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ABSTRACT

Networks are powerful in representing a wide variety of sys-
tems in many fields of study. Networks are composed of
smaller substructures (subgraphs) that characterize them
and give important information related to their topology
and functionality. Therefore, discovering and counting these
subgraph patterns is very important towards mining the fea-
tures of networks. Algorithmically, subgraph counting in a
network is a computationally hard problem and the needed
execution time grows exponentially as the size of the sub-
graph or the network increases.

The main goal of this paper is to contribute towards sub-
graph search, by providing an accessible and scalable parallel
methodology for counting subgraphs. For that we present
a dynamic iterative MapReduce strategy to parallelize algo-
rithms that induce an unbalanced search tree, and apply it
in the subgraph counting realm. At the core of our methods
lies the g-trie, a state-of-the-art data structure that was cre-
ated precisely for this task. Our strategy employs an adap-
tive time threshold and an efficient work-sharing mechanism
to dynamically do load balancing between the workers.

We evaluate our implementations using Spark on a large
set of representative complex networks from different fields.
The results obtained are very promising and we achieved a
consistent and almost linear speedup up to 32 cores, with an
average efficiency close to 80%. To the best of our knowledge
this is the fastest and most scalable method for subgraph
counting within the MapReduce programming model.
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1. INTRODUCTION

In recent years network science has emerged as an important
multidisciplinary field, with applications in areas such as
computer science, physics, biology or engineering. Although
its roots are in the older field of graph theory, the analysis
of networks has been recently receiving increasing attention
due mainly to two important factors [4].

The first contributing factor is the availability of network
maps, due to technological advances that have provided an
enormous amount of data which can be represented by net-
works. The second contributing factor is the realization that
complex networks from different areas share non-trivial com-
mon topological features. This universality of characteristics
serves as a guiding principle for network analysis and gives
a wide applicability to any discoveries.

In order to extract information from networks, practition-
ers have a wide range of measurements available [8]. Some
of them describe properties at the node level (such as its
degree) while others describe global metrics (such as the av-
erage distance between nodes). One other way of analyzing
a network is to use an intermediate approach, looking at
small topological patterns of interconnections, bigger than a
single node but smaller than an entire network, and trying
to understand what is their role in the global behavior of the
network. These small substructures are subgraphs and they
can be seen as basic building blocks of complex networks,
capable of uncovering their design principles [15].

One crucial related task is the computation of subgraph fre-
quencies. For instance, the concept of network motifs[15]
points towards subgraphs that appear in significantly higher
numbers than what one would expect. To discover motifs
we therefore need the ability to count subgraphs. Another
example are graphlet degree distributions [18], which at its
computational core lies around discovering occurrences of
subgraphs.

The task of computing the frequency of a given set of sub-
graphs (also known as computing a subgraph census) is a
challenge, since it is a computationally hard problem. In
fact, just knowing if a subgraph appears at all in another
larger graph is an NP-complete problem [7], and finding the
exact number of times it appears is an even harder task.
Given this, the needed execution time grows exponentially
as we increase the size of the network or the size of the
subgraphs being searched.
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One of way of improving the performance of the associated
algorithms is to resort to parallelism, which has the capa-
bility to really scale up the computation. In this paper we
alm precisely towards parallel subgraph search and we use
the MapReduce programming model [6]. An important ad-
vantage of MapReduce is its availability on cloud computing
websites. For instance the user could rent computation time
in a cluster in any cloud computing provider (e.g. amazon
web services) and run the algorithm using as many proces-
sors as needed. So the user does not need to have his own
powerful machines to run large graphs. By providing sub-
graph counting algorithms in a MapReduce framework we
could therefore really make them available to a wider and
more general audience of practitioners in different fields.

The main contributions of the work described in this paper
can be summarized as follows:

e A general iterative MapReduce parallel strategy for
unbalanced “tree-like” computations. It employs a dy-
namic threshold that changes during the execution and
adapts the time between the iterations depending on
the actual computation being made. It also redis-
tributes work after each iteration, effectively providing
dynamic load balancing.

e A Java implementation for the Spark framework that
uses the developed strategy and applies it for subgraph
counting using g-tries. It includes a compact represen-
tation of the work state, allowing a very efficient work
sharing mechanism.

e A thorough experimental analysis of our implementa-
tion on a large set of representative complex networks,
demonstrating its general applicability and showcasing
its scalability.

The rest of the paper is organized as follows. Section 2
introduces the problem being solved. Section 3 describes
the base sequential algorithm, while Section 4 details our
parallel approach. Section 5 gives our experimental results
and finally Section 6 concludes the paper.

2. SUBGRAPH COUNTING

In this section we introduce a common graph terminology
to be used throughout the paper, we formally define the
problem we are tackling and we talk about past related work.

2.1 Graph Terminology

A graph G is composed of a collection of vertices V(G) and
a set of edges F(G). The size of the graph is the number of
vertices it has, and it is written as |V (G)|. The term k-graph
refers to a graph of size k. Edges are composed of pairs of
vertices (u,v). The degree of a vertex is the number of edges
it has. In the case of directed graphs we can distinguish
between the indegree (incoming edges) and the outdegree
(number of outgoing edges). The neighbourhood of a vertex
u is the set of vertices that share an edge with u. If the graph
has no self-loops or multiple edges connecting the same pair
of vertices, then it is considered a simple graph. In this paper
we assume that we are only dealing with simple graphs.

Vertices are distinguished by assigning them labels from 0 to
|V (G)|—1, thus the comparison u < v refers to a comparison
between their labels and in this case it means that the vertex
u has a lower label than v. These labels are used as part of
the g-tries symmetry breaking conditions, which allow the
algorithms to only count each subgraph occurrence once.

Some graphs contain other graphs. The contained graph is
called a subgraph. Formally, a graph H is a subgraph of a
graph G if V(H) C V(G) and E(H) C E(G). This sub-
graph H is called induced if Vu,v € V(G), (u,v) € E(H) if
and only if (u,v) € E(G), and if the graph G has a set of
nodes that induce H then this set is called an occurrence
or a match. Distinct matches must have at least one differ-
ent vertex. The number of occurrences of H in G is called
its frequency. Figure 1 shows an example of a graph G, a
subgraph H and its four occurrences.

Subgraph H Graph G
0 0 3
2
1 2 1 4
0 3 0 3 0 3 0 3
2 2 2 2
1 4 1 4 4 1 4

Occurrence #1 Occurrence #2 Occurrence #3 Occurrence #4

Figure 1: Induced occurrences of a subgraph H in a larger
graph G.

Two graphs G1 and G2 are isomorphic (G1 ~ G2) if there is
a one to one mapping between their vertices and there is an
edge in G if and only if there is an edge between the cor-
responding vertices in G2. This problem (isomorphism) is
computationally hard and it is neither known to be solvable
in polynomial time nor NP-complete [14]. Another simi-
lar but different problem is subgraph isomorphism, in which
given two graphs G and G2 we need to determine if G con-
tains a subgraph which is isomorphic to G2. This problem
is known to be NP-complete [7].

2.2 Subgraph Census Problem

As the last section described, just knowing wether a graph
appears as a subgraph of another larger graph is already an
NP-complete problem. The main computational problem
that we are trying to solve in this paper is an even more
general version of this problem, that is, to actually compute
the number of occurrences of each subgraph type. Our goal
is precisely to improve the efficiency and scalability of algo-
rithms for this task and we now define more formally the
problem we are tackling.

DEFINITION 1 (Subgraph Census Problem). Given
a graph G and a subgraph of size k, determine the exact fre-
quencies of all induced occurrences of all possible k-subgraph
types in G.



In some cases we may instead be interested in a smaller
set of subgraphs than the entire set of size k. Note that
the number of different subgraph types grows exponentially
as k grows and that this number is different between the
undirected and directed case. Figure 2 exemplifies this by
displaying all possible subgraph types of size 3.
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Figure 2: All possible directed and undirected 3-subgraphs.

2.3 Related Work

There is a significant amount of past work on sequential
subgraph census algorithms, which can be divided into three
main conceptual approaches.

Network-centric methods search for all subgraphs of size k
in the target network and then apply isomorphism to deter-
mine the type of each subgraph in the occurrences. Example
of this class of algorithms are ESU [25], Quatexelero [11] or
FaSE [17].

Subgraph-centric methods search only for one individual
subgraph type at a time. An example algorithm of this type
is Grochow and Kellis [10].

Set-centric methods search for a customized set of sub-
graphs. They are conceptually in the middle between the
previous two, because they do not search for only one sub-
graph at a time, and also not necessarily for all subgraphs of
a specific size. This approach was introduced in 2010 with
the usage of the g-trie data structure providing an efficient
way of representing general sets of subgraphs [20].

In this work we opted to use the set-centric approach as the
sequential baseline, given its flexibility on what subgraphs
should be counted. Furthermore, to the best of our knowl-
edge, g-tries are currently the state-of-the-art in what con-
cerns subgraph counting for a general scenario (no specific
subgraph types or sizes) [21], providing a fast and powerful
methodology for subgraph search, including the possibility
of trading accuracy for even more speed by using sampling
techniques which lead to approximate results [19].

Regarding past parallel approaches, the methods we develop
here are different and novel in fundamental ways. In what
concerns g-tries, there already exists a distributed memory
approach using MPI [22] and a shared memory approach for
multicores using pthreads [2]. Both of these approaches rely
on a form of work stealing for providing load balancing. By
contrast, our work is geared towards a MapReduce program-

ming model, which uses a different underlying abstraction
and therefore requires different parallel strategies.

In what concerns MapReduce approaches for subgraph cen-
sus, there is no previous work on set-centric methodologies.
We recently became aware of MRSUB [23], which uses a
network-centric approach with an edge-based enumeration,
but its base sequential algorithm is substantially slower than
g-tries. MRSUB also uses a static load balancing scheme and
a single MapReduce iteration, while in our case we use a dy-
namic load balancing scheme that adapts to the computa-
tion during execution. Another MapReduce network-centric
approach is given in [24], in which they use an iterative ap-
proach. However, they use as a sequential basis the ESU
algorithm (two orders of magnitude slower than g-tries) and
with 56 cores their reported speedup was on average smaller
than 5x (with the exception of a specific network, where they
reported a speedup of 37.81x). Regarding subgraph-centric
Map-Reduce approaches, there are options such as [12] or [1].
They differ fundamentally from our work because they are
trying to parallelize the enumeration of a single subgraph.
This conceptual methodology implies that we need to search
for all subgraphs individually when doing a subgraph census,
not reusing any kind of computation between enumerations,
which makes this approach less desirable when the number
of different subgraph types is high.

We should also mention that there are parallel approaches
for less general versions of subgraph search when we are only
interested in specific types of sugraphs. An examples of this
is Sahad [26], a subgraph-centric MapReduce approach for
tree subgraphs.

3. SEQUENTIAL G-TRIES ALGORITHM

In this section we describe our base sequential algorithm,
centered around the very efficient g-trie data structure [21].
Its core advantage lies in the fact that it identifies common
substructures between different subgraphs and this is used
for searching at the same time for any given set of subgraphs.
We will exemplify it with undirected subgraphs, but the
ideas are easily extendable to the directed case.

3.1 Structure of a G-Trie

G-tries are similar in spirit to the idea of prefix trees [9].
However, instead of storing a collection of strings and iden-
tifying common prefixes, it stores a collection of subgraphs
and identifies common subtopologies. Like the prefix tree,
it is a multiway tree, but instead of adding one character
in each child node, it adds one vertex and its correspondent
connections to ancestor vertices. A path from the root to
a leaf defines a subgraph and descendants from any g-trie
branch have some commmon subtopology.

Figure 3 shows an example of a g-trie containing 6 undi-
rected 4-subgraphs. It also illustrates how g-tries are aug-
mented with symmetry breaking conditions that induce a
unique order in which vertices can match a subgraph. This
plays a big role on g-tries efficiency and makes it possi-
ble to count each occurrence only once. For example, sub-
graph type #6, a clique of size 4, has the set of conditions
A< B,B<C,C < D. Without these, any permutation of
the nodes of an occurrence would also be a match, since this



subgraph is completely symmetric and all nodes are topo-
logically equivalent.
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Figure 3: A g-trie representing a set of 6 undirected
subgraphs of size 4. Each g-trie node adds a new ver-
tex (in black) to the already existing ones. Clauses of the
form X < Y are symmetry breaking conditions. Adapted
from [2].

3.2 Using G-Tries to Count Subgraphs

Algorithm 1 details how we can use g-tries to count sub-
graphs. The core idea is that we will be searching for a set
of network nodes (Vseq) that match to a certain g-trie path
(T). This search is heavily constrained (see function match-
ingVertices()) and because internal g-trie nodes have mul-
tiple children, we are matching several different subgraphs
at the same time and when we reach a leaf we already know
the isomorphic class of the occurrence.

The algorithm starts by considering all vertices as possible
candidates for the g-trie root node (lines 2-4). For each
vertex it calls the recursive census function COUNT with a
matched set containing only this vertex (line 4).

The count () function starts by computing a set of suitable
candidate vertices that completely match the current g-trie
node (line 6). This set is then traversed and recursively
expanded through all possible tree paths (lines 7,11-12). If
the node is a leaf this means it corresponds to a full subgraph
and its frequency is incremented (lines 8-9).

The matchingVertices () function is pivotal in the efficiency
of the search and fully utilizes the information stored in
the g-trie to really limit and reduce the number of possible
candidates. It starts by selecting the lowest degree vertex
that must be a neighbor of the vertex being added (lines
14-15). From the neighbors of this vertex we take the ones
that respect all connections to the ancestors and that do not
break any symmetry breaking conditions (lines 16-18).

Given the space constraints we refer the reader to [21] for a
more detailed view of this very efficient algorithm. For the
purposes of our work, the main aspect to consider is that
the bulk of the computation is spent inside the recursive
count () function, which generates independent search tree
branches that we will exploit resorting to parallelism.

Algorithm 1 Computing the frequency of subgraphs of a
g-trie T in graph G. Adapted from [21].

: procedure COUNTALL(T, G)
for all vertex v of G do
for all child ¢ of T.root do
COUNT(c, {v})

V <~ MATCHINGVERTICES(T, Vysed)
for all vertex v of V do

1

2

3

4:

5: procedure COUNT(T, Vysed)
6‘

7

8 if T.isLeaf then
9

: T.frequency++
10: else
11: for all child ¢ of T' do
12: COUNT(¢, Viyseqa U {v})
13: function MATCHINGVERTICES(T, Vi, sed)
14: Veonn 4 vertices connected to the vertex being added
15: m « vertex of Veonn with smallest neighborhood
16: Veand < neighbors of m that respect both
17: connections to ancestors and
18: symmetry breaking conditions
19: return V4,4

4. PARALLEL G-TRIES ALGORITHM

Each call to the count (7', Vyseq) function is fully defined
by its two arguments which indicate the position where we
are at the g-trie (T") and the current set of network vertices
that match to that position (Viseq). With these two pieces of
information, computation can be resumed without needing
to know anything from the past. Furthermore, different calls
are completely independent from each other. A pair (T,
Viused) constitutes therefore our basic working unit.

At the upper level of the computation we have work units
that correspond to all vertices being matched to the root
node of the g-trie. We experimented with some static load
balancing schemes that partition the work only at this level,
but this is clearly not sufficient since the computation is
highly unbalanced. Given the power law degree distribu-
tions of most real world complex networks, a few nodes may
be responsible for a very significant percentage of subgraph
occurrences, while others may have almost no occurrences
at all. Experiments have shown cases where a single node,
corresponding to a single work unit, would need more than
20% of the entire computation time, rendering any static
division unfeasible for a scalable computation.

We needed a dynamic load balancing scheme, and our solu-
tion was to use an iterative MapReduce algorithm. During
computation, a time threshold is used to force all the workers
to stop and the remaining work is redistributed among all
available computational resources for another iteration. For
this methodology to work properly and in a scalable way we
need several key ingredients: a good initial partition (that
kickstarts the computation); a correct time granularity (stop
too often and we will spend more time synchronizing and
communicating than actually doing the subgraph counting;
stop too late, and we will end up having idle workers that
finished all their assigned work); a compact representation of
unfinished computation (we need to actually communicate
this to give computation to other workers); an efficient load
redistribution mechanism (that allows work to be divided
among workers for the next iteration). In the next sections
we will detail how we approached these challenges.



4.1 Overview of our Parallel Algorithm

Initially, we divide the vertices in a round robin way, giving
each worker an approximately equal number of nodes to pro-
cess. After a fixed amount of time all the workers stop cal-
culating, save and return their current state to the reducer,
which collects these states and decides if the computation
is finished. If not, the remaining work is divided between
workers and a new MapReduce iteration is initiated.

As explained before, the value of the time threshold used for
stopping highly affects the speedup. In order to maximize
the parallel efficiency, we decided to use an adaptive thresh-
old that dynamically changes during the execution according
to what happened in the previous iteration.

We should also mention that we define two keywords regard-
ing the work assigned to each worker. A work unit is a single
state in the search tree from where the worker could start
computing (as explained before), while a work set is a set of
work units that is assigned to a worker.

Algorithm 2 details how we apply our strategy with g-tries.
The controller (master/driver worker) starts by setting the
initial time limit (line 5) and initial work sets (lines 6-7).
Then, it launches the workers (lines 8-11). If the time limit
is exceeded before the worker finishes its work, it saves its
location and returns its current state which is a partial re-
sult (lines 26-29). Each state has two components, the found
occurrences (resArr) and the remaining work in the corre-
sponding work set. The Reducer collects those partial re-
sults, separates the two components, adds the occurrences
to the final result and constructs the total remaining work.
If we still have work left to do, the driver distributes this
work (line 12), adjusts the threshold (line 13) and launches
the workers with the new work sets (lines 8-11).

4.2 Saving the State

When the time threshold is reached, every mapper that has
not finished processing stops computing and saves its search
state. The goal is to save the state of the recursive work
by capturing the stack contents in an efficient way. Fur-
thermore, before returning its state, each worker divides its
own remaining work in a number of work sets equal to the
amount of mappers. By doing this, we make sure that even
if all workers have finished their work except one, all of them
will still have work to do in the next iteration.

The function count() of Algorithm 2 contains two cycles:
one loops over all possible vertex candidates and the other
loops over all children of the corresponding g-trie node. In
order to save the state in each depth we need to store the
position in both cycles, and we do so by using simple integer
labels. Each vertex in the graph already has a label to define
it. We also assign an id to each g-trie node before we start
the computation, and since the g-trie does not change during
computation, we can use it as a label. Inside each recursive
level, we attribute unexplored vertices to the several work
sets in a round-robin fashion.

4.3 Resuming the Work

As we said before, each saved working unit has enough in-
formation to continue its work independently. However, we

Algorithm 2 Computing the frequency of k-subgraphs of
a g-trie T in graph G using w workers using MapReduce

procedure MAIN(T, G, w)
: result «— A g-trie that will contain the total result.

1:
2
3 verticesSets <— The list of work-sets for workers, [w].
4: partial Result «<— The result of each worker.

5: timeLimit = k3  (G.numVertices)?; ctr =0

6: while ctr < G.numVertices do

7 verticesSets[ctr mod w].add(ctr); ctr + +

8

while verticesSets # () do

9: partial Result = VERTICESSETS.MAP(vSet) {

10: COUNTALLMAPPER(T, vSet, timeLimit)}

11: result = partial Result. REDUCE(partResl, part Res2)

12: verticesSets = redistribute(remainingWork)

13: timeLimit = adjustThreshold(nl Mappers, avgldleTime)

14: Print result

15: procedure COUNTALLMAPPER(T, G)

16: currentState = null

17: for all vertex v of G do

18: for all child ¢ of T'.root do

19: currentState = COUNT(c, {v}, currentState)

20: if Time Limit exceeded then

21: return currentState

22: return currentState

23: procedure COUNT(gN, Vi seq, currentState, resArr)

24 V <~ MATCHINGVERTICES(gN, Vysed)

25: for all vertex v of V do

26: if Time Limit exceeded then

27: remainingV = the unexplored vertices in V

28: currentState = SAVESTATE(remainingV, hLable,
currentMatch,triel D, currentState)

29: return currentState

30: if gN.isLeaf then

31: resArr[gN.id] + +

32: else

33: for all child ¢ of gN do

34: COUNT(¢, Vyyseq U {v}, currentState, resArr)

35: procedure SAVESTATE(remainingV, hLable, current Match,
triel D, currentState)

36: state = triel D + hLable + currentMatch + remainingV’

37: currentState += state

38: return currentState

need a procedure to do the bridge between the saved work-
ing unit and the recursive counting function (count). This
procedure is shown in Algorithm 3. It iterates through the
remaining vertices stored in the saved work unit and contin-
ues counting the occurrences by calling the original census
function (lines 10-11).

4.4 Adaptive Threshold Mechanism

Initially, we set the threshold value to G.numVertices® x
motifSize® nanoseconds (line 5). The intuition is that larger
network and motif sizes induce more subgraph occurrences.
Hence, this will result in larger computation times and there-
fore the granularity should be bigger.

After every iteration the threshold is re-adjusted according
to the number of workers who waited without work in the
previous iteration and how much time they were idle.

In the case where no workers went idle in the previous iter-
ation we increase the threshold by 20%.

In the other case, when some worker were idle during the
previous iteration, we decrease the threshold:



Algorithm 3 G-Tries: resuming the work from a saved
state.

1: procedure
currentState)
for all vertex v of remainingVertices do
if Time Limit exceeded then
remainingV = the unexplored vertices.
currentState = SAVESTATE(remainingV, hLable,
currentMatch, triel D, currentState)
return currentState
if T.isLeaf then
T.frequency++
else
for all child ¢ of T" do
COUNT(c, Viyseq U {v}, currentState)

RESUMEWORK (T, Vi sed, remainingVertices,

—_

newT = oldl —eldTxnumldieWorkers _ (900 a1 g W aittedTime)

totNumW orkers

Again, the intuition is that when all workers still have work
units to process, we should increase the granularity, so as
to reduce the amount of time spent unnecessarily synchro-
nizing from one iteration to the other. Similarly, if there
are idle workers, we should decrease the granularity so that
we can redistribute work earlier and keep all workers busy.
We did systematic empirical tests to find the best values for
the parameters that affected this mechanism and 20% was
chosen after being the value that maximized average
efficiency over most of tests. We omit the details of this
experiment due to the space constraints of this paper.

S. EXPERIMENTAL EVALUATION

In this section we present empirical data obtained by run-
ning our parallel methodology on a diverse set of represen-
tative complex networks. First, we describe the computa-
tional environment and the networks used. Next, we provide
a parallel performance evaluation, showing the speedups we
obtained.

5.1 Computational Environment

We ran all of our tests on a 64-core machine, consisting
of four 16-core AMD Opteron 6376 processors at 2.3GHz
with a total of 252GB of memory installed. Each 16-core
processor is split in two banks of eight cores, each with its
own 6MB L3 cache. Each bank is then split into sets of two
cores sharing a 2MB L2 and a 64KB L1 instruction cache. A
16KB L1 data cache is dedicated to each core. Because L2
cache is shared between pairs of cores, we only had access
to 32 truly independent cores, and this is reflected in
the results we obtained.

All code was developed in Java and compiled using Maven
3.3.9, inside the Spark framework. Moreover, the used time
unit is the second.

5.2 Complex Networks

For the purpose of testing our work and showing its general
applicability, we chose a diverse set of networks from vari-
ous fields of application. Table 1 gives an overview of their
topological characteristics and indicates its source.

5.3 Baseline Results

Avg.
Network Src | Type V(&) | |E(G)| Degreo
polblogs [16] | communic. 1,491 | 19,022 12.8
foldoc [5] | semantic 13,356 | 120,238 9.0
septemberil | [5] | semantic 13,314 | 243,447 18.3
gnutella [13] | internet 8,717 | 31,525 3.6
company [5] | communic. 8,497 6,724 0.8
facebook [13] | social 4,039 | 88,234 21.9
wikivote [13] | wikipedia 7,115 | 103,689 14.6
neural [16] | biological 297 2,345 7.9
metabolic [3] | biological 453 2,025 4.7
netscience | [16] | collaboration 1,589 2,742 1.7

Table 1: The set of representative real networks used for
experimental evaluation.

Since the original implementation of g-tries is written in
C++ and we rewrote the algorithms in Java (so as to use
them within Spark) our first task was to compare our se-
quential port with the original algorithm and we found out
that our implementation was on average twice as slow. Fur-
thermore, we also compared the time of our parallel ap-
proach using only one core when compared to the sequential
version, in order to measure the overhead introduced by us-
ing MapReduce and Spark. Results have shown that the
overhead is on average around 100%.

Given that we wanted to study the parallel efficiency of our
algorithm, we needed to have computation times that were
large enough to justify parallelization, but at the same time
were small enough to be feasible to compute in due time.
We computed full size k£ undirected subgraph census for all
the networks and chose a suitable size k. Table 2 summa-
rizes the used sizes for each network. The growth rate gives
an indication on how much more time it takes to compute a
subgraph of size k+1 when compared to k, providing an esti-
mation of the required computation time for larger subgraph
sizes and at the same time showcasing the heterogeneity of
the topologies of the networks we used. We should also men-
tion that the actual number of subgraph occurrences of the
census referred to in the table are in the order of 10° to 10*°.

Network Sub. Total Growth Rate
Size | Time (s) AVG STD
polblogs 5 2,662 57.5 36.1
foldoc 5 6,346 83.0 40.3
septemperil 4 2,725 305.6 3.9
gnutella 6 1,964 16.5 12.1
company 5 782 59.4 74.0
facebook 5 4,899 88.8 4.7
wikivote 4 737 | 56,055.7 | 96,449.4
neural 7 13,215 2,690.7 5884.1
metabolic 6 2,183 552.2 1087.3
netscience 9 2,851 452.3 1062.5

Table 2: Baseline execution times with one core for undi-
rected subgraph census.

5.4 Parallel Results

The results we obtained are very promising for a MapRe-
duce approach, with a consistent and almost linear speedup
up to 32 cores, with an average speedup close to 25 and an



average efficiency close to 80%. We can see a small degra-
dation when we move to 64 cores, which can be explained
by the limitation imposed by the hardware we used, which
only provides 32 independent cores (with each pair of cores
sharing part of their caches). We believe that when using
truly independent cores the trend from 32 cores would con-
tinue to scale up consistently. A more detailed view of the
obtained speedups can be seen in Table 3.

The differences between different networks are mainly due
to very different topologies and execution times. A detailed
analysis of the results shows that in the general case the bet-
ter speedups are obtained for the cases in which the compu-
tation time is higher. This means that we are cutting the
needed time in the use cases that most need it and means
that we could potentially scale well for even bigger cases. For
instance, in the company network, the computation time for
32 cores is already only 39 seconds and it is hard to improve
upon this. By contrast, in the neural network, 32 cores take
506 seconds and so there is still room for parallel improve-
ment when doubling the number of processors.

Sub. workers: speedu
Network size 2 j& 8 llg ;2 64
polblog 5 1.9 (3.6 | 7.2 | 13.6 | 26.0 | 41.8
foldoc 5 1.9 (3.6 | 7.1 | 14.2 | 26.4 | 42.1
septemperil 4 1.9 | 3.7 (6.9 | 12.7 | 24.1 | 36.0
gnutella 6 1.9 | 3.8 | 6.7 | 12.5 | 24.3 | 40.1
company 5 1.9 | 3.8 | 7.1 | 12.2 | 20.1 | 25.2
facebook 5 1.8 (34| 7.1 13.9 | 25.4 | 36.6
wikivote 4 1.9 | 3.8 | 7.1| 12.5 | 20.6 | 25.1
neural 7 1.9 (3.7 | 7.3 | 13.9 | 26.1 | 43.2
metabolic 6 1.9 | 3.6 | 7.1 | 13.9 | 26.6 | 40.0
netscience 9 1.9 3.9 6.8]| 11.3 | 19.0 | 25.9

Table 3: Speedups obtained with our parallel approach
when computing undirected subgraph census.

For the purpose of showing that our strategy is general
and could be applied when searching directed subgraphs, we
made some additional tests in which the direction of edges
was kept if the original dataset had it. Table 4 summarizes
the obtained results, which were very similar to the undi-
rected case.

Sub. #workers: speedup
Network | ;e 27 4] 8] 16] 32| o
foldoc 5 1.9 | 34|54 | 13.0 | 26.1 | 43.6
company 5 1.8 | 3.8 | 6.6 | 13.5 | 23.3 | 31.4
wikivote 4 1.9 | 3.4 | 54| 13.0 | 29.6 | 45.5

Table 4: Speedups obtained with our parallel approach
when computing directed subgraph census.

Figure 4 summarizes our results, by plotting the average
speedup of all tested networks in both the directed and undi-
rected cases. We can clearly see that we achieve close to
linear speedups up to 32 cores and using 64 cores case we
still obtain considerable speedup only limited by the used
hardware.

As a result, with such speedups, some computations which
were very hard to run will be possible and that gives the
user the ability to search for larger subgraphs, which is very

important toward extracting new information. For instance,

we computed a 5-census on the wikivote network using the

sequential version and it took around two days. Using our

parallel algorithm and 64 workers, it only took 1.2 hours.
64
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16
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Figure 4: Average speedup for all tested networks.

5.5 Comparison with Competing Algorithms

There are not too many algorithms that can be directly com-
pared to our methodology, given the fundamental differences
pointed out in section 2.3. Perhaps the most comparable
work is the one from Verma et al. [24], which also employs
iterative MapReduce, although it uses the much slower ESU
as the base sequential algorithm. Since we could not find any
implementation online, we tried to run our algorithm on a
network that was referenced in their work and we compared
the obtained results.

Their second best speedup was using a protein protein inter-
action (PPI) network which has 2,365 nodes, and searching
for subgraphs of size 7 in this network. The processors in
our machine are slower (2.3 GHz versus 3.4 GHz). How-
ever, we used the same number of cores towards making the
comparison as fair as possible. Table 5 shows the obtained
results.

Method | Sequential | Parallel | Speedups | Efficiency
ESU 172,800 19,686 8.78 ~ 15.7%
G-Tries 9,539 266 35.86 ~ 64%

Table 5: Comparison between our approach and Verma et
al. [24] on a PPI network.

As shown in the table, our speedups and efficiency are higher.
Our g-tries Java implementation is already 18 times faster
using one processor (due to the underlining base sequential
algorithm). Moreover, our speedup and efficiency are much
higher. In conclusion, to do this test using approximately
the same machine, their parallel algorithm took 5.5 hours
and our parallel approach took 4.4 minutes. We are aware
that this is a very superficial and incomplete comparison,
but we wanted to showcase the potential of our approach
when compared to a very recent published work geared to-
wards the same computational task and using the same par-
allel programming model.



6. CONCLUSION

Complex networks are used in a wide range of artificial and
natural systems. The detection of small patterns in these
networks leads to a better understanding of their structure
and functionality. This operation is called subgraph search
and has been applied to networks in many fields. However,
it is a computationally hard problem and because of that
its application is limited by the size of the pattern being
searched and the size of the network.

For the purpose of decreasing those limitations, we presented
a parallel MapReduce strategy that speeds up subgraph
census, using the state-of-the-art g-tries data structure as
a sequential basis. We ensure load balancing between the
workers by using an adaptive time threshold and an efficient
work-sharing mechanism where workers can stop, save and
resume their computations from anywhere in the search tree.

Our algorithm was tested in several representative networks
from various fields and presented near-linear speedup up to
32 cores, providing what we believe is the fastest and most
scalable method for subgraph counting within the MapRe-
duce programming model. The promising speedups and the
availability of MapReduce on cloud providers allow the ex-
ploration of larger subgraphs in bigger networks.
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