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PRÉCIS 13 

This study proposes and evaluates a Descriptive Cognitive Model (DCM) for the identification 14 

of initial usability issues in a low-code development platform (LCDP). By applying the 15 

proposed DCM we were able to predict the interaction problems felt by first-time users of the 16 

LCDP. 17 

ABSTRACT 18 

Objective: Development and evaluation of a Descriptive Cognitive Model (DCM) for the identification of three 19 

types of usability issues in a low-code development platform (LCDP). 20 

Background: LCDPs raise the level of abstraction of software development by freeing end-users from 21 

implementation details. An effective LCDP requires an understanding of how its users conceptualize 22 

programming. It is necessary to identify the gap between the LCDP end-users' conceptualization of 23 

programming, and the actions required by the platform. It is also relevant to evaluate how the conceptualization 24 

of the programming tasks varies according to the end-users’ skills. 25 

Method: DCMs are widely used in the description and analysis of the interaction between users and systems. 26 

We propose a DCM which we called PRECOG that combines task-decomposition methods with knowledge-27 
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based descriptions and criticality analysis. This DCM was validated using empirical techniques to provide the 28 

best insight regarding the users’ interaction performance. Twenty programmers (10 experts, 10 novices) were 29 

observed using a LCDP and their interactions were analyzed according to our DCM. 30 

Results: The DCM correctly identified several problems felt by first-time platform users. The patterns of issues 31 

observed were qualitatively different between groups. Experts mainly faced interaction related problems, while 32 

novices faced problems attributable to a lack of programming skills. 33 

Conclusion: Applying the proposed DCM we were able to predict three types of interaction problems felt by 34 

first time users of the LCDP. 35 

Application: The method is applicable when it is relevant to identify possible interaction problems, resulting 36 

from the users’ background knowledge being insufficient to guarantee a successful completion of the task at 37 

hand. 38 

Keywords: End-User Development, Low-Code Development Platforms, Descriptive Cognitive Models, 39 

Usability, Human-Computer Interaction 40 

INTRODUCTION 41 

Low-code development platforms (LCDP) address the need for increased productivity in 42 

software development. By raising the abstraction level at which software is developed, they automate 43 

low-level and routine development tasks, effectively contributing to solve the problem of global 44 

shortage of professional software developers. Forrester's Low-Code Market Forecast predicts low-45 

code platforms will reach over 15 billion US dollars in 2020 (Marvin, 2018). At the same time, they 46 

lower the entry barrier to software development. As these low-level tasks become automated, 47 

developers are not required to carry them out (or even know how to carry them out). Low-level 48 

technical details are effectively hidden by the platform. If the entry level becomes low enough, we 49 

can say these platforms become End-User Development (EUD) platforms (Fischer, Giaccardi, Ye, 50 

Sutcliffe, & Mehandjiev, 2004). At that point, no special programming skills are needed to use them. 51 

Other terms have been used to describe related concepts with varying levels of scope, such as End-52 

User Programming (EUP), End-User Software Engineering (EUSE) and Meta-Design (see Barricelli, 53 

Cassano, Fogli, & Piccinno (2019) for a recent systematic review of the literature). 54 
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Whether considering LCDP or EUD, the users’ prior knowledge plays a relevant role in the 55 

learning and using of a platform, as it will affect the way users approach the platform (Dijkstra, 1982). 56 

In the case of LCDP, there is the double challenge of supporting users with little or no knowledge of 57 

programming, while also supporting expert programmers. Indeed, understanding individual 58 

differences and expectations, and identifying the sources of variation among different users will help 59 

this type of platforms to be more broadly adopted (Blackwell, 2017). Since low-code development 60 

platforms aim at reducing the learning burden while providing powerful tools to address a wide range 61 

of problems, a trade-off must be established between the scope of application and the learning costs 62 

of the platforms and their languages. This necessarily implies building an understanding of how 63 

different types of users approach the platforms.  64 

Descriptive Cognitive Models (DCM) can be used to study the interaction between one 65 

interactive system and its users, in particular to analyze how the interplay between the users’ cognitive 66 

processes and the user interfaces’ design might lead to faulty interactions or use errors (Nielsen, 67 

1994). Its applicability to reason about the act of programming has long been explored (cf. Blackwell, 68 

Petre & Church, 2019). Nevertheless, in spite of relevant Human-Computer Interaction (HCI) 69 

findings and developments since the 1980s and recent developments in both LCDP and EUP, there is 70 

still a considerable number of relevant gaps in current knowledge about how people reason during 71 

programming and development tasks (Sajaniemi, 2008). According to Myers, Pane, and Ko (2004), 72 

conventional programming languages require the user or programmer to make “tremendous 73 

transformations” (pp.48) from what he or she intends to accomplish, to what he or she should code. 74 

Visual modelling languages, typically adopted by low-code development platforms, aim to mitigate 75 

this problem, but their actual effectiveness is still subject to debate.  76 

The distance between the mental and the physical spaces in software development was the 77 

motivation behind the current work. More specifically, the long-term goal of this work is to support 78 

lowering the learning curve of a specific LCDP to the point that non-programmers (i.e., end-users) 79 

might use it to develop software (in practice, turning it into an EUD platform). The challenge then, is 80 

how to reduce the learning effort of users without reducing the scope of the possible application 81 

domains. As a contribution to this long-term goal, the work described in this paper aimed at 82 
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understanding the difficulties faced by potential programmers with different expectations and 83 

academic backgrounds when using a specific LCDP. To achieve this, we developed a new descriptive 84 

cognitive model with the purpose of predicting usability issues in a LCDP. 85 

THE LCDP – Low-Code Development Platform  86 

A low-code development platform supports the development of software applications resorting 87 

to minimal code writing. Its objective is to empower different kinds of users, by allowing them to 88 

easily and quickly create applications: experienced users (e.g., programmers) are able to create 89 

software by writing considerably less code, while users without prior experience will require less 90 

formal training to start creating applications. 91 

Due to non-disclosure agreement conditions, we are not authorized to name the LCDP under 92 

study, and for that reason it will henceforth be referred to simply as the LCDP. The LCDP under 93 

study allows developers to create both full stack web applications, and mobile applications. It 94 

provides a set of predefined templates to bootstrap the development process, which creates the base 95 

application. Developers can then expand the application on top of that. The development process 96 

itself is performed by resorting to high level development languages, mainly visual languages, similar 97 

to Unified Modeling Language (UML) diagrams (Fowler, M., & Kobryn, 2004). The platform also 98 

allows developers to graphically edit the interfaces and automatically generate pages and components 99 

(e.g., through drag and drop interactions). With this LCDP, it is possible to develop enterprise-grade 100 

level applications thanks to the integration mechanisms provided, for instance, with web services, 101 

databases or external systems (e.g., SAP). 102 

         Different languages with different abstraction levels are provided to define different 103 

components of the system. The definition of some aspects of the system, such as navigation between 104 

screens, the behavior of the screens and buttons, is done through a statechart-like language, as they 105 

are adequate for control-flow modeling. These diagrams have a simple syntax, which has the objective 106 

of being easily understood by a large audience. Some more complex aspects, such as data retrieval 107 

from a database, resort to a Domain Specific Language (DSL), which is more powerful, but 108 

simultaneously more complex. The platform also takes advantage of widely known formats, such as 109 
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spreadsheets, in order to speed up the development process. This empowers those users who are non-110 

experienced developers, but have had previous contact with these technologies, to more easily 111 

understand the platform. Once finished, the applications are converted into standard technologies 112 

(familiar web, back-end and mobile languages), and deployed into a cloud environment. The 113 

applications become immediately available once published. Examples of this type of platforms 114 

include Appian, Google App Maker, Microsoft PowerApps, MIT App Inventor, Nintex Workflow 115 

Cloud, OutSystems, Sysdev Kalipso or Zoho Creator. 116 

Descriptive Cognitive Models 117 

At the dawn of HCI as an independent discipline, Richard Young wrote that “for an interactive 118 

device to be satisfactory, its intended users must be able to form a ‘conceptual model’ of the device 119 

which can guide their actions and help them interpret its behavior” (Young, 1981). Since then, it is 120 

commonly agreed that knowledge about how users perceive and interact with a computerized 121 

environment is of the foremost importance in the design of computer systems that emphasize 122 

usefulness and usability (Silva, 2013). The development process of an interactive system greatly 123 

benefits from putting the human, the user, in a central position during discussion and design (Dix, 124 

Finlay, Abowd, & Beale, 2004; ISO, 2010). In order to better understand how the user conceptualizes 125 

and interacts with a system, the discipline of HCI often resorts to models. 126 

Descriptive Cognitive Models (DCMs) are widely used in the study and development of 127 

interfaces. Their analytical processes have since long been applied by experts, analysts and developers 128 

in order to obtain insight on how the interaction flow, the design features, or the information content 129 

of an interface might lead to performance deficits, faulty interactions or use errors (Nielsen, 1994). 130 

Although a comprehensive set of DCMs have been developed since the 1980s, it is usually a 131 

combination of different models tailored to a specific application case that provides the best result 132 

(i.e., insights on how users are thinking about the system and the interaction process). For the purpose 133 

of predicting usability issues in LCDP we have selected task decomposition models for a recursive 134 

decomposition of our main task into sub-tasks; knowledge-based analysis to comprehend the user’s 135 
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knowledge about the objects and actions involved in a given task; and risk assessment to analyze and 136 

evaluate the risk associated with the identified issues. 137 

Task Decomposition 138 

The process of describing the interaction process is often referred to as Task Analysis and 139 

consists of detailed descriptions and analysis of how people perform their jobs or tasks. It details what 140 

they do, what they act on and what they need to know. Identifying the elements and the goals of the 141 

task is an essential step to examine the skills necessary to perform a given job. Task decomposition 142 

can be performed either in the design phase of a new system or to suggest changes in an existing 143 

system. 144 

Hierarchical Task Analysis (HTA) 145 

The purpose of HTA is to decompose a task into all its sub-tasks in a way that displays the 146 

hierarchical relation between them. It is one of the most predominant examples of a task 147 

decomposition methodology. The outputs of HTA are a hierarchy of tasks and sub-tasks, together 148 

with plans describing in what order and under what conditions sub-tasks are performed. For examples 149 

and further details please see Dix et al. (2004) and, for a review on different ways of presenting an 150 

HTA and a proposal on an updated notation, see Huddlestone and Stanton (2016). 151 

Knowledge-based analysis 152 

The aim of a Knowledge-based approach to task analysis “is to understand the knowledge 153 

needed to perform a task” (Dix et al., 2004). The main goal of this type of analysis is to build general 154 

knowledge taxonomies for each task, after listing all objects and actions. Programming is a 155 

knowledge-based activity, and for the purpose of this study we will focus on analyses designed to 156 

predict difficulties from interface specifications, namely the External-Internal Task Mapping 157 

Analysis. 158 

External-Internal Task Mapping Analysis (ETIT) 159 
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The ETIT model attempts to deal with the mismatch between the way the user thinks, and the 160 

way a system is designed, stating that this mismatch continues until the user learns how to translate 161 

what he or she wants to do into the system’s terms. ETIT is a contribution of one of the most seminal 162 

authors in HCI, Thomas P. Moran (Moran, 1983). In his paper, Moran points out the need for the 163 

users to map between the task they are performing and their conceptual model of the machine. Thus, 164 

ETIT was conceptualized as a way of assessing the (1) complexity of learning of a naïve user or (2) 165 

transfer of knowledge between different systems. In the first case, which is the focus of the current 166 

work, ETIT assumes two different spaces: 1) the external task space (i.e., the naïve user’s mental 167 

model of the task) and 2) the internal task space (the system’s commands that allow it to perform the 168 

task). The relation between both spaces will be an indicator of the difficulty found in learning how to 169 

use the system. According to Moran (1983), when people start using a system, they know they must 170 

convert the tasks they have to perform into the system’s language and concepts, i.e., they must learn 171 

to translate what they want to do into the system’s terms. In this model, this translation is represented 172 

by mapping rules. 173 

The ETIT analysis has three parts: 174 

1.  An external task space (concepts and tasks described in those concepts) – whenever a person needs 175 

to perform a task, this task is formulated in the external domain/real world, not in the system’s terms 176 

(Moran, 1983). This means that people formulate their own mental model of the task, using their own 177 

known concepts, words and logic; 178 

2.  An internal task space (concepts and tasks described in those concepts) – the system’s commands 179 

and interaction flow that allows the user to perform the task; 180 

3.  A mapping from the external task space to the internal task space. 181 

While the external space is rich and diverse, systems are not. Systems usually abstract a small 182 

set of primitive concepts, converting the external task space into smaller internal task spaces. 183 

Particularly relevant here is that, while ETIT was conceived as a tool for system design, it can also 184 
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be used as a competence model of the user, because it makes it explicit what is the knowledge 185 

necessary to execute a task. 186 

Risk Assessment  187 

The term “risk assessment” is usually connected to occupational health and safety but in this 188 

case, the methodology will be applied to the identification of usability and interaction issues that have 189 

the potential to compromise the application under development. The aim of such a process is firstly 190 

to identify the issue, and then to mitigate its consequences by adding control measures (Amir-Heidari 191 

& Ebrahemzadih, 2015). The steps to be applied in our descriptive cognitive model consist of: 192 

● hazard identification - finding, listing and characterizing issues  193 

● risk analysis - determining the likelihood of the issue 194 

● risk evaluation - comparing an estimated issue against predetermined risk criteria to 195 

determine the significance or criticality of the issue 196 

After performing a risk assessment, a remedy analysis can be performed where error reduction 197 

strategies are defined. 198 

 199 

Proposed model - PRECOG: low-code development Platform descRiptivE 200 

COGnitive model  201 

The descriptive cognitive model we propose was named PRECOG – low-code development 202 

Platform descRiptivE COGnitive model (Figure 1). From an analysis of the summarized methods, it 203 

became clear that these might interplay to account for an informative Descriptive Cognitive Model. 204 

In order to apply the proposed model, the analyst should start by performing an HTA of the particular 205 

development use case under analysis. The output of the HTA will provide a list of sub-tasks of the 206 

use case that need to be further analyzed. This will be done according to an adapted version of the 207 

ETIT. In this adapted version, sub-tasks will be described from the perspective of a naïve user's mental 208 
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model, using its own terms and concepts (External task space, henceforth the Knowledge-Based 209 

Description - KBD), and from the perspective of an internal task space (henceforth System-Based 210 

Description - SBD) which details the steps needed in the LCDP, in order to accomplish the sub-task.  211 

The KBD relies on user’s data prior to any interaction with the system. With only a brief 212 

description of each task, participants should describe how they would reach each task’s final goal 213 

using their current knowledge and familiar development tools. This information provides the analysts 214 

with the participant’s mental model of the tasks in hand, before interaction with the system under 215 

evaluation. 216 

The SBD, on the other hand, is a step-by-step description of the actions performed by an expert 217 

user of the system. For the purpose of comparability, the evaluator should define the same 218 

decomposition stop-condition for both descriptions. One fitting criterion for a LCDP HTA stop-219 

condition is a discernable user interaction capable of being recorded by the platform (e.g., a drag-and-220 

drop action; the selection of an item from a drop-down menu; the establishment of a new connection 221 

in a state-chart; the writing of an expression to define a condition). User interactions at a more atomic 222 

level, such as mouse movement, hovering, or typing of a specific character, do not need to be specified 223 

in HTAs for LCDP.     224 

Mapping rules should be established between the naive user’s mental model (KBD) and the 225 

system-based description (SBD), in order to identify possible conflicts. According to our predictions, 226 

three types of conflicts might be uncovered by looking at the mapping between the two spaces: 227 

1.  Under decomposition conflict - occurs when a procedure that is considered by the user as a 228 

single step in the knowledge-based description requires multiple steps in the system-based 229 

description. This type of conflicts might lead to an underestimation of the sub-task’s complexity. 230 

2.  Over decomposition conflict - occurs when a procedure that is considered by the user as 231 

having multiple steps in the knowledge-based description requires only one step in the system-based 232 

description. This type of conflicts might lead to an overestimation of the sub-task’s complexity and 233 

failure to identify and take shortcuts during the development task. 234 
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3.  No Correspondence conflict - occurs when there is no link between a step in the knowledge-235 

based description and one (or several) steps in the system-based description. This might occur because 236 

the user is not aware of the appropriate steps required by the LCDP or because the system does not 237 

include a feature representative of a mental step the user thinks is needed. 238 

 239 

 Figure 1 – The proposed methodology applied to a given subtask of the HTA. Red triangles signal 240 
identified issues that occurred during interaction and the numbers inside correspond to the type of 241 
error (1 - Under decomposition; 2 - Over decomposition; 3 - No correspondence). Triangles are 242 

colored grey if, after empirical tests with a user, the analyst finds that the predicted error did not 243 
occur (false positive). 244 
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Once one of these types of conflicts is found, a risk analysis of the conflict should be made. 245 

This risk analysis is usually performed in safety critical scenarios, which is not the context of the 246 

current study. Nevertheless, for the purpose of providing a richer PRECOG analysis, the risk analysis 247 

step can help define priorities in the continuous improvement of the system.  248 

Figure 1 summarizes the steps of the overall analysis process. First, a development task is 249 

selected (in this case, create a user interface to list and search for books) and two branches originate 250 

from this task. On the top-right hand side of the figure (Step 1.2), an example HTA is presented for 251 

the development task. The HTA will generate the System-Based Description (SBD) or Internal Task 252 

Space for the selected task. On the left (Step 1.1), the Knowledge-Based Description (KBD) or 253 

External Task Space consists in a description made by people who have not interacted with the low-254 

code system, listing how they would expect to perform the task at hand, knowing what they know at 255 

the moment. The second step (Step 2 in the figure) consists in comparing the KBD with the SBD per 256 

participant and identifying conflicts that might occur in the interaction using the conflict taxonomy 257 

described above ((1) under decomposition, (2) over decomposition, and (3) no correspondence). In 258 

this example, four issues arise and are represented by the four triangles. The triangles are red if that 259 

issue eventually occurred during interaction, and are marked as grey if they did not occur, being 260 

classified as a false positive. Under decomposition and over decomposition markers are placed inside 261 

the box, and no correspondence markers are placed on the leftmost border of the boxes.  262 

The third and last step in Figure 1 consists of a risk analysis of the identified issues. The risk 263 

analysis of a conflict includes: 264 

• Frequency - An ordinal scale from 0 (never) to 5 (frequent) 265 

• Criticality - All issues are evaluated regarding the level of criticality as described in Figure 266 

2, ranging from 2 (not a problem) to 10 (serious) (Figure 2). 267 

• Pure Risk - The Pure Risk value of the error is a single value representing the weight that 268 

should be attributed to an error, and it results from the intersection between a value of Frequency with 269 

a value of Criticality from the matrix of Frequency with Criticality adapted from Amir-Heidari and 270 
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Ebrahemzadih (2015) (Figure 3). The value ranges from 0 to 50, and the higher the value, the more 271 

Critical should the issue be considered, with a higher priority for intervention. 272 

 273 

Figure 2. Descriptors for each level of  Criticality, adapted to the analyzed use-cases  274 

 275 

Figure 3. Matrix of Frequency with Criticality adapted from Amir-Heidari and Ebrahemzadih 276 
(2015). The intersection between a value of Frequency with a value of Criticality provides the Pure 277 

Risk of the issue, a single value representing the weight that should be attributed to the issue. The 278 
higher the value, the more critical should the issue be considered. 279 

A model of this sort should be developed for each sub-task deemed relevant for analysis. This 280 

will provide relevant information about the participants’ difficulties in mapping their conceptual 281 

model of the task to the system’s operational environment.  282 

 283 
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Applications of the PRECOG model 284 

PRECOG can have two main applications. It can (1) be used retrospectively to understand the 285 

root-cause of an issue identified through user testing, or (2) it can be used predictively to understand 286 

which potential issues are going to arise. 287 

In the first case, the model is used to analyze and understand the problems identified during 288 

user testing. These problems can be tracked by identifying the correspondence conflicts in the 289 

previously made ETIT mapping. This helps to identify potential causes for the problems in terms of 290 

mismatches between the KBD and the SBD. The number of observations of the different errors 291 

provides additional information that is then used in the risk analysis (as the frequency of occurrence 292 

of the errors).  293 

The second application for PRECOG is to use it as a predictive model, which can provide 294 

valuable information without the time-consuming process of data gathering with real users. This 295 

application takes advantage of the fact that the mapping of the participant’s (knowledge-based) 296 

description to the platform’s requirements provides a first prediction of the effect of the differences 297 

between the user’s knowledge and system’s requirements to achieve a given task. In this case, instead 298 

of evaluating the criticality of the issues that effectively occurred, an expert analyst walks through 299 

the LCDP and decides on the likelihood of the identified potential problems, evaluating their 300 

probability of occurrence given the platform’s design. This evaluation should consider, for instance, 301 

visual aids and widgets that are available on the platform, and which might be helpful in solving the 302 

issue under analysis. This stage of the process refines the predictive power of the model, as it 303 

eliminates false positives identified in the mapping stage. Calculating the Pure Risk of all identified 304 

errors is then done resorting to an adapted version of the matrix in Figure 4, using Probability (Never, 305 

Low, Medium, High) instead of Frequency. The end result will be a list of potential errors organized 306 

by Pure Risk evaluation. Remedy analysis of relevant issues (for instance, all Marginal, Relevant and 307 

Serious issues would be further detailed) might then be performed, resorting to either expert 308 

evaluation or empirical analysis.  309 

 310 
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Application and Validation of PRECOG in Empirical user studies 311 

In this section, we present an application of the PRECOG model where we will detail the 312 

analytical process of constructing the HTA, the adapted ETIT analysis to map user knowledge and 313 

system-based descriptions, and finally the risk analysis of the identified potential interaction 314 

problems. The presented results correspond to the validation of the PRECOG model through 315 

empirical user studies. They allow us to understand the suitability and viability of using the selected 316 

techniques for the analysis of interaction conflicts in a low-code development platform, including the 317 

impact of the identified problems and the analysis of their root-causes. 318 

METHOD 319 

The first phase of the application of the PRECOG model consisted in defining, with a 320 

professional user and LCDP platform developer, a set of representative tasks which could be 321 

performed by different types of users. After all tasks were defined, this expert user performed them, 322 

and the performance was later analyzed in detail in order to obtain a HTA of each task. The HTA also 323 

provided the basis to develop the System-Based Description to be used in the model for each task. 324 

The second phase of the application was performed after empirical user studies with 20 325 

participants. Besides providing usability metrics of performance, these user studies allowed the 326 

authors to gather the Knowledge-Based Description of each participant, collected prior to any contact 327 

with the LCDP. The user studies complied with the American Psychological Association Code of 328 

Ethics, and an informed consent was obtained from each participant. 329 

With both the Knowledge and System-based descriptions, it was possible to do the mapping 330 

between both, applying the PRECOG to each participant, and listing all the potential issues and 331 

mistakes that could happen during task execution. 332 

The final phase of the validation effort was carried out after thorough video analysis of each 333 

participant’s performance and comparison between the model’s prediction and the real outcome in 334 

the user studies. Having identified all observed issues, risk analysis was applied to understand the 335 

issues’ frequency and criticality. 336 
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Participants 337 

A total of 20 participants were recruited (Table 1). The recruited population respected the 338 

following requirements: 339 

• 10 participants had a software-engineering background (formal education in the past 340 

or present) - denoted as Experts; 341 

• 10 participants had education in social sciences, economics or finance areas - denoted 342 

as Novices; 343 

• All participants were over 18 years old, proficient in English, unfamiliar with the 344 

LCDP (had never worked with it), and willing to accept the sessions to be recorded 345 

(screen and audio). 346 

The recruitment was made via internal mailing lists at the author’s institutions as well as 347 

personal contacts. Of the 20 participants, 7 were female and 13 were male.  348 

Table 1 - Characterization of the participants 349 

  Novices Experts 

Gender Female 6  1  
Male 4  9  

Degree 
Psychology, Economics, 

Biochemistry, Management, 
Acoustics 

Software Engineering 

The recruitment phase included a questionnaire to understand the participants’ experience with 350 

programming languages. This questionnaire was custom-made, inspired by the knowledge acquired 351 

by students during an informatics degree, and was divided into three sections, each with increasing 352 

complexity in terms of computer science skills. The first section tested if the participant was 353 

familiarized with EUD tools (specifically, Spreadsheets editing software), and basic computational 354 

concepts, such as the concept of formula. The second section tested the capability of the user to 355 

understand simple software development concepts, such as interpreting and writing software, 356 

elementary data structures (e.g. arrays and binary trees), and query languages. The third level tested 357 

if the user had advanced software development skills, such as communication protocols, object 358 
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oriented concepts and software modelling. Participants should also indicate which programming 359 

languages and integrated development environment (IDE), if any, they felt comfortable using. 360 

Defining the System-based description 361 

The participants’ use-case consisted in creating a web application to manage books. The 362 

development of the application (“My Books”) was divided into five tasks, which could be performed 363 

in any order, each aimed at fulfilling one of the following requirements (in order of increasing 364 

difficulty): 365 

1. The user of the “My Books” application should be able to list and search all books; 366 

2. The user should be able to see and edit the details of a book; 367 

3. The user should be able to register new books in the application; 368 

4. The application should present the user with a homepage with two buttons: 369 

a. One that redirects users to the list of books; 370 

b. Another that goes to the screen that allows registering a new book; 371 

5. When seeing the details of a book, the user should see a list of other books from the 372 

same author. 373 

We started by developing an HTA for the overall use case, divided into 5 HTA sub-diagrams 374 

corresponding to the five different tasks of the use case. Figure 4 presents the HTA diagram for the 375 

first task, following the graphical notation of Marshall et al. (2003), where the main task description 376 

is at the root of the diagram (“0. List and Search all books”) and the different sub-tasks at lower levels 377 

(e.g., “1. Create book representations”). 378 
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 379 

Figure 4 - Example of one HTA diagram for the use case task “List and Search all books”. 380 

When a (sub)task is further decomposed, a plan describing how its subtasks can be combined is 381 

detailed 382 

After defining the HTA for each sub-task, we defined the level of the HTA tree that better 383 

represents distinguishable tasks in the interface and we list all the units of interaction that are required 384 

to perform in the LCDP in order to complete that specific sub-task. For instance, to create a list of 385 

books with a search function the user of this particular LCDP as to perform the following actions: 386 

1. Go to Data Menu; 387 

2. Select Database;  388 

3. Add Entity named “Book”; 389 

4. Add Attributes; 390 

5. Rename Attributes; 391 

6. Add Book Entity to Home Screen representation; 392 

7. Boilerplate generation of search functionality 393 

 394 

 395 
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Defining the Knowledge-based Description 396 

In order to obtain a Knowledge-based Description, each participant was instructed to verbally 397 

describe how he or she would perform each task, both in terms of the interface and in terms of the 398 

back-end development. Participants did this with the conceptual knowledge they had and using the 399 

tools they knew (if any), they should describe how they would complete the tasks. This was requested 400 

before the participant interacted with the LCDP.  401 

Material 402 

The tests were performed in quiet testing rooms. Locations were equipped with a table and 403 

three chairs, a laptop computer for the participant, with the LCDP running, ActivePresenter 7 screen 404 

and audio capture software (Atomi Systems, 2019), and a video camera (the participant’s facial 405 

expressions were not captured at any time, the camera focused on the screen of the laptop as a backup 406 

measure).  407 

Procedure 408 

The participant was welcomed by the test moderator and the data logger, who explained that 409 

an evaluation was being carried out on how hard or how easy it was to use a particular LCDP. He or 410 

she read and signed the informed consent where more detailed information was provided. Each 411 

participant was presented with the five tasks. First, the participant was instructed to describe verbally 412 

how he or she would perform each task, both in terms of the interface and in terms of back-end 413 

development. Regarding this process, it became evident that the test moderator played a role in the 414 

success of this phase, which would be used to build the Knowledge-based Description of each 415 

participant. The moderator should prompt the participant when he or she becomes quiet, asking 416 

specifically about aspects of the application in order to gather as much information as possible. 417 

Then, the participant was requested to carry out the tasks upon performing a tutorial. The 418 

tutorial consisted of an interactive session, where the users were put in contact with the LCDP and 419 

explained the basic concepts. The test moderator informed the participants that there were several 420 
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ways of concluding the tasks, and that they could search the internet for answers. Each participant 421 

was provided with the same instructions. The participants were given a written copy of the 422 

instructions and respective memory aides. 423 

Analysis 424 

For each subtask in the Hierarchical Task Analysis deemed relevant, we developed adapted 425 

ETIT mappings from the collected Knowledge-based Description to what was the required plan of 426 

action in the platform (the System-based Description). Figures 5 and 6 show as an example the ETIT 427 

mapping for the sub-task “List and Search all Books”, for an expert and a novice user, respectively. 428 

The end-result of the mapping exercise allows the analyst to identify what type of use-errors might 429 

occur during that sub-task. 430 

 431 

Figure 5 - Example of the adapted ETIT mapping for the sub-task “List and Search all Books” in 432 
an Expert user. Dashed arrows correspond to implicit steps. 433 

 434 

Figure 6 - Example of the adapted ETIT mapping for the sub-task “List and Search all Books” in a 435 

Novice user. 436 
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As we pointed out earlier, analysts can uncover three types of conflicts by looking at the 437 

mapping rules. Figure 5 illustrates all three types of conflicts - under decomposition in step 2 of the 438 

KBD, no correspondence in step 3, and over decomposition in step 6 of the SBD. 439 

Identify the root-cause of issues found in empirical tests with real users 440 

The analysis depicted in Figure 1, which shows the complete flow from the definition of the 441 

models, through the identification of a KDB-SBD conflict, to risk analysis of that conflict, was the 442 

one followed in the present work.  443 

Each interaction video of the participants was thoroughly observed, the issues that occurred 444 

were identified and their relevance analyzed using the following steps: 445 

• Root Cause – After analysis of the interaction that resulted in an error, a root cause 446 

was identified. 447 

• Remedy Analysis – A recommendation for a way to avoid the error or issue was 448 

devised. 449 

• Evidence – When available, evidence gathered during data collection with 450 

participants (video) was also registered. 451 

• Pure Risk – The frequency and criticality of the issues was evaluated by the authors 452 

and the LCDP’s research and development team. 453 

One complete analysis took on average 40 minutes per participant for an experienced analyst.  454 

The Frequency of an issue was defined as the frequency with which the issue under analysis 455 

was observed in the empirical tests. The scale can be adjusted depending on the size of the sample, 456 

without the need to modify our model. 457 

To determine Criticality, all observed issues were evaluated by four authors and four 458 

professional LCDP developers regarding the level of criticality as described in Figure 2, ranging from 459 

2 (not a problem) to 10 (serious). The evaluations were performed individually considering the 460 

general criticality of the issue, and not the particular context/participant where it happened. Inter-rater 461 

reliability was assessed using a two-way, average measures ICC (intraclass correlation). The resulting 462 

ICC was in the “fair” range, ICC=0.50 (Cicchetti, 1994), indicating that evaluators had a fair degree 463 
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of agreement.  The ICC increased to 0.68, in the “good” range, when only one group (authors) was 464 

considered. This indicates different evaluation criteria from both groups, something which would be 465 

worth exploring in the future. The final Criticality value was the mode of the eight evaluations.  466 

RESULTS 467 

In this section we will present results on the comparison between the PRECOG’s predictions 468 

and the interaction issues observed during the empirical usability tests. Moreover, we will also address 469 

the nature of the use-errors that were predicted and verified, in terms of its root-cause, frequency, and 470 

pure-risk.     471 

The comparison between PRECOG´s predictions and results of the empirical usability tests 472 

will be presented regarding the two profiles (expert and novice) and the three types of conflicts 473 

signalized by PRECOG (1 - Under decomposition; 2 - Over decomposition; 3 - No correspondence). 474 

In Table 2 we can see that out of a total of 135 potential interaction issues identified by PRECOG, 67 475 

(49.6%) occurred during empirical usability tests. Moreover, of all interaction issues verified in the 476 

empirical usability tests, only 5 were not predicted by a type of conflict signalized in the PRECOG 477 

model. Table 2 summarizes the outcome of applying PRECOG in three confusion matrices, 478 

considering the studied profiles both combined and separately.  479 

Table 2 - Confusion Matrices for a combination of all participants and by participants’ profile 480 

(Novices and Experts). 481 

All Participants 

  Verified 

  Use Error No Use Error Total 

Predicted 
Use Error 67 68 135 

No Use Error 5 64 69 

   TOTAL 204 

 482 
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EXPERTS 

  Verified 

  Use Error No Use Error Total 

Predicted 
Use Error 39 42 81 

No Use Error 2 50 52 

   TOTAL 133 

 483 

NOVICES 

  Verified 

  Use Error No Use Error Total 

Predicted 
Use Error 28 26 54 

No Use Error 3 14 17 

   TOTAL 71 

 484 

In order to assess the predictive capability of our DCM we analyzed the values presented in 485 

Table 2, where it is possible to see the total number of true-positives (i.e., predicted and confirmed 486 

use-error), false-positives (i.e., predicted but unconfirmed use-error), true-negatives (i.e., predicted 487 

and confirmed inexistence of use-error), and false-negatives (i.e., not predicted but confirmed 488 

existence of use-error). An efficient predictive model aims at scoring high in both true-positives and 489 

true-negatives and low in both false-positives and false-negatives. From a confusion matrix one can 490 

calculate several complementary values to assess a classifier’s predictive capability (Powers, 2011; 491 

Tharwat, 2018), namely:  492 

• Sensitivity - or recall is the proportion of the positive samples (i.e., verified use-errors) that 493 

were correctly classified as so. Thus, Sensitivity depends on true-positives (TP) and false-494 

negatives (FN), which are in the same column of the confusion matrix, and can be calculated 495 

as: Sens = TP/(TP+FN)   496 

• Specificity - or inverse recall is the proportion of negative samples (i.e., verified no use-497 

error) that were correctly classified as so. Thus, Specificity depends on true-negatives (TN) 498 
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and false-positives (FP), which are in the same column of the confusion matrix, and can be 499 

calculated as: Spe = TN/(TN+FP) 500 

• Accuracy - is defined as a ratio between the correctly classified samples to the total number 501 

of samples, and can be calculated as follows: Acc = (TP+TN)/(TP+TN+FP+FN)  502 

• F1-score - also called F1-measure is the harmonic mean of sensitivity and positive 503 

predictive value (ppv = TP/(TP+FP)). The value of the F1-score ranges from zero to one, 504 

and high values indicate high classification performance. F1-scores are calculated as follow: 505 

F1 = (2TP)/(2TP+FP+FN)  506 

• Informedness - also called Youden’s index quantifies how informed a predictor is for the 507 

specified condition, and specifies the probability that a prediction is informed in relation to 508 

the condition (versus chance) (Powers, 2011). The value of the Informedness ranges from 509 

zero, or chance-level, to one, representing a perfect predictive capability. Informedness can 510 

be calculated as follow: Inf = sensitivity + specificity - 1        511 

Table 3 shows the PRECOG’s values obtained for these different variables, based on the 512 

confusion matrices presented in Table 2. 513 

Table 3 - PRECOG’s predictive metrics for All Participants and divided by user profile 514 

 All Participants EXPERTS NOVICES 

Sensitivity 0.93 0.95 0.90 

Specificity 0.48 0.54 0.35 

Accuracy 0.64 0.67 0.59 

F! Score 0.65 0.64 0.66 

Informedness 0.42 0.49 0.25 

 515 

 Both Powers (2011) and Tharwat (2018) discussed the advantages and limitations of each of 516 

these metrics for classification performance. According to Powers, Sensitivity and F1-scores ignore 517 

performance in correctly handling negative examples, propagate underlying marginal prevalence and 518 

biases, and fail to account for the change level performance. Nevertheless, Tharwat makes the case 519 

that all these different metrics, being more focused (such as Sensitivity, Specificity, and F1-score) or 520 
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more general (such as Accuracy and Informedness) are useful to understand all the potentialities of a 521 

particular classifier. In the case of PRECOG, Sensitivity was generally higher than Specificity and, 522 

while Accuracy and F1-scores were fairly similar for both Experts and Novices, Informedness was 523 

the measure that varied the most regarding type of participant.  524 

Statistical tests revealed differences between Experts and Novices concerning Specificity and 525 

Informedness. An unpaired two-samples Wilcoxon test indicated that Specificity in Experts was 526 

significantly higher than in Novices (W = 73.5, p < .01, r = -0.59). Similarly Informedness (W = 81, 527 

p < .01, r = -0.72) was also significantly higher in Experts than in Novices. 528 

 529 

 530 

Figure 7 - Differences PRECOG’s classification of Experts and Novices concerning Specificity and 531 
Informedness. 532 

Having calculated the Sensitivity and Specificity of each participant’s classification, it was 533 

possible to map the performance of PRECOG in a Receiver Operating Characteristic (ROC) plot 534 

(Figure 8). Participants are mainly mapped in the upper left-hand of the ROC space, meaning that, 535 

for the generality of the participants, PRECOG’s classification was predictive of actual behavior. 536 
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Again, it is possible to verify that data points of Expert participants are further from chance level 537 

(x=y) than data points of Novice participants.  538 

  539 

 540 

Figure 8 - Receiver Operating Characteristic (ROC) data point cloud representing Experts (points) 541 

and Novices (triangles). The diagonal line represents the chance level.  542 

 543 

Looking at the distribution of True Positives and False Positives according to profile and 544 

considering the three types of conflicts predicted by PRECOG, it is possible to observe that Under 545 

decomposition conflicts were the type of mapping conflict where PRECOG performed better. 546 

PRECOG obtained the highest difference between True Positives and False Positives in this type of 547 

conflict, having Under decomposition conflicts in Experts accounting for 17,5% of the overall correct 548 

predictions and in Novices accounting for 23.6% of the overall correct predictions. In the case of 549 

Experts, Over decomposition got the highest rate of True Positives (20%), however, this type of 550 

conflict also accounted for 17.5% of False Positives. For the Over decomposition conflicts in Novices, 551 

the reverse pattern was observed, with a higher number of False Positives (18.1%) than of True 552 
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Positives (10%). Finally, the No correspondence type of conflicts were the type of mapping conflict 553 

where PRECOG had a worse performance, with a higher number of False Positives than True 554 

Positives both in Experts (20%) and in Novices (21%). 555 

 556 

Figure 9 - Distribution of True Positives and False Positives according to profile, considering the 557 

three types of conflicts predicted by PRECOG   558 

Focusing on the data coming from the usability empirical studies, and considering the 559 

Frequency of the observed interaction issues, we were able to identify 10 types of issues: Input 560 

parameter; New database; Table with data; Button link; New screen; Query; Search function;  Relate 561 

data; Change homepage; Details. Figure 10 depicts the Frequency with which each of these issues 562 

occurred in both profiles. It is possible to observe that the same issues did not occur for both profiles. 563 

As a first characterization, it can be observed that Experts had a more diverse typology of issues, 564 

having experienced nine while Novices had six different types of issues. No participant had any 565 

“Button Link” related issues. On the Novice side, they did not have issues related to “Table with 566 
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data”, “Query” and “Relate data”.  For the Experts, the issue with the highest True Positives was 567 

“Query” with 8 correctly identified issues. The highest number of False Positives among Experts 568 

were found in the “New Screen” and “Change homepage” issues, where 7 identified issues were 569 

considered False Positives. Regarding Novices, “Input Parameter” and “New database” issues had 7 570 

True Positives followed by “New Screen” with 6 True Positives. Concerning False Positives, “Search 571 

function” with 7 False positives was followed by “Details” with 6.   572 

 573 

Figure 10 - Frequency of True and False positive issues identified in the empirical tests after KBD-574 

SBD mapping  575 

Besides Frequency, another component for the Pure Risk analysis is the Criticality of the issues. 576 

Table 4 presents the final Criticality attributed to the issues that emerged during our analysis.  577 

Table 4 - Criticality of the identified issues by a pool of eight evaluators  578 
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Issue Criticality Description 

Input parameter 8 Relevant 

New database 6 Marginal 

Table with data 8 Relevant 

Button link 8 Relevant 

New screen 8 Relevant 

Query 8 Relevant 

Search function 8 Relevant 

Relate data 8 Relevant 

Change homepage 6 Marginal 

Details 8 Relevant 

 579 

Figure 11 depicts all ten different issues observed during the interaction with the LCDP. The 580 

issues are presented in terms of the Pure Risk evaluation (min=0, max=50). Besides Criticality, the 581 

Pure Risk evaluation considers the Frequency of occurrence of each issue, hence the difference in the 582 

value of the same issue for both profiles.  583 

 584 

Figure 11 - Pure Risk of each observed issue per profile. Issues found by the LCDP Descriptive 585 

Cognitive Model according to their Pure Risk evaluation (min=0, max= 50) 586 
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This data indicates that, for instance, the “Query” issue should be solved, as almost all Experts 587 

who interacted with the LCDP had issues with creating a query. It also indicates that the weight of 588 

each issue is different depending on the LCDP user. For Novices, the highest Pure Risk value is in 589 

the “Input Parameter”, followed by “New Database” and “New Screen” issues. The only Pure Risk 590 

value similar to both profiles occurred in the “Search Function” issue, indicating similar difficulties 591 

in this task for both profiles. 592 

DISCUSSION 593 

We have successfully applied our descriptive cognitive model (PRECOG) to a relevant use 594 

case, which allowed us to validate the viability of the proposed approach.  595 

Predictive power 596 

Although time-consuming, the methodology proved to correctly identify several high-597 

criticality issues from both user profiles. Indeed, we were able to use the model to predict a relevant 598 

number of problems, prior to the user studies that confirmed them. The confirmation came with a 599 

relatively high number of False Positives. Such is due to the conservative nature of the model, as 600 

highlighted by the fact that results show a high Sensitivity, with a comparatively lower Specificity. 601 

We opted for an exhaustive approach, and no relevant error was disregarded in the KBD-SBD 602 

mapping analysis, since such a stance allowed a more extensive list of expected problems. Despite 603 

this conservative approach, the majority of the predicted issues or root causes occurred during 604 

empirical user tests (all were observed except for the “Button Link” issue).  This is a relevant output 605 

as very little unpredicted issues occurred during the user studies and these were mostly related to 606 

navigational (interaction with the platform) difficulties and not conceptual mismatches. 607 

Another explanation for the high number of False Positives predicted by PRECOG concerns 608 

“No correspondence” issues, where one item from the KBD or the SBD finds no correspondent on 609 

the other side. Some issues of this type may have arisen because the participant did not mention a 610 

certain development step or minor detail - which ended up being evident when interacting with the 611 

LCDP, thus not resulting in a real issue. This is particularly evident in the case of Novice 612 
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programmers, leading to a significantly lower Specificity in their case, and can be attributed to the 613 

fact that their mental models of the programming tasks differ from the platform’s model more than 614 

the Experts’ mental model. That some of the problems were not observed is, in effect, a positive 615 

indicator towards the ability of the LCDP to guide users during the learning stage. Conversely, “Over 616 

decomposition” was the type of issue with more false positives, which seems to indicate a need to 617 

raise the abstraction level of the platform. Doing this without compromising the ability of advanced 618 

users to fine-tune applications that are more complex, implies exploring strategies for adaptive user 619 

support (Oppermann, 1994; Gajos, Czerwinski, Tan & Weld, 2006). An important observation should 620 

be made regarding moderation of the Knowledge-Based Description stage. The moderator should be 621 

very familiar with the platform and the tasks under study in order to prompt the necessary information 622 

to complete the mapping. It is extremely important to obtain all the information that will allow 623 

illustrating the participant’s mental model before interaction with the platform. 624 

Another significant result concerns the Criticality of the issues observed. All issues which 625 

occurred had a Criticality evaluation of more than 6, that is, were either Marginal (Mistakes due to 626 

unmatched expectations, eventually solved through exploration/help), or Relevant (Continuously 627 

affects user’s understanding of the development platform and actions). This is an indicator that our 628 

approach is useful in detecting high-criticality issues. Unfortunately, and this is a limitation of the 629 

current study, no Criticality evaluation was performed in the non-observed issues in order to compare 630 

the criticality between the observed and unobserved issues. 631 

Regarding the number and type of issues, the applied model allowed us to distinguish two 632 

patterns between Novice and Expert programmers. Expert programmers had more types of issues (9 633 

in total), but each happening less frequently, depicting a more exploratory behaviour, Novice 634 

programmers had less types of issues (6 in total) but each with more repetitions, meaning that the 635 

issues were effectively problematic for this profile, which explored less and whose participants had 636 

very similar performances. Another potential explanation for this difference in number of observed 637 

issues results from the speed with which each profile performed the tasks. Expert programmers 638 

managed to complete more tasks than Novice programmers, hence there was more opportunity for 639 

issues to arise. These different patterns affected the Pure Risk evaluation of the issues according to 640 
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profiles. Even though the Criticality was the same for all issues independently of the profile, the 641 

Frequency of the issue affected the Pure Risk value. The issues found in Novice programmers were 642 

consistent and robust, and this is even more interesting if we consider their heterogeneous background 643 

education. The Pure Risk evaluation should work as an order of priorities in order to improve the 644 

LCDP under study. Indeed, the LCDP development team has since addressed some of the issues 645 

found. 646 

In global terms, the combined results show PRECOG is somewhat a conservative model, which 647 

despite eliciting some False Positives also identified correctly the majority of issues that effectively 648 

impaired the participants’ progression. It should be noted that we are considering first-time users of 649 

the platform without any formal training.  650 

As it is the case for safety-critical systems, when analyzing applications such as LCDPs, it is 651 

safer to overestimate the occurrence of potential for use-error, than fail to identify serious use-errors 652 

that occurred. In this regard, PRECOG appears to be a promising approach in the sense that it was 653 

able to identify almost all issues faced by Expert and Novices programmers.  654 

From the application of this LCDP Descriptive Cognitive Model, and as highlighted by the 655 

ROC analysis, we conclude that the method has predictive power (i.e., most of the identified 656 

knowledge-system conflicts were resulting in use issues during the performance of the task), and that 657 

this methodology could be used as an effective tool to predict, understand, and mitigate use errors 658 

and faulty interactions in an LCDP platform. 659 

Model applicability 660 

Regarding the applicability of PRECOG, the descriptive cognitive model itself was tailored to 661 

a specific set of applications, and for the LCDP it proved useful, granular and precise. In theory, the 662 

model is not limited to LCDP platforms. We address applications where the user tasks can be 663 

decomposed through an HTA, so that the KBD-SBD mapping is possible. That said, we are only able 664 

to support our claims in the low-code development area, due to the performed user studies. As for the 665 

type of participants, the model assumes naïve participants or first-time users, but maybe the observed 666 

granularity and detail of the predictions would allow its application with participants with some 667 

knowledge of the platform under study (i.e., testing tasks that the participants never performed in that 668 
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particular platform). This would be an interesting application for the future, as we expect the model 669 

to identify the missing knowledge independently of the proficiency of the participant. 670 

Threats to validity 671 

Having performed a user study, results are susceptible to threats to its validity. Specifically, we 672 

acknowledge the relatively limited number of participants (a total of 20). While the achieved results 673 

regarding the percentage of effective issues vs. identified ones are positive, the impact of a larger 674 

study group should be analyzed. 675 

Would this model work without empirical studies? We believe it would, and in the section 676 

where PRECOG is presented, we provide the necessary steps to do so. We believe its predictive 677 

capability would be improved if the criticality evaluation had been performed after the KBD-SBD 678 

mapping for all identified potential issues (including false positives). Having all the criticalities of all 679 

potential issues would, for instance, allow the analysts to choose the issues evaluated with a criticality 680 

of 6 or more. These issues, according to our results, have a higher probability of being captured by 681 

PRECOG. In the future, it is our intention to validate this second approach by performing cognitive 682 

walk-throughs in the platform and performing criticality evaluations in replacement of the empirical 683 

studies with real participants. 684 

Value 685 

The approach used in the current study allowed us to identify problems, difficulties and issues 686 

participants faced during the interaction with the LCDP. Although not detailed in the present study, 687 

a root-cause analysis of each issue allowed us to understand that these arose mostly due to two types 688 

of lacking concepts: LCDP-related concepts and development-related concepts. Whereas Expert 689 

programmers knew the development concepts but had difficulty in translating them into the LCDP 690 

terms, Novice programmers lacked basic development-related concepts, which largely affected their 691 

performance.  692 

Although these results are based on the study of one development use-case, and we cannot 693 

generalize to the entire LCDP, PRECOG allowed the identification, prioritization and root-cause 694 

analysis of several issues. This is valuable information for the LCDP platform developers as they 695 

have as main goal to place both types of profiles (Experts and Novices) within the Optimal Flow (cf. 696 
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Csikszentmihalyi, 1990; Repenning & Ioannidou, 2006), with just the right amount of challenges and 697 

just the right amount of skill-acquisition - each at their own pace. The nature of the issues also 698 

provides valuable inputs to support adjusting the LCDP learning process, according to the Optimal 699 

Flow. Specifically, the nature of the errors should be taken into account: Novice users, due to the lack 700 

of software development skills, will fall into anxiety, as they are not able to develop the desired 701 

features; Expert users, while lacking knowledge of the platform, will perform the tasks resorting to 702 

the previously acquired knowledge, which might result in repetitive and monotonous tasks, leading 703 

to boredom. 704 

CONCLUSION 705 

Low-code development platforms have the potential to dramatically change how software is 706 

developed, making it possible, at least for particular domains, for someone without a formal education 707 

in computer science to develop quality software, and for experienced developers to significantly speed 708 

up the development process. Understanding how programmers and non-programmers approach this 709 

type of platform, is key to support their design and evolution. By developing and applying PRECOG, 710 

a new Descriptive Cognitive Model (DCM), aimed at identifying interaction issues with the learning 711 

of low-code platforms, we were able to gain insights into potential problems with a specific low-code 712 

platform’s use. The proposed DCM was validated, using empirical techniques. Twenty participants 713 

were observed interacting with the LCDP, of which 10 were expert programmers and the other 10 714 

were novice programmers. All performed the same tasks and all interactions were analyzed according 715 

to the proposed model. 716 

Although a high number of False Positives were identified after a first mapping between the 717 

user’s mental model and the system’s requirements, it is relevant to notice that all issues but one 718 

(Button link), which occurred during users’ interaction with the LCDP, were predicted by this 719 

mapping. Expert programmers had a higher number of observed issues, although each occurring less 720 

frequently. This was due to expert programmers performing the tasks more quickly and with a more 721 

explorative behaviour, giving room for more issues to occur. On the other hand, Novice programmers 722 

faced fewer issues, although each occurred more frequently. These results allowed us to successfully 723 
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identify high criticality use errors through the analysis of the users’ mental model and, importantly, 724 

the results allowed us to identify the root causes of each issue. One of the future goals of the current 725 

research is to validate PRECOG as a predictive model without recurring to user studies. 726 

PRECOG revealed itself quite valuable in the search for more usable LCDP and effective EUD 727 

platforms. As Maeda (2006) points out, “observing what fails to make sense to the non-expert, and 728 

then following that trail successively to the very end of the knowledge chain is the critical path to 729 

success [i.e., in developing simple and easy to learn systems]”. Our proposed method allows the 730 

systematic and effective exploration of the conflict between users’ knowledge and system 731 

requirements/challenges, thus providing important insights for system developers that aim at creating 732 

a broadly accessible development platform. Moreover, this method can be applied in other contexts 733 

where learnability might be an issue for it allows to identify possible sources of faulty interaction and 734 

sub-tasks where the users’ background knowledge will be insufficient to guarantee a successful 735 

performance of the task at hand. 736 

KEY POINTS 737 

●      An effective Low-Code Development Platform (LCDP) requires an understanding of the 738 

distance between the LCDP end-users' conceptualization of programming, and the actions required 739 

in the platform. 740 

●      We propose and evaluate a Descriptive Cognitive Model (DCM) for the identification of initial 741 

use issues in a low-code development platform. 742 

●    We propose three mapping rules for the identification of knowledge-system conflicts: over 743 

decomposition, under decomposition and no correspondence conflicts. 744 

●       Applying the proposed DCM we were able to predict the interaction problems felt by first time 745 

users of the LCDP. 746 
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