-decomposition methods with knowledge-27

This is the authors’ version of a paper accepted for publication at Human Factors: The Journal of the Human Factors and Ergonomics Society.

2

based descriptions and criticality analysis. This DCM was validated using empirical techniques to provide the 28

best insight regarding the users’ interaction performance. Twenty programmers (10 experts, 10 novices) were 29

observed using a LCDP and their interactions were analyzed according to our DCM. 30

Results: The DCM correctly identified several problems felt by first-time platform users. The patterns of issues 31

observed were qualitatively different between groups. Experts mainly faced interaction related problems, while 32

novices faced problems attributable to a lack of programming skills. 33

Conclusion: Applying the proposed DCM we were able to predict three types of interaction problems felt by 34

first time users of the LCDP. 35

Application: The method is applicable when it is relevant to identify possible interaction problems, resulting 36

from the users’ background knowledge being insufficient to guarantee a successful completion of the task at 37

hand. 38

Keywords: End-User Development, Low-Code Development Platforms, Descriptive Cognitive Models, 39

Usability, Human-Computer Interaction 40

INTRODUCTION 41

Low-code development platforms (LCDP) address the need for increased productivity in 42

software development. By raising the abstraction level at which software is developed, they automate 43

low-level and routine development tasks, effectively contributing to solve the problem of global 44

shortage of professional software developers. Forrester's Low-Code Market Forecast predicts low-45

code platforms will reach over 15 billion US dollars in 2020 (Marvin, 2018). At the same time, they 46

lower the entry barrier to software development. As these low-level tasks become automated, 47

developers are not required to carry them out (or even know how to carry them out). Low-level 48

technical details are effectively hidden by the platform. If the entry level becomes low enough, we 49

can say these platforms become End-User Development (EUD) platforms (Fischer, Giaccardi, Ye, 50

Sutcliffe, & Mehandjiev, 2004). At that point, no special programming skills are needed to use them. 51

Other terms have been used to describe related concepts with varying levels of scope, such as End-52

User Programming (EUP), End-User Software Engineering (EUSE) and Meta-Design (see Barricelli, 53

Cassano, Fogli, & Piccinno (2019) for a recent systematic review of the literature). 54

3

Whether considering LCDP or EUD, the users’ prior knowledge plays a relevant role in the 55

learning and using of a platform, as it will affect the way users approach the platform (Dijkstra, 1982). 56

In the case of LCDP, there is the double challenge of supporting users with little or no knowledge of 57

programming, while also supporting expert programmers. Indeed, understanding individual 58

differences and expectations, and identifying the sources of variation among different users will help 59

this type of platforms to be more broadly adopted (Blackwell, 2017). Since low-code development 60

platforms aim at reducing the learning burden while providing powerful tools to address a wide range 61

of problems, a trade-off must be established between the scope of application and the learning costs 62

of the platforms and their languages. This necessarily implies building an understanding of how 63

different types of users approach the platforms. 64

Descriptive Cognitive Models (DCM) can be used to study the interaction between one 65

interactive system and its users, in particular to analyze how the interplay between the users’ cognitive 66

processes and the user interfaces’ design might lead to faulty interactions or use errors (Nielsen, 67

1994). Its applicability to reason about the act of programming has long been explored (cf. Blackwell, 68

Petre & Church, 2019). Nevertheless, in spite of relevant Human-Computer Interaction (HCI) 69

findings and developments since the 1980s and recent developments in both LCDP and EUP, there is 70

still a considerable number of relevant gaps in current knowledge about how people reason during 71

programming and development tasks (Sajaniemi, 2008). According to Myers, Pane, and Ko (2004), 72

conventional programming languages require the user or programmer to make “tremendous 73

transformations” (pp.48) from what he or she intends to accomplish, to what he or she should code. 74

Visual modelling languages, typically adopted by low-code development platforms, aim to mitigate 75

this problem, but their actual effectiveness is still subject to debate. 76

The distance between the mental and the physical spaces in software development was the 77

motivation behind the current work. More specifically, the long-term goal of this work is to support 78

lowering the learning curve of a specific LCDP to the point that non-programmers (i.e., end-users) 79

might use it to develop software (in practice, turning it into an EUD platform). The challenge then, is 80

how to reduce the learning effort of users without reducing the scope of the possible application 81

domains. As a contribution to this long-term goal, the work described in this paper aimed at 82

4

understanding the difficulties faced by potential programmers with different expectations and 83

academic backgrounds when using a specific LCDP. To achieve this, we developed a new descriptive 84

cognitive model with the purpose of predicting usability issues in a LCDP. 85

THE LCDP – Low-Code Development Platform 86

A low-code development platform supports the development of software applications resorting 87

to minimal code writing. Its objective is to empower different kinds of users, by allowing them to 88

easily and quickly create applications: experienced users (e.g., programmers) are able to create 89

software by writing considerably less code, while users without prior experience will require less 90

formal training to start creating applications. 91

Due to non-disclosure agreement conditions, we are not authorized to name the LCDP under 92

study, and for that reason it will henceforth be referred to simply as the LCDP. The LCDP under 93

study allows developers to create both full stack web applications, and mobile applications. It 94

provides a set of predefined templates to bootstrap the development process, which creates the base 95

application. Developers can then expand the application on top of that. The development process 96

itself is performed by resorting to high level development languages, mainly visual languages, similar 97

to Unified Modeling Language (UML) diagrams (Fowler, M., & Kobryn, 2004). The platform also 98

allows developers to graphically edit the interfaces and automatically generate pages and components 99

(e.g., through drag and drop interactions). With this LCDP, it is possible to develop enterprise-grade 100

level applications thanks to the integration mechanisms provided, for instance, with web services, 101

databases or external systems (e.g., SAP). 102

 Different languages with different abstraction levels are provided to define different 103

components of the system. The definition of some aspects of the system, such as navigation between 104

screens, the behavior of the screens and buttons, is done through a statechart-like language, as they 105

are adequate for control-flow modeling. These diagrams have a simple syntax, which has the objective 106

of being easily understood by a large audience. Some more complex aspects, such as data retrieval 107

from a database, resort to a Domain Specific Language (DSL), which is more powerful, but 108

simultaneously more complex. The platform also takes advantage of widely known formats, such as 109

5

spreadsheets, in order to speed up the development process. This empowers those users who are non-110

experienced developers, but have had previous contact with these technologies, to more easily 111

understand the platform. Once finished, the applications are converted into standard technologies 112

(familiar web, back-end and mobile languages), and deployed into a cloud environment. The 113

applications become immediately available once published. Examples of this type of platforms 114

include Appian, Google App Maker, Microsoft PowerApps, MIT App Inventor, Nintex Workflow 115

Cloud, OutSystems, Sysdev Kalipso or Zoho Creator. 116

Descriptive Cognitive Models 117

At the dawn of HCI as an independent discipline, Richard Young wrote that “for an interactive 118

device to be satisfactory, its intended users must be able to form a ‘conceptual model’ of the device 119

which can guide their actions and help them interpret its behavior” (Young, 1981). Since then, it is 120

commonly agreed that knowledge about how users perceive and interact with a computerized 121

environment is of the foremost importance in the design of computer systems that emphasize 122

usefulness and usability (Silva, 2013). The development process of an interactive system greatly 123

benefits from putting the human, the user, in a central position during discussion and design (Dix, 124

Finlay, Abowd, & Beale, 2004; ISO, 2010). In order to better understand how the user conceptualizes 125

and interacts with a system, the discipline of HCI often resorts to models. 126

Descriptive Cognitive Models (DCMs) are widely used in the study and development of 127

interfaces. Their analytical processes have since long been applied by experts, analysts and developers 128

in order to obtain insight on how the interaction flow, the design features, or the information content 129

of an interface might lead to performance deficits, faulty interactions or use errors (Nielsen, 1994). 130

Although a comprehensive set of DCMs have been developed since the 1980s, it is usually a 131

combination of different models tailored to a specific application case that provides the best result 132

(i.e., insights on how users are thinking about the system and the interaction process). For the purpose 133

of predicting usability issues in LCDP we have selected task decomposition models for a recursive 134

decomposition of our main task into sub-tasks; knowledge-based analysis to comprehend the user’s 135

6

knowledge about the objects and actions involved in a given task; and risk assessment to analyze and 136

evaluate the risk associated with the identified issues. 137

Task Decomposition 138

The process of describing the interaction process is often referred to as Task Analysis and 139

consists of detailed descriptions and analysis of how people perform their jobs or tasks. It details what 140

they do, what they act on and what they need to know. Identifying the elements and the goals of the 141

task is an essential step to examine the skills necessary to perform a given job. Task decomposition 142

can be performed either in the design phase of a new system or to suggest changes in an existing 143

system. 144

Hierarchical Task Analysis (HTA) 145

The purpose of HTA is to decompose a task into all its sub-tasks in a way that displays the 146

hierarchical relation between them. It is one of the most predominant examples of a task 147

decomposition methodology. The outputs of HTA are a hierarchy of tasks and sub-tasks, together 148

with plans describing in what order and under what conditions sub-tasks are performed. For examples 149

and further details please see Dix et al. (2004) and, for a review on different ways of presenting an 150

HTA and a proposal on an updated notation, see Huddlestone and Stanton (2016). 151

Knowledge-based analysis 152

The aim of a Knowledge-based approach to task analysis “is to understand the knowledge 153

needed to perform a task” (Dix et al., 2004). The main goal of this type of analysis is to build general 154

knowledge taxonomies for each task, after listing all objects and actions. Programming is a 155

knowledge-based activity, and for the purpose of this study we will focus on analyses designed to 156

predict difficulties from interface specifications, namely the External-Internal Task Mapping 157

Analysis. 158

External-Internal Task Mapping Analysis (ETIT) 159

7

The ETIT model attempts to deal with the mismatch between the way the user thinks, and the 160

way a system is designed, stating that this mismatch continues until the user learns how to translate 161

what he or she wants to do into the system’s terms. ETIT is a contribution of one of the most seminal 162

authors in HCI, Thomas P. Moran (Moran, 1983). In his paper, Moran points out the need for the 163

users to map between the task they are performing and their conceptual model of the machine. Thus, 164

ETIT was conceptualized as a way of assessing the (1) complexity of learning of a naïve user or (2) 165

transfer of knowledge between different systems. In the first case, which is the focus of the current 166

work, ETIT assumes two different spaces: 1) the external task space (i.e., the naïve user’s mental 167

model of the task) and 2) the internal task space (the system’s commands that allow it to perform the 168

task). The relation between both spaces will be an indicator of the difficulty found in learning how to 169

use the system. According to Moran (1983), when people start using a system, they know they must 170

convert the tasks they have to perform into the system’s language and concepts, i.e., they must learn 171

to translate what they want to do into the system’s terms. In this model, this translation is represented 172

by mapping rules. 173

The ETIT analysis has three parts: 174

1. An external task space (concepts and tasks described in those concepts) – whenever a person needs 175

to perform a task, this task is formulated in the external domain/real world, not in the system’s terms 176

(Moran, 1983). This means that people formulate their own mental model of the task, using their own 177

known concepts, words and logic; 178

2. An internal task space (concepts and tasks described in those concepts) – the system’s commands 179

and interaction flow that allows the user to perform the task; 180

3. A mapping from the external task space to the internal task space. 181

While the external space is rich and diverse, systems are not. Systems usually abstract a small 182

set of primitive concepts, converting the external task space into smaller internal task spaces. 183

Particularly relevant here is that, while ETIT was conceived as a tool for system design, it can also 184

8

be used as a competence model of the user, because it makes it explicit what is the knowledge 185

necessary to execute a task. 186

Risk Assessment 187

The term “risk assessment” is usually connected to occupational health and safety but in this 188

case, the methodology will be applied to the identification of usability and interaction issues that have 189

the potential to compromise the application under development. The aim of such a process is firstly 190

to identify the issue, and then to mitigate its consequences by adding control measures (Amir-Heidari 191

& Ebrahemzadih, 2015). The steps to be applied in our descriptive cognitive model consist of: 192

● hazard identification - finding, listing and characterizing issues 193

● risk analysis - determining the likelihood of the issue 194

● risk evaluation - comparing an estimated issue against predetermined risk criteria to 195

determine the significance or criticality of the issue 196

After performing a risk assessment, a remedy analysis can be performed where error reduction 197

strategies are defined. 198

 199

Proposed model - PRECOG: low-code development Platform descRiptivE 200

COGnitive model 201

The descriptive cognitive model we propose was named PRECOG – low-code development 202

Platform descRiptivE COGnitive model (Figure 1). From an analysis of the summarized methods, it 203

became clear that these might interplay to account for an informative Descriptive Cognitive Model. 204

In order to apply the proposed model, the analyst should start by performing an HTA of the particular 205

development use case under analysis. The output of the HTA will provide a list of sub-tasks of the 206

use case that need to be further analyzed. This will be done according to an adapted version of the 207

ETIT. In this adapted version, sub-tasks will be described from the perspective of a naïve user's mental 208

9

model, using its own terms and concepts (External task space, henceforth the Knowledge-Based 209

Description - KBD), and from the perspective of an internal task space (henceforth System-Based 210

Description - SBD) which details the steps needed in the LCDP, in order to accomplish the sub-task. 211

The KBD relies on user’s data prior to any interaction with the system. With only a brief 212

description of each task, participants should describe how they would reach each task’s final goal 213

using their current knowledge and familiar development tools. This information provides the analysts 214

with the participant’s mental model of the tasks in hand, before interaction with the system under 215

evaluation. 216

The SBD, on the other hand, is a step-by-step description of the actions performed by an expert 217

user of the system. For the purpose of comparability, the evaluator should define the same 218

decomposition stop-condition for both descriptions. One fitting criterion for a LCDP HTA stop-219

condition is a discernable user interaction capable of being recorded by the platform (e.g., a drag-and-220

drop action; the selection of an item from a drop-down menu; the establishment of a new connection 221

in a state-chart; the writing of an expression to define a condition). User interactions at a more atomic 222

level, such as mouse movement, hovering, or typing of a specific character, do not need to be specified 223

in HTAs for LCDP. 224

Mapping rules should be established between the naive user’s mental model (KBD) and the 225

system-based description (SBD), in order to identify possible conflicts. According to our predictions, 226

three types of conflicts might be uncovered by looking at the mapping between the two spaces: 227

1. Under decomposition conflict - occurs when a procedure that is considered by the user as a 228

single step in the knowledge-based description requires multiple steps in the system-based 229

description. This type of conflicts might lead to an underestimation of the sub-task’s complexity. 230

2. Over decomposition conflict - occurs when a procedure that is considered by the user as 231

having multiple steps in the knowledge-based description requires only one step in the system-based 232

description. This type of conflicts might lead to an overestimation of the sub-task’s complexity and 233

failure to identify and take shortcuts during the development task. 234

10

3. No Correspondence conflict - occurs when there is no link between a step in the knowledge-235

based description and one (or several) steps in the system-based description. This might occur because 236

the user is not aware of the appropriate steps required by the LCDP or because the system does not 237

include a feature representative of a mental step the user thinks is needed. 238

 239

 Figure 1 – The proposed methodology applied to a given subtask of the HTA. Red triangles signal 240
identified issues that occurred during interaction and the numbers inside correspond to the type of 241
error (1 - Under decomposition; 2 - Over decomposition; 3 - No correspondence). Triangles are 242

colored grey if, after empirical tests with a user, the analyst finds that the predicted error did not 243
occur (false positive). 244

11

Once one of these types of conflicts is found, a risk analysis of the conflict should be made. 245

This risk analysis is usually performed in safety critical scenarios, which is not the context of the 246

current study. Nevertheless, for the purpose of providing a richer PRECOG analysis, the risk analysis 247

step can help define priorities in the continuous improvement of the system. 248

Figure 1 summarizes the steps of the overall analysis process. First, a development task is 249

selected (in this case, create a user interface to list and search for books) and two branches originate 250

from this task. On the top-right hand side of the figure (Step 1.2), an example HTA is presented for 251

the development task. The HTA will generate the System-Based Description (SBD) or Internal Task 252

Space for the selected task. On the left (Step 1.1), the Knowledge-Based Description (KBD) or 253

External Task Space consists in a description made by people who have not interacted with the low-254

code system, listing how they would expect to perform the task at hand, knowing what they know at 255

the moment. The second step (Step 2 in the figure) consists in comparing the KBD with the SBD per 256

participant and identifying conflicts that might occur in the interaction using the conflict taxonomy 257

described above ((1) under decomposition, (2) over decomposition, and (3) no correspondence). In 258

this example, four issues arise and are represented by the four triangles. The triangles are red if that 259

issue eventually occurred during interaction, and are marked as grey if they did not occur, being 260

classified as a false positive. Under decomposition and over decomposition markers are placed inside 261

the box, and no correspondence markers are placed on the leftmost border of the boxes. 262

The third and last step in Figure 1 consists of a risk analysis of the identified issues. The risk 263

analysis of a conflict includes: 264

• Frequency - An ordinal scale from 0 (never) to 5 (frequent) 265

• Criticality - All issues are evaluated regarding the level of criticality as described in Figure 266

2, ranging from 2 (not a problem) to 10 (serious) (Figure 2). 267

• Pure Risk - The Pure Risk value of the error is a single value representing the weight that 268

should be attributed to an error, and it results from the intersection between a value of Frequency with 269

a value of Criticality from the matrix of Frequency with Criticality adapted from Amir-Heidari and 270

12

Ebrahemzadih (2015) (Figure 3). The value ranges from 0 to 50, and the higher the value, the more 271

Critical should the issue be considered, with a higher priority for intervention. 272

 273

Figure 2. Descriptors for each level of Criticality, adapted to the analyzed use-cases 274

 275

Figure 3. Matrix of Frequency with Criticality adapted from Amir-Heidari and Ebrahemzadih 276
(2015). The intersection between a value of Frequency with a value of Criticality provides the Pure 277

Risk of the issue, a single value representing the weight that should be attributed to the issue. The 278
higher the value, the more critical should the issue be considered. 279

A model of this sort should be developed for each sub-task deemed relevant for analysis. This 280

will provide relevant information about the participants’ difficulties in mapping their conceptual 281

model of the task to the system’s operational environment. 282

 283

13

Applications of the PRECOG model 284

PRECOG can have two main applications. It can (1) be used retrospectively to understand the 285

root-cause of an issue identified through user testing, or (2) it can be used predictively to understand 286

which potential issues are going to arise. 287

In the first case, the model is used to analyze and understand the problems identified during 288

user testing. These problems can be tracked by identifying the correspondence conflicts in the 289

previously made ETIT mapping. This helps to identify potential causes for the problems in terms of 290

mismatches between the KBD and the SBD. The number of observations of the different errors 291

provides additional information that is then used in the risk analysis (as the frequency of occurrence 292

of the errors). 293

The second application for PRECOG is to use it as a predictive model, which can provide 294

valuable information without the time-consuming process of data gathering with real users. This 295

application takes advantage of the fact that the mapping of the participant’s (knowledge-based) 296

description to the platform’s requirements provides a first prediction of the effect of the differences 297

between the user’s knowledge and system’s requirements to achieve a given task. In this case, instead 298

of evaluating the criticality of the issues that effectively occurred, an expert analyst walks through 299

the LCDP and decides on the likelihood of the identified potential problems, evaluating their 300

probability of occurrence given the platform’s design. This evaluation should consider, for instance, 301

visual aids and widgets that are available on the platform, and which might be helpful in solving the 302

issue under analysis. This stage of the process refines the predictive power of the model, as it 303

eliminates false positives identified in the mapping stage. Calculating the Pure Risk of all identified 304

errors is then done resorting to an adapted version of the matrix in Figure 4, using Probability (Never, 305

Low, Medium, High) instead of Frequency. The end result will be a list of potential errors organized 306

by Pure Risk evaluation. Remedy analysis of relevant issues (for instance, all Marginal, Relevant and 307

Serious issues would be further detailed) might then be performed, resorting to either expert 308

evaluation or empirical analysis. 309

 310

14

Application and Validation of PRECOG in Empirical user studies 311

In this section, we present an application of the PRECOG model where we will detail the 312

analytical process of constructing the HTA, the adapted ETIT analysis to map user knowledge and 313

system-based descriptions, and finally the risk analysis of the identified potential interaction 314

problems. The presented results correspond to the validation of the PRECOG model through 315

empirical user studies. They allow us to understand the suitability and viability of using the selected 316

techniques for the analysis of interaction conflicts in a low-code development platform, including the 317

impact of the identified problems and the analysis of their root-causes. 318

METHOD 319

The first phase of the application of the PRECOG model consisted in defining, with a 320

professional user and LCDP platform developer, a set of representative tasks which could be 321

performed by different types of users. After all tasks were defined, this expert user performed them, 322

and the performance was later analyzed in detail in order to obtain a HTA of each task. The HTA also 323

provided the basis to develop the System-Based Description to be used in the model for each task. 324

The second phase of the application was performed after empirical user studies with 20 325

participants. Besides providing usability metrics of performance, these user studies allowed the 326

authors to gather the Knowledge-Based Description of each participant, collected prior to any contact 327

with the LCDP. The user studies complied with the American Psychological Association Code of 328

Ethics, and an informed consent was obtained from each participant. 329

With both the Knowledge and System-based descriptions, it was possible to do the mapping 330

between both, applying the PRECOG to each participant, and listing all the potential issues and 331

mistakes that could happen during task execution. 332

The final phase of the validation effort was carried out after thorough video analysis of each 333

participant’s performance and comparison between the model’s prediction and the real outcome in 334

the user studies. Having identified all observed issues, risk analysis was applied to understand the 335

issues’ frequency and criticality. 336

15

Participants 337

A total of 20 participants were recruited (Table 1). The recruited population respected the 338

following requirements: 339

• 10 participants had a software-engineering background (formal education in the past 340

or present) - denoted as Experts; 341

• 10 participants had education in social sciences, economics or finance areas - denoted 342

as Novices; 343

• All participants were over 18 years old, proficient in English, unfamiliar with the 344

LCDP (had never worked with it), and willing to accept the sessions to be recorded 345

(screen and audio). 346

The recruitment was made via internal mailing lists at the author’s institutions as well as 347

personal contacts. Of the 20 participants, 7 were female and 13 were male. 348

Table 1 - Characterization of the participants 349

 Novices Experts

Gender Female 6 1
Male 4 9

Degree
Psychology, Economics,

Biochemistry, Management,
Acoustics

Software Engineering

The recruitment phase included a questionnaire to understand the participants’ experience with 350

programming languages. This questionnaire was custom-made, inspired by the knowledge acquired 351

by students during an informatics degree, and was divided into three sections, each with increasing 352

complexity in terms of computer science skills. The first section tested if the participant was 353

familiarized with EUD tools (specifically, Spreadsheets editing software), and basic computational 354

concepts, such as the concept of formula. The second section tested the capability of the user to 355

understand simple software development concepts, such as interpreting and writing software, 356

elementary data structures (e.g. arrays and binary trees), and query languages. The third level tested 357

if the user had advanced software development skills, such as communication protocols, object 358

16

oriented concepts and software modelling. Participants should also indicate which programming 359

languages and integrated development environment (IDE), if any, they felt comfortable using. 360

Defining the System-based description 361

The participants’ use-case consisted in creating a web application to manage books. The 362

development of the application (“My Books”) was divided into five tasks, which could be performed 363

in any order, each aimed at fulfilling one of the following requirements (in order of increasing 364

difficulty): 365

1. The user of the “My Books” application should be able to list and search all books; 366

2. The user should be able to see and edit the details of a book; 367

3. The user should be able to register new books in the application; 368

4. The application should present the user with a homepage with two buttons: 369

a. One that redirects users to the list of books; 370

b. Another that goes to the screen that allows registering a new book; 371

5. When seeing the details of a book, the user should see a list of other books from the 372

same author. 373

We started by developing an HTA for the overall use case, divided into 5 HTA sub-diagrams 374

corresponding to the five different tasks of the use case. Figure 4 presents the HTA diagram for the 375

first task, following the graphical notation of Marshall et al. (2003), where the main task description 376

is at the root of the diagram (“0. List and Search all books”) and the different sub-tasks at lower levels 377

(e.g., “1. Create book representations”). 378

17

 379

Figure 4 - Example of one HTA diagram for the use case task “List and Search all books”. 380

When a (sub)task is further decomposed, a plan describing how its subtasks can be combined is 381

detailed 382

After defining the HTA for each sub-task, we defined the level of the HTA tree that better 383

represents distinguishable tasks in the interface and we list all the units of interaction that are required 384

to perform in the LCDP in order to complete that specific sub-task. For instance, to create a list of 385

books with a search function the user of this particular LCDP as to perform the following actions: 386

1. Go to Data Menu; 387

2. Select Database; 388

3. Add Entity named “Book”; 389

4. Add Attributes; 390

5. Rename Attributes; 391

6. Add Book Entity to Home Screen representation; 392

7. Boilerplate generation of search functionality 393

 394

 395

18

Defining the Knowledge-based Description 396

In order to obtain a Knowledge-based Description, each participant was instructed to verbally 397

describe how he or she would perform each task, both in terms of the interface and in terms of the 398

back-end development. Participants did this with the conceptual knowledge they had and using the 399

tools they knew (if any), they should describe how they would complete the tasks. This was requested 400

before the participant interacted with the LCDP. 401

Material 402

The tests were performed in quiet testing rooms. Locations were equipped with a table and 403

three chairs, a laptop computer for the participant, with the LCDP running, ActivePresenter 7 screen 404

and audio capture software (Atomi Systems, 2019), and a video camera (the participant’s facial 405

expressions were not captured at any time, the camera focused on the screen of the laptop as a backup 406

measure). 407

Procedure 408

The participant was welcomed by the test moderator and the data logger, who explained that 409

an evaluation was being carried out on how hard or how easy it was to use a particular LCDP. He or 410

she read and signed the informed consent where more detailed information was provided. Each 411

participant was presented with the five tasks. First, the participant was instructed to describe verbally 412

how he or she would perform each task, both in terms of the interface and in terms of back-end 413

development. Regarding this process, it became evident that the test moderator played a role in the 414

success of this phase, which would be used to build the Knowledge-based Description of each 415

participant. The moderator should prompt the participant when he or she becomes quiet, asking 416

specifically about aspects of the application in order to gather as much information as possible. 417

Then, the participant was requested to carry out the tasks upon performing a tutorial. The 418

tutorial consisted of an interactive session, where the users were put in contact with the LCDP and 419

explained the basic concepts. The test moderator informed the participants that there were several 420

19

ways of concluding the tasks, and that they could search the internet for answers. Each participant 421

was provided with the same instructions. The participants were given a written copy of the 422

instructions and respective memory aides. 423

Analysis 424

For each subtask in the Hierarchical Task Analysis deemed relevant, we developed adapted 425

ETIT mappings from the collected Knowledge-based Description to what was the required plan of 426

action in the platform (the System-based Description). Figures 5 and 6 show as an example the ETIT 427

mapping for the sub-task “List and Search all Books”, for an expert and a novice user, respectively. 428

The end-result of the mapping exercise allows the analyst to identify what type of use-errors might 429

occur during that sub-task. 430

 431

Figure 5 - Example of the adapted ETIT mapping for the sub-task “List and Search all Books” in 432
an Expert user. Dashed arrows correspond to implicit steps. 433

 434

Figure 6 - Example of the adapted ETIT mapping for the sub-task “List and Search all Books” in a 435

Novice user. 436

20

As we pointed out earlier, analysts can uncover three types of conflicts by looking at the 437

mapping rules. Figure 5 illustrates all three types of conflicts - under decomposition in step 2 of the 438

KBD, no correspondence in step 3, and over decomposition in step 6 of the SBD. 439

Identify the root-cause of issues found in empirical tests with real users 440

The analysis depicted in Figure 1, which shows the complete flow from the definition of the 441

models, through the identification of a KDB-SBD conflict, to risk analysis of that conflict, was the 442

one followed in the present work. 443

Each interaction video of the participants was thoroughly observed, the issues that occurred 444

were identified and their relevance analyzed using the following steps: 445

• Root Cause – After analysis of the interaction that resulted in an error, a root cause 446

was identified. 447

• Remedy Analysis – A recommendation for a way to avoid the error or issue was 448

devised. 449

• Evidence – When available, evidence gathered during data collection with 450

participants (video) was also registered. 451

• Pure Risk – The frequency and criticality of the issues was evaluated by the authors 452

and the LCDP’s research and development team. 453

One complete analysis took on average 40 minutes per participant for an experienced analyst. 454

The Frequency of an issue was defined as the frequency with which the issue under analysis 455

was observed in the empirical tests. The scale can be adjusted depending on the size of the sample, 456

without the need to modify our model. 457

To determine Criticality, all observed issues were evaluated by four authors and four 458

professional LCDP developers regarding the level of criticality as described in Figure 2, ranging from 459

2 (not a problem) to 10 (serious). The evaluations were performed individually considering the 460

general criticality of the issue, and not the particular context/participant where it happened. Inter-rater 461

reliability was assessed using a two-way, average measures ICC (intraclass correlation). The resulting 462

ICC was in the “fair” range, ICC=0.50 (Cicchetti, 1994), indicating that evaluators had a fair degree 463

21

of agreement. The ICC increased to 0.68, in the “good” range, when only one group (authors) was 464

considered. This indicates different evaluation criteria from both groups, something which would be 465

worth exploring in the future. The final Criticality value was the mode of the eight evaluations. 466

RESULTS 467

In this section we will present results on the comparison between the PRECOG’s predictions 468

and the interaction issues observed during the empirical usability tests. Moreover, we will also address 469

the nature of the use-errors that were predicted and verified, in terms of its root-cause, frequency, and 470

pure-risk. 471

The comparison between PRECOG´s predictions and results of the empirical usability tests 472

will be presented regarding the two profiles (expert and novice) and the three types of conflicts 473

signalized by PRECOG (1 - Under decomposition; 2 - Over decomposition; 3 - No correspondence). 474

In Table 2 we can see that out of a total of 135 potential interaction issues identified by PRECOG, 67 475

(49.6%) occurred during empirical usability tests. Moreover, of all interaction issues verified in the 476

empirical usability tests, only 5 were not predicted by a type of conflict signalized in the PRECOG 477

model. Table 2 summarizes the outcome of applying PRECOG in three confusion matrices, 478

considering the studied profiles both combined and separately. 479

Table 2 - Confusion Matrices for a combination of all participants and by participants’ profile 480

(Novices and Experts). 481

All Participants

 Verified

 Use Error No Use Error Total

Predicted
Use Error 67 68 135

No Use Error 5 64 69

 TOTAL 204

 482

22

EXPERTS

 Verified

 Use Error No Use Error Total

Predicted
Use Error 39 42 81

No Use Error 2 50 52

 TOTAL 133

 483

NOVICES

 Verified

 Use Error No Use Error Total

Predicted
Use Error 28 26 54

No Use Error 3 14 17

 TOTAL 71

 484

In order to assess the predictive capability of our DCM we analyzed the values presented in 485

Table 2, where it is possible to see the total number of true-positives (i.e., predicted and confirmed 486

use-error), false-positives (i.e., predicted but unconfirmed use-error), true-negatives (i.e., predicted 487

and confirmed inexistence of use-error), and false-negatives (i.e., not predicted but confirmed 488

existence of use-error). An efficient predictive model aims at scoring high in both true-positives and 489

true-negatives and low in both false-positives and false-negatives. From a confusion matrix one can 490

calculate several complementary values to assess a classifier’s predictive capability (Powers, 2011; 491

Tharwat, 2018), namely: 492

• Sensitivity - or recall is the proportion of the positive samples (i.e., verified use-errors) that 493

were correctly classified as so. Thus, Sensitivity depends on true-positives (TP) and false-494

negatives (FN), which are in the same column of the confusion matrix, and can be calculated 495

as: Sens = TP/(TP+FN) 496

• Specificity - or inverse recall is the proportion of negative samples (i.e., verified no use-497

error) that were correctly classified as so. Thus, Specificity depends on true-negatives (TN) 498

23

and false-positives (FP), which are in the same column of the confusion matrix, and can be 499

calculated as: Spe = TN/(TN+FP) 500

• Accuracy - is defined as a ratio between the correctly classified samples to the total number 501

of samples, and can be calculated as follows: Acc = (TP+TN)/(TP+TN+FP+FN) 502

• F1-score - also called F1-measure is the harmonic mean of sensitivity and positive 503

predictive value (ppv = TP/(TP+FP)). The value of the F1-score ranges from zero to one, 504

and high values indicate high classification performance. F1-scores are calculated as follow: 505

F1 = (2TP)/(2TP+FP+FN) 506

• Informedness - also called Youden’s index quantifies how informed a predictor is for the 507

specified condition, and specifies the probability that a prediction is informed in relation to 508

the condition (versus chance) (Powers, 2011). The value of the Informedness ranges from 509

zero, or chance-level, to one, representing a perfect predictive capability. Informedness can 510

be calculated as follow: Inf = sensitivity + specificity - 1 511

Table 3 shows the PRECOG’s values obtained for these different variables, based on the 512

confusion matrices presented in Table 2. 513

Table 3 - PRECOG’s predictive metrics for All Participants and divided by user profile 514

 All Participants EXPERTS NOVICES

Sensitivity 0.93 0.95 0.90

Specificity 0.48 0.54 0.35

Accuracy 0.64 0.67 0.59

F! Score 0.65 0.64 0.66

Informedness 0.42 0.49 0.25

 515

 Both Powers (2011) and Tharwat (2018) discussed the advantages and limitations of each of 516

these metrics for classification performance. According to Powers, Sensitivity and F1-scores ignore 517

performance in correctly handling negative examples, propagate underlying marginal prevalence and 518

biases, and fail to account for the change level performance. Nevertheless, Tharwat makes the case 519

that all these different metrics, being more focused (such as Sensitivity, Specificity, and F1-score) or 520

24

more general (such as Accuracy and Informedness) are useful to understand all the potentialities of a 521

particular classifier. In the case of PRECOG, Sensitivity was generally higher than Specificity and, 522

while Accuracy and F1-scores were fairly similar for both Experts and Novices, Informedness was 523

the measure that varied the most regarding type of participant. 524

Statistical tests revealed differences between Experts and Novices concerning Specificity and 525

Informedness. An unpaired two-samples Wilcoxon test indicated that Specificity in Experts was 526

significantly higher than in Novices (W = 73.5, p < .01, r = -0.59). Similarly Informedness (W = 81, 527

p < .01, r = -0.72) was also significantly higher in Experts than in Novices. 528

 529

 530

Figure 7 - Differences PRECOG’s classification of Experts and Novices concerning Specificity and 531
Informedness. 532

Having calculated the Sensitivity and Specificity of each participant’s classification, it was 533

possible to map the performance of PRECOG in a Receiver Operating Characteristic (ROC) plot 534

(Figure 8). Participants are mainly mapped in the upper left-hand of the ROC space, meaning that, 535

for the generality of the participants, PRECOG’s classification was predictive of actual behavior. 536

25

Again, it is possible to verify that data points of Expert participants are further from chance level 537

(x=y) than data points of Novice participants. 538

 539

 540

Figure 8 - Receiver Operating Characteristic (ROC) data point cloud representing Experts (points) 541

and Novices (triangles). The diagonal line represents the chance level. 542

 543

Looking at the distribution of True Positives and False Positives according to profile and 544

considering the three types of conflicts predicted by PRECOG, it is possible to observe that Under 545

decomposition conflicts were the type of mapping conflict where PRECOG performed better. 546

PRECOG obtained the highest difference between True Positives and False Positives in this type of 547

conflict, having Under decomposition conflicts in Experts accounting for 17,5% of the overall correct 548

predictions and in Novices accounting for 23.6% of the overall correct predictions. In the case of 549

Experts, Over decomposition got the highest rate of True Positives (20%), however, this type of 550

conflict also accounted for 17.5% of False Positives. For the Over decomposition conflicts in Novices, 551

the reverse pattern was observed, with a higher number of False Positives (18.1%) than of True 552

26

Positives (10%). Finally, the No correspondence type of conflicts were the type of mapping conflict 553

where PRECOG had a worse performance, with a higher number of False Positives than True 554

Positives both in Experts (20%) and in Novices (21%). 555

 556

Figure 9 - Distribution of True Positives and False Positives according to profile, considering the 557

three types of conflicts predicted by PRECOG 558

Focusing on the data coming from the usability empirical studies, and considering the 559

Frequency of the observed interaction issues, we were able to identify 10 types of issues: Input 560

parameter; New database; Table with data; Button link; New screen; Query; Search function; Relate 561

data; Change homepage; Details. Figure 10 depicts the Frequency with which each of these issues 562

occurred in both profiles. It is possible to observe that the same issues did not occur for both profiles. 563

As a first characterization, it can be observed that Experts had a more diverse typology of issues, 564

having experienced nine while Novices had six different types of issues. No participant had any 565

“Button Link” related issues. On the Novice side, they did not have issues related to “Table with 566

27

data”, “Query” and “Relate data”. For the Experts, the issue with the highest True Positives was 567

“Query” with 8 correctly identified issues. The highest number of False Positives among Experts 568

were found in the “New Screen” and “Change homepage” issues, where 7 identified issues were 569

considered False Positives. Regarding Novices, “Input Parameter” and “New database” issues had 7 570

True Positives followed by “New Screen” with 6 True Positives. Concerning False Positives, “Search 571

function” with 7 False positives was followed by “Details” with 6. 572

 573

Figure 10 - Frequency of True and False positive issues identified in the empirical tests after KBD-574

SBD mapping 575

Besides Frequency, another component for the Pure Risk analysis is the Criticality of the issues. 576

Table 4 presents the final Criticality attributed to the issues that emerged during our analysis. 577

Table 4 - Criticality of the identified issues by a pool of eight evaluators 578

28

Issue Criticality Description

Input parameter 8 Relevant

New database 6 Marginal

Table with data 8 Relevant

Button link 8 Relevant

New screen 8 Relevant

Query 8 Relevant

Search function 8 Relevant

Relate data 8 Relevant

Change homepage 6 Marginal

Details 8 Relevant

 579

Figure 11 depicts all ten different issues observed during the interaction with the LCDP. The 580

issues are presented in terms of the Pure Risk evaluation (min=0, max=50). Besides Criticality, the 581

Pure Risk evaluation considers the Frequency of occurrence of each issue, hence the difference in the 582

value of the same issue for both profiles. 583

 584

Figure 11 - Pure Risk of each observed issue per profile. Issues found by the LCDP Descriptive 585

Cognitive Model according to their Pure Risk evaluation (min=0, max= 50) 586

29

This data indicates that, for instance, the “Query” issue should be solved, as almost all Experts 587

who interacted with the LCDP had issues with creating a query. It also indicates that the weight of 588

each issue is different depending on the LCDP user. For Novices, the highest Pure Risk value is in 589

the “Input Parameter”, followed by “New Database” and “New Screen” issues. The only Pure Risk 590

value similar to both profiles occurred in the “Search Function” issue, indicating similar difficulties 591

in this task for both profiles. 592

DISCUSSION 593

We have successfully applied our descriptive cognitive model (PRECOG) to a relevant use 594

case, which allowed us to validate the viability of the proposed approach. 595

Predictive power 596

Although time-consuming, the methodology proved to correctly identify several high-597

criticality issues from both user profiles. Indeed, we were able to use the model to predict a relevant 598

number of problems, prior to the user studies that confirmed them. The confirmation came with a 599

relatively high number of False Positives. Such is due to the conservative nature of the model, as 600

highlighted by the fact that results show a high Sensitivity, with a comparatively lower Specificity. 601

We opted for an exhaustive approach, and no relevant error was disregarded in the KBD-SBD 602

mapping analysis, since such a stance allowed a more extensive list of expected problems. Despite 603

this conservative approach, the majority of the predicted issues or root causes occurred during 604

empirical user tests (all were observed except for the “Button Link” issue). This is a relevant output 605

as very little unpredicted issues occurred during the user studies and these were mostly related to 606

navigational (interaction with the platform) difficulties and not conceptual mismatches. 607

Another explanation for the high number of False Positives predicted by PRECOG concerns 608

“No correspondence” issues, where one item from the KBD or the SBD finds no correspondent on 609

the other side. Some issues of this type may have arisen because the participant did not mention a 610

certain development step or minor detail - which ended up being evident when interacting with the 611

LCDP, thus not resulting in a real issue. This is particularly evident in the case of Novice 612

30

programmers, leading to a significantly lower Specificity in their case, and can be attributed to the 613

fact that their mental models of the programming tasks differ from the platform’s model more than 614

the Experts’ mental model. That some of the problems were not observed is, in effect, a positive 615

indicator towards the ability of the LCDP to guide users during the learning stage. Conversely, “Over 616

decomposition” was the type of issue with more false positives, which seems to indicate a need to 617

raise the abstraction level of the platform. Doing this without compromising the ability of advanced 618

users to fine-tune applications that are more complex, implies exploring strategies for adaptive user 619

support (Oppermann, 1994; Gajos, Czerwinski, Tan & Weld, 2006). An important observation should 620

be made regarding moderation of the Knowledge-Based Description stage. The moderator should be 621

very familiar with the platform and the tasks under study in order to prompt the necessary information 622

to complete the mapping. It is extremely important to obtain all the information that will allow 623

illustrating the participant’s mental model before interaction with the platform. 624

Another significant result concerns the Criticality of the issues observed. All issues which 625

occurred had a Criticality evaluation of more than 6, that is, were either Marginal (Mistakes due to 626

unmatched expectations, eventually solved through exploration/help), or Relevant (Continuously 627

affects user’s understanding of the development platform and actions). This is an indicator that our 628

approach is useful in detecting high-criticality issues. Unfortunately, and this is a limitation of the 629

current study, no Criticality evaluation was performed in the non-observed issues in order to compare 630

the criticality between the observed and unobserved issues. 631

Regarding the number and type of issues, the applied model allowed us to distinguish two 632

patterns between Novice and Expert programmers. Expert programmers had more types of issues (9 633

in total), but each happening less frequently, depicting a more exploratory behaviour, Novice 634

programmers had less types of issues (6 in total) but each with more repetitions, meaning that the 635

issues were effectively problematic for this profile, which explored less and whose participants had 636

very similar performances. Another potential explanation for this difference in number of observed 637

issues results from the speed with which each profile performed the tasks. Expert programmers 638

managed to complete more tasks than Novice programmers, hence there was more opportunity for 639

issues to arise. These different patterns affected the Pure Risk evaluation of the issues according to 640

31

profiles. Even though the Criticality was the same for all issues independently of the profile, the 641

Frequency of the issue affected the Pure Risk value. The issues found in Novice programmers were 642

consistent and robust, and this is even more interesting if we consider their heterogeneous background 643

education. The Pure Risk evaluation should work as an order of priorities in order to improve the 644

LCDP under study. Indeed, the LCDP development team has since addressed some of the issues 645

found. 646

In global terms, the combined results show PRECOG is somewhat a conservative model, which 647

despite eliciting some False Positives also identified correctly the majority of issues that effectively 648

impaired the participants’ progression. It should be noted that we are considering first-time users of 649

the platform without any formal training. 650

As it is the case for safety-critical systems, when analyzing applications such as LCDPs, it is 651

safer to overestimate the occurrence of potential for use-error, than fail to identify serious use-errors 652

that occurred. In this regard, PRECOG appears to be a promising approach in the sense that it was 653

able to identify almost all issues faced by Expert and Novices programmers. 654

From the application of this LCDP Descriptive Cognitive Model, and as highlighted by the 655

ROC analysis, we conclude that the method has predictive power (i.e., most of the identified 656

knowledge-system conflicts were resulting in use issues during the performance of the task), and that 657

this methodology could be used as an effective tool to predict, understand, and mitigate use errors 658

and faulty interactions in an LCDP platform. 659

Model applicability 660

Regarding the applicability of PRECOG, the descriptive cognitive model itself was tailored to 661

a specific set of applications, and for the LCDP it proved useful, granular and precise. In theory, the 662

model is not limited to LCDP platforms. We address applications where the user tasks can be 663

decomposed through an HTA, so that the KBD-SBD mapping is possible. That said, we are only able 664

to support our claims in the low-code development area, due to the performed user studies. As for the 665

type of participants, the model assumes naïve participants or first-time users, but maybe the observed 666

granularity and detail of the predictions would allow its application with participants with some 667

knowledge of the platform under study (i.e., testing tasks that the participants never performed in that 668

32

particular platform). This would be an interesting application for the future, as we expect the model 669

to identify the missing knowledge independently of the proficiency of the participant. 670

Threats to validity 671

Having performed a user study, results are susceptible to threats to its validity. Specifically, we 672

acknowledge the relatively limited number of participants (a total of 20). While the achieved results 673

regarding the percentage of effective issues vs. identified ones are positive, the impact of a larger 674

study group should be analyzed. 675

Would this model work without empirical studies? We believe it would, and in the section 676

where PRECOG is presented, we provide the necessary steps to do so. We believe its predictive 677

capability would be improved if the criticality evaluation had been performed after the KBD-SBD 678

mapping for all identified potential issues (including false positives). Having all the criticalities of all 679

potential issues would, for instance, allow the analysts to choose the issues evaluated with a criticality 680

of 6 or more. These issues, according to our results, have a higher probability of being captured by 681

PRECOG. In the future, it is our intention to validate this second approach by performing cognitive 682

walk-throughs in the platform and performing criticality evaluations in replacement of the empirical 683

studies with real participants. 684

Value 685

The approach used in the current study allowed us to identify problems, difficulties and issues 686

participants faced during the interaction with the LCDP. Although not detailed in the present study, 687

a root-cause analysis of each issue allowed us to understand that these arose mostly due to two types 688

of lacking concepts: LCDP-related concepts and development-related concepts. Whereas Expert 689

programmers knew the development concepts but had difficulty in translating them into the LCDP 690

terms, Novice programmers lacked basic development-related concepts, which largely affected their 691

performance. 692

Although these results are based on the study of one development use-case, and we cannot 693

generalize to the entire LCDP, PRECOG allowed the identification, prioritization and root-cause 694

analysis of several issues. This is valuable information for the LCDP platform developers as they 695

have as main goal to place both types of profiles (Experts and Novices) within the Optimal Flow (cf. 696

33

Csikszentmihalyi, 1990; Repenning & Ioannidou, 2006), with just the right amount of challenges and 697

just the right amount of skill-acquisition - each at their own pace. The nature of the issues also 698

provides valuable inputs to support adjusting the LCDP learning process, according to the Optimal 699

Flow. Specifically, the nature of the errors should be taken into account: Novice users, due to the lack 700

of software development skills, will fall into anxiety, as they are not able to develop the desired 701

features; Expert users, while lacking knowledge of the platform, will perform the tasks resorting to 702

the previously acquired knowledge, which might result in repetitive and monotonous tasks, leading 703

to boredom. 704

CONCLUSION 705

Low-code development platforms have the potential to dramatically change how software is 706

developed, making it possible, at least for particular domains, for someone without a formal education 707

in computer science to develop quality software, and for experienced developers to significantly speed 708

up the development process. Understanding how programmers and non-programmers approach this 709

type of platform, is key to support their design and evolution. By developing and applying PRECOG, 710

a new Descriptive Cognitive Model (DCM), aimed at identifying interaction issues with the learning 711

of low-code platforms, we were able to gain insights into potential problems with a specific low-code 712

platform’s use. The proposed DCM was validated, using empirical techniques. Twenty participants 713

were observed interacting with the LCDP, of which 10 were expert programmers and the other 10 714

were novice programmers. All performed the same tasks and all interactions were analyzed according 715

to the proposed model. 716

Although a high number of False Positives were identified after a first mapping between the 717

user’s mental model and the system’s requirements, it is relevant to notice that all issues but one 718

(Button link), which occurred during users’ interaction with the LCDP, were predicted by this 719

mapping. Expert programmers had a higher number of observed issues, although each occurring less 720

frequently. This was due to expert programmers performing the tasks more quickly and with a more 721

explorative behaviour, giving room for more issues to occur. On the other hand, Novice programmers 722

faced fewer issues, although each occurred more frequently. These results allowed us to successfully 723

34

identify high criticality use errors through the analysis of the users’ mental model and, importantly, 724

the results allowed us to identify the root causes of each issue. One of the future goals of the current 725

research is to validate PRECOG as a predictive model without recurring to user studies. 726

PRECOG revealed itself quite valuable in the search for more usable LCDP and effective EUD 727

platforms. As Maeda (2006) points out, “observing what fails to make sense to the non-expert, and 728

then following that trail successively to the very end of the knowledge chain is the critical path to 729

success [i.e., in developing simple and easy to learn systems]”. Our proposed method allows the 730

systematic and effective exploration of the conflict between users’ knowledge and system 731

requirements/challenges, thus providing important insights for system developers that aim at creating 732

a broadly accessible development platform. Moreover, this method can be applied in other contexts 733

where learnability might be an issue for it allows to identify possible sources of faulty interaction and 734

sub-tasks where the users’ background knowledge will be insufficient to guarantee a successful 735

performance of the task at hand. 736

KEY POINTS 737

● An effective Low-Code Development Platform (LCDP) requires an understanding of the 738

distance between the LCDP end-users' conceptualization of programming, and the actions required 739

in the platform. 740

● We propose and evaluate a Descriptive Cognitive Model (DCM) for the identification of initial 741

use issues in a low-code development platform. 742

● We propose three mapping rules for the identification of knowledge-system conflicts: over 743

decomposition, under decomposition and no correspondence conflicts. 744

● Applying the proposed DCM we were able to predict the interaction problems felt by first time 745

users of the LCDP. 746

REFERENCES 747

35

Amir-Heidari, P., Farahani, H., & Ebrahemzadih, M. (2015). Risk assessment of oil and gas well 748

drilling activities in Iran – A case study: Human factors. International Journal of Occupational 749

Safety and Ergonomics, 21(3), 276–283. 750

Barricelli, B. R., Cassano, F., Fogli, D., & Piccinno, A. (2019). End-user development, end-user 751

programming and end-user software engineering: A systematic mapping study. Journal of Systems 752

and Software, 149, 101–137. 753

Blackwell, A. F. (2017). End-user developers–What Are They Like?. New Perspectives in End-754

User Development (pp. 121-135). Cham, Springer International Publishing. 755

Blackwell, A. F., Petre, M. & Church, L. (2019). Fifty years of the psychology of programming. 756

International Journal of Human-Computer Studies, 131, 52-63. 757

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineering, Computer, 758

20(4), 10-19. 759

Ceruzzi, P. E. (2012). Computing: a concise history. Cambridge, Massachusetts: MIT Press. 760

Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and 761

standardized assessment instruments in psychology. Psychological assessment, 6(4), 284-290. 762

Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. New York: Harper & 763

Row. 764

Dijkstra, E. W. (1982). How do we tell truths that might hurt? In Selected Writings on Computing: 765

A personal Perspective (pp. 129–131). New York: Springer New York. 766

Dix, A., Finlay, J., Abowd, G. D., & Beale, R. (2004). Human-Computer Interaction. Harlow, 767

England: Pearson Education. 768

36

Embrey, D. E. (1986). SHERPA: A systematic human error reduction and prediction approach. 769

Paper presented at the International Meeting on Advances in Nuclear Power Systems, Knoxville, 770

TN. 771

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., & Mehandjiev, N. (2004). Meta-design: A 772

manifesto for End-user development. Communications of the ACM, 47(9), 33–37. 773

Fowler, M., & Kobryn, C. (2004). UML distilled: a brief guide to the standard object modeling 774

language. Addison-Wesley Professional. 775

Gajos, K. Z., Czerwinski, M., Tan, D. S., & Weld, D. S. (2006, May). Exploring the design space 776

for adaptive graphical user interfaces. Proceedings of the working conference on Advanced visual 777

interfaces (AVI '06) (pp. 201-208). New York: ACM. 778

Gonçalves, R. C., Maciel, R. H., Maia, L. M., Nascimento, A. P. T., & Canuto, K. M. (2014). 779

Electric system control room operators: Cognitive task analysis and Human error. Proceedings of 780

the 5th International Conference on Applied Human Factors and Ergonomics (AHFE 2014) 781

(pp.621-630). 782

Huddlestone, J. A., & Stanton, N. A. (2016). New graphical and text-based notations for 783

representing task decomposition hierarchies: Towards improving the usability of an Ergonomics 784

method. Theoretical Issues in Ergonomics Science, 17(5–6), 588–606. 785

ISO - International Organization for Standardization. (2010). Ergonomics of human-system 786

interaction - Part 210: Human-centred design for interactive systems. ISO 9241-210. 787

Lieberman, H., Paternò, F., Klann, M., & Wulf, V. (2006). End-user development. Dordrecht: 788

Springer. 789

Maeda, J. (2006) The laws of simplicity. MIT press. 790

37

MacLean, A., Carter, K., Lövstrand, L., & Moran, T. (1990). User-tailorable systems: Pressing the 791

issues with buttons. Proceedings of the SIGCHI conference on Human factors in computing systems 792

(pp. 175-182). ACM. 793

Marshall, A., Stanton, N., Young, M., Salmon, P., Harris, D., Demagalski, J., Dekker, S. (2003). 794

Development of the Human Error template: A new methodology for assessing design induced errors 795

on aircraft flight decks. Final Report of the ERRORPRED Project. London. 796

Marvin, R. (2018). The best low-code development platforms for 2019. Retrieved April 30, 2019, 797

from https://www.pcmag.com/roundup/353252/the-best-low-code-development-platforms 798

Mayer, R. E. (1981). The psychology of how novices learn computer programming. ACM 799

Computing Surveys (CSUR), 13(1), 121-141. 800

Moran, T. P. (1983). Getting into a system: External-Internal task mapping analysis. Proceedings of 801

the SIGCHI Conference on Human Factors in Computing Systems, (December), 45–49. 802

Myers, B. A., Pane, J. F., & Ko, A. (2004). Natural programming languages and environments. 803

Communications of the ACM, 47(9), 47. 804

Nielsen, J. (1994). Usability engineering. Elsevier. 805

Oppermann, R. (1994). Adaptive user support: Ergonomic design of manually and automatically 806

adaptable software (pp. 1-13). CRC Press. 807

Paternò, F., & Wulf, V. (2017). New Perspectives in End-User Development. Springer. 808

Powers, D. (2011). Evaluation: from Precision, Recall and F-measure to ROC, Informedness, 809

Markedness and Correlation. Journal of Machine Learning Technologies, 2(1), 37-63. 810

Repenning, A., & Ioannidou, A. (2006). What makes end-user development tick? 13 Design 811

guidelines. End user development (pp. 51–85). Dordrecht: Springer. 812

38

Sajaniemi, J. (2008). Guest Editor's Introduction: Psychology of Programming: Looking into 813

programmers heads. Human Technology: An Interdisciplinary Journal on Humans in ICT 814

Environments 4(1), 4–8. 815

Silva, C. C. (2013). Audiovisual perception in a virtual world: An application of human-computer 816

interaction evaluation to the development of immersive environments. Proceedings of the 5th ACM 817

SIGCHI symposium on Engineering Interactive Computing Systems (EICS 2013) (pp. 175-178). 818

Stanton, N. A., Hedge, A., Brookhuis, K., Salas, E. & Hendrick, H.W. (2004). Handbook of human 819

factors and ergonomics methods. Florida: CRC Press. 820

Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics. 821

Young, R. M. (1981). The machine inside the machine: Users’ models of pocket calculators. 822

International Journal of Man-Machine Studies, 15(1), 51–85. 823

 824

Carlos César Loureiro Silva is the Research and Development Coordinator of the Perception, 825

Interaction and Usability group at CCG - Centro de Computação Gráfica. He holds an MSc in 826

Experimental Psychology from the University of Minho (Portugal, 2011) and a PhD degree in 827

Informatics from the University of Minho (Portugal, 2019). 828

Joana Catarina Fernandes Vieira is a Usability Analyst and Researcher at CCG - Centro de 829

Computação Gráfica. She holds an MSc in Experimental Psychology from the University of Minho 830

(Portugal, 2008) and is concluding a PhD in Ergonomics from the University of Lisbon. 831

José Francisco Creissac Freitas de Campos is an Auxiliary Professor at the Department of 832

Informatics of the University of Minho and a Senior researcher at HASLab/INESC TEC. He holds a 833

PhD. degree in Computer Science from the University of York (UK, 2001). 834

39

Rui Miguel Silva Couto is a Senior Researcher at the HASLab/INESC TEC & University of 835

Minho. He holds a PhD. degree in Informatics from the University of Minho (Portugal, 2017). 836

António Manuel Nestor Ribeiro is an Auxiliary Professor at the Department of Informatics of the 837

University of Minho and a Senior researcher at HASLab/INESC TEC. He holds a PhD. degree in 838

Informatics from the University of Minho (Portugal, 2008). 839

