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Abstract: Accounting for the increasing uncertainties related to forecast of 
renewables is becoming an essential requirement while assessing the security of 
future power system scenarios. Project iTesla in the Seventh Framework 
Program (FP7) of the European Union (EU) tackles these needs and reaches 
several major objectives, including the development of a security platform 
architecture. In particular, the platform implements a stochastic dependence 
model to simulate a reasonable cloud of plausible ‘future’ states – due to 
renewable forecast – around the expected state, and evaluates the security on 
relevant states after sampling the cloud of uncertainty. The paper focuses on the 
proposed model for the uncertainty and its exploitation in power system 
security assessment process and it reports the relevant validation results. 
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1 Introduction 

Security issues of the pan-European electricity transmission system are likely to become 
more and more challenging in the coming years due to the growing contribution of less 
predictable and intermittent RESs, the introduction of new controllable devices such as 
HVDC lines, a partially controllable electricity demand, the increasing difficulty to build 
new overhead transmission lines, and the progressive construction of a single European 
electricity market where transnational power exchanges will naturally increase. 

These new constraints but also new opportunities will result in more complex system 
operation, a grid working closer to its operational limits and, therefore, the need for a 
major revision of operational rules and procedures. In this context, it is clear that current 
tools for security assessment will no longer be suitable for network operators to take the 
right decisions and that a new generation of tools is needed: in particular, the increasing 
penetration of Renewable Energy Sources (RES) and the constraints posed by  
pan-European market make more and more crucial the need to perform security 
assessment of the whole grid considering forecast uncertainties from operational planning 
to online environment (CIGRE WG C4-601, 2010; Panciatici et al., 2010). Furthermore, 
Regional Security Coordination Initiatives (RSCI) have already emerged for different 
regions of the pan-European transmission system (e.g., CORESO and TSC). Currently in 
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Europe, these initiatives perform security analyses over time horizons of two days ahead, 
one day ahead and close to operation. Generally, the analyses consist of the verification 
of the ‘N-1’ rule and are based on the deterministic forecasting of the grid state. The 
forecasts are prepared by the individual transmission system operators (TSO) and merged 
into one common grid forecast. However, these coordination initiatives will not be fully 
efficient without a new toolbox, allowing the different TSOs to increase coordination. 

This rationale triggered the developments of the iTesla project (iTesla Consortium, 
2014; Vasconcelos et al., 2016) co-funded by the European Commission Framework 
Program 7 (EC FP7). The project targeted the development of an online dynamic security 
analysis platform for European-wide grid models, able to account for uncertainty in the 
security margins evaluation and to handle curative remedial actions to face contingencies. 

This paper reports some of the key aspects developed within the project to address 
uncertainties in the security assessment analyses and it describes the main results of the 
validation process aimed to check the performances of the proposed uncertainty model 
and of the security assessment functions. 

In particular, the paper is organised as follows: Section 2 presents the iTesla platform 
architecture, the model adopted for load and renewable forecast uncertainties and the 
adopted security assessment functions. Sections 3 and 4 respectively describe the 
validation process for uncertainty model and for security rules. Section 5 briefly 
describes the case studies adopted. Sections 6 and 7 present some results of the validation 
of the platform on real world datasets. In Section 8 some conclusions are drawn. 

2 Architecture of iTesla platform 

The iTesla platform is an open source and interoperable toolset designed to support the 
security assessment of forecast situations from several hours ahead of operation up to 
near real-time. Recommendations are also provided in terms of efficiency of curative 
remedial actions. Evaluations account for the uncertainties affecting power injections, 
such as non-programmable RES and loads, and the dynamic behaviour of the grid. To 
this aim, computations are performed via two complementary workflows, namely the 
offline and the online workflows (see Figure 1), and a filtering approach that exploits 
machine learning techniques. 

The offline workflow builds 

1 ‘Security rules’. 

2 Uncertainty models for use in the online workflow: the security rules are simple 
logical expressions based on the pre-contingency quantities (active and reactive 
powers) that predict if the post-contingency state presents any violations of the 
operating constraints. 

The rules are used in the online environment in order to speed up the analysis process. In 
particular, the rules are applied to plausible states in the ‘uncertainty domain’ of the 
forecast under analysis, to identify the contingencies for which control actions are needed 
while limiting the number of accurate network simulations to be performed online. Both 
workflows include different computation modules, each fulfilling a specific technical 
function such as power flow computation or time-domain simulation. The offline 
workflow is expected to be executed periodically in order to update the security rules 
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with the latest information concerning possible system topological changes, general 
weather patterns, etc. To achieve this goal, the offline platform is based on the following 
steps: anticipation, analysis, and classification. 

Figure 1 The online and offline workflows of iTesla platform (see online version for colours) 

 

The first step is to build a large population of operating points that are anticipated to 
occur in the next period, by modelling the variability related to RES and loads. Historical 
measurements from similar periods are used to inform a sophisticated statistical model 
that can generate a very large number of scenarios. The scenarios are consistent with 
what has been observed historically, but also capable of exploring marginal cases that 
have rarely occurred in the past. 

The second step is to analyse the impact of each possible contingency across all 
anticipated operating points. This is done by carrying out a time-domain simulation and 
investigating the impact of a particular asset failure event. 

In the final step, by applying a suitable machine learning algorithm, the results of 
millions of simulations are compressed into a set of rules that can subsequently classify 
unseen operating points as being acceptable or unacceptable. This way, a rule is obtained 
for each analysed contingency that will support the online iTesla platform by predicting 
in a very fast way whether a particular operating point is susceptible to violation of 
security margins in case of a contingency. 

The offline rule generation workflow has been optimised to run on high performance 
computing (HPC) facilities i.e., computer farms with several thousands of cores. By 
leveraging the workflow’s inherent parallelisability, millions of simulations were carried 
out, allowing operators to compute rules across thousands of contingencies in the span of 
a few days of intense processing. 
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Decision trees (DTs), widely used in different scientific fields (Amrouch et al., 2016; 
Gavankar and Sawarkar, 2015; Lopez and Sigrist, 2017; Mogre et al., 2016; Nithya and 
Santhi, 2015), are trained on a set of plausible states of the power system under study in 
order to obtain these rules. In this way, generalisable security rules with high predictive 
capability can be constructed (He et al., 2013). 

The offline workflow also elaborates the historical data to generate a complex model 
of the statistical dependence among RES and loads which is fully exploited in the on-line 
platform (discussed in the next section). Due to the high dimension of the problem and to 
issues in the real data under analysis (e.g., substation configuration, missing data etc.), 
historical data need to be pre-processed and undergo various compression steps such as 
clustering and principal component analysis (PCA), with some functions in common with 
the rule generation. 

The online workflow contains several modules: 

• A merging module in charge of reconciling data from the TSOs in order to obtain a 
consistent network state for the European electricity network. Data are affected by 
inconsistencies (e.g., measurement errors, time differences, etc.) and characterised by 
different reliability levels. A hierarchical merging procedure solves successive AC-
optimal power flows (OPF) in order to build a consistent merged network state by 
minimising the deviations from the data provided by the different TSOs. 

• A filtering procedure to reduce the computational burden of the online platform, by 
focusing on the contingencies which are likely to provoke security problems in the 
forecast system state subject to uncertainties. The procedure consists in two main 
stages: 
a The worst state approach (WSA) aimed to discard contingencies which are 

highly stable within the whole uncertainty domain, considering in a simplified 
way the security limits, the uncertainties of the injections, and the available 
control actions [see Figure 2(a)]. The method addresses a very complex 
optimisation problem (bi-level optimisation with discrete variables). To solve 
this problem, the ‘DC loadflow’ approximation for grid equations is adopted and 
all aspects of the problem are dealt with accordingly. ‘Security rules’ for WSA 
account for security constraints (including stability) in terms of variables of ‘DC 
loadflow’, in order to be included as constraints in the optimisation problem. 
The domain of uncertainty of the stochastic variables is expressed as a convex 
domain. 

b The Monte Carlo-like approach (MCLA), which makes a limited sampling of 
the uncertain injections around the forecast state, and checks the new sampled 
states against ‘rich’ security rules [see Figure 2(b)]. Unlike the rules defined for 
WSA, the ones for MCLA are defined on the whole range of AC quantities, 
hence they can more effectively take into account stability limits. The 
uncertainty model developed for MCLA and based on historical data analysis 
accounts for complex dependencies. MCLA is performed for each contingency 
classified as not secure by the previous filtering stage. For each contingency, the 
states that are classified as potentially insecure are moved on to the next detailed 
analysis. 
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Figure 2 (a) WSA (b) MCLA approaches (see online version for colours) 
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• A further module aimed to identify adequate corrective control actions is run for all 
the {state, contingency} couples resulting as potentially harmful from ‘rich security 
rules’ judgement. The objective is to check more accurately if the situation is 
actually critical, and to identify post-contingency actions that eliminate the 
violations. Security-constrained optimal power flow (SC-OPF) techniques are 
involved in this step. In order to model the operating rules adopted by control room 
operators, a pre-defined set of corrective actions is associated to specific violations 
and to specific contingencies. The optimisation module includes a solver dedicated 
to topological reconfiguration. Topology and the related corrective actions are 
modelled through binary variables in the nonlinear optimisation problem. It is well-
known that the resulting MINLP is a NP-hard problem. Thanks to an innovative 
method, this module is able to find necessary corrective actions to avoid current 
limits violation. An important element in that approach is the fact that a limited 
number of corrective actions are considered. Indeed, the choice has to be made 
between corrective actions that have been selected by the dispatchers and which are 
dedicated to the specific couple {contingency, violated constraints}. 

The remainder of the paper will focus on the uncertainty modelling for MCLA module in 
the online platform and on the offline procedure to build the security rules. 

2.1 Uncertainty modelling in online platform 

Loads and RES forecast uncertainties are taken into account by developing probabilistic 
models of the forecast error, i.e., of the difference between forecast values FO (e.g., 
evaluated on the day ahead) and values occurring in real operation (snapshots, SN, from 
the state estimator in the real-time operation environment). Forecast error models, based 
on historical data series, account for: 

• Dependences between injections (e.g., similar errors in case of forecasts based on 
weather variables). 

• Forecast values themselves (e.g., in case of very sunny or very cloudy weather, 
uncertainty on PV production will be small, and vice versa in case of partially 
clouded sky). 

The uncertainty modelling (developed in the MCLA workflow illustrated in Figure 3) can 
be very complicated due to the high number of stochastic injections. Moreover, 
probability distributions of loads and RES forecast errors are non-Gaussian and their 
dependences are non-linear. To deal with these problems offline platform applies an 
approach based on k-means clustering, PCA (PCA, performed in module 1), a technique 
described in Chatfield (2018), Jolliffe (2002), Jolliffe and Cadima (2016) and Scott 
(2015) and used in different scientific fields (Han et al., 2015; Li et al., 2015; Reddy  
et al., 2017; Sharma and Singh, 2015; Tani et al., 2016; Yin et al., 2015), and pair copula 
decomposition (PCD, in module 2) described in Aas et al. (2009) and Aas (2016) and 
applied in Klein (2016) and Ruscone and Osmetti (2017), with the final aim of building a 
reasonable statistical model of forecast errors. 

Again, some computationally time-intensive operations on large historical datasets 
(e.g., matrix inversions) are performed offline (in module 0) to pre-compute some 
quantities to be used in the on-line platform. 
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‘MCLA’ performs a sampling of the uncertainty domain around the forecast state, 
and then checks each new sampled state against the security rules. In particular, MCLA 
receives as input the forecast states with an associated uncertainty model computed 
offline, the list of contingencies and the security rules computed by the offline workflow. 
New plausible states are computed online from the forecast state by sampling the 
stochastic injections (loads and RES) and adjusting the conventional generation 
accordingly. 

Figure 3 MCLA workflow with focus on the RES and load forecast uncertainty modelling 

 

 

Module  0 

Data preprocessing, including missing data imputation, applying 
the filtering technique to lump highly correlated variables and 

inverting the forecast correlation matrix 

Module  1 

Principal Component Analysis on augmented variables [sn y] 

where y = forecasts, sn = snapshots 

 

Module  2 

Pair Copula Decomposition (PCD) and parameter estimation 

Module  3 

Random sampling of PCs and back projection on                     
original stochastic variables 

Module  4 

Generation of conditioned samples: 

Calculating Nataf transformed vector of forecasts and snapshots 
and applying Gaussian conditional sampling formula 

Module  5-7 

Conventional generation redispatching, powerflow, security 
assessment via security rule application 

 

The sampling performed in module 4 is ‘conditioned’ by the forecast error model, i.e., the 
sampling process takes into account the current value of the forecast under analysis, as 
well as the dependence among conditioned variables. The adopted sampling technique 
limits the on-line computation burden by exploiting several pre-processing techniques 
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applied offline (in module 0), the Nataf transformation, described in Nataf (1962) and 
already applied in many scientific fields (Chen et al., 2015a, 2015b; Zhang  
et al., 2015; Zghal et al., 2015), as well as the properties of Gaussian conditional 
multivariates. This makes the technique suitable for on-line applications dealing with 
large sets of stochastic variables. The output of MCLA is the security assessment of each 
evaluated state with respect to the analysed contingencies. 

2.2 Online security assessment functions 

As far as the last modules of the MCLA workflow are concerned, module 5 applies the 
redispatching to conventional generation to compensate the power imbalance due to 
forecast errors, thus getting a plausible system state, module 6 runs the loadflow on the 
generated power system state and finally module 7 evaluates the security of each system 
state by applying the security rules generated in the offline platform for each contingency 
and each security problem. 

2.3 Offline DT training procedure 
For the generation/selection of the best security rules, i.e., DT for each contingency, a 
quasi-automatic procedure is adopted in the iTesla offline platform, which is summarised 
in Figure 4. 

Figure 4 Applied steps for DT generation/selection (see online version for colours) 

 1. Change training parameters of the DT 
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This procedure comprises the following main steps: 

Step 1 Change the training parameters of the DT (detailed in Section 4). 

Step 2 DT generation. 

Step 3 Evaluation of the DT performance results by analysing: 
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a Misclassification errors provided by the k-fold cross validation method 
(detailed in Section 4). 

b DT tree structure visualisation. 
c Geographical visualisation of the DT. 

From this procedure, a set of alternative DTs is obtained for each contingency/security 
index pair, being each alternative DT associated with a different setting of the training 
parameters. A different set of alternative DT’s is obtained for each one of the following 
online filtering methods: 

• Worst case approach (WCA) method (the set of candidate attributes of the DT can 
only be related with active power operating conditions). 

• MCLA method (the set of candidate attributes of the DT can also consider other type 
of operating conditions). 

From the set of alternative DTs, the best DT is selected by analysing each DT 
performance results and by pursuing the following criteria: 

• Criterion 1 (highest priority): To maximise the accuracy of the DT in detecting 
unsecure situations, being achieved by minimising the missed alarms (MA) 
situations (i.e., an unsecure state/contingency pair for which the DT provided a 
secure classification). 

• Criterion 2: To maximise the efficiency of the DT in detecting secure situations, 
aiming to maximise the filtering capability of the contingency filtering process of the 
online part. This is achieved by minimising the false alarms (FA) situations (i.e., a 
secure state/contingency pair for which the DT provided an unsecure classification). 

• Criterion 3: To avoid over-fitting to the learning states. In fact, if the computed DT is 
over-fitted to the learning network states, then the DT may lose generalisation 
capability to obtain an accurate estimation for unseen new states (i.e., states not used 
in the learning process). 

After selecting the assumed best DT for each contingency, the accuracy of the DT was 
further evaluated with historical data, aiming to assess the generalisation capability of the 
DTs. 

Next sections are dedicated to the procedures run to validate the uncertainty model 
used in the online MCLA workflow and the security assessment performance achieved 
via DTs in module 7 of MCLA. 

3 Validation of uncertainty model 

The objective of the validation process is to evaluate the quality of the samples of 
stochastic injections conditioned to the forecast state, generated in module 4 of MCLA 
workflow. To achieve this goal, it is necessary to introduce suitable metrics to assess the 
distance between the probability distribution of conditioned samples generated by  
module 4 and the ‘reference’ conditioned distribution f(sn|y). 

To this aim, two tests are performed: 
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• A comparison between the conditioned distribution sampled in module 4 and the 
‘benchmark’ conditioned distribution obtained from the so called ‘nearest neighbour 
(NN) method’ for a specific forecast state y0: this validation is suitable for small sets 
of variables. 

• A cross-validation scheme to assess the general adequacy of the conditional density 
model f(sn|y), for any forecast state y: the proposed conditional density estimator is 
tested against a well-established alternative conditional density estimator, the  
kernel-based estimator based on Gaussian kernels, often used in literature (Arora and 
Taylor, 2016; Jeon and Taylor, 2016; O’Brien et al., 2016; Taylor and Jeon, 2015; 
Zolfaghari et al., 2015). 

The metrics used for comparisons are: 

• Average root mean square error (ARMS) of the CDFs for the marginal distributions 
of conditioned variables. 

• The Kendall’s rank correlation coefficients among each pair of conditioned 
variables. 

• The Kullback-Leibler (KL) divergence (only for cross-validation) among the 
conditioned densities. 

3.1 Benchmarking against NN validation method 

This test consists in comparing the first two statistical moments of the marginal 
distributions (and the Kendall’s rank pairwise correlation coefficients) of the conditioned 
variables sampled respectively by module 4 of MCLA workflow and by NN method. 

The NN method consists in the following steps: 

• Run modules 1, 2 and 3 on an augmented matrix X = [sn y] which includes both 
snapshots sn’s and forecast y’s 

• For any sample h [sn y0] to be generated with given vector y0 of forecasts, perform 
the following sub-steps: 
a Generate M trial samples from module 3. 

b Any trial sample j has a metrics ( ) 0max(| |).j
j i i

i Y
d y y

∈
= −  

c Select the trial sample (*) s.t. (*) min( ).j
j

d d=  

The NN method can be used for validation purposes, even though it may have some 
criticalities especially in case of large sets of variables: in fact, when the number of 
stochastic variables increases, the present method leads to increasing inaccuracy because 
metrics d(*) may get unacceptably high. 

3.2 Cross-validation against kernel-based estimator 

For large sets of variables, benchmarking against the NN is impractical: the most 
convenient validation scheme consists in performing a cross-validation between the 
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proposed method and a well-established conditional density estimator: a kernel-based 
estimator with Gaussian kernels. 

The metrics used to compare the two methods is the KL divergence (Van Erven and 
Harremoes, 2014) representing the distance between true and estimated functions and 
given by 

( )ˆ ˆ( ) log ( ) ( ) log ( )D h h h x h x dx h x h x dx= − +∫ ∫  (1) 

where function h(x) = f(sn|y) of the vector of augmented variables x = [sn y] is the true 
conditional distribution density while ĥ  is the density estimate. 

In particular, the first term ˆ( ) log ( )h x h x dx−∫  is called ‘loss function’ R and depends 

on the density estimate, while the second term, called ‘entropy’, does not depend on 
estimate: thus, minimising the KL divergence means minimising the related loss function. 
An interesting property of the KL divergence that arises from Jensen’s inequality (Jensen, 
1906) is that ˆ( || )D h h  is always not negative and it is zero only if and only if ˆ.h h≡  
Thus, the loss function is bounded below by the negative of the entropy of h. The  
goal is to calculate the loss function, which can be approximated in a  
leave-one-out cross-validation with: 

( )
1

1ˆ ˆ( ) log ( ) log
n

i
i

h x h x dx h x
n =

− ≈ − ∑∫  (2) 

where n is the number of samples, xi is the ith test sample and ˆ ˆ( ) ( | )h x f sn y=  is the 
density estimate obtained from the remaining n – 1 samples (training set). 

The paper adopts the k-fold cross-validation scheme due to its relatively small 
sensitiveness to the way how data are partitioned. The method works according to the 
next steps: 

1 Split the historical data into N = 10 sets; at each iteration of the procedure each 
subset is alternatively used as test set and the other subsets compose the training set. 

2 Calculate the estimate of loss function Rp for pth training/test set combination (p = 1, 
… N) in equation (3) where in this case density estimate is obtained from pth training 
set Λp and xi are the samples of pth test set, and ntest,p is the number of samples of pth 
test set Ωp 

( )
,

1 ˆlog
p

p p jtest
test p jtest

R h x
n ∈Ω

≈ − ∑  (3) 

3 Sum up all the terms in step 2 over all the N combinations and divide it by N, thus 

getting R estimate: 
1

.
N

p
p

R R N
=

=∑  

4 The estimate with the lowest loss function ˆ( ) log ( )h x h x dx−∫  is the best estimate of 

density f. 
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Step 2 requires the estimation of the conditional density which can be performed via two 
methods: 

• For kernel-based estimator, the estimate (Silverman, 1986) is given by 

( )
( ) ( )

( )
ˆ |

Ntrain

jtrain itest jtrain itest
jtrain

itest itest Ntrain

jtrain itest
jtrain

K sn sn K y y

f sn y
K y y

− × −

=

−

∑

∑
 (4) 

where K is the Gaussian kernel with bandwidth vector b, i.e., 

( )
2( )

2

1

( ) 2 .
T dt diag b t d

i
i

K t e π b
−⋅ ⋅

−

=

 
=   

 
∏  This method requires the solution of an 

optimisation problem to find the optimal bandwidths of the conditional density 
kernel estimator with Gaussian kernels in order to minimise the divergence term over 
all the alternative test sets: to do this, the fmincon function in MATLAB is used. 

• For the NT-based method, the estimate of the multivariate conditional density f̂  
(Silverman, 1986) is given by equation (5) 

( ) ( ) ( )( )' ' ' 'ˆ , ,itest itest itest itest itest train itest trainf sn y sn y mvnpdf sn μ y= Φ = Σ  (5) 

where mvnpdf is the multivariate normal pdf function in MATLAB, Φ is the 
multivariate normal density, sn’itest and y’itest are the Nataf transformed variables 
corresponding to snapshot sn and forecast y of ith sample of the test set, and are given 
by φ-1(Fsn itest) and φ-1(Fy itest), where Fx are the CDF value of variable x, ∑train and 
μtrain are the covariance matrix and the mean vector derived from training set (μtrain 
also depends on y’itest). 

The output metrics to evaluate the cross-validation results are the loss function R estimate 
and the standard deviation (SD) of the ‘log’ estimates for any test/training combination, 
i.e., 

• loss function estimate R 

• SD of the log estimates 
1...

( ).p
p N

SD std R
=

=  

4 Validation of the security assessment performance 

The MCLA security assessment relies on the security rules generated in the iTesla offline 
platform. Hence, validating MCLA is in some extent equivalent to validating the rules. 

The validation consists in running detailed simulations to assess the true classification 
‘secure/unsecure’ for each state belonging to the uncertainty cloud around the forecast 
state. After that, the same states are evaluated using a security rule for each contingency 
and each security problem. The comparison of the results from rule application and 
detailed simulations allows to compute some performance indicators. 
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The performance indices defined for validation purposes consist in accuracy and 
efficiency, and they are defined for each phenomenon (described by the rules trained on 
specific security indices). The relevant indices can be defined as: 

( )_ _1 # # 100specific phenomenon specific phenomenonAccuracy UCS U= − ×  

( )_ _1 # # 100specific phenomenon specific phenomenonEfficiency SCU S= − ×  

where #UCSspecific_phenomenon = nr of unsecure states classified as secure, and 
#SCUspecific_phenomenon = nr of secure states classified as unsecure, #Uspecific_phenomenon = nr of 
unsecure states, #Sspecific_phenomenon = nr of secure states for the specific phenomenon. 

It can be seen from Figure 5 that different levels of output are obtained, for each 
analysed contingency, namely: 

1 sample by sample, per phenomenon 

2 aggregated for all samples, per phenomenon 

3 aggregated for all samples and all phenomena. 

In the validation phase, all contingencies must be evaluated, including the ones that 
would be discarded as harmless (cluster 1) by the previous filtering module WCA and the 
‘null contingency’. 

Figure 5 Performance index computation for MCLA (see online version for colours) 
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Note: This process also validates the security rules 
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5 Case studies 

This section illustrates some preliminary results on the validation of the RES forecast 
uncertainty modelling, and of the security assessment performance of the online iTesla 
platform. The datasets used for this study case are: 

• Dataset 1 consisting in a set of snapshots (SN) and forecasts (FO) for about 3,800 
stochastic variables (active/reactive powers from renewable and loads in the French 
EHV grid) related to two months (January and February) in 2013. 

• Dataset 2 consisting of SNs and FOs of March 2013. 

• Dataset 3 consisting in 2736 samples of forecasts and snapshots of four stochastic 
variables representing active powers of aggregated loads in a simplified ‘French 
system’ with seven buses. 

The historical data used were French day-ahead congestion forecast (DACF) and SN 
files, in CIM profile 1 format, with persistent identifiers for equipment regardless of the 
time and type of file (DACF and SN). 

Figure 6 Criticality of the analysed contingencies (see online version for colours) 
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To validate the security assessment performance, the present study considers three 
contingencies involving overloaded lines: 



   

 

   

   
 

   

   

 

   

   272 E. Ciapesson et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

• Two 400 kV tripping lines in Normandy area leading to an overloaded 225 kV line 
(henceforth called contingency N-2 ‘A’). 

• One 400 kV tripping line in Languedoc area leading to an overloaded 225 kV line 
(henceforth called contingency N-1 ‘B’). 

• One 400 kV tripping line in the Charente area leading to an overloaded 225 kV line 
(contingency N-1 ‘C’). 

The first case refers to a very severe contingency which is monitored in case of 
exceptional weather conditions whereas the second one and third one are continually 
monitored. 

From an operational point of view, the three situations might seem very close but 
when processed in the offline part they lead to various levels of criticality which has a 
strong impact on the generation of the DTs. To confirm the previous statement, Figure 6 
describes the number of secure and unsecure states that are included in the generated 
dataset of pre-analysed network states. From this figure, it is possible to observe that for 
contingency ‘A’, the number of generated pre-analysed states includes 175 secure states 
(i.e., #secure = 175) and 946 unsecure states (i.e., #unsecure = 946), comprising a total of 
1,121 states (i.e., #states = #secure + #unsecure). Therefore, in this dataset, the criticality 
of the contingency is around 84% (i.e., #unsecure/#states). 

6 Validation results for the uncertainty model 

The accuracy of the uncertainty model used in the online MCLA workflow is evaluated 
in the present section. 

Figure 7 ARMS between the CDFs of the four variables evaluated by the two methods (Nataf 
and NN) (see online version for colours) 
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6.1 Comparison against the NN method 

The benchmarking of the MCLA conditional sampling against NN method is performed 
on the seven bus grid, given the specific set of forecasts y0 = [240 240 480 480] MW. 
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Figure 7 reports the ARMS of the CDFs of the four variables evaluated by NT-based and 
NN methods: the small ARMS values (well below 0.5%) confirm a good matching of the 
marginals given by the two methods. 

6.2 Cross validation against kernel estimator 

The cross-validation has been applied to both dataset 3 (consisting in active power 
absorptions of four equivalent loads over one year interval) and a subset of 40 variables 
(RES and load power exchanges) from dataset 2 related to March 2013. From the original 
large sets of samples, the present simulation extracts 300 samples uniformly spread over 
the whole set (in order to avoid any possible polarisation, especially for dataset 3 subject 
to seasonal effects). These samples are then clustered into ten sets with 30 samples each: 
the number of samples for each set has been chosen as a trade-off between a fair 
representation of the statistical properties of the data and a sufficiently fast solution of the 
bandwidth optimisation for the kernel model. 

Moreover, the number of subsets (N = 10) assures a good trade-off between the bias 
(mean value) and the variance of loss function values Rp computed for any test/training 
combination. Moreover, 50 runs of the cross-validation procedure have been done by 
randomly associating the samples to each set. 

Table 1 reports the median, minimum and maximum value of the loss function R of 
KL divergence (over the 50 cross-validation runs) for the two estimation methods, for 
datasets 2 and 3. The close values between median, maximum and minimum values for R 
estimates show that the cross-validation is poorly sensitive to the specific association of 
the samples to the sets. 
Table 1 Estimated loss function R of KL DIV 

Data set # 3  2 (subset of 40 variables) 
R value 

Estimate 
Min Median Max  Min Median Max 

Kernel-based +3.52 +3.58 +3.66  +37.47 +41.17 +42.19 
NT-based. –2.89 –2.88 –2.87  +6.75 +6.97 +7.52 

Note: For Datasets 2 and 3. 

In both datasets NT-based method has a lower loss function R, which means that it 
provides the best estimates of the true conditional distributions f(sn|y). Changing the 
number and the sample size of the sets does not impair the validity of the previous 
statement even though it affects the individual values of R estimate for the two methods, 
as demonstrated in the next subsection. 

6.3 Assessing the effect of different cross-validation schemes 

The impact of the cross-validation schemes on the bias and the variance of the loss 
function (defined in Section 3) is analysed in detail on dataset 3. To this aim, we consider 
the same total number of samples for the simulation (200), but two different  
cross-validation schemes: 4/1 and 9/1. From the original large sets of samples, the present 
simulation extracts 200 samples uniformly spread over the whole set (in order to avoid 
any possible polarisation). These samples are then clustered into 5 (or 10) sets with 40 (or 
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20) samples each: the number of samples for each set has been chosen as a trade-off 
between a fair representation of the statistical properties of the data and a sufficiently fast 
solution of the bandwidth optimisation for the kernel model. Moreover, 11 runs of the 
cross-validation procedure have been done by randomly associating the samples to each 
set. 

Table 2 reports compare the mean, median and maximum value of the loss function R 
for the two cross-validation schemes (over the 11 cross-validation runs). The close values 
between median, maximum and minimum values for R estimates show that the cross-
validation is poorly sensitive to the specific association of the samples to the sets. Passing 
from 4/1 to 9/1 the loss function decreases: in fact, at each combination of training/test 
sets, a larger number of samples represent the training set to build the density model, 
which improves its accuracy. 
Table 2 Loss function R estimate for cross-validation schemes 4/1 and 9/1 

Loss function R 
4/1 scheme  9/1 scheme 

Mean Median Max  Mean Median Max 
Nataf method –2.7617 –2.7647 –2.7454  –2.7693 –2.7711 –2.7560 
Kernel estimator 3.7439 3.7091 3.8810  3.6339 3.6389 3.6729 

Table 3 instead reports the SD value of the loss function R for Nataf method over the N 
test/training combinations for three cross-validation schemes 4/1, 9/1 and 19/1 (i.e., k = 5, 
10 and 20) for a specific random assignment of samples to the sets. It can be noticed that 
in the large majority of cases SD increases as k increases: in fact, fewer samples in the 
test set leads to a larger volatility in the log estimates Rp. 
Table 3 SD value for loss function R for both methods for three cross-correlation schemes 

 4/1 scheme 9/1 scheme 19/1 scheme 
Nataf method 0.1030 0.2142 0.3553 
Kernel estimator 0.2740 0.2550 0.3192 

These tests are repeated for the three cross-correlation schemes and for Nataf method 
(with one random assignment of the samples to the sets) for the same subset of 40 
injections mentioned in Table 1. From Table 4 it can be noticed that also for this case the 
increase of the number of folds k causes a reduced loss function R but a larger variability 
of log estimates among the training/test combinations. 
Table 4 Loss function R estimate and SD for R for both methods and three cross-validation 

schemes 

 Nataf method  Kernel estimator 
4/1 

scheme 
9/1 

scheme 
19/1 

scheme 
 4/1 

scheme 
9/1 

scheme 
19/1 

scheme 
Loss of function R 6.3028 5.9099 5.8217  17.3623 17.2348 17.1201 
SD for R 0.9024 1.2867 1.5959  0.8920 1.2847 1.7609 

The increase of k from 10 to 20 is not justified by the slight decrease of loss function 
(from 5.90 to 5.82); thus, simulations seem to confirm that k = 10 is a good trade-off 
between a reduced loss function and a limited variability of log estimates Rp. Anyway, 
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any choice of k confirms that the conditioned density structure computed by Nataf 
method works better than kernel estimator at least for the sets of variables under test. 

To summarise, it is worth highlighting that the simulated cases do not demonstrate 
that NT-based method always works better than kernel-based estimator, but the extensive 
campaign of simulations run up to now confirms the abovementioned remark. This is due 
to the fact that kernel estimator considers independent perturbations in the Gaussian 
kernel formulation, i.e., the covariance matrix in the kernel is diagonal: moreover, many 
historical samples are required around the specific forecast vector to achieve a good 
estimate of local correlation. 

7 Validation results for the security assessment performance 

This section presents some results related to the offline training of the DTs and to the 
validation of the security assessment capability of the online platform for two of the 
contingencies in Section 5. 

7.1 Training of the DTs and selection of the best choice: some results 

The iTesla platform detects unacceptable situations due to overload problems by 
comparing the post-contingency steady-state current in all the lines and transformers with 
its operational limits available in the CIM file: if at least one limit is violated, then the 
situation is considered unacceptable. As already pointed out, firstly the uncertainty 
modelling is used to extract the samples of stochastic variables to generate plausible 
states of the network on which extensive security analyses are performed to get the 
information to train DTs. The iTesla platform allows a visual comparison between the 
historical SN used for sampling and the sampled states in the form of plots on relevant 
sets of the stochastic variables (RES injections and loads). 

Figure 8 presents some of the plots obtained for aggregated stochastic variables. The 
variable in x-axis of this figure, var1, represents the summation of the first half of the 
stochastic variables (from 1 to 1,899), whereas the variable in the y-axis, var2, comprises 
the summation of the second half of stochastic variables (from 1,900 to 3,798). Note that 
the left plot represents the historical data and the right plot was obtained for the sampled 
data. 

Figure 8 Visual comparison between historical and sampled stochastic data 
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For easier detection of outliers, these plots also present the convex hull of each dataset (in 
black for historical and in gray for sampled data). Pearson’s correlation (r), Kendall’s tau 
rank correlation (τ) and Spearman’s rho (ρ) are also provided to assist the visual 
comparison. These plots show that between historical and sampled data: 

a the stochastic aggregated variables occupy roughly the same area of the state space 

b the dependence structure is largely the same. 

Hence, the results presented illustrate that the generated sampled stochastic variables 
seem consistent with the input historical data (SN). 

After building the DT related to the contingency under study, in the on-line workflow 
this DT is used to perform online security assessment of the analysed contingency and 
security problem, including the uncertainties provided by the MCLA. For validation 
purposes, this procedure was applied to the DACFs of the 25 and 27 of February 2013 
since these were the most unsecure days forecasted for this month. The forecast error 
model of stochastic variables was calculated offline using the DACFs and SNs of January 
2013 as historical dataset. 

As an example, Figure 9 shows the best DT for the N-2 contingency ‘A’ and for the 
overloading problem to be applied for the MCLA filtering process. 

Figure 9 Best DT for contingency N-2 ‘A’ and for overloading problem (see online version  
for colours) 

 

In the pie chart, light green colour corresponds to secure states in the test set classified as 
secure, dark green colour to the unsecure states classified as unsecure, orange colour to 
the secure states classified as unsecure (representing FAs) and the red colour to unsecure 
states classified as secure (i.e., MAs). This DT minimises the overall error rate  
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([#usc + #scu]/#states) for the MCLA, presenting a very small MA error (1.48%) and, 
therefore, also providing a good accuracy. 

7.2 Security assessment on contingency N-2 ‘A’ 

From DT evaluation performed in the previous section, it is expected that the DT selected 
for the N-2 contingency ‘A’ provides some misclassifications for the days after the 15th 
of February 2013, because of the disconnection, on that day, of a nuclear power plant that 
remained off during that month (topology not considered in DT training). So, also for the 
two days selected to validate the MCLA, some amount of misclassifications are expected 
to be provided for the states generated by the MCLA. Figure 10 shows the daily summary 
of DT performance for all the DACF of February 2013. 

Figure 10 Daily performance for the DACF of February 2013 (N-2 ‘A’ (see online version  
for colours) 

 

From Figure 10 one can find that: 

• A considerable amount of FA were obtained for 19–20 February 2013. 

• 100% of unsecure situations were correctly identified for 25 February 2013. 

• A large amount of unsecure situations, including some FAs, was identified for  
26–27 February 2013. 

7.3 Security assessment on contingency N-1 ‘B’ 

The present analysis consists in applying the validation scheme illustrated in section 4 to 
contingency N-1 ‘B’, i.e., a short-circuit in a single 400 kV line that leads to the line 
disconnection, which may create overload problems in a neighbouring 225 kV line. 
Given the 100 samples generated by the MCLA and the DACF in the security domain of 
the DT, the 2D four-colour plots in Figure 11 present four relevant situations in which: 

a the blue cross defines the location of the DACF (base case) 

b the dots describe the location of the MCLA samples (uncertainty). 

The results of Figure 11 show that there is only a small number of states that are FA (FA, 
namely, for the DACF at 12:30 and 18:30) when considering the forecast uncertainty. As 
expected, if the DACF is not located near the DT security boundary (like in the DACF 
detailed in Figure 11 at 2:30 and 19:30), all states sampled by MCLA share the same 
classification as the originating DACF. However, there are two DACFs in Figure 11 
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(namely, at 12:30 and 18:30), in which it was possible to observe the interesting situation 
where from an apparently secure situation, i.e., from a DACF with no overload problems, 
there is a considerable amount of unsecure situations when the forecast uncertainty is 
taken into account. 

Figure 11 Plots of MCLA samples in the DT variable plane for some DACFs of February 2013, 
(a) 2:30, 27 February 2013 (b) 12:30, 27 February 2013 (c) 18:30, 27 February 2013 
(d) 19:30, 27 February 2013 (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

Notes: ucu – states unsecure classified unsecure; scs – states secure classified as secure; 
scu –states secure classified as unsecure (false alarms = FA). 

 



   

 

   

   
 

   

   

 

   

    An advanced platform for power system security assessment accounting 279    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 11 Plots of MCLA samples in the DT variable plane for some DACFs of February 2013, 
(a) 2:30, 27 February 2013 (b) 12:30, 27 February 2013 (c) 18:30, 27 February 2013 
(d) 19:30, 27 February 2013 (continued) (see online version for colours) 

 
(d) 

Notes: ucu – states unsecure classified unsecure; scs – states secure classified as secure; 
scu –states secure classified as unsecure (false alarms = FA). 

These results demonstrate the utmost need of including uncertainty when performing 
online security assessment of power systems. The preliminary tests of the conditional 
sampling algorithm applied to ‘full’ dataset 1 show that the CPU time to generate a 
representative set of conditioned samples is about 40 s, compliant with the 15-minute 
time limit to perform security analyses in on-line operation. 

8 Conclusions 

This paper has presented the overall architecture of the platform developed within the 
iTesla project to improve power system security assessment under load and renewable 
generation uncertainty. The ultimate goal is to support the decision making process 
during network operation from two-days ahead to real-time based on three main features: 

a To provide a risk-based assessment taking into account different sources of 
uncertainties (e.g., load and renewable power generation) and contingency 
probability. 

b To perform accurate and fast online security assessment using time-domain 
simulations and pattern-recognition techniques. 

c To help operators with relevant proposals of preventive and curative actions to keep 
the system in a secure state. 

Special attention is devoted to the description and the validation of the forecast 
uncertainty modelling approach uncertainty and of the security assessment procedure 
implemented in the iTesla platform. The results obtained from validation demonstrate a 
good accuracy of the iTesla modelling approach in predicting the uncertainty cloud 
around a specific forecast state, and good performances in detecting power system 
security via DTs. 

The iTesla platform, whose code has been released open source on Github (MPL 2.0 
license available at https://github.com/itesla/), will help TSOs to address security 
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assessment of their own system, of coordinated regional systems or of continental 
systems such as the whole Pan-European network. 

The iTesla platform was validated for a well-studied security issue in the French 
network: overload situations in transmission circuits. The obtained results have 
demonstrated the need to capture forecast uncertainty since unsecure operating situations 
can arise from apparently secure forecast network states. 
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