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Abstract—Quality control inspection systems are crucial and
a key factor in maintaining and ensuring the integrity of any
product. The quality inspection task is a repetitive task, when
performed by operators only, it can be slow and susceptible to
failures due to the lack of attention and fatigue. This work
focuses on the inspection of parts made of high-pressure die-
cast aluminum for components of the automotive industry. In
the present case study, last year, 18240 parts needed to be
reinspected, requiring approximately 96 hours, a time that could
be spent on other tasks. This article performs a comparison of
four deep learning models: Faster R-CNN, RetinaNet, YOLOv7,
and YOLOv7-tiny, to find out which one is more suited to perform
the quality inspection task of detecting metal filings on casting
aluminum parts. As for this use-case the prototype must be highly
intolerant to False Negatives, that is, the part being defective
and passing undetected, Faster R-CNN was considered the best-
performing model based on a Recall value of 96.00%.

Index Terms—Quality control, Convolutional Neural Networks,
Filings detection, Casting aluminum, Automotive industry

I. INTRODUCTION

The automotive industry is inserted in an increasingly de-
manding and competitive market. For that reason, they seek to
integrate new techniques into their production lines that allow
them to differentiate themselves from their competitors. These
techniques allow an increase in the productivity and quality of
their products, which contributes to the reduction in customer
complaints. Product quality is a very important factor, and
more and more consumers are taking this factor into account,
which is why it is important that existing inspection methods
in production lines are able to respond to the demand imposed
by consumers [1]–[3]. Quality control is a repetitive process
typically carried out by operators that makes the process
slow and susceptible to failures due to the lack of attention
and fatigue, which end up influencing the entire process and

causing the advance of non-conforming parts in the company’s
production process. Machine vision is one of the techniques
that can be used for quality inspection, allowing a quick
inspection of parts and the detection of defects. The machine
vision inspection can be faster and provide supplementary
assistance to the factory floor operator, improving speed and
decreasing failures.

In the present case, the high-pressure die-cast aluminum
parts are manufactured by an injection molding process fol-
lowed by a machining phase to ensure accurate dimensioning.
Currently, after the machining process, the part is subjected
to a tightness control operation. As soon as this operation is
finished, the operator takes the part and, manually, checks and
removes, with the help of a tool, any detachable particle from
inside the entire slot, as shown in Fig. 1a. In the proposed case
study, machine vision is used to inspect the quality of cast
aluminum automotive parts, detecting existing filings in the
tear area, highlighted in red in Fig. 1b. As this is a structural
area where another part will later be fitted, it is very important
that the slot is completely unobstructed to ensure the correct
fitting of the parts.

In order to avoid delivery of non-conforming parts to the
customer, each time a non-conforming part is detected on
the production line, the entire batch is suspended, forcing a
re-inspection of the same. Regarding the model of the part
used in the case study, 24 non-compliant parts were detected
last year. Each of the non-conforming parts detected leads to
the suspension of approximately 760 parts and all of them
are re-inspected. On average, the operator spends 4 hours re-
inspecting the 760 parts; therefore, in total, last year, 18240
parts were reinspected, and approximately 96 hours were spent
re-inspecting parts, that could be used by the operator to
perform other tasks.

The work presented in this paper focuses on the devel-
opment of an automatic quality inspection system for the979-8-3503-0121-2/23/$31.00 ©2023 IEEE
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(a) (b)

Fig. 1: Cast aluminum automotive part: (a) quality inspection
process manually performed by an operator, and (b) 3D model
with a tear zone highlighted in red.

detection of filings in the tear zone based on object detection,
in order to eliminate non-conforming parts sent to the customer
and the number of hours spent on re-inspecting them. A
performance comparison was made between four different
models, Faster R-CNN [4], RetinaNet [5], YOLOv7, and
YOLOv7-tiny [6] for detecting filings in casting aluminum
parts.

Section II presents the state of the art regarding inspection
systems using Convolutional Neural Networks (CNN) for
the automotive industry and metal parts, while section III
describes the hardware and the deep learning models used in
the inspection system. Section IV provides an analysis of a set
of experimental results and Section V summarizes the main
conclusions and future work.

II. STATE OF THE ART

The detection and classification of surface defects differ
from case to case, usually requiring custom-made solutions to
ensure that the algorithms used learn the visual discriminative
features representing the data. In recent years, there has been
a lot of progress in CNN-based approaches, which has led to
the proposal of various target-detection algorithms. These can
be classified into single-stage detection algorithms, such as the
You Only Look Once (YOLO) series and single-shot multibox
detector (SSD), or two-stage detection algorithms, includ-
ing Region-CNN(R-CNN), Fast Region-based CNN (Fast R-
CNN), Faster Region-based CNN (Faster R-CNN), among
others. The use of CNN for quality inspection in automotive
industries and in metal parts is an active field of research with
many different approaches.

Wang et al. [7] proposed an 11-layer CNN for defect detec-
tion that can automatically extract powerful features with less
prior knowledge about the images, and is robust to noise. The
model is trained and validated using the DAGM dataset, which
contains image samples from six classes that differ in terms
of background texture, achieving an overall detection accuracy
of 99.8%. Fu et al. [8] proposed a method that uses the pre-
trained SqueezeNet as a backbone for steel surface defect
recognition, requiring only a small amount of defect-specific

training samples to achieve accurate defect recognition. The
training and validation of the proposed model are done using
the NEU steel surface benchmark dataset, and the results show
significantly higher recognition accuracy compared with the
state-of-the-art steel surface defect classifiers. Xu et al. [9]
proposed an intelligent recognition model for surface defects
in a copper strip. The dataset used in their work contains
2400 images of surface defects, each defect is classified as a
single or line mark, black spot, concave-convex pit, edge crack,
hole, insect spot, peeling, or smudge. Four CNN models were
adopted, with EfficientNet having the best overall performance
with a recognition accuracy rate of 93.05%.

In the inspection of metal parts, Block et al. [10] proposed
a framework based on RetinaNet. A custom dataset containing
31 videos and 31504 images, with defects classified as mild
or severe, was used in the training and validation, achieving
a mean Average Precision (mAP) of 76.21% to detect and
classify mild and severe defects. Sun et al. [11] proposed a
model based on adaptive multiscale image collection (AMI(c),
using VGG-16 for the inspection. The custom dataset used in
training and validation has a total of 1274 images divided into
4 classes: normal, indentation, scratch, and pitted surface. The
average inspection precision of the proposed algorithm was
98.97%.

For the inspection of aluminum parts, Wei et al. [12]
proposed a multiscale defect-detection network based on the
Faster R-CNN. A custom dataset with a total of 3005 images
was used to train and validate the model. It contained ten types
of defects: non-conducting, scratch, corner leak, orange peel,
leakage, jet, paint bubble, crater, parti-color, and dirty point.
The results show an mAP of 75.8%. Du et al. [13] proposed
a defect detection system based on Faster R-CNN. For the
model training and validation, 2236 X-ray images of defective
automobile parts were collected. The results show a 40.9%
improvement in the mAP. Mery [14]evaluated eight state-of-
the-art deep object detection models, based on YOLO, Reti-
naNet, and EfficientDet, proposing a training strategy that used
a low number of defect-free X-ray images. For the experiments
on the GDXray dataset, series C0001, and YOLOv5-methods
were used. YOLOv5s was the model which obtained the best
results, with an average precision of 90% and an F1 factor of
91%. Wang et al. [15] proposed a model based on YOLOv5.
The Ali Tianchi dataset was used, containing 3098 images of
seven types of defects (concavity, dirty spot, orange peel, non-
conducting, scrape, under-screen, and embossing) for training
and testing, achieving 87.4% detection.

To the best of the author’s knowledge, there are still no
solutions for quality inspection in casting aluminum parts, in
particular, the detection of filings. So, it is not possible to
compare different types of CNN to verify which one is the
most suitable for the detection of filings.

III. METHODOLOGY

In this paper, four deep learning models were used to
detect the presence of filings in casting aluminum parts. Its
performances were then compared to find out which one is
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(a) (b)

Fig. 2: Laboratorial prototype setup for image acquisition with
different lightning types: (a) LED bars with adjustable angular
bars; (b) dome light.

best suited to the task. This section is organized as follows.
A description of the hardware used in this work is given in
Section III-A, and in Section III-B is described the custom
dataset. Section III-C gives a theoretical background of the
models used in this work and explains how they are evaluated.

A. Image Acquisition and Processing

For the development of this work, a computer with Ubuntu
20.04 operating system, a 12th Generation Intel Core i7 CPU
@3.5Ghz processor, an NVIDIA RTX3060 graphics card with
6GB of running memory was used, and CUDA 11.7 has
been installed to speed up the computation. A Mako G-503B,
equipped with a 12 mm focal length lens, was used to acquire
images. The laboratory setup prototype includes two types of
lightning, LED bars, and dome lightning, shown in Fig. 2a
and Fig. 2b, respectively. This was tested since the parts under
analysis are highly reflective, and proper lighting is necessary
to reduce the reflections and shadows to the minimum possible.
Among the lighting tested, dome lighting was the chosen one,
as it showed the best results.

B. Dataset

For this work, it was necessary to create a customized
dataset since there are no available datasets with filings as
defects. These filings vary in length, shape, and reflective
characteristics, as shown in Fig.3. The dataset comprises
500, images with a resolution of 2592x1944 pixels, manually
labeled, using LabelImg [17]. Fig. 4 shows some examples of
images of the dataset. Since the number of non-conforming
parts obtained was small, there was a need to simulate them,
by manually placing the filings in the tear zone.

In order to make the dataset more robust, images were also
acquired with different orientations. The dataset was split,

Fig. 3: Example of the shape and size of filings to be detected.

Fig. 4: Example of dataset images.

randomly, into three parts: training, validation, and testing,
which translates to 80%, 10%, and 10% of the dataset,
respectively.

C. Model Implementation

To detect filings on aluminum casting parts, four CNN
models were chosen based on the results presented in Sec-
tion II: three one-stage object detectors, RetinaNet, YOLOv7,
and YOLOv7-tiny, and one two-stage object detector, Faster R-
CNN. For the training of the models, the Python programming
language with the aid of the Pytorch library was used. Reti-
naNet and Faster R-CNN also resort to Detectron2 library [16].

RetinaNet [5] is a combination of networks consisting of a
backbone and two task-specific subnetworks. The architecture
of RetinaNet can be broken down into three blocks:

1) Backbone Network - responsible for computing con-
volutional feature maps over the entire image. Feature
Pyramid Network (FPN) is implemented as the backbone
network, providing a rich, multi-scale feature pyramid
by implementing a top-down approach with lateral con-
nections;

2) Sub-network for Object Classification - is a Fully Con-
volutional Network (FCN) attached to each FPN level
for object classification;

3) Sub-network for Object Regression - is attached to
each feature of the FPN in parallel to the classification
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subnetwork.
Faster R-CNN [4] is based on the R-CNN family. These

networks usually consist of four layers: the Region Proposal
Algorithm that generates the bounding boxes or locations of
possibles objects in the image, the Feature Generation Stage to
obtain features of the objects found, the Classification Layer
responsible for predicting which class the found object belongs
to, and Regression Layer that makes the coordinates of the
object bounding box more precise. Compared to the others
of the R-CNN family, this model uses another convolutional
network, Region Proposal Network (RPN), to generate the
regions proposals, causing an overall improvement in feature
representation.

YOLOv7 belongs to the YOLO family. Compared to the
other YOLO models, two major changes were made in its
architecture and at the trainable bag-of-freebies level, which
refers to improving the models accuracy without increasing the
training cost [6]. On the architecture level, YOLOv7 reformed
its architecture by integrating the Extended Efficient Layer
Aggregation Network (E-ELAN), allowing the model to learn
more diverse features for better learning. The architecture of
the models it is derived from was also concatenated to allow
the model to meet the needs of different inference speeds.
YOLOv7-tiny is a basic model optimized for edge computing.
Compared to the other versions, YOLOv7-tiny uses leaky
ReLU as the activation function, while other models use SiLU
as the activation function.

In order to avoid over and under-fitting the models, Ten-
sorBoard was used to analyze in real-time the data during
the training. Once the loss curve as been seen as stable, the
training was set as complete and the best model was used.
Once the training process is complete, the weights are used
to evaluate the performance of each model in terms of its
precision, recall, and mAP, for different confidence thresholds,
F1-score, and inference time of each model. For the calculation
of the results, a False Positive (FP) was considered as wrongly
detecting a filing and False Negative (FN) not detecting a
filing. As these values of precision, recall, F1-score, and mAP
are computed according to the True Positives (TP), FP, and
FN, it is worth mentioning that the Intersection over Union
(IoU) threshold defined for this classification corresponds to
50%.

IV. RESULTS

This section is organized as follows. Firstly, the results of
the type of light comparison tests conducted in the laboratory
setup prototype are presented in Section IV-A, and then a
comparison of the analysed models’ performance is carried
out in Section IV-B.

A. Lighting analysis

For the assembly of the laboratory setup, two types of
lighting were tested: LED bars and dome lights. These were
chosen due to their characteristics, which allowed acquiring
an image of the part with the least possible reflections and
shadows. LED lighting with angular bars that can be adjusted

(a) (b)

Fig. 5: Lighting types’ results: (a) LED bars with adjustable
angular bars; (b) dome light.

allows the angle of light incidence on the part to be changed,
and dome lighting allows illuminating the part uniformly. The
result of the parts lighting, for each type of lighting, is visible
in Fig. 5. When comparing the two images’ quality, dome
lighting performs best at minimizing reflections and shadows;
for this reason, it was the lightning chosen.

B. Performance evaluation

As previously stated, four different models were trained:
Faster R-CNN, RetinaNet, YOLOv7, chosen based on the
State of the Art analysis, and YOLOv7-tiny, a lighter version
of the YOLOv7 model, chosen due to hardware limitations.
Faster R-CNN and RetinaNet use Resnet-101-FPN as the
backbone.

Firstly, the trade-off between the input image resolution
and the batch size was analyzed, translating to faster feature
extraction for better image quality. GPU memory was used
as a constraint to define the minimum resolution with the
maximum batch size, and vice versa, to see which version
provided better results. Therefore, the input resolution was
successively decreased, maintaining the aspect ratio of the
original 2592x1944 pixels image, until the training could
be completed at the maximum capacity of the GPU. By
resizing, the image it was possible to conclude that, image
size significantly impacts the performance, since the defects
to be detected ranged from 1 mm to 12 mm, approximately.
For that reason, the images were resized to 1600x1200 pixels.

Compared to the other models, YOLOv7-tiny is a lighter
model optimized for GPU, which allowed it to be trained with
a larger batch size than the others, for the same image size. All
models were trained at a learning rate of 0.0025 with Adam
optimizer. The data augmentation performed was the same for
the four models, horizontal and vertical flips, and brightness
variation.

By using Detectron2 to train the Faster R-CNN and Reti-
naNet models, the number of iterations to train the model
was defined instead of specifying the number of epochs, as in
the YOLOv7 and YOLOv7-tiny. An iteration corresponds to a
training cycle, one forward and one backward pass, with the
number of images equal to the batch size. An epoch implies the
use of the whole dataset for training. In this case, 400 training
images were used and a batch size of 1 for Faster R-CNN,
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RetinaNet, and YOLOv7, and a batch size of 5 for YOLOv7-
tiny, due to GPU, due to GPU constrain memory. Analyzing
the box loss curves for training and validation, presented in
Fig. 6 and Fig. 7, respectively, it is possible to verify that for
the Faster R-CNN and RetinaNet models the curves stabilized
between 18000 and 19000 iterations, which is equivalent to 45
epochs, and for the YOLOv7 and YOLOv7-tiny models the
curves stabilized around 180 and 80 epochs, respectively. As
previously mentioned, during the training, TensorBoard was
used to monitor the model training. Once the loss curves were
stable, the training has been stopped and the best model was
used.

Table I shows the comparative results between the four
models in the test dataset, which corresponds to 50 images.
Regarding inference time, Faster R-CNN and YOLOv7-tiny
were, respectively, the slowest (171 ms) and the quickest
(12.2 ms) to make a prediction. Even then, all of them are
fast enough for the requirements of this use case, such that
inference time ended up not being a rejection criterion. By
comparing the results, it is possible to conclude that, the Faster
R-CNN model obtained the best precision and recall, 96.96%
and 96%, respectively. This means that the model was the best
at correctly classifying and detecting the filings. Because of
that the F1-score is also higher for Faster R-CNN, 96.00%.
Analyzing the mAP values of the four models it is possible
to conclude that YOLOv7 achieves the best results 97.70%,
and 59.20%, for mAP@0.5 and mAP@0.5:0.95, respectively.
This means the YOLOv7 model is more stable and consistent
across different confidence thresholds. In this case study FN
are more critical than the FP, and taking into account that
the mAP difference between the models is not very large, the
model that obtained the highest recall, Faster R-CNN, was
considered more adequate.

The dataset split of the test batch was used to perform the
inference with the trained models, to see their performances in
detecting the filings. In Fig. 8 is shown the bounding boxes of
each filing detected in red, with the corresponding classifica-
tion and confidence value, on top of each box. Fig. 8(a) shows,
in green, the original labeled images being considered the
ground truth of the experiments. By comparing the inference
results is possible to conclude that, as a result of having a
higher recall, the confidence of the filing prediction is higher
in Faster R-CNN and RetinaNet, as shown in Fig. 8(b) and
Fig. 8(c), respectively. However, the precision of locating the
filing is similar, yet lower than YOLOv7 and YOLOv7-tiny,
presented in Fig. 8(d) and Fig. 8(e), respectively.

V. CONCLUSIONS AND FUTURE WORK

Product quality is an increasingly important factor taken into
account by consumers in the automotive industry. It is required
that the inspection methods on production lines are able to
respond to the demand imposed by consumers. As no previous
work was found where the detection of filings in casting
aluminum parts was carried out, four deep learning-based
models were trained to detect the filings, and their performance
was compared. Given that it is unacceptable for the system

to classify a part as defect-free when it contains defects,
special attention was given to the recall metric, on which the
Faster R-CNN model achieved the higher percentage: 96.00%.
Despite the mAP being lower for Faster R-CNN (56.84%),
the four models had similar mAP values. In the inference
results, it was possible to conclude that Faster R-CNN and
RetinaNet obtain higher values of confidence in classifying the
defect, and the four models presented similar precision values.
The results also show that Faster R-CNN and YOLOv7-
tiny were the slowest (171 ms) and the quickest (12.2 ms),
respectively. However, all of them are fast enough for the
requirements of this case study. For that reason, Faster R-
CNN was considered to be most suitable for this case study. A
comparison between the two types of lighting was also made,
to find out which one was more adequate for the inspection
of these cast aluminum parts. The lights chosen presented
the characteristics necessary to illuminate the parts with the
minimum possible reflections and shadows. By comparing the
acquired images, it was possible to conclude that dome lighting
presented the best results, illuminating the part evenly and
reducing the reflections and shadows.

For future work, the chosen model will be used for the
continuation of the project, where more training can be done
to improve its performance and detect other common defects
in this type of part, such as scratches, dents, and cracks,
among others, and increase the hardware processing capability
to achieve better performance results. CNN-based semantic
segmentation networks can be used to obtain a detailed charac-
terization of the tear zone, and could be considered to perform
a comparison with CNN-based object detectors. Moreover, a
collaborative robotic manipulator will be integrated to auto-
mate the process of exchanging the parts.

ACKNOWLEDGMENT

This work is co-financed by Component 5 - Capitalization
and Business Innovation, integrated in the Resilience Dimen-
sion of the Recovery and Resilience Plan within the scope
of the Recovery and Resilience Mechanism (MRR) of the
European Union (EU), framed in the Next Generation EU, for
the period 2021 - 2026, within project Hi1 reV, with reference
64.

REFERENCES

[1] C.-C. Huang and X.-P. Lin, “Study on Machine Learning Based Intelli-
gent Defect Detection System”, MATEC Web of Conferences, vol. 201,
p. 01010, 2018.

[2] A. Kazemian, X. Yuan, O. Davtalab, and B. Khoshnevis, “Computer
vision for real-time extrusion quality monitoring and control in robotic
construction”, Automation in Construction, vol. 101, pp. 92–98, May
2019.

[3] S. S. Martı́nez, J. G. Ortega, J. G. Garcı́a, and A. S. Garcı́a, “A machine
vision system for defect characterization on transparent parts with non-
plane surfaces”, Machine Vision and Applications, vol. 23, no. 1, pp.
1–13, July 2010.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks”. arXiv, 2015.

[5] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for
Dense Object Detection”. arXiv, 2017.

[6] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors”.
arXiv, 2022.

2023 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Tomar, Portugal – April 26-27, 2023

109
Authorized licensed use limited to: b-on: Universidade de Trás-os-Montes e Alto Douro. Downloaded on August 02,2023 at 09:20:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6: Training Box Loss curves: (a) Faster R-CNN, (b) RetinaNet, (c) YOLOv7, and (d) YOLOv7-tiny.

Fig. 7: Validation Box Loss curves: (a) Faster R-CNN, (b) RetinaNet, (c) YOLOv7, and (d) YOLOv7-tiny.

TABLE I: Comparison results between the four proposed models

Model Batch
size Precision (%) Recall (%) F1-score (%) mAP@0.5(%) mAP@0.5:0.95(%) GPU

memory* (MiB)
Inference
time (ms)

Faster R-CNN 1 95.09 97.00 96.04 96.65 55.76 5637 171.00

RetinaNet 1 96.87 93.00 94.90 92.97 49.86 4513 165.00

YOLOv7 1 96.90 93.00 94.91 97.70 59.20 5670 50.30

YOLOv7-tiny 5 94.00 94.00 94.00 95.80 55.90 5429 12.20

* GPU memory required during model training, taking into account the considered batch size.

[7] T. Wang, Y. Chen, M. Qiao, and H. Snoussi, “A fast and robust
convolutional neural network-based defect detection model in product
quality control”, The International Journal of Advanced Manufacturing
Technology, vol. 94, no. 9–12, pp. 3465–3471, August 2017.

[8] G. Fu et al., “A deep-learning-based approach for fast and robust steel
surface defects classification”, Optics and Lasers in Engineering, vol.
121, pp. 397–405, 2019.

[9] Y. Xu, D. Wang, B. Duan, H. Yu, and H. Liu, “Copper Strip Surface
Defect Detection Model Based on Deep Convolutional Neural Network”,
Applied Sciences, vol. 11, no. 19, p. 8945, Sep. 2021.

[10] S. B. Block, R. D. da Silva, L. B. Dorini, and R. Minetto, “Inspection of
Imprint Defects in Stamped Metal Surfaces Using Deep Learning and
Tracking”, IEEE Transactions on Industrial Electronics, vol. 68, no. 5,
pp. 4498–4507, 2021.

[11] J. Sun, P. Wang, Y.-K. Luo, and W. Li, “Surface Defects Detection Based

on Adaptive Multiscale Image Collection and Convolutional Neural
Networks”, IEEE Transactions on Instrumentation and Measurement,
vol. 68, no. 12, pp. 4787–4797, 2019.

[12] R. Wei and Y. Bi, “Research on Recognition Technology of Aluminum
Profile Surface Defects Based on Deep Learning”, Materials, vol. 12,
no. 10, p. 1681, May 2019.

[13] W. Du, H. Shen, J. Fu, G. Zhang, and Q. He, “Approaches for
improvement of the X-ray image defect detection of automobile casting
aluminum parts based on deep learning”, NDT & International, vol. 107,
p. 102144, October 2019.

[14] D. Mery, ‘Aluminum Casting Inspection using Deep Object Detection
Methods and Simulated Ellipsoidal Defects’, Machine Vision and Ap-
plications, vol. 32, 05 2021.

[15] T. Wang, J. Su, C. Xu, and Y. Zhang, “An Intelligent Method for
Detecting Surface Defects in Aluminium Profiles Based on the Improved

2023 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Tomar, Portugal – April 26-27, 2023

110
Authorized licensed use limited to: b-on: Universidade de Trás-os-Montes e Alto Douro. Downloaded on August 02,2023 at 09:20:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8: Inference results: (a) Ground Truth, (b) Faster R-CNN, (c) RetinaNet, (d) YOLOv7, and (e) YOLOv7-tiny.

YOLOv5 Algorithm”, Electronics, vol. 11, no. 15, 2022.
[16] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R.

Girshick, “Detectron2”, 2019. [Online]. Available:
https://github.com/facebookresearch/detectron2.

[17] Tzutalin, ‘LabelImg’, 2015. [Online]. Available:
https://github.com/heartexlabs/labelImg.

2023 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Tomar, Portugal – April 26-27, 2023

111
Authorized licensed use limited to: b-on: Universidade de Trás-os-Montes e Alto Douro. Downloaded on August 02,2023 at 09:20:37 UTC from IEEE Xplore.  Restrictions apply. 


