Automatic Generation of Chord Progressions
with an Artificial Immune System

Marfa Navarro', Marcelo Caetano?, Gilberto Bernardes?,
Leandro Nunes de Castro®, and Juan Manuel Corchado®

! Department of Computer Science - University of Salamanca Plaza de la Merced
s/n, 37008, Salamanca, Spain
maria90Q@usal.es; corchado@usal.es
2 INESC TEC - Rua Doutor Roberto Frias 378, 4200-465 Porto, Portugal
mcaetano@inesctec.pt; gba@inesctec.pt
3 Natural Computing Laboratory, Graduate Program in Computing and Electrical
Engineering, Mackenzie Presbyterian University, Sao Paulo, SP, Brazil
Inunes@mackenzie.br

Abstract. Chord progressions are widely used in music. The automatic
generation of chord progressions can be challenging because it depends
on many factors, such as the musical context, personal preference, and
aesthetic choices. In this work, we propose a penalty function that en-
codes musical rules to automatically generate chord progressions. Then
we use an artificial immune system (AIS) to minimize the penalty func-
tion when proposing candidates for the next chord in a sequence. The
AIS is capable of finding multiple optima in parallel, resulting in several
different chords as appropriate candidates. We performed a listening test
to evaluate the chords subjectively and validate the penalty function. We
found that chords with a low penalty value were considered better can-
didates than chords with higher penalty values.

Key words: Artificial Immune Systems, Chord Progressions, Harmony,
Consonance.

1 Introduction

Harmony plays a central role in Western tonal music. Simply put, harmony
refers to the simultaneity of pitch (i.e., chords) and their progressions, known
as chord progressions. Chord construction and chord progression are governed
by implicit and explicit principles which are central in the study of harmony.
Schénberg [1], Lerdahl [2], Riemann [3], and Schenker [4], among many others,
have discussed these principles extensively and proposed rules to create optimal
chord progressions according to the principles considered.

In music composition, creating chord progressions commonly requires knowl-
edge usually acquired after years of music training. Not surprisingly, chord pro-
gressions have been a central topic in algorithmic composition given the challeng-
ing aspect of encoding the principles to generate a desired result. There have been
several proposals to automatically generate chord progressions following differ-
ent paradigms [5], including grammars, learning, biological principles, and rules



(a priori knowledge). CHORAL 6] is a system that harmonizes chorales in the
style of Johann Sebastian Bach. The system is based on grammars and contains
about 350 rules representing musical knowledge from multiple viewpoints of the
chorale, such as the chord skeleton, the melodic lines of the individual parts,
and Schenkerian voice leading. Steedman [7] presents a small number of rules
to generate chord sequences using generative grammars. Eigenfeldt [8] proposes
the generation of harmonic progressions by learning using case-based analysis of
an existing material and employing a variable-order Markov model. Moroni [9]
has developed a system called Vox Populi, based on evolutionary computation
techniques for interactive algorithmic composition. In Vox Populi, a population
of chords evolves through the application of a genetic algorithm to maximize
a fitness criterion based on musically relevant factors. Anders [10] developed
a computational model that creates chord progression following the rules that
Schonberg proposed in his harmony treatise [1]. Paiement [11] adopts a prob-
abilistic approach to model chord progressions. Fukumoto [12] generates chord
progressions suited for user’s feeling by using genetic algorithms.

In this work, we describe a method to automatically generate chord progres-
sions with an artificial immune system (AIS). We propose a penalty function
that encodes rules about chord construction as vertical constraints and chord
progression as horizontal constraints. Then we use an AIS to find chords that
minimize the penalty function and propose the next chord in a sequence as
a minimum-penalty chord given the sequence as input. The AIS used is opt-
aiNet [13], an algorithm inspired by the immune network theory for function
optimization. Opt-ailNet is capable of finding multiple optima in parallel upon
convergence, resulting in several chords as candidates for the next in the se-
quence. Thus we performed a listening test to evaluate the candidate chords and
validate the penalty function.

In the next section, we describe how the penalty function encodes the rules
we use to automatically generate chord progressions as vertical and horizontal
constraints. Section 4 explains how to encode the chords and the constraints,
followed by how to find minima of the penalty function with the AIS. The last
section shows some results of the system, a discussion about evaluation of these
new chords, chord progressions obtained and future work proposed.

0H o o © O
)’ A [@ ] ~F ]
Y 4 O O h=d ]
| Fan} (@) ~7 1
AN3"4 P= [® ] b= 1
DAR== o ©
C D E F G A B C D E F G A B
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 1. Encoding diatonic scales. The figure shows the musical notation for the
notes with letter names and the corresponding codification in the algorithm
below each note. The C major scale is highlighted in the image.



2 Representing Individual Chords and Progressions

The aim of this work is to generate chord progressions as sequences of three-note

chords. Each chord X is represented as a vector with three integers X = [% ],

where [z1, 22, 23] define each note in the chord. Fig. 1 shows the two octaves of
the diatonic (C major) scale used to construct the chords, where each note is

encoded as an integer. For example, C major gives X = [iﬂ Notice that the

system can easily work with any other major or minor scale by simply adapting
the representation. A sequence of chords is thus represented as [X1, Xs, ..., X,],
where the subscript is the position in the sequence and n is the current position.

3 Evaluating Chord Progressions with a Penalty Function

The aim of the penalty function P is to automatically evaluate a chord X,, given
a sequence of p previous chords [X,_1, Xn—2,..., Xp_p]. For p = 2, the penalty
function becomes P (X,,/X,_1,X,_2), interpreted as penalty of chord X,, fol-
lowing [X,,—1, X;,—2]. The penalty function P (X,,/X,,—1, X;,—2) shown in Eq. (1)
encodes rules about chord construction as vertical constraints V (X,,) and chord
progression as horizontal constraints H (X,,/X,—1, Xpn—2). In turn, V (X,,) and
H (X, /Xn-1,Xn—2) penalize chords by adding a different penalty value depend-
ing on the rules encoded. The final value of P (X, /X;—1,X,—2) is the sum of
all penalties and thus represents how appropriate chord X,, is as a candidate
to follow [X,—1, X,—2]. As such, the aim is to find chords that minimize the
penalty function. Next we explain the vertical and horizontal constraints and
how to assign penalties to chords using V (X,,) and H (X,,/X,,—1, Xn—2).

P(X0/Xn 1, Xn 2) =V (X)) + H (Xn/Xn_1,Xn_2) (1)

3.1 Vertical Constraints

The vertical constraints V (X,,) are related to chord construction, so they are
only applied to notes that belong to the candidate chord X,,. The aim of the
vertical constraints is to minimize both chord dissonance and balance the dis-
tance between the notes in the chord. The measure of consonance is based on the
Pythagorean theory [14], which orders complementary intervals as listed below.

. Unison and octave

. Perfect fourth and perfect fifth

. Major third and minor sixth

. Minor third and major sixth

. Minor second and major seventh

. Augmented fourth and diminished fifth

S Ul W N

The vertical constraints are the following

— V1: Maximize chord consonance
— V2: Favor triad chords to reinforce progression consonance



Table 1. Table showing dissonances between nl and n2

d(zy — ;) 1123|415 6 |7[8]9]10]11/12
Interval m2|M2m3|M3|P4|dimb5|P5|m6{M6|m7|M7|P&

1696|514 7 |3|8|5|7]|15]2
Pyth Ratio —|=|=|2|=| = |2]|2]|2|=|=|2
yhagorean Rato el 815123 5 |25 (32|38 |1
kd(z1, ;)] 240( 72 (30|20 (12| 35 | 6 |40|15|28|120| 2

3.2 Enconding the Vertical Constraints in V (X,,)

V (X,,) encodes the vertical constraints as shown in Eq. (2). This function con-
sists of two parts, Vi (X,,) encodes rule V1 and V2 (X,,) encodes rule V2.

Vv (Xn) =W (Xn) + Ve (Xn) (2)

V1 (X,,) measures the level of consonance of each chord as

N
Vi(X)=1In [Z k[d(zy, xi)]] (3)

where N is the number of notes in the present chord (in this case N = 3,
x, is the first note in the present chord, z; is the i*" note in the present chord,
d (z1, x;) is the distance in half-steps, and k [d (z1, ;)] is the dissonance between
x1 and x; as proposed by Euler [15] to evaluate the consonance of intervals using
Pythagorean theory. The dissonance k takes the product of the numerator and
denominator of the rates shown in Table 1.

As an example, consider the chord of C major X = [é} The intervals con-

sidered are always obtained from the fundamental to the rest of the notes. In
this case, the consonance measure is calculated as follows in Eq. (4).

Vi (X) = In(k(d(x1 — z2)) + k(d(z1 — x3))) = In(k(d(1 — 3)) + k(d(1 — 5))) =

= In(k(d(2)) + k(d(4))) = In(k(4) + k(7)) = In(20 + 6) = In(26) = 3.26

(4)

Likewise, V5 (X,,) checks if the chord is part of a triad-chord (three-note

chords) family [1]. TRIAD_SET is a set with the triad chords in major mode,
where n is the number of elements of X,, contained in TRIAD_SET.

Vy (X) =2xn(X C TRIAD_SET) (5)

For example, V5 ([é}) = 0 because C major belongs to the triad-chord.



3.3 Horizontal Constraints

The horizontal constraints are related to chord progressions, so they compare the
candidate chord X,, with previous chords [X,,—1, X, —2] taking into account func-
tional (tonal) harmony and voice leading. Following the works of Schénberg [1]
and Riemann [3], we considered the following horizontal constraints.

— H1: Reward pre-determined harmonic progression
— H2: Avoid chord repetition

— H3: Avoid constant use of superstrong progression
— H4: Minimize distance between voices

— H5: Resolve leading-note

— H6: Avoid parallel fifths and octaves

H1, H2 and H3 are related to harmonic functions or the role a chord has
within the context of a specific key. In the context of this work, we reward pre-
determined harmonic progressions based on the functional theory of Riemann [3].
Figure 2 illustrates the harmonic progressions according to Riemann’s functional
harmony. Thus the rules we adopt reward the progression Tonic-Subdominant-
Dominant-Tonic (H1) and penalize the repetition of the same chord (H2). Finally,
H3 was inspired by Schénberg’s [1] harmonic treatise.

H4, H5, and H6 are related to voice leading, namely, the horizontal progres-
sion of the individual voices. In this work, the voices are the notes in the chord.
The guiding principle aims to minimize the distance between consecutive voices
(H4). We further stress the importance of resolving the leading tone in H5 and
avoiding parallel fifths and octaves in H5. The leading-note creates a temporary
instability that requires melodic resolution to a stable tone [16]. For example, in
C major, the seventh scale degree (B) has a strong melodic tendency towards
the first degree (C) [17]. We chose to additionally penalize parallel fifths and
octaves because, according to traditional Western musical practice, they result
in weak relative motion between chords.

o Tonic ~ e Dominant ~
( Stability )‘/\4 Tension )
“~_Degrees: | - III:_ﬂ//‘/ \\D\gg_iees: - V:yll///

—— Subdominant
e Subdominant \

\ Departure

‘\\Qf,grfaes: Il - IY_:_}{)I,_,/

Fig. 2. Relationship between the three main harmonic functions in a tonality.
Each ellipse gives information about the name and the meaning of each func-
tion. Additionally the degrees corresponding to each function are shown. It is
noteworthy that some chords have different function depending on its previous
chord in the progression.



Table 2. Table showing the values of Hy (X,,/X,—1, Xn—2). First row reflects
the function of the previous chord, whereas first column represents the function
of the evaluating chord X,,.

Tonic Subdominant Dominant

Tonic 2 0 5
Subdominant 5 2 0
Dominant 0 5 2

3.4 Encoding the Horizontal Constraints in H (X,,/ X,,—1, Xn—2)

Eq. (6) shows that H (X,,/X,—1, X,—2) encodes the horizontal constraints in six
terms, each corresponding to one horizontal constraint H.

H (Xn/Xn—la Xn—Z) = Hl (Xn/Xn—la Xn—Z) + H2 (Xn/Xn—la Xn—Z) +

Hy (X Xnt) + Ha (Xo/ Xn1) + Hs (Xn/ Xo1) + Ho (Xu/Xn1)

Notice that H; and Hs depend on both X, 1, X, _o whereas the others
depend only on X, _1. Hy (X,/X,—1,X,—2) measures how the progression is
adapted to the predefined harmonic function structure given by Tonic-Subdominant-
Dominant-Tonic. In this case, we need X,,_1 and X,,_o, the two last chords of
the sequence, given as the input. The weights proposed are shown in Table 2.

For example, consider X,,_1 = [é} (tonic) as input and X,, = {2] (subdom-
inant) proposed by the system. X,, obtains a penalty value of 0, because tonic
is followed by subdominant.

Eq. (7) shows that chord repetitions receive a penalty of 2 for each consec-
utive repetition of the chord. In particular, only the previous two chords of the
progression are considered to apply Eq. (7).

Hy(Xp/Xn-1,Xn 2)=2 #X=Y

7
Hy (X,/Xn—1,Xn—2) =0 otherwise (™)

In the previous example, the input X, 1 = {é] followed by the same chord

X, = [é} is penalized with two points.

Inspired by Schoénberg’s treatise [1], the superstrong progression occurs when
the root of the second chord is a second step up or down. This kind of progression
is not frequently used, but this does not mean the progression should be avoided.
Thus Eq. (8) penalizes the superstrong progression with 0.5, where X,, is the
present chord and X,,_; is the previous chord of the input progression.

H3 (Xp/Xp 1) =05 i X,NXp1=0

8
H;3 (X,/Xn—1) =0 otherwise ®)



S 1
For example, considering input X,,_; = [g} a superstrong cadence appears
2

if the next chord has not any common notes with it, i. e., X, = [%1 .

H, (X,,/X,,—1) is the distance between the X,, array and the previous chord
X, 1 in the progression. This is related to rule H4, and measures the “voice
leading” of the progression.

We were looking for a way to penalize larger intervals against shorter intervals
when comparing one chord option with another in the same input progression.
For this reason, we used an exponential function. In order to smooth the value
obtained, a logarithmic function was added, as we can see in Eq. (9).

Hy(Xn/Xno1) =1In (Zp: 4l(xii_”fi<a'1>)|> (9)

where i refers to the note of a given chord, j refers the element of the chord
sequence, and p is the maximum number of voices (in this particular case, p = 3).
For example, the input X,,_1 = [é} followed by X, = {2} has the following
s}
distance measure:

H4(Xn/Xn71) — ln(4\$12—111\ +4|w22—y21| + 4\132—y31\ —

10
In(41 720 4 4B~ 4 4P=6l) = In(4 + 4 4 4) = In(12) (10

Hs (X,/Xn-1) is a melody penalty that considers the parallel fifths and
octaves (rule H5). If a parallel fifth or octave appears, the sequence is given a
penalty value of 3 as shown in Eq. (11).

Hs (Xn/Xp-1) =3 if |2ij — x| + 1 =5 Alzug-1) — 2a-nG-nl+1=5
Hs (Xp/Xn-1) =3 if |z; —2_nyg-1)| +1 =8 A lzuG-1) — Ya-1)G-nl +1 =38
Hs (X,/Xn-1) =0 otherwise
(11)
There is a paralell fifth between X,,_1 = [é} and X,, = [2], because |r33 —
o2l +1=1-5|+41=44+1=5and a3 —xo1 +1=|2—-6/+1=44+1=5.
Thus X,, receives a penalty of 3.
Finally, the last element in Eq. (6), Hg (X,,/Xn—1), is a melody penalty that

takes into account the leading-tone resolution (H6). If the leading-note resolution
rule is not accomplished, the penalty is of 2.5 as shown in Eq. (12).

He (Xn/Xn—1) =25 if hf(X,)=Tonic Nxgj_1)=TANxi; #8

12
He (Xn/Xn—1) =0 otherwise (12)

where x;; represents the i note of the j'* chord in the sequence. The term
hf (X,) calculates the harmonic function that the chord X,, represents in the
moment j. hf (X) can take three values: Tonic, Subdominant and Dominant.

Note that the penalty values proposed in functions Hs and Hg have been
obtained empirically.



4 Chord Progressions as Minima of the Penalty Function

Given a sequence of two previous chords as reference, it is possible to associate a
penalty value to any three-note chord representable by a vector of three integers

between 1 and 16. For instance, the chord X,, = [é} preceded by X, 2 1 [% é}

has a penalty of 12.79. Thus P (X,,/X,,—1) can be used to propose the next chord
in a sequence using the penalty value as measure. According to the vertical and
horizontal constraints encoded in the penalty function, chords with low penalty
values should be better candidates to follow a given sequence of two chords than
chords with higher penalty values. Thus the problem of automatically propos-
ing the next chord in a given chord sequence [X1, Xs,..., X,]| becomes simply
finding the chords that correspond to the minima of the penalty function with
[X1, Xa,...,X,] as input. The method can be iteratively applied to add a new
chord to the sequence at each iteration, such that the automatic generation of
chord progressions becomes the search for the minima of the penalty function.

Finding chords with low penalty values can be a difficult problem. An ex-
haustive (or brute-force) search would require testing every possible three-note
chord representable to determine which has the lowest penalty value. Thus we
use an optimization method to search for a minimum of the penalty function at
each iteration. Similarly to the approach adopted in Vox Populi [9], the gener-
ation of chord progressions can be considered as a search problem in which the
constraints must be followed so as to explore the conceptual space of possible
solutions. However, the penalty function can potentially have several minima,
each corresponding to a different chord. These minima will have different penalty
values associated, such that the global minimum of the penalty function might
not be the best candidate in a particular musical context. Therefore, we use
opt-aiNet [18] to minimize the penalty function due to its ability to find several
minima in parallel.

This algorithm, inspired in natural immune systems [19], assumes a randomly
initialized set of immune cells or antibodies (in our particular case, each anti-
body is a three-note chord) in the network. Their affinity is determined using a
distance metric, in this case, the penalty function. Some high affinity antibodies
are selected and reproduced based on their affinity: the higher the affinity, the
higher the number of clones and vice-versa. The clones generated suffer a mu-
tation inversely proportional to their affinity. Those antibodies whose affinity is
less than a given threshold are eliminated from the network. Finally, a number
of newly generated antibodies are incorporated into the network.

As an example, we created a short sequence of two chords in C major as
input, and we had the AIS generate multiple options for the third chord in the
sequence. The input chords sequence is [1 3 5]([60 64 67] in MIDI mode). After
convergence, 42 chords were presented as candidates to follow the input sequence.
Each of these chords corresponds to a minimum of the penalty function, but they
all have different penalty values associated. In our implementation, we have
observed that the AIS typically results in over 30 chords with penalty values
ranging from 8 to 22. It is impractical to listen to so many chords every time we



want to add a new chord to a given sequence. Thus we decided to investigate
if the penalty values can be used to further inform us about the quality of the
chords to follow the sequence.

5 Evaluation

We conducted a preliminary study into the relationship between the penalty
function and the subjective evaluation of chords in a sequence. The evaluation
aims to investigate if chords with low penalty values are judged more appropriate
to follow a given chord sequence than chords with higher penalty values.

We created a short sequence of two chords in C major as input, and we
had the AIS to generate multiple options for the third chord in the sequence.
The input chords sequence is [60 64 67, 62 67 71] After convergence, 35 chords
were presented as candidates to follow the input sequence, with penalty values
ranging from 8.32 to 22.26. We ranked the chords by penalty values and selected
17 chords to represent the whole range of values between the minimum and
the maximum. We asked participants to listen to the three-chord progressions
and evaluate how well the third chord follows the first and second using the
following scale: very good (1 point), good (0.75 points), fair (0.5 points), bad
(0.25 points), or very bad (0 points). The listening test can be found here:
http://goo.gl/forms/f1Tb4PbZY6.

We expected chords with low penalty values to be considered better candi-
dates to follow the input sequence than chords with higher penalty values. In
total, 24 people took the test, among which 8 declared no musical training, 7
considered themselves amateurs, and 9 professional musicians. In figure 3 we see
the subjective evaluation as a function of the penalty value for each third chord
that they heard.

The aim of the evaluation is twofold, we would like to validate the penalty
function and investigate if there is a threshold value that can be used as decision
boundary for chord quality. The validation of the penalty function involves in-
vestigating whether chords with low penalty are considered better candidates to
follow a given sequence than chords with higher penalty values. We also want to
automatically determine the quality of a chord as candidate to follow a sequence.
Ideally, we want to be able to use the penalty value as decision boundary. Thus
chords with penalty value lower than a certain threshold would correspond to
good candidates.

Figure 3 shows the result of the listening test as the subjective evaluation
of the penalty function. In figure 3, we see the mean and standard deviation of
the subjective rating for each candidate chord plotted against the corresponding
penalty value. The horizontal lines labeled very bad, bad, fair, good and very good
can be used as reference to interpret the figure. The chords with lower penalty
value were indeed rated better chords than those with lower penalty values.
Using the line labeled fair as decision boundary, we can associate penalty values
lower than 0.5 with chords that were rated positively.



Subjective Rating vs Penalty Values for the Third Chord in an Input Progression

1 Very Good

08 | L T | Good

T T  Tair T -

Subjective Ratings
o o o
> n

b

—
|—QA—4V
—_——

)
w
H———
——
—0
——
——

Bad

o o .
[N}

Very Bad

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Penalty Values

o
o

Fig. 3. Plot of the subjective evaluation as a function of the penalty value.
FEach point represents the evaluation of the third chord created by the system,
considering the chord progression given as the input. The horizontal axis is the
normalized penalty value and the vertical axis is the mean of the scores the
listeners gave. The standard deviation is shown for each point by using vertical
bars. The lines show the values corresponding to the semantic labels.

6 Discussion

The main goal of the evaluation is to validate the penalty function proposed to
to create a compositional aid application. The penalties associated with vertical
and horizontal constraints are selected empirically, testing the system to balance
all the rules. The penalty values seem to be inversely proportional to how well
people judged the chords proposed by the AIS following a given sequence. This
indicates that we might be able to determine suitable chords using the penalty
function. However, the threshold depends on the penalties associated with the
constraints and changing these would probably change the threshold values.

More importantly, the listening test asked participants to evaluate how well a
given chord proposed by the AIS follows two others in a sequence. This question
does not specify whether to consider vertical or horizontal aspects. In other
words, a chord proposed by the system might be rated wvery good because it is
very pleasant independently of the two previous chords heard. Some participants
reported using different criteria to rate how well the chords follow the sequence.
This question seems important to pursue in future work.

7 Conclusions

In this work, we proposed a penalty function using rules about chord construc-
tion and chord progression. These constraints apply rules from tonal Western
music and functional harmony as vertical and horizontal constraints. Then we
apply an artificial immune system (AIS) to automatically generate the next



chord in a sequence taking two previous chords as input. The AIS is capable of
finding multiple optima in parallel, resulting in different chords as appropriate
candidates.

We performed a listening test to evaluate the chords subjectively and vali-
date the penalty function. We found that chords with a low penalty value were
considered better candidates than chords with higher penalty values. We deter-
mined that there is threshold value in the penalty function associated with the
subjective evaluation. Chords with associated penalty value above this thresh-
old value were considered as good chords to follow a given chord progression,
whereas chords below this value were rated negatively

Future work can integrate the system into an application to assist users in
composing chord progressions. In addition, we can develop a Markov Model to
decide the harmonic function of the chord that we can propose, so that the system
will be capable of automatically composing a chord progression given only one
initial chord. The chords can be encoded using MIDI notation to enable the
integration of several musical systems without the need to rewrite the code.

Acknowledgements

This work has been partially supported by the Spanish Government through
the project iHAS (grant TIN2012-36586-C01/C02/C03), the Media Arts and
Technologies project (MAT), NORTE-07-0124-FEDER-000061, financed by the
North Portugal Regional Operational Programme (ON.2 - O Novo Norte), un-
der the National Strategic Reference Framework (NSRF), through the European
Regional Development Fund (ERDF), and by national funds, through the Por-
tuguese funding agency, Fundagéo para a Ciéncia e a Tecnologia (FCT), and the
Mackenzie University, Mackpesquisa, CNPq, Capes (Proc. n. 9315/13-6) and
FAPESP.

References

1. Schoenberg, A.: The Musical Idea and the Logic, Technique and Art of its Presen-
tation. Indiana University Press (2006)

2. Lerdahl, F.: Tonal pitch space. Music Perception (1988) 315-349

3. Agmon, E.: Functional harmony revisited: A prototype-theoretic approach. Music
Theory Spectrum 17 (1995) 196-214

4. Stock, J.: The application of schenkerian analysis to ethnomusicology: Problems
and possibilities. Music Analysis (1993) 215-240

5. Papadopoulos, G., Wiggins, G.: Al methods for algorithmic composition: A survey,
a critical view and future prospects. In: AISB Symposium on Musical Creativity,
Edinburgh, UK (1999) 110-117

6. Ebciouglu, K.: An expert system for harmonizing chorales in the style of js bach.
The Journal of Logic Programming 8 (1990) 145-185

7. Steedman, M.J.: A generative grammar for jazz chord sequences. Music Perception
2 (1984) 52-77



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Eigenfeldt, A., Pasquier, P.: Realtime generation of harmonic orogressions using
controlled markov selection. In: Proc. of 1st Int. Conf. on Computational Creativ-
ity. (2010) 16-25

Moroni, A., Manzolli, J., Von Zuben, F., Gudwin, R.: Vox populi: An interactive
evolutionary system for algorithmic music composition. Leonardo Music Journal
10 (2000) 49-54

Anders, T., Miranda, E.R.: A computational model that generalises schoenberg’s
guidelines for favourable chord progressions. In: 6th Sound and Music Computing
Conference, Porto, Portugal (2009)

Paiement, J.F., Eck, D., Bengio, S.: A probabilistic model for chord progressions.
In: Proceedings of International Conference on Music Information Retrieval. (2005)
312-319

Fukumoto, M.: Creation of music chord progression suited for user’s feelings based
on interactive genetic algorithm. In: Advanced Applied Informatics (IIATAAI),
2014 IIAT 3rd International Conference on, IEEE (2014) 757762

De Castro, L.N., Timmis, J.: Artificial Immune Systems: A new Computational
Intelligence Approach. Springer (2002)

Crocker, R.L.: Pythagorean mathematics and music. Journal of Aesthetics and
Art Criticism (1964) 325-335

Knobloch, E.: Euler transgressing limits: the infinite and music theory. Quaderns
d’historia de enginyeria 9 (2008)

Babbitt, M.: The structure and function of musical theory: I. In: College Music
Symposium, JSTOR (1965) 49-60

Benward, B., Saker, M.: Music in Theory and Practice. London, England: McGraw-
Hill (2003)

de Castro, L.N., Timmis, J.: An artificial immune network for multimodal function
optimization. In: Evolutionary Computation, 2002. CEC’02. Proceedings of the
2002 Congress on. Volume 1., IEEE (2002) 699-704

Murphy, K.: Janeway’s Immunobiology. Garland Science (2011)



