
Innovations Syst Softw Eng (2015) 11:113–130
DOI 10.1007/s11334-013-0202-2

SI: FMIS

Using PVS to support the analysis of distributed cognition systems

Paolo Masci · Paul Curzon · Dominic Furniss ·
Ann Blandford

Received: 2 April 2012 / Accepted: 8 March 2013 / Published online: 3 April 2013
© Springer-Verlag London 2013

Abstract The rigorous analysis of socio-technical systems
is challenging, because people are inherent parts of the sys-
tem, together with devices and artefacts. In this paper, we
report on the use of PVS as a way of analysing such sys-
tems in terms of distributed cognition. Distributed cognition
is a conceptual framework that allows us to derive insights
about plausible user trajectories in socio-technical systems
by exploring what information in the environment provides
resources for user action, but its application has tradition-
ally required substantial craft skill. DiCoT adds structure
and method to the analysis of socio-technical systems from
a distributed cognition perspective. In this work, we demon-
strate how PVS can be used with DiCoT to conduct a sys-
tematic analysis. We illustrate how a relatively simple use of
PVS can help a field researcher to (i) externalise assumptions
and facts, (ii) verify the consistency of the logical argument
framed in the descriptions, (iii) help uncover latent situations
that may warrant further investigation, and (iv) verify con-
jectures about potential hazards linked to the observed use of
information resources. Evidence is also provided that formal
methods and empirical studies are not alternative approaches
for studying a socio-technical system, but that they can com-
plement and refine each other. The combined use of PVS

P. Masci (B) · P. Curzon
School of Electronic Engineering and Computer Science,
Queen Mary University of London, London, UK
e-mail: paolo.masci@eecs.qmul.ac.uk

P. Curzon
e-mail: paul.curzon@eecs.qmul.ac.uk

D. Furniss · A. Blandford
UCLIC, UCL Interaction Centre, University College, London, UK
e-mail: d.furniss@ucl.ac.uk

A. Blandford
e-mail: a.blandford@ucl.ac.uk

and DiCoT is illustrated through a case study concerning a
real-world emergency medical dispatch system.

Keywords Formal analysis · Higher-order logic · PVS ·
Distributed cognition · DiCoT · Socio-technical systems

1 Introduction and background

Design errors are well-known sources of system failures: in
computer systems, they represent the major cause of failures;
in interactive systems, they are also a major cause of sys-
tematic human error. For instance, in the healthcare domain
the ‘system’ of importance is often not just a single com-
puter device but thewholework environment.Whether it was
explicitly designed, or more likely evolved and was adapted
by those working within it over time, errors in its ‘design’
can cause computer system failures and systematic human
errors. The development process of a system of whatever
level, therefore, must adopt appropriate means to eliminate
design errors. This is especially relevant in safety-critical
domains, such as healthcare.

In complex socio-technical systems, like hospitals or
power plants, operators are required to follow written pro-
cedures that specify what actions must be taken to achieve
intended goals. The best way of achieving a goal is usu-
ally context-dependent, but written procedures cannot cover
all possible situations and contexts [37]. As a consequence,
actual practice may deviate from written procedures (e.g.,
see [32]). Studying actual practice in a systematic and rigor-
ous way is key to identifying potential hazards in such socio-
technical systems, given trial-and-error approaches should
be avoided in safety-critical contexts, and given operators
should get work done correctly on the first attempt. Also,
better understanding of current practice can help redesign a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-013-0202-2&domain=pdf

114 P. Masci et al.

system in response to performance deviations and potential
hazards.

Contextual studies such as ethnographic studies provide
a way to understand how a system works in practice. They
involve collecting information from people actually work-
ing in the system, including observing activities as they are
carried out in the real workplace. This contrasts with studies
based on experimental or simulated settings. A common dif-
ficulty in ethnographic studies is that field researchers have
limited time and resources to perform the study. They there-
fore need tomake decisions about what to look for and when.
Distributed cognition [18] is a conceptual framework that can
help field researchers make those decisions.

Distributed cognition is a conceptual framework proposed
by Hutchins in [18]. It is based on the idea that cognition is
not confined to the mind of humans, but spans across humans
and artefacts. As such, cognition is distributed across the
system, and can be described in terms of transformations
of the representational state of information resources. Based
on this view, Hutchins argues that it is possible to deduce
important information about the cognitive activities of the
users of a system by reasoning about the observable repre-
sentational states of information resources. Furthermore, he
observes that even if the cognitive activities of users remain
hidden, in many cases the representational state of informa-
tion and the kind of errors made by users impose constraints
that are tight enough to enable an accurate identification of
plausible internal representations and processes that the users
must be adopting. An important implication of this is that the
design of artifacts and technologies can be used not only for
understanding plausible internal representations, but also for
shaping them to ones that are “syntactically correct”. This
is meant in the sense that they can provide guidance to the
people who have to perform tasks, thus making the path to
achieving that task apparent.

Examples of activities that involve distributed cognition
processes range from familiar everyday interactions to com-
plex interactive systems. For example, in everyday interac-
tions we use to-do lists to organise attention to tasks, we use
shopping lists to extend our memory, and we group piles
of paper to organise our work—we change the environment
to support the task we need to perform [20]. Similar con-
siderations also apply in complex interactive systems, such
as cockpits. For example, Hutchins, in [19], analysed how
a cockpit “remembers its speed” through a combination of
different people, in different roles, with different tools and
artefacts collectively moving and changing the representa-
tion of information.

DiCoT [6] is a semi-structured methodology that has been
proposed by the human–computer interaction community
for applying distributed cognition to the analysis of team-
work systems. The approach has been successfully applied
to analyse various real-world socio-technical systems (see for

instance [26,32,36,38]). DiCoT proposes three core interde-
pendentmodels to analyse socio-technical systems: the phys-
ical model, which studies the physical layout of the system;
the information flow model, which studies how information
is transformed and propagated in the system; the artefact
model, which studies how artefacts are designed and used in
the system. Associated with each of these models is a rep-
resentation or diagram and distributed cognition principles.
The DiCoT models will be described in detail in Sect. 4.

2 Contributions

In summary, this paper makes several novel contributions.
We develop a constructive approach for using the speci-
fication and verification system PVS [30] in combination
with DiCoT, an semi-structured analysis method for study-
ing socio-technical systems from a distributed cognition
perspective.

We present a set of generic PVS theories suitable for
guiding the translation of DiCoT models into PVS higher-
order logic specifications, and show how to use such theories
to support rigorous reasoning about socio-technical system
design.

We demonstrate that a relatively simple use of PVS can
help field researchers to (i) automate various consistency
checks for the DiCoT models, (ii) systematically challenge
the logical argument they describe in the models, (iii) help
uncover latent situations that may warrant further investi-
gation, and (iv) verify conjectures about potential hazards
linked to the observed use of information resources. Note
that the proposed approach is not intended to replace the
existing DiCoT analysis, but to complement it by using auto-
mated reasoning tools. In fact, we use PVS in such a way
that it systematically challenges (through proof obligations)
the reconstruction of facts and events observed by the field
researcher.

We show that properties of interest can be automatically
generated out of the specification, and that proof attempts can
be automatically performed by the PVS system, reducing the
perceived cost of using the tool. Whenever a proof obliga-
tion cannot be discharged (either automatically, or through
an interactive proof) then a situation is found where the log-
ical argument framed in the models may contain gaps that
need to be filled (e.g., the field researcher is using hypothe-
ses not explicitly stated in the model), or inconsistency that
may warrant further investigation. A set of generic PVS the-
ories is also presented to guide modelling and analysis. The
theories can be animated with the PVSio extension of PVS,
thus enabling the analyst to perform preliminary analyses
through simulations.

The pragmatic use of PVS described in this paper explores
new ways of using software tools during field studies.

123

Using PVS to support the analysis 115

To date, software tools have been developed and used by field
researchers to store and encode information efficiently—see
for instance [39]. We provide evidence of the potential ben-
efits of an integrated approach using both PVS and DiCoT
by re-analysing field study data from a previously published
case studywith the original investigator. The considered case
study focuses on an emergency dispatch system [16,17]. In
Sect. 6, we will provide a step-by-step analysis of the socio-
technical system, and show that additional insights can be
gained from the same data collected in the field study, pro-
viding therefore some evidence that the use of PVS allows a
finer-grained analysis.

A preliminary version of this work was presented in [23],
where we gave only an outline of the developed PVS theories
to specify DiCoT information flow models, along with an
overview of the insights that could be gained when using
PVS in conjunction with DiCoT. An informal description of
the constructive procedure has been presented in [22], and
its application to support incident investigations has been
explored in [25]. In [24], the approach has been successfully
used within the context of a live field investigation.

2.1 Organisation of the paper

In Sect. 3, we provide an overview of PVS, focussing on
the features of the tool relevant to this work. In Sect. 4, we
present the DiCoT approach in detail. In Sect. 5, we present
a method for supporting a DiCoT analysis (how to translate
existing DiCoT models, how to analyse them in such a way
that insights can be gained about how to refine the analysis)
and a set of generic PVS theories for guiding the specification
and analysis. In Sect. 6, we apply the proposed method and
developed PVS theories to analyse DiCoTmodels developed
in an already performed and completed study. The consid-
ered example is based on the London Ambulance Service. In
Sect. 7, we discuss related work. In Sect. 8, we draw conclu-
sions.

3 Prototype verification system (PVS)

PVS [30] is a specification and verification system that
combines an expressive specification language with an inter-
active proof checker. The PVS specification language is
based on strongly typed higher-order logic, which allows
quantification over propositional functions to be formulated.
The language includes the usual base types (e.g., bool,
nat, integer and real), function type constructors
[A -> B] (predicates are functionswith range typebool),
and abstract data-types. The language supports predicate
subtyping [35], which is a powerful mechanism for express-
ing complex consistency requirements. An example of a
subtype is {x: real | x �= 0}, which is derived from

real numbers by using the predicate x �= 0. When using
expressions with subtypes, PVS automatically generates
proof obligations, denominated type correctness conditions
(TTCs), for ensuring the valid use of the type. We will rely
on this automatic generation of proof obligations to check
the consistency of the logical argument framed in the DiCoT
models.

PVS specifications are packaged as theories. Theories can
be parametric in types and constants, and they can use def-
initions and theorems of other theories by importing them.
PVS has a pre-defined built-in prelude, and a variety of load-
able libraries, such as the NASA library [11], which provides
several standard definitions and proved facts that can be used
when developing new theories.

PVS includes an automated theorem prover that can be
used to interactively apply powerful inference procedures
within a sequent calculus framework. The primitive infer-
ence procedures include, among others, propositional and
quantifier rules, induction, simplification using decision pro-
cedures for equality and linear arithmetic, data and predicate
abstraction [30].

PVS has a ground evaluator [12] that automatically com-
piles executable constructs of a specification into efficient
Lisp code. In order to be able to execute theories that include
non-executable constructs (e.g., declarative specifications),
the ground evaluator can be augmented by so-called seman-
tic attachments. Through these, the user can supply pieces
of Lisp code and attach them to the declarative parts. The
ground evaluator was subsequently extended by a compo-
nent, denominated PVSio [29], which provides a high-level
interface for writing semantic attachments, as well as a set
of proof rules to safely integrate the attachments to the PVS
theorem prover.

4 Distributed cognition for teamwork (DiCoT)

In this section, we report a detailed description of the DiCoT
models we will consider: physical, information flow, and
artefact. For each model, we describe (i) what elements
should be represented in the model, (ii) what analysis should
be performed on the model, and (iii) the characteristics of a
suitable specification language for the models.

Physical model. A DiCoT physical model describes the
structure of the physical layout of the environment where
actions are performed by individuals.

Themodel highlights whatmedia can be used by individu-
als to extend their cognitive space (e.g., artefacts, information
technologies, and other individuals) and what information
resources can be held by such media (e.g., written notes,
displayed data, utterances).

The analysis of the physical models aims to iden-
tify constraints and affordances provided by the physical

123

116 P. Masci et al.

environment. In [16], two strategies are suggested for choos-
ing the bounds of the environment to bemodelled: individual-
and location-based. The individual-based strategy identifies
the bounds of the environment with what individuals can
physically hear, see, or have access to while actions are per-
formed. Depending on the aim of the analysis, this perspec-
tive can be extended from an individual perspective to a team,
a working unit, or an organisation perspective. The location-
based strategy identifies the bounds of the environment on
the basis of physical locations, e.g., a desk, a room, a floor
or a building.

A suitable modelling language for these models should
allow the layout structure and the physical location of actors
and artefacts to be specified.

Information flow model. A DiCoT information flow
model describes how information resources are transformed
and propagated in the system.

The model highlights the role of users, technologies and
artefacts during communication, and describes the sequence
of events observed in the system.

The analysis of the information flow models aims to (i)
identify relevant aspects and potential issues related to sin-
gle tasks and communications, and (ii) assess system-wide
properties emerging from the way information resources are
processed, e.g., identification of information buffers, where a
personwithholds information temporarily fromsomeone else
until they naturally pause from concentrating on a different
task. In [16], a three-level hierarchical modelling approach is
presented to aid investigators in building the model. The first
level aims to model a high-level summary of the function of
the system; as such, the developed model describes the main
purpose of the system, the information going into the sys-
tem, and the system output. The second level aims to model
in detail the routine activities carried out in the system by
highlighting the task and the communications between team
members. The third level aims to model events and cases that
break the routine activities. Each developed model includes
a narrative description and a number of ad hoc semi-formal
diagrams for understanding how the system works and for
reasoning about design issues.

A suitable modelling language for these models should
allow us to identify activities and dependency relations (such
as temporal ordering) among activities.

Artefact model. A DiCoT artefact model describes in
detail how specific media and information resources are used
within the system.

Thismodel can be seen as a refinement of theDiCoT phys-
ical and information flow models, as it provides additional
details about the structure of selected artefacts and about their
use in the system. In particular, the artefact model aims to
highlight the role of artefacts in tasks and how their inter-
face facilitates or hinders work. Artefacts are selected on the
basis of those aspects of the system that are deemed central

for its function, e.g., what a field study researcher believes
important for understanding how actual practice is carried
out, or what a designer believes important for studying how
a design change may affect the socio-technical system.

In [16], the Resource Model [41] is suggested as a start-
ing point to study how information resources are distrib-
uted in the system, either internalised in the human mind or
externalised in the environment. In the Resource Model, six
abstract information structures are used to classify informa-
tion resources: plans (sequences of actions that could be car-
ried out), goals (system states that onewould like to achieve),
affordances (sets of possible next actions that can be taken
from the current system state), history (lists of actions already
taken to achieve the current system state), action-effect
(a transition relation that defines how the current state is
transformed when an action is taken), and current state (a
collection of relevant values of objects in the environment).

A suitable modelling language for the artefact model
should enable a detailed specification of the structure and
transformations of information resources at different levels
of detail.

5 Using PVS to support a DiCoT analysis

In this section, we illustrate a constructive procedure for
building PVS theories suitable for supporting aDiCoT analy-
sis. Theproposedprocedure is general and represents a guide-
line for specifying and analysing in PVS: field study data,1

existing DiCoT models, and user manuals. A set of generic
PVS theories to support the constructive approach are pre-
sented in Sects. 5.1, 5.2, 5.3, and their application is shown
in Sect. 6. An overview of the approach is depicted in Fig. 1.
In the following, we illustrate the approach.

Analysis of information resources. The first step is to
develop PVS theories that allow field researchers to exter-
nalise facts about information resources available from arte-
facts, technologies and individuals (e.g., information printed
on labels or displayed by devices). Each information resource
is modelled using a different PVS data-type. The type def-
initions can be given at different level of details, according
to what the field researcher deems relevant. Uninterpreted
types are used to model information resources at the high-
est level of abstraction—uninterpreted types just define the
name of information resources. Known constraints about
information resources are embedded in the type definitions
through predicate subtyping. The utility of using predicate
subtypes is that PVS automatically generates proof oblig-
ations and proof attempts to demonstrate the consistency
(or otherwise) of the specification, discharging, therefore,

1 Field study data considered here consist of written notes produced by
the field investigator during the observations.

123

Using PVS to support the analysis 117

Fig. 1 Overview of the
approach

field researchers from the burden of specifying (and manu-
ally checking) consistency constraints. When a proof obliga-
tion cannot be discharged, either automatically or by guiding
the theorem prover, then a situation is found that may war-
rant further investigation—e.g., the field researcher is using
assumptions not explicitly stated in the model; the model
specification contains inconsistencies/gaps; or there is an
actual issue related to the information resources provided
by the real-world system. Examples of constraints that can
be expressed by subtyping are the physical location of indi-
viduals in indoor settings (e.g., how desks and walls limit
movement and communication), physical characteristics of
artefacts (e.g., the number of post-its on a board), limits
of observable information externalised by devices (e.g., the
maximum numbers of calls that can be displayed on a digital
display board).

Analysis of transformations of information resources.
The second step is to develop PVS theories that allow field
researchers to specify how information resources are gener-
ated, transformed and propagated in the system. In PVS, we
specify such transformations as transition functions over sys-
tem states. As for information resources, transformations can
be provided at different levels of detail, according to what the
field researcher deems relevant to the analysis. For instance,
the field researcher can be very detailed about the use of some
artefacts and information technologies (e.g., describing how
operators organise paper reports on a desk, or how a specific
report’s field is entered in an electronic record) or simply
describe abstract relations between individuals (e.g., which
communication channels exist between operators). The PVS
specification language allows one to use different levels of
details—as for information resources, uninterpreted types
can be used to specify abstract relations, and subtypes and
actual definitions can be used to gradually add detail. The
system state is given by the observable state of information
resources. Predicate subtyping can be used to express con-
straints about the possible transformations allowed by the
system—PVS will automatically generate proof obligations
to ensure that the transformations are used consistentlywithin
the specification.

Analysis of conjectures about emerging properties.
The third step is to develop PVS theories for checking con-
jectures about why physical layouts and work-flows are the

way they are, and for identifying potential hazards linked to
the observed use of information resources. Conjectures can
be specified as predicates over information resources and
over transformations of information resources. The analysis
of potential hazards can be supported by a systematic for-
malisation of user manuals and written procedures, as they
provide insights about the designer’s perspective on the sys-
tem. This kind of analysis is useful to pull out potential haz-
ards linked to latent situations. The approach has similarities
with the analysis carried out by Rushby in [2,33]. In his
work, Rushby compared the specification of an interactive
system with the mental model created by its users for dis-
covering possible sources of mode confusion. He argues that
a strong divergence between the mental model and the actual
behaviour prescribed by the interactive system may lead to
automation surprise, i.e., situations where the automated sys-
tem behaves in a way that is different from that expected by
the operator. In our case study, user manuals and written pro-
cedures are used as the basis for specifying the behaviour
of the interactive system, and the DiCoT models are used to
derive insights about plausible mental models developed by
users of the system.

5.1 Generic PVS theories to support DiCoT modelling

In the following, we present a set of generic PVS theories
developed with the aim of guiding analysts during the spec-
ification process and help reduce the perceived cost of using
PVS in a DiCoT analysis. The developed theories allow one
to build aPVS specificationwhich can be naturallymapped to
the DiCoT models, i.e., the relationship between the DiCoT
models and the PVS specification can be easily seen and
justified. The specification style used in the generic PVS
theories allows PVSio to be used to animate the specifica-
tions, thus can potentially facilitate interdisciplinary discus-
sion about the situations described in themodels. In Sect. 5.3,
we present a simulation engine developed on top of PVSio
that automates the generation of simulation traces out of the
PVS specification of the DiCoT models.

System State. Information resources are specified as
fields of a record type, system_state. Each informa-
tion resource is characterised by a unique resource identi-
fier. Resource identifiers can be specified either explicitly

123

118 P. Masci et al.

(e.g., through natural numbers or enumerated types), or
implicitly (through the type name).

The level of detail at which an information resource is
modelled generally depends on the aim of the DiCoT analy-
sis. At the highest level of abstraction, fields are specified as
uninterpreted types. In order to enable a modular construc-
tion of the specification, we exploit information hiding when
defining theories for the system state. Each PVS theory is
assimilated to the class concept used in object-oriented pro-
gramming languages: interface functions are used for access-
ing and modifying data-types in a consistent way, and the
actual specification of the data-types is hidden.

Activities. Activities are actions carried out within the
system by individuals or information technologies. They are
specified as transition functions over system states. Each
activity has a unique identifier. We developed a PVS theory,
activity_th, to provide some standard type definitions:
activity, a function type suitable for specifying activi-
ties as state transitions over system states; activity_id,
a bounded natural number type for defining unique identi-
fiers for activities; and an execute function, which spec-
ifies that a new system state can be obtained by applying
an activity to the current system state. The type definition
of the system state and the number of activities are theory
parameters, andmust be instantiated when importing the the-
ory.

activity_th[system_state: TYPE,
N_ACTIVITIES: posnat]: THEORY

BEGIN
activity: TYPE = [system_state -> system_state]
activity_id: TYPE = below(N_ACTIVITIES)
execute(act: activity):

[system_state -> system_state] =
LAMBDA(sys: system_state): act(sys)

END activity_th

Tasks.Tasks definedependency relations amongactivities,
which can be performed either in sequence or concur-
rently. We specify tasks with a graph-based notation suit-
able for formalising a graphical notation used in DiCoT:
nodes in the graph represent activities, and edges between
nodes represent dependency relations between activities.
Drawing concepts from Activity Networks [28], a widely
used formalism for modelling complex concurrent sys-
tems, we associate an enabling predicate to each activ-
ity, which can be specified as predicates over system
states. An enabling predicate defines the necessary pre-
condition for performing the associated activity. When
an enabling predicate is true, we say that the associ-
ated activity is enabled. By default, an activity is enabled
when all directly connected activities have already been
performed. Whenever an activity becomes enabled, the
activity can be performed. When several activities are
enabled at the same time, then such activities can be

performed concurrently. Activities are atomic: the con-
current execution of activities is therefore a sequential
execution where any ordering is possible. When an activ-
ity is performed, the system state is updated according to the
function defined by the activity, and we say that the activ-
ity completes. Dependency relations among activities can be
parametric with respect to control flow conditions, which
define different ways of continuing the task. If a control flow
condition is true, then the associated edge is included in the
graph describing the task; otherwise, the edge is removed.
Control flow conditions can be specified as predicates over
system state associated to edges (hereafter, dependency pred-
icates).

In PVS, we therefore, specify tasks as structured data-
types consisting of five fields: F, a function that associates a
unique identifier to each activity that can be performed in the
task; G, a directed graph that defines dependency relations
among activities (the identifier of each node in the graph is
given by the identifier of the associated activity); P, a func-
tion that associates dependency relations to dependencypred-
icates; S, a status vector that defines the progress status of
each activity in the task;E, a function that associates enabling
predicated to activities (the default predicate checks that all
activities connected with incoming edges are completed).
The type definition of G uses the NASA library on directed
graphs [11] which provides a large number of standard defi-
nitions and already proved theorems. The type definition of
dependency predicates, on the other hand, has been defined
as a function from system states to booleans. The type def-
initions of system state, activity, activity identifier, activity
progress status, and enabling predicate are theory parame-
ters, i.e., they are left unspecified, and must be instantiated
by the theories importing task_th.

task_th[system_state, activity, activity_id,
progress_status, enabling_predicate: TYPE]:

THEORY BEGIN IMPORTING digraphs[activity_id]
dependency: [system_state -> bool]
task: TYPE =

[# F: [activity_id -> activity],
G: digraph[activity_id],
P: [edgetype[activity_id] -> dependency],
S: [activity_id -> progress_status],
E: [activity_id -> enabling_predicate] #]

END task_th

5.2 Generic PVS theories to support DiCoT analysis

We have developed a generic PVS theory to provide a tem-
plate for comparing specifications of activities derived from
different sources. The aim is to identify unsafe divergence
between actual practice (as described in a DiCoTmodel) and
prescribed practice (as described, for instance, in user man-
uals). Informally stated, unsafe divergences are situations

123

Using PVS to support the analysis 119

where critical information resources have strongly different
values. An example of unsafe divergence in an emergency
dispatch system is that an ambulance is supposed to receive
the emergency address when an operator enters the emer-
gency address in the information system (e.g., according to
the specification derived fromfield study data), while in prac-
tice he/she does not (e.g., according to the user manual). The
precise definition of “unsafe divergence” depends on the con-
sidered situation—it may change from system to system, and
over time.

Ageneric approach suitable for developing a tailored spec-
ification of unsafe divergence can be obtained through the use
of an abstract domain. In the abstract domain, we can define
equivalence classes reflecting the concerns that are deemed
safety critical for the system, and thus map actual values of
information resources to those abstract classes. By using the
abstract domain, we can say that a system is not in a situation
of unsafe divergence (or, alternatively, say that the system
is operating within its safety limits) as long as information
flows described in the specifications we are comparing gen-
erate equivalent abstract states.

More precisely, given any pair of corresponding activities
from two specifications, if we start from two concrete states
that are equivalent in the abstract domain, then the system is
within safety limits if the new states obtained by executing
the activities are still equivalent in the abstract domain.

In PVS, we can support the analysis described above by
defining a data-type for the abstract domain, and an abstrac-
tion function for mapping system states from the concrete
specification into the abstract domain. To this end,we defined
a parametric PVS theory, safe_div ergence_th, which
defines a predicate, safe_divergence, for specifying
claims about divergences in terms of five parameters: the
state of the abstract domain (abstract _state), which
specifies what information is deemed safety-critical for
the system; two function types (actual _state, pre
scribed_practice), which specify a pair of concrete
transitions that we want to compare; two function types
(alpha1, alpha2) defining the relations to abstract con-
crete system states into abstract states.

safe_divergence_th[
safety_state, actual_state,
prescribed_state: TYPE,
alpha1 : [actual_state -> safety_state],
alpha2 : [prescribed_state -> safety_state]]:

THEORY BEGIN
safe_divergence?
(st1: actual_state, st2: prescribed_state)
(f1: [actual_state -> actual_state],
f2: [prescribed_state -> prescribed_state]):

bool
= (alpha1(st1) = alpha2(st2))

=> (alpha1(f1(st1)) = alpha2(f2(st2)))
END safe_divergence_th

5.3 Generic PVS theories to support model animation

We have developed a simulation engine for animating the
formal specification of DiCoT information flow and artefact
models. In this work, themain utility of the simulation engine
is to facilitate the dialogue between field researchers, prac-
titioners, and analysts when checking the correctness of the
formal specification.

The developed simulation engine schedules activities
according to the dependency relations specified in a task,
and uses PVSio for generating visual feedback of the exe-
cution. Drawing ideas from approaches for the analysis of
protocols for distributed systems of autonomous and coop-
erating nodes [4,5], we define the simulation engine as a
higher-order function, simulate, that iteratively selects,
through a scheduler, the activity to be performed. The itera-
tion is performed at most N times. At each iteration, a new
system state is generated by applying the transition function
of the selected activity to the current system state.

The scheduler identifies the activity to be executed on
the basis of its progress status, which can be one of the
following: ready, i.e., the activity is ready for execu-
tion, needs_action, i.e., the activity cannot be per-
formed because other activities need to be completed
first, completed, i.e., the activity has been performed,
cancelled, i.e., the activity is enabled but it cannot be
executed (this may happen because of control flows); and
deleted, i.e., the activity has not been performed. Activ-
ities are chosen non-deterministically from two worklists,
C and R. Worklist C contains cancelled activities. Work-
list R contains activities ready for execution. Activities in
worklist C have priority over those in worklist R—this way,
dependency relations due to cancelled activities can be auto-
matically removed from the dependency graph of the task.
Whenever an activity is selected from a worklist, the activity
is also removed from the worklist.

Two auxiliary functions, update_completed and
update_deleted, are used in the engine for identifying
the set of activities that become enabled after an activity
completes. In particular, when activity i completes, func-
tion update_completed changes to ready the status
of all activities j connected to i if the enabling predicate
if j becomes true and the dependency predicate on edge
(i, j) is true. Otherwise, if the enabling predicate of j is
true and the dependency predicate on (i, j) is false, the
function changes the status of j to cancelled. Function
update_deleted, on the other hand, changes the status
of cancelled activities to deleted. The system state is left
unchanged when an activity is deleted.

Function simulate uses function execute defined in
activity_th for generating the new system state when
an activity completes. The execution of the task terminates
either when function simulate has been executed N times,

123

120 P. Masci et al.

Fig. 2 Geographical sectors in London and schematic diagram of the LAS Central Ambulance Control room layout

or when both worklists R and C are empty. The PVS specifi-
cation of function simulate follows.

simulate(N: nat): RECURSIVE
[task, system_state -> system_state] =
LAMBDA(t: task, sys: system_state):
IF N = 0 THEN sys
ELSE
LET dbg = print(state2string(sys)),

C = { x: activity_id | cancelled?(S(t)(x))},
R = { x: activity_id | ready?(S(t)(x))}

IN IF empty?(C) AND empty?(R) THEN sys
ELSE LET (t_prime, sys_prime) =
COND
NOT empty?(C)
-> LET x = choose(C)

IN (update_deleted(x)(t,sys), sys),
NOT empty?(R) AND empty?(C)
-> LET x = choose(R)

IN (update_completed(x)(t,sys),
execute(F(t)(x))(sys))

ENDCOND
IN exec(N-1)(t_prime, sys_prime) ENDIF

ENDIF MEASURE N

6 PVS-aided analysis of the London ambulance service

In this section, we apply PVS to the analysis of representa-
tive DiCoT models developed in the context of an already
performed and completed field study [16,17]. The consid-
ered field study investigated the activities carried out in the
Central Control Room of the London Ambulance Service
(LAS). The LAS Central Ambulance Control room consists
of two main areas: call taking and dispatching. Operators in
the call taking area receive calls from external callers and
filter out relevant information about the incident. Operators
in the dispatching area use the information entered in the sys-
tem by call-takers for deciding which ambulance (and how
many ambulances) should be allocated to which incident. In

the dispatching area there is a sector desk for each zone of
the city (London has seven zones), plus a fast response unit
(FRU), which responds to urgent emergencies (red calls),
a helicopter emergency medical service desk (HEMS), an
administration desk, which provides support services (e.g.,
vehicle maintenance), and a control desk, which supervises
the operation of the whole room.

In the following,wedescribe step-by-step howPVScanbe
used to support the DiCoT analysis. Following the approach
described in Sect. 5, we formalise the considered DiCoT
models in PVS, and use PVS to automate the analysis. We
will show that additional insights can be derived from the
samemodels analysed in [16], providing evidence of the ben-
efits gained when using PVS to systematically check details
at a finer-grain. In the considered examples, we will use
a level of detail appropriate for the purposes of this arti-
cle. Readers interested in a comprehensive description of the
Central Control room should refer to [16].

6.1 Supporting DiCoT physical layout analysis

We consider here a DiCoT physical model developed for
studying how the physical layout affects the activities carried
out in the dispatching area of the LAS Central Ambulance
Control room.

Physical layout of the dispatch room.The dispatch room
has seven sector desks, each of which is responsible for allo-
cating ambulances in an area of London. All sectors coop-
erate for ensuring an overall efficient service. In order to
support co-operation, sector desks are organised such that
they reflect the geographical location of sectors (see Fig. 2).
This organisation of sector desks aims to ease direct face-
to-face communication between allocators—some incidents
may require cross-sector coordination. The fast response
unit has a central position in the room layout because the
unit aims to support all other desks for urgent emergencies

123

Using PVS to support the analysis 121

(red calls). The room contains two display boards, which
report the amount of incoming calls waiting to be answered,
and the percentage of calls that has been answered within
given pre-defined time-frames. The room also contains a city
map.

PVS-aided analysis. We aim to specify in PVS the
concepts framed in the DiCoT physical model. To this
end, we define three different data-types for specifying
the characteristics of displays, sector desks and maps
described in the DiCoT model. Displays are specified as a
record type, display_board, which contains two fields
(one for each information resource provided by the dis-
play): incoming_calls, a bounded natural number, and
answered_calls, a percentage. Desks in the control
room are specified as an enumerated type, CAC_desk,
which defines unique names for each desk. The map of the
city is specified as an uninterpreted type, map, because addi-
tional details about it are not available from the field study
data—the field researcher deemed the map not relevant for
the specific analysis. The system state is thus specified as
a record type, system_state, which contains a finite set
of desks (desks), two display boards (display_a and
display_b), and a city map (city_map).

CAC_resources_th: THEORY
BEGIN
MAX_CALLS : posnat
percentage : TYPE

= {x: real | x >= 0 AND x <= 100}
display_board: TYPE

= [# incoming_calls: upto(MAX_CALLS),
answered_calls: Percentage #]

CAC_desk : TYPE
= { NW_desk, W_desk, SE_desk, SW_desk,

EC_desk, C_desk, NE_desk, HEMS_desk,
FRU_desk, Control_desk, Admin_desk }

map : TYPE
system_state: TYPE

= [# desks : finite_set[CAC_desk],
display_a : display_board,
display_b : display_board,
city_map : map #]

END CAC_resources_th

The specification above can be refined by including addi-
tional facts about information resources. From the obser-
vations carried out in the field study, for instance, we
know that the display boards are updated when new calls
are received. This fact can be specified with a function,
new_incoming_call, which increments the number of
incoming calls on the displays. Initially, we can use an unin-
terpreted function, and use predicate subtyping to assert that
the function returns a new state with a larger number of
incoming calls.

new_incoming_calls(sys: system_state):
{s: system_state |

incoming_calls(display_a(s))
> incoming_calls(display_a(sys))

AND incoming_calls(display_b(s))
> incoming_calls(display_b(sys))}

With the above specification, PVSautomatically generates
an existence TCC, i.e., PVS requires evidence that a function
can be implemented that is compliant with the uninterpreted
function type specification. The simplest implementation we
could use for discharging the proof obligation is a function
that increments the number of incoming calls by 1:

LAMBDA(sys: system_state): sys WITH
[display_a :=

(# incoming_calls
:= incoming_calls(display_a(sys)) + 1,

answered_calls
:= answered_calls(display_a(sys)) #),

display_b :=
(# incoming_calls

:= incoming_calls(display_b(sys)) + 1,
answered_calls

:= answered_calls(display_b(sys)) #)]

When using the function above in the proof attempt, the
interactive theoremprover automatically identifies a situation
that violates another type constraints:

|-------
{1} FORALL (sys: system_state):

1 + incoming_calls(display_b(sys))
<= MAX_CALLS

The above situations points out that the proposed function
is not guaranteeing a constraint for the maximum value that
canbe shownon thedisplay.Althoughmathematically trivial,
this violation highlights issues that may be glossed over in an
informal description but may warrant further investigation:
What is the maximum number that can be shown on the
display boards? What happens if the maximum number is
reached? The first question reflects the concern that, in any
situation, themaximumnumber should never be reached.The
second question reflects concerns about critical situations
when the system is pushed to its limits.

Further support from PVS can be obtained by formulat-
ing claims about emergent properties. In this case, the claim
we consider is about the relation between the geographical
position of sectors and the physical location of sector desks:
physically close sector desks correspond to adjacent geo-
graphical sectors on the map. In order to formulate this
claim, we define an enumerated type, sector_geo, which
specifies a set of unique identifiers for the sectors; type
sector_desk, a subtype of desk that identifies sector

123

122 P. Masci et al.

desks in the dispatching area; a transformation function,
sector, which specifies the relation between sector desks
and geographical sectors; two predicates, adjacent? and
f2f_communication?, which specify what sectors are
geographically adjacent and what is to be considered a face
to face communication.

sector_geo : TYPE = { NW, W, SE, SW, EC, C, NE }
sector_desk: TYPE = { d: CAC_desk |

d /= Control_desk
AND d /= Admin_desk }

sector(s: Sector_desk): finite_set[sector_geo] = %..
adjacent?(s1, s2: finite_set[sector_geo]): bool %..
f2f_communication?(s1, s2: sector_desk): bool %..

With the definitions above, we can then specify the claim
in PVS as follows:

sector_desk_claim: CLAIM
FORALL (d1, d2: Sector_desk):
f2f_communication?(d1, d2)

=> adjacent?(sector(d1),sector(d2))

The claim can be automatically verified in seconds with
PVS through one of its automated decision procedures, e.g.,
grind. We note here that the provided example aims to
demonstrate how emergent properties can be specified and
verified in PVS. Although the specific example is simple, its
utility is to allowone (i) to externalise concepts that couldoth-
erwise lie hidden in the analyst’s head, and potentially lead
to different interpretations and understanding from others,
and (ii) to systematically check basic claims in a completely
automatic fashion—when this check fails, the theoremprover
points out the specific situation thatmay require further inves-
tigation.

6.2 Supporting DiCoT information flow analysis

We consider here aDiCoT informationflowmodel developed
for studying in detail the activities carried out in the call tak-
ing area and the dispatching area of the Central Ambulance
Control room. To support the analysis, we formalise some
relevant paragraphs of the user manual of the computerised
version of the emergency medical dispatch system used in
the call taking and dispatching areas, and use PVS to com-
pare the two specifications. The aim of the comparison is to
systematically identify potential unsafe divergence between
what has been observed (which reflects actual practice) and
what is required by the information system according to the
manual (which reflects prescribed practice).

Actual practice. Call-takers interview external callers
according to a protocol captured in the ‘Advanced Medical
Priority Dispatch System’. This protocol defines a structured
dialogue between call-takers and external callers that enables

call-takers to classify incidents in terms of their medical
urgency. ProQA [31] is a computerised version of the system,
and is currently used in the central ambulance control room.
ProQA structures the dialogue between call-takers and exter-
nal callers, and enables communication between call-takers
and allocators. The protocol is the following. Initially, the
call-taker greets the external caller and verifies the caller’s
location and telephone number both of which are automat-
ically gathered by the ProQA system. Then, the call-taker
starts a questioning procedure to distill information about the
incident location and the complaint. As soon as the call-taker
enters the incident location in the system, the relevant sector
desk is activated to receive live information on the incident.
Specifically, the allocator responsible for the incident’s zone
is notified about the new incident, and is updated in real-
time as the call-taker inputs further information. While the
incident’s details are entered the allocator can start checking
that the call is actually a new incident and not an additional
call about an incident that has already been reported. Allo-
cators can view the position of all ambulances. In the case of
a new incident, the allocator mentally selects an ambulance
on the basis of its location and availability status. As soon
as the incident priority is known, the call-taker can provide
support and advice to the caller, and the allocator can alert
the ambulance crew and co-ordinate with it. If the ambu-
lance crew accepts the mission, the allocator transfers the
incident’s details to the ambulance crew. Otherwise, the allo-
cator transfers the incident’s details to another allocator of a
neighbouring sector.

User manual. The ProQA application starts with a log-in
screen—a log-in name and password should be assigned to
each call-taker by the system administrator. After the log-in
screen, the call-taker is presented with the waiting for next
incident screen (page 2 of the ProQA user manual [31]).
A computer-aided dispatch (CAD) number is automatically
assigned to the new incident. If needed, the call-taker can
change the CAD number through the change case number
function provided by ProQA. When starting a new case,
the call-taker needs to enter the following information in a
sequential order in the case entry screen (pages 71–81 of
the ProQA user manual [31]): address of the emergency,
which must be verified by having the caller repeating it;
phone number, which must be verified by having the caller
repeating it; the caller’s name; a brief description ofwhat hap-
pened (e.g., chest pain); whether the caller is with the patient
(default: yes); the number of the injured person (default:
1); the age, either in months or years, of the injured per-
son (default unit: years); the gender of the injured person
(default: male); whether the injured person is conscious and
breathing (default: yes). ProQA automatically identifies a
chief complaint code reflecting the information enteredby the
call-taker. A case timer keeps track of the total elapsed time
since when the call-taker started entering information about

123

Using PVS to support the analysis 123

the incident. After the case entry screen, ProQA presents
the key question screen to the call-taker (pages 71–81 of the
ProQA user manual [31]), which specifies a set of additional
questions pertinent to the incident that need to be asked of the
caller (e.g., whether the caller is safe or in danger). ProQA
automatically displays a send dispatch screen as soon as it
has enough information to recommendadispatch code (pages
88–90 of the ProQA user manual [31]). This may happen at
any instant: either during the questioning process or after all
questions have been answered. In order to deliver the dis-
patch code to allocators, call-takers must use the send dis-
patch code function provided by ProQA. The dispatch code
automatically selected by the application can be changed by
call-takers. Also, call-takers can delay sending the dispatch
code when they believe it is appropriate to ask additional
information of the caller.

PVS-aided analysis. We aim to specify in PVS the
information flows described in the DiCoT model and in
the user manual. To this end, we define two theories,
observed_state_th anduser_manual_state_th,
for specifying the structure of the system state and the set of
activities described in the DiCoT model and in the ProQA
user manual.

According to the description provided by the DiCoT
model, the system state can be specified as a record type
containing two fields: call_taker_info, which defines
the state of information resources handled by call-takers;
allocator_info, which defines the state of information
resources handled by allocators.

%-- system state
system_state: TYPE
= [# call_taker_info: call_taker_state,

allocator_info : allocator_state #]

The call-taker state is a record type containing three
fields: caller_phone, an enumerated field type that spec-
ifies the phone number of the caller; caller_location,
an enumerated field type that specifies the caller location;
incident_info, of type incident_state.

%-- call taker state
call_taker_state: TYPE
= [# caller_phone : phone_number,

caller_location: location_state,
incident_info : incident_state #]

The incident state is specifiedwith threefields:location,
an enumerated typefield that specifies the location of the inci-
dent; details, a Boolean type field that specifies whether
details about what happened are available; priority, an
enumerated type field that specifies the priority of the inci-
dent.

%-- incident state
incident_state : TYPE
= [# location: location_state,

details : boolean,
priority: priority_code #]

Similarly, the allocator state is a record type with two
fields: incidents, a vector of incidents; ambulances,
a vector of elements of type ambulance_info, which
specifies location and availability of each ambulance in the
sector.

%-- allocator state
allocator_state: TYPE =
[# incidents :

[incident_id -> incident_state],
ambulances:

[ambulance_id -> ambulance_state] #]

Transformations of information resources described in the
DiCoT model are specified as transition functions over sys-
tem states. In the following, we describe in detail the specifi-
cation for the first two activities performed by call-takers: the
call-taker takes a call (ct_takes_call), and the call taker
verifies the call (ct_verifies_call). The specification
of the other activities is only informally described here—the
complete PVS specification will be made available at [1].

The first activity is ct_takes_call, which specifies
the state transformation when the call-taker takes a new call:
location and telephone number fields become available. At
the considered level of detail, the only information we have
about the caller’s phone and location is that the call-taker will
enter them. The uncertainty about whether the entered num-
ber has been properly validated can be specified through the
epsilon function defined in the PVSprelude library, which
non-deterministically chooses a value from the set provided
as argument to the function. The specification follows.

%-- activity 1: call taker takes a call
ct_takes_call(st: system_state): system_state
= st WITH

[call_taker_info := call_taker_info(st)
WITH

[caller_phone
:= epsilon({x: phone_number | x /= NA}),

caller_location
:= epsilon({x: location_state | x /= NA})]]

The second activity isct_verifies_call, which cor-
responds to the call-taker verifying the caller’s location and
telephone number. This transformation changes the call-taker
state as follows: the caller’s phone and location are verified,
and the incident location is also verified. The function also
modifies the allocator state—according to the description,
ProQA automatically activates the relevant sector desk: field
allocator_info of the allocator state will contain the
incident location. The specification follows.

123

124 P. Masci et al.

%-- activity 2: call taker verifies call
ct_verifies_call(incident: below(MAX_INCIDENTS))

(st: system_state): system_state
= LET new_incident: incident_state

= call_taker_info(st)‘incident_info
WITH [location := verified_loc]

IN st WITH [
call_taker_info := call_taker_info(st)

WITH [caller_phone := verified_num,
caller_location := verified_loc,
incident_info := new_incident],

allocator_info := allocator_info(st)
WITH [incidents := LAMBDA(x: incident):

IF x = incident_id
THEN new_incident

ELSE allocator_info(st)
‘incident(x)

ENDIF]]

Following the same approach, we formalised also the
following activities: the call-taker enters the incident details
(ct_enters_details); the call-taker provides support
and advice to the caller (ct_provides_support); the
allocator checks whether the incident is new or it has
been already reported (al_checks_incident); the allo-
cator mentally selects an ambulance (al_selects_
ambulance); the allocator alerts the selected ambulance
(al_alerts_ambulance); the allocator transfers the
incident details either to the selected ambulance or to another
allocator (al_transfers_details).

The concepts described in the ProQA user manual can be
formalised in a similar way. The type definitions in the PVS
specification will reflect the constraints imposed by ProQA.
Namely, we define a new PVS data-type, text_field, for
specifying the content of input boxes; the data-type has two
constructors (text for completed input boxes, and NA for
empty input boxes). We use enumerated types for selection
boxes, and record types for information resources with fields.
Information resources available to call-takers are specified
as a record type, proQA_call_taker_state, which,
according to the user manual, has twelve fields:

cad_number a bounded natural number that defines the
computer-aided dispatch number automatically assigned by
ProQA to identify incidents

em_address a text field that identifies the location of
the emergency

ph_number a text field that identifies the caller’s tele-
phone number

name a text field that identifies the caller’s name
description a text field that describes the kind of inci-

dent
with_patient an enumerated type that specifies if

the caller is with the injured person—possible options are
yes, no, the patient himself/herself (first_party), a
person that is directly involved with or in close proxim-
ity to the patient (second_party), a person that is not

directly involved with or in close proximity to the incident
(third _party), someone from a public service agency
(fourth_party)

n_patients a natural number that specifies how many
persons are injured

patient_age a composite field with a text box and a
selection box for specifying the age of the injured person; we
model this field by defining a new data-type, proQA_age

patient_gender an enumerated type for specifying
the gender of the injured person (possible options are male,
female, unknown)

is_conscious an enumerated type for specifying if
the injured person is conscious (possible options are yes,
no, unknown)

is_breathing an enumerated type for specifying if the
injured person is breathing (possible options are yes, no,
unknown (third or fourth party caller who doesn’t know if
the patient is breathing), uncertain (second party caller
who is uncertain if the patient is breathing), ineffective
(the patient in unconscious and breathing is irregular or slow)

complaint_code a bounded natural number identify-
ing the chief complaint

elapsed_time information about the time elapsed
since when the new call has been taken; this is specified
with a new data-type, proQA_time.

The specification of the call-taker state follows.

%-- call taker state
proQA_call_taker_state: TYPE =

[# cad_number : below(MAX_CAD),
em_address : text_field,
ph_number : text_field,
name : text_field,
description : text_field,
with_patient : proQA_with_patient,
n_patients : nat,
patient_age : proQA_age,
patient_gender: proQA_gender,
is_conscious : proQA_is_conscious,
is_breathing : proQA_is_breathing,
complaint_code: below(MAX_COMPLAINT_CODE) #]

Information resources available to allocators are simpli-
fied by considering only three fields, as this is sufficient to
show some additional insights further below. The consid-
ered fields are the finite set of CAD numbers associated to
incidents (cad_numbers), and two vectors of text fields
reporting the emergency addresses (em_addresses) and
the incident details (em_details).

%-- (simplified) allocator state
proQA_allocator_state: TYPE
= [# cad_numbers : finite_set[below(MAX_CAD)],

em_addresses: [below(MAX_CAD) -> text_field],
em_details : [below(MAX_CAD) -> text_field]#]

123

Using PVS to support the analysis 125

Given the specification above, we can then specify the
activities described in the user manual as transition functions
over states of type proQA_system_state.

%-- system state
proQA_system_state: TYPE
= [# call_taker_info: proQA_call_taker_state,

allocator_info : proQA_allocator_state #]

In the following, we describe in detail two activities
which raise issues that may warrant further investigation.
The specification of the other activities is available at [1].
The first activity we consider here is when the call-taker
enters information about the gender of the patient. The activ-
ity is specified as a function proQA_patient_gender,
which updates the call-taker state by setting a gender (given
as function parameter). The description provided by the user
manual when entering the patient’s gender states that “If you
enter Unknown as the answer to the age question and there
is only one patient, ProQA allows you to continue with the
questioning [by entering the patient’s gender].” (page 74 of
the ProQA user manual [31]). We use a predicate subtype to
model this constraint—we restrict the domain of the function
to system states where either the age of the patient is known,
or the number of injured persons is 1.

%-- activity 2: call taker enters patient age
proQA_patient_gender(gen: proQA_gender)
(st: {st: proQA_system_state |

call_taker_info(st)‘patient_age /= unknown
OR call_taker_info(st)‘n_patients = 1}):

proQA_system_state
= st WITH [call_taker_info := call_taker_info(st)

WITH [patient_gender := gen]]

The subtype constraint we had to introduce in the spec-
ification already suggests possible areas that may require
further investigation in the DiCoT analysis: Why did the
application designers enforce the mentioned restriction? Is
the restriction actually implemented in the software used in
the Central Ambulance Control room of the London Ambu-
lance Service? If so, what is the actual procedure followed by
call-takers when the information system reaches that state?
The exercise alone of formalising this activity from the user
manual can therefore be used to catch the investigator’s atten-
tion about potential issues that are latent in the system (in this
case, a situation where call-takers are not able to proceed),
and stimulate specific questions that could be asked during
the field study including finding out whether there are any
important ramifications around the issue identified.

In the following, we show how PVS can provide further
support by mechanically checking whether the two devel-
oped specifications provide a coherent description of the
propagation of incident details from call-takers to alloca-

tors. We aim to check here if any situation may exist where
a specification indicates that the allocator has the emergency
location and the incident details entered by the call-taker,
while the other specification indicates the opposite.

We illustrate how to specify and verify the conjecture
when considering the emergency location and the incident
detail fields. For the emergency location, we describe step-
by-step the analysis by using the generic theories devel-
oped in Sect. 5.1; rather than, for the incident details
we will only discuss the results, as the specification and
verification procedure are similar to those used for the
emergency location field. For the illustrative purposes of
the example, we will consider only two transition rela-
tions,ct_enters_details (from the specification of the
DiCoT model) and proQA_incident_ details (from
the specification of the user manual). The same approach can
be used with any other corresponding transition functions.

The first step for developing the PVS specification for
checking the property is to define a data-type for the abstract
state (see the procedure explained in Sect. 6.2). The abstract
state reflects the safety concerns deemed relevant for the
situation. In this case, a suitable abstract state encodes the
status of information available to call-takers and alloca-
tors. We are only interested in checking whether infor-
mation is available, rather than the actual content. The
abstract state is therefore a record with two Boolean fields:
call_taker_ has_location, which is true when the
call-taker enters information about the location in the system,
and allocator_has_details, which is true when the
allocator is able to view information about the location:

safety_state: TYPE
= [# call_taker_has_location: boolean,

allocator_has_location : boolean #]

The second step is to define the abstraction functions for
mapping actual practice and prescribed practice states into
abstract domain states. In the specification of actual prac-
tice, call-takers and allocators enter/can view the location of
the incident when field location of the incident state is
different from NA. Therefore, we can define an abstraction
function alpha1 that specifies the transformation by using
such conditions. In the function specification, we can con-
veniently use an uninterpreted constants (the_incident)
for modelling a generic incident.

the_incident: below(MAX_INCIDENTS)
alpha1(st: system_state): safety_state =
(# call_taker_has_location

:= call_taker_info(st)
‘incident_info‘location /= NA ,

allocator_has_location
:= allocator_info(st)

‘incidents(the_incident)‘location /= NA #)

123

126 P. Masci et al.

In the prescribed practice, call-takers enter the location
when field em_address is different from NA; allocators
can view the location when the system state contains the
CAD number associated with the incident and the associ-
ated address is different from NA. Therefore, as for the other
abstraction function, we can define here alpha2, which
specifies the transformation by using such conditions. In the
specification,we can conveniently use the sameuninterpreted
constant for the incident (the_incident), and define an
additional uninterpreted conversion function (cad) for asso-
ciating CAD numbers to incidents.

cad(x: below(MAX_INCIDENTS)): below(MAX_CAD)
alpha2(st: proQA_system_state): safety_state =
(# call_taker_has_location

:= call_taker_info(st)‘em_address /= NA,
allocator_has_location
:= member(cad(the_incident),

allocator_info(st)‘cad_numbers)
AND allocator_info(st)
‘em_addresses(cad(the_incident)) /= NA #)

Given the above definitions, we can now specify the con-
jecture by importing the generic theory safe_divergen
ce_th. In the following, we show the specification when
considering transitions ct_enters_details (form the
specification of the DiCoT model) and proQA_incident
_details (form the specification of the user manual).

IMPORTING safe_divergence_th
[safety_state, system_state,
proQA_system_state, alpha1, alpha2]

actual_st: VAR system_state
prescr_st: VAR proQA_system_state
details : VAR string

always_verified_location: CONJECTURE
safe_divergence?(actual_st, prescr_st)

(ct_enters_details(the_incident),
proQA_incident_details(details))

The conjecture can be verified automatically in seconds with
the grind strategy provided by the PVS theorem prover.

The conjecture about incident details can be analysed in
a similar way. Interestingly, if we try to verify the conjec-
ture for the same pair of transition relations for the incident
details, the PVS theorem prover fails to verify the property.
In particular, the theorem prover stops in the following situ-
ation: the allocator has the incident details according to the
actual practice, but the prescribed practice indicates that the
allocator does not. On checking the developed specification
we see that allocators, according to the user manual, receive
the incident details only after a specific activity has been per-
formed by call-takers, rather than continuously. This reflects
the description provided in the user manual, which suggests

that the communication happens only when the ProQA sys-
tem displays a send dispatch screen: “The send dispatch
screen appears as soon as ProQA has enough information
to recommend a dispatch code. [...] Click on the Send button
to immediately send the dispatch code” (page 88 of ProQA’s
user manual [31]).

Further analysis with PVS also shows that there are other
situations where allocators may not receive the incident
details. For instance, call-takers may delay sending the dis-
patch code for the incident: “When appropriate, click on the
Delay and Continue button to delay dispatch and continue
caller interrogation” (page 89 of ProQA’s user manual [31]).
This last mismatch is potentially a serious problem, because
allocators cannot proceed if call-takers delay sending the dis-
patch code. The issue, indeed, seems to have been foreseen by
the system designers, because ProQA’s user manual reports
the following warning on delaying the dispatch: “Exercise
caution when delaying dispatch. Do it only when you need
to ask additional questions before sending dispatch” (page
89 of ProQA’s user manual [31]).

Again, the above examples show how a relatively simple
use of PVS can pull out important details that may warrant
further investigation, highlighting issues for the empirical
investigators to query or explicitly observe. When a conjec-
ture cannot be verified, then the proof attempt provides pre-
cise insights about why the conjecture does not hold. Even if
the issue highlighted here could have been in principle iden-
tified manually during the specification process, we note that
in the general case the specification of real socio-technical
systems can be very large, and therefore having a tool-based
support that automates mechanic checks is a key to performe
a more detailed and rigorous analysis.

6.3 Supporting DiCoT model animation

In the context of this case study, the main role played by
simulations is to facilitate the dialogue among analysts and
stakeholders when checking the correctness of the formal
specification. The formal specification can be animated with
the simulation engine presented in Sect. 5.3. We customised
the traces generated by the execution engine by defining
functions that automatically translate the system state into
a string that can be easily interpreted by humans. As an
example of such a function, let us consider the theory for
incident locations. Assume that the theory encodes the inci-
dent location with a natural number. In order to present the
street name in a more human-readable format, a function
(street2string) can be defined for converting numbers
into actual street names. The functionwill be seamlessly used
by the PVSio environment whenever printing the output—to
this end, we exploit a PVSmechanism for defining automatic
type conversions.

123

Using PVS to support the analysis 127

street_th: THEORY BEGIN %-- imports omitted
street: TYPE = posnat
street2string(s: street): string =
COND s = 0 -> ‘‘Boulevard rd. ’’

s = 1 -> ‘‘Terrace pl. ’’
? ENDCOND

CONVERSION street2string
END street_th

The conversion can be defined for any PVS data-type used
in the system state, thus enabling a full customisation of the
output. In the following, we show an example of simulation
trace that can be obtained with the simulator. The simulation
trace is related to the PVS specifications of the DiCoT infor-
mation flow model. The simulator executes four simulation
steps. For simplicity, here we consider a system with two
ambulances. We have redefined the print function used by
the simulator so that it shows only the initial and final states,
and the sequence of actions performed.

<PVSio> exec(4)(LAS_task(sys)
(initial_task_status), sys);

== Initial state =============
caller_phone(N/A)
caller_location(N/A)
incident_location(N/A)
incident_details (N/A)
incident_priority(N/A)

incidents({ })
ambulances({
[1] available, at_station
[2] available, on_street
})
=================================

>> ProQA gathers number and location <<
>> Call-Taker takes a call <<
>> Call-Taker verifies number <<
>> Call-Taker enters incident location <<

== Final State =============
caller_phone(+23 322 3860 843)
caller_location(valid)
incident_location(Terrace pl.)
incident_details (N/A)
incident_priority(N/A)

incidents({
[1] (loc(Terrace pl.), det(N/A), prio(N/A))
})
ambulances({
[1] available, at_station
[2] available, on_street
})
=================================

The textual output generated in this example shows that
a simple redefinition of the print function of the simula-
tor can be used to tailor the animation, without the need of
modifying the developed specification of the DiCoT model.

In this case, we generated an output meant to be intelligible
by humans. However, the same approach can be also used for
generating textual outputs that can be imported by external
visualisation tools (in [3], for instance, we used this approach
for generating waveforms that could be visualised in a graph-
ical tool).

7 Related work

The idea of using formal methods for the analysis of interac-
tive systems in terms of information resources has been inves-
tigated in Wright, Fields and Harrison [40,41] and Doherty
Campos and Harrison [26]. In their approach, they specify
the actions carried out by individuals in the system, and how
these actions are supported by information resources. Such a
specification is then verified with automated reasoning tools
for checking whether given user goals are adequately sup-
ported. They demonstrate the approach by formalising an
interactive control system in Uppaal [21]. Their approach is
general andnot linked to a specific formalismor tool, and they
also argue that a resource-based analysis could be extended to
the context of a broader methodology, such as DiCoT [6]. In
our work, we explore this possibility. In particular, we show
that a fairly simple use of an automated reasoning tool like
PVS can help analysts to verify properties of interest, and
also help field researchers to identify issues that may war-
rant further investigation. In Sect. 5, we also demonstrate
that properties of interest can be automatically formulated
by the automated reasoning system out of the specifications.

Wright, Fields andMerriam [42] investigated the possibil-
ity of defining a conceptual framework for integrating formal
methods and empirical approaches for studying interactive
systems. They proposed a conceptual framework which inte-
grates formal methods and empirical methods in a cyclical
processwhere the twomethods feed each other. They demon-
strate the approach with an example based on a web browser.
The conceptual framework was applied to the analysis of
a remote control system in [14]. This work shares with our
argument that informal approaches and formal methods have
complementary roles in the analysis of the system. Namely,
in their works, they argue that extant artefacts and infor-
mal understanding of the system can provide insights about
usability properties that might be of interest. This informal
understanding can then be refined through formal methods
by generating design questions and evaluating design alterna-
tives,which can in turn be evaluated empirically, e.g., through
prototypes. In our work, we proceed in a similar way: start-
ing from field study data or semi-structured DiCoT models,
we specify how information resources are transformed and
propagated within the system in higher-order logic, and then
mechanically check the logical argument framed in the spec-
ifications. To support the analysis, we also formalise user

123

128 P. Masci et al.

manuals, which provide insights about the designers’ point-
of-view. As gaps and inconsistencies are uncovered within
and between the various specifications, new questions are
generated, which can be used to refine the DiCoT analysis.
Also, the formal specification can be refined as new facts are
discovered—the two methods feed each other.

Tasks and work-flow analysis for checking normative
behaviours have been explored in other studies with dif-
ferent techniques and different aims. For instance, in [15],
work-flows are initially modelled with a Web Service Busi-
ness Process Language (WS-BPEL), and then such semi-
formalmodels are translated into a Finite State Process (FSP)
model suitable for verifying properties with model check-
ing approaches; in [13,43], Petri net-based formalisms are
used for modelling and analysing industrial and business
processes. The aim of these works was to verify the con-
sistency of the system with respect to prescribed (normative)
behaviours. In our work, we extend the analysis by consid-
ering a distributed cognition perspective on the system that
allows us to consider how the deployment of information
resources affects user’s tasks. Also, our work is based on an
integrated use of formal methods and empirical approaches,
and allows us to perform a rigorous analysis of both norma-
tive behaviours and actual practice.

A systematic analysis of normative behaviour for studying
interactive systems has been explored by Bolton et al. [9,10].
In their work, they explicitly consider the environment in
addition to the human interactive system. They use a task-
based analysis for studying how interactive systems may
break down because of unanticipated conditions. In their
work, they propose a formal modelling language, denom-
inated Enhanced Operator Functional Model (EOFM), for
specifying normative human behaviours, i.e., sequences of
actions prescribed in user manuals. The task models are then
used in combination with a specification of an interactive
system for verifying properties of interest in the Symbolic
AnalysisLaboratory (SAL) [27]. They applied their approach
to an example from aviation, where an air-traffic controller
has to co-ordinate with the pilots of an aircraft. Formerly,
Bolton and Bass [7] applied the approach to the verifica-
tion of a programmable drug infusion pump, and proposed a
framework for modelling the system. This work shares with
ours concerns that (i) the model should take into account the
broader system (environment, interactions between individ-
uals and devices, and interactions among individuals), and
that (ii) the non-experts of formal methods should be able to
use the developed tools for analysing realistic systems. The
approach was then extended in [8] to address multi-agent
systems, human–human communication, and non-normative
behaviour. Our work differs from theirs in that we aim to use
formalmethods to support informal approaches based on dis-
tributed cognition for analysingwhat users do in thewild (i.e.,
their actual behaviour), which can be different from the nor-

mative behaviour (e.g., what is reported inwritten documents
of user manuals). Also, our main concern is not to develop
a new modelling language (like EOFM), but to build on the
expressiveness of formal specification languages, like typed
higher-order logic, to closely resemble informal or semi-
formal notations used by non-experts of formal methods. As
Wright et al. [42] observed, multiple methods and multiple
empirical techniques are needed to analyse interactive sys-
tems, rather than a single modelling language and environ-
ment, as each approach can highlight a different aspect of the
system. We follow this philosophy.

The work of Rushby [33] also relates to ours. He uses
model checking approaches for comparing plausible mental
models developed by users and the actual implementation of
the system. He argues that any strong divergence between
mental models and device models is a potential cause of
“automation surprises”, i.e., situations where the automated
system behaves in a way that is different from that expected
by the operator. He proposed a constructivemethod for deriv-
ing mental models from the specification of the interactive
systems [34], and he applied the approach to the analysis of
an MD-88 autopilot system, demonstrating how the model
checker could provide precise insights about design aspects
that may require further investigation. In our work, we use
a similar approach for checking unsafe divergence between
actual practice (according to field study data) and prescribed
practice (according to user manuals, written protocols, or
system implementation). Also, we broaden the system under
study as we build on field study data gathered that provides
information about the whole physical work-space.

8 Conclusion and future work

We have illustrated how an integrated approach using PVS
in a pragmatic way and DiCoT can deliver insights about
socio-technical systems in a systematic way. A systematic
comparison between actual practice (i.e., what individuals do
in the workplace, according to the observations of the field
investigator) and normative practice (i.e., what individuals
are required to do according, for instance, to written docu-
ments or user manuals) proved useful for identifying latent
situations that may warrant further investigation.

In many cases, even before using automated reasoning
tools and techniques, the formal specification pulled out
questions to feed discussions on system design and helped
to identify important aspects of the system.

As in [42], we believe that multiple methods and empir-
ical techniques are needed to analyse interactive systems,
rather than a single modelling language and environment, as
each approach can highlight a different aspect of the system.
This is especially true for socio-technical systems, where
data collected through field studies represent an essential
element for studying the system. From this and other case

123

Using PVS to support the analysis 129

studies analysedwith this combined approach, we have some
evidence that formal methods and empirical studies are not
alternative approaches for studying a socio-technical system,
but instead they complement and refine each other.

The expressiveness of the PVS specification language
allowed us to overcome some pre-conceived ideas of field
researchers about possible limitations of translating infor-
mal descriptions into mathematical specifications. Also, the
PVSio extension for animating specifications allowed us to
engagewith them, even if in a limitedway,when checking the
correctness of the specification. Though, the way automated
reasoning tools, including PVS, are currently packaged is a
major barrier when engaging with field researchers. We are
exploring ways to mitigate this by developing ad hoc GUIs
that allow one to explore simulation traces or generate them
interactively through simple push button style interfaces.

We are currently exploring the utility of the approach
while a field study is in process. The preliminary results,
which are reported in [24], are extremely positive, as the tool
is allowing an overall finer-grained analysis by uncovering
various latent situations that warranted further investigation.

Acknowledgments Funded as part of the CHI+MED: Multidiscipli-
nary Computer-Human Interaction research for the design and safe
use of interactive medical devices project, EPSRC Grant Number
EP/G059063/1, andExtremeReasoning,GrantNumberEP/F02309X/1.
The authors would like to thank Michael Harrison as he facilitated the
integration process described in this work.

References

1. Formal specification of the London Ambulance Service in PVS
(2012). http://tinyurl.com/PVS-LAS

2. Bass EJ, Feigh KM, Gunter E, Rushby J (2011) Formal modeling
and analysis for interactive hybrid systems. In: 4th International
Workshop on Formal Methods for Interactive Systems

3. Bernardeschi C, Cassano L, Domenici A, Masci P (2010)
Debugging PVS specifications of control logics via event-driven
simulation. In: Proc. 1st Intl. Conf. onComputational Logics,Alge-
bras, Programming, Tools, and Benchmarking (Computation Tools
2010)

4. Bernardeschi C, Masci P, Pfeifer H (2008) Early prototyping of
wireless sensor network algorithms in pvs. In: HarrisonMD, Sujan
MA (eds) Proc. of SAFECOMP08, Lecture Notes in Computer
Science, vol 5219, pp 346–359. Springer, Berlin

5. Bernardeschi C, Masci P, Pfeifer H (2009) Analysis of wire-
less sensor network protocols in dynamic scenarios. In: Proc. of
SSS09, Lecture Notes in Computer Science, vol 5873, pp 105–
119. Springer, Berlin

6. Blandford A, Furniss D (2006) DiCoT: AMethodology for Apply-
ing Distributed Cognition to the Design of Teamworking Systems.
Interactive Systems, pp 26–38

7. BoltonML, Bass EJ (2010) Formally verifying human–automation
interaction as part of a system model: limitations and tradeoffs.
Innovations in Systems and Software Engineering 6(3):219–231.
doi:10.1007/s11334-010-0129-9

8. Bolton ML, Bass EJ, Siminiceanu RI (2012) Generating pheno-
typical erroneous human behavior to evaluate human-automation

interaction using model checking. Int J Hum Comput Stud. doi:10.
1016/j.ijhcs.2012.05.010

9. Bolton ML, Bass EJ, Siminiceanu RI 2012 Using formal verifi-
cation to evaluate human-automation interaction, a review. IEEE
Trans Syst Man Cybern A Syst Hum. (in press)

10. BoltonML, SiminiceanuRI, Bass EJ (2011)A systematic approach
to model checking human-automation interaction using task ana-
lytic models. IEEE Trans Syst Man Cybern A Syst Hum 41(5):
961–976

11. Butler R, Sjogren J (1998) A PVS Graph Theory Library. NASA
Technical Memorandum 1998–206923, NASA Langley Research
Center, Hampton, Virginia

12. Crow J, Owre S, Rushby J, Shankar N, Stringer-Calvert D (2001)
Evaluating, testing, and animating PVS specifications. Tech. rep,
Computer Science Laboratory, SRI International, Menlo Park

13. Dun H, Xu H, Wang L (2008) Transformation of BPEL Processes
to Petri Nets. In: Theoretical Aspects of Software Engineering,
2008. TASE ’08. 2nd IFIP/IEEE International Symposium on,
pp 166–173

14. Fields R (2001) Analysis of erroneour actions in the design of
critical systems. Ph.D. thesis, University of York

15. Foster H, Uchitel S, Magee J, Kramer J (2010) An integrated work-
bench for model-based engineering of service compositions. Ser-
vices Comput IEEE Trans 3(2):131–144

16. Furniss D (2004) Codifying distributed cognition: A case study of
emergency medical dispatch. Master’s thesis, UCLIC, UCL Inter-
action Centre

17. Furniss D, Blandford A (2006) Understanding emergency medical
dispatch in terms of distributed cognition: a case study. Ergonomics
J 49:1174–1203

18. Hutchins E (1995) Cognition in theWild, new edn. TheMIT Press.
http://www.amazon.co.uk/Cognition-Bradford-Books-Edwin-
Hutchins/dp/0262581469

19. Hutchins E (1995) How a cockpit remembers its speed. Cognitive
Sci 19:265–288

20. Kirsh D, Maglio P (1994) On distinguishing epistemic from prag-
matic action. Cognitive Sci 18:513–549

21. Larsen KG, Pettersson P, Yi W (1997) Uppaal in a nutshell. Int J
Software Tools Technol Transf 1:134–152

22. Masci P, Curzon P (2011) Checking user-centred design princi-
ples in distributed cognition models: a case study in the healthcare
domain. In: USAB 2011: Information Quality in eHealth, 7th Con-
ference of the Austrian Computer Society. Springer Lecture Notes
in Computer Science (LNCS)

23. Masci P, Curzon P, Blandford A, Furniss D (2011) Modelling dis-
tributed cognition systems in pvs. In: FMIS2011, the 4th Intl.Work-
shop on Formal Methods for Interactive Systems

24. Masci P, Furniss D, Curzon P, Harrison MD, Blandford A (2012)
Supporting field investigators with PVS: a case study in the
healthcare domain In: SERENE 2012: 4th International Work-
shop Software Engineering for Resilient Systems, Lecture Notes in
Computer Science (LNCS)

25. Masci P, Huang H, Curzon P, Harrison M (2012) Using pvs to
investigate incidents through the lens of distributed cognition. In:
NASAFM 2012: 4th Nasa Formal Methods Symposium. Springer
Lecture Notes in Computer Science (LNCS)

26. McKnight J, Doherty G (2008) Distributed cognition and mobile
healthcarework. In: Proc. of BCS-HCI ’08, pp 35–38. BritishCom-
puter Society, Swinton, UK

27. de Moura L, Owre S, Ruess H, Rushby J, Shankar N, Sorea M,
TiwariA (2004)SAL2. In:AlurR, PeledDA(eds)ComputerAided
Verification: CAV 2004, Lecture Notes in Computer Science, vol
3114, pp 496–500. Springer, Berlin

28. Movaghar A, Meyer J (1984) Performability modelling with sto-
chastic activity networks. In: Proc of the 1984 Real-Time Systems,
Symposium, pp 215–224

123

http://tinyurl.com/PVS-LAS
http://dx.doi.org/10.1007/s11334-010-0129-9
http://dx.doi.org/10.1016/j.ijhcs.2012.05.010
http://dx.doi.org/10.1016/j.ijhcs.2012.05.010
http://www.amazon.co.uk/Cognition-Bradford-Books-Edwin-Hutchins/dp/0262581469
http://www.amazon.co.uk/Cognition-Bradford-Books-Edwin-Hutchins/dp/0262581469

130 P. Masci et al.

29. Muñoz C (2003) Rapid prototyping in PVS. Tech. Rep. NIA
Report No. 2003–03, NASA/CR-2003-212418, National Institute
of Aerospace, Hampton, VA

30. Owre S, Rajan S, Rushby J, Shankar N, Srivas M (1996) PVS:
combining specification, proof checking, and model checking. In:
Alur R, Henzinger TA (eds) Computer-Aided Verification, CAV
’96, no. 1102 in Lecture Notes in Computer Science, pp 411–414.
Springer-Verlag, New Brunswick, NJ

31. Priority Dispatch Corp. Inc. (2005) ProQA 3.4, emergency
dispatch software. http://www.prioritydispatch.net/support/pdf/
ProQA_User_Guide.pdf

32. Rajkomar A, Blandford A (2012) Understanding infusion adminis-
tration in the icu through distributed cognition. Journal of Biomed-
ical Informatics (0). doi:10.1016/j.jbi.2012.02.003. http://www.
sciencedirect.com/science/article/pii/S15320464120

33. Rushby J (2002) Using model checking to help discover mode
confusions and other automation surprises. Reliability Engineering
and System Safety 75(2), 167–177. Available at http://www.csl.sri.
com/users/rushby/abstracts/ress02

34. Rushby JM (2001) Modeling the human in human factors. In:
SAFECOMP, pp 86–91

35. Shankar N, Owre S (1999) Principles and pragmatics of subtyping
in PVS. In: Bert D, Choppy C, Mosses P (eds) Recent Trends in
Algebraic Development Techniques, WADT ’99, Lecture Notes in
Computer Science, vol 1827. Springer, Toulouse, pp 37–52

36. Sharp H, Robinson H, Segal J, Furniss D (2006) The role of story
cards and the wall in xp teams: A distributed cognition perspective.
In: Proceedings of the conference onAGILE 2006, pp 65–75. IEEE
Computer Society, Washington, DC, USA

37. Vicente KJ (1999) Cognitive Work Analysis : Toward Safe, Pro-
ductive, and Healthy Computer-Based Work. Lawrence Erlbaum,
New Jersey

38. Werth J, Furniss D (2012) Medical equipment library design:
revealing issues and best practice with DiCoT. International Health
Informatics Symposium (IHI, In (2011)

39. Westbrook JI, Ampt A (2009) Design, application and testing of
the work observation method by activity timing (wombat) to mea-
sure clinicians’ patterns of work and communication. Int J Med
Inform78. doi:10.1016/j.ijmedinf.2008.09.003

40. Wright P, Fields B, Harrison MD (1996) Distributed information
resources: A new approach to interaction modelling. In: Proceed-
ings of ECCE8: European Conference on Cognitive Ergonomics,
pp 5–10. EACE

41. Wright P, Fields B, HarrisonM (2000)Analyzing human-computer
interaction as distributed cognition: the resources model. Hum
Comput Intact J 15(1):1–42

42. Wright P, Fields B, Merriam N (1997) From formal models to
empirical evaluation and back again, chap. 13, pp 283–314. Formal
methods in human-computer interaction. Springer, Berlin

43. Zha H, van der Aalst W, Wang J, Wen L, Sun J (2010) Verifying
workflow processes: a transformation-based approach. Software
and Systems Modeling pp 1–12. doi:10.1007/s10270-010-0149-9

123

http://www.prioritydispatch.net/support/pdf/ProQA_User_Guide.pdf
http://www.prioritydispatch.net/support/pdf/ProQA_User_Guide.pdf
http://dx.doi.org/10.1016/j.jbi.2012.02.003
http://www.sciencedirect.com/science/article/pii/S15320464120
http://www.sciencedirect.com/science/article/pii/S15320464120
http://www.csl.sri.com/users/rushby/abstracts/ress02
http://www.csl.sri.com/users/rushby/abstracts/ress02
http://dx.doi.org/10.1016/j.ijmedinf.2008.09.003
http://dx.doi.org/10.1007/s10270-010-0149-9

	Using PVS to support the analysis of distributed cognition systems
	Abstract
	1 Introduction and background
	2 Contributions
	2.1 Organisation of the paper

	3 Prototype verification system (PVS)
	4 Distributed cognition for teamwork (DiCoT)
	5 Using PVS to support a DiCoT analysis
	5.1 Generic PVS theories to support DiCoT modelling
	5.2 Generic PVS theories to support DiCoT analysis
	5.3 Generic PVS theories to support model animation

	6 PVS-aided analysis of the London ambulance service
	6.1 Supporting DiCoT physical layout analysis
	6.2 Supporting DiCoT information flow analysis
	6.3 Supporting DiCoT model animation

	7 Related work
	8 Conclusion and future work
	Acknowledgments
	References

