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1112 One of the challenges in a kidney exchange program (KEP) is to choose policies that ensure an effective and fair
13 management of all participating patients. In order to understand the implications of different policies of patient
14 allocation and pool management, decision makers should be supported by a simulation tool capable of tackling
15 realistic exchange pools and modeling their dynamic behavior. In this paper, we propose a KEP simulator that
16 takes into consideration the wide typology of actors found in practice (incompatible pairs, altruistic donors, and
17 compatible pairs) and handles different matching policies. Additionally, it includes the possibility of evaluating
18 the impact of positive crossmatch of a selected transplant, and of dropouts, in a dynamic environment. Results are
19 compared to those obtained with a complete information model, with knowledge of future events, which provides
20 an upper bound to the objective values. Final results show that shorter time intervals between matches lead to
21 higher number of effective transplants and to shorter waiting times for patients. Furthermore, the inclusion of
22 compatible pairs is essential to match pairs of specific patient–donor blood type. In particular, O-blood type
23 patients benefit greatly from this inclusion.
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29 1. Introduction

30 Kidney transplant is the best option of renal replacement

31 therapy for patients with end-stage renal disease—a growing

32 public health problem affecting many persons worldwide. In

33 most countries, patients have the possibility to enter a waiting

34 list where they hope to get a compatible organ from a

35 deceased donor. An alternative is living donor transplanta-

36 tion, when a patient has a donor that volunteers to donate one

37 of her or his healthy kidneys. But even in this situation the

38 transplant cannot proceed unless patient and potential donor

39 are blood and tissue type compatible. This hinders patients

40 with an available organ from benefiting. To overcome this

41 deadlock, some countries extended the living donor donation

42 concept and developed programs that allow the exchange of

43 kidneys between incompatible patient–donor pairs if the

44 patient in one pair is compatible with the donor in another.

45 The program is managed by a central or local health authority

46 that conducts a matching periodically choosing the pairs to

47 proceed to transplant. The process of matching patients and

48 donors in a pool is known as kidney exchange program (KEP)

49 (Roth et al, 2005). A common objective is to select the pairs

50 that will lead to the maximum number of transplants, taking

51 into consideration blood and tissue type incompatibilities

52(Klerk et al, 2005). After being matched, selected pairs are

53subject to additional tissue compatibility tests, which confirm

54whether the transplant is viable or not. This has an impact in

55the actual number of transplants that does not necessarily

56correspond to the number of selected pairs. Other reasons for

57planned and actual number of transplants to differ are, e.g., a

58pair leaving the pool due to patient or donor illness, or

59resignation.

60The events discussed above introduce a particular dynamics

61in the pool and lead to the division of the problem into two

62main versions: the static variant, where transplants are decided

63for a pool as it is at a given instant, and the dynamic variant,

64which studies successive iterations of the static problem. Other

65variants relate to the type of pairs that participate in a KEP.

66Initial kidney exchange programs were composed exclusively

67of incompatible pairs, but there was a significant evolution and

68nowadays may include patients with multiple donors, altruistic

69donors (who are willing to donate a kidney for no return), and

70patients that have a compatible donor, but enter the exchange

71program hoping to find a more suitable organ. The increasing

72complexity of the pool led to the development of various

73matching algorithms (Abraham et al, 2007). Simulators have

74also been developed to study the efficiency of matching

75algorithms and of different policies, as well as their impact in

76the evolving kidney exchange pool.

77In this work, we present a simulation framework that

78models dynamic KEPs. The tool is extremely flexible,*Correspondence: Nicolau Santos, INESC TEC, Porto, Portugal.
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79 allowing the simulation of the dynamics of populations with

80 diverse characteristics and the selection of different pool

81 management policies. It has six main components: a config-

82 uration module, a data characterization module, a PRA

83 estimator, a pool generator, a discrete event simulator, and an

84 optimization module. With the PRA estimator, we obtain

85 approximations for values characterizing the general popu-

86 lation. The obtained information allows the pool generator to

87 produce more realistic data and improve on the current

88 standard. This module’s output includes information about

89 the pairs, such as arrival times, possible departure times, and

90 crossmatch data. It is possible to generate pools with

91 incompatible pairs only, but also to include compatible pairs,

92 patients with multiple donors and altruistic donors. The

93 discrete event simulator controls the evolution of the

94 simulation and manages the succession of events. Its

95 structure is highly modular, allowing the implementation of

96 arbitrarily complex matching algorithms and policies.

97 Finally, the optimization module calculates the matching of

98 pairs with a predefined frequency.

99 For the purposes of benchmark and comparison, we also

100 provide an integer programming model that makes use of all

101 the relevant information, including future events. This allows

102 the comparison of simulated models with an upper bound that

103 could be reached in the hypothetical scenario of complete

104 information.

105 Before proceeding, and for the sake of clarity, the following

106 definitions used in the remaining of this document are

107 introduced:

108 • Virtual crossmatch—an examination that detects the

109 presence or absence of donor’s Human Leukocyte

110 Antigen (HLA)-specific antibodies in a patient by

111 comparing the patients’ HLA antibody specificity profile

112 to the HLA antigens of a potential donor.1 If a patient

113 has antibodies to the donors antigens, donor and patient

114 are considered to be tissue incompatible. If a pair

115 patient–donor is considered compatible, based on virtual

116 crossmatch, and if later the pair is selected for an

117 exchange, a more elaborated examination—serological

118 crossmatch—will be performed prior to the actual

119 transplant. Based on virtual crossmatch, a donor may

120 be wrongly considered compatible with a patient.

121 Serological crossmatch is the ultimate examination to

122 confirm compatibility.

123 • Serological crossmatch—an examination where a portion

124 of donor blood is combined with patient plasma or serum

125 and is checked for agglutination, which would signify

126 incompatibility between patient and donor. If not otherwise

127 stated, this is the test meant by ‘‘crossmatch’’ in the remain

128 of this document.

129• Panel-reactive antibody (PRA)2 provides an estimate of the

130percentage of donors that will be crossmatch incompatible

131for a candidate. The higher the PRA value, the lower the

132probability of a patient finding a compatible donor.

133
134In the proposed simulator, the PRA of each patient is used to

135construct the initial compatibility graph, i.e., to represent

136results of virtual crossmatch. Based on this, an optimal

137matching is determined. After this step, an additional test is

138done, again based on the patient’s PRA, to simulate the

139serological crossmatch.

140This paper is organized as follows: Section 2 presents a

141summary of the relevant literature. The simulation–optimiza-

142tion approach proposed in this work is detailed in Section 3.

143An experimental analysis of its capabilities is provided in

144Section 4, and conclusions and directions for future research

145are drawn in Section 5.

1462. Dynamic kidney exchange: state-of-the-art

147In their simplest format, kidney exchange programs evolve as

148a sequence of static problems. When a patient in need of a

149transplant finds a potential living donor who, although willing

150to donate one kidney, is blood type and/or tissue incompatible

151with the patient, that pair can join a pool composed of

152similarly incompatible pairs. At pre-specified moments during

153a year, a matching algorithm will select for transplant pairs in

154the pool, such that compatible donors are assigned to patients.

155The selection is done in such a way that a given criterion—

156usually the number of transplants is maximized—is optimized.

157Other criteria such as maximizing the number of blood

158identical type transplants have also been addressed (Glorie

159et al, 2014).

160A KEP pool can be represented by a directed graph G ¼

161ðV;AÞ as the one shown in Figure 1a, where the set of vertices

162V consists of all incompatible patient–donor pairs in the pool,

163and A is the set of arcs (i, j) connecting vertices i; j 2 V iff the

164patient in pair j is presumed to be compatible with the donor in

165pair i. To each arc ði; jÞ 2 A is associated a (typically unitary)

166weight wij. A feasible exchange in a KEP is represented by a

167set of disjoint cycles of length at most k. For example, the

168optimal solution for the graph in Figure 1a for k ¼ 3 is

169displayed in Figure 1b.

170For k ¼ 2 or unbounded, the problem is solvable in

171polynomial time using, respectively, Edmonds algorithm

172(Edmonds 1965) and an assignment algorithm. However, for

173k� 3 and bounded, the problem was proven to be NP-

174complete (Abraham et al, 2007).

175Integer programming (IP) formulations have been proposed

176by Abraham et al (2007), Roth et al (2007), Constantino et al

177(2013), Dickerson et al (2016). In Abraham et al (2007) and

178Roth et al (2007), the authors proposed an edge formulation,
1This examination is done without carrying out a serologic crossmatch

such as a Complement Dependent Cytotoxic (CDC) or flowcytometric

crossmatch. 2https://www.unos.org/wp-content/uploads/unos/CPRA_Patients?e4f722.
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179 with exponential number of constraints, and a cycle formula-

180 tion, with exponential number of variables. Later, in Con-

181 stantino et al (2013) the authors proposed and analyzed the

182 performance of alternative, compact edge formulations. The

183 formulations can be adapted to incorporate problem variants

184 such as the possibility of a patient having multiple donors, or

185 of a donor having no patient associated (a so-called altruistic

186 donor). In the latter case, the altruistic donor initiates a chain,

187 where the donor of the last pair in the chain either donates to a

188 patient in the deceased donors’ waiting list, or acts as a

189 ‘‘bridge’’ donor for future matches. Usually chains are also

190 assigned a maximum size, k0. More recently, Dickerson et al

191 (2016) presented two new compact IP formulations. Further-

192 more, they showed that one of those formulations has a linear

193 programming relaxation that is exactly as tight as the previous

194 tightest formulation known—the cycle formulation.

195 All the above-mentioned works consider a static modeling

196 of KEPs and cannot address questions such as:

197 • What is the best interval between matches? This has

198 implications in, e.g., reducing waiting times and dropouts.

199 • Which policies should be used to protect O-blood type

200 patients, and how do they affect the other patients?

201 • What is the impact of including different types of pairs

202 (compatible, multiple donors, etc.) in the overall perfor-

203 mance of the KEP?

204
205 To provide an answer to such questions, the evolution of a

206 KEP pool over time must be studied.

207 Several dynamic approaches based on simulation techniques

208 have been developed for this. Existing simulators can be

209 classified according to the characteristics of the pool they are

210 modeling and to the performance indicators addressed.

211 Patients’ and donors’ blood type compatibility is taken into

212 consideration in Ünver (2010) and Beccuti et al (2011). Both

213 papers consider pools with incompatible pairs only. The first

214 one proposes efficient dynamic matching mechanisms for two-

215 way and multi-way exchanges, and aims at maximizing the

216 discounted exchange surplus. The latter considers only two-

217 way exchanges and tries to maximize the overall number of

218 transplants by adjusting the time interval between matches.

219 An improvement in terms of pool representation can be found

220 in two papers that take into consideration virtual tissue type

221 incompatibility between patients and donors. In Segev et al

222 (2005), the authors consider two-way exchanges and the

223maximization of the number of transplants, weighted by the

224quality of the transplant and the waiting time. The method

225suggests when a patient should enter a kidney paired donation

226program or, alternatively, choose a desensitization treatment, i.e.,

227a treatment for depletion of donor-specific anti-HLA antibodies

228that, if successful, will allow the patient to be transplanted with a

229kidney from his related donor. In Awasthi and Sandholm (2009),

230the potential of three-way cycles is studied. The aim is to

231maximize the overall number of transplants.

232Another important characteristic is the way patients are

233matched upon pool arrival. Typically, the matching is

234conducted with a static KEP algorithm and the operation is

235conducted periodically, with an interval of, usually, from one

236to a few months. However, it is also possible to match a given

237pair as soon as it arrives in the pool. This is described as online

238matching and is studied in Ünver (2010), Awasthi and

239Sandholm (2009) and Ashlagi et al (2013).

240The probability of transplant failure due to patients’ with-

241drawal or other viability issues is taken into consideration in Li

242et al (2011), Klimentova et al (2016). In Li et al (2011), three-

243way exchanges are analyzed by incorporating fall-back options,

244which can be implemented when the primary choice does not

245lead to the planned set of exchanges. The proposed approach tries

246tomaximize the total utility, which is related to transplant quality

247and to logistic issues (e.g., having donor and candidate in the

248same transplant center). In Klimentova et al (2016), the authors

249propose new schemes for matching rearrangement in case of

250failure, along with a new tree search algorithm that is used for the

251computation of optimal expected values.

252Although initial kidney exchange programs were composed

253exclusively of incompatible pairs, programs have been evolv-

254ing and nowadays may include donors without an associated

255patient, who are willing to donate a kidney for no return. The

256impact of allowing altruistic donor chains in a KEP is studied

257in Chen et al (2011), Dickerson et al (2012a, b). The first of

258these articles evaluates the impact of chains of length equal to

259three at most and aims at maximizing the expected utility. The

260two others aim instead at maximizing the number of

261transplants, in weighted (considering vertex potentials) and

262standard versions. An evolution of this approach can be found

263in Dickerson et al (2013), where a branch-and-price approach

264is proposed to solve large-scale problems. Altruistic donor

265chain transplants may be done simultaneously or not. As for

266cycles, in the first case a limit on chain length must be defined.

1 2 3

4 5 6

(a) Compatibility graph

1 2 3

4 5 6

(b) Solution to implement

Figure 1 Static KEP: an example.
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267 The latter is related to Never Ending Altruistic Donor (NEAD)

268 chains (Rees et al, 2009) with no limit imposed to the length

269 of the chain.

270 For the sake of comparison, we summarize in Table 1 the

271 modeling characteristics of several simulators for the dynamic

272 variant of the KEP.

273 The first column (article) contains the reference to the

274 paper.

275 The second column (pool) contains three fields describing

276 the pool management system: the first field is o if matches are

277 conducted online, or s if a static algorithm is used periodi-

278 cally; capital letters indicate that for generating the compat-

279 ibility graph the model considers blood compatibility (B),

280 tissue compatibility (T), or both (BT); and the third field

281 indicates the maximum cycle size allowed (n stands for no

282 restrictions in the cycle size).

283 Column extra describes particular simulator features that are

284 not common across all implementations. The following

285 acronyms are used: w for weighted versions of the problem;

286 eu when an expected utility function is used to express

287 weights and probabilities between donors and patients; fb

288 indicates that the simulator includes a fall-back mechanism to

289 minimize the impact of dropouts; and ch
n if the simulator

290 considers altruistic donor chains (the exponent n being their

291 maximum chain length).

292 The objective is stated in the last column.

293 Even though simulation in KEPs has been studied before,

294 some issues have not been addressed yet. To the best of our

295 knowledge, multiple donors and the inclusion of compatible

296 pairs have only been addressed in static approaches (Saidman

297 et al, 2006; Gentry et al, 2007). As a consequence, an

298 unexplored aspect in the current literature is to consider all

299 possible actors in the simulation software (i.e., evaluate the

300 performance of all potential pool combinations of incompat-

301 ible pairs, compatible pairs, and altruistic donors). Another

302 innovative element of the approach we propose is the way that

303 post-matching serological crossmatch tests are modeled, and

304 the study of its effect in pool evolution. None of the papers

305 reported in Table 1 explores this relevant practical aspect. Our

306 contribution is a holistic simulation–optimization tool capable

307 of handling all these issues simultaneously.

3083. Kidney exchange programs simulator

309The simulator proposed in this paper was developed in a

310modular way. Its main components, as well as the interactions

311between the different modules, are shown in Figure 2. The

312main features of each module are the following:

3131. Configuration module: allows the user to select general

314parameters for running the simulation;

3152. Population data input module: allows the user to specify

316data characterizing the population;

3173. PRA estimator module: uses population’s target PRA

318values to calibrate PRA parameters, and hence to deter-

319mine tissue type incompatibilities in the simulated pool;

3204. Pool generation module: responsible for generating pools

321according to the population data and the desired

322configuration;

3235. Pool management module: discrete event simulator which

324controls the evolution of the population and manages the

325succession of events;

3266. Optimization module: determines the actual matches in the

327pool at the requested moments.

328Next, we detail the capabilities of each of the modules.

3293.1. Configuration module

330The configuration module allows the user to set up the

331characteristics of the scenario to be tested. At the top level, the

332user is able to define the matching policy to be tested, e.g., the

333matching frequency, the simulation duration, and the maxi-

334mum cycle/chain size allowed.

335At a second level, the user is able to select the characteristics

336of the simulated pool. It is possible to select if only incompatible

337patient–donor pairs compose the pool, or if compatible pairs and/

338or altruistic donors should be included in the scenario. When

339considering incompatible pairs, the user can decide if patients

340can have multiple incompatible donors. When considering

341altruistic donors, the user is also able to determine what happens

342to the donor at the end of a chain. More precisely, whether his

343transplant is performed with a patient in the deceased list (and

344hence this donor is discarded in the simulation) or if it will be

Table 1 Comparison of features found in existing simulators

Article Pool Extra Objective

Segev et al (2005) s BT 2 w Maximize weighted number of transplants
Awasthi and Sandholm (2009) o BT 3 Maximize number of transplants
Ünver (2010) o B n Minimize discounted surplus
Beccuti et al (2011) s B 2 Maximize number of transplants
Li et al (2011) s BT 3 eu fb Maximize expected utility
Chen et al (2011) s BT 3 eufbch

3 Maximize expected utility

Dickerson et al (2012a) s BT 3 wch
1 Maximize weighted number of transplants

Dickerson et al (2012b) s BT 3 ch
5 Maximize number of transplants

Dickerson et al (2013) s BT 3 euch
1 Maximize expected utility

Ashlagi et al (2013) o/s T 3 ch
1 Maximize number of transplants
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345 used in the future. It is also possible to configure the maximum

346 time a compatible pair will wait in the pool before proceeding

347 with its own transplant and the maximum time an altruistic donor

348 will wait before dropping out.

349 At a third level, the user can decide whether to consider only

350 (before matching) virtual crossmatch, or to simulate also the

351 serological crossmatch test, implying that possible incompat-

352 ibilities are found out after matching. Finally, the user can

353 choose either to maximize the number of transplants (unitary

354 weights) or other weights [e.g., a measure of the benefit of

355 potential transplants, as in Manlove and OMalley (2012)].

356 Hence, the configuration module is a tuning tool for both

357 simulation and optimization components.

358 3.2. Population characterization module

359 The population characteristics can be specified through an

360 input module. Data required for characterizing donors are their

361 blood type and age; for patients, there is additional data

362 concerning their PRA level. In this module, we input the

363 probabilities to be used in the generator for each of the blood

364 types (assumed to be identical for patients and donors).

365 PRA is usually divided into three levels: low (0–20%),

366 medium (20–80%), and high (80–100%). Low PRA indicates a

367 small or no previous exposure to external cells, while high

368 PRA signals that a patient will reject an organ with high

369 probability.3 In this module, we input the probability of

370patients having low, medium, or high PRA levels; these values

371are used for initializing the procedure described in the next

372section.

373Other characteristics specified in this module are the arrival

374rate for the different elements of the simulation, the patient and

375donor age distributions, the percentage of pairs expected to

376drop out of the pool, and the probability of a patient having

377more than one donor.

3783.3. PRA estimation module

379Typically the input parameters used in KEP simulators to

380describe a population’s PRA are defined as the probabilities of

381belonging to each PRA level observed in real-world KEP

382pools. However, in a preliminary computational analysis, we

383observed that the average PRA percentages observed in the

384generated pools, after discarding compatible pairs, were

385substantially different from the desired ones. In particular,

386when compared with the original data, the generated pools

387exhibited a smaller number of low-PRA patients and a higher

388number of medium- and high-PRA patients.

389In order to obtain a better approximation in the simulator

390pools, it is necessary to adapt PRA probabilities used in the

391generator by solving the following problem. Let �P be a vector

392with the percentages of patients with low, medium, and high

393PRA levels in a real KEP pool. Let Pi be the vector or PRA

394levels used in the generator, and P be the PRA level observed

395in pairs in the pool (after removing compatible pairs). We then

396adapt Pi so that the mean squared error between �P and P is

397minimum; these Pi values are used afterward to generate

Figure 2 Component interaction in the proposed simulation–optimization tool.

3A high PRA level is explained by a patient having been submitted to

blood transfusions or transplants in the past.

Nicolau Santos et al—Kidney exchange simulation and optimization
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398 patient’s PRA in the simulation. We verified that a simple

399 algorithm doing a grid search was enough for obtaining an

400 error close to zero.

401 3.4. Pool generation module

402 The pool generator creates realistic KEP pools based on

403 parameters specified in the above-described modules. Given

404 the desired total simulation time and the arrival rate for

405 incompatible pairs, compatible pairs and altruistic donors,

406 arrival times of patients and donors are generated through a

407 Poisson process. The next step is to characterize pool

408 elements. We first sample the number of donors for each

409 incompatible pair, based on estimated probabilities. Afterward,

410 we generate the KEP pool. The following steps are used for

411 generating pairs:

412 1. Draw patient and donor blood types following the

413 percentages observed in the country’s population.

414 2. Draw patient PRA level (low, medium, or high) and

415 corresponding value as a uniformly distributed random

416 number between the levels’ lower and upper values.

417 3. Determine patient–donor compatibility: If their blood

418 type is incompatible, they are immediately considered

419 incompatible. Otherwise, we consider the generated

420 PRA, which is assumed to be the probability of any

421 donor being tissue incompatible with the patient. We

422 generate a uniformly distributed random number r, with

423 0� r\100. If r\PRA, we also assume that the pair is

424 incompatible.

425 4. Complete the pair information, and generate age and

426 probability of positive crossmatch, c, for the given PRA

427 values. Age is sampled from a specified distribution, while

428 c is obtained from the expression c ¼ Uð1:5007þ

429 0:0170� PRAÞ, as suggested in Glorie (2012), where U

430 is the cumulative distribution function of the standard

431 normal distribution.

432
433 To generate an altruistic donor, we only need to draw his/her

434 blood type and age.

435 After all the elements of the population have been

436 generated, their arrival time and the maximum time they

437 remain in the pool are drawn based on a Poisson distribution.

438 If the dropout time (i.e., the arrival time plus the maximum

439 remaining time) precedes the total simulation time considered,

440 when the simulation reaches that moment the element is

441 removed from the pool.

442 At this point, we have generated arrival time, dropout time,

443 blood type, PRA, and age information for each element. We

444 now need to generate information to represent the compati-

445 bility of elements in the pool in the virtual crossmatch.

446 Traditionally, this is done by generating a compatibility graph.

447 Besides doing this, we also store a list of arcs that will fail in

448 the crossmatch test, so that all the information for completely

449 describing the instance is prepared. This information, as well

450as dropout times, is used entirely in the complete information

451model, but is discovered progressively, as the simulator clock

452advances, in the other models.

4533.5. Pool management module

454The simulation pool evolution and management process take

455course once the system is configured and the generated data

456are loaded. At each step, the engine checks if there are new

457pairs to include in the pool, and if any of the current pairs

458exceeded the maximum allowed time. At the defined matching

459times, the tool builds: (1) a compatibility graph based on the

460characteristics of the pairs that currently compose the pool; (2)

461the subset of arcs in the graph that will fail if the crossmatch

462test is applied; and (3) a table with relevant information

463concerning current elements in the pool, to be sent to the

464optimization module. In return, the module obtains the subset

465of pairs that were selected for transplant, and excludes those

466that fail when crossmatch tests are performed after the

467matching.

468Pool information is updated, and relevant statistics are

469stored for posterior analysis. The module then advances to the

470next time step, and the process is repeated until the desired

471simulation time is reached.

4723.6. Optimization module

473The optimization module is the main decision unit in the

474simulation. It gets all the relevant information from the

475simulator’s main loop and decides which patients will be

476selected for transplant.

477Let P be the set of all patients in the pool, and DðpÞ be the

478set of donors of patient p. For each patient–donor combination

479(p, d) with p 2 P; d 2 DðpÞ, we consider a different vertex in

480the graph. Let k denote the maximum cycle size, and k0 denote

481the maximum chain length allowed. Let Cðk; k0Þ be the set of

482all cycles and chains up to sizes k and k0, respectively. We

483define a variable zc for each element c 2 Cðk; k0Þ such that:

zc ¼
1 if c is selected for the exchange,

0 otherwise.

�

485485486Taking VðcÞ � V as the set of vertices of c, and letting

487wc ¼
P

ði;jÞ2c wij be the weight of each cycle/chain given by

488the sum of the weights of its arcs, the integer optimization

489model to consider is the following:

maximize
X

c2Cðk;k0Þ

wczc ð1aÞ

491491
subject to

X

k2DðpÞ

X

c:k2VðcÞ

zc � 1; 8p 2 P; ð1bÞ

493493
zc 2 f0; 1g; 8c 2 Cðk; k0Þ: ð1cÞ
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495495496 Objective (1a) maximizes the weighted number of trans-

497 plants, and constraints (1b) ensure that a vertex is in at most

498 one selected cycle/chain, even if the vertex is associated with a

499 multiple donor.

500 After the matching is determined, we check if any of the

501 arcs selected for transplant in the obtained solution is in the set

502 of arcs for which the serological crossmatch fails. If so, we

503 consider that every transplant in the corresponding cycle fails.

504 Finally, the information of pairs matched in the current

505 solution and of the incompatibilities discovered in crossmatch

506 arcs is sent back to the pool management module, and the state

507 of the pool is updated.

508 4. Computational results

509 An extensive computational experiment has been prepared for

510 evaluating the flexibility of the tool, as well as the impact of

511 different policies on the overall performance in terms of

512 number of transplants, average waiting times, and non-

513 matched patients. For different intervals between matches,

514 and different cycle and chain sizes we considered the

515 possibility of inclusion of altruistic donors and compatible

516 pairs in the pool. Next we describe the data used in the

517 experiment. Afterward, we present results for the percentage

518 of transplants, waiting times, and characterization of patients

519 in the pool at the end of the simulation. Finally, we compare

520 the results with the ones of a complete information model.

521 All the results in this section have been obtained with the

522 cycle formulation (Abraham et al, 2007), considering the

523 extensions proposed in Constantino et al (2013) to include

524 both incompatible and compatible pairs, altruistic donors, and

525 patients with multiple donors.

526 4.1. Input data

527 In a first stage, to validate the quality of data generated by our

528 simulator, we used information from the Dutch program,

529 which has the most comprehensive accessible data sources.

530 Blood type distribution is based on Beckman et al (1959):

531 45% of the population is blood type O, 43% type A, 9% type

532 B, and 3% type AB. As for PRA, we have used the corrected

533 values provided in Glorie (2012). In that work, the author

534 observes that PRA values provided by transplant centers do

535 not reflect the true probability of matching of a given patient.

536 Because of that, they provide corrected PRA values based on

537 virtual crossmatch between each patient and all possible

538 donors that had participated in the program. We use these

539 corrected values to estimate the general population PRA and

540 generate instances with the obtained values.

541 Table 2 summarizes the original PRA reported by Dutch

542 centers based on the general population, the corrected values

543 by Glorie (2012) that were computed only for the KEP

544 population using virtual crossmatches between each patient

545and all donors in the data set, our estimated population PRA,

546and the average PRA of the data that we generated. The latter

547closely follows the corrected values provided in Glorie (2012),

548validating our proposed PRA estimation procedure.

549Information on pair arrival rate, altruistic donors, dropouts

550and patient–donor age was retrieved from Klerk et al (2008).

551Age of patients and donors varies uniformly between 18 and

55273 years old. The number of compatible pairs was determined

553analyzing Dutch transplantation reports publicly available,4

554and is about 5 times the number of incompatible pairs for the

555studied years. Pair arrivals are modeled with a Poisson

556distribution, and the arrival rates (in days) are: 6.0 for

557incompatible pairs, 1.2 for compatible pairs, and 75. for

558altruistic donors.

559Most of the incompatible candidates remain in the simula-

560tion until the end. However, to simulate patients dropping out

561of the pool, we fixed an average permanence time such that

562about 12% of the candidates drop out in the 5 years simulated

563As for compatible pairs, we assume they only remain in the

564pool for 90 days after arrival. If unmatched after that limit,

565they proceed to make the transplant with the initial donor.

566With this information, we generated 1000 instances for KEP

567with a duration of 5 years. Each instance has been studied

568under different configurations of the following factors: cycle

569size, time between matches, possibility of inclusion of

570compatible pairs and possibility of inclusion of altruistic

571donors. The values considered are the following:

572CYC, maximum cycle size: 2 or 3;

573TBM, time between matches: 30, 90, and 180 days;

574COM, inclusion of compatible pairs:

575(0) no compatible pairs;

576(1) inclusion of all compatible pairs;

577(2) inclusion of the pairs that will benefit from a younger

578donor;

579(3) inclusion of some pairs which will participate in an

580altruistic manner (we had no data for this parameter;

581results are based on an experimental, small value of

58210%);

583
584ALT, inclusion of altruistic donors:

585(0) no inclusion;

Table 2 Characterization of PRA

Source PRA

Low Medium High

Center reported 78 17 5
Corrected 48 35 17
Population estimate 64 27 9
Generated data 48.1 34.9 17.0

4Obtained from http://www.transplantatiestichting.nl/.
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586 (2) altruistic chains of size 2;

587 (3) altruistic chains of size 3.

588
589
590 This resulted in 72 different configurations for each

591 instance. Tests were performed in a computer with an Intel

592 Xeon W3520 processor at 2.67GHz, with 16GB of RAM.

593 The simulator was developed in Python/C++, and MIP

594 models were solved with CPLEX version 12.6. The running

595 times for each complete simulation vary from 0.37 s, for

596 instances containing incompatible pairs only, to 49 s for

597 instances that additionally include compatible pairs and

598 altruistic donors.

599 For the sake of parsimony, we present the total number of

600 transplants and percentages with respect to incompatible pairs

601 only. Several key performance indicators have been analyzed

602 for evaluating the impact of each KEP configuration:

603 percentage of incompatible pairs transplanted, waiting time

604 of matched pairs, sensitization of non-matched pairs, and,

605 finally, a comparison with the complete information model.

606 4.2. Percentage of incompatible pairs transplanted

607 While some focus has been given to the matching of high PRA

608 and blood type O patients, the most commonly used objective

609 in a KEP is to maximize the total number of transplants. In this

610 section, we study the percentage of transplants of incompatible

611 pairs with respect to the total number of incompatible pairs, for

612 the different KEP configurations considered.

613 4.2.1. Pool of incompatible pairs When considering a pool

614 composed uniquely of incompatible pairs, the percentage of

615 transplants increases with the maximum cycle size and

616 decreases with the time between matches. However, the

617 percentage of positive crossmatches (in average 23.1%) does

618 not change much with the parameters. This suggests that with

619 a smaller TBM the program able to recover faster from failure

620 due to a positive crossmatch, and therefore to perform more

621 transplants. In Table 3, we present the average number of

622 crossmatch tests performed, the percentage of positive tests

623 observed, and the percentage of transplants. Standard

624 deviations are presented in parenthesis. In these

625combinations, the best results are 48.8% of transplants,

626obtained with cycle size 3 and TBM = 30.

627Due to the consistent superior number of transplants

628obtained with CYC = 3, we will consider only this value in

629the remaining of this section. We will also denote by ‘‘baseline

630case’’ a pool having only incompatible pairs and maximum

631cycle size of 3.

6324.2.2. Pool including compatible pairs In this section, we

633study the impact of allowing the participation of compatible

634pairs in the pool. As shown in Table 4, configurations with the

635compatible pair parameter COM = 1 (all pairs) and COM = 2

636(only if the patient benefits) lead to an enormous increase in

637the percentage of matches: as much as 96.9% of the pairs can

638now be matched, for TBM = 30 and COM = 1. As in the

639previous case, smaller TBM leads to more transplants.

640The greater number of compatible pairs that is available

641compensates for the lack of under-demanded pairs such as

642O-A. Transplants for COM = 2 are only accepted when

643donors’ age is favorable for the patient of the compatible

644pair. This explains why the number of transplants in that

645case is slightly smaller than for COM = 1. Nevertheless, as

646much as 93.5% of incompatible pairs are transplanted for

647TBM = 30.

648For COM = 3 (part of the compatible pairs), the results are

649more modest, as the number of compatible pairs that were

650considered for entering the pool is, in this case, quite small.

651Nevertheless, the number of transplants improves up to about

65210% with respect to the baseline case for TBM = 30 and 90,

653and 4% for TBM = 180.

654Allowing compatible pairs in the pool leads to an increase in

655the number of crossmatch tests, but we observe a smaller

656percentage of positive cases. This is due to the fact that

657patients from compatible pairs tend to have a smaller PRA and

658thus a smaller probability of failure.

6594.2.3. Pools including altruistic donors The inclusion of

660altruistic donor chains also increases the percentage of

661transplants, with respect to the baseline case. Considering a

662maximum chain size of 2, we obtain a stable increase of 5/6%

663over the different time intervals, even though altruistic donors’

Table 3 Average results for a pool with incompatible pairs only

Configuration Number of crossmatches Positive crossmatches (%) Performed transplants (%)

CYC TBM

2 30 216.2 (28.8) 22.9 (3) 41.9 (3.9)
3 30 305 (43.6) 22.8 (2.5) 48.8 (4.3)
2 90 211.7 (27.7) 22.9 (3) 41 (3.9)
3 90 304.1 (44.5) 23.3 (2.7) 47.5 (4.3)
2 180 205.2 (26.4) 22.9 (3.1) 39.8 (3.9)
3 180 296.5 (41.7) 23.8 (2.6) 45.3 (4.4)

Standard deviations are presented in parenthesis.
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664 arrival is rather rare in our instances. If the chain size increases

665 to 3, we observe a further improvement of 2% in the

666 percentage of transplants. Detailed results are presented in

667 Table 5.

668 4.2.4. Pools including compatible pairs and altruistic

669 donors Finally, we consider the simultaneous inclusion of

670 compatible pairs and altruistic donors in the pool. As bringing

671 compatible pairs to the pool has a very high impact in the

672 percentage of transplants, the benefits of additionally

673 including altruistic donors, though observable, are rather

674 limited. Detailed results are presented in Table 6.

675 4.3. Waiting times of matched pairs

676 One main concern in a KEP is the time patients have to wait

677 until being matched. The anxiety and uncertainty of waiting

678 may lead a pair to drop out of the pool. In more extreme cases,

679 patients may become too ill to be submitted to surgery. For

680 these reasons, policies that lead to smaller waiting times are

681 preferable.

682In Table 7, we present the average total waiting time (in

683months) per blood type and overall, and the average number of

684patients dropping out of the pool for different combinations of

685COM and TBM, when CYC = 3 and ALT = 0. Results for

686simultaneous inclusion of compatible pairs and altruistic donors

687are not presented as they are very similar to the inclusion of

688compatible pairs only. As expected, we can observe that longer

689TBM leads to longer total waiting times; as also expected, lower

690average dropouts are associated with lower values of total

691waiting time and TBM. Analyzing the waiting times per blood

692type, we conclude that type O patients benefit greatly from

693including compatible pairs in the pool. In general, lower TBMs

694correspond to lower waiting times. Patients with blood type O

695have longer waiting times than the others. For other types,

696waiting times are roughly equivalent. We also observe a higher

697standard deviation for COM = 0 and COM = 3.

6984.4. Remaining patients and their PRA

699In this section, we characterize the pool at the end of the

700simulation through the number of the patients that have not

Table 4 Average results for the different variants of compatible pairs (COM)

Configuration Number of crossmatches Positive crossmatches (%) Performed transplants (%)

COM TBM

0 30 305 (43.6) 22.8 (2.5) 48.8 (4.3)
1 30 1422.9 (99.6) 14.5 (1) 96.9 (1)
2 30 1267.2 (87.7) 14.7 (1.1) 93.5 (1.5)
3 30 455.2 (45.8) 19.7 (2) 59.7 (4.1)
0 90 304.1 (44.5) 23.3 (2.7) 47.5 (4.3)
1 90 1383.6 (96) 14.8 (1.1) 93.3 (1.5)
2 90 1227.3 (84) 15.2 (1.2) 90.4 (1.8)
3 90 408.1 (42.7) 21 (2.3) 55.2 (4.3)
0 180 296.5 (41.7) 23.8 (2.6) 45.3 (4.4)
1 180 1180.5 (57.3) 15.7 (1.3) 87 (2.3)
2 180 1048.1 (63) 15.9 (1.3) 84.1 (2.7)
3 180 347.9 (40.5) 22.3 (2.4) 49.3 (4.3)

Standard deviations are presented in parenthesis.

Table 5 Average results considering different possibilities for the inclusion of altruistic donors (ALT)

Configuration Number of crossmatches Positive crossmatches (%) Performed transplants (%)

ALT TBM

0 30 305 (43.6) 22.8 (2.5) 48.8 (4.3)
2 30 319.2 (43.7) 22.7 (2.5) 53.5 (4.2)
3 30 329.3 (43.4) 22.6 (2.4) 55.5 (4.3)
0 90 304.1 (44.5) 23.3 (2.7) 47.5 (4.3)
2 90 318.9 (43.3) 23 (2.6) 52.8 (4.4)
3 90 332 (43.8) 23.1 (2.6) 54.7 (4.4)
0 180 296.5 (41.7) 23.8 (2.6) 45.3 (4.4)
2 180 314.2 (41.4) 23.5 (2.6) 50.8 (4.4)
3 180 321.6 (39.4) 23.5 (2.5) 52.4 (4.3)

Standard deviations are presented in parenthesis.
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701 been matched and their associated PRA. Table 8 shows the

702 average size of the final pool in the last column, and its

703 percentage of low-, medium-, and high-PRA patients.

704 For COM = 0 and COM = 3, PRA in the final pool does

705 not seem to depend on TBM and does not change much with

706 respect to the initial population; for those configurations, the

707 average number of patients in the final pool increases with

708 TBM.

709 For COM=1 and COM=2, the percentage of patients with

710 high PRA level in the final pool tends to be higher than the

711 corresponding percentage in the initial populations that follow

712 the estimated values presented in Table 2. That percentage

713tends to decrease for larger TBM (notice, however, that for

714low values of TBM the size of the final pool is very small).

7154.5. Comparison to the complete information model

716In this section, we evaluate how many transplants would be

717achieved in the previous instances with the complete infor-

718mation model. This exercise, although theoretical, provides an

719upper bound to the results reported before.

720The IP model used is the one presented in Section 3.6 with

721an additional index associated to time. The model is aware not

722only of the arrival and departure times of each element in the

Table 6 Average results for the inclusion of both compatible pairs and altruistic donors

Configuration Number of crossmatches Positive crossmatches (%) Performed transplants (%)

COM ALT TBM

0 0 30 305 (43.6) 22.8 (2.5) 48.8 (4.3)
1 2 30 1450.9 (100.6) 14.4 (1) 96.9 (1)
2 2 30 1285.9 (87.6) 14.6 (1.1) 93.8 (1.5)
3 2 30 468.3 (46.1) 19.6 (2) 63.7 (4.4)
1 3 30 1481.4 (100.3) 14.3 (1) 96.8 (1)
2 3 30 1308.4 (87.1) 14.6 (1) 94.1 (1.4)
3 3 30 475.7 (45.1) 19.6 (2) 65.4 (4.3)
0 0 90 304.1 (44.5) 23.3 (2.7) 47.5 (4.3)
1 2 90 1408.7 (94.5) 14.7 (1) 93.4 (1.4)
2 2 90 1245.8 (84.1) 15.2 (1.2) 91.2 (1.8)
3 2 90 423.5 (42) 20.8 (2.3) 60.2 (4.5)
1 3 90 1442.7 (93.4) 14.7 (1) 93.4 (1.4)
2 3 90 1272.4 (84.1) 15.1 (1.1) 91.3 (1.8)
3 3 90 431.7 (42.8) 20.9 (2.3) 61.5 (4.4)
0 0 180 296.5 (41.7) 23.8 (2.6) 45.3 (4.4)
1 2 180 1190.6 (54.5) 15.7 (1.3) 87.8 (2.1)
2 2 180 1064.4 (61.4) 15.9 (1.3) 86 (2.5)
3 2 180 365.5 (39.6) 22.1 (2.4) 54.6 (4.4)
1 3 180 1198.1 (52.2) 15.7 (1.2) 88.1 (2)
2 3 180 1083.5 (61.2) 15.9 (1.3) 86.5 (2.3)
3 3 180 372.3 (38.8) 22.2 (2.4) 55.9 (4.4)

Standard deviations are presented in parenthesis.

Table 7 Average waiting time and dropouts for different configurations

Configuration Average waiting time (months) Number of dropouts

COM TBM Type O Type A Type B Type AB Overall

0 30 12.4 (13) 4.5 (6.9) 4 (6.5) 3.1 (5.6) 7 (10.1) 21.9 (3.2)
1 30 1.1 (1.6) 1.4 (1.8) 1.2 (1.7) 1.5 (2.1) 1.2 (1.7) 3.6 (1.9)
2 30 2 (3.8) 2.2 (3.8) 1.7 (3.3) 2.1 (3.7) 2 (3.7) 5.5 (2.2)
3 30 10.4 (11.1) 3.9 (6.2) 3.5 (5.9) 2.8 (4.9) 6.6 (9.2) 18.6 (3.2)
0 90 12.3 (12) 6.4 ( 7.3) 5.5 (6.6) 5.3 (6.2) 8.2 (9.5) 23.1 (3.2)
1 90 3.2 (3.5) 3.8 (4.1) 3.3 (3.6) 4.2 (4.7) 3.4 (3.7) 7.8 (2.7)
2 90 3.9 (4.7) 4.4 (5.1) 3.7 (4.4) 4.7 (5.4) 4 (4.8) 9.2 (2.8)
3 90 11.6 (11.4) 5.8 (6.7) 5 (6.2) 5.1 (5.9) 8 (9.3) 20.9 (3.3)
0 180 14.5 (12.6) 9.2 (8.7) 8.1 (7.9) 8.4 (8.2) 10.7 (10.4) 25.1 (3.1)
1 180 6.4 (6.3) 7.2 (7.1) 6.3 (6.1) 7.5 (7.2) 6.6 (6.5) 13 (3.1)
2 180 6.8 (6.9) 7.5 (7.4) 6.6 (6.6) 8.1 (7.9) 7 (7) 14 (3.2)
3 180 14.3 (12.4) 8.8 (8.4) 7.7 (7.6) 8.1 (8.1) 10.6 (10.4) 24.1 (3.2)

Standard deviations are presented in parenthesis.
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723 pool, but also of the arcs that will eventually fail. The result is

724 optimal, though unlikely to be reachable, for the maximum

725 cycle/chain size considered.

726 Results for a pool of incompatible pairs only, for different

727 configurations of CYC and TBM, are shown in Table 9:

728 Average number of transplants obtained with the simulation

729 model and with the complete information model, and

730 percentage of transplants lost in the simulation model

731 relatively to complete information are reported. As before,

732 more transplants are obtained when considering larger cycles

733 sizes and shorter time between matches. Larger cycle sizes

734 allow more matching options, and smaller times between

735 matches allows better recovery from positive crossmatch tests.

736 Interestingly, in some cases there are more transplants in the

737 simulation model with cycle size 3 than in the complete

738 information model with cycle size 2.

739 5. Conclusions

740 In this work, we present a simulation–optimization approach

741 for kidney exchange programs (KEPs). The proposed tool

742 gives policy makers the possibility to assess a KEPs’

743performance and study its dynamics under different configu-

744rations. Performance, in this context, concerns the overall

745number of transplants that can be made, rather than compu-

746tational time. KEP dynamics can be described through the

747arrival and departure of new patient–donors pairs into a pool.

748Departure may be due to having been successfully matched or

749to dropping out.

750Patient–donor generation and matching rules can be easily

751adapted in order to provide an accurate decision support tool

752which allows key performance indicators to be studied under

753different settings. Concerning patient–donor arrival, currently

754supported possibilities include considering incompatible pairs,

755patients with multiple incompatible donors, compatible pairs,

756and altruistic donors. These possibilities have been analyzed

757and compared under realistic scenarios. Two types of cross-

758match tests are implemented: a virtual test, before matching,

759and a post-matching test simulating the last-minute compat-

760ibility confirmation.

761For determining matchings, the simulator invokes an

762optimization subroutine that, given the characteristics of the

763compatibility graph as input, returns an optimal assignment.

764The optimization code can be tuned to reflect different

765objectives and policies.

Table 8 Percentage of patients in each PRA level (low, medium, and high) and average number of pairs in the pool at the end of the
simulation

Configuration Patients in PRA level (%) Number of pairs

COM TBM Low Medium High

0 30 75.9 (3.6) 15.5 (3) 8.6 (2.4) 154.9 (15.1)
1 30 37.9 (16.9) 18.9 (13.3) 43.2 (17) 9.5 (3.1)
2 30 44.3 (12.4) 22.3 (9.9) 33.4 (11.4) 19.6 (4.7)
3 30 74.1 (4.4) 16.1 (3.5) 9.8 (2.9) 121.8 (14.8)
0 90 76.2 (3.5) 15.5 (3) 8.4 (2.3) 158.6 (15.4)
1 90 48.9 (12.2) 24.3 (10.1) 26.8 (10.5) 20.1 (4.6)
2 90 50.8 (9.6) 24.1 (8.2) 25 (8.4) 29.2 (5.8)
3 90 75.4 (3.9) 15.7 (3.2) 8.9 (2.6) 135.6 (15.3)
0 180 76.4 (3.4) 15.6 (3) 7.9 (2.2) 165.5 (15.8)
1 180 55.4 (8.2) 25.6 (7.1) 19.1 (6.5) 39.5 (7.3)
2 180 57 (7.5) 24.4 (6.3) 18.6 (5.9) 48 (8.9)
3 180 76 (3.6) 15.8 (3.1) 8.2 (2.3) 153.2 (15.8)

Standard deviations are presented in parenthesis.

Table 9 Comparison of simulation results with full information model for the different time and cycle combinations

Configuration Simulation model Complete information Gap (%)

TBM CYC

30 2 126.8 (14.2) 140.6 (16) 9.7 (3.2)
30 3 147.5 (15.9) 168.3 (16.4) 12.4 (3.3)
90 2 124.1 (14.2) 139.2 (15.9) 10.7 (3.4)
90 3 143.8 (15.6) 166.7 (16.4) 13.8 (3.7)
180 2 120.4 (14) 137.5 (15.8) 12.3 (3.6)
180 3 136.9 (15.6) 164.9 (16.3) 17 (4.3)
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766 Our tool can be used to test KEP policies for different

767 regional and national settings. We have collected real data in

768 order to calibrate our model and refined it through a parameter

769 estimator. This allowed us to provide an analysis using very

770 realistic instances. Our results include the solution of a

771 complete information model, making use of knowledge of

772 future events. The main conclusion is that policies should

773 encourage compatible pairs to enter the KEP pool, as this leads

774 to remarkable improvements on the number of transplants.

775 Furthermore, policies should consider the impact that different

776 times between matches have on the KEP performance.

777 We expect that our work provides a baseline for KEP

778 analysis with simulation–optimization. A challenge for future

779 research in this field concerns adapting the tool so that it can

780 simultaneously model multiple national exchange programs

781 and evaluate their integration in an international matching

782 pool.
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