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Abstract—Nowadays, hydraulic sources are responsible for
most of the Brazil’s energy production. Hydroelectric power
plants (HPP) operators in Brazil usually distribute equally the
total power required among the generator units available in the
plant. However, studies show that this configuration does not
guarantee that each generator unit operate close to its optimal
operation point. The energy dispatch optimization problem
consists in determining which generation units need to be on
or off and what is their respective power-set, so that both the
overall HPP costs is minimized and the power required by the
plant is met. This paper presents a parallel implementation of
NSGA-II on GPU, to solve the energy dispatch problem of a HPP
complaying with the real time restrictions posed by the operation
of a real HPP from the reception of the power demand to the
energy dispatch. Our implementation obtains better solutions
than the sequential implementation currently available.

I. INTRODUCTION

Economy and population growth in Brazil contributes
to an increasing demand to its electric energy production.
According to the 2014 annual report of the Brazilian Energy
Planning Company (“Empresa de Planejamento Energético”-
EPE, in Portuguese), most of the country’s energy is produced
by renewable sources, hydraulic sources being responsible
by 70.6% of it, as shown on Table 1. Hydroelectric power
plants (HPP) operate to supply an electrical demands requested
by National Electric System Operator (Operador Nacional
do Sistema Elétrico - ONS), a government agency which
coordinates and controls the electrical energy production and
its transmission.

TABLE 1
BRAZIL’S DOMESTIC ELECTRICITY SUPPLY BY SOURCE ON 2014 [1]
Source Percentage
Hydro 70.6%
Natural Gas 11.3%
Biomass 7.6%
Oil Products 4.4%
Coal and Coal Products 2.6%
Nuclear 2.4%
Wind 1.1%

An HPP is composed by several turbines connected
to electrical generators (generator units). Most hydroelectric
plants in Brazil operate by equally distributing equally dis-
tribute the total power required by ONS among the generator

units available in the plant. However, studies of Marcelino et
al. [2] [3] show that this equal dispatch does not represent
optimal efficiency, since it does not make each generator unit
operating close to its optimal operation point. In both works
the objective of the energy dispatch optimization problem
consisted on determining which generation units need to be on
or off and what is their respective power set-point (in MW),
so that the overall HPP costs is minimized while able to meet
the power required by the plant.

The energy dispatch problem is a significant matter,
considering that even small improvements in efficiency can
reduce the water demand by the HPP. In consequence, the
cost is reduced, allowing a higher power generation. This topic
has been covered by different approaches, including linear
programming, lagrangian relaxation and neural networks [4]—
[8].

A mono-objective mathematical model was proposed by
Marcelino et al. [2] to solve the HPP energy dispatch prob-
lem. This model was solved using an EA called Differential
Evolution (DE) [10]. [9]. The DE/best/1/bin strategy was the
most efficient solution to this model.

Marcelino et al. [3] improved the mathematical model
made in the previous work [2] by considering the same
problem as a MO approach. A second objective was added
to the model, in order to measure the distance between two
operational modes. The first mode is the “Normal Mode of
Operation” (NMO) which equally distributes the power request
among the generator units. The second mode is the “Optimized
Control Mode” (OCM) which is the optimized energy dispatch
found by the first objective. The latter objective was proposed
because the HPP technical staff was not used to employ OCM,
therefore NMO was preferred. This objective shows that there
are optimal operational points near NMO, increasing the staff’s
confidence on OCM.

In order to solve this new mathematical model, two well
established multi-objective evolutionary algorithms were used,
the NSGA-II [10] and SPEA2 [11]. Both algorithms were able
to solve the energy dispatch problem with results near the
operating points of NMO and with high productive efficiency.
In Brazilian HPP, the technical staff must define how to
dispatch the energy on plants’ generator units in less than 10



seconds, right after receiving the power demand from ONS.
The implementations of NSGA-II and SPEA?2 algorithms in
Marcelino et al. work [3] were made using Matlab scripts
and focused mostly on quality of the solutions than execution
time. Thus, those algorithms take around 5 minutes to execute,
making it impossible to use them on a real HPP.

Like many other evolutionary algorithms, NSGA-II func-
tions have an inherently parallelism on its behavior, con-
sidering that most of them iterates for each individual of
a population and each iteration usually does not interfere
with another. This makes the use of graphics processing units
(GPU) an interesting solution, since its hardware is specialized
in the execution of large quantities of threads simultaneously.
Many studies proved that GPUs can provide great speedups
to NSGA-II and other Multiobjective Evolutionary Algorithms
(MOEA), as in test problems such as ZDT and DTLZ [12]-
[14], as well as real world applications e.g. traffic light
signaling optimization [15] and optimization of fuel treatment
for mitigating wildfire hazard [16].

In this paper, we propose a parallel implementation of
NSGA-II using a GPU to solve Marcelino et al. [3] mathe-
matical model with an execution time short enough to be used
on a HPP, i.e. less than 10 seconds, while not deteriorating
the quality of the solutions. We first give an overview of GPU
and Nvidia‘s platform Compute Unified Device Architecture
(CUDA) capabilities on Section 2. In Section 3 we present the
multi-objective model created by Marcelino et al. [3] for the
HPP energy dispatch problem and how this model is solved
with NSGA-II. We discuss our parallel implementation of
NSGA-II in Section 4. The experiments and results are re-
ported in Section 5. Finally, Section 6 presents the conclusion
and possible future extensions.

II. GPU AND CUDA CAPABILITIES

Graphics processing units were originally conceived to
supply the demand of multimedia, games and 3D rendering
fields. The computation performed in these industries is heav-
ily parallel, therefore GPU is focused on high throughput.
Comparing the hardware of a GPU and a CPU, the latter
allocates most of its space to control and cache units and the
remaining space for its arithmetic logic units (ALUs). GPU, on
the other hand, dedicate much more space to ALUs and a few
to cache and control units. Figure 1 illustrates this comparison.
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Fig. 1. Comparison of CPU and GPU hardware [17]

The increasing flexibility in GPUs architecture and soft-
ware made the parallel power of GPUs available also to
general purpose computations. CUDA [17] is the Nvidia’s

platform for general-purpose computing on their graphics
processing units (GPGPU).

In CUDA, the instructions that run on GPU are structured
in functions called kernels. Kernel’s threads are organized by
blocks, which are 3D structures that define the number of
threads on each dimension. A kernel can be launched from
the CPU or from another kernel executing on the GPU. Nvidia
calls the latter “dynamic parallelism” [17]. It can be used to
reduce the communication between CPU and GPU, which has
a cost due to the lower bandwidth on this communication
comparing to GPU and CPUs memory bandwidth.

Nvidia adopted a Single Instruction Multiple Threads
(SIMT) execution model on their GPUs. Threads of a block
are executed in sets of 32 threads called warps. All threads
on a same warp must execute the same instruction at same
time. When some threads in a warp need to execute a different
instruction (eg. following an if clause), there is a warp
divergence, and each group of threads in the warp will execute
sequentially instead of simultaneously. In order to minimize
warp divergence, branch instructions and loops with different
number of iterations should be avoided.

CUDA defines a memory hierarchy that includes the
global and the shared memory. The global memory can be
accessed by all executing threads on the GPU and can be used
to transfer data between the CPU and other GPUs. The shared
memory is faster than the global but has smaller capacity.
All threads on the same block can access it and the stored
data in this memory is lost when the block execution ends.
Moving data that is frequently used by the same block to
shared memory can improve GPU performance. The memory
access pattern is also highly important to kernel performance.
A sequence of threads should load from memory in an aligned
and sequential way called coalesced access.

III. MULTI-OBJECTIVE MODEL FOR THE ENERGY
DISPATCH PROBLEM OF AN HPP AND PROPOSED
SOLUTION

The multi-objective optimization model proposed by
Marcelino et al. [3] has two objective. The first objective is to
maximize the hydroelectric productivity of the plant using the
objective function 1. The second objective is to minimize the
distance between NMO and OCM using the objective function
2. The optimization variables are the water flow rate for each
of the six generator units, represented by vector x:

xr = [Q1t7fJ2t,-~-’qjt],

and the bi-objective problem is described as:

I
Maximize F';(x) = #, (D
2j=1 it
J(r)
Minimize Fo(z) = Z(th — qec)?, (2)
=1

subject to:
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The model parameters are described in Table II and Table
IIT presents the efficiency coefficients.

TABLE 11
DESCRIPTION OF PARAMETERS USED IN MODEL [3].
Parameter | Description
phji Power generated by unit j at time ¢
phjimin | Minimum Power
phjtmax | Maximum Power
Dm Requested Demand (MW)

qjt Water Discharge of unit j at time ¢

Qce Water Discharge at NMO

gjitmin Minium Water Discharge

gjtmaz Maximum Water Discharge

Zjk Operative Zone of Generator Unit j at Time k

TABLE III
EFFICIENCY COEFFICIENTS [3].
Coefficients Value Coefficients Value

Poj 1,4630e-01 D3 -3,5254e-03
D1 1,8076e-02 D4j -1,1234e-03
D2 5,0502¢-03 D5 1,4507e-05

The first objective function determines how much power
the plant is able to produce with a given volume of water.
Maximizing this function means a higher power production
with less water. The numerator of F1 is the production
function: as this number increases, the objective function value
also increases. When the denominator of F1 is decreased, the
productivity ratio is also reduced [3].

The second objective function, F2, measures the distance
between the water discharge used in NMO and the one used
in OCM. This shows that there are operation points in OCM,
which are closer to NMO but still ensure the maximization of
energy production. This contributes to a new culture develop-
ment by the HPP operational staff, increasing their confidence
on OCM [3].

The first constraint indicates that the power to be delivered
should be equal to the power requested to the HPP. The second
constraint states that the calculated flow rate must comply with
the minimum and maximum flow capacites of each generation
unit. The third constraint requires the corresponding generated
power to comply with minimum and maximum power capacity
of each generation unit. The fourth constraint ensures that each
generation unit maintains its operating status, i.e. it stays on
or off during the whole production period [3].

The proposed solution for a HPP consists in a software that
receives a power demand as an input parameter, then thirty

(30) independent NSGA-II runs solve the mathematical model.
A new population is created combining the individuals on the
first front of each NSGA-II run and a dominance routine is
applied in order to generate a final Pareto front. A selectable-
point graph is displayed for this final front, allowing the staff
to choose a point, which indicates the water discharge values
for each generator unit.

IV. PARALLEL IMPLEMENTATION OF NSGA-II oN GPU
A. Parallel Model

In the following sections we shall explain how we paral-
lelized one NSGA-II execution, in Subsection D we describe
how thirty (30) NSGA-II executions occur simultaneously. In
order to create our parallel implementation of NSGA-II, we
initially identified following steps in the algorithm:

1) Generate the initial parent population.

2) Evaluate the cost of the parent population individuals
(fitness evaluation).

3) Separate the parent population into fronts with non-
dominated sorting operator.

4) Evaluate the crowding distance of the parent population
individuals.

5) Create the offspring population using individuals from
the parent population, employing selection, crossover
and mutation operators.

6) Evaluate the cost of the offspring population individuals.

7) Separate all individuals, i.e. parent and offspring, into
fronts.

8) Evaluate the crowding distance of all individuals.

9) Select the best individuals based on their front and

crowding distance values and move them to the parent

population location. These individuals will then turn into
the parent population of the next generation.

If the stopping criteria is satisfied, finish the algorithm,

otherwise return to step 3.

10)

Since some of those steps can be executed by the same
function, we identified the following six tasks to be imple-
mented:

1) Generate initial parent population.

2) Evaluate the costs of the individuals.

3) Separate the individuals into fronts with non-dominated
sorting operator.

4) Evaluate crowding distance of the individuals.

5) Create offspring population.

6) Select the best individuals for the next generation.

One kernel was used for tasks 1, 2 and 5. Task 3 was
subdivided into two different subtasks. The first one takes
one kernel, which calculates: A) the domination count 7,
the number of other solutions that dominates the solution p,
and; B) the dominated set S,, which is a set of solutions
dominated by p. After calculating these variables, the kernel
defines the first front. The second subtask defines other fronts.
We used one kernel that launches three other kernels with
dynamic parallelism, whose functioning will be detailed later
in Subsection C.



The subdivision explained above was made because the
np and S, calculations and the first front definition need data
of all individuals in order to occur. The definition of other
fronts consists in an iterative method, which requires data of
the last defined front individuals. Therefore, the first subtask
will always use a static number of threads, which can be either
the number of individuals in parent population or the number
of all individuals. The second subtask uses a dynamic number
of threads and we used the dynamic parallelism to handle the
thread number.

Tasks 5 and 6 also use dynamic parallelism. In Task 5, it
is first necessary to sort the individuals based on their cost
evaluated in Task 2, then calculate the crowding distance.
The sorting phase is done on a separated kernel, which
implements an insertion sort. This kernel is launched via
dynamic parallelism by the main kernel of Task 5.

Task 6 is also subdivided into two subtasks, being the
first one similar to Task 5. We first sort the individuals based
on their crowding distance using the insertion sort kernel, then
each thread storages their individual’s new position on global
memory. The second subtask uses one kernel to move the
best individuals’ costs and decision variables to the parent
population positions.

B. Data Structure

In this work, we focused on shorter execution times, thus
we used shared memory whenever it was beneficial. However,
this created a limitation with this algorithm. As explained in
Section 2, shared memory can only be accessed by threads
within same block. In our implementation, most kernel threads
represent one individual of the population, consequently the
maximum number of individuals equals to the maximum
number of threads population data is stored using six arrays
in a block, which in current Nvidia’s GPU is 1024.

o Position, for the decision variables;

o Cost, for fitness evaluation;

e Rank, in order to determine which front the individual
belongs to;

o Crowding Distance, for density estimation;

o Dominated set, to identify which individuals an individual
dominates;

o Domination count, to quantify how many individuals are
dominated by another one.

These arrays are allocated in the GPU‘s global memory
with a static size and all individuals share the same arrays. The

data type chosen for these arrays and their size are presented
by Table IV

TABLE IV

ARRAYS FOR INDIVIDUALS DATA
Array Name Data Type Array Size
Position Double 6 * Total Polulation Size
Cost Double 2 * Total Polulation Size
Rank Unsigned Integer | Total Polulation Size
Crowding Distance | Double Total Polulation Size
Dominated Set Boolean Total Polulation Size™2
Domination Count | Unsigned Integer | Total Polulation Size

The fronts created by the non-dominated sorting operator
are stored using two integer arrays. One of them identify the
front members and the other one receives the size of the fronts.
In both arrays, elements are added in a sequential way, by
using two integers in global memory that are manipulated
with CUDA atomic operations, in order to avoid data race
conditions. Figure 2 displays how these two arrays identifies
the individuals on each front.
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Fig. 2. Data Structure for Pareto Fronts
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A similar structure is also used in crowding distance cal-
culation and by selection of individuals for the next generation.
Since both need to sort the fronts individuals by either the cost
of an individual on each objective or by the crowding distance,
we allocated two pairs of key-value arrays in global memory.
Before the kernels of crowding distance and next generation
selection, launches the insertion sort kernel, they make a copy
of fronts members and their fitness value or crowding distance
to this pair of arrays, so the fronts members can be sorted
without affecting the original arrays.

C. Kernels Implementation

This section details some kernels implementation. The
flowchart in Figure 3 presents the kernel names and, in paren-
thesis, on which population (parent, offspring or total) they are
operating. The arrows and rectangles in green indicates that
the kernel was launched via dynamic parallelism.

In order to explain how these kernels work, it is necessary
to define the following variables:

e pop_pos, array for decision variables.

e pop_cost, array for fitness evaluation.

e pop_rank, array for individuals ranks.

o pop_cdist, array for individuals crowding distance.

e pop_dset, array for domination sets.

e pop_dcount, array for domination count.

o f_members, array to identify members on each front.

o f_size, array of fronts sizes.

e f_index, integer to control where a new individual must
be inserted on f_members and f_size.

e cl_key, array of individuals’ identification to be used on
sorting.

e cl_value, array of individuals’ values to be used on
sorting.

o 2_key, array of individuals’ identification to be used on
sorting.

e c2_value, array of individuals’ values to be used on
sorting.

e n_parents, integer for the number of parent individuals.
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Fig. 3. Flowchart of Kernels

e n_of fspring, integer for the number of offspring indi-
viduals.
e n_total, integer for the sum of two previous values.

The initial_generation kernel creates the first parent pop-
ulation and each of this kernel’s threads generates one random
number within the range of 70-140 (range of water discharge
on the generator units), which represents a decision variable.
This value is stored in pop_pos array and the number of
threads for this kernel is 6 * n_total.

The cost kernel does the fitness evaluation of the individuals
for each of the two objectives. The calculations done is this
kernel are identical to the ones made in Matlab scripts by
Marcelino work [3], except for some adaptations to code it
in C programming language. After the fitness evaluation, the
results are stored in pop_cost array. This kernel can operate on
parent or offspring population, thus each kernel represents one
individual and the number of threads is equal to n_parents
or n_of fspring.

The NDS1 kernel calculates the domination sets and
dominated counts for each individual, and then it defines the
first front. The first step is making a copy of the population
costs from pop_cost array to the shared memory, in order to

reduce access time. In this kernel, each thread represents an
individual. After initializing the shared memory, each thread
calculates its individual domination count and dominated set.
When all threads finish calculating these variables, each thread
verifies if their domination count is zero. If it equals to zero,
the thread sets its individual rank to 1, adds its individual
identification number in the f_member array and increases by
1 a counter in shared memory, which will be used to quantify
the number of individuals in the first front. The addition to
f_members and counter is done using atomic operations.
Finally, the individual rank, dominated set and domination
count are stored on the pop_rank, pop_dset and pop_dcount
arrays, respectively. The counter that quantifies the individuals
on first front is stored in f_sizearray. The number of threads
equals to n_parent or n_total.

The NDS2 kernel is responsible to control the creation
of other fronts. It controls the loop that determines if the
process is completed or not. It also defines the parameters
and the numbers of threads of NDS2_child and launch
the NDS2_child and NDS2_insert kernels via dynamic
parallelism. This kernel requires only one thread.

NDS?2_child receives from the N DS?2 kernel the num-
ber of the last front created and, with this number, it calculates
the index of the first member of that front on f_members
array, by adding up the sizes of the previous fronts in f_size
array. With this index, each thread then identifies one member
of the last front created and launches the N DS2_grandchild
kernel, passing this member identification as a parameter. This
kernel has a dynamic number of threads, which is equal to
the number of members of the last front created. Each thread
corresponds to one of these members.

N DS?2_grandchild performs the subtraction of the dom-
ination count. Each individual has a set of positions in
pop_dset array and each position identifies if another indi-
vidual is dominated or not. For example: if position 3 has
value as true, then the owner of that dominated set dominates
the third individual. In this kernel each thread corresponds to
one position on the dominated set of one individual. If their
position value is true then the thread performs the subtraction
on the domination count of the individual represented by this
position. In order to avoid data race condition, the subtraction
is done using atomic operations. The number of threads in
this kernel equals to n_total. However, note that this kernel
is launched using dynamic parallelism by each thread of
NDS?2_child, thus there are multiple kernels running simul-
taneously.

After NDS2_child and N DS2_grandchild finish their
execution, the N DS2 kernel launches NDS2 insert. This
kernel verifies which individuals have their domination count
on zero and adds them to f_member array. It sets their
rank in pop_rank array and increases the counter of this
new front on f_size array. This verification is done on all
individuals of the population, therefore the number of threads
is equal to n_parent or n_total and each thread represents
one individual.

After N DS?2 finishes the non-dominating sorting process,



the crowding distance is calculated for each individual by a
namesake kernel (crowding_distance). In this kernel each
thread represents one individual. First, the threads initialize the
cl_key, cl_value, ¢2_key and c2_value arrays, by copying
the f_member array to cl_key and ¢2_key; and copying
each cost from pop_cost array to cl_value and c2_value;
cl_value receives cost for the first objective and c2_value
receives the cost for the second objective. After that, each
thread verifies if their corresponding individual is the first
individual of their front. If it is, then the thread launches two
insertion_sort kernels, one receives cl_key and cl_value
arrays and the other receives c2_key and c2_value. All threads
wait for the conclusion of all insertion_sort kernels. After
the threads, we copy the sorted arrays to the shared mem-
ory. Finally, each thread calculates their individual crowding
distance using the sorted arrays. Then they store the value in
pop_cdist array. The number of threads in this kernel is either
equal to n_parent or n_total.

The insertion_sort kernel is a serial implementation of a
namesake sorting algorithm. We choose this algorithm and the
serial version because of the relatively small size of the arrays
that need to be sorted. Only one thread is necessary when
this kernel is launched, yet multiple kernels may be launched
at same time by crowding_distance and sort_nexrt_gen
kernels.

The random_number_gen kernel generates the random
numbers used by the selection, crossover and mutation opera-
tors in of fspring_generation kernel. We used the cuRAND
library [17] with MTGP32 generator. With this library, we can
generate random numbers directly on GPU, which is faster
than generating those in CPU then copy them to GPU. All
numbers are stored on global memory and on each NSGA-II
iteration new numbers are generated.

The of fspring_generation kernel creates the offspring
population by combining the selection, crossover and mutation
operators in a single kernel. Each thread of this kernel creates
two offspring individuals. First, the threads copy the pop_pos,
pop_rank and pop_cdist arrays to shared memory. Then
two pairs of parent individuals are chosen using the random
numbers generated on previous kernel. For each pair, we select
the lower ranked parent. If ranks are equal, the one with higher
crowding distance is selected. The chosen parents are used on
the crossover, in order to generate two offspring individuals,
then each one of these may be mutated. Finally, offspring
individuals are stored in pop_pos array. Since each thread
creates two offspring individuals, the number of threads is
half of n_of fspring.

The sort_next_gen is similar to crowding_distance
kernel, but the threads initializes the cl_key and cl_value
arrays, by copying f_members to cl_key and pop_cdist to
cl_values. Then for each front only one insertion_sort will
be launched. The sorted c1_key array is used on next kernel.
The number of threads in this kernel is n_total.

Finally, gather_next_gen moves the best individuals to
the parent population, using the parallel patern called gather,
so that those individuals are used on next iteration of NSGA-

II. Given a collection of locations (addresses or arrays indices)
and a source array, the gather pattern collects all the data from
the source array at given locations and places them into an
output collection [18]. This kernel uses the c1_key array as
the collection of locations, the cl_key array is already sorted
by the fronts and each front is sorted by the crowding distance
of its members. Therefore the individuals on the first fronts
and with highest crowding distance are moved. The source and
output arrays are pop_pos, pop_cost and pop_rank; since the
source and output are the same, we first copy all data to the
shared memory and then write it back on the given locations,
so that we avoid data race conditions. Each thread on this
kernel represents one individual and the number of threads is
equal to n_parent.

D. Multiple Runs of NSGA-II

In section B, we explained why we used shared memory
and how that limits our population size to 1024 and kernels
blocks to 1. In order to parallelize multiple runs of NSGA-II,
we made that each kernel block is an NSGA-II run.

The only change in the data structure is the array sizes,
which were multiplied by the number of NSGA-II runs, i. e.
30. Each run has its own range of addresses, so that one run
does not access the addresses of another, for instance: with a
population size of 100 individuals, the NSGA-II run number
1 uses the 0-599 indices of pop_pos array, the run number 2
uses the 600-1199 and so on.

V. EXPERIMENTS AND RESULTS

Our experiments compare the two solutions to the HPP
energy dispatch problem: the one made by Marcelino et. al. [3]
with Matlab scripts and our implementation with CUDA. The
approach considers execution time as well as the quality of
the solutions. The parameters for NSGA-II are the same used
in the experiments of Marcelino et. al. [3], which are: power
demand of 320MW, parent population size of 50, offspring
population size of 40, mutation probability of 2%, 30 NSGA-
IT runs and 50 iterations.

We used an Nvidia Geforce GTX 980 GPU, which has
2048 cores operating at 1,126GHz; an Intel Core 17 4790 CPU,
which has 4 cores with hyperthreading operating at 3,6GHz.
The CUDA toolkit version is the 7.0, Matlab version is the
2014a and the operational system is CentOS 7.

Figure 4 presents the final Pareto front, representing
nondominated frontier of the 30 executions, created with the
individuals on the Pareto front of each NSGA-II run,for Matlab
and CUDA implementations. In this graph, the horizontal axis
represents the energy efficiencyand vertical axis represents the
distance between NMO and OCM. The Pareto front curve
from the CUDA implementation is very similar to the curve
from Matlab and it has a slight advantage at some points. This
behavior suggests that our CUDA implementation maintains
the quality of solution found by Matlab.In order to validate the
quality of CUDA solutions, we performed a statistical analysis
using S-metric of each NSGA-II run of both implementations
and ANOVA with Tukey test.
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Fig. 4. Final Pareto Front Generated by CUDA and Matlab implementations

The S-metric is a quality measure to compare Pareto
fronts generated by multiobjective optimizers [19]. This metric
calculates a hypervolume of a region delimited by a reference
point 3, thus calculating a region that S dominates; a higher
hypervolume means higher quality solutions.

ANOVA is a statistical technique that evaluates hypoth-
esis about the population means. This analysis assumes that
chance only produces small deviations, the major differences
being generated by real causes. The null and alternative
hypothesis to verify the variance analysis are: Null hypothesis,
HO, in which the population means are equal. As for the
alternative hypothesis, H1, the population means are different,
i.e., at least one of the means is different from the others [20].

TABLE V
ANOVA TEST RESULTS

Source SS df MS F Prob>F
Columns 3,2982 1 3,29816 20,03 3,61462¢-05
Error 9,549 58 0,16464
Total 12,8472 59

The ANOVA results indicates that there is a difference
between the two implementations, because the result of P-
Value is found lower than the significance level adopted (equal
to 0.05) in this test as shown in Table V, however this test
does not determine this difference. Given its ability to analyze
multiple data sets, this study used ANOVA with Tukey test or
Honestly Significant Difference (HSD) [21] in order to find
some information that differentiates the implementations.

The HSD test performed indicates with 95% confidence
that CUDA implementation presents better mean results com-
pared to Matlab’s. Therefore, our CUDA produces solutions
with higher quality than Matlab’s.

During the development, we noticed that the random
number generator affects the quality of the solutions obtained
by NSGA-II. There are three different pseudorandom genera-
tors in cuRAND library [17]: XORWOW, MRG32k3a and the
MTGP32, which is an adaption of Mersenne Twister generator

[22] for GPU. XORWOW and MRG32ka generators are not
able to produce solutions as good as Matlab’s. Therefore, we
believe that the only reason why our CUDA implementation
is capable of generating better solutions is the MTGP32
generator.

In order to compare the execution time of each im-
plementation, we ran both 20 times and calculated their
averages, as displayed on Table VI. Note that each test on both
implementations includes 30 NSGA-II runs. Therefore, we ran
NSGA-II 600 times for each implementation and the average
time is the time to complete 30 NSGA-II runs. The CUDA
implementation provides a speedup of 284.72 to the Matlab
one, however this comparison is not completely fair, since
Matlab scripts are interpreted while CUDA code is compiled.
Our implementation average time also satisfies the 10 seconds
restriction from the HPP, thus a real HPP can apply our
solution.

TABLE VI
AVERAGE EXECUTION TIME OF CUDA AND MATLAB IMPLEMENTATIONS

Deviation (s)
10.69
0.0152

Average (s)
355.627
1.249

Matlab
CUDA

We also analyzed how our implementation performs with
higher population sizes regarding execution time, GPU usage
and memory usage. For each population size, we performed
20 runs. Table VII presents the results of this experiment.

TABLE VII
CUDA IMPLEMENTATION SCABILITY

Execution Time

Population | Average (s) | Deviation (s) Memory GPU
Size Usage (MB) | Usage
90 1.249 0.0152 660 99%
128 1.68 0.0625 661 99%
256 12.781 1.1562 664 99%
384 31.863 2.0628 668 99%
512 52.396 1.5539 673 99%

We can observe that CUDA implementation is still faster
than Matlab’s, even with a population of 512 individuals,
although only the population size of 128 is viable to use on
a HPP. The memory usage reaches high values during the
execution and there is a small variance for each test. This
behavior is due to the way we used the dynamic parallelism:
when a parent kernel launches a child kernel and then makes a
synchronization call, the GPU needs to allocate some memory
in order to handle the switch of these kernels, thus most of
GPU memory is used to handle the dynamic parallelism.

Using Nvidia Visual Profile [23] we analyzed the percent-
age of each kernel on the execution and the results are shown
in Table VIII. Note that the percentages of the kernels consider
the time from when the kernel starts until it ends, therefore part
of the percentage of the kernels that uses dynamic parallelism
is caused by its child kernels.

In Table VIII, it is noticeable that the kernels responsible
for the non-dominated sorting operator are the ones that
occupy most of the execution time. This is an expected result



since this operator is the one that defines NSGA-II complexity
of O(M N?) (where M is the number of objectives and N the
population size).

TABLE VIII
KERNEL PROFILING

Kernel Name

NDS2 65.7%
-NDS2_child 54%
--NDS2_grandchild 13.9%
-NDS2_insert 2.7%
crowding_distance 19.8%
-insertion_sort 15.2%
sort_next_gen 7.2%
-insertion_sort 5.5%
random_numbers_gen 4%
cost 2.6%
NDS1 0.6%
offspring_generation 0.1%
gather_next_gen 0%
initial_generation 0%

VI. CONCLUSION

This paper presented a parallel implementation of NSGA-
IT on the GPU, to tackle the energy dispatch problem of a HPP
using the mathematical model developed by Marcelino et. al.
[3]. The goal of this parallel implementation is to reduce the
execution time to fullfil the operating restrictions of a real HPP,
that is, a maximum of 10 seconds to dispatch the energy after
receiving a power demand. Our implementation is capable of
executing 30 simultaneous runs of NSGA-II in less than 1.29
seconds on average, with better solutions than the sequential
implementation of Marcelino et. al. work [3].

Compared to other parallel NSGA-II on GPU [12]-[14],
our implementation makes intensive use of the shared memory,
which speeds up the execution but, on the other hand, it limits
the population size to a maximum of 1024 individuals on
current GPU architectures. There are, however, well known
methods in the parallel programming area to manage storage
restrictions (e.g. tiling) that may be explored in future works
in order to improve the scalability of the implementation. The
way we used CUDA dynamic parallelism allows for multiple
runs of NSGA-II simultaneously, but has a great impact on
GPU’s memory capacity, affecting also the scalability. Since
the maturity of dynamic parallelism in CUDA has improved
in recent versions, it is expected that new implementations
can achieve better scalability. Regarding to the HPP energy
dispatch problem, we suggest analyzing if more NSGA-II runs
and bigger population sizes can improve the quality of the
solutions.
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