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Abstract Knowledge discovery on biomedical data can be based on on-line, data-
stream analyses, or using retrospective, timestamped, off-line datasets. In both cases,
changes in the processes that generate data or in their quality features through timemay
hinder either the knowledge discovery process or the generalization of past knowledge.
These problems can be seen as a lack of data temporal stability. This work establishes
the temporal stability as a data quality dimension and proposes new methods for its
assessment based on a probabilistic framework. Concretely, methods are proposed for
(1) monitoring changes, and (2) characterizing changes, trends and detecting temporal
subgroups. First, a probabilistic change detection algorithm is proposed based on the
Statistical Process Control of the posterior Beta distribution of the Jensen–Shannon
distance, with a memoryless forgetting mechanism. This algorithm (PDF-SPC) clas-
sifies the degree of current change in three states: In-Control, Warning, and Out-of-
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Control. Second, a novelmethod is proposed to visualize and characterize the temporal
changes of data based on the projection of a non-parametric information-geometric
statistical manifold of time windows. This projection facilitates the exploration of
temporal trends using the proposed IGT-plot and, by means of unsupervised learning
methods, discovering conceptually-related temporal subgroups. Methods are evalu-
ated using real and simulated data based on the National Hospital Discharge Survey
(NHDS) dataset.

Keywords Data quality · Change detection · Information theory · Information
geometry · Visual analytics · Biomedical data

1 Introduction

Knowledge discovery on biomedical data is generally performed over healthcare
repositories or research biobanks. Either when the research repositories are gener-
ated from routine clinical data or when they are specifically designed for a research
purpose, it is well accepted that the efficiency of the research processes and the relia-
bility on their information and results are improved if the repository has been assessed
for data quality (Cruz-Correia et al. 2010; Weiskopf and Weng 2013).

The data quality research has gained attention since the work by Wang and Strong
(1996). Following their approach, many studies have been developed to define what
characteristics of data are related to its quality, generally known as data quality dimen-
sions. Additionally, the increasing establishment of electronic health records (EHR)
and the increase of available data is wide-spreading the necessity of biomedical data
quality assessment procedures for maintaining high-quality, curated biomedical infor-
mation repositories (Weiskopf and Weng 2013).

Time is a factor that has been studied in relation to the biomedical data quality
in some works. Recently, Weiskopf and Weng (2013) performed a systematic review
on methods and dimensions of biomedical data quality assessment. From a resultant
pool of 95 articles, only four were related to the currency of data. According to these
studies, currency refers to the degree of how up-to-date the measurements of a patient
are, and it is measured based on temporal thresholds. However, Cruz-Correia et al.
(2010) and Sáez et al. (2012) introduced that another aspect of data quality is related
to the fact that when data is collected for long periods of time, the processes that
generate such data do not need to be stationary. This may be due to several reasons,
such as changes in clinical protocols, environmental or seasonal effects, changes in
the clinical staff, or changes in software or clinical devices. Thus, the non-stationary
biological and social behaviour, as the source of biomedical data, may lead to different
types of changes in data probability distribution functions (PDFs), namely gradual,
abrupt or recurrent. These changesmay also lead to partitions of data into subgroups of
conceptually and probabilistically-related time periods, namely temporal subgroups.
Therefore, if it is assumed that the data generating processes are stable through time,
undesired and unexpected data changes may lead data to fail meeting users—i.e., data
analysts—expectations, thus being considered as a lack of data quality.
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This work proposes new methods for the assessment of temporal changes in bio-
medical data PDFs, which can be used as a framework under a temporal stability data
quality dimension. This is related to assessing the changes causing non-stationarity
of data time series (Brockwell and Davis 2009). Hence, methods are proposed to (1)
monitor changes, and (2) characterize changes, trends and detect temporal subgroups.
In addition, due to the heterogeneous characteristics of biomedical data (Sáez et al
2013), methods must be robust to different variable types, as well as to multivariate,
multi-modal data. Furthermore, in order to improve the scalability of themethods, their
outcomes should be provided as comparable among different domains, hence requir-
ing bounded metrics. As a consequence, a probabilistic framework is established to
support the proposed methods, comprising (1) a non-parametric synopsis of PDFs,
using an incremental, memoryless non-forgetting approach (Rodrigues et al 2010),
and (2) a PDF distance measurement based on information-theoretic probabilistic dis-
tances (Csiszár 1967; Lin 1991), concretely in the Jensen–Shannon distance (Endres
and Schindelin 2003).

The first proposed method is a probabilistic change detection algorithm to
monitor changes in non-parametric PDFs through time. It is based on the con-
cepts of the Statistical Process Control (SPC) by Gama et al. (2004), originally
designed for drift detection in the performance of machine learning models. The
new algorithm (PDF-SPC) is based on the monitoring of the incrementally esti-
mated posterior Beta distribution of the Jensen–Shannon PDF distance, classify-
ing the degree of current change in three states: In-Control, Warning, and Out-of-
Control.

The second proposed method is a novel approach to visualize and characterize
the temporal changes of data based on the projection of a latent, non-parametric
information-geometric statistical manifold (Amari and Nagaoka 2007) of time win-
dows. Concretely, a dissimilarity matrix is obtained from the PDF distances among the
different time windows, where multi-dimensional scaling is used afterwards to project
the temporal statistical manifold (or a dimensionally reduced version). Hence, being
the PDFs of time windows projected in a geometric space, this permits visualizing and
characterizing the temporal changes that occur in data, as well as to apply unsuper-
vised learning methods, such as clustering, to obtain conceptually-related subgroups
of temporal windows.

The interpretation of the results provided by the proposed methods is facilitated by
visual methods, namely PDF-SPC control charts and information-geometric tempo-
ral plots (IGT-plots) of the statistical manifolds. Also, dendrograms and dissimilarity
heatmaps can be used as complementary visualizations. Additionally, as a by-product
of the probabilistic framework, the continuous estimation of PDFs leads to proba-
bility mass temporal maps which, similarly to spectrograms, help understanding the
temporal changes of probability distributions.

The rest of the paper is organized as follows. Section 2 describes the required
background. Section 3 describes the probabilistic framework and the two proposed
methods. Section 4 describes the National Hospital Discharge Survey (NHDS) dataset
used in the evaluation. Section 5 describes the evaluation and its results. Section 6
discusses the study, and compares it with state-of-the-art related work. Finally, Sect. 7
concludes the paper.
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2 Background

Biomedical data are generally gathered in two ways for its analysis: on-line and off-
line. The classical method for accessing research data is as an off-line dataset, e.g., a
comma-separated values file or a small relational data base. However, the continuous
increase on the amounts of available clinical data is changing the tendency to on-
line methods, where data is analysed through the continuous observation of batches,
generally aiming to optimise processing and storage resources (Gama andGaber 2007;
Rodrigues and Correia 2013). On the other hand, when the purpose is to monitor
biomedical indicators in real time, the on-line analysis is straightforward. This work
aims to apply to both scenarios, thus, providing users feedback about changes on their
off-line dataset or during on-line processes.

This section describes some previous theoretical background which is required for
the new methods proposed in this work. Concretely, this background is divided in two
main topics: the probabilistic framework to compare biomedical data distributions and
the change detection methods.

2.1 Probabilistic distances on biomedical data distributions

Biomedical data show heterogeneous conditions. They are generally based on multi-
modal distributions—i.e., various inherent generative functions, such as a mixture of
affected and unaffected patients. Studies may be uni- or multivariate, and may be
composed of different types of variables—i.e., continuous, discrete ordinal and non
ordinal, ormixed. Under these conditions, comparing different data samples or batches
through time based on classical statistics may not be enough representative, or even
not valid. Additionally, in order tomeasure themagnitude of changes it is interesting to
provide a metric for such comparisons which, ideally, should be bounded to facilitate
its comparability on different domains.

Sáez et al (2013) studied the behaviour of different PDF dissimilarity metrics with
respect to these conditions. The results of such study are summarized in Table 1. The
results showed that the aforementioned data features may complicate the application
of classical statistical or data analysismethods for the assessment of differences among
data samples. Specifically, the results confirmed that classical statistical tests may have
difficulties on multi-modal data, or may not be suitable at all on multivariate or multi-
type data. Information-theoretic distances, including the Jeffrey and Jensen–Shannon
distances, and the Earth Mover’s Distance (EMD) (Rubner et al. 2000) resulted the
most suitable distances to all conditions. Information-theoretic are distances which
derive from the Shannon’s entropy theory, while EMDderives from the digital imaging
field as the optimal minimum cost of transforming one histogram into another. Then,
information-theoretic distances permit constructing over the theory of a probabilistic
framework.

Focusing on the information-theoretic distances, the Jeffrey distance is a sym-
metrized, metric version of the Kullback–Leibler divergence. However, it is not
bounded and, as showed by Sáez et al (2013), when the probability mass in any region
of the support in any of the compared PDFs tends to zero, the metric tends to infinite.
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Table 1 Summary table of the study by Sáez et al (2013)

Condition T KW KS JF JSD EMD

Multivariate – – – Yes Yes Yes

Multi-Type – – – Yes Yes Yes

Multi-Modal – – Yes Yes Yes Yes

Bounded No No Yes No Yes Yes

It shows the capacity of PDF distances (columns) for dealing with specific features of data (rows 1–3)
and whether the distance is bounded (row 4). The meaning of ‘–’ is that the corresponding distance is not
designed for the corresponding feature
T t-test statistic, KW Kruskal–Wallis statistic, KS Kolmogorov–Smirnov statistic, JF Jeffrey (Symmetric
Kullback–Leibler divergence), JSD Jensen–Shannon1/2, EMD Earth Mover’s Distance

In contrast, the Jensen–Shannon distance (JSD), square root of the Jensen–Shannon
divergence (Endres and Schindelin 2003), is a metric bounded between zero and one,
and it was smoothly convergent to one on that situation. As a consequence, in this
work the JSD was selected as the distance between PDFs.

2.2 Change detection

Change detection methods have been widely studied in data streams, specially when
data are generated as a continuous flow and limited processing or storage resources
are available (Gama 2010). Change detection aim at identifying changes on sufficient
statistics of the sample measured through time (Basseville and Nikiforov 1993; Gama
and Gaber 2007). The selection of the change detection method and the corresponding
sufficient statistic depend on the purpose, and generally follow two approaches: (1)
monitoring data distributions, such as the evolution of the average; or (2) monitoring
the evolution of performance indicators, such as the fitness of data mining models or
patterns (Klinkenberg and Renz 1998).

Changes can be classified according to their causes and to their behaviour, e.g.,
their rate of change. Regarding to the causes, changes can occur due to modifications
in the context of data acquisition, e.g., changes in clinical protocols. On the other
hand, related to their behaviour, changes may be characterized as (1) gradual, (2)
abrupt and (3) recurrent. In the literature, gradual changes are also known as concept
drifts, while abrupt as concept shift. Abrupt changes do not necessarily imply changes
with a large magnitude. In fact, the early warning of small changes may be of crucial
importance to prevent larger problems caused by the accumulation of such small
changes (Basseville and Nikiforov 1993). The proper change detection methods will
depend on these requirements.

In this study, the focus is to detect and characterize changes in the PDF of data. This
is usually based on monitoring temporal windows of the current PDF with respect to a
reference window. This involves three related aspects: (1) the type of window scheme,
(2) the synopsis of the windowed data into a sufficient statistic, and (3) the change
detection method on the sufficient statistic.
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Time windows schemes define the characteristics of the temporal period which data is
synopsed—i.e., aggregated—to be monitored. The simplest approach is to use sliding
windows of fixed size (Mitchell et al. 1994;Gama andGaber 2007). Thus, for awindow
size of w observations, when the individual i is observed, the i − w is forgotten. This
approach is useful on sensor data, which are expected to arrive in a continuous stream.
However, biomedical data do not necessarily have a constant flow, e.g., the number
of patient discharges presents large variations during the day, among the days of the
week, or have a seasonal effect. This, in addition to the social organization of time,may
lead to an inaccurate statistical sampling. Hence, a solution comes by using sliding
windows within temporal semantic landmarks (Gehrke et al. 2001), i.e., aggregating
daily, weekly, or monthly data, independently of the number of individuals within
each semantic block. These approaches use a catastrophic-forget, i.e., the outside-
window information is ignored. However, as concepts may evolve smoothly, old data
may still be important (Gama et al. 2004). In tilted windows, current information is
an aggregation at increasing levels of granularity from past to current data (Han et al.
2012). Thus, old data are still usedbut latter examples are givenmore importance.Other
approach to synopse datawithout forgetting is usingweighted slidingwindows.Hence,
each observation is weighted according to its age, getting older data lessweight. Due to
the fact that the amount ofmemory is limited, specially in ubiquitous streams scenarios,
weighted sliding windows weight data individuals within a window. Thus, there is still
a minor outside-window forgetting. In order to overcome this issue, Rodrigues et al
(2010) proposed the incremental memoryless fading windows. It uses all previous
data in an incremental manner, i.e., only the last observation is maintained in memory,
approximating weighted windows within specific error bounds.

Synopsis methods aim to aggregate or summarize data within a window as the basis
for the sufficient statistic to be monitored for changes. Simplest methods may just cal-
culate the window central tendency—e.g., a weighted average according to weighted
windows schemes—and dispersion. In scenarios where the Gaussian behaviour is not
the default, other methods such as histograms or wavelets (Chakrabarti et al. 2001)
may result more suitable. Thus, frequency histograms or wavelet coefficients are cal-
culated on the window data as a compact aggregation of its information. The synopsed
sufficient statistic of a current window i can be calculated, as previously mentioned,
according to weighted past information. Hence, memoryless fading windows provide
α-fading sufficient statistics considering all previous data points. The general form of
an α-fading statistic Υα(i) of the variable υ is

Υα(i) =
{

υ1, i = 1

υi + α · Υα(i − 1), i > 1
(1)

with 0 < α < 1. Hence, Υα(i) is the α-fading statistic obtained from the synopsis of
data in the landmarked window i .

Detection methods have been proposed depending on the type and purpose of the
analysed data (Sebastião and Gama 2009). The Page–Hinkley Test (Mouss et al 2004)
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is one of the most referred when the monitored data is assumed to show a Gaussian
behaviour—e.g., in industrial processes.Data streams donot necessarily need to follow
aGaussian distribution. To deal with this, Kifer et al (2004) proposed a non-parametric
change detection method based on a relaxation of the total variation distance between
PDFs. On the other hand, with foundations on the Statistical Quality Control by She-
whart and Deming (1939), Gama et al. (2004) proposed a Statistical Process Control
method to detect changes in the performance indicators of machine learning models—
i.e., the classification error-rate. Their SPC defines three possible states for the system:
In-Control, Warning and Out-of-Control. The state is selected according to the confi-
dence interval of the current error-rate to be generated from the original distribution.
Thus, an Out-of-Control state is associated to a concept drift, leading to the re-learn
of a new classification model with the observations since the last Warning state—as a
meaningful reference of the beginning of the new concept.

3 Proposed methods

This section describes the proposed methods for the assessment of the temporal sta-
bility DQ dimension. The proposed methods are based on a common probabilistic
framework defined by the measurement of the distance between the PDF of different
temporal windows. This framework is described first in this section. Then, the new
methods for change monitoring and for the characterization and subgroup discovery
are described.

3.1 Probabilistic framework

The framework defines the methods to (1) estimate the PDF of the data within a
window, and (2) measure the PDF distance between two windows.

In terms of change detection, themethod to estimate thewindowPDF can be defined
according to a time window scheme and synopsis method. A prior consideration is
that the social organization of time is reflected in temporal biomedical data. Thus,
depending on the hour, weekday, week, month or year there will always be an implicit
biased behaviour. As a consequence, the use of such a temporal landmarked windows
(with a granularity according to the characteristics of the study) is recommended for
a proper sampling. Hence, sufficient statistics will aggregate the data within such
windows.

On the other hand, in Sect. 2.2 it was defined that the flow at which biomedical
data is generated is not generally constant—i.e., the number of individuals per time
period. This may depend on the aforementioned social organization, but also on other
contextual factors. Therefore, the data samples in different landmarked windows may
not be enough representative, and may lead to inaccurate sufficient statistics. In order
to overcome that issue, the landmarked windows are combined with a memoryless
fading windows scheme. The initial landmarked window and the fading window are
used in different tasks. While the former contains the data points which are syn-
opsed to obtain the sufficient statistic, the later contains the set of sufficient statistics
which are gradually weighted. In addition to the computational advantages of mem-
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oryless fading windows, as an approximation to weighted windows they contribute
to the non-forgetting of past data, which is important for the tracking of gradual
changes.

A requirement for the temporal stability methods is that they must be robust to
the heterogeneous conditions of biomedical data. Hence, synopsis methods should
capture such information for further analyses. With such a purpose, histograms stand
as a proper method as they can be obtained for continuous, discrete, and even for
mixed types problems, as well to multivariate data.

On discrete variables, histograms may exactly correspond to their PDF, where each
bin contains the probability mass associated to a value on the distribution support.
However, on continuous distributions histograms must be defined according to a set
of non-overlapping intervals, leading to a discrete number of bins approximating the
original continuous PDF.Different techniques exist to obtain the proper number of bins
on continuous data (Guha et al 2004; Shimazaki and Shinomoto 2010). Additionally,
when the problem is purely continuous, kernel density estimation (KDE) methods
(Parzen 1962; Bowman and Azzalini 1997) can be used to obtain a generative and
smoothed PDF.

As a consequence, each window PDF, further on Pi , will be approximated as an
α-fading averaged histogram where the probability mass of each bin is

Hb,α(i) = Sb,α(i)

Nb,α(i)
, (2)

where, following Eq. 1, Sb,α(i) is the α-fading sum of the raw probability mass of bin
b at window i , and Nb,α(i) the corresponding α-fading increment (i.e., the α-fading
account of averaged bins), with 0 < α < 1.

The memoryless approximation of the α-fading averaged histogram is not error
free in comparison to a weighted approximation. It is proved (Rodrigues et al 2010)

that the error can be bound within a confidence interval of ±2εR setting α = ε
1
w ,

where R = 1 is the variable range—as a probability mass—, and w corresponds to
the window size to approximate.

On the other hand, the framework establishes a method for the measurement of
the distance between the PDFs of two windows. Such method should be (1) robust to
multivariate, multi-type and multi-modal data, (2) bounded and (3) smoothly conver-
gent with near-0 probability bins. As discussed in Sect. 2.1, a method that fulfils these
properties is the Jensen–Shannon distance. Hence, the distance between the PDFs of
two windows, Pi and Pj is

d(Pi , Pj )= J SD(Pi ||Pj )= J S(Pi ||Pj )
1/2 =

(
1

2
K L(Pi ||M) + 1

2
K L(Pj ||M)

)1/2

(3)

where M = 1
2 (Pi + Pj ), and K L(P||Q) is the Kullback–Leibler divergence between

distributions P and Q. Considering the histogram approximation of the PDFs, the
discrete Kullback–Leibler divergence is calculated as
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K L(P||Q) =
∑
b

log2

(
Pb
Qb

)
Pb (4)

where Pb and Qb are the approximated probability mass at bin b. When using the
base 2 logarithm to calculate the Kullback–Leibler divergence, the Jensen–Shannon
distance is bounded between zero and one.

3.2 Change monitoring

With the purpose of monitoring changes as part of the temporal stability data quality
assessment, a new change detection algorithm is proposed. The degree of change
between the PDFs of two timewindows is given by their Jensen–Shannon distance. The
JSD is [0, 1]-bounded and always positive. Thus, in a stable system and considering
some Gaussian noise, monitoring the JSD between the PDFs of the current window
and a reference past window will provide a stable signal close to zero. Then, the
objective would be monitoring a sufficient statistic associated to the data stability, i.e,
a sufficient statistic of the distribution of the Jensen–Shannon distances. The proposed
change detection and monitoring method is based on the concepts of SPC by Gama
et al. (2004)—originally aimed to monitoring the error rate of predictive models—to
monitor the data stability based on the Beta distribution of the JSD.

Suppose a sequence of PDF estimations {Pi }. Using the first element as a reference,
Pref = P1, the JSD of further elements P2, . . . , Pi with respect to the former provides
a sequence of distances {di }. In a stable system, d will approximately be normally
distributed around a central tendencydistance associated to a latent noise.More strictly,
as the JSD is [0, 1]-bounded, d is a Beta random variable. Hence, in a stable system,
after a transitory state, the mean value μ of the Beta(α, β) distribution B given by
{di }will remain stable. Additionally, an upper confidence interval uz for B is given by
the inverse cumulative distribution function iCDF(0.5+ z/2), with 0 < z < 1—e.g.,
for an upper confidence interval at 95% then z = 0.95.

The proposed PDF-SPC method manages three registers during the monitoring,
uz1min , u

z2
min and uz3min , with z1 < z2 < z3. For each new distance di , which updates

the Beta distribution B to Bi , if the new uz1i is lower than uz1min , the three registers
are updated based on Bi . Hence, the values of z1, z2 and z3 depend on the desired
confidence levels—e.g, based on the three-sigma rule the upper confidence intervals
can be set to u0.68min , u

0.95
min and u0.997min .

Given a new distance di , three possible states are defined for the system:

– In-Control: while uz1i < uz2min . The monitored PDF is temporary stable.
– Warning: while uz1i ≥ uz2min ∧ uz1i < uz3min . The monitored PDF is changing but
without reaching an action level. Its causes may be noise or a gradual change.
Hence, an effective change should be confirmed based on further data.

– Out-of-Control: whenever uz1i ≥ uz3min . The current PDF has reached a signifi-
cantly higher distance from the past reference. The current Bi is different from the
reference with a probability of z3.

Reaching the Out-of-Control state means that a new concept is established. As a con-
sequence, in order to continue the changemonitoring process, the PDF-SPC algorithm

123



Probabilistic change detection and visualization methods 959

(Algorithm 1) will replace the reference PDF with the current concept. Hence, if the
Out-of-Control state is reached after Pj is observed, then Pre f = Pj .

As well as the estimation of PDFs is based on a α-fading incremental approach,
with the purpose to avoid storing in memory all the observations of di , the distribution
B is updated using an incremental approach. Hence, the estimation of the parameters
of B, α̂ (Eq. 5) and β̂ (Eq. 6) is based on the Maximum Likelihood Estimation using
a recursive estimation of the sample geometric mean, Ĝ (Eq. 7).

α̂ = 1
2 + Ĝ(di )

2(1 − Ĝ(di ) − Ĝ(1 − di ))
(5)

β̂ = 1
2 + Ĝ(1 − di )

2(1 − Ĝ(di ) − Ĝ(1 − di ))
(6)

Ĝ(xi ) =
((

Ĝ(xi−1)
)i−1

xi

)1/ i

(7)

input: Pre f , current reference PDF;
Sequence of PDFs: {Pi }
begin

Let Pi be the current PDF;
Let di = J SD(Pi ||Pre f );
Let B be a Beta(α, β) distribution;
Re-estimate B with di ;
if uz1i < u

z1
min then

u
z1
min = u

z1
i ;

u
z2
min = u

z2
i ;

u
z3
min = u

z3
i ;

end
if uz1min < u

z2
min then

/*In-Control */
Warning? ← False

else
if uz1min < u

z3
min then

/*Warning Zone */
if NOTWarning? then

Warning? ← True
else

nothing
end

else
/*Out-of-Control */
Pre f = Pi ;
Warning? ← False;
Re-start B, uz1min , u

z2
min , u

z3
min ;

end
end

end
Algorithm 1: The PDF-SPC change monitoring algorithm
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The PDF-SPC permits identifying timestamps related to concept changes, i.e.,
whenever Warning and Out-of-Control states are reached. As a possible initial indi-
cator of further larger changes (Basseville and Nikiforov 1993), that information is
specially useful to rapidly react to, or even to predict, changes. On the other hand,
Widmer and Kubat (1996) suggested that two concepts may coexist before a change is
achieved. The Warning state is fired when there is a suspect for a change, which may
be confirmed once there is enough evidence by the Out-of-Control state. Hence, the
temporal distance between a Warning an Out-of-Control states may be an indicator
of such period of coexistence of concepts and, thus, of the rate of change. However,
other descriptive information to characterize the behaviour of changes may be missed,
e.g., whether concepts can be grouped into meaningful, possibly recurrent, groups. A
promising novel method to deal with this problems is described next.

3.3 Characterization and temporal subgroup discovery

With the purpose to characterize the behaviour of changes and facilitate the discovery
of temporal subgroups, a novel method is proposed. As the PDF-SPC monitors the
degree of changes, this new method aims to describe them, facilitating their charac-
terization, e.g., into gradual, abrupt or recurrent, and analysing the evolution of data
inherent concepts.

According to the probabilistic framework, each time window can be seen as an
individual characterized by its PDF estimation. The Information Geometry field states
(Amari andNagaoka 2007) that probability distributions lie on a Riemannianmanifold
whose inner product is defined by the Fisher Information Metric of a specific family
of probability distributions. The geodesic distances between the points associated to
PDFs are approximated by their PDFdivergences, such as the Jensen–Shannon.Hence,
the JSDs among each pair of PDFs can be used to approximate a non-parametric—i.e.,
family-independent—statistical manifoldwhere the temporal PDF estimations lie and,
as a consequence, allow the discovery of related trends and subgroups. In addition, due
to the JSD bounds, the maximum possible distance among any pair of PDF points is
one. That means that the approximated statistical manifold is bounded by a hyper-ball
of diameter one. Hence, the studied PDFswill lie on space comparable among different
problems, as it will be known that: (1) equal PDFs will co-locate and (2) completely
separable PDFs will be located at the hyper-ball surface—i.e., at a distance of one.

Suppose a sequence of PDF estimations {Pi }, with 1 < i < n. The(n
2

)
pairwise distances d(Pi , Pj ) define a n-by-n symmetric dissimilarity matrix

D = (d11, . . . , dnn), di j : d(Pi , Pj ). Hence, D can be used as the input of a compati-
ble1 clustering method, such as a complete linkage hierarchical clustering, which will
provide a set of groups Gk , each related to a data inherent temporal concept.

The approximated statistical manifold provides information about the layout of
PDFs in such a latent space, e.g., to discover conceptual subgroups. However, much
more information can be taken considering that there is an implicit temporal order

1 Note that Jensen–Shannon distances are not euclidean, hence, compatible clusteringmethods or euclidean
transformations should be used.
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among such PDF points. While the distances among subgroups indicate the concept
dissimilarity, the layout of the temporal order among their points provides informa-
tion about how concepts evolved through time. Hence, a temporal continuity through
the points of a subgroup, e.g., along the vector defining its largest variance, is an
indicator of a gradual change. On the other hand, a temporal alternation among dif-
ferent subgroups every certain time period may be an indicator of recurrent abrupt
changes among probabilistically distinguished concepts. Similarly, a temporal fluctu-
ation through a direction within a subgroup, e.g., along one of its variance vectors,
may be an indicator of a recurrent gradual change among closer, probabilistically-
contiguous concepts.

Hence, in order to permit such analysis it is needed to translate the dissimilarity
matrix D into a set of points in a geometric space. Considering that the distances in
D are not euclidean, the use of a multidimensional scaling (MDS) (Torgerson 1952;
Borg and Groenen 2010) method is suitable to obtain an embedding of the PDFs into
a euclidean space.

Given a dissimilarity matrix D, the objective of MDS is to obtain the set
P = (p11, . . . ,pnc) of points in a R

c euclidean space such that c = n − 1. This
is done by finding the best approximation of ||pi − p j || ≈ di j , where || · || is the
euclidean norm between points pi and p j . This approximation can be solved by the
minimization of the loss function:

min
P1,...,PS

∑
i< j

(||pi − p j || − di j )
2 (8)

A dimensionally reduced MDS projection into 2 or 3 dimensions can be obtained to
facilitate the processing and visualization of such information. Hence, simply based
on the calculus of an inter-window PDF dissimilarity matrix and aMDS projection, an
information-geometric temporal plot (IGT-plot) stands as a powerful visual analytics
tool to explore, characterize and understand changes from a probabilistic perspective.
Illustrative examples of such visualization are shown in Sect. 5.

4 Data

This section describes the data used to evaluate the proposed methods and proposes a
visualization method for monitoring PDFs.

The data used in the evaluation is the publicly available NHDS dataset (NHDS
2014). Using only adult patients (age �18), the dataset contains 2,509,113 hospital
discharge records of approximately 1% of the US hospitals from 2000 to 2009. The
minimum date granularity is the discharge month. Hence, the following experiments
are based on a monthly basis aggregate landmarked windows, with a total of 120
months (the timewindowswill be referred further on as theirmonth index). TheNHDS
dataset contains several demographic, diagnosis and discharge status information.
However, for the purpose of this evaluation the age and sex variables are sufficiently
representative, as it is shown next.
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Fig. 1 Visualizations for the monitoring of the NHDS variables. a Probability mass temporal map of
variable age with non-weighted outside-window forget. b Probability mass temporal map of variable age
with memoryless fading windows. c Temporal evolution of the probability of variable sex (F: female,
M: male). d Temporal evolution of the joint probability of variables age and sex (the 2-dimensional joint
distribution was vectorized on Age’ partitioning by sex as: 0–100 for female age, 101–200 for male age)

With the purpose to illustrate the examples a probability mass temporal map visu-
alization is proposed, which results as a novel visual method for the monitoring of
biomedical variables. It is based on the idea of dense pixel visualizations (Keim 2000),
where the range of possible values are associated to a coloured pixel according to a
user-specified colormap. That method has already been used to visualize sensor mon-
itorings (Rodrigues and Gama 2010). In this case, the method is adapted to visualize
the evolution of PDF estimations, where the domain axis identifies the temporal win-
dow and the range corresponds to the probability bins. Hence, each row of the map
can be seen as a signal of the probability mass evolution for a given support value. In
principle, the method is suitable to variables where there is an order in the variable
support, i.e. as numerical data or discrete ordered. However, it may also be useful to
visualize the joint probability of ordered and non ordered variables, using the latter to
divide the range axis of the map on repeated supports of the former.

Figures 1a, b show probability mass temporal maps of the age variable (given in
years). As a univariate numerical variable, PDFs at each window are estimated based
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on KDE to obtain an smoother histogram. In Fig. 1a, an outside-window forgetting
window scheme is used. In Fig. 1b, the memoryless fading window scheme is used
(an error of ε = 0.05 was used with a smoothing window of 12 months). It can be
seen that the non-forgetting approach of fading windows leads to a smoother temporal
estimation,whichmay avoid undesirable noise caused by non-representativewindows.
Note that the Gaussian-kernel estimation of KDE causes that some probability mass
from the lower tails of continuous Gaussian kernels is given to the bins under 18
years.

It can be observed that the age variable shows a multimodal behaviour which
contains several temporal artefacts of special interest for evaluating changemonitoring
methods. First, there is an abrupt change in month 97. That change is documented
(NHDS 2010) as a change in the codification of the variable, where ages 91 and
over were recoded to 90. Second, a gradual shift is observed as mid-age patients
(age ≈55) get more probability mass through time. This has associated a decrease in
the mass of younger and older patients. This change may be related to a long-term
contextual change—e.g., socio-economic change or due to changes in the sampled
hospitals/population—possibly associated to the increase in life expectancy in the US
(National Research Council 2011; Arias 2014). Finally, a recurrent change is observed
in young (age≈30) patients with a periodicity of 12months. That change is associated
to the increase of births in the summer period, possibly due to the live births seasonality
documented for the US (Cesario 2002) and other countries (Wellings et al. 1999). Such
effect can be observed in the marginal map for female patients (see Supplementary
Material).

On the other hand, Fig. 1c shows the temporal evolution of the probability masses
of the sex variable. There is a minor gradual change in the probabilities of male and
female patients, due to the increase in the males/females ratio in the US during the
period of study (Howden and Meyer 2011).

Finally, Fig. 1d shows the evolution of the joint probability of age and sex. In this
case, while including a discrete non-ordered variable—namely categorical—, it is not
possible to directly apply KDE. Hence the raw synopsed histogram is used instead. In
addition, to facilitate the visualization, the 2-dimensional histogram was vectorized
partitioning by the sex variable, hence the upper half of themap identifies the evolution
of age in females, and the lower in males. As a raw, non-KDE smoothed histogram,
it can be observed that, first, ages below 18 do not get mass (as only adult patients
were included), and second, the aforementioned change in month 97 makes the age
of 90 get the highest mass (as it includes any older patients). That large difference
in probability masses causes that lower values get close colors in the map. In this
case, the visualization can be improved applying a logarithm function with a tuning
parameter to the array of PDFs to visualize, log(P + z), which assigns larger values
of the colormap to the intermediate masses.

Hence, the combination of the age and sex variables in the evaluation study accom-
plishes the three heterogeneous characteristics of biomedical data to which methods
must be robust: age is clearly multimodal, each is of different type, and changes can
be studied on their joint—i.e., multivariate—distribution.
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Fig. 2 Control charts of the PDF-SPC evaluations.Vertical dotted lines indicate the entering into aWarning
state. Vertical continuous lines indicate a change detection as an Out-of-Control state. a Age. b Sex.
c Age+Sex. d Age+Sex with forced joint change

5 Evaluation

In this section the proposed methods are evaluated with the real changes present in the
NHDS data described in previous section, as well as with simulated changes applied
on it.

5.1 Change monitoring

The PDF-SPC algorithm was applied first to a continuous univariate problem based
on the age variable with the purpose to evaluate its behaviour with respect to the
present changes. Second, it was evaluated on the sex variable, categorical, where a
small gradual drift occurs. Then, it was evaluated on the multivariate and mixed-types
problem based on the joint probability of age and sex. Finally, a simulated abrupt shift
was introduced in the latter problem as a change in the joint probability of age and
sex but not in their respective univariate estimates, with the purpose to evaluate the
behaviour of the SPC algorithm on that multivariate change. The confidence levels
were set to z1 = 0.68, z2 = 0.95 and z3 = 0.997.
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Figure 2 shows the results of these four evaluations. The age variable monitoring,
Fig. 2a, shows that the three types of changes are detected. First, after the transitory
state there is a continuous increase in the PDF distance with respect to the reference
window, associated to the gradual movement of mass to the mid-age range. This leads
to a warning state in month 46. Second, the abrupt change in month 97 was clearly
detected. Third, the recurrent change on age ≈30 is captured as a periodic change
in the probabilistic distance to the reference, however, the selected confidence levels
avoid firing any change from them.

The sex variable monitoring, Fig. 2b, shows the gradual switch as an increase in
the monitored distances. However, as expected the magnitude of the change is much
lower—note that the Jensen–Shannon distance is [0, 1]-bounded, hence magnitudes
are comparable. The recurrent change which was easily observed in the age variable is
detected in this case as well. Given the 12-month periodicity, the phase displacement
with respect to the age monitoring may just be due to the selected reference window.

The monitoring of the joint probability of age and sex, Fig. 2c, also captures a
gradual change as the mean distance also increases. However, maybe due to the sum
of changes in both variables causes the change to be detected before. Hence, a change
is fired after month 43. Additionally, the codification change in age is also detected,
although a couple of iterations later.

In the last experiment, a multivariate change was introduced in month 20, main-
taining the new concept until the end. Thus, the sex of n patients was switched, where
n corresponds to the minimum amount of patients from any of the two sexes at each
time window—males in all cases. Whilst the change is not detected univariately, the
multivariate monitoring clearly detects the change in month 20.

5.2 Characterization and temporal subgroup discovery

The proposed methods for change characterization and temporal subgroup discovery
were applied to two of the previous scenarios: in the age variable monitoring and in
the monitoring of joint age and sex variables with simulated change. It is expected
that characterizations and subgroups are related to the concept changes detected by
the SPC method.

Figure 3a shows the 2-dimensional IGT-plot associated to the statistical manifold
where the temporal PDFs estimated from variable age lie. Each PDF is represented as
the index corresponding to its temporal window—i.e., themonth—, allowing temporal
changes to be characterized. It can be observed that there are two well differentiated
groups which, looking at their indices, correspond to the concepts before and after
the codification change in month 97. Looking at the first subgroup, there is a linear
temporal continuity through its larger variance (Arrow A). That continuity is a clear
indicator of the gradual change moving probability mass to the mid-age patients. For
the visual representation, a colormap has been used to assign cooler and warmer colors
to winter and summer months, respectively. Hence, it can be observed that the second
variance component of the first subgroup (Arrow B) is associated to the mentioned
12-month periodic change. In addition, the same change direction is shown in the
second subgroup.
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Fig. 3 Change characterization and temporal subgroup discovery on the age variable. Change charac-
terizations are shown by temporal trends on the projection. Two subgroups are clearly observed in the
approximated statistical manifold (a) and dissimilarity matrix (b), which were confirmed with a complete
linkage hierarchical clustering (c)

The apparent subgroups were confirmed with a complete linkage hierarchical clus-
tering based on the PDFs dissimilarity matrix. Figure 3b shows a heatmap of the
symmetric PDFs dissimilarity matrix, where the color temperature represent a larger
probabilistic distance between the PDFs Px and Py . The differences among the two
main groups can be observed, as well as a recurrent distance increase with a 12-month
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Fig. 4 Change characterization and temporal subgroup discovery on the joint age and sex variables with
forced change at month 20. Change characterizations are shown by temporal trends on the projection. Three
subgroups are clearly observed in the approximated statistical manifold (a) and dissimilarity matrix (b),
which were confirmed with a complete linkage hierarchical clustering (c)

periodicity. Figure 3c shows the dendrogram obtained from the clustering method,
which confirms such temporal groups.

On the other hand, Fig. 4a shows the IGT-plot of the second scenario. In this case, it
can be observed that there are three well differentiated groups. Looking at the indices,
the first and second subgroups are separated by the forced multivariate change in
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month 20, while the second and third by the univariate change in age. In addition,
there are transitory PDFs between the groups, which may be due to the smoothing
produced by the fading windows approach. Figure 4b, c, as in the previous example,
confirm the discovered temporal subgroups. In this scenario, the 12-month recurrent
change is hindered by the magnitude of the other changes, however, it can slightly
be observed in the variance directions of the subgroups (note the separability among
the seasonal colors) as well as in the dissimilarity matrix heatmap. However, the
change detected in month 62 does not establish a subgroup change. Nevertheless, it
represents the resultant change from an accumulated gradual change on both variables
whose magnitude, as it can be observed in Fig. 2d, is lower. The equivalent results
for the age+sex scenario without the forced change are shown in the Supplementary
Material.

6 Discussion

This section highlights the significant points of this work, discusses it with related
work and the limitations of the proposed methods and, finally, suggests future lines of
work.

6.1 Significance

First, the PDF-SPC algorithm has shown to accurately detect the changes present in
the evaluated data according to their evidences (Sect. 4). The resultant monitoring
charts provide information about the magnitude and type of changes, showing the
current probabilistic distance with respect to the reference concept. Based on the
Jensen–Shannon distance, the magnitude of changes is [0 − 1]-bounded and hence
comparable among different problems, e.g., the magnitude of changes in sex (Fig. 2b)
is probabilistically an average of half the magnitude in age (Fig. 2a). Additionally,
based on an incremental approach, the method is suitable to on-line analyses with a
reduced storage and computational cost.

Second, the methods for change characterization and temporal subgroup discovery
based on information geometry have shown to detect temporal subgroups present on
the evaluated data, as well as to help characterizing the type of changes based on the
temporal tendencies of the data points associated to the PDFs of time windows. To the
knowledge of the authors, this is the first study of non-parametric change detection
and characterization based on information-geometric statistical manifolds, with the
potential to be an important step forward. To date, most change detection methods
provide information about the magnitude of changes, their classification according to
the rate of change, which regions in the variables of study show a major contribution
to changes, or even aim to their prediction. However, the temporal projection of a
non-parametric information-geometric statistical manifold constructed from consecu-
tive time-windows permits describing and analysing the behaviour of changes, as the
evolution of a probabilistic concept through such manifold. In this study, the method
has been used on one hand to construct the IGT-plots, as a novel visualization tool
for the exploration of temporal changes in data PDF. In other hand, the obtained PDF
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points have been used for unsupervised learning purposes with the purpose to find
temporal subgroups. However, these are only the first steps of many further research
possibilities which still remain opened based on this approach.

Analysing the two proposed methods together, the evaluation results have demon-
strated the consistency between the PDF-SPC change monitoring algorithm and the
information-geometric based methods for the characterization and subgroup discov-
ery, since the change levels and detections in the PDF-SPC monitoring are associated
to the obtained temporal characterization and subgroups. In addition, both methods
result suitable to the heterogeneous biomedical data conditions posed as requirements.
The use of the probabilistic distances approach permits measuring changes in multi-
modal distributions, as previously demonstrated by Sáez et al (2013). This, in combi-
nation with synopsing data into histograms, allows the analysis of uni and multivariate
continuous, discrete ordinal and non-ordinal, as well as mixed distributions. In addi-
tion, methods have shown to be robust to detect changes on multivariate variable
interactions.

As a consequence, the proposed methods have shown to be useful tools for data
quality assessment focusing in the temporal stability dimension. Thiswork has focused
to the changemonitoring and characterization on data distributions. The same concepts
and methods can be applied to monitor other data quality features, such as monitoring
the degree of missing, inconsistent, or incorrect data. These could be used to audit the
quality of multi-centric or multi-user data gathering for research repositories, clinical
trials, or claims data. Concretely, the latter are known to be far from perfect (Solberg
et al. 2006), where these processes may be of special interest. Hence, the proposed
methods can be used as exploratory data quality assessment solutions. Furthermore,
as based on probabilistic metrics, they might also be used with quantitative decision
making purposes. However further research is required to define these criteria.

6.2 Comparison with related work

Basic statistical methods, similarly to Shewhart control charts, have been used in the
medical monitoring. E.g., laboratory systems have well established temporal qual-
ity controls based on the Levey–Jennings charts and Westgard rules (Westgard and
Barry 2010). Thus, a batch is considered Out-of-Control using basic statistics based
on reference chemical reactives. On the other hand, other studies have used more
complex change detection methods. Rodrigues et al. (2011) proposed a method to
improve the monitoring of cardiotocography signals using the memoryless fading
window approach. Sebastião et al. (2013) applied a Page–Hinkley change detection
test combined with a time-weighted mechanism for the monitoring of depht anaes-
thesya signals. Similarly to the PDF-SPC, these studies focus to the monitoring of
data itself, based on quality control references or in physiological signals.

On the other hand, Stiglic and Kokol (2011) proposed a method to facilitate the
interpretation of changes in the performance of clinical diagnosis classificationmodels
by means of a bivariate analysis of class labels. Using the NHDS dataset, they found a
change in the performance of models to predict chronic kidney disease by the end of
year 2005.Their visualmethodprovided the insights to confirm that the changewas due
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to change in the ICD9-CM (International Classification of Diseases, Ninth Revision,
Clinical Modification) title and description of concepts D403 and D404, related to
the investigated disease. Additionally, a decrease in the performance measures was
found by the start of year 2008. Interestingly, that change is correlated in time with
the change in the codification of age found in this work.

In the generic change detection domain this is not the first study using non-
parametric PDF distance measures for detecting changes. In their useful approach,
Kifer et al (2004) proposed a relaxed total variation distance among PDFs for change
detection. They discarded using information-theoretic distances claiming discrete dis-
tributions were needed. However, based on the Kullback–Leibler divergence they
can be used on purely continuous and, as demonstrated in this work, even in mixed-
types multi-variate distributions. Dasu et al (2009) and Sebastião et al. (2010) did use
the Kullback–Leibler divergence in their respective studies. However, the Kullback–
Leibler neither satisfies the properties of a metric nor is bounded, as required in this
study.

The higher dimensionality is a challenge for change detection methods. Several
solutions havebeenproposed in the general changedetectiondomain.Aggarwal (2003)
proposed a method based in a physical model to measure the velocity of changes in
probability masses of continuous data using KDE. To deal with higher dimensional-
ity and facilitate the understanding on changes, he proposed picking sub-projections
in which the greatest amount of change has occurred. Hrovat et al. (2014) applied a
strategy to detect relevant subgroups on which to make the analysis, with the purpose
to detect temporal trends on biomedical data. Papadimitriou et al (2005) presented
a method capable to find the key trends in a numerical multivariate time series. The
method internally used principal component analysis (PCA), which may not result
effective with multi-modal distributions nor reducing dimensionality including cate-
gorical data, both aspects generally present in biomedical data. The previously men-
tioned Dasu et al (2009) approach measures changes between two PDFs embedded
into a reduced structure using an extension of kd-trees. Thus, a distance metric needs
to be defined between data points, what may be complicated when non-ordinal data
is present. It can be deduced, hence, that dealing with non-ordinal discrete data may
represent another challenge. This work deals with these problems using the synopsis
on non-parametric discrete histograms.

Other approach for change detection suited to multi-modal distributions consists on
monitoring cluster evolutions. Spiliopoulou et al. (2006) presented theMONIC frame-
work based on that idea, where different types of cluster changes are characterized.
It is important to distinguish between such approaches and the temporal clustering
presented in this work. Whilst the former clusters data within time windows, in this
work what is clustered are the time windows.

6.3 Limitations

In high dimensions, the histogram synopsis method involves by default a larger prob-
abilistic space. Hence, data points may become sparse, leading to ineffective distribu-
tion comparisons, such as larger PDF distances. Due to the heterogeneous conditions
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of biomedical data, the application of non-linear dimensionality reduction methods,
such as ISOMAP, or solutions as exposed in related work may alleviate such problem.
Evaluations on high-dimensional simulated changes may help studying these.

On the other hand, on continuous data, KDE provides smoother PDF estima-
tions than raw histogram estimations. Although the fading window approach already
smooths the obtained PDFs using past data, KDE improves the smoothing within the
current window. However, sometimes using data models instead of raw data may hide
other relevant information present at lower levels of probabilistic magnitude. An inter-
esting example arises from the evaluated data. The histogram estimation of the age
variable is shown in Fig. 1d splitted by sex. It can be observed that in both sexes there
is a straight temporal gap beginning approximately at the age of 47, and continuing
in a yearly basis. Considering that the NHDS represents the population of the United
States, and that the first sample corresponds to year 2000, it is concluded that these
population gap correspond to patients born around 1943, where the social effects of
WorldWar II reduced the birth rates. On the other hand, the use ofmethods to select the
proper number of bins in histogram may be useful to overcome some of these issues,
however, the proper number of bins may also vary through time, what may require
further study to make compatible the on-line probability distance measurements as
the support is changed.

6.4 Future work

It has been observed in the examples that a recurrent change is related to a 12-
month periodic seasonal effect. During the experiments developed in this work, it
was observed that applying a simple non-weighted sliding window scheme with a
window size of 12 months completely removed such effect on the resultant monthly
PDF estimations (see comparison in Supplementary Material). That effect may result
useful for the detection of gradual changes, since higher frequent, recurrent changes
which may hinder the former are removed. However, the long-term smoothing may
cause abrupt changes not to be accurately detected. Hence, two interesting future
work topics arise. First, automatically detecting the period of recurrent changes, e.g.,
based on signal processingmethods. Second, using ensemble change detectionmodels
combining different window schemes focused to specific types of changes.

The study of proper dimensionality reduction methods for effectively measuring
PDF distances on high dimensions is also an important future work. This can be
complemented with methods to select appropriate variable or sample subgroups on
which to make the analysis. In addition, the maintenance and compatibility through
time of these methods to reduce the problem complexity can be studied.

Regarding to the temporal characterization and subgroup discovery methods, it is
open as further work their improvement based on incremental approaches. Hence,
incremental clustering (Rodrigues et al. 2008) and MDS (Brandes and Pich 2007)
methods could be used with such a purpose. On the other hand, the use of comple-
mentary methods to optimise the efficiency of the projections, such as Self-Organizing
maps (Kohonen 1982), may be studied.
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Another interesting future work is to apply functional data analysis methods (Ram-
say and Silverman 2005) to model the probabilistic temporal evolution of data on
the information-geometric statistical manifold. They may provide smoothed tendency
curves on which to characterize and measure changes.

Finally, the combination of the temporal stability methods presented in this work
with metrics for the probabilistic spatial stability among multiple sources of bio-
medical data (Sáez et al. 2014), will lead to a future study aiming to a probabilistic
spatio-temporal data quality assessment.

7 Conclusion

Theprobabilisticmethods presented in thisworkhavedemonstrated their feasibility for
the change detection, characterization and subgroup discovery of temporal biomedical
data. The changes present in the evaluated and simulated NHDS datasets have been
successfully detected, in addition,with a probabilistic interpretation, as provided by the
proposed PDF-SPC and information-geometric projection methods. Further studies
will be made to confirm the generalisation of the methods.

As part of a data quality assessment, the proposed methods can facilitate the data
understanding and lead to better decisions when developing knowledge discovery
studies, either on-line or off-line, based on these data. Used as an exploratory frame-
work, they permit visualizing the temporal stability of large healthcare databases in
an interpretable and rapidly manner. In addition, methods are built to be compara-
ble among different domains, hence, they may be used as part of a biomedical data
quality auditory process. This is an important subject, as poor levels of data qual-
ity may have direct consequences on patient care (Aspden et al. 2004) as well as
in the biomedical research processes (Weiskopf and Weng 2013; Sáez et al. 2014).
This work has demonstrated that data stream and change detection methods can be
successfully applied in the biomedical data context, thus, further studies can still be
made to analyse the impact that a temporal stability assessment can provide to real,
in-production healthcare repositories.

Finally, this work has contributed to the generic change detection field of study in
two aspects. First, the extension of the widely accepted SPCmethod to the monitoring
of changes in non-parametric PDFs based on information-theoretic distances. And
second, the novel change characterization method based on information geometry. It
is important to emphasize the contribution to the state-of-the-art of this method. In this
work, it has demonstrated possibilities which have not received proper attention in the
literature yet, such as discovering temporal subgroups or characterizing the direction
and length of changes through the series of time-windows in the statistical manifold.
However, a lot of new possibilities are opened, standing as the first step of a promising
line of research in change detection.
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