
Gerson Zaverucha
Vítor Santos Costa
Aline Paes (Eds.)

 123

LN
AI

 8
81

2

23rd International Conference, ILP 2013
Rio de Janeiro, Brazil, August 28–30, 2013
Revised Selected Papers

Inductive
Logic Programming

Lecture Notes in Artificial Intelligence 8812

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Gerson Zaverucha • Vítor Santos Costa
Aline Paes (Eds.)

Inductive
Logic Programming
23rd International Conference, ILP 2013
Rio de Janeiro, Brazil, August 28–30, 2013
Revised Selected Papers

123

Editors
Gerson Zaverucha
Federal University of Rio de Janeiro
Rio de Janeiro, Rio de Janeiro
Brazil

Vítor Santos Costa
University of Porto
Porto
Portugal

Aline Paes
Fluminense Federal University
Niterói, Rio de Janeiro
Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-662-44922-6 ISBN 978-3-662-44923-3 (eBook)
DOI 10.1007/978-3-662-44923-3

Library of Congress Control Number: 2014950812

LNCS Sublibrary: SL7 – Artificial Intelligence

Springer Heidelberg New York Dordrecht London

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains revised selected papers from ILP 2013: the 23rd International
Conference on Inductive Logic Programming held during August 28–30, 2014 in Rio de
Janeiro, Brazil. The ILP conference series, started in 1991, is the premier international
forum on learning from structured data. Originally focusing on the induction of logic
programs, it broadened its scope and attracted a lot of attention and interest in recent
years. The conference now focuses on all aspects of learning in logic, multi-relational
learning and data mining, statistical relational learning, graph and tree mining, relational
reinforcement learning, and other forms of learning from structured data.

This edition of the conference solicited three types of submissions:

1. Long papers (12 pages) describing original mature work containing appropriate
experimental evaluation and/or representing a self-contained theoretical
contribution.

2. Short papers (6 pages) describing original work in progress, brief accounts of ori-
ginal ideas without conclusive experimental evaluation, and other relevant work of
potentially high scientific interest but not yet qualifying for the above category.

3. Papers relevant to the conference topics and recently published or accepted for
publication by a first-class conference such as ECML/PKDD, ICML, KDD, ICDM,
etc., or journals such as MLJ, DMKD, JMLR, etc.

We received 42 submissions, 18 long, 21 short, and 3 previously published papers.
The short papers were evaluated on the basis of both the submitted manuscript and the
presentation at the conference. Each submission was reviewed by at least three Program
Committee members. Eight long and eight short papers were accepted, the extended
version of nine of these papers are included in this volume; eight further papers were
accepted for inclusion in the Late-Breaking Papers volume published in the CEUR
workshop proceedings series; five papers were invited for submission to the ILP 2013
open call issue of the Machine Learning journal which received a total of 20 submissions.

The subjects covered in these proceedings represent well the main topics of research
in this area. The work by Muggleton et al. is a well-founded approach to statistical
relation learning, with exciting practical applications. Zeng et al. address the important
problem of ensuring privacy within the context of ILP. Athakravi et al. investigate
learning in ASP, an area that has attracted much interest in the recent years. Binary
Decision Diagrams are an effective implementation technique and Ribeiro et al. apply it
to the hard problem of Interpretation Transition. Natarajan et al. discuss the difficult
problem of imitation learning. Sarjant et al. contribute to reinforcement learning in the
context of relational learning. Camacho et al. present innovative work in implemen-
tation of parallelism, a fundamental challenge to scaling up ILP. Statistical Relational
Learning can benefit much from lifted evaluation and Taghipour et al.'s work is a step
in that direction. Finally, Lisi and Straccia address an important challenge for ILP, how
to learn in the Semantic Web.

The conference program included three invited talks. Prof. Jure Leskovec introduced
the ongoing work on Exploring the Structure of Online Networks and Communities.
Social interactions of hundreds of millions of people on the Web create massive digital
traces, which can naturally be represented, studied, and analyzed as massive networks
of interactions. By computationally analyzing such network data we can study phe-
nomena that were once essentially invisible to us: the social interactions and collective
behavior of hundreds of millions of people. In his talk he discussed how computational
perspectives and mathematical models can be developed to abstract online social
phenomena like: How will a community or a social network evolve in the future? What
are the emerging ideas and trends in the network? How does information ow and
mutate as it is passed from node to node like an epidemic?

Prof. Hendrik Blockeel discussed Lifted Variable Elimination: Faster Correct
Inference in Probabilistic Logical Models. He started from an intriguing observation,
that first-order logic allows inference on the level of variables, that is, we can reason
about an object's properties without knowing the object. This boosts inference effi-
ciency. It is not yet clear to what extent probabilistic inference can, similarly, be
“lifted” to the level of logical variables. In recent years, many results have been
obtained that contribute toward solving this question. A number of them were dis-
cussed in his talk, focusing on intuition rather than technical detail. He discussed how
variable elimination, perhaps the simplest approach to probabilistic inference, can be
lifted by identifying and exploiting particular kinds of symmetry in a probabilistic-
logical model. He also discussed a number of theoretical and experimental results, both
positive and negative, that provide insight into the circumstances in which lifting is
(not) possible.

Prof. William W. Cohen discussed Learning to Construct and Reason with a Large
Knowledge Base of Extracted Information. Carnegie Mellon University's “Never
Ending Language Learner” (NELL) has been running for over 3 years, and has auto-
matically extracted from the Web millions of facts concerning hundreds of thousands of
entities and thousands of concepts. NELL works by coupling together many interre-
lated large-scale semi-supervised learning problems. In this talk, he discussed some of
the technical problems the group encountered in building NELL and some of the issues
involved in reasoning with this sort of large, diverse, and imperfect knowledge base.
Prof. Cohen presented joint work with Tom Mitchell, Ni Lao, William Wang, and
many other colleagues.

The General Chair was Gerson Zaverucha, the Program Chairs were Gerson Zav-
erucha and Vítor Santos Costa, and the Local Chair was Aline Paes. We thank the guest
speakers for coming to ILP 2013 and for their availability during the conference. The
conference was kindly sponsored by FAPERJ, the Fundação de Amparo à Pesquisa do
Estado do Rio de Janeiro through grant E-26/101.541/2010. The Universidade Federal
do Rio de Janeiro (UFRJ) generously supported ILP 2013 by allowing us to use the
conference venue, Casa da Ciência. We thank its helpful staff: Camila Costa, Angela
Monteiro, and Claudia Pereira. We also thank Maria de Fatima Cruz Marques for her
valuable suggestions. Gerson Zaverucha is supported by CNPq (304399/2013-2),
FAPERJ (E-26/101.541/2010) and PRONEX CNPQ - FACEPE (APQ 1188-1.03/10).

VI Preface

Vítor Santos Costa was supported by the grant SIBILA, NORTE-07-0124-FEDER-
000059, and the FCT grants ADE, PTDC/EIA-EIA/121686/2010, and ABLe,
PTDC/EEI-SII/2094/2012 (FCOMP-01-0124-FEDER-029010). Aline Paes is sup-
ported by FAPERJ (E-26/111.324/2013 APQ1) and CNPq (Universal 483448/2013-3).
We acknowledge the continuous support from the Machine Learning journal through
the ILP special issue, from Springer for publishing the ILP proceedings, and from
CEUR for publishing the Late Breaking Papers proceedings. We thank Easychair.org
for supporting submission handling. Last, but not least, we thank the Local Organizing
Committee: Kate Revoredo and Fernanda Baião helped throughout in the organization,
and Roosevelt Sardinha created and maintained the website.

July 2014 Gerson Zaverucha
Vítor Santos Costa

Aline Paes

Preface VII

Organization

General Chair

Gerson Zaverucha COPPE – Universidade Federal do Rio de Janeiro,
Brazil

Program Chairs

Gerson Zaverucha COPPE – Universidade Federal do Rio de Janeiro,
Brazil

Vítor Santos Costa CRACS/INESC-TEC and DCC-FCUP, Portugal

Local Chair

Aline Paes Universidade Federal Fluminense, Brazil

Local Organizing Committee

Kate Revoredo Universidade Federal do Estado do Rio de Janeiro,
Brazil

Fernanda Baião Universidade Federal do Estado do Rio de Janeiro,
Brazil

Roosevelt Sardinha COPPE – Universidade Federal do Rio de Janeiro,
Brazil

Program Committee

Erick Alphonse LIPN – UMR CNRS 7030, France
Annalisa Appice Università di Bari, Italy
Hendrik Blockeel Katholieke Universiteit Leuven, Belgium
Ivan Bratko University of Ljubljana, Slovenia
Rui Camacho LIACC/FEUP, University of Porto, Portugal
James Cussens University of York, UK
Luc De Raedt Katholieke Universiteit Leuven, Belgium
Saso Dzeroski Jozef Stefan Institute, Slovenia
Nicola Fanizzi Università di Bari, Italy

Stefano Ferilli Università di Bari, Italy
Peter Flach University of Bristol, UK
Nuno Fonseca CRACS-INESC Porto LA,

Portugal and EMBL-EBI, UK
Paolo Frasconi Università degli Studi di Firenze, Italy
Tamas Horvath University of Bonn and Fraunhofer IAIS, Germany
Katsumi Inoue NII, National Institute of Informatics, Japan
Nobuhiro Inuzuka Nagoya Institute of Technology, Japan
Andreas Karwath University of Mainz, Germany
Kristian Kersting Technical University of Dortmund, Germany
Ross King University of Manchester, UK
Ekaterina Komendantskaya School of Computing, University of Dundee, UK
Stefan Kramer University of Mainz, Germany
Nada Lavrač Jožef Stefan Institute, Slovenia
Francesca Alessandra Lisi Università di Bari, Italy
Donato Malerba Università di Bari, Italy
Stephen Muggleton Imperial College London, UK
Sriraam Natarajan Indiana University, USA
Ramon Otero University of A Coruña, Spain
Aline Paes Universidade Federal Fluminense, Brazil
C. David Page University of Wisconsin-Madison, USA
Bernhard Pfahringer University of Waikato, New Zealand
Ganesh Ramakrishnan IIT Bombay, India
Jan Ramon Katholieke Universiteit Leuven, Belgium
Oliver Ray University of Bristol, UK
Fabrizio Riguzzi University of Ferrara, Italy
Celine Rouveirol LIPN, Université Paris 13, France
Chiaki Sakama Wakayama University, Japan
Claude Sammut University of New South Wales, Australia
Jude Shavlik University of Wisconsin-Madison, USA
Takayoshi Shoudai Kyushu University, Japan
Ashwin Srinivasan IBM India Research Laboratory, India
Alireza Tamaddoni-Nezhad Imperial College London, UK
Tomoyuki Uchida Hiroshima City University, Japan
Christel Vrain LIFO – University of Orléans, France
Stefan Wrobel Fraunhofer IAIS and University of Bonn, Germany
Akihiro Yamamoto Kyoto University, Japan
Filip Zelezny Czech Technical University in Prague,

Czech Republic

X Organization

Additional Reviewers

Bellodi, Elena
Heras, Jonathan
Manine, Alain-Pierre
Sato, Taisuke

Organization XI

Contents

MetaBayes: Bayesian Meta-Interpretative Learning Using Higher-Order
Stochastic Refinement . 1

Stephen H. Muggleton, Dianhuan Lin, Jianzhong Chen,
and Alireza Tamaddoni-Nezhad

On Differentially Private Inductive Logic Programming 18
Chen Zeng, Eric Lantz, Jeffrey F. Naughton, and David Page

Learning Through Hypothesis Refinement Using Answer Set Programming . . . 31
Duangtida Athakravi, Domenico Corapi, Krysia Broda, and Alessandra Russo

A BDD-Based Algorithm for Learning from Interpretation Transition 47
Tony Ribeiro, Katsumi Inoue, and Chiaki Sakama

Accelerating Imitation Learning in Relational Domains via Transfer
by Initialization. 64

Sriraam Natarajan, Phillip Odom, Saket Joshi, Tushar Khot,
Kristian Kersting, and Prasad Tadepalli

A Direct Policy-Search Algorithm for Relational Reinforcement Learning . . . 76
Samuel Sarjant, Bernhard Pfahringer, Kurt Driessens, and Tony Smith

AND Parallelism for ILP: The APIS System . 93
Rui Camacho, Ruy Ramos, and Nuno A. Fonseca

Generalized Counting for Lifted Variable Elimination 107
Nima Taghipour, Jesse Davis, and Hendrik Blockeel

A FOIL-Like Method for Learning under Incompleteness and Vagueness. . . . 123
Francesca A. Lisi and Umberto Straccia

Author Index . 141

http://dx.doi.org/10.1007/978-3-662-44923-3_1
http://dx.doi.org/10.1007/978-3-662-44923-3_1
http://dx.doi.org/10.1007/978-3-662-44923-3_2
http://dx.doi.org/10.1007/978-3-662-44923-3_3
http://dx.doi.org/10.1007/978-3-662-44923-3_4
http://dx.doi.org/10.1007/978-3-662-44923-3_5
http://dx.doi.org/10.1007/978-3-662-44923-3_5
http://dx.doi.org/10.1007/978-3-662-44923-3_6
http://dx.doi.org/10.1007/978-3-662-44923-3_7
http://dx.doi.org/10.1007/978-3-662-44923-3_8
http://dx.doi.org/10.1007/978-3-662-44923-3_9

MetaBayes: Bayesian Meta-Interpretative
Learning Using Higher-Order

Stochastic Refinement

Stephen H. Muggleton(B), Dianhuan Lin, Jianzhong Chen,
and Alireza Tamaddoni-Nezhad

Department of Computing, Imperial College London, London, UK
s.muggleton@imperial.ac.uk

Abstract. Recent papers have demonstrated that both predicate inven-
tion and the learning of recursion can be efficiently implemented by
way of abduction with respect to a meta-interpreter. This paper shows
how Meta-Interpretive Learning (MIL) can be extended to implement a
Bayesian posterior distribution over the hypothesis space by treating the
meta-interpreter as a Stochastic Logic Program. The resultingMetaBayes
system uses stochastic refinement to randomly sample consistent hypothe-
ses which are used to approximate Bayes’ Prediction. Most approaches to
Statistical Relational Learning involve separate phases of model estima-
tion and parameter estimation. We show how a variant of the MetaBayes
approach can be used to carry out simultaneous model and parameter
estimation for a new representation we refer to as a Super-imposed Logic
Program (SiLPs). The implementation of this approach is referred to as
MetaBayesSiLP . SiLPs are a particular form of ProbLog program, and
so the parameters can also be estimated using the more traditional EM
approach employed by ProbLog. This second approach is implemented in
a new system called MilProbLog. Experiments are conducted on learning
grammars, family relations and a natural language domain. These
demonstrate that MetaBayes outperforms MetaBayesMAP in terms
of predictive accuracy and also outperforms both MilProbLog and
MetaBayesSiLP on log likelihood measures. However, MetaBayes incurs
substantially higher running times than MetaBayesMAP . On the other
hand, MetaBayes and MetaBayesSiLP have similar running times while
both have much shorter running times than MilProbLog.

1 Introduction

In [19] grammars are learned using a special-purpose Prolog meta-interpreter.
Hypotheses are generated along various SLD derivation paths by abduction. The
approach is generalised in this paper by (1) replacing the special-purpose meta-
interpreter by a general-purpose meta-interpreter which interprets user-provided
meta-rules and (2) treating the meta-rules as a Stochastic Logic Program (SLP)
[3,15]. In this setting we can view the hypotheses as being derived using Sto-
chastic Refinement [23]. Figure 1 illustrates a Stochastic Refinement tree [23] for
constructing a Finite State Acceptor (FSA). In this tree each path leading to
c© Springer-Verlag Berlin Heidelberg 2014
G. Zaverucha et al. (Eds.): ILP 2013, LNAI 8812, pp. 1–17, 2014.
DOI: 10.1007/978-3-662-44923-3 1

2 S.H. Muggleton et al.

delta(Q0,0,Q0) delta(Q0,0,Q1)

delta(Q0,0,Q0),delta(Q0,1,Q1)

delta(Q2,1,Q2)

0.1
0.1

0.1

delta(Q0,0,Q0),accept(Q0) ..

..

0.15 0.15

q1q0
0

q00

q1
1

q00

q21

q00

0.1
0.1

0.1

..

..

0.15 0.15

))b))a

Fig. 1. Stochastic Refinement tree showing (a) clause containing arcs (delta) and accep-
tors, (b) corresponding Finite State Acceptors. Stochastic Refinement tree edge labels
represent selection probabilities.

a hypothesis can be interpreted either (a) as a series of refinements leading to
a headless Horn clause, representing the negation ¬H of the ground abductive
hypothesis H (see Fig. 1a) or (b) as the derivation of a finite state acceptor by a
meta-interpreter applied to an SLP (Fig. 1b). Furthermore, as in [2], we can view
the SLP as a structural Bayes’ prior over the hypothesis space. In this case, the
posterior is formed by using the positive and negative examples to prune sub-
trees from the prior. Following pruning, selection probabilities for each sub-tree
are renormalised in the posterior.

1.1 Bayesian MIL Versus Probabilistic ILP

According to Bayesian learning theory [4,7], maximal predictive accuracy in learn-
ing is achieved by using a diversity of models, with predictions weighted according
to the sum of posterior probability of the corresponding hypothesis. The imple-
mentation of such a posterior probability as a stochastic refinement graph thus
provides a direct way of using hypothesis sampling approaches to approximate
maximal accuracy machine learning. The relationship between Bayesian MIL
(BMIL) and traditional Probabilistic ILP [22] is illustrated in Fig. 2.

H1

H3 H4

H1 H2

H2

H3 H4

q0 q1

1

0

q0 q1

0

1

0
1

1

0

q0 q1

0

q0 q1

1

1

0

1

0
0

1

Pr(|E)=0.25

Pr(|E)=0.25 Pr(|E)=0.25

Pr(|E)=0.25 q0 q1

0:0.5

0:0.5

1:1.0

1:1.0

0:0.50:0.5

))b))a

Fig. 2. (a) Finite State Acceptor hypotheses generated by BMIL from examples
e+ = 101011011 and e− = 111101. (b) Super-imposed Logic Program formed from
hypotheses in (a).

MetaBayes: Bayesian MIL Using Higher-Order Stochastic Refinement 3

In BMIL the model consists of a set of logic programs, each with an associated
probability. By contrast, in Probabilistic ILP approaches such as ProbLog [8],
Bayesian Logic Programs [12] and Stochastic Logic Programs [16,17] the model
consists of a single logic program with probabilistic parameters associated with
individual clauses. These representations use implicit independence assumptions
to support probabilistic inference. Thus, according to [22] “A ProbLog program
defines a distribution over logic programs by specifying for each clause the prob-
ability that it belongs to a randomly sampled program, and these probabilities
are mutually independent.” Fig. 2a illustrates a uniform posterior distribution
over four two-state FSA hypotheses consistent with a pair 〈e+, e−〉 of positive
and negative examples. By contrast, Fig. 2b shows a Super-imposed Logic Pro-
gram (SiLP) which can be viewed as a summary of the distribution in Fig. 2a.
The SiLP is formed by labelling each arc by the sum of the posterior probabili-
ties of hypotheses in Fig. 2a containing that arc. Note that a SiLP is a ProbLog
program since the label for each clause (the arcs and acceptors) represents the
probability that it belongs to a randomly sampled logic program drawn from the
posterior distribution shown in Fig. 2a.

In order to show how Bayes’ prediction avoids certain forms of error associ-
ated with Probabilistic ILP representations, we note that the Bayes’ prediction
for the negative example e− = 111101 based on the distribution in Fig. 2a is
zero since, by construction, no one of the FSAs accepts this string. However, the
ProbLog program illustrated in Fig. 2b predicts this sequence has a probability
greater than zero. The discrepancy derives from the fact that, contrary to the
ProbLog assumption, the arcs in Fig. 2b are clearly not mutually independent
within the FSAs in Fig. 2a.

1.2 Multiple and Single Models

By consideration of Figs. 2a and b we now compare the relative advantages of a
multiple model predictor versus a single-model predictor.

Multiple models. The key advantage here is the maximal expected predictive
accuracy offered by Bayes’ prediction. It is assumed the target theory is
selected randomly according to the hypothesis prior over the hypothesis
space H. Prediction that instance x = True is based on the sum of posterior
probabilities of all consistent hypotheses in H which make this prediction.
This approach is infeasible in the case of H being a large or infinite space,
though in this case it can be approximated by making predictions based on
a sample of hypotheses.

Single model. This has the advantages of increased understandability. We can
view a SiLP as providing a summarisation of the hypothesis space. In Fig. 2a
we see that most (actually all) consistent hypotheses have 1-arcs from state
q0 to q1 and q1 to q0. By contrast, all the 0-arcs have probability 0.5, meaning
they are as likely to be true as false.

The paper is organised as follows. Section 2 describes the MetaBayes Refine-
ment framework. The implementation of the systems MetaBayes, MetaMAP,

4 S.H. Muggleton et al.

MetaBayesSiLP and MilProbLog (not to be confused with MetaProbLog [14])
are then given in Sect. 3. Experiments on binary prediction (MetaBayes vs
MetaMap) and probabilistic prediction (MetaBayes vs MetaBayesSiLP vs Mil-
ProbLog) are conducted on various datasets, including Finite State Automata
(FSAs), the ancestor relation for the Russian Royal Family and learning lan-
guage semantics. In Sect. 5 we provide a comparison to related work. Lastly we
conclude the paper and discuss future work in Sect. 6.

2 MetaBayes Refinement Framework

2.1 Setting

The setting for Meta-Interpretive Learning (MIL) [19] assumes as input a spe-
cialised Meta-interpreter BM together with two sets of ground atoms representing
background knowledge BA and examples E respectively. The result of learning is
a revised form of the background knowledge containing the original background
knowledge BA augmented with additional ground atoms representing a hypothe-
sis H. We assume H is derived from B = BA and E. Applying Inverse Entailment
B,H |= E is equivalent to B,¬E |= ¬H. In this form we see that B,¬E is given to
the meta-interpreter where ¬E is a goal and the resulting abduced program ¬H
represents a headless Horn clause such as those shown in Fig. 1a.

2.2 Generalised Meta-Interpreter

A series of specific variants of special-purpose meta-interpreters are given in [18,
19] for Regular grammars (MetagolR), Context-free grammars (MetagolCF) and
a fragment of Dyadic definite clause logic (MetagolD). Figure 3a shows a gener-
alised Meta-Interpreter which can emulate each special-purpose meta-interpreter
using a set of domain specific meta-rules such as those shown for finite state accep-
tors (Fig. 3b) [19] and the fragment of dyadic definite clauses (Fig. 3c) investigated
in [18]. As discussed in [18] a meta-rule is a higher-order wff

∃S∀T P (s1, .., sm) ← .., Qi(t1, .., tn), ..

where S, T are disjoint sets of variables, P,Qi ∈ S and sj , tk ∈ T . For instance,
the second finite state acceptor meta-rule in Fig. 3 indicates that with suitable
higher-order ground substitution for the existentially quantified variables S =
{P,C,Q} the higher-order atom delta(P,C,Q) can be interpreted as the first-
order clause P ([C|X], Y) :- Q(X,Y). In this way higher-order abduction of a set
of atoms can be interpreted as first-order induction of a definite program.

2.3 Stochastic Refinement

According to [23] a downward stochastic unary refinement operator is a function
σ : G → 2G×[0,1] defined as follows: σ(C) = {〈Di, pi〉|Di ∈ ρ(C), pi ∈ [0, 1] and∑

pi = 1 for 1 ≤ i ≤ |ρ(C)|} and σ∗(C) = {〈Di, pi〉|Di ∈ ρ∗(C), pi ∈ [0, 1]

MetaBayes: Bayesian MIL Using Higher-Order Stochastic Refinement 5

a)) Generalised meta-interpreter
prove([], P rog, Prog).
prove([Atom|As], P rog1, P rog2) : −

metarule(RuleName,HO Sub, (Atom :- Body), OrderTest),
OrderTest,
abduce(metasub(RuleName,HO Sub), P rog1, P rog3),
prove(Body, Prog3, P rog4),
prove(As, Prog4, P rog2).

b)) Meta-rules for finite state acceptors
metarule(acceptor, [Q], ([Q, [], []] :- []), (term(Q))).
metarule(delta, [P,C,Q], ([P, [C|X], Y] :- [[Q,X, Y]]),

(nonterm(Q), nonterm(P))).

c)) Meta-rules for dyadic fragment
metarule(instance, [P,X, Y], ([P,X, Y] :- []), (pred(P))).
metarule(base, [P,Q], ([P,X, Y] :- [[Q,X, Y]]),

(pred above(P,Q), obj above(X,Y))).
metarule(tailrec, [P,Q], ([P,X, Y] :- [[Q,X,Z], [P,Z, Y]]),

(pred above(P,Q), obj above(X,Z), obj above(Z, Y))).
metarule(chain, [P,Q,R], ([P,X, Y] :- [[Q,X,Z], [R,Z, Y]]),

(pred above(P,R), obj above(X,Z), obj above(Z, Y))).

Fig. 3. Prolog representation of (a) generalised meta-interpreter, (b) Regular grammar
meta-rules and (c) dyadic fragment meta-rules

and
∑

pi = 1 for 1 ≤ i ≤ |ρ∗(C)|}. In [23] it is shown that the n-step stochastic
refinements of a clause represent a probability distribution. In the context of the
meta-interpreter of Fig. 3 we can consider the refinement function ρ to consist of
the selection of a consistentmeta-rule followedby the related abduction of a higher-
order atom1. Stochastic refinement with respect to a meta-interpreter involves
making selections according to a probability distribution over the meta-rules.

2.4 Prior, Likelihood and Posterior

The prior of H relative to background knowledge B can now be defined as
Pr(H|B) =

∑
〈H,p〉∈σ∗(¬B) p and Pr(H) = Pr(H|∅). The likelihood of examples

E with respect to the background knowledge B and hypothesis H is Pr(E|B,H)

=
{

1 if B,H |= E
0 otherwise . Using Bayes’ theorem the posterior is

Pr(H|B,E) =
Pr(H|B)Pr(E|B,H)

c

where c is a normalisation constant. A hypothesis H is said to be MAP in the
case that H ∈ argmaxHPr(H|B,E). A Bayes’ prediction of instance x is defined

by the function BayesP(x) =
{

1 if
∑

H Pr(H|B,E) ≥ 0.5
0 otherwise .

1 Abduce/3 only adds a higher-order atom a to a program P to give P ′ when a �∈ P .

6 S.H. Muggleton et al.

3 Implementation

Below we describe the implementation of four systems: MetaBayes, MetaMAP,
MetaBayesSiLP and MilProbLog. MetaBayes and MetaBayesMAP are variants of
the generalised meta-interpreter where stochastic refinement of the meta-rules is
assumed to be conducted using a uniform distribution at each internal node of
the refinement tree. MetaBayesSiLP is based on MetaBayes. Both MetaBayesSiLP
and MilProbLog output probabilistic programs.

3.1 MetaBayes

This algorithm carries out an approximation to Bayes’ prediction based on
averaging over the posterior probabilities of a set H consisting of a sample of
consistent hypotheses. The set is generated using a method we refer to as Reg-
ular Sampling, in which hypotheses are generated based on a series of fractions
from the sequence 0, 1

2 , 1
4 , 3

4 , 1
8 , 3

8 , 5
8 , 7

8 , ... This sequence has the property of being
evenly distributed in the unit interval [0, 1] without repeating the same fractional
value twice. Considering the consistent hypotheses to be ordered H1,H2, .. left-
to-right in SLD order within the derivation tree, the fraction pi is used to find
the rightmost Hj such that

∑j
k=1 Pr(Hk|B,E) ≤ pi. This is achieved efficiently

by considering that the cumulative posterior probability (the sum of posterior
probabilities of hypothesis preceding a given hypothesis in the derivation tree)
associated with hypotheses found in the sub-trees under each node of the sto-
chastic refinement tree is partitioned into equally sized intervals. Starting at
the root of the refinement tree Hj will be found in the sub-tree whose cumu-
lative posterior probability interval [min,max] is such that min ≤ pi < max.
Within this sub-tree we repeat by selecting the sub-tree containing the probabil-
ity (pi−min)(max−min). The iteration is terminated by the hypothesis returned
by the base case of the meta-interpreter. By bounding the posterior probability
sum of the sample and ignoring duplicates the approach can be made to achieve
the effect of sampling without replacement. Although slightly more complex to
program than an alternative implementation of sampling with replacement, the
Regular Sampling approach achieves higher efficiency by minimising duplicate
sampling due to the spread of hypotheses chosen by the sequence of fractions.

3.2 MetaBayesMAP

This algorithm carries out predictions based on the leftmost consistent hypoth-
esis at minimal depth in the stochastic refinement tree. This hypothesis can be
found efficiently using iterative deepening of derivations from the generalised
meta-interpreter.

3.3 MetaBayesSiLP

This algorithm superimposes the set of hypothesises sampled by MetaBayes.
Specifically, the posterior probabilities of sampled hypotheses are renormalised.

MetaBayes: Bayesian MIL Using Higher-Order Stochastic Refinement 7

Then the summation is carried out for each clause C present in the set of sampled
hypothesises. It follows Eq. 1, where C denotes a clause, p(Hi|E) is the posterior
probability of a hypothesis Hi, p(C|Hi) means the probability of C being true
given that Hi is true, thus p(C|Hi) is either 1 or 0, depending on whether C is
part of Hi. This equation is essentially the same as that of Bayesian prediction
on atoms, except predicting the probabilistic labels on clauses instead of atoms.

p(C|E) =
∑

p(C|Hi) ∗ p(Hi|E) (1)

3.4 MilProbLog

This algorithm is based on ProbLog but loaded with a meta-interpreter and all
possible meta-substitutions, which essentially provides all possible hypothesis
clauses. In this way, a learning task requiring simultaneous model and parameter
estimation is reduced to only parameter estimation. If a clause is assigned with
probability zero, then it implies that this clause is hypothesised as not part of
the learned structure.

4 Experiments

In this section we describe experiments which compare MetaBayes to MetaMAP,
as well as the comparison among MetaBayes, MetaBayesSiLP and MilProbLog.

4.1 Binary Prediction - MetaBayes vs. MetaMap

We first consider the following two Null hypothesis which compares MetaBayes
to MetaMAP in terms of predictive accuracy and running time. We use datasets
of learning FSAs and learning the concept of ancestor.

Null Hypothesis 1.1. MetaBayes does not have higher expected predictive
accuracy than MetaMAP.

Null Hypothesis 1.2. MetaBayes does not have longer expected running time
than MetaMAP.

Learning FSAs
Materials and Methods. 200 randomly chosen FSA were generated using
MetagolR [19]. Specifically, a set of sequences were randomly chosen from Σ∗

for Σ = {0, 1}, then they are used as training examples for MetagolR to learn
FSAs. The target FSAs derived in this way are guaranteed to be minimal, since
MetagolR finds a minimal hypothesis. For each target grammar, 20 training
examples were randomly chosen from Σ∗ for Σ = {0, 1}. Another 1000 test
examples were also randomly sampled without replacement. The examples are
half positive and half negative, therefore the default accuracy is 50 %. Predictive
accuracies and associated learning times were averaged over the 200 FSAs. We
plot the learning curves at training sizes {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}.

8 S.H. Muggleton et al.

The learning systems being compared are MetaBayes and MetaMAP. The
MetaMAP system makes binary prediction, while MetaBayes makes probabilis-
tic prediction. To make them comparable, we use 0.5 as threshold to discretise
the prediction by MetaBayes. Specifically, if a prediction made by MetaBayes is
larger than 0.5, it is regarded as the positive, otherwise equal to 0.5 or smaller
than 0.5 are considered as the negative. MetaBayes’ performance varies with the
size of sampled hypotheses and the given prior. Therefore we run the experiment
with sample sizes as 10, 100, 500, 750 and 1000. For the prior, we considered
priors which are exponential, polynomial and uniform with respect to the descrip-
tion length of a hypothesis. We also considered an informative prior, which is
similar to the exponential prior except being given additional information about
the size of a target hypothesis. The informative prior Pinf is defined as below,
where dl/1 is a function which returns the description length of a hypothesis.
In the case there is no sampled hypotheses having the same size as a target
hypothesis, the informative prior reduces to the exponential prior.

Pinf (H) =
{

1 dl(H) = dl(TargetH)
(1/2)dl(H) dl(H)
= dl(TargetH)

Results and Discussion. Figure 4(a) shows that MetaBayes given an informa-
tive prior has significantly higher predictive accuracies than that of MetaMAP.
MetaBayes with higher sample rate 1000 also has slightly higher accuracies that
of 750. However, the improvement on accuracy comes at cost of running time.
As shown in Fig. 4(b), the total running time of MetaBayes with sample size
1000 is about 30 times longer than that of MetaMAP. The increase of sample
rate in MetaBayes also significantly increase the running time. Therefore both
Null hypothesis 1.1 and 1.2 are refuted by the experiment of learning 200 ran-
domly chosen FSAs. Other results of MetaBayes with different sample sizes and
priors which does not significantly outperform MetaMAP are not plotted due to
limited space.

Learning the Concept of Ancestor
Materials and Methods. We used the family tree of Russian royal family
(Romanov dynasty 1613–1917), which involves 12 generations and 119 persons.
Part of the family tree is shown in Fig. 5a. This dataset has previously been
used in [21]. The background knowledge contains only facts of father/2 and
mother/2. The examples consist of only ancestor/2. No example of parent/2
is given, therefore to learn the target hypothesis in Fig. 5b would require not
just recursion, but also predicate invention. 60 training examples with half pos-
itive and half negative are randomly chosen. They were divided into 5 folds
with size 12. Results from the 5 folds were averaged. There are 1000 test exam-
ples. The default accuracy is 50 %. We plot the learning curves at training sizes
{2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. The rest are the same as that in learning FSAs.

Results and Discussion. Similar to the accuracy graph in Figs. 4a and 6a also show
that MetaBayes given an informative prior has significantly higher predictive

MetaBayes: Bayesian MIL Using Higher-Order Stochastic Refinement 9

a))

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

No. of training examples

MetaBayes_1000
MetaBayes_750

MetaBayes_MAP

b))

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

T
im

e
(s

)

No. of training examples

MetaBayes_1000
MetaBayes_750

MetaBayes_MAP

Fig. 4. Average results for learning FSAs showing (a) predictive accuracies (informative
prior) and (b) running times

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z),

ancestor(Z,Y).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

(a) Russian royal family tree (partial) (b) Target hypothesis of ancestor

Fig. 5. Learning the concept of ancestor

accuracies than that of MetaMAP. The running time difference between Meta
Bayes and MetaMAP is even larger than that of learning FSAs, as shown in Fig. 6b.
This is due to the dramatic increase in hypothesis space. In contrast, the con-
cept of ancestor requires H2

2 representation (Dyadic Datalog programs), which has

10 S.H. Muggleton et al.

a))

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

No. of training examples

MetaBayes_1000
MetaBayes_750

MetaBayes_MAP

b))

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12

T
im

e
(s

)

No. of training examples

MetaBayes_1000
MetaBayes_750

MetaBayes_MAP

Fig. 6. Average results for learning the concept of ancestor showing (a) predictive
accuracies (informative prior) and (b) running times

Universal Turing Machine expressivity [18]. Considering MetaBayes samples from
the entire hypothesis space while MetaMAP only searches through part of the
hypothesis space to find the shortest hypothesis, the increase of hypothesis space
has larger impact on MetaBayes than MetaMAP. Therefore both Null hypothe-
sis 1.1 and 1.2 are also refuted by the above results. The running time graph in
Fig. 6b has very large deviations. Since one of the folds contains examples of ances-
tor involving 10 generations, which leads to significantly longer running time than
the other four folds.

4.2 Probabilistic Prediction - MetaBayes vs. MetaBayesSiLP

vs. MilProbLog

In this subsection, we investigate Null hypothesis 2.1, 2.2 and 2.3 about the
comparison among MetaBayes, MetaBayesSiLP and MilProbLog. Considering all
the three systems make probabilistic predictions, we use likelihood instead of
accuracy as the criterion for comparison.

MetaBayes: Bayesian MIL Using Higher-Order Stochastic Refinement 11

Null Hypothesis 2.1. MetaBayes does not have higher expected likelihood
than MetaBayesSiLP.

Null Hypothesis 2.2. MetaBayes does not have higher expected likelihood
than MilProbLog.

Null Hypothesis 2.3. MetaBayesSiLP does not have higher likelihood than
MilProbLog.

Learning FSAs
Materials and Methods. Considering MilProbLog requires the input of all possible
hypothesis clauses, we have to constrain the hypothesis space to be enumerable.
Therefore we considered learning FSAs with the number of maximum states
Ns as 2, 3 and 4, respectively. We used regular sampling to randomly sample
100 different pairs of sequences from Σ∗ for Σ = {0, 1} with maximum length
10. For each pair of sequences, one is used as the positive while the other is
used as the negative training examples. All possible FSAs with maximum Ns

states that can be derived from the pairs are included in the set of target FSAs.
For example, if e+ = 101011011 and e− = 111101 is one of the pairs of sampled
sequences and Ns = 2 (only two states q0 and q1 are allowed), then there are
four FSAs generable, as depicted in Fig. 2(a). Then all the four FSAs are part
of the target FSAs. We used all the sequences with maximum length 10 as test
examples, thus the size of test examples is 2047. MilProbLog was run with 10
iterations.

Results and Discussion. Figure 7 shows an example of the probabilistic programs
output by MetaBayesSiLP and MilProbLog. Since MetaBayesSiLP carries out
simultaneous model and parameter estimation, it does not require the provi-
sion of candidate hypothesis clauses, but only generates those candidates from
examples in a data-driven fashion. That is why there are two clauses marked
as not generated in Fig. 7a. In contrast, MilProbLog only works when given
structures. Therefore it requires all candidate clauses being provided as input,
even though some of the clauses will not be used for explaining the positive
examples or inconsistent with negative examples. That is why there are para-
meters assigned as 0 in Fig. 7b. Therefore MetaBayesSiLP is more efficient than
MilProbLog, especially when the hypothesis space is large.

Table 1 shows the negloglikelihoods of three systems. The closer to zero the
better, since likelihood being 1 corresponds to loglikelihood being 0. Therefore
MetaBayes has significantly better prediction (smaller negloglikelihood) than
both MetaBayesSiLP and MilProbLog no matter what the value Ns is. Therefore
Null hypothesis 2.1 and 2.2 are refuted. This is consistent with Bayesian learning
theory that Bayesian prediction being optimal.

MetaBayesSiLP and MilProbLog both have significantly worse prediction than
MetaBayes, but MetaBayesSiLP has increasing better prediction than MilProbLog
with the increasing of Ns. This is consistent with the fact that the increas-
ing of Ns leads to the exponential increase of hypothesis space and enlarges
the difference between the search spaces of MetaBayesSiLP and MilProbLog.
Since MetaBayesSiLP is able to constrain its search space to version space, while

12 S.H. Muggleton et al.

0.5 :: q0 →
0.5 :: q0 → 0 q0
1. 0 :: q0 → 1 q1
1.0 :: q1 → 1 q0
0.5 :: q1 → 0 q1
0.5 :: q1 →

not generated
not generated

0.5 :: q1 → 0 q0
0.5 :: q0 → 0 q1

0 :: q0 →
0 :: q0 → 0 q0

1. 0 :: q0 → 1 q1
1.0 :: q1 → 1 q0
0.95 :: q1 → 0 q1
1.0 :: q1 →
0 :: q0 → 1 q0
0 :: q1 → 1 q1

0.99 :: q1 → 0 q0
0.99 :: q0 → 0 q1

(a) MetaBayesSiLP (b) MilProbLog

Fig. 7. Probabilistic programs of learning FSA from e+ = 101011011 and e− = 111101.

MilProbLog has to estimate the probabilities on all candidate clauses. Accord-
ing to Blumer bound, the larger search space leads to higher predictive error.
Therefore Null hypothesis 2.3 is refuted. In terms of running time, MilProbLog
took at least 10 times longer running time than that of MetaBayesSiLP. Such
results shows that MetaBayesSiLP has at least competitive likelihood to that of
MilProbLog while having much shorter running time.

Table 1. NegLogLikelihoods of learning FSAs

Ns MetaBayes MetaBayesSiLP MilProbLog

2 856.70±19.03 1361.43±25.84 1317.14±7.66

3 976.64±5.76 1249.72±9.65 1323.38±1.66

4 820.60±10.20 1034.30±16.70 1306.40±2.58

Learning Language Semantics. Consider a task of validating a hypothesised
food web using domain literature. For example, we might want to know whether
the statement ‘foxes eat rabbits’ is supported by a piece of text from the litera-
ture. The challenge of this task lies in the richness of natural language. Specifi-
cally, there are many different ways to convey the same meaning. For instance,
the sentences ‘foxes are the predator of rabbits’ express the same meaning as that
of ‘foxes eat rabbits’. In [5] such validation task was done manually by human
beings. Human beings are capable of understanding the meaning of a text and
extract relevant information from the text, but it is too time consuming to read
through all literature. More importantly, human beings are capable of learning
the meaning of text if encounter new words or phrases.

Materials and Methods. In this experiment we consider learning semantics from
texts, in particular, learning alternative phrases for expressing the same meaning.
We use the representation of Definite Clause Translation Grammars (DCTG) [1]
to allow both syntactic and semantic paring. Definite Clause Translation Gram-
mars are triadic. It is similar to Definite Clause Grammars, but different in terms

MetaBayes: Bayesian MIL Using Higher-Order Stochastic Refinement 13

s0(Text1,Text3,[M|Meaning]):- s1(Text1,Text2,M),s0(Text2,Text3,Meaning).
s0(Text1,Text3,[M|Meaning]):- s2(Text1,Text2,M),s0(Text2,Text3,Meaning).
s0(Text1,Text3,[M|Meaning]):- s3(Text1,Text2,M),s0(Text2,Text3,Meaning).
s0([Word|Text1],Text2,Meaning):- s0(Text1,Text2,Meaning).

s1([foxes|Text],Text,fox).
s1([fox|Text],Text,fox).
s2([predator,of|Text],Text,eats).
s2([eat|Text],Text,eats).
s3([rabbit|Text],Text,rabbit).
s3([rabbits|Text],Text,rabbit).

Fig. 8. Definite Clause Translation Grammars for parsing Text-Semantic pairs in Fig. 9

s0([foxes, are, the, predator, of, rabbits],[],[fox,eats,rabbits]).
s0([foxes, eat, rabbits],[],[fox,eats,rabbits]).

Fig. 9. Artificial examples of Text-Semantic pairs

of a third argument for carrying the corresponding semantic. Figure 8 gives an
example of DCTG which can parse the Text-Semantic pairs given in Fig. 9. The
target hypothesis of this experiment is a DCTG like the one in Fig. 8. To learn
such a grammar would require learning recursion and predicate invention. An
invented predicates like s2 can be interpreted as the set of phrases for express the
meaning of ‘eat’, while s1 and s3 correspond to predator and prey, respectively.

Six positive examples were gathered from real texts. Another ten negative
examples were derived from positive examples by removing words like ‘eat’ and
‘fed’. Figure 10 shows part of the examples. There are only 16 examples in total,
therefore we used leave-one-out cross-validation. We constrain the candidate
clauses to the phrases with maximum length 2. MilProbLog was run with 10
iterations.

s0([in,the,laboratory,’Pollard(1968)’,found,that,agonum,dorsale,would,climb,freely,
and,fed,on,aphids,on,the,leaves,of,brussels,sprout,plants], [], [agonum,
dorsale,eats,aphids]).

¬s0([in,the,laboratory,’Pollard(1968)’,found,that,agonum,dorsale,would,climb,freely,
and,fed,aphids,on,the,leaves,of,brussels,sprout,plants], [], [agonum,dorsale,eats,
aphids]).

s0([’Dicker(1951)’,noted,that,the,larvae,fed,on,the,strawberry,aphid,pentatrichopus,
fragaefolii,cocker], [], [larvae,eats,aphid]).

s0([it,therefore,seems,likely,that,although,agonum,dorsale,will,eat,a,wide,range,of,
food,’,’,aphids,are,preferred], [],
[agonum,dorsale,eats,aphids]).

Fig. 10. Real-world examples of Text-Semantic pairs (subset of all sixteen examples)

14 S.H. Muggleton et al.

0.31 :: s2([fed,on|Text],Text,eats).
not generated
not generated

0.31 :: s2([will,eat|Text],Text,eats).

0.29 :: s2([fed,on|Text],Text,eats).
0.79 :: s2([fed|Text],Text,eats).
0.35 :: s2([on|Text],Text,eats).
0.47 :: s2([will,eat|Text],Text,eats).

(a) MetaBayesSiLP (b) MilProbLog

Fig. 11. Probabilistic programs of learning language semantic (partial)

Table 2. NegLogLikelihoods of learning language semantic

MetaBayes MetaBayesSiLP MilProbLog

NegLogLikelihood 0 1.58 11.71

Results and Discussion. Figure 11 shows part of the probabilistic programs gen-
erated by MetaBayesSiLP and MilProbLog. It compares the probabilistic labels
on the same clauses. Similar to that in Fig. 7, there are clauses not considered
by MetaBayesSiLP, because they are either unnecessary for explaining the pos-
itive or inconsistent with the negative. For example, the hypothesised clause
‘s2([fed|Text],Text,eats)’ would cover the negative example in Fig. 10.

Table 2 compares the negloglikelihood of the three systems. Similar to the
previous experiment, MetaBayes has the smallest negloglikelihood among the
three systems, thus MetaBayes’ predictor performs best. MetaBayesSiLP also
performs significantly better than MilProbLog, as shown in Table 2. It is worth
noting that the MetaBayesSiLP’s negloglikelihood is significantly smaller than
that of MilProbLog while taking much shorter running time. Therefore all Null
hypotheses 2.1, 2.2 and 2.3 are refuted.

The reason that MetaBayesSiLP significantly outperform MilProbLog is the
same as that in the previous experiment, that is, MetaBayesSiLP has much
smaller search space than that of MilProbLog. For example, when given example-
fold1 with 15 training examples, MilProbLog has 2179 clauses to be estimated,
while there are only 46 for MetaBayesSiLP.

5 Related Work

According to Bayesian learning theory [4,7], maximal predictive accuracy in
learning is achieved by using a diversity of models, with predictions weighted
according to the posterior probability of the corresponding hypothesis. In [11]
error bounds for various Bayesian algorithms were analysed. The paper notes
that while MAP maximises probability of exact identification of the target, it
may have relatively high expected error. The paper goes on to show that the
Gibbs algorithm, which randomly chooses a consistent hypothesis from the pos-
terior distribution, has an error bound which is at most twice that of a Bayes’s
predictor (which is known to be optimal). These theoretical results are consistent
with the experiments described in Sect. 4, and are also pertinent to a number of
more ad hoc approaches to “model averaging” which have demonstrated signifi-
cant predictive accuracy increases. These approaches are usually grouped under

MetaBayes: Bayesian MIL Using Higher-Order Stochastic Refinement 15

the title of ensemble methods and include boosting [9,13] and bagging [6,25].
Unlike the approach described in the present paper ensemble approaches use a
more ad hoc approach to model-averaging, not based on an explicit Bayesian
prior over the hypothesis space. However, the use of such a prior is directly
comparable to the use of SLPs for sampling Bayes’ nets investigated in [2]. The
present paper extends this general approach to an ILP context, and demonstrates
its predictive accuracy advantages in a context which supports the invention of
relations and recursive programs. Within the ILP literature randomised search
[20,24] has been widely investigated. However, unlike the approaches described in
this paper, these searches involve heuristic step-wise optimisation, rather than
sampling and averaging predictions over a posterior distribution. The related
areas of Probabilistic ILP (PILP) [22] and Statistical Relation Learning (SRL)
[10] involve combining Bayesian inference and ILP, though this is in the context
of Probabilistic Logic representations. The treatment of a set of meta-rules as
an SLP is akin to this, though the logical reasoning is necessarily in terms of
higher-order clauses rather than the probabilistic first-order representations used
in PILP and SRL.

6 Conclusion and Further Work

This paper extends previous work on Meta-Interpretive Learning [18,19] by
demonstrating that a Bayesian prior can be implemented as a meta-interpreter
over a stochastic logic program consisting of higher-order meta-rules. We use
this approach to suggest a method for carrying out simultaneous structure and
parameter estimation for a form of ProbLog program which we refer to as SiLPs.

The approach supports sampling of hypotheses consistent with a given set of
examples and background knowledge, and has been used to implement approx-
imated Bayes’ prediction in a system called MetaBayes. Similarly we imple-
ment a Bayes’ MAP algorithm together with one caled MetaBayesSiLP which
estimates structure and parameters of SiLPs. Our experiments indicate that
approximated Bayes’ prediction significantly outperform MAP on binary predic-
tion tasks involving FSAs and prediction of ancestor relationships in the Russian
Royal family dataset. The results are in line with theoretical predictions. Fur-
thermore on probabilistic prediction our MetaBayes outperforms MetaBayesSiLP
which in turn outperforms Problog on negative log likelihood prediction on both
the FSA dataset and a natural language task involving ranking of probabilistic
predictions.

Further work will address efficiency improvements in the algorithms as well
as extensions to handle classification noise in the data and the use of Bayesian
inference in active learning.

Acknowledgements. The authors would like to acknowledge the support of Syngenta
in its funding of the University Innovations Centre at Imperial College. The first author
would like to thank the Royal Academy of Engineering and Syngenta for funding his
present 5 years Research Chair.

16 S.H. Muggleton et al.

References

1. Abramson, H.: Definite clause translation grammars. Technical report, Vancouver,
BC, Canada, Canada (1984)

2. Angelopoulos, N., Cussens, J.: Markov chain Monte Carlo using tree-based priors
on model structure. In: UAI-2001. Kaufmann, Los Altos (2001)

3. Arvanitis, A., Muggleton, S.H., Chen, J., Watanabe, H.: Abduction with stochastic
logic programs based on a possible worlds semantics. In: Short Paper Proceedings
of the 16th International Conference on Inductive Logic Programming. University
of Corunna (2006)

4. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, New York (1994)
5. Bohan, D.A., Caron-Lormier, G., Muggleton, S.H., Raybould, A., Tamaddoni-

Nezhad, A.: Automated discovery of food webs from ecological data using logic-
based machine learning. PloS ONE 6(12), e29028 (2011)

6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
7. Buntine, W.: A theory of learning classification rules. Ph.D. thesis. School of Com-

puting Science, University of Technology, Sydney (1990)
8. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its

applications in link discovery. In: de Mantaras, R.L., Veloso, M.M. (eds.) Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence, pp.
804–809 (2007)

9. Freund, Y., Shapire, R.: A decision theoretic generalisation of on-line learning and
an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

10. Getoor, L.: Tutorial on statistical relational learning. In: Kramer, S., Pfahringer,
B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 415–415. Springer, Heidelberg
(2005)

11. Haussler, D., Kearns, M., Shapire, R.: Bounds on the sample complexity of
Bayesian learning using information theory and the VC dimension. Mach. Learn.
J. 14(1), 83–113 (1994)

12. Kersting, K., De Raedt, L.: Towards combining inductive logic programming with
Bayesian networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI),
vol. 2157, pp. 118–131. Springer, Heidelberg (2001)

13. Lodhi, H., Muggleton, S.H.: Modelling metabolic pathways using stochastic logic
programs-based ensemble methods. In: Danos, V., Schachter, V. (eds.) CMSB 2004.
LNCS (LNBI), vol. 3082, pp. 119–133. Springer, Heidelberg (2005)

14. Mantadelis, T., Janssens, G.: Nesting probabilistic inference. In: Proceedings of
the International Colloquium on Implementation of Constraint and LOgic Pro-
gramming Systems (CICLOPS), pp. 1–16, Lexington, Kentucky. Springer-Verlag
(2011)

15. Muggleton, S.H.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in
Inductive Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)

16. Muggleton, S.H.: Stochastic logic programs. J. Logic Program. (2001). Accepted
subject to revision

17. Muggleton, S.H.: Learning structure and parameters of stochastic logic programs.
Electron. Trans. Artif.Intell. 6 (2002)

18. Muggleton, S.H., Lin, D.: Meta-interpretive learning of higher-order dyadic data-
log: predicate invention revisited. In: Proceedings of the 23rd International Joint
Conference Artificial Intelligence (IJCAI 2013), pp. 1551–1557 (2013)

19. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive
learning: application to grammatical inference. Mach. Learn. 94, 25–49 (2014)

MetaBayes: Bayesian MIL Using Higher-Order Stochastic Refinement 17

20. Muggleton, S.H., Tamaddoni-Nezhad, A.: QG/GA: a stochastic search for Progol.
Mach. Learn. 70(2–3), 123–133 (2007). doi:10.1007/s10994-007-5029-3

21. Pahlavi, N., Muggleton, S.H.: Towards efficient higher-order logic learning in a first-
order datalog framework. In: Latest Advances in Inductive Logic Programming.
Imperial College Press (2012) (in Press)

22. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Induc-
tive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg
(2008)

23. Tamaddoni-Nezhad, A., Muggleton, S.: Stochastic refinement. In: Frasconi, P., Lisi,
F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 222–237. Springer, Heidelberg (2011)

24. Železný, F., Srinivasan, A., Page, D.L.: Lattice-search runtime distributions may
be heavy-tailed. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol.
2583, pp. 333–345. Springer, Heidelberg (2003)

25. Zhu, J., Zou, H., Rosset, S., Hastie, T.: Multi-class adaboost. Stat. Interface 2,
349–360 (2009)

http://dx.doi.org/10.1007/s10994-007-5029-3

On Differentially Private Inductive Logic
Programming

Chen Zeng(B), Eric Lantz, Jeffrey F. Naughton, and David Page

Department of Computer Sciences, University of Wisconsin-Madison, Madison, USA
{zeng,lantz,naughton,page}@cs.wisc.edu

Abstract. We consider differentially private inductive logic program-
ming. We begin by formulating the problem of guarantee differential
privacy to inductive logic programming, and then prove the theoretical
difficulty of simultaneously providing good utility and good privacy in
this task. While our analysis proves that in general this is very difficult,
it leaves a glimmer of hope in that when the size of the training data is
large or the search tree for hypotheses is “short” and “narrow,” we might
be able to get meaningful results. To prove our intuition, we implement
a differentially private version of Aleph, and our experimental results
show that our algorithm is able to produce accurate results for those two
cases.

1 Introduction

Recently, concomitant with the increasing ability to collect personal data, pri-
vacy has become a major concern. In this paper, we focus on privacy issues that
arise in the context of inductive logic programming (ILP).

Given an encoding of a set of examples represented as a logical database
of facts, an ILP algorithm will attempt to derive a hypothesized logic program
which entails all the positive and none of the negative examples. Developing
efficient algorithms for ILP has been widely studied by the machine learning
community [1]. However, to the best of our knowledge, a differentially private
approach to ILP has received little attention.

ILP induces hypotheses from examples collected from individuals and to
synthesize new knowledge from the examples. This approach naturally creates
a privacy concern — how can we be confident that publishing these hypotheses
and knowledge does not violate the privacy of the individuals whose data are
being studied? This problem is compounded by the fact that we may not even
know what data the individuals would like to protect nor what side information
might be possessed by an adversary. These compounding factors are exactly the
ones addressed by differential privacy [2], which intuitively guarantees that the
presence of an individual’s data in a dataset does not reveal much about that
individual. Differential privacy has previously been explored in the context of
other machine learning algorithms [3,4]. Accordingly, in this paper we explore
c© Springer-Verlag Berlin Heidelberg 2014
G. Zaverucha et al. (Eds.): ILP 2013, LNAI 8812, pp. 18–30, 2014.
DOI: 10.1007/978-3-662-44923-3 2

On Differentially Private Inductive Logic Programming 19

the possibility of developing differentially private ILP algorithms. Our goal is to
guarantee differential privacy without obliterating the utility of the algorithm.

An obvious but important observation is that privacy is just one aspect of
the problem; utility also matters. In this paper, we quantify the utility of a dif-
ferentially private ILP algorithm by its likelihood to produce a sound result.
Intuitively speaking, “soundness” requires an algorithm to include a hypothe-
sis that is correct in a sufficiently large subset of the database. We start by
showing the trade-off between privacy and utility in ILP. Our result unfortu-
nately indicates that the problem is very hard — that is, in general, one cannot
simultaneously guarantee high utility and a high degree of privacy.

However, a closer investigation of this negative result reveals that if we can
either reduce the hypotheses space or increase the size of the input data, then
perhaps there is a differentially private ILP algorithm that is able to produce a
high quality result while guaranteeing privacy. To verify this, we implement a
differentially private ILP algorithm and run experiments on a synthetic dataset.
Our results indicate that our algorithm is able to produce results of high quality
while guaranteeing differential privacy when those two conditions are met.

The rest of the paper is organized as follows: Sect. 2 briefly describes the prob-
lem of ILP, and the notion of differential privacy. Section 3 formulates the prob-
lem of guaranteeing differential privacy to ILP. Section 4 explores the trade-off
between privacy and utility in ILP. Section 5 proposes our differentially private
ILP algorithm, and Sect. 6 evaluates our algorithm on a synthetic dataset.

2 Preliminaries

In this section we review the problem of ILP and the notion of differential privacy.

2.1 Inductive Logic Programming

Inductive logic programming investigates the inductive construction of first-order
clausal theories from examples. Let M+(T) be the minimal Herbrand model of
a definite clause T . The problem of inductive logic programming is formulated
in Definition 1.

Definition 1 (Inductive logic programming [1]1): Given two languages,

– L1: the language of database.
– L2: the language of hypotheses.

Given a consistent set of background knowledge B ⊆ L1, find a hypothesis H ∈
L2, such that:

1. Validity: ∀h ∈ H, h is true in M+(B).
2. Completeness: if general clause g is true in M+(B), then H |= g.
3. Minimality: there is no proper subset G of H which is valid and complete.
1 This formulation uses non-monotonic semantics.

20 C. Zeng et al.

In the rest of the paper, we assume both L1 and L2 are fixed unless otherwise
specified. Note that in the literature of differential privacy [2], the terminology
of “background knowledge” is different from the context in ILP and denotes
the side information an adversary possesses to attack the privacy of a specific
individual in the underlying database. To prevent that confusion, we use the
term “database” to represent the background knowledge shown in Definition 1.
In the rest of this paper, we use ‖D‖ to represent the number of individuals in
a database D. We also refer L2 as the hypotheses space.

2.2 Differential Privacy

Intuitively, differential privacy guarantees that the presence or absence of an
individual’s information has little effect on the output of an algorithm, and thus,
an adversary can learn limited information about any individual. More precisely,
for any database τ ∈ D, let nbrs(τ) denote the set of neighboring databases of
τ , each of which differs from τ by at most one row. Differential privacy requires
that the probability of an algorithm to output the same result on any pair of
neighboring databases are bounded by a constant ratio.

Definition 2 (ε-differential privacy [2]): For any input database τ , a random-
ized algorithm f is ε-differentially private iff for any S ⊆ Range(f), and any
database τ ′ ∈ nbrs(τ),

Pr(f(τ) ∈ S) ≤ eε Pr(f(τ ′) ∈ S)

where Pr is the probability taken over the coin tosses of the algorithm f .

One way to guarantee differential privacy for a count query is to perturb the
correct result. In particular, Ghosh et al. [5] propose the geometric mechanism
to guarantee ε-differential privacy for a single count query. The geometric mech-
anism adds noise Δ drawn from the two-sided geometric distribution G(ε) with
the following probability distribution: for any integer σ,

Pr(Δ = σ) ∼ e−ε|σ| (1)

The geometric mechanism is a discrete variant of the Laplacian mecha-
nism [6], which adds random noise drawn from the Laplacian distribution. To
ensure differential privacy for multiple count queries, we first compute the sen-
sitivity of those queries, which is the largest difference between the output of
those queries on any pair of neighboring databases.

Definition 3 (Sensitivity): Given d count queries, q = 〈q1, . . . , qd〉, the sensi-
tivity of q is:

Sq = max
∀τ,τ ′∈nbrs(τ)

|q(τ) − q(τ ′)|1

On Differentially Private Inductive Logic Programming 21

Notice that the output of q is a vector of dimension d, and we use |x − y|p
to denote the Lp distance between two vectors x and y. The following theorem
is a straightforward extension of the Laplacian mechanism to the geometric
mechanism.

Theorem 1. Given d count queries q = 〈q1, . . . , qd〉, for any database τ , the
database access mechanism: Aq(τ) = q(τ) + 〈Δ1, . . . ,Δd〉 where Δi is drawn
i.i.d from the geometric distribution G(ε/Sq) (1), guarantees ε-differential pri-
vacy for q.

As proved in [6], a sequence of differentially private computations also ensures
differential privacy. This is called the composition property of differential privacy
as shown in Theorem 2.

Theorem 2. [6] Given a sequence of computations, denoted as f = f1,. . .,fd,
if each computation fi guarantees εi-differential privacy, then f is (

∑i=d
i=1 εi)-

differentially private.

3 Problem Formulation

In analogy to Definition 2, we formulate the problem of guaranteeing differential
privacy to ILP in Definition 4.

Definition 4 (Diff. Private ILP): An ILP algorithm f is ε-differentially private
iff for any pair of neighboring databases2 D1 and D2, for any H ∈ L2.

Pr(f(D1) = H) ≤ eε Pr(f(D2) = H)

By Definition 4, the output hypothesis does not necessarily satisfy the three
requirements stated in Definition 1. The reason is that by Definition 2, any dif-
ferentially private algorithm must be randomized in nature.

4 Trade-Off on Privacy and Utility

Although privacy is a very important problem in ILP, utility also matters; a
trivial differentially private ILP algorithm can be generated by randomly out-
putting a hypothesis regardless of the underlying database. Though private, this
algorithm is useless in practice. Therefore, we also need to quantify the utility
of a hypothesis.
2 In the differential privacy literature, databases are typically thought of as single

tables. In a multi-relational setting, the proper definition of “neighboring” might
change. For example, in a medical domain a neighboring database would remove one
patient along with their respective prescriptions and diagnoses from other tables.

22 C. Zeng et al.

4.1 Our Utility Model

Our intuition for the utility model is to relax the requirements on hypotheses in
Definition 1. In particular, we relax both the validity and completeness require-
ment, and introduce the notion of δ-usefulness (0 ≤ δ ≤ 1).

Definition 5 (δ-usefulness): A hypothesis H is δ-useful for the input database
D iff ∃D′ ⊆ D, and ‖D′‖/‖D‖ ≥ δ such that

1. Approximate validity: ∀h ∈ H, h ∈ M+(D′).
2. Approximate completeness: if a general clause g is true in M+D′, then

H |= g.
3. Minimality: there is no subset of H which is validate and complete in D′.

The notion of δ-usefulness quantifies the quality of a hypothesis in terms
of the percentage of input database in which that hypothesis is correct. Fur-
thermore, we define the quality of a differentially private ILP algorithm by its
likelihood η to produce hypotheses of high quality. This is shown in Definition 6.

Definition 6 ((δ, η)-approximation): An ILP algorithm f is (δ, η)-approximate
iff for any input database D,

Pr(f(D) is δ-useful) ≥ 1 − η

Both δ and η should be within the range of (0, 1) by definition. Another
way to understand the notion of (δ, η)-approximation is through the idea of
PAC-learning [7] and define the notion of “approximate correctness” in terms of
δ-usefulness. Next, we will quantify the trade-off between privacy and utility in
ILP.

4.2 A Lower Bound on Privacy Parameter

Our techniques to prove the lower bound on the privacy parameter come from
differentially private itemset mining [8]. Perhaps this is no surprise since both
frequent itemset mining and association rule mining have been closely connected
with the context of ILP [9] in which frequent itemset mining can be encoded as
a ILP problem. We prove the lower bound on the privacy parameter ε if an ILP
algorithm must be both ε-differentially private and (δ, η)-useful. This is shown
in Theorem 3.

Theorem 3. For any ILP algorithm that is both ε-differentially private and
(δ, η)-useful,

ε ≥ ln(‖2n‖)(1 − η)
2((1 − δ)‖D‖ + 1)

where n is the number of atoms in the language of hypotheses L2.

On Differentially Private Inductive Logic Programming 23

Proof. We model the language of the input database L1 as follows: each atom is
taken from the set I = {a1, . . . , an}, and each individual’s data is represented by
a conjunctive clause of the atoms. We also model the language of the hypotheses
L2 to be all the possible conjunctive clauses over the set of atoms I.

Suppose f is an ILP algorithm that is both ε-differentially private and (δ, η)-
useful. To better understand our proof technique, we add another atom an+1

to I, and then we construct an input database D of size m by including δ ∗ m
clauses of the form h1 = a1 ∧ a2 ∧ . . . ∧ an ∧ an+1. The rest are constructed as
simply h2 = an+1. Since the number of all the hypotheses including an+1 is 2n,
there must exist a particular hypothesis h3 such that

Pr(f(B) = h3) ≤ 1
2n

Without loss of generality, let h3 = a1∧a2∧ . . . ak ∧an+1. Then, we construct
another database D′ from D by replacing one clause of h1 by h3, and then every
clause of h2 by h3. Thus, there is a total number of δm − 1 clauses of h1 in B′

and the rest of them being h3. It is not hard to show that h3 is the only δ-useful
hypothesis in B: any subset of B of cardinality δm must contain at least one h3,
and thus, the δ-valid hypotheses are those that can be entailed by h3. Hence,

Pr(f(D′) = h3) ≥ 1 − η

Since D′ and D differ by 2((1 − δ)m + 1) rows (one can think of this difference
as the edit distance between two databases), by differential privacy,

1 − η ≤ eε(2((1−δ)m+1))

2n

Theorem 3 then follows.

The result of Theorem 3 is similar in flavor to [10], which proved that there is
no differentially private algorithm that is able to answer O(n2) count queries in
a database of size n with reasonable accuracy. That is, if an ILP algorithm can
be thought of as a sequence of count queries, and if the number of count queries
exceeds a certain threshold, then the ILP algorithm cannot produce a result of
high quality.

This is a discouraging result, which states that in general, it is very hard to
simultaneously guarantee both differential privacy and a high utility requirement
since ‖L2‖ grows exponentially with the number of atoms. Theorem3 suggests
that in order to decrease the lower bound on the privacy parameter, we must
either increase the size of the database ‖D‖, or reduce the number of atoms in
the hypotheses space L2. If a real world problem meets those two conditions,
we might be able to get results of high quality while guaranteeing differential
privacy. To verify this, we propose a differentially private ILP algorithm.

5 Differentially Private ILP Algorithm

In this section, we will first briefly describe a typical non-private ILP algorithm,
inverse entailment as implemented in Aleph [11], and then show our revisions

24 C. Zeng et al.

of the non-private algorithm to guarantee differential privacy. In the rest of this
section, we follow the terminologies used in Aleph in which an atom is also called
a “predicate.”

5.1 A Non-private ILP Algorithm

The non-private ILP algorithm works as follows:

1. Select an example (selection): Select an example in the database to be gen-
eralized.

2. Build most-specific-clause (saturation [12]): Construct the most specific clause
that entails the example selected, and is within language restrictions provided.
This is usually a definite clause with many literals, and is called the “bottom
clause.”

3. Search (reduction): Find a clause more general than the bottom clause. This
is done by searching for some subset of the predicates in the bottom clause
that has the “best” score.

4. Remove redundant (cover removal): The clause with the best score is added
to the current hypothesis, and all examples made redundant are removed.

A careful analysis of the above steps shows that the selection and reduc-
tion steps directly utilize the input data while the saturation and cover removal
steps depend on the output from the previous step. Thus, as discussed in lit-
erature [2], as long as we can guarantee the output from both selection and
reduction is differentially private, then it is safe to utilize those output in subse-
quent computation. Hence, we only need to consider the problem of guaranteeing
differential privacy for those two steps.

The input to the learning algorithm consists of a target predicate, which
appears in the head of hypothesized clauses. The input database can be divided
into two parts: the set of positive examples E+ ⊆ D which satisfy the target
predicate, and the set of negative examples E− ⊆ D which do not. Furthermore,
the bottom clause is normally expressed as the conjunctive form of the predicates,
and thus we also use a “subset of the predicates” to denote the clause that is of
the conjunctive form of the predicates in that subset.

5.2 A Differentially Private Selection Algorithm

The non-private selection algorithm is a sampling algorithm that randomly
selects an individual’s data to generalize. However, as discussed in [6], no sam-
pling algorithm is differentially private. In this paper, we propose to use domain
knowledge to overcome this obstacle. That is, we utilize the domain knowledge to
generate a “fake” example. We want to emphasize that the domain information
might come from external knowledge or previous interactions with the database.
This information does not weaken the definition of differential privacy as stated
in Definition 2, and we only utilize these previous known information to generate
a fake example. In the worst case, this example can be expressed as the conjunc-
tion of all the predicates, which is considered as the public information. In that

On Differentially Private Inductive Logic Programming 25

way, the new selection step hardly relies on the input database, and thus, it is
differentially private3.

5.3 A Differentially Private Reduction Algorithm

The non-private reduction algorithm actually consists of two steps: (1) the
heuristic method to search for a clause, which is a subset of predicates in the
bottom clause, and (2) the scoring function to evaluate the quality of a clause.
Although there are many different methods to implement the reduction algo-
rithm [1], in this paper we follow the standard usage in Aleph in which the
heuristic method is a top-down breadth-first search and the scoring function is
coverage (the number of covered positive examples minus the number of covered
negative examples). The search starts from the empty set and proceeds by the
increasing order of the cardinality of the clauses until a satisfying clause is found.
The pseudocode of the non-private reduction algorithm is shown in Algorithm1.

Algorithm 1. Non-Private Reduction

Input: positive evidence E+; negative evidence E−; bottom clause Hb

Output:the best clause

1: k = number of predicates in Hb

2: L = the lattice on the subset of predicates in Hb

3: for i = 1 to k do
4: for each set S ∈ L, ‖S‖ = i do
5: P = the number of positive examples satisfying S
6: N = the number of negative examples satisfying S
7: H∗ = S if S has better coverage than the previously best clause
8: end for
9: end for

10: return H∗

A Näıve Differentially Private Algorithm. We observe that the only part
in Algorithm 1 that needs to inquire the input database is in the computation
of P and N shown in line 5 and line 6, respectively. Therefore, as long as we
can guarantee differential privacy to those two computations, then the reduction
algorithm is differentially private. We do so by utilizing the geometric mecha-
nism. Given a clause h, let q+h and q−

h be the queries that compute the number
of positive examples satisfying h and the number of negative examples satisfying
h, respectively. Then, as shown in Theorem 4, the sensitivity to evaluate a set of
clauses is equal to the number of clauses in the set.
3 An alternative is to relax the privacy definition from ε-differential privacy to (ε, δ)-

differential privacy. In this context, δ (unlike the symbol’s use in Sect. 4) refers to the
probability that the algorithm violates the ε-differential privacy guarantee. We do
not explore it here as it makes the already burdensome utility bounds much worse.

26 C. Zeng et al.

Theorem 4. Given a set of clauses H = {h1, h2, . . . , hn}, and the corresponding
evaluation queries q = {q+h1

, q−
h1

, . . . , q+hn
, q−

hn
}, the sensitivity of q is n.

Proof. When we add an example, it either satisfies the clause or not, and is
either positive or negative, therefore the sensitivity of q is at most n. Without
loss of generality, suppose we add a positive example satisfying the clause. By
adding an individual whose data is exactly the bottom clause, the result of every
q+hi

increases by one. The theorem then follows.

We show our differentially private reduction algorithm in Algorithm2.

Algorithm 2. Diff. Private Reduction

Input: positive evidence E+; negative evidence E−; bottom clause Hb; privacy para-
meter ε
Output:the best clause

1: k = number of predicates in Hb

2: L = build a lattice on the subset of predicates in Hb

3: for i = 1 to k do
4: for each subset h ∈ L, ‖S‖ = i do
5: P ′ = q+h (E+) + G(ε/‖L‖)
6: N ′ = q+h (E−) + G(ε/‖L‖)
7: H∗ = S if S has better coverage than the previously best clause w.r.t. P ′

and N ′

8: end for
9: end for

10: return H∗

By Theorem 4, we can prove Algorithm 2 is differentially private. This is
shown in Theorem 5.

Theorem 5. Algorithm2 is ε-differentially private.

The Smart Differentially Private Reduction Algorithm. We observe that
Algorithm 2 has only considered the worst-case scenario in which the number of
clauses to be evaluated is the whole lattice whereas in practice, the reduction
algorithm seldom goes through every clause in the lattice. This occurs when
criteria are set to specify unproductive clauses for pruning (preventing evaluation
of supersets) or for stopping the algorithm. Thus, the number of clauses evaluated
in practice is much less than that in the whole lattice, which means the scale
of the noise added is larger than necessary. If the quality of a clause does not
meet certain criterion, then there is no need to evaluate the subtree in the lattice
rooted at that clause. This algorithm is shown in 3.

We have also introduced another parameter � in Algorithm 3 to specify the
maximal cardinality of the desired clause, which also helps to reduce the num-
ber of clauses to be evaluated. We prove Algorithm 3 is differentially private in
Theorem 6.

On Differentially Private Inductive Logic Programming 27

Algorithm 3. Smart Diff Private Reduction

Input: positive evidence E+; negative evidence E−; bottom clause Hb; privacy para-
meter ε; levels �
Output:the best clause

1: L = build a lattice on the subset of predicates in Hb

2: for i = 0 to � do
3: β = the number of clauses with k predicates existing in the lattice
4: for each subset h ∈ L, ‖S‖ = i do
5: P ′ = q+h (E+) + G(ε

β(�+1)
)

6: N ′ = q+h (E−) + G(ε
β(�+1)

)

7: H∗ = S if S has better coverage than the previously best clause
8: if P ′ and N ′ does not meet the criterion then
9: Delete the subtrees in the lattice rooted at S

10: end if
11: end for
12: end for
13: return H∗

Theorem 6. Algorithm3 is ε-differentially private.

Proof. By Theorem 4, the computation for each level is (ε/(� + 1)-differentially
private, and since there is at most � + 1 levels to compute, by the composition
property of differential privacy in Theorems 2 and 6 then follows.

5.4 Our Differentially Private ILP Algorithm

By using our differentially private selection algorithm and the smart differentially
private reduction algorithm, we present our differentially private ILP algorithm
in Algorithm 4. Since the output might consist of multiple clauses, we add the
input parameter k which specifies the maximal number of clauses in the theory.
We understand that this is not a usual setting for the usage of Aleph. However,
in order to guarantee differential privacy, the most convenient way is to utilize
the composition property which needs to know the number of computations in
advance. We leave the problem to overcome this obstacle for future work.

By the composition property of differential privacy, we can prove that Algo-
rithm4 is differentially private.

Theorem 7. Algorithm4 is ε-differentially private.

6 Experiment

In our experiments, we run our differentially private algorithm on synthetic
data generated by the train generator described in [12], in which the goal is
to discriminate eastbound versus westbound trains based on the properties of

28 C. Zeng et al.

Algorithm 4. Diff. Private ILP Algorithm

Input: positive evidence E+; negative evidence E−; privacy parameter ε; levels �;
rounds k
Output:the best theory

1: T = ∅
2: for i = 1 to k do
3: Hb = Select a bottom clause in a differentially private way
4: h = Smart Diff Private Reduction(E+, E−, ε/k, �)
5: Add h to T
6: Remove redundant examples using h
7: end for
8: return T

their railcars. In all the experiments, we set the privacy parameter ε to be 1.0,
and vary both the size of the data and the desired hypothesis to see how our
algorithm performs. We measure the quality of our algorithm in terms of the
accuracy of the output theory on a testing set. In all of our experiments, the
näıve guess is the clause that assumes every train is eastbound.

In our first experiment, we only consider a hypothesis of one clause. We vary
the number of predicates in the clause, and the results are shown in Fig. 1. As
we can see in Fig. 1a, when there are three predicates in the desired clause,
our private learning algorithm is able to learn the clause more accurately with
more training data as discussed in Sect. 4. Furthermore, we also observe that our
smart reduction algorithm shown in Algorithm3 produces better results than the
näıve reduction algorithm, demonstrating that reducing added noise by pruning
low scoring clauses produces more accurate results. However, when increasing
the number of predicates in the desired clause, the quality of our algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.4

0.5

0.6

0.7

0.8

0.9

1

Database size

Ac
cu

ra
cy

Naive guess
Naive Private learning
Private Learning

(a) Three Atoms

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Database size

Ac
cu

ra
cy

Naive guess
Private learning
Non−Private Aleph

(b) Six Atoms

Fig. 1. One clause with different number of predicates

On Differentially Private Inductive Logic Programming 29

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Database size

A
cc

ur
ac

y

Naive guess
Private learning
Non−Private Aleph

(a) Two Clauses

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Database size

%
 o

f E
rr

or
 R

ed
uc

tio
n

One rule
Two rules
Three rules

(b) Multiple Clauses

Fig. 2. Multiple clauses with the same number of predicates

decreases. This is no surprise as the hypotheses space grows exponentially with
the number of the predicates.

We also investigate the effects on the number of clauses in a desired hypoth-
esis, each of which consists of three predicates. As we can see, in Fig. 2a, our
private learning algorithm is able to produce high quality hypothesis with the
growth in the size of the data, which is significantly better than the case of a
single clause with six predicates. This is because the addition of a clause only
increases the hypotheses space multiplicatively instead of exponentially. In both
Figs. 1 and 2a we see that a large performance penalty is paid by the differen-
tially private algorithms, as the non-private algorithm achieves perfect accuracy
in all cases. Figure 2b shows the percentage of error reduction as more clauses
need to be learned, showing the penalty due to the privacy budget being split
among multiple clauses.

7 Conclusion

In this paper, we have proposed a differentially private ILP algorithm. We have
precisely quantified the trade-off between privacy and utility in ILP, and our
results indicate that in order to satisfy a non-trivial utility requirement, an ILP
algorithm incurs a huge risk of privacy breach. However, we find that when
limiting the hypotheses space and increasing the size of the input data, our
algorithm is able to output a hypothesis with high quality on synthetic data set.
To the best of our knowledge, ours is the first one to attack this problem. With
the availability of security-sensitive data such as electronic health records, we
hope more and more people begin to pay attention to the privacy issues arising
in the context of ILP.

There are many potential opportunities for future work. One such direction
would be to formalize the notion of differential privacy with first-order logic, and
discuss the tradeoff between privacy and utility in that context. Furthermore,

30 C. Zeng et al.

we have only considered ILP with definite clauses, and it would be interesting
to expand our work to statistical relational learning [13]. Finally, since our algo-
rithm requires one to limit the hypotheses space, it would also be interesting to
investigate the feature selection problem in the context of differential privacy.

References

1. Muggleton, S., de Raedt, L.: Inductive logic programming: theory and methods. J.
Logic Program. 19, 629–679 (1994)

2. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

3. Williams, O., McSherry, F.: Probabilistic inference and differential privacy. In:
Advances in Neural Information Processing Systems, vol. 23 (2010)

4. Rubinstein, B.I.P., Bartlett, P.L., Huang, L., Taft, N.: Learning in a large function
space: privacy-preserving mechanisms for SVM learning. CoRR (2009)

5. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing
privacy mechanisms. In: STOC (2009)

6. Dwork, C., Mcsherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: TCS (2006)

7. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
8. Zeng, C., Naughton, J.F., Cai, J.Y.: On differentially private frequent itemset min-

ing. Proc. VLDB Endow. 6(1), 25–36 (2012)
9. Dehaspe, L., Raedt, L.D.: Mining association rules in multiple relations. In. Pro-

ceedings of the 7th International Workshop on Inductive Logic Programming
(1997)

10. Ullman, J.: Answering n2+o(1) counting queries with differential privacy is hard.
CoRR abs/1207.6945 (2012)

11. http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
12. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13, 245–286

(1995)
13. De Raedt, L.: Statistical relational learning: an inductive logic programming per-

spective. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.)
PKDD 2005. LNCS (LNAI), vol. 3721, pp. 3–5. Springer, Heidelberg (2005)

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

Learning Through Hypothesis Refinement
Using Answer Set Programming

Duangtida Athakravi(B), Domenico Corapi, Krysia Broda,
and Alessandra Russo

Imperial College London, London, UK
{duangtida.athakravi07,d.corapi,k.broda,a.russo}@ic.ac.uk

Abstract. Recent work has shown how a meta-level approach to induc-
tive logic programming, which uses a semantic-preserving transformation
of a learning task into an abductive reasoning problem, can address a
large class of multi-predicate, nonmonotonic learning in a sound and
complete manner. An Answer Set Programming (ASP) implementation,
called ASPAL, has been proposed that uses ASP fixed point computation
to solve a learning task, thus delegating the search to the ASP solver.
Although this meta-level approach has been shown to be very general
and flexible, the scalability of its ASP implementation is constrained by
the grounding of the meta-theory. In this paper we build upon these
results and propose a new meta-level learning approach that overcomes
the scalability problem of ASPAL by breaking the learning process up
into small manageable steps and using theory revision over the meta-
level representation of the hypothesis space to improve the hypothesis
computed at each step. We empirically evaluate the computational gain
with respect to ASPAL using two different answer set solvers.

Keywords: Answer Set Programming · Hypothesis refinement

1 Introduction

Recent years havewitnessedmanynovel approaches and systems for nonmonotonic
Inductive Logic Programming (ILP) [4,5,11,17]. These address shortcomings of
existing solutions (e.g. [7,19]) by providing theoretical semantic underpinning to
the notion of nonmonotonic inductive learning [10], andproposing novel algorithms
and tools capable of learning normal logic programs from a set of positive and neg-
ative examples using nonmonotonic inference [4,5,17]. The search for a hypothesis
of a nonmonotonic ILP task involves the traversal of a lattice of different hypothe-
ses, ordered by a generality principle whereby the more given examples explained
by a hypothesis, the more general the hypothesis is and vice versa [10]. Systems
like XHail [17] and Imparo [11] follow a specific to general search, and are called
bottom-up approaches, whereas systems like HYPER [2], TopLog [15] and Metagol
[16] are top-down approaches as they follow a general to specific type of search for
the computation of inductive hypotheses.
c© Springer-Verlag Berlin Heidelberg 2014
G. Zaverucha et al. (Eds.): ILP 2013, LNAI 8812, pp. 31–46, 2014.
DOI: 10.1007/978-3-662-44923-3 3

32 D. Athakravi et al.

Recent work [4] has demonstrated that a meta-level approach, called TAL
(Top-directed Abductive Learning), can be used to compute hypotheses of a
nonmonotonic learning problem by lifting a learning task into a meta-level
representation that facilitates reasoning about the possible structures of the
hypotheses. Specifically, the learning task is transformed into a semantically
equivalent abductive reasoning problem, and meta-level encoding of the hypothe-
ses are abduced. TAL benefits from several advantages over existing learning
approaches: it is able to address a large class of non-observational and multi-
predicate non-monotonic learning in a sound and complete manner; it allows
expressive language bias specifications that subsume mode declarations and can
be combined with integrity constraints; and makes use of constraint solving
techniques [4]. To combine the theoretical advantages of this approach with
computational efficiency, an Answer Set Programming (ASP) implementation of
the TAL learning framework, called ASPAL, has been proposed in [5] with the
objective of exploiting the Answer Set Programming (ASP) efficient approach
to nonmonotonic logic programming [1]. The system has shown that fixpoint
computation can be used for implementing meta-level learning. ASPAL uses
a top-theory constructed by mapping mode declarations into partially instan-
tiated hypotheses and makes use of an efficient ASP solver to find optimal as
well as all possible inductive hypotheses. However, as noted in [5], because of
the meta-level partial instantiation of possible hypotheses, the grounding of the
program can often be very expensive. ASPAL’s top theory grows exponentially
with respect to the lengths of its clauses, which can cause a learning task to
become unsolvable.

In this paper we build upon the results in [5] and propose a novel meta-level
learning approach, called RASPAL, that overcomes the grounding problem of
ASPAL. The approach breaks down a given learning task into small manageable
steps and uses theory revision over the meta-level representation of the hypoth-
esis space to improve partial hypotheses computed at each step. The basic idea
is to construct hypotheses of a nonmonotonic learning task through multiple
iterative theory revisions as iterative refinement steps. At each iterative step a
multi-value score scheme is used to select optimal refinements among multiple
refinement operators. These correspond to revised partial hypothesis that cover
the highest (resp. least) number of positive (resp. negative) examples, and that,
among such possible solutions, are the most concise revisions. In this way, a large
meta-level representation of a learning task can be broken down into multiple
steps of learning and/or revision of partial hypotheses that are progressively
closer to a consistent and complete learning task solution (i.e. hypothesis that
covers all positive examples and none of the given negative examples), so mak-
ing the learning process more scalable. Empirical evaluation shows that learn-
ing tasks that require large grounding of the problem and for which ASPAL is
not able to find a solution, can instead be resolved by our RASPAL approach.
The paper is structured as follows. Section 2 recalls relevant material our app-
roach builds upon. Sects. 3 and 4 present, respectively, key concepts of RASPAL,
and the algorithm with completeness results. Section 5 discusses some experimen-
tal outcomes and Sect. 6 concludes with summary and future directions.

Learning Through Hypothesis Refinement Using Answer Set Programming 33

2 Background

We assume the reader is familiar with logic programming [13] and ILP [14].
As the focus of this paper is on nonmonotonic ILP [18] and meta-level compu-
tation of inductive hypotheses [3], we recall the definition of a nonmonotonic
learning task and summarise the Top-directed Abductive Learning approach
used by the ASPAL system [5], together with its meta-level encoding of mode
declarations.

A nonmonotonic ILP task is defined as a tuple 〈E,B,M〉 where E is a set of
ground literals, called examples, B is a normal logic program, called background
theory and M is a set of mode declarations defining a space RM of normal clauses.
The set E of examples is defined as {e1, . . . , em,not em+1, . . . ,not en}, where ei

are ground atoms, {e1, . . . , em} represents the set E+ of positive examples and
{em+1, . . . , en} the set E− of negative examples. An inductive hypothesis, H, is
a set of normal clauses in RM such that B∪H �

∧
εi∈E εi, where or equivalently:

B ∪ H � ei, for every ei ∈ E+ (1)

B ∪ H � ej , for every ej ∈ E− (2)

In (1), (2) and throughout this paper the � symbol denotes the semantic notion of
brave induction [20], i.e. they refer together to the existence of a minimal model
of B ∪ H that covers E, assuming that B ∪ H is consistent. The set M of mode
declarations provides the schema for the literals that are allowed in a hypothesis.
They are defined as modeh(s) and modeb(s) for head and body literals, where s
is a ground literal with placemarkers of the form ‘+type’, ‘−type’, or ‘#type’, and
type is the type of the literal’s argument. The symbols ‘+’, ‘−’, and ‘#’ indicate,
respectively, whether the argument should be an input, an output variable or a
constant. An input variable in a body literal bi is either an input variable in the
head of the clause or an output variable in some literal bj that precedes bi in
the clause (i.e. link constraint). An output variable is a free variable in the body
of the clause. Given mode declarations M , a clause h ← b1, . . . , bn is said to
be compatible with M on the declarations (mh,mb1 , . . . ,mbn) if h is compatible
with mh (i.e. corresponds to the schema of mh), and for each 1 ≤ i ≤ n, bi

is compatible with mbi (i.e. corresponds to the schema of mbi), and arguments
of h and each bi satisfy the constraints of the placemarkers in mh and mbi

respectively. RM is the set of normal clauses compatible with M .
For instance, if modeh(fly(+bird)) and modeb(wings(+bird,#prop,−int))

are two mode declarations, then a clause compatible with the given mode dec-
larations is fly(X) ← wings(X,has flight feathers, Y), where X is a bird, Y
is an integer and has flight feathers is a property of the bird’s wings.

2.1 Top-Directed Abductive Learning in ASP

As proposed in [3,5] the computation of inductive hypotheses for a given non-
monotonic ILP task can be translated into a semantically equivalent abductive

34 D. Athakravi et al.

task consisting of deriving only ground facts called abducibles. An abductive
task computes a set Δ of ground literals, from a given set A of abducibles,
that is consistent with a given background knowledge B and that, together with
B, entails a given (possibly empty) set g of ground facts called observations
(or goal)1. The abductive task can also allow for integrity constraints, in which
case the abductive solution Δ has, together with B, satisfy the given integrity
constraints. Informally, in the TAL approach the background knowledge is aug-
mented with a social “top-theory” and the clause space RM is “flattened” into a
set of logic atoms. This meta-level encoding of the clause space defines the set A
of a semantically equivalent abductive task whose inferred abductive solutions
correspond to the inductive hypotheses of the learning task. To avoid the com-
putation of redundant hypotheses, the meta-level encoding of RM makes use of
a canonical projection of the clause space RM into a set Rr

M of clauses. This
makes each clause in Rr

M represents a class of clauses in RM that are compatible
with the same mode declarations in M , but that differ only in the ordering of
the body literals not subject to the link constraint over arguments. Every clause
within RM is thus represented by an equivalent clause in Rr

M [3,5].

ASP encoding of mode declarations. Let us assume the canonical projection
Rr

M, compatible with mode bias M , to be the set {hi ← bi | i = 1, . . . , n} of
n clauses, where bi represents the list of literals appearing in the rule of hi,
and let id be a function that associates a unique identification to each clause
ri ∈ Rr

M. We can then automatically construct from a given mode bias M the
top-theory � = {hi ← bi, rule(id(hi ← bi), C) | i = 1, . . . , n}, where C is a
vector of new variables corresponding to the constant symbols in ri defined by
its mode declarations, and the related set of abducibles A� = {rule(id(hi ←
bi), C) | i = 1, . . . , n}. The id(r) is a tuple of the form (mh,m1, l1,1, . . . , l1,p1 ,
. . . ,mn, ln,1, . . . , ln,pn

), where mh is the identifier of the mode declaration hi

conforms to, mj is the identifier of the mode declaration the body literal bi,j

conforms to and, for each mj , the elements lj,1, . . . , lj,pj
are numbers denoting the

variables in the clause, counting from left to right, which the variable arguments
of the literal bi,j are linked to. Note that the variables in a predicate head h do not
link to any variable occurring before them in the clause so there is no sequence
lh,1, . . . , lh,ph

after mh in the representation. The structure of rule(·) makes this
translation bijective, allowing automatic inverse translation of abduced atoms
to related clause hypothesis: i.e. given a subset Δ ⊂ A�, the inverse translation
h(Δ) = {id−1(a) : rule(a) ∈ Δ} is the set of clauses hi ← bi, rule(id(hi ← bi))
whose rule(id(hi ← bi)) are in Δ. The following theorem states the semantic
equivalence between an inductive task and its encoding into an abductive task.

Theorem 1. Let B be a normal logic program, R̃ a set of clauses ri of the form
h ← b, rule(a,C), where a is id(h ← b), and let A� be the set of ground atoms
rule(a,C) for which there is a clause h ← b, rule(a,C) ∈ R̃. For each Δ ⊆ A�,
I is an answer set of B ∪ R̃∪Δ if and only if I \Δ is an answer set of B ∪h(Δ).

1 Note that empty goals are equivalent to �.

Learning Through Hypothesis Refinement Using Answer Set Programming 35

Example 1. Consider the ILP task 〈E,B,M〉 where B = {bird(alex); bird(bob);
penguin(bob)}, E ={fly(alex);notfly(bob)}, and the set M = {modeh(fly
(+bird)); modeb(not penguin(+bird))} with identifiers m1 and m2 respectively.
The canonical projection of RM is Rr

M = RM = {fly(X); fly(X) ← notpenguin
(X)}, where id(fly(X)) is (m1) and the id(fly(X) ← not penguin(X)) is
(m1,m2, 1). The ASP encoding of Rr

M is therefore given by the set of abducibles
A� = {rule((m1), c), rule((m1,m2, 1), c)}, where the constant c denotes that
the clause has no constant symbol, and the top-theory:

� =
{

fly(X) ← bird(X), rule((m1), c));
fly(X) ← bird(X), not penguin(X), rule((m1,m2, 1), c)

}

If we consider the set Δ = {rule((m1,m2, 1), c)}, the theory B ∪ Δ ∪ � has the
same consequence as the theory B ∪ {fly(X) ← bird(X), not penguin(X)} ∪ Δ.

The above encoding is used by the ASPAL system [5] to transform the problem
of finding candidate hypotheses of an ILP task into a problem representable in
ASP [5]. Given an ILP task 〈E,B,M〉 the ASPAL system solves the equivalent
ALP task where the background knowledge is given by B ∪ � ∪ {examples ←∧

E}, the set of abducibles is A�, the set of integrity constraints includes the
constraint {⊥ ← not examples} and the given observation is empty. The added
integrity constraint ensures that each answer set solution covers all positive
examples and none of the negative ones.

The overall computation time and space of ASPAL are affected mostly by
the grounding that the ASP solver has to go through to transform a program
into an equivalent ground program. Despite the use of heuristics to speed up the
computation, the grounding is often the bottleneck of the whole process, with
the number of clauses in � being the key factor affecting this. Let us assume
a mode declaration M where Mh is the number of head mode declarations and
Mb is the number of body mode declarations, let maxo (resp. maxi) be the
biggest number of output (resp. input) variables that appear in the body mode
declarations, let maxh

i be the maximum number of input variables in the head
mode declarations, and let dmax be the maximum number of body literals in a
inductive hypothesis for a given ILP task. Then

|�| ≤
dmax∑

d=0

|Mh| × (|Mb| × (maxh
i + maxo × (d − 1))maxi)d

This is adapted from [5] and is an upper bound on |�|. In practice the size of
the top theory is smaller as clauses in the hypothesis space may have to satisfy
type constraints on their variables. All parameters, except dmax, strictly depend
on the given ILP task.

The main idea of our new meta-level learning approach, called RASPAL, is
to put an upper bound on dmax and provide an ASP-based nonmonotonic ILP
system that does not suffer of the grounding problem of ASPAL.

36 D. Athakravi et al.

3 Learning Through Hypothesis Refinement

In this section we present the key features of RASPAL. The approach combines
the TAL approach of computing inductive hypotheses through abductive search
over a meta-level representation of the hypothesis space with the notion of theory
revision. Theory revision is a type of theory refinement [22] that consists of infer-
ring changes over a given theory in order to change its consequences. RASPAL
uses theory revision during the learning process to revise partial hypotheses (i.e.
hypotheses that do not yet satisfy (1) and (2)), and construct through revision
steps the desired inductive solution. The revision of partial hypotheses is guided
by the same examples as the initial ILP task, as the final inductive solution,
together with the initially given background knowledge, has to bravely entail
the examples. The revision of partial hypotheses is performed as a nonmonotonic
learning task.

3.1 Hypothesis Refinement

We briefly describe our approach of theory revision through learning, and we then
show how it is used in RASPAL to revise partial hypotheses during the com-
putation of an inductive hypothesis for a given ILP task. Consider two normal
logic programs H and H ′. A change transaction C is a set of revision operations
such that H ′ is attained by applying all revision operations in C to H. Revision
operations are of four different types: addition of a clause, deletion of a clause,
addition of a body literal to an existing clause, and deletion of a body literal
from an existing clause. Change transactions are normally required in order to
impose changes over the consequences of a given theory. A theory revision task
can be defined as follows, where the clause space for possible revisions is defined
in terms of mode declarations M .

Definition 1. A theory revision task is a tuple 〈E,B ∪ H,M〉 where E is a set
of literals, called examples, B is a background theory, H is a revisable theory,
and M is a set of mode declarations defining the clause space of revised theories.
The theory H ′, called revised theory, is an inductive hypothesis for the task
〈E,B ∪ H,M〉 if and only if (i) H ′ ⊆ RM ; and (ii) B ∪ H ′ � E.

The above theory revision task can be computed using the nonmonotonic meta-
level refinement approach used in [6]. The revision operation of adding a new
clause, from the given clause space RM , matches directly the task of learning
a new clause. To learn the other revision operations, the mode declaration M
is extended by ΔM with special mode declarations: modeh(extension(#rule id,
+vars)) and modeh(delete(#rule id,#body id)). The argument #rule id is a
reified term that identifies an existing clause in H where a change (addition or
deletion of a body literal) is learned and vars is the list of variables in the existing
clause that are involved in the change. The learning task 〈E,B∪H,M〉 for theory
revision is transformed into a nonmonotonic learning task 〈E,B ∪ H̃,M ∪ ΔM 〉.
The revisable theory H̃ is constructed from H as follows. For each normal clause
hi ← bi,1, . . . , bi,n ∈ H, the following normal clauses are added to H̃:

Learning Through Hypothesis Refinement Using Answer Set Programming 37

– hi ← try(i, 1, vars(bi,1)), . . . , try(i, n, vars(bi,n)), extension(i, vars(ri))
– try(i, j, vars(bi,j)) ← bi,j , not delete(i, j), for each try(i, j, vars(bi,j))
– try(i, j, vars(bi,j)) ← delete(i, j), for each try(i, j, vars(bi,j))
– ⊥ ← delete(i, j), {extension(i, vars(ri))}0, for each delete(i, j)

The indices i and n uniquely identify the clauses and their conditions in H,
vars(ri) is the list of all variables in ri and vars(bi,j) is the list of all variables
in bi,j . The try clauses test if a body literal bi,j in the ith clause is needed in
the revised clause. If it is no longer relevant, then the corresponding delete(i, j)
instance is learnt, indicating that it can be removed. The constraints on each
learnable delete(i, j), where {extension(i, vars(ri))}0 denotes that there are at
most 0 instance of extension(i, vars(ri)), ensures that deletions are only learnt
if the corresponding extension clause is learnt. Revisions of H are then learned
by solving the nonmonotonic learning task 〈E,B ∪ H̃,M ∪ ΔM 〉 to find a set of
change transactions C and generating H ′ by applying C to H.

The change transactions C consist of a (possibly empty) set of delete facts,
clauses with head predicate extension and body literals using predicates from
body declarations in M , and other clauses compatible with M . They correspond,
respectively, to the revision operators of deletion, addition of body literals to
existing clauses, and addition of new rules. H ′ is generated from the given revis-
able theory H and the learned change transactions C by the following steps:

– For each pair: ri ← b1, . . . , bn ∈ H and extension(ri, vars(ri)) ← bn+1, . . . , bm

in C, the clause ri ← b1, . . . , bn, bn+1, . . . , bm is added to H ′.
– For each delete(i, j) in C, the body literal bi,j is removed from clause ri in H ′

(only modify clauses that are retained by C).
– Each clause rnew ∈ C that are not extension nor delete, with rnew /∈ H, rnew

is added to H ′.
– Each clause in H that does not have a corresponding extension clause in C

is not added to H ′ (i.e. capturing the deletion of an existing clause).

Example 2. Consider the theory revision task 〈E,B ∪ H,M〉 defined as follows:
B = {← fly(X), injured(X); pigeon(alex); pigeon(bill); ostrich(bob); seagull(clark);

bird(X)}; H = {fly(X); fly(X) ← pigeon(X); injured(bill)}; E = {fly(alex);
fly(clark); not fly(bob); not fly(bill)}; M = {m1:modeh(injured(#bird));
m2:modeb(fly(+bird)); m3:modeb(pigeon(+bird)); m4:modeb(not ostrich(+bird))}.

The transformed revisable theory is

H̃ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fly(X) ← extension(1, vars(X))
fly(X) ← try(2, 1, vars(X)), extension(2, vars(X))
try(2, 1, vars(X)) ← pigeon(X), not delete(2, 1)
try(2, 1, vars(X)) ← delete(2, 1)
⊥ ← delete(2, 1), {extension(2, vars(X))}0.
injured(bill) ← extension(3, vars)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The set C is the learned change transactions and H ′ is the revised theory gen-
erated from H by applying the learned revision operation included in C

38 D. Athakravi et al.

C =

⎧
⎪⎪⎨

⎪⎪⎩

extension(2, vars(X))
← not ostrich(X)

delete(2, 1)
extension(3, vars)

H ′ =
{

fly(X) ← not ostrich(X)
injured(bill).

3.2 Learning a Partial Hypothesis

Given a nonmonotonic ILP task 〈E,B,M〉, a hypothesis H in the clause space
RM is said to cover an example e if B ∪ H � e. We denote with covere the
number of examples that are covered by a hypothesis H. A hypothesis H in RM

is said to be complete if, together with B, it covers all positive examples (H
satisfies (1)); H is said to be consistent if, together with B, it does not cover
any of the negative examples (H satisfies (2)). A hypothesis H in RM is said
to be a partial hypothesis if it is not a consistent and complete hypothesis. Our
RASPAL learning approach computes consistent and complete hypotheses of
an ILP task through revision steps over partial hypotheses. Each revision step
generates a revised partial hypothesis that is closer to the desired consistent
and complete hypothesis, i.e. a (revised and partial) hypothesis that covers the
highest number of positive examples and the least number of negative examples,
with it, or for change transaction its corresponding revised partial hypothesis,
being the most concise. To compare hypotheses, we define a notion of score of a
(partial) hypothesis, which induces a total ordering over partial hypotheses.

Definition 2. Let 〈E,B,M〉 be an ILP task and let H be a partial hypothesis in
RM . The score of H is the tuple score(H) = 〈covere+(H), covere−(H), len(H)〉,
where covere+(H) (resp. covere−(H)) is the number of positive (resp. negative)
examples covered by H and len(H) is the total number of literals in H.

Definition 3. Let 〈E,B,M〉 be an ILP task and let H and H ′ be two (partial)
hypotheses in RM . H is better than H ′, denoted score(H) > score(H ′) iff one
of the following cases applies:

– covere+(H) > covere+(H ′),
– covere+(H) = covere+(H ′) ∧ covere−(H) < covere−(H ′),
– covere+(H) = covere+(H ′) ∧ covere−(H) = covere−(H ′) ∧ len(H) < len(H ′)

Given a set H of (partial) hypotheses, the optimal (partial) hypothesis Hopt is a
(partial) hypothesis in H such that ∀H ∈ H : score(Hopt) ≥ score(H).

Example 3. Consider the ILP task in Example 1. The four (partial) hypotheses
ranked from lowest to highest score are as follows, where the optimal H4 is the
consistent and complete hypothesis, and the others are partial hypotheses:

The above scoring scheme differs from more conventional scoring mecha-
nismes for inductive hypothesis. For instance, two other scoring schemes could be
in principle assumed, namely 〈covere+(H) − covere−(H), len(H)〉 and the more

Learning Through Hypothesis Refinement Using Answer Set Programming 39

Hypothesis Score Hypothesis Score

H1 The empty hypothesis 〈0, 0, 0〉 H2 fly(X) and
fly(X) ← not penguin(X)

〈1, 1, 3〉

H3 fly(X) 〈1, 1, 1〉 H4 fly(X) ← not penguin(X) 〈1, 0, 2〉

traditional one covere+(H)− covere−(H)− len(H). The latter scheme, given by
the number of positive examples covered minus the number of negative examples
covered and the hypothesis size would be unsuitable as it would give too much
emphasis to the hypothesis size, which is not relevant for discriminating among
potential revisions that have to lead to consistent and complete hypothesis. The
former scoring scheme emphasises the coverage of examples (i.e. number of pos-
itive examples minus number of negative coverage) over the hypothesis size. It
has the advantage of having smaller range of score values (from −|E−| to |E+|
as opposed to 0 to |E+|× |E−|), which could help reduce the search for the opti-
mal hypothesis. However, it is too general and would result in learned revisions
that are indistinguishable from each other. For instance, value 0 in 〈0, len(H)〉
could correspond to a revised hypothesis that covers none of the positive or neg-
ative examples, or equal number of positive and negative examples. In Exam-
ple 3, if this score scheme were used then the empty hypothesis would have score
〈0, 0〉 and fly(X) would have score 〈0, 1〉. Therefore the empty hypothesis would
have better score than fly(X). This is not suitable for in our learning through
hypothesis refinement as, unlike the empty hypothesis, fly(X) could potentially
be refined to find better hypotheses. Empirical testing of using this alternative
scoring scheme in our RASPAL algorithm has shown than a larger number of
iterations were needed so leading to larger programs to ground than necessary.

4 RASPAL: Iterative Learning by Refinement

Here we describe the RASPAL algorithm. It solves an ILP task through iter-
ative hypothesis refinement using the method of theory revision presented in
Sect. 3. We also show that our algorithm is complete with respect to the notion
of inductive hypothesis given in Sect. 2.

4.1 Algorithms

In Sect. 2.1 we have pointed out that a drawback of the ASPAL approach is
the grounding of the top-theory. Intuitively, the RASPAL algorithm overcomes
this problem by finding a partial hypothesis to the ILP task, and performing
iterative steps of revisions over selected partial hypothesis according to the scor-
ing method above. At each computation step, a small size boundary is imposed
on the clause length of the refinements learnt, so requiring a smaller grounding
and making each step computationally more manageable. The main learning
algorithm is Algorithm 1. The function Learn takes as input a learning task
P , and a maximum hypothesis clause length i. It first tries to find an optimal

40 D. Athakravi et al.

hypothesis within the subset of the clause space constrained by i, using the func-
tion FindOptimalHypothesis. This can, in principle, be computed using any
sound and complete nonmonotonic ILP system. We assume it to be executed
by the ASPAL system with parameter clause size limited to i, and using Clingo
[8] as the ASP solver. To generated all partial hypotheses the goal of the ALP
task is replaced with Clingo’s optimisation statements are used to find answer
sets with maximum number of positive examples, minimum number of negative
examples, and minimal sum of the size of clauses in the hypothesis. The size of
clauses in the hypothesis are given in the optimisation statement as weights for
each abducibles, each assigned weight is the total size of the revised clause, and
extension literals have the size 0 while delete has the size -1. The optimisation
statements are each given priorities with the number of positive examples higher
than the negative ones, and then prioritising both of these higher than the size
of the hypothesis. This step returns a hypothesis with highest score within the
limit clause size. Should the hypothesis be empty, i is then increased by 1 and
Learn is executed again. Note that an empty hypothesis would be returned in
case every learnable hypothesis covers no positive examples and proves every
negative example.

Algorithm 1. Learn(P, i)
Require: P = 〈E,B,M〉, with E+ and E− being the set of positive and negative
examples in E respectively
Output: 〈Hypothesis, Score〉, a complete and consistent hypothesis of P and
its score
1: let 〈Hypothesis, Score〉 =FindOptimalHypothesis(P, i)
2: if Hypothesis == ∅ then � No hypothesis found
3: return Learn(P, i + 1)
4: loop
5: if Score = 〈|E+|, 0, 〉 then � Complete and consistent hypothesis found
6: return 〈Hypothesis, Score〉
7: 〈Hypothesis, Scorenew〉 =RefineHypothesis(Hypothesis, P, i)
8: if Scorenew ≤ Score then � Score does not improve
9: return Learn(P, i + 1)

10: Score = Scorenew

In the loop structure (lines 4–10), the current Hypothesis is checked for con-
sistency and completeness, based on its score value. If it is not, then it is refined
via RefineHypothesis, which also outputs an updated score for the refinement
which is checked to see whether the refinement made any improvements. If the
new score is an improvement then Score is updated before the next loop itera-
tion. If the new score is not better than the previous one, the algorithm Learn
is re-run with i increased by 1. The function RefineHypothesis is shown in
Algorithm 2.

Given a partial Hypothesis, the ILP task P , and the clause length limit
i, the algorithm returns a refined Hypothesis and its score. This is done by
creating a theory revision task P ′ using SetRefinement function as described

Learning Through Hypothesis Refinement Using Answer Set Programming 41

Algorithm 2. RefineHypothesis(Hypothesis, P, i)
Output: 〈Hypothesisnew, Scorenew〉, a refinement of Hypothesis of and its
score
1: P ′ = 〈E, B ∪ ΔB , M ∪ ΔM 〉 = SetRefinement(Hypothesis)
2: 〈Changes, Scorenew〉 = FindOptimalHypothesis(P ′, i + 1)
3: Hypothesisnew = ApplyRefinement(Hypothesis, Changes)
4: return 〈Hypothesisnew, Scorenew〉

in Sect. 3.1. Then using FindOptimalHypothesis to learn the change trans-
actions Changes, with associated score Scorenew, as hypothesis for the revision
task. The changes are then applied to the current hypothesis by the ApplyRe-
finement function to form a revised Hypothesisnew. Note that, at line 2 in
Algorithm 2, the function FindOptimalHypothesis is called with i + 1. This
is because for RefineHypothesis to extend a clause in the current hypothesis
by i literals, it must be able to learn an extension clause with i body literals,
thus having length i + 1.

Consider the following task to learn the concept of even and odd numbers:

B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

even(0)

num(0)

num(s(0))

num(s(s(0)))

num(s(s(s(0))))

num(s(s(s(s(0))))

num(s(s(s(s(s(0))))))

succ(X, s(X)) ←
num(X), num(s(X))

E+ =

{
even(s(s(s(s(0)))))

odd(s(s(s(s(s(0))))))

E− =

⎧
⎪⎪⎨

⎪⎪⎩

odd(0)

even(s(0))

odd(s(s(s(s(0)))))

even(s(s(s(0))))

M =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

modeh(odd(+num))

modeh(even(+num))

modeb(not even(+num))

modeb(even(+num))

modeb(succ(−num,+num))

Figure 1 shows the hypothesis in each iteration of RASPAL, called with i = 1.

Fig. 1. Using RASPAL to learn the concept of even and odd number

In the first call of Learn with i = 1 there is no further improvement at the
second iteration of RefineHypothesis. Therefore, learn is restarted with i
increased to 2. The last hypothesis for the previous i value is re-learned, but this
time it can be further revised, as i = 2, into even(X) ← succ(Y,X), not even(Y)
at the second refinement iteration. It can be shown that, assuming the existence

42 D. Athakravi et al.

of a consistent and complete hypothesis for an ILP task P with clause length no
greater than an Imax, the number of refinement iterations (i.e. calls to Refine-
Hypothesis) is less than or equal to |E+| × |E−| × Imax, following from our
ordering over the scores. This is due to the fact that a better hypothesis cov-
ers either one more positive example or one less negative one after refinement.
Furthermore, expanded clauses would not exceed Imax in length because of the
given assumption.

The following theorem shows the completeness of our RASPAL approach.
The proof builds upon the completeness of ASPAL, which is used in FindOp-
timalHypothesis and subsequently in RefineHypothesis.

Theorem 2. Let P = 〈E,B,M〉 be an inductive task and let H be a set of com-
plete and consistent hypotheses of P . Then Learn(P, i) returns a tuple 〈H,S〉,
where H is a hypothesis H ∈ H, for some i > 0, and S is the score of H.

Proof. Assume that for any consistent and complete hypothesis the maximum
clause length is smaller than or equal to Imax and the smallest hypothesis size
is L. Let Learn(P, i) be called for some i ≥ 1. We consider the following cases:

Case 1: (i ≥ Imax). Since a complete and consistent hypothesis exists and
FindOptimalHypothesis is assumed to be complete, then FindOptimalHy-
pothesis will find a complete and consistent hypothesis.

Case 2: (Imax − i > 0). We reason by induction on Imax − i. Assume as
induction hypothesis that for all j ≥ 1, where Imax − j < Imax − i, the theorem
holds. In either of the two cases where Learn(P, i + 1) is called (i.e. line 3 or
line 9) the induction hypothesis can be applied since Imax − (i + 1) < Imax − i.

Case 3: (Imax − i > 0 and Learn is not called recursively). It needs to be
shown that there is only a finite number of iterations with RefineHypothesis
after which a consistent and complete hypothesis is generated (i.e. score can only
increase a finite number of times). For RefineHypothesis to be repeatedly
called, each time the score of the revised hypothesis has to be better than the
current hypothesis. But the score can get better by either the number of positive
example covered increases, or the number of negative examples covered decreases.
This can continue until eventually a refined consistent and complete hypothesis
is reached with score 〈|E+|, 0,K〉, where K ≥ L.

5 Experiment

In this section we compare RASPAL with ASPAL [5]. For each learning task2 the
largest ASP program produced by each system were run on two different ASP
solvers, Clingo [8] and DLV [12]. This has been done to check the compatibility
between the solvers and the RASPAL approach, and to show that the grounding
problem of the learning program is universal for all ASP solvers.

Both the ASPAL and RASPAL encoding of a learning task as an ASP abduc-
tive task is already compatible with Clingo. For the DLV environment we have
2 The full details of the learning tasks can be found at https://dl.dropboxusercontent.

com/u/15091371/ILP2013 examples.pdf.

https://dl.dropboxusercontent.com/u/15091371/ILP2013_examples.pdf
https://dl.dropboxusercontent.com/u/15091371/ILP2013_examples.pdf

Learning Through Hypothesis Refinement Using Answer Set Programming 43

Table 1. Maximum size of the ground program and number of ungrounded clauses in
the top theories. For RASPAL ΔB is the number of clauses in the space of revisable
hypothesis that is added to the background knowledge.

Learning Task ASPAL RASPAL

DLV Clingo |�| DLV Clingo |�| + ΔB

odd/even 17.0 kB 11.3 kB 23 172.9 kB 159.2 kB 65 + 5 = 70

nonealike - - 251176 35.7 MB 40.5 MB 105 + 10 = 115

train 932.8 kB 518.0 kB 118 126.4 MB 131.0 MB 238 + 20 = 258

mobile - 11.2 GB 1200 - 1.9 GB 85 + 18 = 103

modified this encoding by (i) replacing Clingo’s choice clause by disjunctive ones;
(ii) using aggregate functions instead of the limits on a choice clause, in order to
limit the number of clause in the hypothesis, and defining the constraint on the
abducible delete/2 literals; (iii) replacing optimisation statements over exam-
ples coverage by soft constraint. While both solvers return the same answer set,
when solving a learning task by RASPAL on DLV, additional post-processing
is required to find the most optimal partial hypothesis. To compare the sizes of
the ground programs in Table 1, their sizes were found by making the solvers
ground the program but not solve it.

Regarding DLV and Clingo, the results in Table 1 show that for smaller learn-
ing tasks there is not much difference in the size of the ground programs produced
by the solvers. When Clingo cannot ground the program for the nonealike task,
neither could DLV. Moreover for large problems that can be grounded by Clingo,
such as the mobile task, DLV can neither solve nor ground the ASP program.
For this reason and for the availability of optimisation statements, we have found
Clingo to be more suitable for solving our RASPAL learning approach.

Regarding the number of ungrounded clauses in the top theory of each learn-
ing task, note that for RASPAL the value ΔB denotes the number of clauses
of the revisable hypothesis added to the background knowledge. For the learn-
ing tasks odd/even and train both the number of clauses in the top theory
and the size of the ground programs of RASPAL are much larger than those
of ASPAL. This is because RASPAL has an overhead due to the revisable the-
ory and the additional mode declarations used to learn the revision operations,
making less it efficient than ASPAL for solving smaller learning tasks. However,
for the nonealike learning task, the top theory of ASPAL is very large as there
are many permutations of the variables in the learnable clauses. Similarly for
the mobile learning tasks, where the domain knowledge is also larger than those
in the other learning tasks. For both these learning tasks RASPAL’s hypothesis
refinement approach can significantly reduce the size of the program’s grounding.
This reduction by RASPAL is due to the difference in the maximum clause size
of the complete and consistent hypothesis and the minimum value of i required
to learn it. In the learning tasks odd/even and train, which have maximum clause
sizes of, respectively, 3 and 4, the minimum value of i required to learn these

44 D. Athakravi et al.

tasks are 2 and 3 respectively. This is because their hypotheses’ body literals are
highly dependent on one another, thus the learning cannot be performed through
independent revision iterations with smaller values for i. This makes the over-
head of refining the partial hypotheses greater than the advantage of reducing
the top theory’s maximum clause size. On the other hand, for the nonealike
and mobile learning tasks, the maximum clause sizes are 5 and 4 respectively.
In these cases hypotheses have less dependencies between their body literals, so
for both tasks RASPAL is ideal in finding a complete and consistent hypothesis
using a very small value of i (i = 1), which allows each learning task to be solved
by a much smaller top theory compared to that used in ASPAL.

6 Conclusion and Future Work

In this paper we have explored how iterative refinement could be used with fix-
point computation of ASP to improve a bottleneck computation of the ASPAL
system. We have implemented our RASPAL approach and compared it against
ASPAL. Our tests have demonstrated the impact of the additional mode decla-
rations for learning change transactions: RASPAL performs worse than ASPAL
when the learning task is small and the difference between i and the maximum
size of a hypothesis clause is also small. On the other hand, when the search
space for the hypothesis becomes extremely large and literals in the hypothesis
are not strongly dependent on one another, our refinement approach is able to
solve the task using a much smaller top theory.

In this paper we have concentrated on the comparison between ASPAL and
RASPAL, but there are also other works that are similar to RASPAL and
ASPAL. Past ILP algorithms have frequently used meta-level information to help
with the search for the hypothesis, the language bias being the commonly used
meta-level information for limiting the hypothesis search space. Systems such
as ASPAL, RASPAL and Metagol [16] have taken a step further in this direc-
tion by transforming the original learning task into a meta-level learning task.
This involves using transformations to abstract some or all of the inductive task
into a corresponding meta-level representation. Unlike ASPAL and RASPAL,
which only abstract their hypotheses and top theories, Metagol uses second
order predicates to represent all of its learning task in meta-level form. By using
meta-level representation of only the hypothesis space, ASPAL and RASPAL
can still reason about the object level semantics and therefore allow more easily
the learning of nonmonotonic hypotheses. Currently, Metagol does not extend
to learning nonmonotonic hypotheses.

RASPAL also belongs to the subclass of ILP systems that use incremental
learning. HYPER [2] is another example of an ILP system that learns through
refinement. However, differently from our approach, it constructs the hypothesis
by first finding an overly general partial hypothesis (i.e. one that covers all
positive examples), which is then specialised until it covers no negative examples.
In addition to being unable to learn nonmonotonic tasks, HYPER’s refinement
will only add at most a single body atom to each clause per each iteration.

Learning Through Hypothesis Refinement Using Answer Set Programming 45

This makes it unable to learn hypotheses where more than one body atom must
be added to the same clause in the same iteration to impact the score of the
refined hypothesis.

A recently proposed incremental learning system that is more related to
RASPAL is ILED [9], an ILP system based on XHAIL [17], which is designed
to address the scalability problem of learning from continuously collected real
life temporal data. Like our work it uses hypothesis refinement and abductive
reasoning for learning, and is capable of learning nonmonotonic clauses. However,
unlike RASPAL, which uses refinement for learning a single learning task, ILED’s
incremental learning is used for processing new knowledge and incorporating it
into previous learnt concepts.

There are many future directions for our work. Our RASPAL approach has
potentials for making further contributions in the area of Predicate Invention
[21]. Initial attempts of using ASPAL for predicate invention have shown that
the search space can grow very large as there are many possible formats new pred-
icates could take. Iterative refinement in this case could be very beneficial. The
implementation could also be further optimised to eliminate re-computations.

Acknowledgment. This work is partially funded by the 7th Framework EU-FET
project 600792 ALLOW Ensembles and the EPSRC project P44745.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

2. Bratko, I.: Refining complete hypotheses in ILP. In: Džeroski, S., Flach, P.A. (eds.)
ILP 1999. LNCS (LNAI), vol. 1634, pp. 44–55. Springer, Heidelberg (1999)

3. Corapi, D.: Nonmonotonic inductive logic programming as abductive search. Ph.D.
thesis, Imperial College London (2011)

4. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search.
In: Hermenegildo, M., Schaub, T. (eds.) Technical Communications of the 26th
International Conference on Logic Programming (2010)

5. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set pro-
gramming. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011.
LNCS, vol. 7207, pp. 91–97. Springer, Heidelberg (2012)

6. Corapi, D., Russo, A., Vos, M.D., Padget, J.A., Satoh, K.: Normative design using
inductive learning. TPLP 11(4–5), 783–799 (2011)

7. Dimopoulos, Y., Kakas, A.: Learning non-monotonic logic programs: learning
exceptions. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp.
122–137. Springer, Heidelberg (1995)

8. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: the Potsdam answer set solving collection. AI Commun. 24(2), 105–
124 (2011)

9. Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions
with inductive logic programming. CoRR abs/1402.5988 (2014)

10. Kimber, T.: Learning definite and normal logic programs by induction on failure.
Ph.D. thesis, Imperial College London (2012)

46 D. Athakravi et al.

11. Kimber, T., Broda, K., Russo, A.: Induction on failure: learning connected horn
theories. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 169–181. Springer, Heidelberg (2009)

12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3), 499–562 (2006)

13. Lloyd, J.: Foundations of logic programming. Springer, New York (1984)
14. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods.

J. Logic Program. 19–20(20), 629–679 (1994)
15. Muggleton, S.H., Santos, J.C.A., Tamaddoni-Nezhad, A.: TopLog: ILP using a

logic program declarative bias. In: Garcia de la Banda, M., Pontelli, E. (eds.)
ICLP 2008. LNCS, vol. 5366, pp. 687–692. Springer, Heidelberg (2008)

16. Muggleton, S.H., Lin, D.: Meta-interpretive learning of higher-order dyadic data-
log: predicate invention revisited. In: IJCAI (2013)

17. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Logic 7(3), 329–340
(2008)

18. Sakama, C.: Nonmonotonic inductive logic programming. In: Eiter, T., Faber,
W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 62–80.
Springer, Heidelberg (2001)

19. Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM
Trans. Comput. Logic 6(2), 203–231 (2005)

20. Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from
incomplete information. Mach. Learn. 67(1), 3–35 (2009)

21. Stahl, I.: Predicate invention in inductive logic programming. In: De Raedt, L.
(ed.) Advances in Inductive Logic Programming, pp. 34–47. IOS Press, Amsterdam
(1996)

22. Wrobel, S.: First order theory refinement. In: De Raedt, L. (ed.) Advances in
Inductive Logic Programming, pp. 14–33. IOS Press, Amsterdam (1996)

A BDD-Based Algorithm for Learning
from Interpretation Transition

Tony Ribeiro1(B), Katsumi Inoue1,2, and Chiaki Sakama3

1 The Graduate University for Advanced Studies (Sokendai),
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

{tony ribeiro,inoue}@nii.ac.jp
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
3 Department of Computer and Communication Sciences,

Sakaedani, Wakayama 640-8510, Japan
sakama@sys.wakayama-u.ac.jp

Abstract. In recent years, there has been an extensive interest in learn-
ing the dynamics of systems. For this purpose, a new learning method
called learning from interpretation transition has been proposed recently
[1]. However, both the run time and the memory space of this algo-
rithm are exponential, so a better data structure and an efficient algo-
rithm have been awaited. In this paper, we propose a new learning
algorithm of this method utilizing an efficient data structure inspired
from Ordered Binary Decision Diagrams. We show empirically that using
this representation we can perform the same learning task faster with less
memory space.

1 Introduction

In recent years, there has been a notable interest in the field of Inductive Logic
Programming (ILP) to learn from system state transitions as part of a wider
interest in learning the dynamics of systems [1,2]. Learning system dynamics
has many applications in multi-agent systems, robotics and bioinformatics alike.
Knowledge of system dynamics can be used by agents and robots for planning
and scheduling. In bioinformatics, learning the dynamics of biological systems
can correspond to the identification of the influence of genes and can help to
design more efficient drugs. In some previous works, state transition systems
are represented with logic programs [3,4], in which the state of the world is
represented by an Herbrand interpretation and the dynamics that rule the envi-
ronment changes are represented by a logic program P . The rules in P specify the

This research was supported in part by the NII research project on “Dynamic Con-
straint Networks” and by the “Systems Resilience” project at Research Organization
of Information and Systems, Japan. We would like to thank Earl Belinger for its help
to improve the english quality of the paper.

c© Springer-Verlag Berlin Heidelberg 2014
G. Zaverucha et al. (Eds.): ILP 2013, LNAI 8812, pp. 47–63, 2014.
DOI: 10.1007/978-3-662-44923-3 4

48 T. Ribeiro et al.

next state of the world as an Herbrand interpretation through the immediate con-
sequence operator (also called the TP operator) [5,6]. With such a background,
Inoue et al. [1] have recently proposed a framework to learn logic programs from
traces of interpretation transitions (LFIT). The learning setting of this frame-
work is as follows. We are given a set of pairs of Herbrand interpretations (I, J)
as positive examples such that J = TP (I), and the goal is to induce a normal
logic program (NLP) P that realizes the given transition relations. In [1], the
authors showed one of the possible usages of LFIT: LF1T, learning from 1-step
transitions. In that paper, an algorithm is proposed to iteratively learn an NLP
that realizes the dynamics of the system by considering step transitions one by
one. The iterative character of LF1T has applications in bioinformatics, cellular
automata, multi-agent systems and robotics. We can easily imagine an agent or a
robot that learns the dynamics of its environment from its observations, learning
the consequences of its actions according to the state of the world step-by-step.
Aggregating more and more observations, the agent becomes able to predict the
evolution of the world more precisely and can use this knowledge for planning
and scheduling.

In this paper, we propose a new version of the LF1T algorithm based on
Binary Decision Diagrams (BDDs) [7,8]. A BDD is a canonical representation
of a Boolean formula which has been successfully used in many research fields
such as Boolean satisfiability solvers [9], data mining [10], ILP [11] and abduc-
tion [12,13]. ProbLog [11] is a probabilistic logic programming language that
computes probabilities via BDDs. A ProbLog program computes the probability
of a query atom by applying sum-product computation to a BDD, but allows
definite clauses only. For abduction in propositional theories, Simon and del Val
[12] propose a consequence-finding procedure implemented on Zero-suppressed
BDDs. Inoue et al. [13] run the EM algorithm over BDDs to evaluate abductive
hypotheses.

The main concern of our LF1T algorithm is the size of NLPs learned. For
the sake of memory usage and reasoning time, a small NLP could be preferred
in multi-agent and robotics applications. In bioinformatics, it can be easier and
faster to perform model checking on Boolean networks represented by a compact
NLP than the set of all state transitions. In previous algorithms, LF1T uses
resolution techniques to generalize rules and reduces the size of the output NLP.
The novelty of our approach is the adaptation of these techniques to the BDD
structure. Here, we develop a method to perform LF1T operations on a BDD
that also realizes usual BDD merging operations as well as novel simplification
operations. We represent an NLP by a set of BDD structures where each BDD
encodes rules with the same head literal. Assuming that rules respect a variable
ordering, our data structure is similar to an Ordered BDD (OBDD) [14,15]. In
our approach, each BDD represents a formula in disjunctive normal form that
defines whether a literal is true at the next time step. Because LF1T does not
learn negative rules, our structure only represents rules that imply the head
literal to be true. In that sense it can also be considered a Zero-suppressed
Binary Decision Diagram (ZDD) [16].

A BDD-Based Algorithm for Learning from Interpretation Transition 49

Using a BDD representation we can also merge the common part of rules
and learn the same NLP with less memory usage than in previous versions of
LF1T. One weak point of the previous LF1T algorithm is that learning becomes
slower and slower as the NLP learned becomes bigger because it has to check
more and more rules. In practice, the compact representation of the BDD struc-
ture reduces the sensitivity of the LF1T learning time to the NLP size. Study of
the computational complexity of our new method shows that it remains equiva-
lent to the previous version of LF1T in the worst case. Using examples from the
biological literature we show through experimental results that our new algo-
rithm still outperforms the two previous versions of LF1T in practice.

The rest of this paper is organized as follows. Section 2 reviews LF1T together
with two previous versions of its algorithms. Section 3 describes the new LF1T
algorithm based on BDDs and discusses its computational complexity. Section 4
shows experimental results of the new algorithm compared to the two previous
versions of LF1T on learning Boolean networks.

2 Learning from 1-Step Transitions

We consider a first-order language and denote the Herbrand base (the set of all
ground atoms) as B. A (normal) logic program (NLP) is a set of rules of the
form

A ← A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬An (1)

where A and Ai’s are atoms (n ≥ m ≥ 0). For any rule R of the form (1), the
atom A is called the head of R and is denoted as h(R), and the conjunction to
the right of ← is called the body of R. We represent the set of literals in the body
of R of the form (1) as b(R) = {A1, . . . , Am,¬Am+1, . . . ,¬An}, and the atoms
appearing in the body of R positively and negatively as b+(R) = {A1, . . . , Am}
and b−(R) = {Am+1, . . . , An}, respectively. The set of ground instances of all
rules in a logic program P is denoted as ground(P).

An (Herbrand) interpretation I is a subset of B. For a logic program P and an
Herbrand interpretation I, the immediate consequence operator (or TP operator)
[6] is the mapping TP : 2B → 2B:

TP (I) = {h(R) | R ∈ ground(P), b+(R) ⊆ I, b−(R) ∩ I = ∅}. (2)

Definition 1 (Subsumption). For two rules R1, R2 of the form 1 with the
same head, R1 subsumes R2 if there is a substitution θ such that b+(R1)θ ⊆
b+(R2) and b−(R1)θ ⊆ b−(R2). When R1 subsumes R2 and |b(R1)| < |b(R2)|,
R1 is more general than R2 and R2 is more specific than R1.

We now review the LF1T algorithm developed in [1]. LF1T is an anytime
algorithm that takes a set of state transitions E ⊆ 2B × 2B as input. The states
transitions of E can be seen as (positive) examples/observations of transition of
the system. From these transitions the algorithm learns a logic program P that
represents the dynamics for E. To perform this learning process we can itera-
tively consider one-step transitions. In LF1T, the Herbrand base B is assumed

50 T. Ribeiro et al.

Algorithm 1. LF1T(E,P)
1: INPUT: E ⊆ 2B × 2B: (positive) examples/observations and an NLP P
2: OUTPUT: An NLP P such that J = TP (I) holds for any (I, J) ∈ E.

3: while E �= ∅ do
4: Pick (I, J) ∈ E; E := E \ {(I, J)}
5: for each A ∈ J do
6: RI

A := A ← ∧
Bi∈I Bi ∧∧Cj∈(B\I) ¬Cj

7: AddRule(RI
A, P)

8: end while
9: return P

to be finite. To construct an NLP for LF1T we can use a bottom-up method,
which generates hypotheses by generalization from the most specific clauses to
explain positive examples that have not been covered yet. The pseudo-code of
LF1T is given in Algorithm 1. The LF1T algorithm can be used with or with-
out an initial NLP P0. Given only the examples E, LF1T is initially called by
LF1T(E, ∅). If an initial NLP P0 is given, LF1T(E,P0) is called. LF1T first
constructs the most specific rule RI

A for each positive literal A appearing in
J = TP (I) for each (I, J) ∈ E. We do not construct any rule to make a literal
false. The rule RI

A is then possibly generalized when another transition from E
makes A true, which is computed by several generalization methods. The two
generalization methods considered in [1] are based on resolution. In [1], näıve
and ground resolutions are defined between two ground rules as follows. Let R1,
R2 be two ground rules and l be a literal such that h(R1) = h(R2), l ∈ b(R1)
and l ∈ b(R2). If (b(R2) \ {l}) ⊆ (b(R1) \ {l}) then the ground resolution of R1

and R2 (upon l) is defined as

res(R1, R2) =
(

h(R1) ←
∧

Li∈b(R1)\{l}
Li

)

. (3)

In particular, if (b(R2) \ {l}) = (b(R1) \ {l}) then the ground resolution is called
the näıve resolution of R1 and R2 (upon l). In this particular case, the rules
R1 and R2 are said to be complementary to each other with respect to l. Both
näıve resolution and ground resolution can be used as generalization methods of
ground rules. For two ground rules R1 and R2, the näıve resolution res(R1, R2)
subsumes both R1 and R2, but the non-näıve ground resolution subsumes R1

only. For example, suppose the three rules: R1 = (p ← q∧r), R2 = (p ← ¬q∧r),

Fig. 1. A Boolean network N1(left) and its state transition diagram (right)

A BDD-Based Algorithm for Learning from Interpretation Transition 51

R3 = (p ← ¬q), and their resolvent: res(R1, R2) = res(R1, R3) = (p ← r). R1

and R2 are complementary with respect to q. Both R1 and R2 can be generalized
by the näıve resolution of them because res(R1, R2) subsumes both R1 and R2.
On the other hand, the ground resolution res(R1, R3) subsumes R1 but does
not subsumes R3. In the first implementation of LF1T in [1], näıve resolution is
used as a least generalization [17] method. This method is particularly intuitive
from the ILP viewpoint, since each generalization is performed based on a least
generalization operator. In [1], it is shown that for two complementary ground
rules R1 and R2, the näıve resolution of R1 and R2 is the least generalization of
them, that is, lg(R1, R2) = res(R1, R2). When näıve resolution is used, LF1T
needs an auxiliary set Pold of rules to globally store subsumed rules, which
increases monotonically. Using näıve resolution, P ∪ Pold possibly contains all
patterns of rules constructed from the Herbrand base B in their bodies. In the
second implementation of LF1T of [1], ground resolution is used as an Pold

alternative generalization method in AddRule. This replacement of resolution
leads to a lot of computational gains, since the use of Pold is not necessary any
more: all generalized rules obtained from P ∪ Pold by näıve resolution can be

Table 1. Execution of LF1T with ground resolution on step transitions of Fig. 1 where
pqr → pq represents the state transition ({p, q, r}, {p, q}) [1].

Step I → J Operation Rule ID P

1 pqr → pq Rpqr
p p ← p ∧ q ∧ r 1 1

Rpqr
q q ← p ∧ q ∧ r 2 1,2

2 pq → p Rpq
p p ← p ∧ q ∧ ¬r 3

res(3, 1) p ← p ∧ q 4 2,4

6 p → ε

7 ε → r Rε
r r ← ¬p ∧ ¬q ∧ ¬r 5 2,4,5

8 r → r Rr
r r ← ¬p ∧ ¬q ∧ r 6

res(6, 5) r ← ¬p ∧ ¬q 7 2,4,7

9 qr → pr Rqr
p p ← ¬p ∧ q ∧ r 8

res(8, 4) p ← q ∧ r 9 4,7,9

Rqr
r r ← ¬p ∧ q ∧ r 10

res(10, 7) r ← ¬p ∧ r 11 2,4,7,9,11

10 pr → q Rpr
q q ← p ∧ ¬q ∧ r 12

res(12, 2) q ← p ∧ r 13 4,7,9,11,13

11 q → pr Rq
p p ← ¬p ∧ q ∧ ¬r 14

res(14, 1) p ← q ∧ ¬r 15

res(15, 4) p ← q 16 7,11,13,16

Rq
r r ← ¬p ∧ q ∧ ¬r 17

res(17, 7) r ← ¬p ∧ ¬r 18

res(18, 11) r ← ¬p 19 13,16,19

52 T. Ribeiro et al.

obtained using ground resolution on P . By Theorem 3 of [1], using the näıve
version, the memory use of the LF1T algorithm is bounded by O(n · 3n), and
the time complexity of learning is bounded by O(n2 · 9n), where n = |B|. On
the other hand, with ground resolution, the memory use is bounded by O(2n),
which is the maximum size of P , and the time complexity is bounded by O(4n).
Given the set E of complete state transitions, which has the size O(2n), the
complexity of LF1T(E, ∅) with ground resolution is bounded by O(|E|2). On
the other hand, the worst-case complexity of learning with näıve resolution is
O(n2 · |E|4.5).

Example 1. Consider the state transition in Fig. 1. By giving the state transitions
step-by-step and using ground resolution the NLP {#13,#16,#19} is obtained
in Table 1, where #n is the rule ID.

3 BDD Algorithms for LF1T

Now we present a new LF1T algorithm based on an efficient data structured
inspired from OBDD and Zero-suppressed BDD. The novelty of our approach
is the integration of LF1T operations into a BDD structure to perform ground
resolution. In this approach, one BDD represents a set of rules that have the
same head. Figure 2 show the evolution of the BDD that represents rules of
p in Example 1: In this figure, the last schema of step 9 represents a BDD
that contains two rules p ← p ∧ q and p ← q ∧ r which both have p as their
head. The internal nodes of our data structure represent literals, and outgoing
edges represent their polarity. In Fig. 2, the first BDD has one root node which
represents the literal p and the edge between its child node q represents the fact
that p is positive in the rule p ← p ∧ q. Like an OBBD, our structure respects
a total variable ordering: if p, c are two nodes, c is a child of p and lp, lc their
literals respectively, then lp < lc. If there is an edge between two nodes p, c that
are not neighbors in the ordering, it means that all literals between them are
absent from the rules encoded by paths including p and c. Like a ZDD, our BDD
structure can have multiple root nodes, but only one leaf; it only represents
positive rules. A root node always represents the first literal of one or multiple
rules. The leaf node represents the end of all rules; it is the unique child of the
last literal of every rule represented by the BDD. Usual BDD merging operations
are not sufficient to perform the generalization operations of LF1T. In LF1T,
these operations are equivalent to the use of näıve resolution without Pold. In
Fig. 2, the generalization obtained in step 2 can be obtained by usual BDD
merging operations: the node r has a positive and negative link to the same node
(the leaf) and should be removed according to BDD merging operations. But
the generalization obtained by ground resolution on step 9 cannot be obtained
by usual BDD merging operations. To use ground resolution within a BDD
structure we need to introduce specific merging operations. These operations
have to ensure that the set of rules represented by a BDD is always minimal
regarding ground resolution. In Fig. 2, the last BDD of each learning step respects

A BDD-Based Algorithm for Learning from Interpretation Transition 53

Fig. 2. Evolution of the BDD of p in Example 1, edge labelled by 0 represents negation,
nodes without parent are roots and the empty node is the leaf. Last schema of each step
represents the real state of the BDD; intermediate ones illustrate update operations.
Step 1: from (pqr, pq) we learn p ← p∧q∧r. Step 2: from (pq, p) we learn p ← p∧q∧¬r
and by resolution p ← p ∧ q. Step 9: from (qr, pr) we learn p ← ¬p ∧ q ∧ r and by
resolution p ← q ∧ r. Step 11: from (q, pr) we learn p ← ¬p ∧ q ∧ ¬r which triggers two
resolutions and a subsumtion to finish with p ← q.

this notion of minimality. Algorithm 2 describes our adaptation to BDD of the
addRule operation of LF1T. This algorithm is an application to BDD of the
previous version of LF1T based on ground resolution. Whenever a new rule is
learned, the corresponding BDD is updated as follows: (1) check if the rule is
subsumed, (2) generalize the rule, (3) remove subsumed rules, (4) insert the rule
and (5) generalize the BDD. The details of each step is explained as follows.

Subsumption (step 1). To check if a rule is subsumed by a BDD, we have
to check whether starting from a root and following the body of the rules allow
us to reach the leaf of the BDD. If we reach the leaf then the rule is subsumed.
Because we use ground resolution, if a rule is subsumed by the BDD it is useless
to search for generalizations of that rule. Checking for such a generalization
will only lead to generating a rule that is already in the BDD. Also, it cannot
generalize any rules in the BDD: every generalization which can be triggered by
this rule has already been found using the rules in the BDD that subsumes it.

54 T. Ribeiro et al.

Algorithm 2. addRule(R,B)

1: INPUT: a rule R and a BDD B
2: g: a set of rules

// 1) Check if R is subsumed
3: for each root node r of B do
4: if r.subsumes(R, 0) then return

// 2) Generalizes R
5: for each root node r of B do
6: if r.generalizes(R, 0) then restart the for loop

// 3) Remove rules subsumed by R
7: l := the leaf node of B
8: l.clear(R, |R|, true)

// 4) Insert R into the BDD
9: insert(R,B)

// 5.1) Check generalization by R
10: g ← ∅
11: for each root node r of B do
12: r.generalizations(R, 1, g)

// 5.2) Add the generalizations generated by R
13: for each rules Rg of g do
14: addRule(Rg)

Algorithm 3. subsumes(R, n) member function of a LF1T-BDD node N

1: INPUT: a rule R and an integer n
2: OUTPUT: a Boolean value

3: literalN : literal of the node N
4: true children: list of child nodes linked by a true edge
5: false children: list of child nodes linked by a false edge
6: head: the head literal of R

// 1) Terminal node
7: if is terminal() AND variable = head then
8: return true

// 2) End of the rule
9: if n > |R| then
10: return false
11: literalR ← nth literal of R

// 3) LF1T-BDD rules are more generals
12: if literalR > literalN then
13: return subsumes(R,n + 1)

14: literalR ← nth literal of R
// 4) The rule is more general

15: if literalR < literalN then
16: return false

// 5) Same literal
17: if literalR is positive then
18: children ← true children
19: else
20: children ← false children

21: for each child node c of children do
22: if c.subsumes(R,n + 1) then
23: return true
24: return false

Generalization of the new rule (step 2). To search for generalizations of
the rules we use a similar search. However, each time we reach a node repre-
senting the current literal l of the rule, we check if the sub-BDDs subsume the
complementary rule on l. If it is the case, we generalize the rule on this literal
and restart the check for generalizations with the new rule.

A BDD-Based Algorithm for Learning from Interpretation Transition 55

Algorithm 4. generalizes(R, n) member function of a LF1T-BDD node N

1: INPUT: a rule R and an integer n
2: OUTPUT: a Boolean value
3: literalN : literal of the node N
4: true children: list of child nodes linked by a true edge
5: false children: list of child nodes linked by a false edge

// 1) The rule is more general than all rules of the node
6: if n > |R| then return false

// 2) Terminal node
7: if is terminal() then return false

// 3) Check generalization on the current node

8: literalR ← nth literal of R
// 3.1) The node is more general than the rule

9: while literalN > literalR do
10: if subsumes(R,n) then
11: R ← R \ literalR // 3.1.1) The node subsumes the complementary rule
12: return true
13: n ← n + 1

// 3.1.2) No more literal to generalize
14: if n > |R| then return false

15: end while
// 3.2) The rule is more general

16: if literalN < literalR then return false

// 3.3) The sub-bdd possibly contains the complementary
17: same ← true children
18: oposite ← false children
19: if literalR is positive then
20: same ← false children
21: oposite ← true children

// 3.3.1) Search for complementary rules
22: for each child node c of oposite do
23: if c.subsumes(R,n + 1) then // Complementary rules is subsumed
24: R ← R \ literalR
25: return true

// 4) Search for generalizations on next literal
26: for each child node c of same do
27: if c.generalizes(R,n + 1) then
28: return true
29: return false

Removal (step 3). To delete the rules subsumed by the new rule in the BDD,
this time we start from the leaf. We follow the parents according to the rule until
we check all corresponding parts of the BDD. If we reach the end of the rule,
it means that a rule is subsumed. If we do not encounter a node with multiple
children, we just have to delete the current node and purge the linked nodes: we
recursively delete all parent nodes that have no more children and all children
who have no more parents (those poor orphans). Otherwise, we come back to the
first node with multiple children we encountered, cut the child edge we followed,
and purge the child node in the same way as before.

Insertion (step 4). All operations we use on our BDDs are based on the manner
in which we insert a rule into the structure. First of all, when adding a rule R
to a BDD B we assume that R does not subsumes and is not subsumed by any
rules of B and cannot be generalized by a rule of B using ground resolution
(insured by step 1–3). To add a rule in the BDD we start by searching the
common part of the beginning and the end of the body. From the leaf of the
BDD, we climb to its parents following the rule from the end. If a parent node

56 T. Ribeiro et al.

Algorithm 5. clear(R, n, can cut) member function of a LF1T-BDD node N

1: INPUT: R a rule, n an integer and can cut a Boolean
2: OUTPUT: a Boolean value

3: literalR: the nth literal of R
4: unlink ← false

// 1) Choice node
5: if #child > 1 then
6: can cut ← false

// 2) Check parents
7: for each parent node p do
8: literalp ← the literal of p

// 2.1) Parent is more general
9: if literalp < literalR then
10: if n = 1 AND is terminal() then
11: CONTINUE // 2.1.1) Not subsumed

12: if !p.clear(R,n, can cut) then
13: CONTINUE

// 2.1.2) Subsumed
14: if can cut then
15: remove the link with p and delete p if it do not has child
16: unlink ← true
17: CONTINUE
18: return true

// 2.2) Rule is more general
19: if literalp > literalR then
20: if !p.clear(R,n, can cut) then
21: delete p if it do not has any parent
22: CONTINUE // 2.2.1) Not subsumed

// 2.2.2) Subsumed
23: if can cut then
24: remove the link with p and delete p if it do not has any child
25: unlink ← true
26: CONTINUE
27: return true

// 2.3) Same literal
28: if n > 0 AND !p.clear(R,n − 1, can cut) then
29: delete p if it do not has any parent
30: CONTINUE

// 2.3.2) Subsumed
31: if can cut then
32: remove the link with p and delete p if it do not has any child
33: unlink ← true
34: CONTINUE
35: return true
36: return false

has multiple children we do not follow it. Adding a parent to this node will
generate more rules than only the one we want to represent. We stop when there
is no parent that corresponds to the literal of the rule or when we reach the
beginning of the rule. Let’s call the last parent reached last and its literal llast;
last will be connected later to the new nodes created to represent the rule. Then,
we search for a root node corresponding to the first literal. If such a root node
does not exist, we create a new one, and then we create and link new nodes
for all literals l < llast of the rules. Then, last becomes the child of the node
most recently created. If a root node corresponds to the first literal of the rule
to insert, we follow its children according to the rule body. We stop the descent
when no nodes correspond to the rule body, and connect the most recent one we
found to last. This insertion policy allows us to compile common parts of the

A BDD-Based Algorithm for Learning from Interpretation Transition 57

Algorithm 6. insert(R, BDD)
1: INPUT: a rule R and a BDD

2: starting: the set of starting nodes of BDD
3: literal: first literal of R
4: begin, end: BDD nodes
5: n ← 0
6: push ← false

// 1) Bottom-up search for common part
7: end ← the last ancestor node reached following R from the corresponding terminal node

// 2) Fact rule
8: if |R| = 0 then
9: starting ← {terminalnode}
10: begin ← NULL

// 2.1) Search common literal within the starting nodes
11: if a node r ∈ starting correspond to literal then
12: begin ← r

// 2.2) New starting
13: if begin = NULL then
14: begin ← a new node corresponding to literal
15: starting ← starting ∪ {begin}
16: push ← true

17: current: bdd node pointer
18: make current points on begin

// 3) Insertion of the rest of the body
19: while n ≤ |R| do
20: n ← n + 1

// 3.1) Link node reached

21: if n > |R| OR the nth literal of R is the one of end then
22: connect current to end according to the polarity of literal
23: return
24: literal ← nth literal of R

// 3.2) construct new nodes for the rest of the rule
25: if push then
26: create a new node for literal
27: connect the node to current according to the polarity of literal
28: make current points on the new node
29: CONTINUE

// 3.3) Continue to follow the rule
30: next ← NULL
31: for each child nodes c of current according to previous literal polarity do
32: if c has only one parent node AND correspond to literal then
33: next ← c
34: BREAK

// 3.4) No more common literal
35: if next = NULL then
36: push = true
37: n ← n − 1
38: CONTINUE

// 3.4) // Continue to follow the LF1T-BDD
39: Make current point on next
40: end while
41: Connect end to begin according to the polarity of literal

rule body to save memory space. It ensures that a node with multiple children
have only one parent and cannot have an ancestor with multiple ancestors. In
our implementation, this property is exploited to enhance the efficiency of the
subsumption and generalization checks of LF1T.

Generalization of BDDs (step 5). To search the generalizations made by
the new rule, we start from the root node. Let l be the current literal we are

58 T. Ribeiro et al.

checking in the rule. When we reach a node whose literal corresponds to l or
before it in the ordering, we just have to retrieve all rules subsumed by the
rest of the new rules. These rules can all be generalized on the current node. We
continue the search for generalizations on the children until we cannot follow the
rule anymore. It is necessary to clear the BDD from subsumed rules before this
operation in order to avoid a cascade of useless generalizations which lead to the
rule we are inserting. In fact, let R1, R2 be two rules such that R1 subsumes R2

on l. Then R1 can generalize R2 on l because R1 subsumes the complementary
of R2 on l.

Algorithm 7. generalizations(R, n,G)

1: INPUT: R a rule, n an integer, G a list of rules
2: OUTPUT: a Boolean value

3: literalN : node literal
4: G′, rules: set of rules

// 1) End of the rule
5: if n > |R| then return

6: literalR ← nth literal of R
// 2) Node is more general

7: if literalN > literalR then return

// 3) Generalizations are possible on all children
8: if literalN < literalR then
9: for each child node c do
10: rules ← all rules subsumed by R in c
11: G ← G ∪ {rules}

// 2.2) Retrieve deeper generalizations
12: for each child node c do
13: G′ ← ∅
14: c.generalizations(R,n + 1, G′)
15: literal ← literalN
16: if the link with c is a negation then
17: literal ← ¬literalN
18: for each rule r of G′ do
19: G ← G ∪ {(h(r) ← literal ∧∧l∈b(r) l)}
20: return

// 3) Same literal
21: for each child node c do
22: // 3.1) Search complementary rules
23: if the link with c has the same polarity as literalR then
24: rules ← all rules subsumed by R in c
25: G ← G ∪ {rules}
26: else
27: // 3.2) Check deeper generalizations
28: literal ← literalN
29: if the link with c is a negation then
30: literal ← ¬literalN
31: G′ ← ∅
32: c.generalizations(R,n + 1, G′)
33: for each rule r of G′ do
34: G ← G ∪ {(h(r) ← literal ∧∧l∈b(r) l)}

Theorem 1. Let n be the size of the Herbrand base |B|. Using our dedicated
BDD structure the memory complexity as well as the computational complexity
of LF1T remain in the same order as the previous algorithm based on ground
resolution:, i.e., O(2n) and O(4n), respectively. The proof is given as appendix.

A BDD-Based Algorithm for Learning from Interpretation Transition 59

Table 2. Memory use and learning time of LF1T for Boolean networks up to 15 nodes
with the alphabetical variable ordering

Name # nodes # rules Näıve Ground BDD

Arabidopsis thalania 15 28 T.O. 40.8 MB/13.8 s 31.6 MB/2.8 s

Budding yeast 12 54 11 MB/361 s 4.6 MB/0.82 s 3.6 MB/0.188 s

Fission yeast 10 23 3.3 MB/5.2 s 0.8 MB/0.68 s 0.5 MB/0.24 s

Mammalian cell 10 22 4.7 MB/5.7 s 1MB/0.76 s 0.5 MB/0.24v s

Table 3. Experimental results of 1000 runs of LF1T with random variable orderings

Name min/max # rules Average # rules time std deviation rules/

time

Arabidopsis thalania 29/962 227 4.31 s 183.03/0.538 s

Budding yeast 54/310 82 0.3 s 41.91/0.019 s

Fission yeast 23/45 24 0.04 s 3.08/0.003 s

Mammalian cell 22/22 22 0.03 s 0/0.007 s

4 Experiments

In this section, we evaluate our learning methods through experiments. We apply
our new LF1T algorithms to learn Boolean networks. Here we run our learning
program on the same benchmarks used in [1]. These benchmarks are Boolean
networks taken from Dubrova and Teslenko [18], which include those networks
for control of flower morphogenesis in Arabidopsis thaliana, budding yeast cell
cycle regulation, fission yeast cell cycle regulation and mammalian cell cycle
regulation. Like in [1], we first construct an NLP τ(N) from the Boolean function
of a Boolean network N where each Boolean function is transformed to a DNF
formula. Then, we get all possible 1-step state transitions of N from all 2|B|

possible initial states I0’s by computing all stable models of τ(N)∪ I0 using the
answer set solver clasp [19]. Finally, we use this set of state transitions to learn
an NLP using our LF1T algorithm. Because a run of LF1T returns an NLP
which can contain redundant rules, the original NLP Porg and the output NLP
PLFIT can be different, but remain equivalent with respect to state transition,
that is, TPorg

and TPLFIT
are identical functions.

Table 2 shows the memory space and time of a single LF1T run in learning a
Boolean network for each problem in [18] on a processor Intel Core I7 (3610 QM,
2.3 GHz) with 4 GB of RAM. In the näıve, ground and BDD versions of LF1T
the variable ordering is alphabetical. The time limit is set to one hour for each
experiment. The gain of memory for the BDD version is up to 50 % for the two
smaller benchmarks and around 20 % for the bigger ones. The main interest of
our algorithm is shown by the gain in CPU time. For the Arabidopsis thaliana
benchmark the input size is quite big: 215 state transitions. Here, näıve version

60 T. Ribeiro et al.

of LF1T reaches the time out (T.O.) of one hour. On this big benchmark, using
BDD, we need 80 % less CPU time than the previous ground resolution method.
These results show that even if the BDD structure does not have a big impact on
the whole memory space use, its particular structure allows it to perform LF1T
operations faster than in the previous algorithms.

Table 3 show more precise experimental results on the BDD version of LF1T.
This table shows the minimum, maximum and average number of rules in the
output NLP of 1000 runs of LF1T with random variable ordering. The fifth
column shows the average learning time and last one is the standard deviation
over the number of rules and the one of learning time.

The standard deviation shows that the impact of variable ordering does not
affect learning time very much, but it has a significant influence on the rules
learned by LF1T. Although those output rules are all minimal with respect to
subsumption among them, some are subsumed by original rules. If we consider
the original NLP as a kind of optimal NLP in terms of the number of rules,
the bigger NLPs learned by our BDD version are local optima where no ground
resolutions can be applied among the rules of the NLP. This is because the
resolution strategy of LF1T is to perform resolution only when it produces a
generalized rule, so other kinds of resolution are not allowed. For example, from
R1 = (p ← p ∧ q) and R2 = (p ← ¬q ∧ r), R = (p ← p ∧ r) cannot be obtained
in LF1T, since R subsumes neither R1 nor R2. Variable ordering has the same
affect on the previous versions of LF1T.

5 Conclusion and Future Work

We proposed a new algorithm for learning from interpretation transitions based
on a BDD-like structure. Using this data structure, we can reduce the memory
space to represent NLPs learned by LF1T. Analysis of the worst-case compu-
tational complexity demonstrated that learning with this method is equivalent
to the previous method. However, experimental comparison with previous LF1T
algorithms showed that our method outperforms them in practice. Just a few
remarks on learning non-ground NLPs; LF1T first learns ground rules then we
apply well-known generalization techniques like anti-instantiation and least gen-
eralization. Extension of the BDD structure in this paper to the first-order case
like [20] remains as a future work. Another possible outlook is an extension of
LF1T algorithm to learn the dynamics of asynchronous systems.

A Appendix

A.1 Proof of Theorem 1

Proof. Let n be the size of the Herbrand base |B|. This n is also the number
of possible heads of rules. Furthermore, n is also the maximum size of a rule,
i.e. the number of literals in the body; a literal can appear at most one time
in the body of a rule. For each head there are 3n possible bodies: each literal

A BDD-Based Algorithm for Learning from Interpretation Transition 61

can either be positive, negative or absent of the body. From these preliminaries
we conclude that the size of an NLP |P | learned by LF1T is at most n · 3n.
But thanks to ground resolution, |P | cannot exceed n · 2n; in the worst case, P
contains only rules of size n where all literals appear and there is only n ·2n such
rules. If P contains a rule with m literals (m < n), this rule subsumes 2n−m rules
which cannot appear in P . Finally, ground resolution also ensures that P does
not contain any pair of complementary rules, so that the complexity is further
divided by n; that is, |P | is bounded by O(n·2n

n) = O(2n).
In our approach, a BDD represents all rules of P that have the same head,

so that we have n BDD structures. When |P | = 2n, each BDD represents 2n/n
rules of size n and are bound by O(2n/n), which is the upper bound size of
a BDD for any Boolean function [21]. Because BDD merges common parts of
rules, it is possible that a BDD that represents 2n/n rules needs less than 2n/n
memory space. In the previous approach, in the worst case |P | = 2n, whereas
in our approach |P | ≤ 2n. Our new algorithm still remains in the same order of
complexity regarding memory size: O(2n).

Regarding learning, each operation has its own complexity. Let k be the place
of a literal in the variable ordering so that for the starting node literal of a BDD
k = 0. In our BDD, a node has at most 2 · ((n − k) − 1) children: (n − k) − 1
positive and negative links to all literals which are superior to k in the ordering.
Insertion of a rule is done in polynomial time; in the worst case, we insert a rule
where only one literal that differs from the BDD. Because we follow only the
first common literals, we have to check at most 2 · ((n − k) − 1) links on n − 1
nodes, which belongs to O(n2).

Subsumption as well as generalization checks require exponential time. In
the case of subsumption, in the worst case the BDD contains 2n/n rules and the
rule is not subsumed by any of them.

That means that we have to check every rule, and each check belongs to O(n2)
so that the whole subsumption operation belongs to O(n2 · 2n/n) = O(2n). To
clear the BDD we have to perform the inverse operation. We always have to
check the whole BDD, so if the size of the BDD is 2n then the complexity of the
whole clear check also belongs to O(2n).

To generalize the new rule we have to check if the BDD subsumes one of
its complementary rules. Like for subsumption, in the worst case we have to
check every rule. A rule can be generalized at most n times; for each general-
ization we have to check at most n complementary rules, so the complexity of a
complete generalization belongs to O(n2 · 2n/n) = O(2n). For the complexity of
generalization of BDD rules we consider the inverse problem. In the worst case,
every rule of the BDD can be generalized by the new one. Because the new rule
does not cover any rules of the BDD, it can generalize each rule of the BDD
at most one time. Then, we have at most 2n/n possible direct generalizations
on the whole BDD. In the worst case, each of them can be generalized at most
n − 1 times, and like before, for each generalization we have to check at most
n complementary rules. If a rule is generalized n times it means that its body
becomes empty, i.e. the rule is a fact, and it will subsume and clear the whole

62 T. Ribeiro et al.

BDD. Then, the complexity of a complete generalization of the BDD belongs to
O(2n/n · (n − 1) · n) = O(2n).

Each time we learn a rule from a step transition we have to perform these
four checks which have a complexity of O(n2 + 2n + 2n + 2n) = O(2n). From
2n state transitions, LF1T can directly infer n · 2n rules. Learning the dynamics
of the entire input implies in the worst case 2n · 2n operations which belong to
O(4n). Using our dedicated BDD structure the memory complexity as well as
the computational complexity of LF1T remains the same order as the previous
algorithm based on ground resolution: respectively O(2n) and O(4n).

References

1. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Mach.
Learn. (2013). doi:10.1007/s10994-013-5353-8

2. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan,
A.: Ilp turns 20. Mach. Learn. 86(1), 3–23 (2012)

3. Inoue, K.: Logic programming for boolean networks. In: Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence, vol. 2, pp. 924–930.
AAAI Press (2011)

4. Inoue, K., Sakama, C.: Oscillating behavior of logic programs. In: Erdem, E., Lee,
J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 345–362.
Springer, Heidelberg (2012)

5. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. J. ACM (JACM) 23(4), 733–742 (1976)

6. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.
89–149. Morgan Kaufmann, Los Altos (1988)

7. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 100(6), 509–516
(1978)

8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 100(8), 677–691 (1986)

9. Aloul, F.A., Mneimneh, M.N., Sakallah, K.A.: Zbdd-based backtrack search sat
solver. In: Proceedings of the International Workshop on Logic Synthesis, Lake
Tahoe, California (2002)

10. Minato, S., Arimura, H.: Frequent closed item set mining based on zero-suppressed
bdds. Inf. Media Technol. 2(1), 309–316 (2007)

11. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its
application in link discovery. In: Proceedings of the 20th International Joint Con-
ference on Artifical Intelligence, pp. 2468–2473 (2007)

12. Simon, L., Del Val, A.: Efficient consequence finding. In: International Joint Confer-
ence on Artificial Intelligence, vol. 17, pp. 359–370. Lawrence Erlbaum Associates
Ltd. (2001)

13. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abduc-
tive hypotheses using an em algorithm on bdds. In: Proceedings of the 21st Inter-
national Jont Conference on Artifical Intelligence, pp. 810–815. Morgan Kaufmann
Publishers Inc. (2009)

14. Bryant, R.E., Meinel, C.: Ordered binary decision diagrams. In: Hassoun, S., Sasao,
T. (eds.) Logic Synthesis and Verification, pp. 285–307. Springer, New York (2002)

http://dx.doi.org/10.1007/s10994-013-5353-8

A BDD-Based Algorithm for Learning from Interpretation Transition 63

15. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. (CSUR) 24(3), 293–318 (1992)

16. Minato, S.: Zero-suppressed bdds for set manipulation in combinatorial problems.
In: 30th Conference on Design Automation, pp. 272–277. IEEE (1993)

17. Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5(1), 153–163
(1970)

18. Dubrova, E., Teslenko, M.: A sat-based algorithm for finding attractors in syn-
chronous boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)
8(5), 1393–1399 (2011)

19. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers, San Rafael (2012)

20. Groote, J.F., Tveretina, O.: Binary decision diagrams for first-order predicate logic.
J. Logic Algebraic Program. 57(1), 1–22 (2003)

21. Liaw, H.T., Lin, C.S.: On the obdd-representation of general boolean functions.
IEEE Trans. Comput. 41(6), 661–664 (1992)

Accelerating Imitation Learning in Relational
Domains via Transfer by Initialization

Sriraam Natarajan1, Phillip Odom1(B), Saket Joshi2, Tushar Khot3,
Kristian Kersting4, and Prasad Tadepalli5

1 Indiana University Bloomington, Bloomington, USA
podom@umail.iu.edu

2 Cycorp Inc, Austin, USA
3 University of Wisconsin-Madison, Madison, USA

4 Fraunhofer IAIS, New York, Germany
5 Oregon State University, Corvallis, USA

Abstract. The problem of learning to mimic a human expert/teacher
from training trajectories is called imitation learning. To make the process
of teaching easier in this setting, we propose to employ transfer learning
(where one learns on a source problem and transfers the knowledge to
potentially more complex target problems). We consider multi-relational
environments such as real-time strategy games and use functional-gradient
boosting to capture and transfer the models learned in these environments.
Our experiments demonstrate that our learner learns a very good initial
model from the simple scenario and effectively transfers the knowledge to
the more complex scenario thus achieving a jump start, a steeper learning
curve and a higher convergence in performance.

1 Introduction

It is common knowledge that both humans and animals learn new skills by
observing others. This problem, which is called imitation learning, can be for-
mulated as learning a representation of a policy – a mapping from states to
actions – from examples of that policy. Imitation learning has a long history
in machine learning and has been studied under a variety of names including
learning by observation [1], learning from demonstrations [2], programming by
demonstrations [3], programming by example [4], apprenticeship learning [5],
behavioral cloning [6], and some others. Techniques used from supervised learn-
ing have been successful for imitation learning [7]. We follow this tradition and
investigate the use of supervised learning methods to learn behavioral policies.
Our focus is on relational domains where states are naturally described by rela-
tions among an indefinite number of objects. Examples include real time strat-
egy games such as Warcraft, regulation of traffic lights, logistics, and a variety
of planning domains. A supervised learning method for imitation learning was
recently proposed [8]. This approach assumes an efficient hypothesis space for
the policy function, and learns only policies in this space that are closest to

c© Springer-Verlag Berlin Heidelberg 2014
G. Zaverucha et al. (Eds.): ILP 2013, LNAI 8812, pp. 64–75, 2014.
DOI: 10.1007/978-3-662-44923-3 5

Accelerating Imitation Learning in Relational Domains 65

Fig. 1. Wargus Scenarios (left) The two tower scenario whereproviding examples is
easier. (right) The three tower scenario which is significantly more complicated and
requires more training trajectories.

the training trajectories [9,10]. This approach is based on functional gradient
boosting [11] where a set of relational regression trees [12] are used to compactly
represent a complex relational policy. This approach was demonstrated to be
successful in many problems.

One of the key assumptions in the proposed approach is that the policies can
be generalized across the objects in the domain. While one of the advantages
of a logical representation is the generalization capability, it is also quite possi-
ble that in several large problems, the optimal policies can vary greatly as the
number of the objects in the domains can increase. In such cases, the learner
has to be provided with new example trajectories to learn the policies. Since the
complexity of the domain has increased, the number of trajectories required for
learning can also increase significantly. For instance, consider the two scenarios
presented in Fig. 1 where the goal is to defend the towers from being destroyed
by the enemy units. In the left figure, there are two towers and two enemy and
friendly footmen and archers. In the right figure, all the numbers increase by
one. As we show empirically, the optimal policies for the two scenarios can be
very different. More importantly, the number of trajectories required to converge
to the optimal policy is higher in the case of the more complex scenario.

In order to train on such complex scenarios, we propose to employ transfer
learning [13,14] for learning in a (simpler) source problem and then transfer-
ring the learned knowledge to a (more complex) target task. More precisely,
we aim to employ transfer by initialization [15] where the models learned from
the source task are used to initialize the models in the learning task. Following
prior work [8], we perform search through the space of policies using functional
gradient boosting but initialize the gradients with the models learned in the
source task. Our hypothesis is that this initialization will allow the learner to
explore more complex policy spaces that might not have been accessed easily if
the search started out with uniform policies. We verify this claim empirically.

In summary, we consider the problem of imitation learning in relational
domains where the optimal policies can be significantly different as the number

66 S. Natarajan et al.

of objects in the domain increases. Generalization of policies is still a desired
property as the properties of the objects themselves can change across situa-
tions with the same number of objects. When the number of objects change, we
propose to employ transfer learning by initialization to initialize the gradients
in the target task. We evaluate the hypothesis in a real time strategy game and
show that we are able to achieve a jump start, faster convergence to a more
optimal policy.

The rest of the paper is organized as follows: we introduce the background
and the prior work on relational imitation learning next. We then present our
transfer algorithm for initialization and evaluate the algorithm on a complex
RTS game and conclude the paper by outlining some challenges for future work.

2 Background

An MDP is described by a set of discrete states S, a set of actions A, a reward
function rs(a) that describes the expected immediate reward of action a in state
s, and a state transition function pa

ss′ that describes the transition probability
from state s to state s′ under action a. A policy, π, is defined as a mapping
from states to actions, and specifies what action to execute in each state. In the
imitation learning, we assume that the reward function is not directly obtained
from the environment. Our input consists of S, A and supervised trajectories
generated by a Markov policy. We try to match it using a parameterized policy.

3 Relational Imitation Learning

Following Ratliff et al. [16], we assume that the discount factor are absorbed into
the transition probabilities and policies are described by μ ∈ G where G is the
space of all state-action frequency counts. We assume a set of features F that
describe the state space of the MDP and the expert chooses the action ai at any
time step i based on the set of feature values 〈fi〉 according to some function.
For simplicity, we denote the set of features at any particular time step i of the
jth trajectory as f ji and we drop j whenever it is fairly clear from the context.

The goal of our algorithm is to learn a policy that suitably mimics the expert.
More formally, we assume a set of training instances {〈f ji , ai〉mj

i=1}n
j=1 that is

provided by the expert. Given these training instances, the goal is to learn a
policy μ that is a mapping from f ji to aj

i for each set of features f ji . The key
aspect of our setting is that the individual features are relational i.e., objects
and relationships over these objects. The features are denoted in standard logic
notation where p(X) denotes the predicate p whose argument is X. The problem
of imitation learning given these relational features and expert trajectories can
now be posed as a regression problem or a supervised learning problem over
these trajectories.

In our previous work [8], we employed Functional-Gradient Boosting for
learning relational policies. The goal is to find a policy μ that is captured
using the trajectories (i.e., features f ji and actions aj

i) provided by the expert,

Accelerating Imitation Learning in Relational Domains 67

i.e., the goal is to determine a policy μ = P (ai|fi;ψ) ∀a, i where the features
are relational. These features could define the objects in the domain (squares
in a gridworld, players in robocup, blocks in blocksworld, archers or footmen in
a real-time strategy game etc.), their relationships (type of objects, teammates
in robocup etc.), or temporal relationships (between current state and previous
state) or some information about the world (traffic density at a signal, distance
to the goal etc.).

We assume a functional parametrization over the policy and consider the
conditional distribution over actions ai given the features to be,

P (ai|fi;ψ) = eψ(ai;fi)/
∑

a′
i

eψ(a′
i;fi),∀ai ∈ A (1)

where ψ(ai; fi) is the potential function of ai given the grounding fi of the fea-
ture predicates at state si and the normalization is over all the admissible actions
in the current state. Formally, functional gradient ascent starts with an initial
potential ψ0 and iteratively adds gradients Δi. Here, Δm is the functional gra-
dient at episode m and is

Δm = ηm × Ex,y[∂/∂ψm−1log P (y|x;ψm−1)] (2)

where ηm is the learning rate. Note that in Eq. 2, the expectation Ex,y[..] cannot
be computed as the joint distribution P (x,y) is unknown (in our case, y’s are
the actions while x’s are the features). Instead of computing the gradients over
the potential function, the gradients are computed for each training example:

Δm(aj
i ; f

j
i) = ∇ψ

∑

j

∑

i

log(P (aj
i |f

j
i ;ψ))|ψm−1 (3)

These are point-wise gradients for examples 〈f ji , a
j
i 〉 on each state i in each trajec-

tory j conditioned on the potential from the previous iteration (shown as |ψm−1).
Now this set of local gradients form a set of training examples for the gradient at
stage m. The main idea in the gradient-tree boosting is to fit a regression-tree on
the training examples at each gradient step [17]. The idea of functional gradient
boosting is presented in Fig. 2.

The functional-gradient w.r.t ψ(aj
i ; f

j
i) of the likelihood for each example

〈f ji , a
j
i 〉 is given by:

∂ log P (aj
i |f

j
i ;ψ)

∂ψ(âj
i ; f

j
i)

= I(aj
i = âj

i |f
j
i) − P (aj

i |f
j
i ;ψ) (4)

where âj
i is the action observed from the trajectory and I is the indicator function

that is 1 if aj
i = âi

j and 0 otherwise. The key feature of the above expression
is that the functional-gradient at each state of the trajectory is dependent on
the observed action â. If the example is positive (i.e., it is an action executed
by the expert), the gradient (I −P) is positive indicating that the policy should

68 S. Natarajan et al.

Fig. 2. Relational FGB. This is similar to the standard FGB where trees are induced
in stage-wise manner; the key difference being that the trees are relational regression
trees. To compute the predictions, a query, x is applied to each tree in turn, and the
numerical values at the leaf reached in each tree are summed to obtain ψ(x).

increase the probability of choosing the action. On the contrary if the example is
a negative example (i.e., for all other actions), the gradient is negative implying
that it will push the probability of choosing the action towards 0.

Following prior work [18–20], we used Relational Regression Trees (RRTs)
[12] to fit the gradient function at every feature in the training example [8]. Hence
the distribution over each action is represented as a set of RRTs on the features.
These trees are learned such that at each iteration the new set of RRTs aim to
maximize the likelihood. Hence, when computing P (a(X)|f(x)) for a particular
value of state variable X (say x), each branch in each tree is considered to
determine the branches that are satisfied for that particular grounding (x) and
their corresponding regression values are added to the potential. For example,
X could be a particular unit in Wargus. or a certain block in the blocksworld.

4 Relational Transfer

In this work, we extend the previous work in imitation learning by employing
the ideas for inductive transfer [13]. While the previous approach was able to
achieve generalization in a imitation learning setting, the generalized policies
might not be sufficient in some other variations of the problems. For instance, in
the scenarios considered in Fig. 1, the optimal policies for the three tower defense
scenario can be significantly different from the easier task of two tower scenario.
Also, since the three tower case is a harder task, as we show empirically, learning
in this setting might require more example trajectories from the expert. In such
cases, it is easier to transfer the knowledge gained from the two tower scenario to
the three tower case for initialization and then improve upon the knowledge by
learning in the three tower case. This will enable the learner to: (a) learn a better
policy than the one generalized from the two tower scenario and (b) converge to

Accelerating Imitation Learning in Relational Domains 69

the optimal policy faster in the three tower scenario i.e., from fewer trajectories
when compared to learning with no knowledge.

Table 1. Transfer Learning Algorithm

1: function Transfer(Tsource,Ttarget)
2: Λs = TIL({},Tsource) � Learn with source Trajectories
3: Λt = TIL(Λs,Ttarget) � Use learned models and learn on Target Trajectories

return Λt

4: end function
5: function TIL(Λ, Trajectories T)
6: Λ0 = Λ
7: for 1 ≤ k ≤ | A| do � Iterate through each action
8: for 1 ≤ m ≤ M do � M gradient steps
9: Sk := GenExamples(k; T ; Λk

m−1)
10: Δm(k) := FitRRT (Sk; L) � Gradient
11: Λk

m := Λk
m−1 + Δm(k) � Update models

12: end for
13: P (A = k|f) ∝ ψk

14: end for
15: return Λ
16: end function
17: function GenExamples(k, T, Λ)
18: S := ∅
19: for 1 ≤ j ≤ |T | do � Trajectories
20: for 1 ≤ i ≤ |Sj | do � States of trajectory
21: Compute P (âj

i = k|f ji) � Probability of user action being the current
action

22: Δm(k; f ji) = I(âj
i = k) − P (âj

i = k|f ji)
23: S := S ∪ [(âj

i , f
j
i), Δ(âj

i ; f
j
i))] � Update relational regression examples

24: end for
25: end for
26: return S � Return regression examples
27: end function

The form of the functional gradients facilitate easy transfer. Since they per-
form gradient descent in function space, we can initialize the models (ψ0) for
the three tower scenario with some of the trees learned in the two tower sce-
nario. Conceptually, this is essentially the same as using the result of the first
few gradient steps in the source problem while learning in the target problem.
After initializing the gradient ascent with the initial set of trees, we propose to
learn new set of trees in the target task that build upon the initial model. As
mentioned earlier, this initial set of trees for the ψ0.

To perform learning in the target task, the trajectories must be weighted
given the initial model. Similar to Eq. 4, we compute the value of I(aj

i = âj
i |f

j
i)−

P (aj
i |f

j
i ;ψ0) for each action of each trajectory, i.e., the weight of each observed

action is the difference between the indicator function of that action and the
marginal probability of that action given the initial potential function. Once

70 S. Natarajan et al.

Fig. 3. Proposed transfer approach. The key idea is to learn a small set of trees from
the source task and use them to initialize the RFGB algorithm for the harder task.

these weights are computed for the given trajectory, they serve as the examples
for learning new set of trees. This idea is presented in Fig. 3. First we learn a
few set of trees in the source task and then use them to initialize the models in
the target task. We then learn a new set of trees in the target task.

Our proposed transfer learning algorithm is presented in Algorithm 1. The
function Transfer is the main algorithm that takes as input trajectories from the
source and the target tasks. The algorithm first calls the TIL function (which
stands for Tree − basedImitationLearning) with an empty potential function
(empty set of trees) and the source trajectories. The TIL function then learns a
set of trees in the source task. The TIL function is the same one presented in [8]
with the modification that it can use an initial set of trees. For each action (k),
it generates the examples for our regression tree learner (called using function
FitRRT) to get the new regression tree and updates its model (Λk

m). This is
repeated up to a pre-set number of iterations M (typically, M = 20). We found
empirically that increasing M has no effect on the performance as the example
weights nearly become 0 and the regression values in the leaves are close to 0 as
well. Note that the after m steps, the current model Λk

m will have m regression
trees each of which approximates the corresponding gradient for the action k.
These regression trees serve as the individual components (Δm(k)) of the final
potential function.

Once the set of trees have been learned in the source task, a subset of those
trees (typically we use 20 trees in our experiments), is then used as the initial

Accelerating Imitation Learning in Relational Domains 71

model for the target task and the TIL function is called with this initial set and
the trajectories. The function then returns a new set of trees which are then used
for evaluating in the target task. It must be mentioned that when choosing to
act in the target task, inference over the actions is performed using all the trees
(the initial set of source trees plus the target trees). It is easy to see that we
cannot ignore the transferred trees since they form the first step of the gradient
ascent when learning the policy in the target domain.

The proposed approach is closely related to the idea of modular policies of
Driessens [21]. He observed that the use of functional gradients to represent
policies allows us to separate the gradient updates to different subtasks of the
agent’s task. Thus, we can create separate potential functions for each part of
the task and the natural addition operator of functional gradients allows then to
obtain the final policy which is essentially a sum of different regression trees. We
extend the above to transfer learning where we consider an initial set of trees
for a different task (or potentially a subtask) and a new set of trees are then
learned for the new task. Hence, combining these two ideas, it is possible to learn
a higher level policy in a hierarchy by transferring from the lower level subtasks.

5 Experiments

We present the empirical evaluation of our proposed algorithm on a real-time
strategy game. We are particularly interested in the following questions:
Q1: How do the transferred models compare against the models that are general-
ized using the relational imitation learning algorithm?
Q2: How do the transferred models compare against the models that are learned
directly on the target task with no prior models from source task?
Experimental Setup: Stratagus is an open-source real-time strategy (RTS) game
engine written in C based off the Warcraft series of games. Like all RTS games, it
allows multiple agents to be controlled simultaneously in a fully observed setting,
making an ideal test bed for imitation learning. A java client was written, revised
at Oregon State University1, to connect to the Stratagus game engine via a socket
connection. The client collects all of the game information from the game engine
and can issue detailed commands to all units of a player in the game. This client
allows for the learned policies to be executed directly in the game environment
as opposed to simulation creating more realistic performance metrics.

The setting in which transfer is being tested is the tower defense scenario
shown in Fig. 1. The map used for the experiments consisted of 6× 6 grid world.
Our scenarios consist of two opposing teams-one attacking, one defending- each
with two kinds of units. Footman have more health but must be close to an
enemy to attack them while ranged archers are easily killed but can attack from
a distance. Towers exist on the map in set locations. The defending team must
prevent the attacking team from destroying the towers while the attacking team
must destroy as many towers as they can. The defending team must divide its
1 http://beaversource.oregonstate.edu/projects/stratagusai

http://beaversource.oregonstate.edu/projects/stratagusai

72 S. Natarajan et al.

units among the various towers to prevent one tower from falling while another
is being saved. This dynamic creates complex policies.

Predicates Description

friendlyobject The type of defending unit
enemyobject The type of attacking unit

dead Enemy unit that is dead
locationId Location of friendly unit
strength Strength (hit points) of friendly unit
distance Distance of a friendly unit to a tower

enemyattower Tower that enemy unit is attacking
attacking Enemy unit that a friendly unit

was attacking in the previous state

Fig. 4. Features that describe the state in the two
scenarios. We omit the arguments of the predicates
for brevity.

We used the following
features to describe the
state: the strength (high,
medium, low) and location
of all friendly units, the type
(footman, archer) of all units
in the game, which tower
each enemy unit is currently
attacking, and the enemy
unit that all friendly units
were attacking the previ-
ous state. Friendly units are
unaware of the strength of
enemy units or their exact
location. The full set of

information given at every state is included in Fig. 4. The actions available to
the friendly units are to move to a location and attack a particular unit. The
nature of the objects and the relationships between the objects in this game
naturally allow for a relational representation. Each type of unit (footman or
archers) shares traits such as their attacking range and their total health so
certain policy rules will naturally apply to all units of that type. As mentioned
earlier, the goal of this experiment is to learn to protect two towers in a source
scenario and transfer the learned knowledge to a target scenario. The attack-
ing team’s strategy is as follows: At the start of each game, each member of the
attacking team randomly selects a tower to attack. However, if approached by an
enemy archer or footmen, they will change their target to eliminate the oppos-
ing player’s offensive units. After destroying one tower, they will randomly select
another tower to attack until there are no towers left and the game ends. The
goal of the game is to defend the towers. The game ends if either the enemy team
manages to destroy all of the towers or the friendly team kills all of the enemy
units. The number of friendly and attacking units vary between the source and
target scenarios. In the source scenario, there are two footmen and two archers
while in the target scenario, there are three footmen and three archers. In both
the scenarios, the towers cannot defend themselves.
Results: We used two performance metrics that are based on the number of towers
saved. The 3-tower win percentage is the percentage of games in which all three
towers were saved. This is a difficult task because it requires the friendly team
to defend all three towers simultaneously; else one tower may fall while they
are all defending the others. The 1-tower win percentage is the easier metric,
only requiring 1 of the 3 towers to be saved. We used randomly selected samples
of 30, 50, 70, 100, and 150 3-tower games from a pool of approximately 1000
expert games for training in the target scenario. For the source scenario, we used

Accelerating Imitation Learning in Relational Domains 73

Fig. 5. Results of saving at least one tower (left) and saving all three towers (right).
The transferred models dominate the one learned from two towers (generalization) and
the one learned on three towers without an initial policy (non-transfer)

100 games for training. This experiment was repeated 10 times and the average
percentage of winnings games were computed.

We used three models for evaluation – the transfer model, the non-transferred
model which learns only on the target task and the generalization model which
learns only on the source and not the target task. We learned 20 trees on the
source task and learned a further 20 on the target task. Hence, the final transfer
model had 40 trees while the other two models had 20 trees each.

The results are presented in Fig. 5 corresponding to saving at least one tower
and three towers respectively. As can be seen from the figures, the transfer model
is superior to both the generalization and the pure imitation learner in the twin
tasks. Also, the results follow the original transfer learning goals of jump start,
steeper learning curve and better convergence. It is fairly clear that in defending
at least one tower, the use of the initial models from the source scenario provides
a bigger jump start than in defending all towers. On the other hand, when
saving all towers, the jump start is not fairly high but the learning curve is
steeper. It appears that the use of initial models allow for the learner in the
target scenario to explore a space of policies that might not have been otherwise
reached from an uniform policy. Similarly, the difference between transfer and
non-transfer models is higher in the one tower case than saving all the towers
though the difference in statistically significant in both the cases. Also, it must
be mentioned that even when the non-transferred models were provided with a
lot more trajectories, it is not able to match the performance of the transferred
model. This suggests that using initial policies in some cases is more useful than
obtaining more expert trajectories. It would be interesting to evaluate these
results in other domains as well.

In summary, our experiments answer both the questions affirmatively in that
the transfer models dominate both the original imitation learning models.

6 Discussion and Conclusion

We address the issue of sample complexity in imitation learning settings. In sce-
narios where the expert’s time is expensive/valuable and we have access to only

74 S. Natarajan et al.

a few training examples from the expert our approach is to divide the expert’s
time between simple (smaller domain size) and harder (larger domain size) prob-
lems. Although policies induced from the simpler problem training instances can
be employed to solve the larger domain via relational generalization, in scenar-
ios we provide (such as Wargus) this does not translate to better performance.
We have presented transfer learning by using the simpler policy as our initial
models and building an updatable relational model by learning from the harder
examples. We observe not only a superior performance to generalization but also
a drastic reduction in the sample complexity as compared with the naive method
of directly inducing a model on the complex examples.

Imitation learning encounters two major problems when dealing with large
state spaces. First, assuming a tabular representation of the policy to be learned
is likely to exceed memory due to the large state and action space. Second, it can
only make use of a limited amount of expert traces compared to the excessive
amount of possible traces. The implicit feedback gained by the expert’s traces
on the best action to take in a state might be so sparse that a well-generalizing
policy will only be discovered slowly.

The first problem can be solved using relational imitation learning (RIL)
for structural domains. However, the problem of sparse feedback has not been
addressed by RIL yet. For relational reinforcement learning, there is a compelling
and simple solution to this problem: inject traces of execution of a reasonable
policy for the task at hand [22]. Unfortunately, this does not work for imitation
learning. The input consists already of traces of execution of a reasonable policy,
namely the policy of the expert. Thus, we do not gain anything despite enlarging
the training set as can be seen from our results. The non-transfer model seemed
to have converged to a inferior policy. To overcome this problem, we intuitively
propose to inject traces of a policy of a reasonably well related task. Specifically,
we directly inject the complete “related” policy into a functional gradient boost-
ing approach to RIL. This appears to be an interesting result in that sometimes
prior policies have a better impact on the performance compared to more tra-
jectories. Our immediate challenge is to validate this hypothesis on other more
complex domains. Another interesting direction is the possibility of employing
active learning methods for extracting the best complex examples given the ini-
tial model thereby further improving on the performance of transfer.

Acknowledgments. SN and PO thank Army Research Office grant number W911NF-
13-1-0432 under the Young Investigator Program. SN and TK gratefully acknowledge
the support of the DARPA DEFT Program under the Air Force Research Laboratory
(AFRL) prime contract no. FA8750-13-2-0039. Any opinions, findings, and conclusion
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the view of the DARPA, AFRL, or the US government. SJ was sup-
ported by a Computing Innovations Postdoctoral Fellowship. KK was supported by the
Fraunhofer ATTRACT fellowship STREAM and by the European Commission under
contract number FP7-248258-First-MM. PT acknowledges the support of ONR grant
N000141110106.

Accelerating Imitation Learning in Relational Domains 75

References

1. Segre, A., DeJong, G.: Explanation-based manipulator learning: acquisition of
planning ability through observation. In: Conference on Robotics and Automa-
tion (1985)

2. Argall, B., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from
demonstration. Robot. Auton. Syst. 57, 469–483 (2009)

3. Calinon, S.: Robot Programming By Demonstration: A Probabilistic Approach.
EPFL Press, Boca Raton (2009)

4. Lieberman, H.: Programming by example (introduction). Commun. ACM 43, 72–
74 (2000)

5. Ng, A., Russell, S.: Algorithms for inverse reinforcement learning. In: ICML (2000)
6. Sammut, C., Hurst, S., Kedzier, D., Michie, D.: Learning to fly. In: ICML (1992)
7. Ratliff, N., Bagnell, A., Zinkevich, M.: Maximum margin planning. In: ICML (2006)
8. Natarajan, S., Joshi, S., Tadepalli, P., Kersting, K., Shavlik, J.: Imitation learning

in relational domains: a functional-gradient boosting approach. In: IJCAI (2011)
9. Khardon, R.: Learning action strategies for planning domains. Artif. Intell. 113,

125–148 (1999)
10. Yoon, S., Fern, A., Givan, R.: Inductive policy selection for first-order mdps. In:

UAI (2002)
11. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.

Stat. 29, 1189–1232 (2001)
12. Blockeel, H.: Top-down induction of first order logical decision trees. AI Commun.

12(1–2), 119–120 (1999)
13. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.

22, 1345–1359 (2010)
14. Al-Zubi, S., Sommer, G.: Imitation learning and transferring of human movement

and hand grasping to adapt to environment changes. In: Human Motion. Compu-
tational Imaging and Vision, vol. 36, pp. 435–452 (2008)

15. Mehta, N., Natarajan, S., Tadepalli, P., Fern, A.: Transfer in variable-reward hier-
archical reinforcement learning. Mach. Learn. 73(3), 289–312 (2008)

16. Ratliff, N., Silver, D., Bagnell, A.: Learning to search: functional gradient tech-
niques for imitation learning. Auton. Robots 27, 25–53 (2009)

17. Dietterich, T.G., Ashenfelter, A., Bulatov, Y.: Training conditional random fields
via gradient tree boosting. In: ICML (2004)

18. Gutmann, B., Kersting, K.: TildeCRF: conditional random fields for logical
sequences. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006.
LNCS (LNAI), vol. 4212, pp. 174–185. Springer, Heidelberg (2006)

19. Natarajan, S., Khot, T., Kersting, K., Guttmann, B., Shavlik, J.: Gradient-based
boosting for statistical relational learning: the relational dependency network case.
Mach. Learn. 86, 25–56 (2012)

20. Kersting, K., Driessens, K.: Non-parametric policy gradients: a unified treatment
of propositional and relational domains. In: ICML (2008)

21. Driessens, K.: Non-disjoint modularity in reinforcement learning through boosted
policies. In: Multi-disciplinary Symposium on Reinforcement Learning (2009)

22. Driessens, K., Dzeroski, S.: Integrating guidance into relational reinforcement
learning. Mach. Learn. 57(3), 271–304 (2004)

A Direct Policy-Search Algorithm for Relational
Reinforcement Learning

Samuel Sarjant1(B), Bernhard Pfahringer1, Kurt Driessens2, and Tony Smith1

1 The University of Waikato, Waikato, New Zealand
{sarjant,bernhard,tcs}@waikato.ac.nz

2 Maastricht University, Maastricht, The Netherlands
kurt.driessens@maastrichtuniversity.nl

Abstract. In the field of relational reinforcement learning — a rep-
resentational generalisation of reinforcement learning — the first-order
representation of environments results in a potentially infinite number of
possible states, requiring learning agents to use some form of abstraction
to learn effectively. Instead of forming an abstraction over the state-
action space, an alternative technique is to create behaviour directly
through policy-search. The algorithm named Cerrla presented in this
paper uses the cross-entropy method to learn behaviour directly in the
form of decision-lists of relation rules for solving problems in a range
of different environments, without the need for expert guidance in the
learning process. The behaviour produced by the algorithm is easy to
comprehend and is biased towards compactness. The results obtained
show that Cerrla is competitive in both the standard testing environ-
ment and in Ms. Pac-Man and Carcassonne, two large and complex
game environments.

1 Introduction

Reinforcement Learning (RL) is a subfield of machine learning in which an agent
interacts with an environment using actions and receives numerical reward as
feedback [1]. An agent selects actions using a policy : a decision-making structure
that produces an action when given observations for the current state. As the
field of RL matures, the need for more advanced testing environments increases
as algorithms become progressively ‘smarter.’ In order to represent these complex
environments, the field of Relational Reinforcement Learning (RRL) came about,
where environments could be represented by variable numbers of objects and
relations [2–4]. This representation allows environments with any number of
objects and relations to be represented with the same common formalism.

Attempting to learn the value function directly can be impossible in envi-
ronments consisting of an infinite number of states so a common technique in
RRL is to learn an approximate value function for estimating the utility of an
action in every state [5–7]. These methods attempt to approximate the value
function for every state (and action) in the environment and use the values to
extract a policy that selects actions with the largest predicted reward. However,
c© Springer-Verlag Berlin Heidelberg 2014
G. Zaverucha et al. (Eds.): ILP 2013, LNAI 8812, pp. 76–92, 2014.
DOI: 10.1007/978-3-662-44923-3 6

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 77

in order to learn a reasonably accurate approximate value function, the agent
must first discover which states are rewarding. This can be achieved by meth-
ods such as random exploration, which is ineffective in complex environments, or
using some form of initial guidance such as injecting an expert trace of behaviour
[8], which requires some intervention from an external agent (such as a human
or pre-existing model).

Instead of approximating values for every state, then extracting a greedy pol-
icy from these values, an alternative is to attempt to learn the policy directly.
Policy-search methods have some advantages over value-function approxima-
tion methods: policies are typically smaller than value-functions, as they only
need to represent which action to take in a state; and changes in the reward
received will not change the policy if the best action for a state remains constant.
A disadvantage is that policy-search methods typically require a large number of
episodes for training, though this value is usually unaffected by the scale of the
environment. Existing policy-search RRL algorithms such as Grey and Gapi
have been shown to learn optimal policies in the Blocks World, but testing
has been limited to smaller environments [9,10].

Like Grey and Gapi, the algorithm presented in this paper performs direct
policy-search where an agent’s policy is represented as a decision-list of condition-
action rules. The Cross-Entropy Method (CEM), originally developed by [11],
is an optimisation algorithm already shown to be effective for learning agent
behaviour [12–14], as well as a number of other domains, such as clustering, con-
trol and navigation, and continuous optimisation to name a few [15]. We use the
CEM’s probabilistic optimisation approach to control the policy-creation aspect
of the algorithm.

This paper describes Cross-Entropy Relational Reinforcement Learning Algo-
rithm (Cerrla), an application of the CEM for learning behaviour in a range of
different relational environments. The CEM is used to identify the best combi-
nation of relational condition-action rules acting as the agent’s policy. Rules are
created in a top-down manner by gradually specialising useful rules in search of
better policies. The policies produced by Cerrla should be effective, concise,
and easily understood by a human.

To test the general applicability of the algorithm to different environments,
we evaluate Cerrla on three separate environments: the standard RRL Blocks
World environment, where it achieves excellent results regardless of problem
scale; and two game environments, Ms. Pac-Man and Carcassonne, which
provide large state spaces and complex action-interactions. Included with the
results are example policies produced by Cerrla for each environment.

2 Related Work

The Cerrla algorithm was originally inspired by the algorithm presented in
[12]: a Ms. Pac-Man playing agent that uses the Cross-Entropy Method (CEM)
to generate and test rule-based policies. The algorithm begins with a set of 42
hand-coded candidate rules that are used to create a rule-based, deterministic

78 S. Sarjant et al.

policy of maximum size 30. The algorithm learns better behaviour by randomly
sampling rules for each of the 30 possible positions in the policy and then adjust-
ing the rule sampling probabilities to produce better performing policies more
frequently. This paper also looked at randomly created rules, which did not per-
form as well as the hand-coded rules, but still performed well. This algorithm
formed the core design behind Cerrla, though Cerrla has since expanded
upon this design in the following aspects: Cerrla starts without any rules or
policy size restrictions and creates new rules as it learns; Cerrla learns rela-
tional rules/policies for a range of relational environments rather than the single
Ms. Pac-Man environment; and Cerrla learns using an iterative CEM, rather
than population-based, to quickly integrate newly created rules.

Cerrla uses a similar learning process as the two policy-search RRL algo-
rithms Grey and Gapi: use an evolutionary algorithm to learn a rule-based
policy. Both Grey and Gapi use a standard genetic algorithm implementation
[16], treating entire policies as chromosomes to be mutated for the recombi-
nation operation. However, mutation operations also take place on the rules
within each policy by randomly adding/removing literals or replacing variables
with constants. Both algorithms were tested in the standard Blocks World
environment, where they each successfully created goal-achieving policies, but
the policies sometimes included useless or detrimental rules. The cross-entropy
method employed by Cerrla actively reduces the likelihood of including use-
less rules, and the rule creation process is bottom-up, resulting in fewer useless
literals in rules. Gapi was also tested in a ‘gold-finding’ environment, which is
a step towards more complicated environments. We take this further by testing
Cerrla in real-world games that are challenging for humans as well as AI.

The Foxcs system creates rule-based policies by utilising the XCS system for
the first-order setting [17,18]. Learning is achieved by maintaining an expected
reward and accuracy value for that reward for every rule. These values are used
to identify useful rules and guide rule mutation (using standard mutation oper-
ations). Cerrla also maintains a value for every rule, but the need to maintain
an expected value for every rule limits the scalability of Foxcs. This can be
seen in [19], where Foxcs performs worse as the size of the Blocks World
environment grows. Because Cerrla uses probabilities of utility for each rule,
the learning rate remains roughly proportional to the number of rules, rather
than size of the environment.

Two more RRL systems also deserve a mention, as they perform well on large
environments. The LRW-API approach learns a policy by iteratively performing
batches of policy rollouts as an approximate policy iteration algorithm [20]. At
any given state, the algorithm updates the Q-value for every action by creat-
ing w policy trajectories of length h to identify the most advantageous action
to perform (most difference between expected reward and actual reward). The
algorithm is able to offset the cost of the rollouts by beginning learning in artifi-
cially smaller environments defined as the state reached after n random actions
from the initial state. By beginning in small environments and increasing n,
the algorithm can quickly scale to large and complex environments. The main

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 79

Relational State Observations:
block(a) thing(b) clear(fl) above(a, b) height(b, 1)
block(b) thing(c) highest(a) above(a, fl) height(c, 1)
block(c) thing(fl) on(a, b) above(b, fl) height(fl, 0)
floor(fl) clear(a) on(b, fl) above(c, fl)
thing(a) clear(c) on(c, fl) height(a, 2)
Valid Actions:
move(a, c) move(a, fl) move(c, a)

a

b c

floor

Fig. 1. A 3-block Blocks World state observation example. a is on b which is on the
floor, and c is also on the floor.

disadvantage of this method is the ‘controlled experiment’ assumption that the
world model can be accessed at any state, whereas RRL world models are typi-
cally ‘black boxes’ that only allow a single action per state.

The NPPG algorithm also uses bootstrapping to overcome the problem of
large environments in the form of policy-gradient boosting [21]. The algorithm
iteratively builds regression models to approximate the value function (using
batches of episode traces as training data) by layering the model on top of
existing models, where each regression model is created to cover the examples
previous models do not adequately cover. Each model also receives a weighting
to reflect the utility of its predictions. The algorithm performs very well on a
10-block Blocks World environment (thus far, the 10-block environment was
typically too large for value-based algorithms to tackle directly), though it does
use expert traces to seed the learning with positive examples. A downside to
NPPG is the output behaviour is largely incomprehensible, as it is made up of
many different weighted models.

3 Terminology

The relational representation used throughout this paper is as follows: a constant
c is a lowercase symbol representing a uniquely named object of a given type
(e.g. thing, block, enemy). A variable V is an uppercase symbol representing an
abstract object. A term t may be either a constant or variable. A predicate p
is a relation acting upon one or more objects with specifically typed arguments.
Environments are defined by state predicates Ps = {ps,1, . . . , ps,n} (which include
type predicates Pt = {pt,1, . . . , pt,n}) and action predicates Pa = {pa,1, . . . , pa,n}.
An atom p(t1, . . . , tn) is a predicate with terms for arguments. A ground atom
p(c1, . . . , cn) only uses constants for arguments. A goal variable Gi is a special
indexed variable representing one of the constants in the goal and is substituted
by the appropriate goal constant when the variable is evaluated. The anonymous
variable ‘?’ represents any object.

An environment’s state observations consist of a complete description of the
state s = {ps,1(c1,1, . . . , c1,n), . . . , ps,m(cm,1, . . . , cm,n)} and the current available
actions A(s) = {pa,1(c1,1, . . . , c1,n), . . . , pa,m(cm,1, . . . , cm,n)}. Any constants

80 S. Sarjant et al.

clear(G0), clear(G1), block(G0) → move(G0, G1)

above(X, G1), clear(X), floor(Y) → move(X, Y)

above(X, G0), clear(X), floor(Y) → move(X, Y)

Fig. 2. An optimal Blocks World onAB policy generated by Cerrla. Note that G0

and G1 are parameterisable goal constants.

directly related to the environment’s goal are also provided to the agent. Accom-
panying each state observation is a reward value. There is no guarantee that an
environment will be defined by a Relational Markov Decision Process (RMDP)
[3]; the learning agent must simply select an action without absolute knowledge
of what state will follow.

3.1 Blocks World

The Blocks World environment is the most commonly used testing envi-
ronment in the RRL and planning fields due to its simple, but fundamental
dynamics. The Blocks World environment will be used for examples in the
following sections. The environment consists of a number of blocks stack on
top of each other, all stacked on the floor. An agent may move a block on to
another block, or on to the floor. A Blocks World state is described by: Ps =
{clear(Thing), on(Block, Thing), above(Block, Thing), highest(Block), height
(Thing,N)} and type predicates Pt = {thing, block, floor}. The only action
predicate is Pa = {move(Block, Thing)}. Figure 1 shows an example state for a
3-block Blocks World with the listing of all state and action observations for
the current state.

Commonly used goals include the onAB goal: place block G0 onto block G1

(G0 and G1 are randomly defined blocks at the start of every episode); and the
stack goal: stack every block into a tower. Each episode runs for a maximum of
2n steps, where n is the number of blocks. The reward received is 1 if the goal
is achieved in minimal steps, or some value linearly distributed between 1 and 0
inversely proportional to the number of steps over the minimum the agent took
to complete the goal.

4 CERRLA Algorithm

The Cross-Entropy Relational Reinforcement Learning Algorithm (Cerrla)
generates policies for a RRL agent by combining a number of randomly sampled
condition-action rules into a single decision-list policy (Fig. 2).1 When the pol-
icy is evaluated against the current state observations, it produces one or more
actions depending on which rule conditions match the observations. Each rule
1 Source code, experiment files and videos of Cerrla in action can be found at www.

samsarjant.com/cerrla.

www.samsarjant.com/cerrla
www.samsarjant.com/cerrla

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 81

is sampled from a separate distribution of similar rules, where the probability
of the rule is dynamically adjusted based on the rule’s utility. This process is
known as the Cross-Entropy Method (CEM) and it forms the backbone of the
probability optimisation aspect of Cerrla, though some modifications to the
core CEM are described in Sect. 4.3.

The other aspect of Cerrla is the rule discovery aspect (Sect. 4.2). Rules
are created in Cerrla by learning general conditions for every possible action,
then gradually applying specific specialisation operators to empirically useful
rules to create more complex ‘child’ rules.

4.1 Cross-Entropy Method

The CEM is a population-based optimisation algorithm, similar to evolutionary
algorithms, that uses guided random sampling from one or more distributions to
produce effective combinatorial solutions to a given problem. Distributions may
be discrete or continuous, but in the context of Cerrla, the distributions are sets
of condition-action rules, each with a corresponding probability of being sampled.
A sample is a combination of sampled rules represented in a decision-list format
(the order of the rules is defined in Sect. 4.3). For a comprehensive exploration of
the CEM, see [15].

The CEM is essentially composed of two repeating steps:

1. Generate and test N samples from a distribution of data.
2. Update the distribution such that the top subset of the sampled data is more

likely to be generated again in the next iteration.

At every iteration, each distribution produces a randomly selected rule. These
rules combine to form a deterministic policy which is then evaluated against the
environment which returns the total reward received under the policy. The subset
of policies that receive the greatest reward within a population of policies are
used to update the rule sampling probabilities, such that the policies’ rules are
more likely to be sampled again. Intuitively, the algorithm works as follows: in the
early stages, the algorithm does not perform any worse than random guessing,
but as it gathers samples, it shapes the distribution such that guessing becomes
more and more biased towards high-value samples.

Formally, using Cerrla as context, the CEM algorithm is as follows: the
algorithm begins with K distributions of rules (Dk ← {r1,k, . . . , rn,k}), where
each rule ri,k has a corresponding sampling probability pi,k ∈ [0, 1] :

∑n
j=1 pj,k =

1 (a distribution is typically uniform at the outset). N samples are generated
(X ← {x1, . . . ,xN}), where each sample contains a single randomly sampled rule
from each distribution (arranged via some heuristic), and tested with evaluation
function f(x) (for Cerrla, this is the total reward received). The samples are
then sorted into descending order according to f(x) and all samples with f(x) ≥
γt+1 are extracted as ‘elite samples’ Et+1, where γt+1 is equal to the value of
the N th

E sorted sample. The minimum number of elite samples is defined as
NE ← ρ · N (typically ρ ← 0.05). Note that there may be more than NE elite
samples, as multiple samples could have a value equal to the threshold.

82 S. Sarjant et al.

The observed distribution D′
k is then calculated for every distribution Dk as

the frequency of rules within the elite samples:

p′
j,k ←

(∑

xi∈Et+1

{
1 if xi,k = rj,k

0 otherwise

})/
|Et+1| (1)

meaning p′
j,k is equal to the proportion of elite samples containing rule rj,k from

distribution Dk.
The distribution probabilities are then updated using a step-size parameter

α (typically α is between 0.4 and 0.9 [15]) to smoothly modify the distribution
probabilities:

pj,k,t+1 ← α · p′
j,k + (1 − α) · pj,k,t (2)

This sample-update loop repeats until some convergence measure is reached:
(1) a predefined finite number of iterations have passed; (2) probabilities have
converged to 0 or 1; or (3) the distributions sufficiently match the observed elites
distributions for a given number of iterations.

4.2 Rule Discovery

Cerrla begins the rule discovery process by first calculating the Relative Least
General Generalisation (RLGG) for each action in the environment [22]. Further
rules are created in a top-down fashion by iteratively specialising empirically
useful rules. Each rule is simplified with inferred simplification rules to remove
redundant conditions and identify illegal condition combinations, removing ille-
gal and semantically-identical redundant rules from the set of possible rules.

Learning the RLGG. The first rules created by Cerrla are the RLGG rules
for every action in the environment. Because all state information is available,
the RLGG operation only needs to perform lgg operations (background knowl-
edge is considered to be part of the state). Each rule encodes the least general
set of conditions that have been observed to be true whenever the rule’s action
is available for the current state. Contrary to the RLGG process in [22], this
RLGG process uses a lossy inverse substitution to only record information rel-
evant to the rule’s action; other information is discarded. That is, the process
only considers literals containing constants found in the action, or defined in the
environment goal. This lossy inverse substitution focuses learning on the core
literals involved in the rule’s action, reducing the search space of rules; but has
the drawback of losing potentially useful information.

Given a state s and a set of valid actions A(s) = {a1, . . . , an} : ai =
pa,i(ci,1, ci,2, . . .), the RLGG conditions for each action are defined as:

ra
RLGG,t = lgg

(
ra
RLGG,t−1, θ

−1r(s, ai)
)

where ra
RLGG,t−1 is the existing RLGG rule for action predicate pa and r(s, ai)

is a rule composed of atomic action ai and every state observation containing

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 83

one or more of the constants in ai. The RLGG of the two rules uses a lossy
inverse substitution defined by the current arguments of the atomic action ai,
such that θ−1

ai
= {ci,1/X, ci,2/Y, . . .}. Any non-numerical constants not included

in θ−1
ai

are replaced by the anonymous variable ‘?’ which can be substituted for
any constant when evaluated. Numerical constants are replaced by free variables
representing the number. The resulting rule encodes a near-least general set of
conditions (due to lossy inverse substitution) required for taking action pa.

Example 1. Referring to Fig. 1, the RLGG calculation process for the three valid
actions move(a, c), move(a, fl), move(c, a) is described in the following example,
processing one rule at a time (beginning with t = 1):

rmove(a, c) = block(a), block(c), thing(a), thing(c), clear(a), clear(c), on(a, b),
on(c, fl), above(a, b), above(a, fl), above(c, fl) → move(a, c)

θ−1
move(a, c) = {a/X, c/Y }

rmove
RLGG,1 = block(X), block(Y), thing(X), thing(Y), clear(X), clear(Y), on(X, ?),
on(Y, ?), above(X, ?), above(Y, ?) → move(X, Y)

This is already very close to the actual RLGG; only the conditions block(Y),
on(Y, ?), and above(Y, ?) are not always true, as evidenced in the following
example:

rmove(a, fl) = block(a), floor(fl), thing(a), thing(fl), clear(a), clear(fl), on(a, b),
on(b, fl), on(c, fl), above(a, b), above(a, fl), above(b, fl), above(c, fl) → move(a,
fl)

θ−1
move(a, fl) = {a/X, fl/Y }

rmove
RLGG,2 = block(X), thing(X), thing(Y), clear(X), clear(Y), on(X, ?), above(X,
?) → move(X, Y)

This rule is in fact the RLGG for the Blocks World move action, so there
is no need to describe the process for the final action of the state (as the rule
cannot generalise any further). Many of the conditions in this rule are redundant
with respect to other facts though (e.g. on(X, ?) is always true if above(X, ?)
is true) and can be removed using the simplification rules described in the rule
simplification section. The simplified rule is:

rmove
RLGG, 2 = clear(X), clear(Y), block(X) → move(X, Y) (3)

Rule Specialisation. Cerrla uses three specialisation operators: (1) additive,
(2) goal-replacement, and (3) range-splitting. Each specialisation operator creates
a new rule with more specialised conditions.

(1) Additive specialisation specialises a rule by adding a condition to it.
Instead of adding an arbitrary condition to a rule ra with any possible argu-
ment bindings, Cerrla restricts the set of specialisation conditions to those
that include action-related conditions and have been observed to be true (but
not in the RLGG conditions) when action a is available. Each specialisation

84 S. Sarjant et al.

condition is recorded with inversely-substituted arguments (replace all action-
related constants with variables and replace all goal-related constants with goal
variables). Negated specialisation conditions are also used to specialise a rule.

(2) For every constant in the environment goal, goal-replacement replaces
all occurrences of one of the action’s arguments with an indexed ‘goal variable’
Gi representing one of the constants in the environment’s current goal. After
replacing the variable, if all conditions containing the goal variable in the rule
have previously been observed to be possible (i.e. ensure the rule’s conditions
can feasibly be met), the specialised rule is valid, otherwise it is invalid and
discarded.

(3) Range splitting creates specialised rules by splitting an existing range
(or a variable representing a number) into up to five overlapping sub-ranges:
the lower half, the upper half, a central half, and if applicable, a negative sub-
range (lower bound to 0), and a positive sub-range (0 to upper bound). Except
when 0 is a bound, the range bounds are expressed as variable fractions of the
observed minimum and maximum bounds so the rule does not need to change
when the bounds change. For instance, a range from [−4, 8] would be split into
the following subranges: [−4, 2], [2, 8], [−1, 5], [−4, 0], and [0, 8] (all represented
as variable fractions of the original range).

Example 2. The RLGG rule from the prior example (Eq. 3) can be specialised
into the following example rules:

rmove
1 = clear(X), clear(Y), block(X),floor(Y) → move(X, Y)

rmove
2 = clear(X), clear(Y), block(X), not(highest(X)) → move(X, Y)

rmove
3 = clear(G0), clear(Y), block(G0) → move(G0, Y)

rmove
4 = clear(X), clear(Y), block(X), on(X,G0) → move(X, Y)

As there are no variables representing numerical arguments, the range splitting
specialisation does not produce any rules. Note that some rules contain redun-
dant conditions and can be simplified (see the following section).

Rule Simplification. To avoid creating illegal rules or rules containing redun-
dant conditions, Cerrla also infers simplification rules for the environment.

Simplification rules are created using the RLGG method in Sect. 4.2 but
instead of calculating the RLGG relative to each action predicate pa, it is calcu-
lated relative to each state predicate ps. The resulting set of RLGG conditions
encode the relationship between each state predicate ps and all other predicates,
producing implication rules in the form A ⇒ B, such that condition-action rules
containing both A and B remove condition B. Furthermore, rules containing A
and ¬B are marked as illegal rules and are deleted from Cerrla’s distributions.
If B ⇒ A as well, the rule is instead recorded as an equivalence rule A ⇔ B,
such that condition-action rules containing B replace it with A.

The RLGG can also be calculated for the set of atoms that are never true
when ps is present as well. The variable representation of the lossy inverse sub-
stitution θ−1

ps(t1,...,tn)
results in a finite set of possible atoms given the set of

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 85

state predicates (as all constants are replaced by variable X,Y, . . . or ‘?’). By
removing the inversely substituted true atoms from this set, the RLGG of never
true atoms relative to ps can also be calculated to produce simplification rules
involving negated conditions.

Example 3. Some of the simplification rules created for Blocks World include:

on(X, Y) ⇒ above(X, Y), floor(Y) ⇔ clear(Y), on(X, Y),
highest(X) ⇒ not(on(?, X)), block(X) ⇔ on(X, ?)
block(X) ⇒ not(floor(X))

Whenever the right-hand side of a simplification rule subsumes a rule’s lit-
eral(s), they are removed (or replaced by the substituted left-hand side literals
for equivalence rules). Note that ‘?’ explicitly represents the anonymous variable
when performing rule simplification (i.e. all ‘?’ are treated as constants).

4.3 Policy-Search Process

The Cerrla algorithm (Algorithm 1) uses a modified version of the CEM to
produce policies. Each distribution of candidate rules is sampled to produce a
single rule, which is included into the policy in a specific order. The policy is
then deterministically evaluated throughout the episode to produce the agent’s
actions. The policies that received the largest reward form an ‘elite distribution’
which the rule sampling probabilities are adjusted toward, such that rules in an
elite policy are more likely to be sampled again.

Algorithm 1. Pseudocode summary of Cerrla.
Initialise the distribution set D � Initially empty. Learns RLGG rules to start

repeat

Generate a policy π from D � Sample ≤ 1 rule from each D in D and order into policy

Evaluate π, receiving average reward R � Run three times and average

Update elite samples E with sample π and value R � If π is good, add to E

Update D using E � Adjust probabilities for each D in D to be closer to distribution in E

Specialise rules (if D is ready) � If a rule is highly probable, branch it to a new D

until D has converged � Until no more branching is possible

Instead of a population-based approach, Cerrla uses an online variation of
the CEM, similar to the CEM variant in [23], which updates the distributions
after every sample. Instead of sampling batches of N samples, the algorithm
maintains a sliding window of N samples, such that the elites E consist of
the best samples from the last N samples (instead of the best samples in a
batch). The online variation is able to adapt to a changing number of rules and
distributions as Cerrla creates new specialisations.

86 S. Sarjant et al.

Initialisation. Cerrla begins with no rules or distributions (D ← {}) but
quickly creates distributions by firstly observing the RLGG for every available
action, then creating all immediate specialisations of the RLGG (as described
in Sect. 4.2). Each of these rules acts as a seed for a new distribution, such
that a distribution consists of a uniform distribution of the seed rule and all
immediate specialisations of the seed rule. Each D also has two properties: the
probability that a rule from D is present within a policy, p(D) ∈ [0, 1] (initially
p(D) ← 0.5); and the average relative positions of sampled rules within generated
policies, q(D) ∈ [0, 1], where 0 represents the first position and 1 represents the
last (initially q(D) ← 0.5).

The number of rules within D is written as |D| and KL(D) represents the
Kullback-Leibler (KL) size, or distance from the uniform distribution, of D such
that:

KL(D) ← max

[

|D| ·
(

1 −
∑

r∈D

pr log|D|(|D| · pr)

)

, 1

]

(4)

A uniform distribution has KL(D) = |D|, but a distribution with a single high
probability rule (e.g. pj ≥ 0.95) has KL(D) = 1.

Policy Generation. A policy π is generated by sampling a rule from every
distribution D in D. For each D, a rule will only be sampled from D with
probability p(D). The position of the sampled rule is determined by the relative
ranking to all other rules in the policy. This relative value relQ(D) is sampled
from a normal distribution with parameters q(D) for the mean, and 1−|1−2p(D)|
as the standard deviation. Rules are ordered in the policy in ascending order
according to their respective relQ(D). When D is initialised with p(D) = 0.5,
the relative position of each sampled rules varies wildly, but as the p(D) converges
towards 0 or 1, the relative position fluctuates less.

The policy π is evaluated at every decision step using the current state obser-
vations. Starting with the first rule in the policy, each rule is evaluated as a query
on the state. If a substitution(s) for the rule’s conditions is found, the rule’s
action is returned with the substituted values applied (there may be more than
one substitution). If multiple actions are returned by the agent, an environment-
specific selection mechanism (e.g. sort by distance) selects and resolves one of
the actions and advances to the next state. The value of a policy (f(π)) is equal
to the average total-episodic-reward received for a given number of episodes (we
use three episodes in experiments).

Updating. After a policy π has been evaluated, it is added to the floating set of
elite samples E if f(π) ≥ γ (the worst elite sample). Before this occurs, any elite
samples that have existed for greater than N iterations are removed to ensure
the elites represent recent samples. Rather than using a fixed elite sample size,
CERRLA dynamically changes the number of elites NE based on the state of the
current distributions:

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 87

NE ← max
⌈

arg max
D∈D

(
KL(D) · p(D)

)

︸ ︷︷ ︸
largest distribution

,
∑

D∈D

p(D)

︸ ︷︷ ︸
sum distribution means

⌉
(5)

where N ← NE/ρ, as with the regular CEM. This equation results in a large
NE when Cerrla contains new, undertested distributions, and a smaller NE

when rule probabilities and distribution means are close to 0 or 1.
After potentially adding the sample to the elite samples, the distributions are

updated. The increased frequency of updates requires a reduced update step-size
to ‘smooth’ the learning rate. Instead of α, the single-step update parameter
α1 ← α/N is used, which is approximately equal to the standard α update rate.

A restriction applies to updates: a distribution D is only updated if it has
produced C · |D| samples. This reduces update bias towards early samples, and
provides enough samples for a distribution to be fairly represented in the elite
samples. C = 3 is used in experiments as it provides 95 % coverage of all rules
in a uniform distribution [24].

The update process consists of updating every candidate rule distribution in
D (as per Sect. 4.1), as well as their properties p(D) and q(D). Only the rules
that fired throughout the sample’s testing episodes matter, therefore unused
rules (and their distributions) are not included in the update and, implicitly,
negatively updated. Each update operation uses Eq. 2 to adjust the values in
a step-wise manner. The observed value for p(D) is simply the proportion of
policies containing D within the elites. The observed value for q(D) is the average
relative position of rules from D within the elite policies, where 0 represents the
first position and 1 represents the last.

Rule Exploration. When a rule has a sufficiently high probability, it ‘branches,’
creating new rules with more specialised conditions in hopes of finding better
rules. This process is triggered when a distribution’s KL(D) ≤ δ · |D|, where
δ = min

[
(d + 1)−1, p(D)

]
, representing the splitting point with respect to the

depth d of the distribution or number of branches from the RLGG distribution.
The highest probability rule r from D is removed from D, and is used to seed
a new distribution, populating the distribution with r and all immediate spe-
cialisations of r. The only restriction to this exploration process is if r originally
seeded D, in which case no branching occurs.

Convergence. Cerrla is considered converged when each distribution is con-
sidered converged. A distribution is converged when the sum divergence of the
rule probabilities between updates is less than α1 · β (a convergence threshold).
Alternatively, experiments can specify a fixed number of training episodes. Upon
convergence, the current best elite sample is also output as the best solution.

88 S. Sarjant et al.

(a) Performances comparison in BLOCKS WORLD

with 3–10 blocks for various RRL algorithms.
Note that some figures are approximate readings
from a graph.

Algorithm
Average
Reward

of Training
Episodes (×103)

stack onAB stack onAB
CERRLA 1.00 0.99 1.60 10.30
P-RRL [2] 1.00 0.65 0.05 0.05
RRL-TG [5] 0.88 0.92 0.50 12.50
RRL-TG (P) [5] 1.00 0.92 30.00 30.00
RRL-RIB [5] 0.98 0.90 0.50 2.50
RRL-KBR [5] 1.00 0.98 0.50 2.50
TRENDI [6] 1.00 0.99 0.50 2.50
TREENPPG [21] — 0.99 — 2.00
MARLIE [7] 1.00 0.98 2.00 2.00
FOXCS [18] 1.00 0.98 20.00 50.00

(b) Stack goal in 100-block BLOCKS WORLD.

(c)OnAB goal in 100-block BLOCKS WORLD.

Fig. 3. Cerrla’s performance in the Blocks World environment.

5 Evaluation

Cerrla is evaluated in three separate environments: Blocks World, Ms. Pac-
Man, and Carcassonne.2 Each environment presents a different problem for
the agent to solve, though all share a common RRL representational format.
All reported results are averaged across 10 separate experiments. Each figure
contains two performances: sampled performance, the reward received during
training; and greedy performance, the average reward received for 100 testing
policies (not included in training time/number of episodes) using the current
best elite sample.

5.1 Blocks World

Figure 3a compares Cerrla’s Blocks World performance against other
RRL algorithms for both stack and onAB goals. A summary of current RRL
algorithms can be found in [4]. Like most RRL algorithms it is able to learn opti-
mal or near-optimal behaviour in both goals, though it requires more episodes
2 An additional environment detailed in [25] was omitted for space reasons.

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 89

than the value-based algorithms to do so (training time for each goal was 6 and
34 s respectively). Figure 3b and c demonstrates a powerful property of Cer-
rla: even in a Blocks World of 100 blocks, the learning rate remains roughly
constant (training time is only ∼50 times longer compared to exponential state
increase). In most other compared approaches, learning rate deteriorates as the
number of blocks increase.

The effects of the simplification rules are tested by comparing two 12,000
fixed-episode experiments for the onAB goal: one using rule simplification, the
other not using rule simplification (denoted in brackets). Cerrla initially creates
244 (1,150) rules spread over 17 (32) distributions. At 12,000 training episodes,
the algorithm has 330 (1,405) rules spread over 27 (40) distributions, with an
average greedy performance of 0.99 (0.86), and an average training time of 43
(165) seconds. It is clear that rule simplification is highly effective in all aspects
of CERRLA’s learning.

5.2 Ms. Pac-Man

Ms. Pac-Man is a famous arcade video-game in which the player (Cerrla)
controls a character that eats dots for points inside a finite maze while avoiding
four hostile ghosts. When one of four ‘power dots’ is eaten, the ghosts become
non-hostile for a short time and can be eaten for an increasingly larger number
of points. Cerrla’s control of the character is defined by high-level actions that
resolve into low-level directional movement. If multiple actions are predicted by
the same rule, the action with the closest object to the agent is acted upon. If
multiple objects are equidistant in different directions, the next rule in the policy
breaks the tie (otherwise choose randomly).

AMs.Pac-Man state isdescribedbysimilarpredicates seen in [12]:Ps = {dist-
ance(Thing,N), junctionSafety(Junction,N), blinking(Ghost), edible(Ghost)}
and type predicates Pt = {thing, dot, ghost, powerDot, ghostCentre, junction}.
The action predicates are Pa = {moveTo(Thing,N),moveFrom(Thing,N), to-
Junction(Junction,N)} (the numeric value is meta-data for resolving the action).

Within a single level, Cerrla achieves an average greedy performance of 7196
points per episode. Compared to the conceptually equivalent CE-randomRB
agent from [12] (6382 points), Cerrla learns a slightly better policy. Cerrla
performs slightly worse than the reported hand-coded and human average scores
of 8186 and 8064 points respectively of [12]. An agent can achieve a theoretical
maximum of 15,600 points in a single level, so Cerrla’s performance could be
improved. Figure 4a shows an example policy produced by Cerrla that focuses
primarily on eating edible ghosts, powerDots, and dots in that order.

Cerrla’s rule-based representation can also facilitate transfer learning (trans-
fer learned behaviour for a source goal into behaviour for a target goal). During
initialisation for the target goal, each rule in the greedy policy for the source goal
seeds a new distribution, providing a headstart in the specialisation process. When
the behaviour learned in the Single-Level goal is used to initialise the algorithm
for a Ten-Levels goal, an improvement can be seen in the resulting behaviour
(Fig. 4c).

90 S. Sarjant et al.

Fig. 4. Cerrla’s performance in the Ms. Pac-Man environment.

5.3 Carcassonne

Carcassonne is a turn-based, medieval-themed board game in which players
attempt to control terrain via tokens called ‘meeples’ to score points. Each player
has two actions per turn: place a randomly drawn tile adjacent to existing tiles
such that all edges match up, then optionally place a meeple on any terrain on
the placed tile. An episode ends when all tiles have been placed, at which point
any unfinished terrain is scored.

A Carcassonne state is described using a combination of the 22 state pred-
icates and 10 type predicates (a full specification can be found in [25]), with the
valid actions described as one of two actions: Pa = {placeT ile(Player, T ile,
Location, Orientation), placeMeeple(Player, T ile, Terrain)}.

In a Carcassonne game against a static AI using a min-max strategy for
making decisions (the default AI for JCloisterZone3), Cerrla achieves an aver-
age score of 63 per game. In comparison, the min-max AI scores 92 and a related
Monte-Carlo Tree Search approach achieves approximately 85 [26]. Carcas-
sonne’s complex dynamics prove to be challenging for Cerrla, but it is able to
learn an ‘easy opponent’ strategy. Figure 5a shows a policy produced by Cer-
rla. The policy places tiles in close groups or near cloisters, or anywhere by
default. Meeples are typically placed on high worth (>3) terrain, or any open
terrain if Cerrla has ≥4 meeples left.
3 http://jcloisterzone.com/en/

http://jcloisterzone.com/en/

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 91

currentPlayer(X), controls(X, ?), validLoc(Y, Z, W), numSurround-
ingTiles(Z, 4.5 ≤ V ≤ 8.0) → placeTile(X, Y, Z, W)

currentPlayer(X), meepleLoc(Y, Z), worth(Z, 3.0 ≤ V ≤ 6.0),
not(nextTo(?, ?, Z)) → placeMeeple(X, Y, Z)

currentPlayer(X), controls(X, ?), meepleLoc(Y, Z), worth(Z, 3.0 ≤
V ≤ 6.0) → placeMeeple(X, Y, Z)

currentPlayer(X),meeplesLeft(X, 4.0≤U≤ 7.0),meepleLoc(Y, Z),
worth(Z, 1.5 ≤ V ≤ 4.5), not(completed(Z)) → placeMeeple(X,
Y, Z)

currentPlayer(X), controls(X, ?), validLoc(Y, Z, W), numSurround-
ingTiles(Z, 3.625 ≤ V ≤ 5.375) → placeTile(X, Y, Z, W)

currentPlayer(X),meeplesLeft(X, 4.0≤U≤ 7.0),meepleLoc(Y, Z),
tileEdge(Y, ?, Z), open(Z, V) → placeMeeple(X, Y, Z)

currentPlayer(X), validLoc(Y, Z, W), numSurroundingTiles(Z, 2.75
≤ V ≤ 6.25), cloisterZone(Z, ?) → placeTile(X, Y, Z, W)

currentPlayer(X), controls(X, ?), validLoc(Y, Z, W), numSurround-
ingTiles(Z, 2.75 ≤ V ≤ 6.25) → placeTile(X, Y, Z, W)

currentPlayer(X), validLoc(Y, Z, W) → placeTile(X, Y, Z, W)

(a) Example CARCASSONNE policy generated by
CERRLA. Achieves an average reward of 65.

(b) CERRLA vs. Min-max AI in CARCAS-
SONNE, limited to 50,000 episodes.

Fig. 5. Cerrla’s performance in the Carcassonne environment.

6 Conclusions

The application of the CEM to RRL — Cerrla — has been shown to be capable
of creating and combining sets of relational condition-action rules into effective
policies in a range of different environments. Although the number of training
episodes exceed value-based methods, the learning rate remains constant with
increased scale of the problem and the simplified rules minimise rule evaluation
time. It should be noted that the representation of Ms. Pac-Man and Car-
cassonne may not be ideal, and may even limit Cerrla’s behaviour, but it is
clear that Cerrla can create effective behaviour with it. In general, Cerrla
exhibits good scalability and, given only a problem’s high-level specification and
state observations, produces human-readable policies that are competitive with
more specialised single-domain approaches.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press, Cambridge (1998)

2. Džeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Mach.
Learn. 43, 7–52 (2001)

3. van Otterlo, M.: The Logic of Adaptive Behaviour: Knowledge Representation and
Algorithms for the Markov Decision Process Framework in First-Order Domains.
IOS Press, Amsterdam (2009)

4. Wiering, M., van Otterlo, M. (eds.): Reinforcement Learning: State-Of-The-Art,
vol. 12. Springer-Verlag New York Incorporated, New York (2012)

5. Driessens, K.: Relational reinforcement learning. Ph.D. thesis, Department of Com-
puter Science, Katholieke Universiteit Leuven, Belgium (2004)

92 S. Sarjant et al.

6. Driessens, K., Džeroski, S.: Combining model-based and instance-based learning
for first order regression. In: Proceedings of the 22nd International Conference on
Machine Learning, pp. 193–200. ACM (2005)

7. Croonenborghs, T., Ramon, J., Blockeel, H., Bruynooghe, M.: Online learning
and exploiting relational models in reinforcement learning. In: Proceeding of the
International Conference on Artificial Intelligence (IJCAI), pp. 726–731 (2007)

8. Driessens, K., Džeroski, S.: Integrating guidance into relational reinforcement
learning. Mach. Learn. 57(3), 271–304 (2004)

9. Muller, T., van Otterlo, M.: Evolutionary reinforcement learning in relational
domains. In: Proceedings of the 7th European Workshop on Reinforcement Learn-
ing, Citeseer (2005)

10. van Otterlo, M., De Vuyst, T.: Evolving and transferring probabilistic policies for
relational reinforcement learning. In: BNAIC 2009: Benelux Conference on Artifi-
cial Intelligence, October 2009

11. Rubinstein, R.Y.: Optimization of computer simulation models with rare events.
Eur. J. Oper. Res. 99(1), 89–112 (1997)

12. Szita, I., Lörincz, A.: Learning to play using low-complexity rule-based policies:
illustrations through Ms. Pac-Man. J. Artif. Int. Res. 30(1), 659–684 (2007)

13. Kistemaker, S., Oliehoek, F., Whiteso, S.: Cross-entropy method for reinforcement
learning. Bachelor thesis, University of Amsterdam, Amsterdam, The Netherlands,
June 2008

14. Tak, M.: The cross-entropy method applied to SameGame. Bachelor thesis, Maas-
tricht University, Maastricht, The Netherlands (2010)

15. De Boer, P., Kroese, D., Mannor, S., Rubinstein, R.: A tutorial on the cross-entropy
method. Ann. Oper. Res. 134(1), 19–67 (2004)

16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

17. Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175
(1995)

18. Mellor, D., Mellor, D.: A learning classifier system approach to relational rein-
forcement learning. In: Takadama, K., et al. (eds.) IWLCS 2006 and IWLCS 2007.
LNCS (LNAI), vol. 4998, pp. 169–188. Springer, Heidelberg (2008)

19. Mellor, D.: A learning classifier system approach to relational reinforcement learn-
ing. Ph.D. thesis, School of Electrical Engineering and Computer Science, The
University of Newcastle, Australia (2008)

20. Fern, A., Yoon, S., Givan, R.: Approximate policy iteration with a policy language
bias: solving relational markov decision processes. J. Artif. Int. Res. 25(1), 75–118
(2006)

21. Kersting, K., Driessens, K.: Non-parametric policy gradients: a unified treatment
of propositional and relational domains. In: Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pp. 456–463. ACM, New York (2008)

22. Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5, 153–163 (1970)
23. Szita, I., Lörincz, A.: Online variants of the cross-entropy method. Technical report,

arXiv:0801.1988 (2008)
24. Aslam, J.A., Popa, R.A., Rivest, R.L.: On estimating the size and confidence of a

statistical audit. In: Proceedings of the USENIX Workshop on Accurate Electronic
Voting Technology, EVT’07, pp. 8–8. USENIX Association, Berkeley (2007)

25. Sarjant, S.: Policy search based relational reinforcement learning using the cross-
entropy method. Ph.D. thesis, The University of Waikato (2013)

26. Heyden, C.: Implementing a computer player for Carcassonne. Master’s thesis,
Maastricht University (2009)

http://arxiv.org/abs/0801.1988

AND Parallelism for ILP: The APIS System

Rui Camacho1(B), Ruy Ramos1, and Nuno A. Fonseca2

1 DEI and Faculdade de Engenharia and LIAAD-INESCTEC,
Universidade do Porto, Porto, Portugal

rcamacho@fe.up.pt
2 EMBL Outstation, European Bioinformatics Institute (EBI) and

CRACS-INESCTEC, Cambridge, UK

Abstract. Inductive Logic Programming (ILP) is a well known app-
roach to Multi-Relational Data Mining. ILP systems may take a long
time for analyzing the data mainly because the search (hypotheses)
spaces are often very large and the evaluation of each hypothesis, which
involves theorem proving, may be quite time consuming in some domains.
To address these efficiency issues of ILP systems we propose the APIS
(And ParallelISm for ILP) system that uses results from Logic Pro-
gramming AND-parallelism. The approach enables the partition of the
search space into sub-spaces of two kinds: sub-spaces where clause evalu-
ation requires theorem proving; and sub-spaces where clause evaluation
is performed quite efficiently without resorting to a theorem prover. We
have also defined a new type of redundancy (Coverage-equivalent redun-
dancy) that enables the prune of significant parts of the search space.
The new type of pruning together with the partition of the hypothe-
sis space considerably improved the performance of the APIS system.
An empirical evaluation of the APIS system in standard ILP data sets
shows considerable speedups without a lost of accuracy of the models
constructed.

1 Introduction

Multi-Relational Data Mining (MRDM) addresses the important challenge of
how to learn or mine the large multi-relational databases that are being devel-
oped by individuals and organizations. Inductive Logic Programming (ILP) is a
well known approach to MRDM. It starts from a logic-based representation in
order to induce theories that can describe common patterns in the data, or that
discriminate between classes of examples. ILP benefits from the expressiveness
and conciseness of logic and has been shown to be effective over a large range of
applications.

As most other Multi-Relational Data Mining (MRDM) systems, ILP systems
must search over a very large space. Controlling the running time is thus a key
consideration and has become even more important as data-base size increase.
Indeed, often ILP practitioners have to reduce the search space by using tech-
niques such as sampling or strong language bias in order to actually obtain
results.
c© Springer-Verlag Berlin Heidelberg 2014
G. Zaverucha et al. (Eds.): ILP 2013, LNAI 8812, pp. 93–106, 2014.
DOI: 10.1007/978-3-662-44923-3 7

94 R. Camacho et al.

There is therefore a strong motivation to making ILP systems faster [8]. Of
the several approaches being considered, parallelism is a natural fit, given the
widespread availability and the low-cost of modern parallel platforms. Indeed,
one can argue that parallelism is nowadays fundamental in large-scale data
mining. Therefore, it is unsurprising there has been much interest on parallel
ILP [10].

We propose a novel algorithm for parallel ILP data-mining, APIS (And
ParalelISm). APIS takes advantage of previous work in logic programming for
AND-parallelism, and takes it to the context to ILP. Results for our initial
implementation look very promising.

The remainder of the paper is organized as follows. Section 2 provides a
short introduction to ILP necessary to understand our proposal. It also explains
the Logic Programming AND-parallelism foundation of the proposal. Section 3
describes the APIS systems. Section 4 presents an empirical evaluation of the
proposed technique. We survey the parallel execution of ILP systems in Sect. 5.
Finally, in Sect. 6, we draw some conclusions and describe future work.

2 Background

The fundamental goal of a predictive ILP system is to construct a model H
given background knowledge B and observations E, usually called examples in
the machine learning literature. The problem that a predictive ILP system must
solve is to find a consistent and complete model H, i.e., find a set of hypotheses
that explain all given positive examples, while being consistent with the given
negative examples. More formally, given:

– B: background knowledge encoded as statements of a Logic Program.
– L: a pre-defined language for acceptable hypotheses.
– E: a finite set of examples = E+ ∪ E− where the E+ are named positive

examples; E− is an optional set of negative examples; and B � |= E+

the goal is to find a set of logical statements H from the set L of clauses that are
sufficient and consistent with the examples. Sufficiency is defined as B∪H |= E+

and B ∪ {Hi} |= e1 ∨ e2 ∨ · · · ∨ ep (1 ≤ i ≤ k). Consistency is defined as
B ∪ H � |= �� and B ∪ H � |= ∪E−. The sufficiency requirements are designed to
ensure that the theory H predicts the positive examples and that every clause
hi predicts at least one positive example. The consistency requirements try to
ensure that the theory is consistent with the background knowledge, and that it
is a good classifier. One particularly popular framework to constraint the clauses
considered is mode declarations, where one assigns types to clause’s arguments
and says that some arguments must have been bind by a previous literal in the
same clause.

Mode-Directed Inverse Entailment (MDIE) [15] takes advantage of mode
declarations to constrain the ILP search space. The key idea in MDIE is to find
all literals that could be used in rules that explain the example. This is achieved
by selecting a seed example and then constructing the saturated clause from the

AND Parallelism for ILP: The APIS System 95

set of all literals that could be used to prove (directly or indirectly) the example.
Several ILP systems [2,9,15,22] use the saturated clause in order to anchor the
search space lattice.

MDIE implementations such as Progol [15] or Aleph [22] start from a most
general clause, and then enumerate the clauses that subsume the bottom-clause
until finding a good clause that can be included in the theory. The search space
is therefore bound by the combinations of literals in the bottom-clause and thus
can grow very quickly, severely restricting the scalability of ILP systems. Several
approaches have been proposed in order to address this important problem. Work
has included faster evaluation of nodes in the search space [8,20], and reducing
redundancy in the search space through more intelligent search or refining bias.
A promising approach is to divide the search space and to use parallelism in
order to improve running times, as discussed next. During the search each clause
has to be evaluated by counting how many examples can be derived when the
hypothesis is added to the background knowledge. This evaluation procedure
requires a theorem prover and is most often the major time consuming step in
the search procedure. For efficiency sake it is usual to keep track of the examples
derivable by each clause (coverage lists). To avoid evaluating the refined clauses
in the complete list of examples the coverage lists of the “parent clause” are
usually used.

2.1 Parallel Execution of Logic Programs

There is a strong connection between parallelism in the context of ILP and par-
allelism in the context of logic programming (LP). Parallelism has been widely
studied in LP [12], where it can be exploited implicitly, by parallelising the LP
inference mechanism, or explicitly, by extending logic programs with primitives
that create and manage tasks and allow for task communication.

Explicit parallelism is often implemented by interfacing to existing low-level
primitives, such as Posix Threads [23], or MPI [11]. In contrast, implicit par-
allelism provides independency from the underlying low-level primitives. Two
major sources of implicit parallelism have been recognized. In or-parallelism, the
search in the LP system is run in parallel. Or-parallelism is known to achieve
scalable speedups on current hardware [6] but it works better when we want to
perform complete search, which may be expensive in the context of ILP.

And-Parallelism corresponds to running conjunctions of goals, or and-tasks,
in parallel. If the goals communicate during the parallel computation, it is called
dependent and-parallelism. Dependent and-parallelism may be used for concur-
rent languages or to implement pipelines [1]. On the other hand, independent
and-parallelism (IAP) is useful in divide-and-conquer applications and often cor-
responds to coarse-grained tasks.

Modern IAP implementations support both shared-memory, such as thread-
based systems [14], and distributed platforms [4]. Our approach is based on
independent and-parallelism (IAP).

96 R. Camacho et al.

3 The APIS System

The APIS system is based on a new approach to the parallel execution of ILP
systems. This approach establishes a partition on the hypothesis space enabling
each sub-space to be executed in parallel. There are two types of sub-spaces: sub-
spaces requiring theorem proving for clause evaluation; and sub-spaces that effi-
ciently compute clause evaluation without the need of theorem proving. Not only
the partition enables the parallel search but also achieves additional speedups
resulting from the fact that some of the sub-spaces do not use theorem proving
to evaluate the hypotheses. Although a partition is established on the hypothe-
sis space the resulting sub-spaces are not completely independent as we explain
later.

The theoretical foundation of our proposal is based on results from Logic
Programming (LP) AND-parallelism.

And-Parallelism corresponds to running conjunctions of goals, or and-tasks,
in parallel. Independent and-parallelism (IAP) is useful in divide-and-conquer
applications and often corresponds to coarse-grained tasks.

It is well known in LP that if a clause has subsets of literals with literals
in each subset not sharing variables with any literal of the other subsets, then
each subset can be executed in parallel. When traversing the hypothesis space an
MDIE-based ILP system constructs and evaluates clauses. Traditionally clause
evaluation is done using a theorem prover1. Among the clauses constructed dur-
ing the search, there are clauses that satisfy the LP IAP constraint: clauses with
sets of literals that do not share variables. We can then think of a search pro-
cedure that generates in parallel each subset of literals in the “traditional” way
(using theorem proving for evaluation) and then combines each sub-set to form
a new clause and make the evaluation of the combined clause in a more efficient
way. The coverage of the combined clause is computed by the intersection of
the coverage lists of the clauses being combined. This result cannot, however, be
efficiently applied in a traditional ILP system since it is computationally expen-
sive to determine if the partition of the clause’s literals into sub-sets that do not
share variables exists. The key point of the APIS system approach is to analyze
the mode declarations and establish the partition of the hypothesis space based
on the mode declarations, thus avoiding the analysis of each clause for inde-
pendent sets of literals at induction-time. Such partition can be computed as a
pre-processing step in an efficient way. The overall process is therefore divided
in two steps: a pre-processing step where mode declarations are used to estab-
lish the partition of the hypothesis space; and the execution in parallel of the
sub-spaces resulting from the previous step. We now explain each step in detail.

Definition 1. Island. An island is a set of mode declarations satisfying the
following two conditions. Each mode declaration shares at least one type with
other modes in the same island. Each mode declaration does not share any type
1 Counting the number of examples derivable from the hypothesis and the background

knowledge.

AND Parallelism for ILP: The APIS System 97

with any other mode declaration outside the island. Types of the head literal are
excluded from the above mentioned “type checking”.

The core of the APIS system is the identification of the islands since they will
be used in the partition of the hypothesis space. The algorithm for the automatic
identification of the islands is described by Algorithm 1. The use of the islands
in the the parallel search of the hypothesis space is described by Algorithm2.

Algorithm 1. Islands computation from the mode declarations
1: function ComputeIslands(AllModes)
2: IslandsSet ← ∅
3: Modes ← removeHeadInputArguments(AllModes) � pre-processing step
4: while Modes �= ∅ do � process all modes
5: Mode = withoutInputArguments(Modes)
6: Modes = Modes \ { Mode }
7: Island = ExtendIsland({Mode}, Modes)
8: IslandsSet ← IslandsSet ∪ { Island }
9: end while
10: return IslandsSet
11: end function
12:
13: function ExtendIsland(Island, Modes)
14: repeat
15: Mode = LinkedToTheIsland(Modes) � returns ∅ if no mode was found
16: Modes = Modes \ { Mode }
17: Island ← Island ∪ { Mode }
18: until Mode = ∅
19: return Island � Island as a set of modes
20: end function

The algorithm to compute the islands accepts as input a set of mode dec-
larations and returns a set of islands. First, a pre-processing is done to remove
the types appearing in the head mode declaration and the mode arguments that
are constants. After the pre-processing the algorithm enters a cycle where each
island is determined and terminates whenever there are no more mode declara-
tions to process. In the main cycle a seed mode is chosen to start a new island
and then the island is “expanded”. Expanding an island consists in adding any
mode declaration not yet in the island sharing a type with any mode already in
the island. The expansion stops as soon as there is no mode outside the island
sharing a type with the modes inside the island.

APIS execution algorithm is schematized in Algorithm2. Algorithm 2 starts
by computing the islands and each client node is instructed to upload the data
set without the mode declarations. In the line of MDIE greedy cover ILP algo-
rithms the main cycle generates hypotheses, adds the best discovered hypothesis
to the final theory and removes the examples covered by the added hypothesis.
The cycle is repeated until no uncovered positive examples are left. The speci-
ficity of APIS is evident in (steps 8 through 19). In this part of the algorithm
APIS uses a pool of client nodes and a pool of sub-spaces of the hypothesis space
to search (determined by the partition made on the mode declarations). Each
node searches a sub-space. There are two kinds of sub-spaces: “saturation-based”
sub-spaces; and “combination-based” sub-spaces. A saturation-based sub-space

98 R. Camacho et al.

Algorithm 2. The APIS parallel execution algorithm
1: function InduceTheory(DataSet, Clients)
2: Islands ← ComputeIslands(GetModes(DataSet))
3: Theory ← ∅
4: Examples ← PositiveExamples(DataSet) � initial positive examples
5: broadCast(Clients, loadIslandsDataSets)
6: while Examples �= ∅ do � while not covering all positives
7: Samples = getSample(Examples)
8: Jobs ← getJobs(Islands, Samples)
9: while Jobs �= ∅ do � all islands processed in the cycle
10: if Clients �= ∅ then
11: W ← client(Clients) � get next available client
12: Clients ← Clients \ { W }
13: J ← nextJob(Jobs) � select a non-processed job
14: Jobs ← Jobs \ { J }
15: sendMsg(W, J) � client W processes job J
16: end if
17: if FinishedClient(C) �= ∅ then Clients ← Clients ∪ { C }
18: end if
19: end while
20: h = IslandsResults() � returns the best hupothesis
21: Covered = Cover(h, Examples) � compute h coverage
22: Examples = Examples \ Covered
23: if Examples �= ∅ then broadcast(Clients, removeExamples(Covered))
24: end if
25: Theory ← Theory ∪ { h }
26: end while
27: return Theory
28: end function

is generated as in a typical saturation followed by reduction steps that charac-
terize MDIE systems. The difference is that to generate the sub-space a sub-set
of the mode declarations (an island) is used. All clauses constructed in this kind
of subspace are evaluated by proving the examples from background knowl-
edge and the hypothesis under evaluation. On the other hand in “combination-
based” sub-spaces theorem proving is not required. Each clause constructed in
a combination-based sub-space merges pairs of clauses each one coming from
previously searched spaces that do not share islands. This restriction allows the
evaluation of the new clauses by intersection of the parent’s coverage lists. We
can see that there is a dependency among combination-based sub-spaces. The
saturation-based sub-spaces are the only ones completely independent. Let us
further remark that in the main cycle of the algorithm we search several hypoth-
esis spaces at the same time2. We have an hypothesis space for each example of
the seed. All of the jobs to execute (sub-spaces to be searched) are in a common
pool but only sub-spaces belonging to the same example are combined. The num-
ber of jobs associated with each example is equal to the number of all possible
combinations of the islands up to the clause length. First the saturation-based
sub-spaces are generated, then these sub-spaces are combined in pairs them in
groups of three and so on up to the “clause length” value. The combinations
are all computed once before execution of the algorithm and each sub-space is
schedule to run as soon as the two “parents” finish.
2 As many as the size of the sample.

AND Parallelism for ILP: The APIS System 99

3.1 Redundancy Avoidance

It is well known that there is a lot of redundancy among the hypotheses in an
ILP search space. Several types and remedies have been identified and proposed,
see [19]. With the APIS approach there is a another redundancy situation that
can be avoided and therefore improving the search.

As explained previously, if a clause is “constructed” by combining two clauses
from different islands, its coverage is computed by the intersection of the two
coverage lists of the clauses being combined. The coverage result depends only
on the coverage lists of the combining clauses and not on the clauses per se3. If
we have clause C1 and clause C2 with the same positives and negatives coverage
lists originated from the same island and we try to combine each of them with
clause C3, from a different island, we will necessarily obtain two clauses (C1

“+” C3 and C2 “+” C3) with the same coverage lists (positives and negatives).
Combining each of C1 or C2 with clauses from other islands will always result
in clauses with equal coverage lists. We call such clauses (C1 and C2) coverage
equivalent clauses.

Definition 2. Coverage-equivalent clauses. Two clauses C1 and C2 are cov-
erage equivalent if both cover exactly the same positive and negative examples.

Although coverage equivalent clauses may not be equivalent in the logic sense,
a coverage-based ILP system will always report only one exemplar of the coverage
equivalent class. In the APIS system we keep only one exemplar of each coverage
equivalent classes (the shortest clause).

Coverage equivalence is used in APIS for pruning in the following way. Dur-
ing the search of a sub-space the inconsistent clauses are stored in a file. The pur-
pose is to combine them with other inconsistent clauses from other sub-spaces.
Pruning takes place at saving time. From each coverage equivalence class only a
single clause is saved.

4 Experiments and Results

4.1 Experimental Settings

We have used four data sets to evaluate the APIS system. DBPCAN is part
of the water disinfection by-products database and contains predicted estimates
of carcinogenic potential for 178 chemicals. The goal is to provide informed
estimates of carcinogenic potential to be used as one factor in ranking and prior-
itizing future monitoring, testing, and research needs in the drinking water area
[24]. The second data set is CPDBAS, the Carcinogenic Potency Data Base that
contains detailed results and analyzes of 6540 chronic, long term carcinogenesis
bio assays.
3 Opposite from what happens when literals share variables.

100 R. Camacho et al.

A description of the background knowledge for these two data sets4 can
be found in [3]. Other two data sets used in this study are the carcinogenesis
and mutagenesis well known in ILP and can be found in the Oxford University
Machine Learning repository5 along with an explanation of the domain that
produced the data.

The data sets are characterized in Table 1 together with the associated
Aleph’s parameters used in the experiments. The nodes limit parameter indi-
cated in the table concern the sequential execution value. When running APIS
we have divided the nodes limit among the saturation-based sub-spaces. For each
saturation-based sub-space the nodes limit is a weighted proportion of the nodes
limit of the sequential execution. The weight used is based on the number of
mode declaration of the corresponding island. For instance, let us consider the
carcinogenesis data set. The nodes limit is set to 1 million (1M) clauses in
the sequential execution. Four islands where identified hence the nodes limits
in the saturation-based sub-spaces were the following ones: 3/34 * 1M for island
1; 24/34 * 1M for island 2; 4/34 * 1M for island 3 and 3/34 * 1M for island 4.
In carcinogenesis there are 34 mode declarations, 3 in island 1, 24 in island 2, 4
in island 3 and 3 in island 4. The nodes limit used in the sequential execution
is the overall nodes limit used by APIS for each example. In the current exper-
iments the overall nodes limit is split among the saturation-based sub-spaces
according to the number of mode declaration in their island. If the saturation-
based sub-spaces did not reach their nodes limit (what happens frequently for
some of them) the combination-based sub-spaces can run and use the number
of nodes not used by the saturation-based sub-spaces. As said before, for each
example the global limit, used in the sequential execution, is never surpassed by
the complete set of sub-spaces searched.

Table 1. Characterization of the data sets used in the study. In the cells of the second
column P/N represents the number of positive examples (P) and negative examples
(N). The 5 right most columns are the values for Aleph’s parameters.

data set name number of number of clause nodes noise minimum sample
examples islands length (Millions) positives size

carcinogenesis 162/136 4 5 0.5 10 12 30
mutagenesis 125/63 5 6 1 4 9 25
dbpcan 80/98 37 7 1 2 5 30
cpdbas 843/966 37 6 0.1 150 150 5

All the experiments were carried out on a cluster of 8 nodes having two quad-
core Xeon 2.4 GHz and 32 GB of RAM per node and running Linux Ubuntu 8.10.
4 Source data for both data sets is available from the Distributed Structure-Searchable

Toxicity (DSSTox) Public Data Base Network from the U.S. Environmental Protec-
tion Agency http://www.epa.gov/ncct/dsstox/index.html,accessedDec2008.

5 http://www.cs.ox.ac.uk/activities/machlearn/applications.html

http://www.epa.gov/ncct/dsstox/index.html, accessed Dec 2008
http://www.cs.ox.ac.uk/activities/machlearn/applications.html

AND Parallelism for ILP: The APIS System 101

Table 2. Speedups (a) and accuracy (b) obtained in the experiments numbers in
each cell correspond to average and standard deviation (in parenthesis). There is no
statistical difference (α ≤ 0.05) between the sequential execution accuracy values and
the parallel execution for each data set.

data set number of worker nodes
2 4 6 7

carcinogenesis 4.8(2.1) 5.6(2.7) 6.7(2.6) 6.1(2.6)
mutagenesis 76.5(32.9) 138.9(82.7) 188.4(119.3) 231.3(148.6)
dbpcan 13.8(2.5) 26.7(4.3) 36.5(5.5) 41.1 (5.9)
cpdbas 18.3(7.0) 31.4(16.1) 36.2(26.9) 28.5(11.8)

(a)

data set sequential number of worker nodes
execution 2 4 6 7

carcinogenesis 53.7(3.8) 58.9(5.5) 57.8(3.8) 57.8(4.8) 58.0(7.6)
mutagenesis 84.1(6.9) 80.7(5.4) 82.0(4.8) 80.9(5.2) 81.3(4.7)
dbpcan 87.9(5.0) 89.8(4.1) 89.3(5.1) 89.3(5.1) 89.3(5.1)
cpdbas 54.0(1.8) 51.2(1.4) 53.6(1.2) 53.5(1.2) 53.4(1.0)

(b)

To estimate the predictive quality of the classification models we compute the
average values (speed-up and accuracy) of 10 (70 %/30 %) train/test splits. The
ILP system used was Aleph 5.0 [22].

4.2 Results and Discussion

Overall, the results show that significant speedups were achieved by APIS, well
beyond the number of processors (Table 2(a))6 without affecting accuracy (no
statistical significant difference for α ≤ 0.05), Table 2(b). To understand the
results a second set of experiments were performed with several sorts of countings
on all parts of the APIS system. In these second set of experiments we have
measured the execution times of all sub-spaces, we have counted the number of
constructed clauses and the number of pruned clauses (shown in Table 3).

We have focus our initial attention on the saturation-based sub-spaces since
their running times and number of nodes searched are much larger than the
intersection-based sub-spaces. Results in Table 3 concern the saturation-based
sub-spaces only.

We can observe that the number of clauses constructed by APIS (in the
saturation-based sub-spaces) is smaller than in the sequential execution. For
example, in the mutagenesis data set the whole number of clauses constructed
in saturation-based sub-spaces are 20 % of the number in sequential runs. This is
due to the lower limit imposed in each sub-space and because some of those sub-
spaces do not reach the nodes limit. The accuracy values are similar (Table 2(b))
despite the reduction in the total number of nodes searched.
6 Except for the carcinogenesis data set.

102 R. Camacho et al.

The major contribution for the speedups is, however, from the parallel search
of the sub-spaces. We identified two sources of the parallel execution on the
speedups. With enough CPUs (number of workers larger than the number of
the islands) the execution time would be broadly determined by the slower sub-
space search. For example, in mutagenesis data set, if we have more than 5
CPU workers we can search the five saturation-based sub-spaces in parallel.
The overall time is determined by the slower search. With this effect alone we
would expect the speedups to be close to the speedup of the search in the slower
subspace. In the first result’s column of Table 3 we can see, for example, that
the slowest sub-space in mutagenesis has a speedup of 10.8 when compared with
the sequential run.

Looking at the global data sets speedup results we see that the speedup of the
slowest sub-space search alone does not explain the global speedups obtained.
Again, looking at the results columns 4th and 5th in Table 3, we can see in
column 4 the number of “slow” sub-spaces (1 in mutagenesis and 3 in dbpcan,
for example) and can also see in column 5 that the other sub-saves use less than
10 % of the time of the slower ones. The is there are a one or few “slow” sub-
spaces and their run time is much larger than the others. This means that we
can start processing the next example much earlier than the finish time of the
slower sub-space. In practice we can run several examples in parallel. This is also
a significant contribution for the global speedup.

Another contribution, although weaker, for the speedup results is the use of
intersection of coverage lists instead of theorem-proving. The number of clauses
evaluated using intersection of coverage lists is rather small (when compared
with the theorem-proving case) but represent also a faster method to evaluate
clauses.

Table 3. Execution statistics. Column two shows the average (and standard devia-
tion) of the quotient between the sequential run time of an example and the slowest
sub-space (speedup). Column three sown the percentage of nodes constructed by APIS
in the saturation-subspaces and the nodes constructed in the sequential run. Column
four shows the number of “slow” subs-paces (left) and total number of saturation-
based subspaces (right). Column 5 shows the average run time of all sub spaces
(except the slowest ones) as a percentage of the slowest run time. The last column
shows the coverage equivalence pruned nodes as a percentage of the total number
of nodes constructed. Results concern the saturation-based sub-spaces only. Execu-
tion times and nodes constructed are negligible when compared with saturation-based
subspace’s values.

data set name Slowest sbsp. nodes constructed Number of Av. other sub-spaces Coverage Equiv.
speedup in the sbspcs. (%) “slow” sbsps. (%) pruning

carcinogenesis 2.7(1.8) 29 1/4 2(5) 12(4)
mutagenesis 10.8(8.7) 20 1/5 7(0) 16(10)
dbpcan 15.3(11.1) 80 3/37 1(1) 27(8)
cpdbas 5.3(5.8) 16 1/37 1(1) 18(5)

AND Parallelism for ILP: The APIS System 103

Table 4 show the island’s membership of predicates that appear in the sequen-
tial execution theories.

Table 4. Island’s membership of the predicates found in the clauses of the theories of
sequential execution. N means a clause with all predicates in island N, N-M means a
clause with predicates belonging to islands N and M, and N-M-L means a clause with
predicates belonging to islands N, M and L. A list of the island’s predicates can be
found in Table 5 of the Appendix.

data set name islands ids

carcinogenesis 1 , 1-3, 1-4, 2-3, 3-4, 1-2-3

mutagenesis 3, 4, 2-3, 2-4, 3-4, 1-3-4

dbpcan 1, 1-2

cpdbas 1, 2, 1-2

5 Parallel Execution of ILP Systems

Based on the principal performance bottlenecks for ILP systems identified in
Sect. 1, we classify three main sources of parallelism in ILP systems [10].

Search parallelism arises from the need to enumerate clauses. We can further
distinguish between parallel execution of multiple searches, and the parallel exe-
cution within a search. The granularity of the latter is substantially finer than
the former. This strategy was the first to be exploited, as an extension of Dehaspe
and De Raedt’s Claudien system [7]. It is also exploited by Ohwada et al. [18]
and by Wielemaker and Srinivasan in the context of randomised search [23].

Evaluation parallelism arises from the need to compute the utility of a clause.
This usually requires determining the subset of E entailed by the Di given B
and Hi−1. A coarse-grained strategy involves partitioning E into blocks. The
blocks are then provided to individual processors, which compute the examples
covered in the block. Ohwada and Mizoguchi [17] implement evaluation and
search parallelism in the context of inverse entailment.

Data parallelism arises when individual processors are provided with subsets
of the examples prior to invoking the search procedure in Figure. Wang and
Skillicorn [21] use this technique to parallelise the Progol algorithm [16]. They
also use search and evaluation parallelism. Matsui et al. [13] compared search
and evaluation parallelism, with initial promise for data-parallelism.

Notice that other classification criteria can be used. For example, as for LP
systems, we can divide strategies into those that expect to use shared memory
and those that expect to use distributed memory. Clare and King’s Polyfarm [5]
is an example of a system designed for distributed environments. Fonsecaet al.’s
survey of parallel ILP systems [10], reports that most of the best results for
parallel ILP were obtained on shared-memory architecture, but argues that there
is scope for experimenting with distributed-memory “clusters”.

104 R. Camacho et al.

6 Conclusions

A new ILP system based on the partition of the hypothesis space and parallel
search of the generated sub-spaces was presented. The partition of the hypothesis
space results in two types of sub-spaces: “saturation-based and “combination-
based” sub-spaces. Saturation-based sub-spaces are searched as in a “traditional”
MDIE-based system. Combination-based sub-spaces combine clauses from two
previously searched sub-spaces and evaluate them efficiently by intersection of
the coverage lists of the clauses being combined. Using the process of combination
of clauses a new type of redundancy was identified and implemented. Results of
the APIS system, on well known data sets, show very good speed-ups without
lost in accuracy. We are currently performing further runs in order to achieve
good speedups without any decrease in accuracy. The procedure taken consists
in finding a reasonable way of determining the “nodes” limit for the sub-spaces.
This limit is specially critical for the saturation-based sub-spaces since they
produce the initial set of clauses that are being combined in other sub-spaces.
If node limit is too small we may loose crucial (sub-)clauses important for the
combination process.

Acknowledgments. This work has been partially supported by Fundação para a
Ciência e Tecnologia (FCT) through the project ADE (PTDC/EIA-EIA/121686/2010
(FCOMP-01-0124-FEDER-020575)). The work was also partial supported by project
NORTE-07-0124-FEDER-000059, financed by the North Portugal Regional Opera-
tional Programme (ON.2 O Novo Norte), under the National Strategic Reference
Framework (NSRF), through the European Regional Development Fund (ERDF), and
by national funds, through the Portuguese funding agency, FCT.

A Composition of the Dataset’s Islands

Table 5 shows the partial composition of the islands that where used to define
the hypothesis sub-spaces. In the table we show only the predicates that appear
in the models constructed in the sequential execution runs.

AND Parallelism for ILP: The APIS System 105

Table 5. Island’s membership of the predicates that appear in the final theories induced
by the APIS system.

data set island
name 1 2 3 4

carcinogenesis
ames/1
has property/3
mutagenic/1

ashby alert/3
ether/2
ar halide/2
non ar 6c ring/2
non ar hetero 5 ring/2

atm/5
lteq/2
gteq/2

ind/3
lteq/2

mutagenesis ring size 5/2
logp/2
gteq/2

lumo/2
lteq/2

atm/5
bond/4
gteq/2
lteq/2

dbpcan

chemical fingerprint/2
rotatable bondcount/2
primary carbon/2
atLeastOneOfFuncGroups/2
resonant count/2
tertiary carbon/2
primary carbon/2
secondary carbon

pharmacophore fingerprint/4
ltPharmacophoreArg3/2
ltPharmacophoreArg2/2
gtPharmacophoreArg2/2

cpdbas

atLeastOneOfFuncGroups/2
heteroaromatic ringcount/2
fusedaliphatic ringcount/2
tertiary carbon/2
tautomer count/2
ringcount/2
tertiary carbon/2

pharmacophore fingerprint/4
ltPharmacophoreArg2/2
gtPharmacophoreArg/2

References

1. Bone, P., Somogyi, Z., Schachte, P.: Estimating the overlap between dependent
computations for automatic parallelization. TPLP 11(4–5), 575–591 (2011)

2. Camacho, R.: IndLog — induction in logic. In: Alferes, J.J., Leite, J. (eds.) JELIA
2004. LNCS (LNAI), vol. 3229, pp. 718–721. Springer, Heidelberg (2004)

3. Camacho, R., Pereira, M., Costa, V.S., Fonseca, N.A., Adriano, C., Simoes, C.J.V.,
Brito, R.M.M.: A relational learning approach to structure-activity relationships
in drug design toxicity studies. J. Integr. Bioinform. 8(3), 182 (2011)

4. Casas, A., Carro, M., Hermenegildo, M.V.: A high-level implementation of non-
deterministic, unrestricted, independent and-parallelism. In: Garcia de la Banda,
M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 651–666. Springer, Heidel-
berg (2008)

5. Clare, A.J., King, R.D.: Data mining the yeast genome in a lazy functional lan-
guage. In: Dahl, V. (ed.) PADL 2003. LNCS, vol. 2562, pp. 19–36. Springer, Hei-
delberg (2002)

6. Costa, V.S., de Castro Dutra, I., Rocha, R.: Threads and or-parallelism unified.
TPLP 10(4–6), 417–432 (2010)

7. Dehaspe, L., De Raedt, L.: Parallel inductive logic programming. In: Proceed-
ings of the MLnet Familiarization Workshop on Statistics, Machine Learning and
Knowledge Discovery in Databases (1995)

8. Fonseca, N.A., Costa, V.S., Rocha, R., Camacho, R., Silva, F.: Improving the
efficiency of inductive logic programming systems. Softw. Pract. Exper. 39(2),
189–219 (2009)

106 R. Camacho et al.

9. Fonseca, N.A., Silva, F., Camacho, R.: April – an inductive logic programming
system. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS (LNAI), vol. 4160, pp. 481–484. Springer, Heidelberg (2006)

10. Fonseca, N.A., Srinivasan, A., Silva, F.M.A., Camacho, R.: Parallel ilp for
distributed-memory architectures. Mach. Learn. 74(3), 257–279 (2009)

11. The MPI Forum: Mpi: a message passing interface (1993)
12. Gupta, G., Pontelli, E., Ali, K.A.M., Carlsson, M., Hermenegildo, M.V.: Parallel

execution of prolog programs: a survey. ACM Trans. Program. Lang. Syst. 23(4),
472–602 (2001)

13. Matsui, T., Inuzuka, N., Seki, H., Itoh, H.: Comparison of three parallel imple-
mentations of an induction algorithm. In: 8th International Parallel Computing
Workshop, Singapore, pp. 181–188 (1998)

14. Moura, P., Crocker, P., Nunes, P.: High-level multi-threading programming in
logtalk. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp.
265–281. Springer, Heidelberg (2008)

15. Muggleton, S.: Inverse entailment and Progol. New Gener. Comput., Spec. Issue
Induct. Log. Program. 13(3–4), 245–286 (1995)

16. Muggleton, S., Firth, J.: Relational rule induction with CProgol4.4: a tutorial
introduction. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 160–
188. Springer, Heidelberg (2001)

17. Ohwada, H., Mizoguchi, F.: Parallel execution for speeding up inductive logic pro-
gramming systems. In: Arikawa, S., Nakata, I. (eds.) DS 1999. LNCS (LNAI), vol.
1721, pp. 277–286. Springer, Heidelberg (1999)

18. Ohwada, H., Nishiyama, H., Mizoguchi, F.: Concurrent execution of optimal
hypothesis search for inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP
2000. LNCS (LNAI), vol. 1866, pp. 165–173. Springer, Heidelberg (2000)

19. Costa, V.S., Srinivasan, A., Camacho, R., Blockeel, H., Demoen, B., Janssens, G.,
Struyf, J., Vandecasteele, H., Van Laer, W.: Query transformations for improving
the efficiency of ILP systems. J. Mach. Learn. Res. 4, 465–491 (2003)

20. Camacho, R., Blockeel, H., Demoen, B., Janssens, G., Struyf, J., Vandecasteele, H.,
van Laer, W.: Query Transformations for Improving the Efficiency of ILP Systems.
J. Mach. Learning Res. Ashwin Srinivasan 4, 465–491 (2003)

21. Skillicorn, D.B., Wang, Y.: Parallel and sequential algorithms for data mining using
inductive logic. Knowl. Inf. Syst. 3(4), 405–421 (2001)

22. Srinivasan, A.: The Aleph Manual (2003). http://web.comlab.ox.ac.uk/oucl/
research/areas/machlearn/Aleph

23. Wielemaker, J.: Native preemptive threads in SWI-prolog. In: Palamidessi, C. (ed.)
ICLP 2003. LNCS, vol. 2916, pp. 331–345. Springer, Heidelberg (2003)

24. Woo, Y.T., Lai, D., McLain, J.L., Manibusan, M.K., Dellarco, V.: Use of
mechanism-based structure-activity relationships analysis in carcinogenic poten-
tial ranking for drinking water disinfection by-products. Environ. Health Perspect.
110, 75–87 (2002)

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph

Generalized Counting
for Lifted Variable Elimination

Nima Taghipour, Jesse Davis, and Hendrik Blockeel(B)

Department of Computer Science, KU Leuven, Leuven, Belgium
hendrik.blockeel@cs.kuleuven.be

Abstract. Lifted probabilistic inference methods exploit symmetries
in the structure of probabilistic models to perform inference more effi-
ciently. In lifted variable elimination, the symmetry among a group of
interchangeable random variables is captured by counting formulas, and
exploited by operations that handle such formulas. In this paper, we gen-
eralize the structure of counting formulas and present a set of inference
operators that introduce and eliminate these formulas from the model.
This generalization expands the range of problems that can be solved in a
lifted way. Our work is closely related to the recently introduced method
of joint conversion. Due to its more fine grained formulation, however,
our approach can provide more efficient solutions than joint conversion.

1 Introduction

Probabilistic logical languages combine elements of first-order logic with graphi-
cal models to succinctly model complex, uncertain, structured domains [4]. These
domains often involve a large number of objects, making efficient inference a
major challenge. To address this problem, Poole [7] introduced the concept of
lifted probabilistic inference, i.e., inference that exploits the symmetries in the
structure of the model to gain efficiency (for an overview, see [5]). Lifted inference
methods use two main techniques or tools for lifting :

1. Isomorphic decomposition: decompose the problem into isomorphic sub-
problems, solve one instance, and aggregate the result

2. Counting: Count the number of isomorphic configurations for a group of
interchangeable variables instead of enumerating all possible configurations.

Our focus in this paper is on the second tool, counting, in the context of
lifted variable elimination (LVE) [3,6,7].

LVE uses counting formulas to capture the interchangeability among objects
[6]. A counting formula aggregates the joint state of a group of random variables
intohistograms that showonly thenumber of variableswith each state,without dis-
tinguishing between the individuals. For instance, the formula #X [Attends(X)],
captures the number of people who attend a workshop, without distinguishing
between their identity. As the number of possible aggregate states (histograms) is
much smaller than the number of joint states of the group, lifted operations achieve
c© Springer-Verlag Berlin Heidelberg 2014
G. Zaverucha et al. (Eds.): ILP 2013, LNAI 8812, pp. 107–122, 2014.
DOI: 10.1007/978-3-662-44923-3 8

108 N. Taghipour et al.

large efficiency gains by directly manipulating counting formulas, instead of the
individual variables.

Counting formulas, as used so far in LVE [6], have specific syntactic restric-
tions. Some of these are not fundamental and can be removed, yielding more
opportunities for lifting. One such restriction is that a counting formula con-
tains only a single atom, i.e., it aggregates the states of a group of individual
random variables. In this paper, we generalize the definition of counting for-
mulas, allowing them to aggregate the states of a group of tuples of random
variables; e.g., #X [Attends(X), P resents(X)] counts the number of people that
(do not) attend and (do not) present a paper at the workshop. We present a set
of inference operators that introduce and manipulate these generalized formu-
las, and show that these expand the opportunities for lifting, and hence for more
efficient inference, compared to the original formulation of counting operations.

Our work is closely related to that of joint conversion and just-different
counting conversion [1]. However, our method uses a more fine grained formula-
tion, and can offer more efficient solutions than joint conversion.

2 Representation

Many representation languages for probabilistic logical models have been pro-
posed [4]. Like earlier work on LVE [2,6,7], we use a representation based on
parametrized random variables and parametric factors [7]. This representation
combines random variables and factors (as used in factor graphs) with concepts
from logic. The goal is to compactly define complex probability distributions
over many variables. We now introduce the necessary terminology.

We use the term ‘variable’ in both the logical and probabilistic sense. We use
logvar for logical variables and randvar for random variables. We write variables
in uppercase and values in lowercase.

Preliminaries. A factor f = φf (Af), where Af = (A1, . . . , An) are randvars
and φf is a potential function, maps each configuration of Af to a real. A factor
graph is a set of factors F over randvars A =

⋃
f∈F Af and defines a probability

distribution PF (A) = 1
Z

∏
f∈F φf (Af), with Z a normalization constant.

The vocabulary consists of predicates (representing properties and relations),
constants (representing objects) and logvars. A constant represents an object
in our universe. A term is a constant or a logvar. An atom is of the form
P (t1, t2, . . . , tn), where P is a predicate of arity n and each argument ti is a
term. An atom is ground if all its arguments are constants. Each logvar X has
a finite domain D(X), which is a set of constants {x1, . . . , xn}. A constraint
C on a set of logvars X = {X1, . . . , Xn} is a conjunction of inequalities of the
form Xi �= t where t is a constant in D(Xi) or a logvar in X. A substitution
θ = {X1 → t1, . . . , Xn → tn} maps logvars to terms. Applying a substitution θ
to an atom (or term) a, replaces each occurrence of Xi in a with ti; the result
is denoted aθ. When all ti’s are constants, θ is called a grounding substitution.
Given a constraint C, we use gr(X|C) to denote the set of grounding substitu-
tions to X that are consistent with C.

Generalized Counting for Lifted Variable Elimination 109

Parametrized randvars. The representation associates atoms with randvars.
For this, every predicate is assigned a range, i.e., a set of possible values, e.g.,
range(BloodType) = {a, b, ab, o}. A ground atom then represents a randvar,
e.g., BloodType(joe). The randvar/atom has the same range as the involved
predicate. Unlike in first-order logic, a range is not limited to {true, false} but
can be any finite set. To compactly encode distributions over many randvars,
Parametrized randvars (PRV) were introduced [7]. A PRV is of the form P (X)|C,
where P (X) is an atom and C is a constraint on X. A PRV V = P (X)|C
represents (or covers) the set of randvars RV (V) = {P (X)θ|θ ∈ gr(X|C)}.

Example 1. Suppose D(X) = D(Y) = {a, b, c, d}, where a stands for the per-
son ann, b for bob, etc. The PRV Friends(X,Y)|X �= Y represents a set of
12 randvars, namely {Friends(a, b),Friends(a, c), . . . ,Friends(d, c)}. Similarly,
the (unconstrained) PRVs Smokes(X) and Drinks(X) each represent a set of 4
randvars.

Parametric factors (parfactors). Like PRVs compactly encode sets of rand-
vars, parfactors compactly encode sets of factors. A parfactor is of the form
∀L : φ(A)|C, with L a set of logvars, C a constraint on L, A = (Ai)ni=1 a
sequence of atoms parametrized with L, and φ a potential function on A. The
set of logvars occurring in A is denoted logvar(A), and we have logvar(A) ⊆ L.
When logvar(A) = L, we omit L and write the parfactor as φ(A)|C. A fac-
tor φ(A′) is called a grounding of a parfactor φ(A)|C if A′ can be obtained by
instantiating L according to a grounding substitution θ ∈ gr(L|C). The set of
all groundings of a parfactor g is denoted gr(g).

Example 2. We abbreviate Drinks to D, Friends to F and Smokes to S. The
parfactor g1 = φ1(S (X),F (X,Y),D(Y))|X �= Y represents a set of 12 factors,
namely gr(g1) = {φ1(S (a),F (a, b),D(b)), . . . , φ1(S (d),F (d, c),D(c))}. This par-
factor can encode, for instance, that if X is a smoker and is friends with Y , then
Y is likely to be a drinker.

Parfactor models. When talking about a model below, we mean a set of par-
factors. In essence, a set of parfactors G is a compact way of defining a set of
factors F = {f |f ∈ gr(g) ∧ g ∈ G}. The corresponding probability distribution
is PG(A) = 1

Z

∏
f∈F φf (Af). By G1 ≡ G2, we denote that models G1 and G2

define the same probability distribution.

3 Lifted Variable Elimination

The state of art in lifted variable elimination (LVE) is the result of various
complementary efforts [1,2,6,7,11–13]. In this section we briefly review the
C-FOVE [6] algorithm, which forms the basis of our work. Another extension to
C-FOVE, namely joint formulas [1], is discussed and compared with in Sect. 7.

Variable elimination calculates a marginal distribution by eliminating rand-
vars in a specific order from the model until reaching the desired marginal [8].

110 N. Taghipour et al.

To eliminate a single randvar V , it first multiplies all the factors containing V
into a single factor and then sums out V from that single factor. LVE does
this on a lifted level by eliminating parametrized randvars (i.e., whole groups of
randvars) from parfactors (i.e., group of factors), using a set of lifted operators.
Lifted sum-out sums-out a PRV, and hence all the randvars represented by
that PRV, from the model. It is applicable only when each randvar represented
by the PRV appears in exactly one grounding of exactly one parfactor in the
model. The goal of all other operators is to manipulate the parfactors into a form
that satisfies this precondition. In this sense, all operators except lifted sum-out
are enabling operators. Lifted multiplication prepares the model for sum-out
by replacing all the parfactors that share a particular PRV by a single equivalent
product parfactor. It performs the equivalent of many factor multiplications in
one lifted operation. Splitting and shattering rewrite the model into a normal
form in which, e.g., each pair of PRVs represent either identical or disjoint rand-
vars. This can enable subsequent lifted multiplication. Counting conversion
introduces counting formulas in the model, to exploit interchangeability among a
group of randvars. By replacing an atom such as A(X) with a counting formula
#X [A(X)], we compactly represent and manipulate a single potential on rand-
vars A(x1), . . . , A(xn). In C-FOVE, this operator is applicable on logvars that
only appear in a single atom. We formally introduce and generalize counting
formulas, along with operations that handle them, in the following sections.

4 Generalized Counting Formulas

Counting formulas aggregate the state of a group of interchangeable randvars
into histograms that show the number of randvars with each value. They thus
lift the computations to the level of the aggregate state of the group, without
considering the individuals. This speeds up inference as the number of possible
aggregate states (histograms) is polynomial in the group size, whereas the num-
ber of joint states is exponential. In this section, we generalize counting formulas,
such that they aggregate the state of a group of tuples of atoms, instead of indi-
vidual atoms. This permits lifting in cases where not all individual randvars are
interchangeable, but specific tuples of randvars are.

4.1 A Motivating Example

The following example is representative for useful models for which C-FOVE
does not have a lifted solution. We use it as a running example.

Example 3. Consider the model consisting of the two following parfactors (S
stands for Smokes, F for Friends, D for Drinks).

g1 = φ1(S(X), F (X,Y), S(Y)) g2 = φ2(D(X), F (X,Y),D(Y))

This model is representative for models that express (anti-)homophily between
linked entities w.r.t. multiple properties (in this case, Smokes and Drinks).

Generalized Counting for Lifted Variable Elimination 111

Consider summing out all the randvars. C-FOVE can eliminate the F rand-
vars by multiplying g1 and g2 into g12 = φ12(S(X),D(X), F (X,Y), S(Y),D(Y)),
then summing out the F atoms: g′

12 = φ′
12(S(X),D(X), S(Y),D(Y)). After this,

no other lifted operations are applicable on the model: lifted sum-out is not
applicable for any of the atoms (none of them contains all the logvars in the par-
factor), and counting conversion is not applicable on any of the logvars (there is
no logvar that appears in only one atom). The only option left for C-FOVE is
to ground one of the logvars and work with the (much larger) resulting model.

The reason counting conversion is not applicable here is that each logvar
appears in two atoms, while C-FOVE’s formulation of counting formulas (and
conversion) are only applicable on a single atom. Intuitively, lifting is not possible
with the existing counting tools since we cannot rewrite the model equivalently
in terms of two separate formulas #X [S(X)] and #X [D(X)]. These formulas tell
us how many people smoke and how many people drink; to evaluate the model
we need to know how many people (do not) smoke and (do not) drink. In the
following, we show how this problem can be solved in a lifted way, by rewriting
the model in terms of counting formulas of the form #X [S(X),D(X)], which
count tuples of atoms and provide sufficient information to evaluate the model.

4.2 Definition

We define a counting formula (CF) to be of the form γ = #X:C [P1(X1), . . . ,
Pk(Xk)], with C a constraint on the counted logvar X, and X ∈ Xi(i = 1, . . . , k).
The logvar X is bound by the formula and excluded from logvar(γ). In a
grounded CF all terms except the counted logvar are constants. Such a for-
mula represents a counting randvar (CRV) whose range is the set of possible
histograms that distribute n elements into r =

∏k
i=1 |range(Pi)| buckets. Each

histogram h = {(ri, ni)}ri=1 shows for each ri ∈ ×k
i=1range(Pi) the number ni

of tuples (P1(. . . , x, . . .), . . . , Pk(. . . , x, . . .)) whose state is ri. The state of the
CRV is thus determined by the state of the randvars ∪k

i=1RV (Pi(. . . , X, . . .)|C).
We write a histogram h = {(ri, ni)}ri=1 as a list of counts (n1, . . . , nr), when

ri are apparent from the context. Further, we abbreviate {true, false} to {t, f}.

Example 4. Having D(X) = {ann, bob, carl, dave}, the counting randvar γ of
the form #X [Smokes(X), Asthma(X)] covers tuples of randvars

RV (γ) = {(Smokes(xi), Asthma(xi))|xi ∈ D(X)}.

Assume RV (γ) are assigned the following values:
The value of the CRV is then the histogram h = {(tt, 1), (tf, 0), (ft, 1),

(ff, 2)}. �

Our definition of a CF is a simple generalization of Milch et al.’s definition [6],
which only allows a single atom in a CF. We show how these more general CFs
create more opportunities for lifting through a suite of model conversion oper-
ations, in Sect. 5, and present a lifted sum-out operation for them in Sect. 6.

112 N. Taghipour et al.

X Smokes(X) Asthma(X)

ann f t

bob f f

carl f f

dave t t

But first, we recall a normal form for the model, which guarantees correct seman-
tics, and facilitates handling of counting formulas [6].

Normal parfactors. As mentioned, the range of a counting formula depends
on the number of randvars that it counts, which in turn depends on its asso-
ciated constraint. For instance, consider the formula #Y :{Y �=X,Y �=x1}[F (X,Y)].
For X = x1, it represents a CRV that counts n − 1 randvars (Y can take on
all n values except x1), but for X = x′ �= x1 it represents a CRV that counts
n − 2 randvars (Y can take on all n values except x1 and x′). To ensure that
all CRVs in the groundings of a parfactor have the same range, following Milch
et al. [6], we require the constraints and parfactors to be in a normal form. A
constraint C is in normal form if for each pair of logvars X1 and X2 with an
inequality constraint X1 �= X2, EX1 \ {X2} = EX2 \ {X1}, where the excluded
set EX = {t |(X �= t) ∈ C} is the set of terms in an inequality constraint with X
in constraint C. This guarantees that a logvar Xi has the same number of values
in C, given any value to the rest of the logvars. This number is denoted |X : C|
and equals |D(X)| − |EX |. A parfactor is in normal form if the conjunct of its
constraint with the constraints of its counting formulas is in normal form. Any
model can be rewritten into an equivalent one in normal form with splitting [6].

Example 5. Consider the parfactor g = φ(#Y :{Y �=X,Y �=x1}[F (X,Y)]), which is
not in normal form. In order to get normal form parfactors, we split g into two
parfactors g1 and g2, defined as follows.

g1 = φ
(
#Y :{Y �=x1}[F (x1, Y)]

)

g2 = φ
(
#Y :{Y �=X,Y �=x1}[F (X,Y)]

)
|X �= x1

Note that both g1 and g2 are in normal form. �

5 Conversion Operations

In this section, we present conversion operations that rewrite the model in terms
of counting formulas. The first operation is a generalization of C-FOVE’s count-
ing conversion [6], while the rest are new operations. Throughout this paper, we
illustrate the application of the new operators on examples for which C-FOVE [6]
has no lifted solution. As such, we show how the new operations perform infer-
ence with complexity polynomial in the domain size, where C-FOVE cannot
avoid the exponential complexity of propositional inference.

Generalized Counting for Lifted Variable Elimination 113

5.1 Counting Conversion

In C-FOVE, counting formulas are introduced into the model by counting con-
version. By rewriting the model (replacing an atom) with a counting formula,
this operation allows us to compactly represent and manipulate a high dimen-
sional factor on a set of interchangeable randvars. Intuitively, this conversion
achieves the equivalent of multiplying groundings of a single parfactor with each
other, and thus functions as an enabling operation for lifted sum-out. We gen-
eralize this operation to a rewrite rule that replaces a tuple of atoms with a
counting formula. By removing the restriction on the number of counted atoms,
this generalization provides more opportunities for lifting.

Example 6. Consider the model consisting of the single parfactor

φ(A(X), B(X), C(Y),D(Y)).

Lifted sum-out is not applicable here, as no atom contains all the logvars. Count-
ing conversion removes a logvar from the set of free logvars, hence preparing the
model for lifted sum-out. Here we perform counting conversion on logvar X by
introducing a counting formula on the tuple of atoms A(X), B(X), and rewrite
the parfactor as φ′(#X [A(X), B(X)], C(Y),D(Y)), where φ′ is such that for
each histogram h(.) in the range of #X [A(X), B(X)], φ′(h(.), c, d) is equal to

φ(t, t, c, d)h(tt) · φ(t, f, c, d)h(tf) · φ(f, t, c, d)h(ft) · φ(f, f, c, d)h(ff)

Note that after this conversion, logvar Y is the only free logvar in the parfactor,
which enables lifted sum-out of both C(Y) and D(Y) from the model.1 �
Example 7. The same technique for conversion can be applied on the model
introduced in Example 3. With two applications of counting conversion,
on logvars X and Y , we can rewrite the problematic parfactor g′

12 =
φ′
12(S(X),D(X), S(Y),D(Y)) into the form

g′′
12 = φ′′

12(#X [S(X),D(X)],#Y [S(Y),D(Y)]),

consisting of two counting formulas. �
Counting conversion is formally defined in Operator 1. The preconditions for

counting conversion of a logvar X require that it does not appear inside an exist-
ing counting formula. This means that X cannot appear (1) in an atom inside
a counting formula, or (2) in the constraint associated with a counting formula.
Excluding the first case ensures that the result of conversion can be represented
by our counting formulas, and does not require more complicated structures
like nested or overlapping counting formulas, which are not well defined in our
formulation. In the second case, where X is in an inequality constraint with
a counted logvar, counting conversion is still possible, but by the operation of
merge-counting, which will be introduced in Sect. 5.3. Note that the precondi-
tion for counting conversion as defined above, is weaker than the original one of
C-FOVE, which requires X to appear in exactly one atom in the parfactor [6].
1 In Sect. 6.1, we introduce a sum-out operator that can eliminate A(X) and B(X) in

a lifted way.

114 N. Taghipour et al.

Operator: count-convert
Input:
(1) a parfactor g = ∀L : φ(A)|C
(2) a logvar X ∈ logvar(A)
Preconditions:
(1) there is no counting formula in the set AX = {A ∈ A|X ∈ logvar(A)}
(2) there is no counting formula γ = #Xi:Ci [. . .] in A, such that (Xi �= X) ∈ Ci

Output: g′ = ∀L′ : φ′(A′)|C′, such that:
(1) L′ = L \ {X}
(2) C′ is the projection of C on L′

(3) A′ = A \ AX ∪ {#X [AX]}, and
(4) for each valuation (h(.), a) to (#X [AX], A \ AX):

φ′(h(.), a) =
∏

a′∈range(AX)

φ(a′; a)h(a′)

Postcondition: G ≡ G \ {g} ∪ {count-convert(g, X)}

Operator 1: The generalized counting conversion operator.

5.2 Merging Counting Formulas

Two counting formulas can count over tuples of randvars with overlapping rand-
vars between them (see for instance, the parfactor in Example 7). When such
formulas appear in a parfactor together, to sum-out the common randvars, we
need to first merge these counting formulas into one.

Example 8. Consider the two counting formulas in the parfactor

φ(#X [S(X)],#Y [S(Y),D(Y)]).

The first formula, γ1 = #X [S(X)], aggregates the state of randvars RV (S(X)),
and the second formula, γ2 = #Y [S(Y),D(Y)], the state of RV (S(X),D(X)).
As the second group of randvars is a superset of the first set, given a his-
togram h2(.) for γ2, we can infer the value h1 of γ1. We can therefore merge
the two counting formulas into one #X [S(X),D(X)] and rewrite the parfactor
as φ′(#X [S(X),D(X)]) where φ′(h2) = φ(h1, h2) and h1 is the histogram that
results from projecting h2 on the assignments to the S() randvars. Concretely,
having the counts (ntt, ntf , nft, nff) for h2, the value of h1 is the histogram with
counts (ntt + ntf , nft + nff). �

Example 9. Consider again our running example (Example 7). We can use the
above merging technique to rewrite the parfactor

g′′
12 = φ′′

12(#X [S(X),D(X)],#Y [S(Y),D(Y)])

into the form
g′′′
12 = φ′′′

12(#X [S(X),D(X)]),

Generalized Counting for Lifted Variable Elimination 115

Operator: merge
Input:
(1) a parfactor g = ∀L : φ(A)|C
(2) a pair of counting formulas (γ1, γ2) = (#X1:C1 [A1], #X2:C2 [A2]) in A
Precondition: gr(X1|C ∧ C1) = gr(X2|C ∧ C2)
Output: g′ = ∀L : φ′(A′)|C, such that:
(1) A′ = A \ {γ1, γ2} ∪ {#X1 [A12]}, with A12 = A1 ∪ A2θ and θ = {X2 → X1}
(2) for each valuation (h(.), a) to (#X1 [A12], A \ {γ1, γ2}):

φ′(h,a) = φ(h[A1], h[A2θ];a)

Postcondition: G ≡ G \ {g} ∪ {merge(g, γ1, γ2)}

Operator 2: The merging operation for two counting formulas.

where for each histogram h in the range of the counting formula #X [S(X),D(X)]:

φ′′′
12(h) = φ′′

12(h, h).

Although in the above examples one CRV is a superset of the other, merging
can be applied to any pair of formulas with overlapping randvars. For instance,
by merging, the parfactor φ(#X [A(X), B(X)],#Y [B(Y), C(Y))]) is transformed
into φ(#X [A(X), B(X), C(X)]). To formalize this operator we introduce the
notion of compatible valuations to atoms, and then the projection of histograms.

Compatible valuations. A pair of valuations (a1,a2) to (A1,A2) are compat-
ible, denoted by a1 ∼ a2, if each atom Ai ∈ A1 ∩ A2 is assigned with the same
value ai in both a1 and a2.

Projection of histograms. Given a counting formula γ = #X [A], the projec-
tion of a histogram h ∈ range(γ) on A′ ⊆ A, is a histogram h′ ∈ range(#X [A′])
such that for each a′ ∈ range(A′): h′(a′) =

∑
a∼a′ h(a). We denote the projec-

tion of h on A′ by h[A′].
Using these definitions, Operator 2 defines the merge operation.

5.3 Merge-Counting

This operation is applicable when counting conversion cannot replace a tuple
of atoms by a new counting formula, but needs to merge them into an exist-
ing counting formula. Concretely, this happens during counting conversion on a
logvar X, in a parfactor with a counting formula #Y :Y �=X [AY], that is, when
an existing counted logvar is in an inequality constraint with X. In such cases,
we cannot convert the parfactor to an equivalent one with two separate count-
ing formulas #Y [AY] and #X [AX]. Intuitively, this is because the histograms of
these two counting formulas do not determine the value of the original parfactor.
Instead, we can apply merge-counting, which incorporates the atoms AX inside
the existing counting formula. Consider the following example.

116 N. Taghipour et al.

Example 10. Consider the parfactor g of the form φ(#X:X �=Y [S(X)],D(Y)). We
show how merge-counting on logvar Y rewrites g as an equivalent parfactor
g′ = φ′(#X [S(X),D(X)]). For this we need to properly define the potential φ′

based on φ. Note that g′ represents a single factor, while g represents n factors,
one for each y ∈ D(Y). The potential φ′ should thus be defined such that g′

evaluates the product of these n factors, for any valuation of randvars S(X) and
D(X). Consider a valuation that yields histogram h(.) for #X [S(X),D(X)].
To compute φ′(h), we compute the value of g at this valuation, based on the
following observations: in gr(g), each factor gy = φ(γy,D(y)), has a distinct
counting formula γy = #X:X �=y[S(X)], which covers all the randvars RV (S(X))
except S(y), due to the inequality constraint. Since the histogram of #X [S(X)]
is h[S] = (nt, nf), each CRV γy, which excludes the value of one randvar S(y),
takes on one of the two histograms

– h−t
[S] = (nt − 1, nf), when S(y) = t, or

– h−f
[S] = (nt, nf − 1), when S(y) = f

Each factor gy in gr(g) thus evaluates to one of the four values φ(h−, d), for
(h−, d) ∈ {h−t

[S], h
−f
[S] } × {t, f}. Knowing the number #(h−, d) of factors with

each value φ(h−, d), we can compute the desired potential φ′ as:

φ′(h(.)) =
∏

(h−,d)

φ(h−, d)#(h−,d) (1)

The numbers #(h−, d) are inferred directly from the histogram h(.). For instance,
#(h−t

[S], t), the number of ys with γy = h−t
[S] and D(y) = t, by definition equals

h(tt), that is, the number of ys with S(y) = D(y) = t. With similar reasoning,
we determine all the numbers #(h−, d) from h(.) and define the desired potential
φ′ as:

φ′(h(.)) = φ(h−t
[S], t)

h(tt) · φ(h−f
[S] , t)

h(ft) · φ(h−t
[S], f)h(tf) · φ(h−f

[S] , f)h(ff)

As such, merge-counting replaces the parfactor g with the equivalent parfactor
g′ = φ′(#X [S(X),D(X)]), by directly computing φ′ from φ. �

We can now also see why a counting conversion like φ′(#X [S(X)],#Y [D(Y)])
does not work on this example. For this conversion, we need to be able to compute
the right hand side of Eq. 1 based on the pair of histograms (hS , hD) of the
two counting formulas (#X [S(X)],#Y [D(Y)]). However, we cannot determine
the numbers #(h−

S , d) uniquely based on the pair of histograms (hS , hD). For
instance, assume |D(X)| = |D(Y)| = 10, and that hS = (10, 0) and hD = (5, 5).
Then the number #(h−t

S , t) of factors with value φ(h−t
S , t), which is the number

of y’s for which S(y) = D(y) = true, can be any number between 0 and 5.
Merge-counting is formally defined in Operator 3. Note that the second pre-

condition can be established by merging counting formulas. Merging is thus an
enabling operator for this conversion operator.

Generalized Counting for Lifted Variable Elimination 117

Operator: merge-count
Input:
(1) a parfactor g = ∀L : φ(A)|C
(2) a counting formula γ = #X1:C1 [A1] in A
(3) a logvar X2 in logvar(A)
Preconditions:
(1) there is no counting formula in A2 = {A ∈ A|X2 ∈ logvar(A)}
(2) γ is the only counting formula whose counted logvar X1 is in an inequality
constraint with X2

Output: g′ = ∀L′ : φ′(A′)|C′, such that:
(1) L′ = L \ {X2}
(2) C′ is the projection of C on L′

(3) A′ = A \ {γ, A2} ∪ {#X1:C12 [A12]}, with A12 = A1 ∪ A2{X2 → X1},
and C12 = C1 \ (X1 �= X2)
(4) for each valuation (h(.), a) to (#X1:C12 [A12], A′ \ #X1:C12 [A12]):

φ′(h(.), a) =
∏

(a12)∈range(A12)

φ(h−a1
[A1]

,a2;a)h(a12)

where ai denotes the projection of the valuation a12 on Ai{X2 → X1}, and the his-
togram h−r is such that h−r(r) = h(r) − 1, and h−r(r′) = h(r′), for r′ �= r.
Postcondition: G ≡ G \ {g} ∪ {merge-count(g, #X1:C1 [A1], X2)}

Operator 3: The merge-counting operation.

6 Elimination Operations

In the previous section, we presented the operators that introduce or merge
counting formulas. In this section, we present a lifted sum-out operator that
eliminates these formulas, as well as an operator that aggregates the results
after sum-out.

6.1 Sum-out by Counting

We present an operation for summing out an atom inside counting formulas.
This lifted operation sums out all the randvars represented by the atom from
the model. It functions as a rewrite rule that removes the atom from a counting
formula, and has the sum-out operation of C-FOVE as a special case.

Example 11. Consider summing-out the PRV S(X) from the model defined by
the parfactor φ(#X [S(X),D(X)]), from Example 9. By lifted sum-out we derive
the parfactor φ′(#X [D(X]), for which we define the potential function φ′ such
that for each histogram h′ ∈ range(#X [D(X)]):

φ′(h′) =
∑

h∼h′
Mul(h|h′)φ(h)

where h ∼ h′ denotes a histogram h ∈ range(#X [S(X),D(X)]) whose projection
on D(X) equals h′, that is, h[D] = h′. The coefficient Mul(h|h′) equals the

118 N. Taghipour et al.

Operator: sum-out
Input:
(1) a parfactor g = ∀L : φ(A)|C in model G
(2) a counting formula γ = #X1:C1 [A1] in A
(3) an atom A ∈ A1

Precondition:
(1) logvar(A) = L
(2) for all PRVs (A′|C′) in the model, other than (A|C ∧ C1):
RV (A|C ∧ C1) ∩ RV (A′|C′) = ∅
Output: g′ = ∀L : φ′(A′)|C, such that:
(1) A′ = A \ {γ} ∪ {γ′}, with γ′ = #X1:C1 [A1 \ {A}]
(2) for each valuation (h′(.), a) to (γ′, A′ \ γ′):

φ′(h′(.), a) =
∑

h∼h′
Mul(h|h′) · φ(h(.), a)

where h ∼ h′ denotes a histogram h ∈ range(γ) such that h[A1\{A}] = h′.
Postcondition: PG\{g}∪{sum-out(g,γ,A)} =

∑
RV (A|C∧C1)

PG

Operator 4: The generalized counting sum-out operation.

number of possible ways that a valuation to RV (D(X)) with the counts h′, can
be extended to a valuation to RV (S(X),D(X)) with the counts h. �

The coefficient Mul(h|h′) is defined based on the number Mul(h) of possible
valuations to the randvars that result in a histogram h. For each histogram h =
{(ri, ni)}ri=1, with

∑
i ni = n, we define Mul(h) = n!

(n1!)...(nr!)
and Mul(h|h′) =

Mul(h)
Mul(h′) .

Note that sum-out removes an atom from the counting formula. Summing-out
the last atom, such as D(X) in the above example, results in an empty counting
formula, for which we define the range as {(Null, 0)}, Mul((Null, 0)) = 1, and
which we trivially remove from the list of arguments after sum-out. The operation
is formally defined is Operator 4.

This operation has the sum-out operation of C-FOVE as a special case,
namely when A1 = {A}. It can also be further generalized to sum-out a group of
atoms {A1, . . . , An} ⊆ A in one operation, if the two preconditions are satisfied
for all atoms.

6.2 Aggregation

In lifted inference, after dividing a problem into isomorphic subproblems, first
the result of one prototypical instance of this problem is computed and then the
result is aggregated, usually with the trivial operation of exponentiation. This
operator in fact multiplies a group of identical factors and is applied when a
logvar disappears from the parfactor after a sum-out operation. Aggregation can,
however, be extended to cases where a simple exponentiation does not work. In

Generalized Counting for Lifted Variable Elimination 119

this section, we extend this operator and show how this allows for more efficient
lifted computations.

Example 12. Consider the parfactor g of the form ∀Y : φ(#X:X �=Y [S(X)],D(Y)).
Summing-out D(Y) results in the parfactor g′ = ∀Y : φ′(#X:X �=Y [S(X)]), on
which sum-out is no longer applicable. Note that the logvar Y is still part of the
parfactor, although it does not appear in any atom. We show how, by aggrega-
tion, we can rewrite g′ as an equivalent parfactor g′′ = φ′′(#X [S(X)]), which
is free of logvar Y . Assume D(X) = D(Y) = {ann, bob, carl, dave}. Then g′

represents four ground factors, one for each person in D(Y), e.g., for Y = ann
there is a factor φ′(#X:X �=ann[S(X)]) in gr(g′). g′′ should be defined such that
φ′′(#X [S(X)]) equals the product of these four factors. Note that these factors
all have the same potential, but each on a CRV that excludes one distinct randvar
from the group RS = {S(ann), S(bob), S(carl), S(dave)}. Given any assignment
to RS with nt true and nf false randvars, each of these CRVs has either one
less true than nt or one less false than nf . Specifically, there are nt histograms
with counts (nt − 1, nf) and nf histograms with counts (nt, nf − 1). Since the
value φ′(h) is the same for all factors with the same histogram h, to compute the
product it suffices to know (nt, nf). Aggregation rewrites g′ as φ′′(#X [S(X)]),
where the potential φ′′ is such that:

φ′′((nt, nf)) = φ′((nt − 1, nf))nt · φ′((nt, nf − 1))nf

With Y removed from g′, we can eliminate S(X) by lifted sum-out. �

The more expensive alternative to summing-out D and using aggregation is to
apply counting on both atoms, and work with the parfactor
φ∗(#X [S(X),D(X)]). This alternative solution eliminates both S and D atoms
with counting sum-out, in poly time, while the above solution uses counting only
for the S atoms, and runs in linear time. We formalize aggregation in Operator 5.

7 Relation to Joint Conversion

Our contributions are closely related to, and target similar problems as, joint
conversion and just-different counting conversion [1]. Our approach, however,
can provide more efficient solutions than those based on the mentioned methods.

Joint conversion enables counting the states of a group of tuples of rand-
vars, without modifying Milch et al.’s definition of counting formulas [6]. For
instance, to enable counting tuples of randvars (A(x), B(x)), joint conversion
replaces each occurrence of atoms A(X) and B(X) in the model with a joint
atom JAB(X), whose state is the Cartesian product of the two atoms. Counting
conversion can then derive a counting formula like #X [JAB(X)], which corre-
sponds to a formula #X [A(X), B(X)] in our formulation. When combined with
just-different counting [1], joint conversion may also enable counting on logvars
that are constrained to be unequal, similar to our approach.

However, there are differences between the two methods. Joint conversion is a
global operation on the model, which introduces more dependencies by coupling

120 N. Taghipour et al.

Operator: aggregate
Input:
(1) a parfactor g = ∀L : φ(A)|C in model G
(2) a counting formula γ = #X1:C1 [A1] in A
(3) a logvar X2 ∈ L \ logvar(A)
Precondition:
A has no counting formula #Xi:Ci [.] other than γ, such that (Xi �= X2) ∈ Ci

Output: g′ = ∀L′ : φ′(A′)|C′, such that:
(1) L′ = L \ {X2}
(2) C′ is the projection of C on L′

(3) A′ = A \ {γ} ∪ {#X1:C
′
1
[A1]}, with C′

1 = C1 \ {X1 �= X2}
(4) for each valuation (h(.), a) to (#X1:C

′
1
[A1], A′ \ {#X1:C

′
1
[A1]}):

φ′(h(.), a) =
∏

a1∈range(A1)

φ(h−a1(.), a)h(a1)

Postcondition: G ≡ G \ {g} ∪ {aggregate(g, #X1:C1 [A1], X2)}

Operator 5: The aggregation operation

two randvars into a joint randvar. After this operation, inference deals solely with
the joint atom, and never directly with its constituents. Our method, however,
uses a more fine grained formulation, by which it not only can simulate joint
conversion, but also provide more efficient solutions than those possible by joint
conversion. This primarily happens when the operations can divide the problem
into independent parts, by eliminating a subset of the atoms that joint conversion
couples in a joint atom. This allows for more efficient computations by avoiding
the dependencies induced by unnecessary joint conversions. We illustrate this
advantage in the following example.

Example 13. Consider a market domain involving a group of competing vendors
v1, v2, . . . , vn. Let Pi(vj) be a binary randvar expressing whether at the ith time
step (e.g., ith month) vendor vj sets a high price for the product. We can model
this domain for m time steps using the following set of parfactors.

g1 = φ1(P1(X), P2(Y))|X �= Y

g2 = φ2(P2(Y), P3(X))|X �= Y

. . .

gm = φm(Pm(X), Pm+1(Y))|X �= Y

where D(X) = D(Y) = {v1, . . . , vn}. The task is to compute the partition func-
tion in this model, that is, to sum-out all the random variables. �
Our approach. To sum out all the randvars, i.e., to eliminate all the atoms, our
approach proceeds as follows. It first performs counting conversion on Y in g1
to derive g′

1 = φ′(P1(X),#Y :Y �=X [P2(Y)]). Next, it eliminates P1(X) from the
model by lifted sum-out and aggregation, resulting in g∗

1 = φ∗
1(#Y [P2(Y)]). To

prepare the model for summing-out P2(Y), we perform the following operations:

Generalized Counting for Lifted Variable Elimination 121

1. count-convert on logvar Y in g2 to derive g′
2 = φ′

2(#Y :Y �=X [P2(Y)], P3(X))
2. merge-count on logvar X in g′

2 to derive g′′
2 = φ′′

2(#Y [P2(Y), P3(Y)])
3. multiply g∗

1 and g′′
2 to derive g12 = φ12(#Y [P2(Y), P3(Y)]),#Y [P2(Y)])

4. merge the counting formulas to derive g′
12 = φ′

12(#Y [P2(Y), P3(Y)])

Now from this parfactor, we sum-out P2(Y) and get a parfactor g∗
2 of the form

φ∗
12(#Y [P3(Y)]). Inference continues by eliminating P3 from parfactors g∗

2 and
g3, in a similar way as it eliminated P2 from g∗

1 and g2. We repeat this procedure
for all the remaining atoms Pi, until we eliminate the last atom Pm+1, which
concludes the inference. The complexity of the procedure is proportional to the
size of the largest potential it handles. For elimination of each atom Pi, the
size of the largest potential we handle is O(n3), proportional to the number of
histograms in the range of a counting formula #X [Pi(X), Pi+1(X)]. As there are
m atoms Pi, the whole procedure is in time O(mn3).

Joint conversion. Any solution based on joint conversion and just different
counting conversion is less efficient than the above method. Here we present one
such typical solution. Joint conversion first replaces the atoms P1 and P2 with a
joint atom J12, which represents the joint state of the atoms. This changes g1 and
g2 respectively into φ′

1(J12(X), J12(Y))|X �= Y and φ′
2(J12(Y), P3(X))|X �= Y .

Still J12 cannot be summed-out from the model, due to the free logvar X in
g2. Just-different conversion, to derive a φ′′

1(#X [J12(X)]) is not helpful either.
The only option is to continue applying joint conversions between atoms such
as J12...k and Pk+1, to finally have only one joint atom J1...m+1 in the model.
Note that range(J1...m+1) = {true, false}m+1. The model would then consist of
parfactors of the form φi(J1...m+1(X), J1...m+1(Y))|X �= Y . By multiplying these
m parfactors into one, and then just-different conversion, we derive a parfactor
g∗ = φ∗(#X [J1...m+1(X)]). Finally we can sum-out the counting formula γ∗ =
#X [J1...m+1] from g∗. The complexity of these operations is dominated by the
manipulation of the counting formula γ∗ and is proportional to |range(γ∗)| which
is O(n2m−1). Comparing this complexity to the complexity of our approach,
O(mn3), we see that our method can be much more efficient. For example, for
m = 10, our approach has complexity O(10n3), as opposed to O(n1023).

8 Conclusion

Counting formulas and their manipulation play a crucial role in lifted inference.
We showed how generalizing the structure of counting formulas and the operators
that manipulate them, provides more opportunities for lifting. Our approach is
closely related to joint conversion [1], but can offer more efficient solutions.

Further generalizations of counting formulas are conceivable. E.g., one can
allow multiple counted logvars in a formula, instead of one. The semantics of
such formulas is straightforward (e.g., #XY [P (X,Y), Q(X,Y)] aggregates the
joint state of the tuples (P (x, y), Q(x, y))), but manipulation of such formulas,
especially counting the number of isomorphic states, can easily lead to non-trivial
combinatorial problems. Future research on such problems can bring valuable

122 N. Taghipour et al.

insights for lifted inference. A very interesting direction is Pu et al.’s formulation
of the counting problem in the domain of exponential random graphs [9].

Taghipour [10] presents more results on generalized counting, excluded here
for lack of space; these include a completeness result showing that C-FOVE with
generalized counting is complete [14] for the class of monadic models.

Acknowledgments. Thanks to Daan Fierens for numerous discussions and insightful
comments, Research Fund KU Leuven (GOA 08/008, CREA/11/015, OT/11/051), EU
FP7 Marie Curie Career Integration Grant (#294068), FWO-Vlaanderen (G.0356.12).

References

1. Apsel, U., Brafman, R.I.: Extended lifted inference with joint formulas. In: Pro-
ceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI), pp.
11–18 (2011)

2. de Salvo Braz, R.: Lifted First-order Probabilistic Inference. Ph.D. thesis, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign (2007)

3. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In:
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1319–1325 (2005)

4. Getoor, L., Taskar, B. (eds.): An Introduction to Statistical Relational Learning.
MIT Press, Cambridge (2007)

5. Kersting, K.: Lifted probabilistic inference. In: Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI), pp. 27–31 (2012)

6. Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
probabilistic inference with counting formulas. In: Proceedings of the 23rd AAAI
Conference on Artificial Intelligence (AAAI), pp. 1062–1608 (2008)

7. Poole, D.: First-order probabilistic inference. In: Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 985–991 (2003)

8. Poole, D., Zhang, N.L.: Exploiting contextual independence in probabilistic infer-
ence. J. Artif. Intell. Res. (JAIR) 18, 263–313 (2003)

9. Pu, W., Choi, J., Amir, E.: Lifted inference on transitive relations. In: Proceedings
of the 3rd International Workshop on Statistical Relational AI (StaRAI) (2013)

10. Taghipour, N.: Lifted Probabilistic Inference by Variable Elimination. Ph.D. thesis,
Department of Computer Science, KU Leuven (2013)

11. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination
with arbitrary constraints. In: Proceedings of the 15th International Conference
on Artificial Intelligence and Statistics (AISTATS), pp. 1194–1202 (2012)

12. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination:
decoupling the operators from the constraint language. J. Artif. Intell. Res. 47,
393–439 (2013)

13. Taghipour, N., Fierens, D., Van den Broeck, G., Davis, J., Blockeel, H.: Complete-
ness results for lifted variable elimination. In: Proceedings of the 16th International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 572–580 (2013)

14. Van den Broeck, G.: On the completeness of first-order knowledge compilation
for lifted probabilistic inference. In: Proceedings of the 24th Annual Conference on
Advances in Neural Information Processing Systems (NIPS), pp. 1386–1394 (2011)

A FOIL-Like Method for Learning
under Incompleteness and Vagueness

Francesca A. Lisi1(B) and Umberto Straccia2

1 Dipartimento di Informatica,
Università degli Studi di Bari “Aldo Moro”, Bari, Italy

francesca.lisi@uniba.it
2 ISTI - CNR, Pisa, Italy

Abstract. Incompleteness and vagueness are inherent properties of
knowledge in several real world domains and are particularly pervading
in those domains where entities could be better described in natural lan-
guage. In order to deal with incomplete and vague structured knowledge,
several fuzzy extensions of Description Logics (DLs) have been proposed
in the literature. In this paper, we present a novel Foil-like method for
inducing fuzzy DL inclusion axioms from crisp DL knowledge bases and
discuss the results obtained on a real-world case study in the tourism
application domain also in comparison with related works.

1 Introduction

Motivation of the paper. Incompleteness and vagueness are inherent properties of
knowledge in several real world domains and are particularly pervading in those
domains where entities could be better described in natural language. The issues
raised by incomplete and vague knowledge have been traditionally addressed in
the field of Knowledge Representation (KR).

The Open World Assumption (OWA) is used in KR to codify the informal
notion that in general no single agent or observer has complete knowledge. The
OWA limits the kinds of inference and deductions an agent can make to those
that follow from statements that are known to the agent to be true. In contrast,
the Closed World Assumption (CWA) allows an agent to infer, from its lack of
knowledge of a statement being true, anything that follows from that statement
being false. Heuristically, the OWA applies when we represent knowledge within a
system as we discover it, and where we cannot guarantee that we have discovered
or will discover complete information. In the OWA, statements about knowledge
that are not included in or inferred from the knowledge explicitly recorded in
the system may be considered unknown, rather than wrong or false. Description
Logics (DLs) are KR formalisms compliant with the OWA, thus turning out to
be particularly suitable for representing incomplete knowledge [2]. Thanks to
the OWA-compliancy, DLs have been considered the ideal starting point for the

c© Springer-Verlag Berlin Heidelberg 2014
G. Zaverucha et al. (Eds.): ILP 2013, LNAI 8812, pp. 123–139, 2014.
DOI: 10.1007/978-3-662-44923-3 9

124 F.A. Lisi and U. Straccia

definition of ontology languages for the Web (an inherently open world), giving
raise to the OWL 2 standard.1

In many applications, it is important to equip DLs with expressive means that
allow to describe “concrete qualities” of real-world objects such as the length of a
car. The standard approach is to augment DLs with so-called concrete domains,
which consist of a set (say, the set of real numbers in double precision) and
a set of n-ary predicates (typically, n = 1) with a fixed extension over this
set [3]. Starting from numerical properties such as the length one may want
to deduce whether, e.g., a car is long or not. However, it is well known that
“classical” DLs are not appropriate to deal with vague knowledge [24]. We recall
for the inexpert reader that there has been a long-lasting misunderstanding in
the literature of artificial intelligence and uncertainty modelling, regarding the
role of probability/possibility theory and vague/fuzzy theory. A clarifying paper
is [8]. Specifically, under uncertainty theory fall all those approaches in which
statements are true or false to some probability or possibility (for example, “it will
rain tomorrow”). That is, a statement is true or false in any world/interpretation,
but we are “uncertain” about which world to consider as the right one, and thus
we speak about, e.g., a probability distribution or a possibility distribution over
the worlds. On the other hand, under fuzzy theory fall all those approaches in
which statements (for example, “the car is long”) are true to some degree, which
is taken from a truth space (usually [0, 1]). That is, an interpretation maps a
statement to a truth degree, since we are unable to establish whether a statement
is entirely true or false due to the involvement of vague concepts, such as “long
car” (the degree to which the sentence is true depends on the length of the car).
Here, we shall focus on fuzzy logic only.

Contribution of the paper. Although a relatively important amount of work has
been carried out in the last years concerning the use of fuzzy DLs as ontology
languages [26], the problem of automatically managing the evolution of fuzzy
ontologies by applying machine learning algorithms still remains relatively unad-
dressed [11,13,17]. In this paper, we present a novel method, named Foil-DL,
for learning fuzzy DL inclusion axioms from any crisp DL knowledge base. The
popular rule induction method Foil [19] has been chosen as a starting point in
our proposal for its simplicity and efficiency. The distinguishing feature of Foil-
DL w.r.t. previous work in DL learning (see, e.g., [9,15,16]) is the treatment
of numerical concrete domains with fuzzification techniques so that the induced
axioms may contain fuzzy concepts.

Structure of the paper. For the sake of self-containment, Sect. 2 introduces some
basic definitions we rely on. Section 3 provides a formal statement of the learning
problem solved by Foil-DL and details of the distinguishing features of Foil-
DL w.r.t. Foil. Section 4 discusses relevant literature. Section 5 illustrates some
experimental results obtained on a real-world case study in the tourism appli-
cation domain. Section 6 concludes the paper with final remarks on the current
work and possible directions of future work.
1 http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

A FOIL-Like Method for Learning under Incompleteness and Vagueness 125

2 Preliminaries

Description Logics. For the sake of illustrative purposes, we present here a
salient representative of the DL family, namely ALC [21], which is often con-
sidered to illustrate some new notions related to DLs. The set of constructors
for ALC is reported in Table 1. A DL Knowledge Base (KB) K = 〈T ,A〉 is a
pair where T is the so-called Terminological Box (TBox) and A is the so-called
Assertional Box (ABox). The TBox is a finite set of General Concept Inclusion
(GCI) axioms which represent is-a relations between concepts, whereas the ABox
is a finite set of assertions (or facts) that represent instance-of relations between
individuals (resp. couples of individuals) and concepts (resp. roles). Thus, when a
DL-based ontology language is adopted, an ontology is nothing else than a TBox
(i.e., the intensional level of knowledge), and a populated ontology corresponds
to a whole KB (i.e., encompassing also an ABox, that is, the extensional level of
knowledge). We also introduce two well-known DL macros, namely (i) domain
restriction, denoted domain(R,A), which is a macro for the GCI ∃R.� � A, and
states that the domain of the abstract role R is the atomic concept A; and (ii)
range restriction, denoted range(R,A), which is a macro for the GCI � � ∀R.A,
and states that the range of R is A. Finally, in ALC(D) (obtained by enriching
ALC with concrete domains D), each role is either abstract (denoted with R)
or concrete (denoted with T). A new concept constructor is then introduced,
which allows to describe constraints on concrete values using predicates from
the concrete domain. We shall make further clarifications about the notion of
concrete domains later on in this Section while presenting fuzzy ALC(D).

Table 1. Syntax and semantics of constructs for ALC.

bottom (resp. top) concept ⊥ (resp. �) ∅ (resp. ΔI)

atomic concept A AI ⊆ ΔI

(abstract) role R RI ⊆ ΔI × ΔI

individual a aI ∈ ΔI

concept intersection C � D CI ∩ DI

concept union C
 D CI ∪ DI

concept negation ¬C ΔI \ CI

universal role restriction ∀R.C {x ∈ ΔI | ∀y (x, y) ∈ RI → y ∈ CI}
existential role restriction ∃R.C {x ∈ ΔI | ∃y (x, y) ∈ RI ∧ y ∈ CI}
general concept inclusion C � D CI ⊆ DI

concept assertion a : C aI ∈ CI

role assertion (a, b) : R (aI , bI) ∈ RI

The semantics of DLs can be defined directly with set-theoretic formalizations
(as shown in Table 1 for the case of ALC) or through a mapping to FOL (as
shown in [5]). Specifically, an interpretation I = (ΔI , ·I) for a DL KB consists
of a domain ΔI and a mapping function ·I . For instance, I maps a concept C into
a set of individuals CI ⊆ ΔI , i.e. I maps C into a function CI : ΔI → {0, 1}
(either an individual belongs to the extension of C or does not belong to it).

126 F.A. Lisi and U. Straccia

Under the Unique Names Assumption (UNA) [20], individuals are mapped to
elements of ΔI such that aI
= bI if a
= b. However UNA does not hold by default
in DLs. An interpretation I is a model of a KB K iff it satisfies all axioms and
assertions in T and A. In DLs a KB represents many different interpretations,
i.e. all its models. This is coherent with the OWA that holds in FOL semantics.
A DL KB is satisfiable if it has at least one model. We also write C �K D if in
any model I of K, CI ⊆ DI (concept C is subsumed by concept D). Moreover
we write C �K D if C �K D and D
�K C.

The main reasoning task for a DL KB K is the consistency check which tries
to prove the satisfiability of K. Another well known reasoning service is instance
checking, i.e., to check whether an ABox assertion is a logical consequence of
K. A more sophisticated version of instance checking, called instance retrieval,
retrieves all (ABox) individuals that are instances of the given (possibly complex)
concept expression C, i.e., all those individuals a such that K entails that a is
an instance of C, denoted {a | K |= a:C}.

Mathematical Fuzzy Logic. Fuzzy Logic is the logic of fuzzy sets [27]. A fuzzy
set A over a countable crisp set X is characterised by a function A : X → [0, 1].
Unlike crisp sets that can be characterised by a function A : X → {0, 1}, that
is, for any x ∈ X either x ∈ A (i.e., A(x) = 1) or x
∈ A (i.e., A(x) = 0), for a
fuzzy set A, A(x) dictates that x ∈ X belongs to the set A to a degree in [0, 1].
The classical set operations of intersection, union and complementation naturally
extend to fuzzy sets as follows. Let A and B be two fuzzy sets. The standard fuzzy
set operations are (A∩B)(x) = min(A(x), B(x)), (A∪B)(x) = max(A(x), B(x))
and Ā(x) = 1 − A(x), while the inclusion degree between A and B is typically
defined as

(A ⊆ B)(x) =
∑

x∈X(A ∩ B)(x)
∑

x∈X A(x)
. (1)

The trapezoidal (Fig. 1(a)), the triangular (Fig. 1(b)), the left-shoulder func-
tion (Fig. 1(c)), and the right-shoulder function (Fig. 1(d)) are frequently used
functions to specify membership functions of fuzzy sets. Although fuzzy sets
have a greater expressive power than classical crisp sets, their usefulness depends
critically on the capability to construct appropriate membership functions for
various given concepts in different contexts. The problem of constructing mean-
ingful membership functions is a difficult one (see, e.g., [12, Chap. 10]). However,
one easy and typically satisfactory method to define the membership functions
is to uniformly partition the range of values into 5 or 7 fuzzy sets using either
trapezoidal functions, or triangular functions. The latter is the more used one,
as it has less parameters and is also the approach we adopt.

While classical logic is based on crisp set theory, Mathematical Fuzzy Logic
(MFL) [10] is based on generalised fuzzy set theory. Specifically, in MFL the
convention prescribing that a statement is either true or false is changed and
is a matter of degree measured on an ordered scale that is no longer {0, 1},
but e.g. [0, 1]. This degree is called degree of truth of the logical statement φ
in the interpretation I. For us, fuzzy statements have the form 〈φ, α〉, where
α ∈ (0, 1] and φ is a statement, encoding that the degree of truth of φ is greater or

A FOIL-Like Method for Learning under Incompleteness and Vagueness 127

dcba
0

1

x cba
0

1

x ba
0

1

x ba
0

1

x

(a) (b) (c) (d)

Fig. 1. (a) Trapezoidal function trz (a, b, c, d), (b) triangular function tri(a, b, c), (c)
left-shoulder function ls(a, b), and (d) right-shoulder function rs(a, b).

equal α. A fuzzy interpretation I maps each atomic statement pi into [0, 1] and
is then extended inductively to all statements as follows:

I(φ ∧ ψ) = I(φ) ⊗ I(ψ)
I(φ ∨ ψ) = I(φ) ⊕ I(ψ)
I(¬φ) = � I(φ)
I(φ → ψ) = I(φ) ⇒ I(ψ)
I(∃x.φ(x)) = supy∈ΔI I(φ(y))
I(∀x.φ(x)) = infy∈ΔI I(φ(y))

(2)

where ΔI is the domain of I, and ⊗, ⊕, ⇒, and � are so-called t-norms,
t-conorms, implication functions, and negation functions, respectively, which
extend the Boolean conjunction, disjunction, implication, and negation, respec-
tively, to the fuzzy case. One usually distinguishes three different logics, namely
�Lukasiewicz, Gödel, and Product logics [10], whose combination functions are
reported in Table 2. Note that any other continuous t-norm can be obtained
from them (see, e.g. [10]).

Satisfiability and logical consequence are defined in the standard way, where
a fuzzy interpretation I satisfies a fuzzy statement 〈φ, α〉 or I is a model of
〈φ, α〉, denoted as I |= 〈φ, α〉, iff I(φ) ≥ α.

Description Logics with Fuzzy Concrete Domains. We recap here the syn-
tactic features of the fuzzy DL obtained by extending ALC with fuzzy concrete
domains [25]. A fuzzy concrete domain or fuzzy datatype theory D= 〈ΔD, ·D〉
consists of a datatype domain ΔD and a mapping ·D that assigns to each data
value an element of ΔD, and to every n-ary datatype predicate d an n-ary fuzzy

Table 2. Combination functions of various fuzzy logics.

�Lukasiewicz logic Gödel logic Product logic Zadeh logic

a ⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)

a ⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a ⇒ b min(1 − a + b, 1)

{
1 if a ≤ b

b otherwise
min(1, b/a) max(1 − a, b)

� a 1 − a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1 − a

128 F.A. Lisi and U. Straccia

Table 3. Syntax and semantics of constructs for fuzzy ALC(D).

bottom (resp. top) concept ⊥I(x) = 0 (resp. �I(x) = 1)

atomic concept AI(x) ∈ [0, 1]

abstract role RI(x, y) ∈ [0, 1]

concrete role T I(x, z) ∈ [0, 1]

individual aI ∈ ΔI

concrete value vI ∈ ΔD

concept intersection (C � D)I(x) = CI(x) ⊗ DI(x)

concept union (C
 D)I(x) = CI(x) ⊕ DI(x)

concept negation (¬C)I(x) = �CI(x)

concept implication (C → D)I(x) = CI(x) ⇒ DI(x)

universal abstract role restriction (∀R.C)I(x) = infy∈ΔI {RI(x, y) ⇒ CI(y)}
existential abstract role restriction (∃R.C)I(x) = supy∈ΔI {RI(x, y) ⊗ CI(y)}
universal concrete role restriction (∀T.d)I(x) = infz∈ΔD{T I(x, z) ⇒ dD(z)}

existential concrete role restriction (∃T.d)I(x) = supz∈ΔD{T I(x, z) ⊗ dD(z)}

general concept inclusion (C � D)I = infx∈ΔI {CI(x) ⇒ DI(x)}

concept assertion aI ∈ CI

abstract role assertion (aI , bI) ∈ RI

concrete role assertion (aI , vI) ∈ T I

relation over ΔD. We will restrict to unary datatypes as usual in fuzzy DLs.
Therefore, ·D maps indeed each datatype predicate into a function from ΔD to
[0, 1]. Typical examples of datatype predicates are

d := ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) | ≥v | ≤v | =v , (3)

where e.g. ≥v corresponds to the crisp set of data values that are greater or
equal than the value v.

In fuzzy DLs, an interpretation I = (ΔI , ·I) consist of a nonempty (crisp)
set ΔI (the domain) and of a fuzzy interpretation function ·I that, e.g., maps a
concept C into a function CI : ΔI → [0, 1] and, thus, an individual belongs to
the extension of C to some degree in [0, 1], i.e. CI is a fuzzy set. The definition
of ·I for ALC(D) with fuzzy concrete domains is reported in Table 3 (where
x, y ∈ ΔI and z ∈ ΔD). Note that the truth degrees vary according to the
chosen fuzzy logic, i.e. to its set of combination functions.

Axioms in a fuzzy ALC(D) KB K = 〈T ,A〉 are graded, e.g. a GCI is of
the form 〈C1 � C2, α〉 (i.e. C1 is a sub-concept of C2 to degree at least α). We
may omit the truth degree α of an axiom; in this case α = 1 is assumed. An
interpretation I satisfies an axiom 〈τ, α〉 if (τ)I ≥ α. I is a model of K iff
I satisfies each axiom in K. We say that K entails an axiom 〈τ, α〉, denoted
K |= 〈τ, α〉, if any model of K satisfies 〈τ, α〉. The best entailment degree of τ
w.r.t. K, denoted bed(K, τ), is defined as

bed(K, τ) = sup{α | K |= 〈τ, α〉} . (4)

For a crisp axiom τ , we also write K |=+ τ iff bed(K, τ) > 0, i.e. τ is entailed
to some degree α > 0.

A FOIL-Like Method for Learning under Incompleteness and Vagueness 129

Fig. 2. Fuzzy sets derived from the concrete domain used as range of the role hasPrice

in Example 1: VeryLow (VL), Low (L), Fair (F), High (H), and VeryHigh (VH).

Example 1. Let us consider the fuzzy GCI axiom
〈∃hasPrice.High � GoodHotel, 0.569〉, where hasPrice is a concrete role
whose range has values measured in euros and the price concrete domain has
been automatically fuzzified as follows. The partition into 5 fuzzy sets (VeryLow,
Low, Fair, High, and VeryHigh) is obtained by considering the interval defined
by minimal and maximal hotel prices (resp. 45 and 136), and then by splitting it
into four equal subintervals on which three triangular functions, a left-shoulder
and a right-shoulder function are built as illustrated in Fig. 2. In particular, the
membership function underlying the fuzzy set High is tri(90, 112, 136).

Now, let us suppose that the room price for hotel verdi is 105 euro, i.e.
the KB contains the assertion verdi:∃hasPrice. =105. It can be verified under
Product logic that K |= 〈verdi:GoodHotel, 0.18〉, i.e. hotel verdi is an instance
of the class GoodHotel with a truth degree 0.18.2

3 Learning Fuzzy EL(D) Axioms

3.1 The Problem Statement

The problem considered in this paper and solved by Foil-DL is the automated
induction of fuzzy EL(D)3 GCI axioms from a crisp DL4 KB and crisp examples,
which provide a sufficient condition for a given atomic target concept At. It
can be cast as a rule learning problem, provided that positive and negative
examples of At are available. This problem can be formalized as follows. Given:
(i) a consistent crisp DL KB K = 〈T ,A〉 (the background theory); (ii) an atomic
concept At (the target concept); (iii) a set E = E+∪ E− of crisp concept assertions
e labelled as either positive or negative examples for At (the training set); and
(iv) a set LH of fuzzy EL(D) GCI axioms (the language of hypotheses), the
goal is to find a set H ⊂ LH (a hypothesis) such that H satisfies the following
conditions: ∀e ∈ E+,K ∪ H |=+ e (completeness), and ∀e ∈ E−,K ∪ H
 |=+ e
(consistency).

2 Note that 0.18 = 0.318 · 0.569, where 0.318 = tri(90, 112, 136)(105).
3 EL(D) is a fragment of ALC(D) [26].
4 DL stands for any DL.

130 F.A. Lisi and U. Straccia

Remark 1. In the above problem statement we assume that K ∩ E = ∅. Please
observe that two further restrictions hold naturally. One is that K
 |=+ E+

since, in such a case, H would not be necessary to explain E+. The other is that
K∪H
 |=+ a:⊥, which means that K∪H is a consistent theory, i.e. has a model,
that is, adding the learned axioms to the KB keeps the KB consistent.

The background theory. A DL KB allows for the specification of very rich
background knowledge in the form of axioms, e.g. defining the range of roles
or the concept subsumption hierarchy. We do not make any specific assumption
about the DL which the language LK of the background theory is based on,
except that K is a crisp KB. However, since H is a set of fuzzy GCI axioms,
K ∪ H is fuzzy as well.

The language of hypotheses. The language LH is given implicitly by means
of syntactic restrictions over a given alphabet, as usual in ILP. In particular, the
alphabet underlying LH is a subset of the alphabet for LK. However, LH differs
from LK as for the form of axioms. More precisely, given the target concept At,
the hypotheses to be induced are fuzzy GCIs of the form

C � At , (5)

where the left-hand side is defined according to the following syntax

C −→ � | A | C1 � C2 | ∃R.C | ∃T.d . (6)

and the concrete domain predicates are the following ones

d := ls(a, b) | rs(a, b) | tri(a, b, c) . (7)

Note that the syntactic restrictions of Eq. (6) w.r.t. fuzzy ALC(D) (see Table 3)
allow for a straightforward translation of the inducible axioms into rules of the
kind “if x is a C1 and . . . and x is a Cn then x is an At”, which corresponds to
the usual pattern in fuzzy rule induction (in our case, C � At is seen as a rule “if
C then At”). Also, the restriction of Eq. (7) w.r.t. Eq. (3) is due to the fact that
we build fuzzy concrete domain predicates out of numerical data as illustrated
in Example 1.

The language LH generated by this syntax is potentially infinite due, e.g.,
to the nesting of existential restrictions yielding to complex concept expres-
sions such as ∃R1.(∃R2(∃Rn.(C)) . . .). LH is made finite by imposing further
restrictions on the generation process such as the maximal number of conjuncts
and the depth of existential nesting allowed in the left-hand side. Also, note that
the learnable GCIs do not have an explicit truth degree. However, as we shall
see later on, once we have learned a fuzzy GCI of the form (5), we attach to it
a confidence degree cf that is obtained by means of the function in Eq. (12).

The training examples. Given the target concept At, the training set
E consists of concept assertions of the form a:At, where a is an individ-
ual occurring in K. Note that E is crisp. Also, E is split into E+ and

A FOIL-Like Method for Learning under Incompleteness and Vagueness 131

function Foil-DL(K, At, E+, E−, LH): H
begin
1. H := ∅;
2. D = InitialiseFuzzyConcreteDomain(K);
3. while E+ = ∅ do
4. C := ;
5. φ := C At;

6. E−
φ := E−;

7. while cf(φ) < θ or E−
φ = ∅ do

8. Cbest := C;
9. maxgain := 0;
10. Φ := Specialize(φ, LH, K)
11. foreach φ ∈ Φ do
12. gain := Gain(φ , φ);
13. if gain ≥ maxgain then
14. maxgain := gain;
15. Cbest := C ;
16. endif
17. endforeach
18. φ := Cbest At;

19. E−
φ := {e ∈ E− | K ∪ {φ} |=+ e};

20. endwhile
21. H := H ∪ {φ};
22. E+

φ := {e ∈ E+ | K ∪ {φ} |=+ e};
23. E+ := E+ \ E+

φ ;

24. endwhile
end

Fig. 3. Foil-DL: Learning a set of GCI axioms.

E−. Note that, under OWA, E− consists of all those individuals which
can be proved to be instance of ¬At. On the other hand, under CWA,
E− is the collection of individuals, which cannot be proved to be instance
of At. We say that an axiom φ ∈ LH covers an example e ∈ E iff K∪{φ} |=+ e.

3.2 The Solution Strategy

In Foil-DL, the sequential covering approach of Foil is kept as shown in Fig. 3.
However, due to the peculiarities of the language of hypotheses in Foil-DL,
necessary changes are made to Foil as concerns both candidate generation and
evaluation. A pre-processing phase is also required in order to generate the fuzzy
datatypes to be used during the candidate generation phase. These novel fea-
tures impact the definition of the functions InitialiseFuzzyConcreteDo-
main, Specialize and Gain as detailed in the remainder of this section.

Pre-processing. Given a crisp DL KB K, the function InitialiseFuzzyCon-
creteDomain behaves as follows: For each concrete role T occurring in K,

1. determine the minimal and maximal value that T entails according to K, that
is minT = min{v | K |= a:∃T. ≤v} and maxT = max{v | K |= a:∃T. ≥v};

2. partition the interval [minT ,maxT] into four uniform subintervals and, for
k = (maxT − minT)/4, build the fuzzy concrete domain predicates:
V eryLowT = ls(minT ,minT + k), LowT = tri(minT ,minT + k,minT +
2k), FairT = tri(minT + k,minT + 2k,minT + 3k), HighT = tri(minT +
2k,minT + 3k,maxT) and V eryHighT = rs(minT + 3k,maxT).

132 F.A. Lisi and U. Straccia

Eventually, the function returns the set of all built fuzzy datatype predicates

D =
⋃

T concrete role occurring in K
{V eryLowT , LowT , FairT ,HighT , V eryHighT }

The method has been illustrated in Example 1.

Candidate generation. In line with the tradition in ILP and in conformance
with the search direction in Foil-DL, the function Specialize implements a
downward refinement operator ρK which actually exploits the background theory
K in order to avoid the generation of redundant or useless hypotheses:

Specialize(φ,LH,K) = {φ′ ∈ LH | φ′ ∈ ρK(φ)} . (8)

The refinement operator ρK acts only upon the left-hand-side of a GCI:

ρK(φ) = ρK(C � At) = {C ′ � At | C ′ ∈ ρC
K(C)} (9)

by either adding a new conjunct or replacing an already existing conjunct with
a more specific one. More formally, the refinement rules for EL(D) concepts
are defined as follows (here dT is one of the fuzzy datatypes for concrete role
T build by means of the InitialiseFuzzyConcreteDomain function, while
A,B,D and E are atomic concepts, R is an abstract role):

ρCK(C) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{A} ∪ {∃R.�} ∪ {∃R.B | range(R, B) ∈ T } ∪ {∃T.dT } if C = �
{A � D | D ∈ ρCK(�)} ∪ {B | B �K A} if C = A

{∃R.E | E ∈ ρCK(D)} ∪ {∃R.(D � E) | E ∈ ρCK(�)} if C = ∃R.D

{∃T.d � D | D ∈ ρCK(�)} if C = ∃T.dT

{C1 � · · · � Ci−1 � D � Ci+1 � · · · � Cn | D ∈ ρCK(Ci), 1 ≤ i ≤ n} if C =
�n

i=1 Ci

(10)

Note that the use of relevant knowledge from K such as range axioms and concept
subsumption axioms makes ρC

K an “informed” refinement operator. Indeed, its
refinement rules combine the syntactic manipulation with the semantic one. Also,
this allows the operator to perform “cautious” big steps in the search space. More
precisely, the less blind the rules are, the bigger the steps. ρC

K also incorporates,
in our implementation, a series of simplifications of the concepts built such as

C � C �→ C

C � D and D �K C �→ D

C � D and C � D �K ⊥ �→ ⊥ (in this case we drop the refinement)

to reduce the search space. We are not going to detail them here.

Example 2. Let us consider that At is the target concept, A, A′, B, R,R′, T are
concepts and properties occurring in K, and A′ �K A. Under these assumptions,
the axiom ∃R.B � At is specialised into the following axioms:

A FOIL-Like Method for Learning under Incompleteness and Vagueness 133

– A � ∃R.B � At, B � ∃R.B � At, A′ � ∃R.B � At;
– ∃R′.� � ∃R.B � At, ∃T.dT � ∃R.B � At;
– ∃R.(B � A) � At, ∃R.(B � A′) � At;
– ∃R.(B � ∃R.�) � At, ∃R.(B � ∃R′.�) � At, ∃R.(B � ∃T.dT) � At.

Note that in the above list, dT has to be instantiated for any of the five candidates
for concrete role T (i.e., V eryLowT , LowT , FairT ,HighT , V eryHighT).

It can be verified that ρC
K is correct, i.e. it drives the search towards more specific

concepts according to �. Please note that ρK reduces the number of examples
covered by a GCI. More precisely, the aim of a refinement step is to reduce
the number of covered negative examples, while still keeping some covered pos-
itive examples. Since learned GCIs cover only positive examples, K will remain
consistent after the addition of a learned GCIs.

Candidate evaluation. The function Gain implements an information-
theoretic criterion for selecting the best candidate at each refinement step accord-
ing to the following formula:

Gain(φ′, φ) = p ∗ (log2(cf(φ′)) − log2(cf(φ))) , (11)

where p is the number of positive examples covered by the axiom φ that are still
covered by φ′. Thus, the gain is positive iff φ′ is more informative in the sense
of Shannon’s information theory, i.e. iff the confidence degree (cf) increases. If
there are some refinements, which increase the confidence degree, the function
Gain tends to favour those that offer the best compromise between the confi-
dence degree and the number of examples covered. Here, cf for an axiom φ of
the form (5) is computed as a sort of fuzzy set inclusion degree (see Eq. (1))
between the fuzzy set represented by concept C and the (crisp) set represented
by concept At. More formally:

cf(φ) = cf(C � D) =

∑
a∈Ind+D(A) bed(K, a:C)

|IndD(A)| (12)

where Ind+D(A) (resp., IndD(A)) is the set of individuals occurring in A and
involved in E+

φ (resp., E+
φ ∪E−

φ) such that bed(K, a:C) > 0. We remind the reader
that bed(K, a:C) denotes the best entailment degree of the concept assertion
a:C w.r.t. K as defined in Eq. (4). Note that K |= a:At holds for individuals
a ∈ Ind+D(A) and, thus, bed(K, a:C � At) = bed(K, a:C). Also, note that, even
if K is crisp, the possible occurrence of fuzzy concrete domains in expressions
of the form ∃T.dT in C may imply that both bed(K, C � At)
∈ {0, 1} and
bed(K, a:C)
∈ {0, 1}.

4 Related Work

Several extensions of Foil to the management of vague knowledge are reported
in the literature [7,22,23] but they are not conceived for DL ontologies. In DL

134 F.A. Lisi and U. Straccia

learning, DL-Foil [9] adapts Foil to learn OWL DL equivalence axioms. DL-
Learner [14] is a state-of-the-art system which features several algorithms, none
of which however is based on Foil. Yet, among them, the closest to Foil-DL is
ELTL since it implements a refinement operator for concept learning in EL [16].
Conversely, CELOE learns class expressions in the more expressive OWL DL [15].
All these algorithms work only under OWA and deal only with crisp DLs.

Learning in fuzzy DLs has been little investigated. Konstantopoulos and
Charalambidis [13] propose an ad-hoc translation of fuzzy �Lukasiewicz ALC
DL constructs into LP in order to apply a conventional ILP method for rule
learning. However, the method is not sound as it has been recently shown that the
mapping from fuzzy DLs to LP is incomplete [18] and entailment in �Lukasiewicz
ALC is undecidable [6]. Iglesias and Lehmann [11] propose an extension of DL-
Learner with some of the most up-to-date fuzzy ontology tools, e.g. the fuzzyDL
reasoner [4]. Notably, the resulting system can learn fuzzy OWL DL equivalence
axioms from FuzzyOWL 2 ontologies.5 However, it has been tested only on a toy
problem with crisp training examples and does not build automatically fuzzy
concrete domains. Lisi and Straccia [17] present SoftFoil, a Foil-like method
for learning fuzzy EL inclusion axioms from fuzzy DL-Litecore ontologies (a fuzzy
variant of the classical DL, DL-Litecore [1]). We would like to stress the fact that
Foil-DL provides a different solution from SoftFoil not only as for the KR
framework but also as for the refinement operator and the heuristic. Also, unlike
SoftFoil, Foil-DL has been implemented and tested.

5 Towards an Application in Tourism

A variant of Foil-DL has been implemented in the fuzzyDL-Learner6 system.
Notably, fuzzy GCIs in LH are interpreted under Gödel semantics (see Table 2).
However, since K and E are represented in crisp DLs, we have used a classical
DL reasoner, together with a specialised code, to compute the confidence degree
of fuzzy GCIs. Therefore, the system relies on the services of DL reasoners such
as Pellet7 to solve all the deductive inference problems necessary to Foil-DL
to work, namely instance retrieval, instance check and subclasses retrieval. The
system can be configured to work under both CWA and OWA.

In order to demonstrate the potential usefulness of Foil-DL on a real-world
application, we have considered a case study in the tourism application domain.
More precisely, we have focused on the task of hotel finding because it can be
reformulated as a classification problem solvable with Foil-like algorithms. Our
goal is to use Foil-DL to find axioms of the form (5) for discriminating good
hotels from bad ones. To the purpose, we have built an ontology, named Hotel,8

which models the meaningful entities of the domain in hand.
5 http://straccia.info/software/FuzzyOWL
6 http://straccia.info/software/FuzzyDL-Learner/
7 http://clarkparsia.com/pellet/
8 http://straccia.info/software/FuzzyDL-Learner/download/FOIL-DL/examples/

Hotel/Hotel.owl/

http://straccia.info/software/FuzzyOWL
http://straccia.info/software/FuzzyDL-Learner/
http://clarkparsia.com/pellet/
http://straccia.info/software/FuzzyDL-Learner/download/FOIL-DL/examples/Hotel/Hotel.owl/
http://straccia.info/software/FuzzyDL-Learner/download/FOIL-DL/examples/Hotel/Hotel.owl/

A FOIL-Like Method for Learning under Incompleteness and Vagueness 135

The ontology. The ontology Hotel consists of 8000 axioms, 74 classes, 4 object
properties, 2 data properties, and 1504 individuals.

The main concepts forming the terminology of Hotel model the sites of
interest (class Site), and the distances between sites (class Distance). Sites
include accommodations (class Accommodation) such as hotels, attractions (class
Attraction) such as parks, stations (class Station) such as airports, and civic
facilities (class Civic) such as hospitals. The terminology encompasses also the
amenities (class Amenity) offered by hotels (class Hotel) and the official 5-
star classification system for hotel ranking (class Rank). The object properties
hasDistance and isDistanceFor model the relationship between a site and a
distance, and between a distance and the two sites, respectively. The data prop-
erties hasPrice and hasValue represent the average price of a room and the
numerical value of a distance, respectively. Note that the latter would be better
modeled as attribute of a ternary relation. However, since only binary relations
can be represented in OWL, one such ternary relation is simulated with the class
Distance and the properties hasDistance, isDistanceFor and hasValue.

The 1504 individuals occurring in Hotel refer to the case of Pisa, Italy. In par-
ticular, 59 instances of the class Hotel have been automatically extracted from
the web site of TripAdvisor.9 Information about the rank, the amenities and the
average room price has been added in the ontology for each of these instances. Fur-
ther 24 instances have been created for the class Site and distributed among the
classes under Attraction, Civic and Station. Finally, 1416 distances (instances
of Distance) between the accommodations and the sites of interest have been
measured in km and computed by means of Google Maps10 API.
Anectodal experiments with Foil-DL. As an illustration of the potential of
Foil-DL, we discuss here the results obtained in two trials concerning the afore-
mentioned learning problem with the class Good Hotel as target concept. Graded
hotel ratings from TripAdvisor users have been exploited for distinguishing good
hotels from bad ones. Out of the 59 hotels, 12 with a higher percentage of pos-
itive feedback have been classified as instances of Good Hotel (i.e., as positive
examples). In both trials, Foil-DL has been configured to work under OWA by
using Pellet as a DL reasoner. Syntactic restrictions are imposed on the form of
the learnable GCI axioms. More precisely, conjunctions can have at most 5 con-
juncts and at most 2 levels of nesting are allowed in existential role restrictions.
The two trials differ as for the alphabet underlying the language of hypotheses.

First trial. In the first experiment, all the classes and the properties occurring in
Hotel are considered to be part of the alphabet of the language of hypotheses.
The membership functions for fuzzy concepts derived from the data properties
hasPrice and hasValue in this trial are shown in Figs. 2 and 4(a), respectively.
The results obtained for this configuration of Foil-DL are:

Confidence Axiom

1,000 Hostel subclass of Good_Hotel

1,000 hasPrice_veryhigh subclass of Good_Hotel

0,569 hasPrice_high subclass of Good_Hotel

9 http://www.tripadvisor.com/
10 http://maps.google.com/

http://www.tripadvisor.com/
http://maps.google.com/

136 F.A. Lisi and U. Straccia

(a) (b)

Fig. 4. Membership functions for the fuzzy concepts hasValue verylow, hasValue low,
hasValue fair, hasValue high, and hasValue veryhigh, derived by Foil-DL from the
data property hasValue of Hotel in (a) the first trial and (b) the second trial.

0,286 hasAmenity some (24h_Reception) and hasAmenity some (Disabled_Facilities)

and hasPrice_low subclass of Good_Hotel

0,282 hasAmenity some (Babysitting) and hasRank some (Rank)

and hasPrice_fair subclass of Good_Hotel

0,200 Hotel_1_Star subclass of Good_Hotel

These results suggest the existence of user profiles, e.g. families and disabled
people. Note that no axiom has been induced which encompasses knowledge
about the distance of the accommodation from the sites of interest.

Second trial. In the second experiment, the configuration of Foil-DL remains
unchanged except for the alphabet underlying the language of hypotheses and
the definition of membership functions for the fuzzy concepts. More precisely,
the use of the object property hasAmenity is forbidden. Also, the fuzzification
of the data property hasValue is more reasonable for a foot distance. Here, a
very low distance does not exceed 900 meters, an average distance is about 1500
meters, and so on, as illustrated in Fig. 4(b). The axioms learned by Foil-DL
are:

Confidence Axiom

1,000 Hostel subclass of Good_Hotel

1,000 hasPrice_veryhigh subclass of Good_Hotel

0,739 hasDistance some (isDistanceFor some (Bus_Station) and hasValue_low)

and hasDistance some (isDistanceFor some (Town_Hall) and hasValue_fair)

and hasRank some (Rank) and hasPrice_verylow subclass of Good_Hotel

0,569 hasPrice_high subclass of Good_Hotel

0,289 Hotel_3_Stars and hasDistance some (isDistanceFor some (Train_Station)

and hasValue_verylow) and hasPrice_fair subclass of Good_Hotel

0,198 Hotel_4_Stars and hasDistance some (isDistanceFor some (Square) and hasValue_high)

and hasRank some (Rank) and hasPrice_fair subclass of Good_Hotel

Note that the knowledge concerning the distance of the hotels from the sites of
interest has now emerged during the learning process. In particular, the induced
axioms suggest that closeness to stations of transportation means is a desirable
feature when choosing a hotel.

A comparison with DL-Learner. In order to better illustrate the differences
between Foil-DL and state-of-the-art DL learning algorithms, we report here
the results obtained for the same learning problem with two of the algorithms in

A FOIL-Like Method for Learning under Incompleteness and Vagueness 137

the suite of DL-Learner: ELTL and CELOE.11 For the purpose of this compar-
ison we have adapted Hotel to make it compatible with DL-Learner. Notably,
it has been necessary to provide explicitly negative examples for Good Hotel.
They have been generated by exploiting once again the graded hotel ratings of
TripAdvisor users. More precisely, of the 59 hotels, 11 with a lower percentage of
positive feedback have been classified as negative examples for Good Hotel. The
two algorithms have been run with default configuration. ELTL has returned
100 class expressions, out of which the first ten are reported below:

1: Thing (pred. acc.: 52,17%, F-measure: 68,57%)

2: Site (pred. acc.: 52,17%, F-measure: 68,57%)

3: Hotel (pred. acc.: 52,17%, F-measure: 68,57%)

4: Accomodation (pred. acc.: 52,17%, F-measure: 68,57%)

5: hasDistance some Distance (pred. acc.: 52,17%, F-measure: 68,57%)

6: (Site and hasDistance some Distance) (pred. acc.: 52,17%, F-measure: 68,57%)

7: (Hotel and hasDistance some Distance) (pred. acc.: 52,17%, F-measure: 68,57%)

8: (Accomodation and hasDistance some Distance) (pred. acc.: 52,17%, F-measure: 68,57%)

9: hasDistance some isDistanceFor some University (pred. acc.: 52,17%, F-measure: 68,57%)

10: hasDistance some isDistanceFor some Train_Station (pred. acc.: 52,17%, F-measure: 68,57%)

Note that they are rather weak as for predictive accuracy and quite trivial as
for the significance except for the last two ones which involve the notion of
distance from a site of interest. CELOE has returned the following ten solutions,
with a little improvement of the effectiveness with respect to ELTL due to the
augmented expressivity of the DL employed for the language of hypotheses:

1: ((not Camping) and (not Hotel_2_Stars)) (pred. acc.: 60,87%, F-measure: 72,73%)

2: (not Hotel_2_Stars) (pred. acc.: 56,52%, F-measure: 70,59%)

3: (not Camping) (pred. acc.: 56,52%, F-measure: 70,59%)

4: (Rank or (not Hotel_2_Stars)) (pred. acc.: 56,52%, F-measure: 70,59%)

5: (Rank or (not Camping)) (pred. acc.: 56,52%, F-measure: 70,59%)

6: (Place or (not Hotel_2_Stars)) (pred. acc.: 56,52%, F-measure: 70,59%)

7: (Place or (not Camping)) (pred. acc.: 56,52%, F-measure: 70,59%)

8: (Distance or (not Hotel_2_Stars)) (pred. acc.: 56,52%, F-measure: 70,59%)

9: (Distance or (not Camping)) (pred. acc.: 56,52%, F-measure: 70,59%)

10: (Amenity or (not Hotel_2_Stars)) (pred. acc.: 56,52%, F-measure: 70,59%)

Interestingly, the most accurate defines a good hotel by saying what it can not
be considered as such. However, none of the learned class expressions provides a
definition on the basis of the hotel features or the closeness with sites of interest.

6 Conclusions

We have described a novel method, named Foil-DL, which addresses the prob-
lem of learning fuzzy EL(D) GCI axioms from any crisp DL KB. The method
extends Foil in a twofold direction: from crisp to fuzzy and from rules to GCIs.
Notably, vagueness is captured by the definition of confidence degree reported
11 One such comparison could not be made with DL-Foil since the implemented algo-

rithm was not made available by the authors.

138 F.A. Lisi and U. Straccia

in (12) and incompleteness is dealt with the OWA. Also, thanks to the variable-
free syntax of DLs, the learnable GCIs are highly understandable by humans and
translate easily into natural language sentences. In particular, Foil-DL adopts
the user-friendly presentation style of the Manchester OWL syntax.12

The experimental results are quite promising and encourage the application
of Foil-DL to more challenging real-world problems. Notably, in spite of the
low expressivity of EL, Foil-DL has turned out to be robust mainly due to the
refinement operator and to the fuzzification facilities. A distinguishing feature
of ρK is that it exploits the TBox, e.g. for concepts A2 � A1, we reach A2 via
� � A1 � A2. This way, we can stop the search if A1 is already too weak. The
operator also uses the range of roles to reduce the search space. This is similar to
mode declarations widely used in ILP. However, in DL KBs, domain and range
are usually explicitly given, so there is no need to define them manually. Overall,
ρK supports more structures, i.e. concrete domains, than e.g. [16] and tries to
smartly incorporate background knowledge. Additionally, unlike CELOE, the
fuzzification of concrete domains enables the invention of new concepts during
the learning process, which can be considered as a special case of predicate
invention.

For the future, we intend to conduct a more extensive empirical evaluation of
Foil-DL, which could suggest directions of improvement of the method towards
more effective formulations of, e.g., the information gain function and the refine-
ment operator. Also, it can be interesting to analyse the impact of the different
fuzzy logics on the learning process. Eventually, we shall investigate about learn-
ing fuzzy GCI axioms from FuzzyOWL 2 ontologies, by coupling the learning
algorithm to the fuzzyDL reasoner, instead of learning from crisp OWL 2 data
by using a classical DL reasoner.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory Implementation and Applications, 2nd
edn. Cambridge University Press, Cambridge (2007)

3. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept
languages. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th Interna-
tional Joint Conference on Artificial Intelligence, pp. 452–457. Morgan Kaufmann
(1991)

4. Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description logic reasoner.
In: IEEE International Conference on Fuzzy Systems, pp. 923–930. IEEE (2008)

5. Borgida, A.: On the relative expressiveness of description logics and predicate
logics. Artif. Intell. 82(1–2), 353–367 (1996)

6. Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under
�Lukasiewicz t-norm. Inf. Sci. 227, 1–21 (2013)

12 http://www.w3.org/TR/owl2-manchester-syntax/

http://www.w3.org/TR/owl2-manchester-syntax/

A FOIL-Like Method for Learning under Incompleteness and Vagueness 139

7. Drobics, M., Bodenhofer, U., Klement, E.P.: FS-FOIL: an inductive learning
method for extracting interpretable fuzzy descriptions. Int. J. Approximate Rea-
soning 32(2–3), 131–152 (2003)

8. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued
logics: a clarification. Ann. Math. Artif. Intell. 32(1–4), 35–66 (2001)

9. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description
logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp.
107–121. Springer, Heidelberg (2008)

10. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
11. Iglesias, J., Lehmann, J.: Towards integrating fuzzy logic capabilities into an

ontology-based inductive logic programming framework. In: Proceedings of the
11th International Conference on Intelligent Systems Design and Applications.
IEEE Press (2011)

12. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall Inc., Englewood Cliffs (1995)

13. Konstantopoulos, S., Charalambidis, A.: Formulating description logic learning as
an inductive logic programming task. In: Proceedings of the 19th IEEE Interna-
tional Conference on Fuzzy Systems, pp. 1–7. IEEE Press (2010)

14. Lehmann, J.: DL-Learner: learning concepts in description logics. J. Mach. Learn.
Res. 10, 2639–2642 (2009)

15. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for
ontology engineering. J. Web Seman. 9(1), 71–81 (2011)

16. Lehmann, J., Haase, C.: Ideal Downward Refinement in the EL Description Logic.
In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg
(2010)

17. Lisi, F.A., Straccia, U.: A logic-based computational method for the automated
induction of fuzzy ontology axioms. Fundamenta Informaticae 124(4), 503–519
(2013)

18. Motik, B., Rosati, R.: A faithful integration of description logics with logic pro-
gramming. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, pp. 477–482 (2007)

19. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266
(1990)

20. Reiter, R.: Equality and domain closure in first order databases. J. ACM 27, 235–
249 (1980)

21. Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artif. Intell. 48(1), 1–26 (1991)

22. Serrurier, M., Prade, H.: Improving expressivity of inductive logic programming
by learning different kinds of fuzzy rules. Soft. Comput. 11(5), 459–466 (2007)

23. Shibata, D., Inuzuka, N., Kato, S., Matsui, T., Itoh, H.: An induction algorithm
based on fuzzy logic programming. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999.
LNCS (LNAI), vol. 1574, pp. 268–274. Springer, Heidelberg (1999)

24. Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14,
137–166 (2001)

25. Straccia, U.: Description logics with fuzzy concrete domains. In: Proceedings of
the 21st Conference in Uncertainty in Artificial Intelligence, pp. 559–567. AUAI
Press (2005)

26. Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages. CRC Stud-
ies in Informatics Series. Chapman & Hall, London (2013)

27. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

Author Index

Athakravi, Duangtida 31

Broda, Krysia 31
Blockeel, Hendrik 107

Camacho, Rui 93
Chen, Jianzhong 1
Corapi, Domenico 31

Davis, Jesse 107
Driessens, Kurt 76

Fonseca, Nuno A. 93

Inoue, Katsumi 47

Joshi, Saket 64

Kersting, Kristian 64
Khot, Tushar 64

Lantz, Eric 18
Lin, Dianhuan 1
Lisi, Francesca A. 123

Muggleton, Stephen H. 1

Natarajan, Sriraam 64
Naughton, Jeffrey F. 18

Odom, Phillip 64

Page, David 18
Pfahringer, Bernhard 76

Ramos, Ruy 93
Ribeiro, Tony 47
Russo, Alessandra 31

Sakama, Chiaki 47
Sarjant, Samuel 76
Smith, Tony 76
Straccia, Umberto 123

Tadepalli, Prasad 64
Tamaddoni-Nezhad, Alireza 1
Taghipour, Nima 107

Zeng, Chen 18

	Preface
	Organization
	Contents
	MetaBayes: Bayesian Meta-Interpretative Learning Using Higher-Order Stochastic Refinement
	1 Introduction
	1.1 Bayesian MIL Versus Probabilistic ILP
	1.2 Multiple and Single Models

	2 MetaBayes Refinement Framework
	2.1 Setting
	2.2 Generalised Meta-Interpreter
	2.3 Stochastic Refinement
	2.4 Prior, Likelihood and Posterior

	3 Implementation
	3.1 MetaBayes
	3.2 MetaBayesMAP
	3.3 MetaBayesSiLP
	3.4 MilProbLog

	4 Experiments
	4.1 Binary Prediction - MetaBayes vs. MetaMap
	4.2 Probabilistic Prediction - MetaBayes vs. MetaBayesSiLP vs. MilProbLog

	5 Related Work
	6 Conclusion and Further Work
	References

	On Differentially Private Inductive Logic Programming
	1 Introduction
	2 Preliminaries
	2.1 Inductive Logic Programming
	2.2 Differential Privacy

	3 Problem Formulation
	4 Trade-Off on Privacy and Utility
	4.1 Our Utility Model
	4.2 A Lower Bound on Privacy Parameter

	5 Differentially Private ILP Algorithm
	5.1 A Non-private ILP Algorithm
	5.2 A Differentially Private Selection Algorithm
	5.3 A Differentially Private Reduction Algorithm
	5.4 Our Differentially Private ILP Algorithm

	6 Experiment
	7 Conclusion
	References

	Learning Through Hypothesis Refinement Using Answer Set Programming
	1 Introduction
	2 Background
	2.1 Top-Directed Abductive Learning in ASP

	3 Learning Through Hypothesis Refinement
	3.1 Hypothesis Refinement
	3.2 Learning a Partial Hypothesis

	4 RASPAL: Iterative Learning by Refinement
	4.1 Algorithms

	5 Experiment
	6 Conclusion and Future Work
	References

	A BDD-Based Algorithm for Learning from Interpretation Transition
	1 Introduction
	2 Learning from 1-Step Transitions

	3 BDD Algorithms for LF1T
	4 Experiments
	5 Conclusion and Future Work
	A Appendix
	A.1 Proof of Theorem 1

	References

	Accelerating Imitation Learning in Relational Domains via Transfer by Initialization
	1 Introduction
	2 Background
	3 Relational Imitation Learning
	4 Relational Transfer
	5 Experiments
	6 Discussion and Conclusion
	References

	A Direct Policy-Search Algorithm for Relational Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Terminology
	3.1 Blocks World

	4 CERRLA Algorithm
	4.1 Cross-Entropy Method
	4.2 Rule Discovery
	4.3 Policy-Search Process

	5 Evaluation
	5.1 Blocks World
	5.2 Ms.Pac-Man
	5.3 Carcassonne

	6 Conclusions
	References

	AND Parallelism for ILP: The APIS System
	1 Introduction
	2 Background
	2.1 Parallel Execution of Logic Programs

	3 The APIS System
	3.1 Redundancy Avoidance

	4 Experiments and Results
	4.1 Experimental Settings
	4.2 Results and Discussion

	5 Parallel Execution of ILP Systems
	6 Conclusions
	References

	Generalized Counting for Lifted Variable Elimination
	1 Introduction
	2 Representation
	3 Lifted Variable Elimination
	4 Generalized Counting Formulas
	4.1 A Motivating Example
	4.2 Definition

	5 Conversion Operations
	5.1 Counting Conversion
	5.2 Merging Counting Formulas
	5.3 Merge-Counting

	6 Elimination Operations
	6.1 Sum-out by Counting
	6.2 Aggregation

	7 Relation to Joint Conversion
	8 Conclusion
	References

	A FOIL-Like Method for Learning under Incompleteness and Vagueness
	1 Introduction
	2 Preliminaries
	3 Learning Fuzzy EL(D) Axioms
	3.1 The Problem Statement
	3.2 The Solution Strategy

	4 Related Work
	5 Towards an Application in Tourism
	6 Conclusions
	References

	Author Index

