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Abstract. This paper, presents ongoing work that extends MetaProbLog
with Most Probable Explanation (MPE) inference method. The MPE

inference method is widely used in Hidden Markov Models in order to

derive the most likely states of a model. Recently, we started developing

an application that uses MetaProbLog to models phonocardiograms. We

target to use this application in order to diagnose heart diseases by using

phonocardiogram classification. Motivated by the importance of phono-

cardiogram classification, we started the implementation of the MPE

inference method and an improvement of representation for annotated

disjunctions.

1 Introduction

MetaProbLogﬂ is a framework of the ProbLog [4l6] probabilistic logic program-
ming language. ProbLog extent Prolog programs by annotating facts with proba-
bilities. In that way it defines a probability distribution over all Prolog programs.
ProbLog follows the distribution semantics presented by Sato [12]. MetaProbLog
first appeared in [I0] where the focus was to solve meta calls for ProbLog.

The goal of this paper is to present ongoing work which extends MetaProbLog
with MPE inference. In Hidden Markov Models (HMM) this inference task is
known as the most likely sequence of hidden states and it is been solved with
the Viterbi algorithm [I5]. Similarly, in Bayesian Networks this inference task
is called Maximum a posteriori (MAP) and is usually been estimated either by
Monte Carlo approximation or by an expectation maximization (EM) algorithm.

ProbLog semantics allow the description of different type of models, including
HMM, Bayesian Networks, and others. Solving this inference task for ProbLog
programs, boils down to finding the most probable witness of satisfiability. The
original implementation of ProbLoéﬂ used a greedy search with pruning to find
the MPE [7], this algorithm was called MAX. While for the initial set of ProbLog
features the MAX algorithm was sufficient, newly added features have increased
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the challenge for finding the MPE. ProbLog 27| [5] computes the MPE by first,
collecting all explanations as an AND-OR tree then by handling the introduced
cycles and finally traversing the tree to find the MPE. This approach currently
is the most complete and sound approach but does not take advantage of any
pruning strategy.

These new features are crucial for the implementation of an application that
classifies phonocardiogram (PCQG) signals. We intent to use MetaProbLog in or-
der to implement an application that identifies the most likely characterizations
of PCG signals. These characterized PCG signals can then be used in classifica-
tion to diagnose heart diseases.

2 A Motivating Application

Lately, the classification of PCG signals has got significant attention in the aca-
demic community [I]. Classifying PCGs is both a challenging and an impor-
tant task. Heart sounds are non-trivial signals, since they might contain non-
stationary noise, have artifacts and murmur sounds. Heart sound auscultation
techniques is one of the most reliable and successful tools in early diagnosis
used for potentially deadly heart diseases, such as natural and prosthetic heart
valve dysfunction or even in heart failure. Therefore a computer-aided auscul-
tation may allow detection of diseases that are hardly recognized through the
traditional methods, for instance ischemic heart disease.

Several factors may complicate S1 (first heart sound) and S2 (second heart
sound) detection, such as variability in heart rhythm, dynamic background noise,
anatomical variations, artifacts, murmurs, respiratory sounds interference, clicks,
and extra-sounds such as S3 and S4 sounds. These factors in combination, result
in a low signal-to-noise ratio. A first fundamental step for the PCG analysis is
to segment the signal into periods. Several algorithms were successfully imple-
mented in heart sound segmentation problem, such as S-transform [I1], recogni-
tion system based on Neural Networks [17] and Wavelet Decomposition [2].

Most of the heart sounds used in heart sound segmentation are primarily
recorded with specialized equipment and in a controlled environment, ensuring
a very high signal-to-noise ratio. However, routine sounds that are obtained with
handheld stethoscopes in clinical environments (such as screening campaigns like
Caravana do Corac:icﬂ from where we possess data) have a low signal-to-noise
ratio. The correct identification of heart sounds is crucial for the analysis of these
signals in more detail.

Recently, HMMs have being used for modeling and characterizing real-word
signals such as heart sound signals [I3]. We aim to model PCG signals as a
HMM and use MetaProbLog to find the most likely sequence of events (S1, S2,
S3, S4, noise, murmur, etc.) and finally, use our model in order to characterize
real life segmented signals. Driven by this real life problem we have set new
feature requirements for MetaProbLog’s implementation.

3 https://dtai.cs.kuleuven.be/problog/
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3 ProbLog Semantics

A ProbLog program T [4l6] consists of a set of facts annotated with probabili-
ties p; =2 pf; — called probabilistic facts — together with a set of standard definite
clauses h : —by,...,b,. that can have positive and negative probabilistic literals
in their body. A probabilistic fact pf, is true with probability p;. These facts
correspond to random variables, which are assumed to be mutually independent.
Together, they thus define a distribution over subsets of Lt = {pf,,...,pf,.}.
The definite clauses add arbitrary background knowledge (BK) to those sets of
logical facts. To keep a natural interpretation of a ProbLog program we assume
that probabilistic facts cannot unify with other probabilistic facts or with the
background knowledge rule heads.

Definition 1. ProbLog Program: Formally, a ProbLog program is of the form
T={pfr,...,pfn} UBK.

Given the one-to-one mapping between ground definite clause programs and
Herbrand interpretations, a ProbLog program defines a distribution over its Her-
brand interpretations.

The distribution semantics are defined by generalising the least Herbrand
models of the clauses by including subsets of the probabilistic facts. If fact pf;
is annotated with p;, pf; is included in a generalised least Herband model with
probability p; and left out with probability 1 — p;. The different facts are as-
sumed to be probabilistically independent, however, negative probabilistic facts
in clause bodies allow the user to enforce a choice between two clauses.

The MPE of T for a query ¢, is the most probable set Ly;prg C Lt of proba-
bilistic facts (pf) or their negation contained at a randomly sampled subprogram
d of T that entail q. The probability of the MPE is the product of the proba-
bilities (P(pf)) of each probabilistic fact contained in Lyspg or 1.0 — P(pf) for
contained probabilistic facts that are negated.

P(LypE) = H P(pfi) - H (1.0 = P(pfy)) (1)

Pfi€Ltrue pfjeLfalse

where Liyye N Ligise = Layrpg. Finally, Ly pr is the set where:

argmar(Ly pg eHinteTpreta,tions)P(LMPE)' (2)

Because of the one-to-one mapping of explanations with Herbrand interpre-
tations, the MPE is also the most likely Herbrand interpretation of the program
T for the query gq.

3.1 New Challenges

Originally, ProbLog did not supported general negation but only negated prob-
abilistic facts. General negation was introduced by [§]. General negation intro-
duces a new challenge for calculating the most probable witness of satisfiability.



The inference task for a negated subgoal is converted into finding the most prob-
able witness of unsatisfiability.

A second challenge, originates in the introduction of Annotated Disjunctions
(ADs) for ProbLog. ADs in ProbLog are compiled, by using a program trans-
formation technique, to a set of probabilistic facts that through negation form
a mutually exclusive structure. While this modification, does not affect most in-
ference tasks, it makes the MPE humanly unreadable by returning the compiled
probabilistic facts and not the ADs.

Finally, the addition of evidence in the new implementations of ProbLog
impose a new challenge for computing the MPE. Evidence can be of an important
use for our application as in some cases we might have a priori knowledge of
some PCG signal characterizations. As shown and tackled in [I4] ADs introduce
a further complication for computing the MPE together with evidence.

3.2 MetaProbLog

MetaProbLog is an implementation of the ProbLog semantics within Yap Pro-
log [3]. In addition, MetaProbLog extends the semantics of ProbLog by defining a
“ProbLog engine” which permits the definitions of probabilistic meta calls as pre-
sented in [I0]. The “ProbLog engine” approach permits a more elegant handling
of general negation for ProbLog, the use of any inference approaches as subgoals
and the use of probabilistic meta calls. MetaProbLog inference, currently allows
the computation of marginal probabilities with or without evidence and imple-
ments two inference methods exact and program sampling. Furthermore, it
allows the computation of marginal probabilities for the answers of non-ground
queries through the use of a special meta inference task called ProbLog an-
swers. MetaProbLog has two unique features as a ProbLog implementation:
probabilistic meta calls and datasets [9].

4 MetaProbLog’s MPE for General ProbLog Programs
and Future Support

While this work is still ongoing, we do have a preliminary implementation of
ProbLog MPE inference that supports general negation. The original ProbLog
implementation based its MPE inference on the fact that derivations are mono-
tonic and that every added probabilistic fact will decrease the probability of the
explanation. Because of that the original ProbLog MPE implementation was
able to prune a big part of the search space.

Adding negated probabilistic facts (which the original ProbLog implemen-
tation supports) does not alter the MPE algorithm as the derivations remain
monotonous decreasing. On the other hand general negation creates a signifi-
cant complication. While the probability calculation remains monotonously de-
creasing and from the logic programming point of view the task remains the



same (find the most probable Herbrand interpretation), the search treeﬂ tra-
versed alters significantly. From a SAT point of view, general negation, converts
the task in finding the most probable witness of unsastisfiability which is a hard
problem [16].

For ProblLog programs without negation the search tree is composed by
disjoint branches which are composed by conjoint literals (probabilistic facts).
When general negation is applied on a subtree then by De Morgan’s law the
disjunctions are converted to conjunctions, the conjunctions to disjunctions and
the literals become negated. In order to address this change on the search tree we
are forced to collect all the negated goal’s subtree and convert it by De Morgan’s
law. This however, delays the usage of the pruning mechanism which in some
cases results to a computational overhead. Fortunately, this approach though
does not increase the overall complexity of the inference algorithm. Further-
more, this mechanism is only activated for negated subgoals and not for the rest
parts of the search tree.

While, currently we have already a first implementation of the described
approach the next features are part of our work in progress.

4.1 Annotated Disjunction Representation

The existing representation for ADs creates a linear expansion of probabilistic
facts for each AD value. This representation imposes two problems: first, the
MPE returned to the user does not use the representation of the AD values
instead it uses the linear expansion of probabilistic facts; second as shown in [14]
the current representation computes wrongly the MPE in presence of evidence.
We are working on a novel approach which uses the AD values directly for MPE
and the linear representation only for other inference tasks solving both problems
in a different way than the one presented in [14].

4.2 ProbLog Queries with Evidence

Furthermore, we need to address the conditional MPE task. In order to address
this task we require a second search tree that provides the “evidence explanations
(EEs)”. Then we need to combine the candidate MPEs with the EEs in order
to find the combination that maximizes the conditioned probability (for every
probabilistic fact that is contained in EE, the probability of that fact does not
contribute for the probability of the candidate explanation). Fortunately, the
combinations can be pruned significantly.

4.3 Cycles and Tabling

Finally, in order for the algorithm and the implementation to fully support gen-
eral ProbLog programs we need to be able to compute the MPE task in the
presence of cycles. While this task is not needed for computing the MPE in

® For our task the search tree is the SLD tree used to prove the goal.



HMMs neither needed for our motivating application, it is necessary for the
completeness of the resulting algorithm and implementation.

Cyclic programs in MetaProbLog are only allowed /handled with the conjuc-
tion of tabling (similarly as in Prolog). Handling this type of cycles has been
already solved for the exact inference method in [8]. However, the combination
of tabling and pruning is tricky imposing a different challenge. Possibly, MPE
for cyclic programs will not be able to use pruning in the collection of explana-
tions and only at a second stage, similarly to when handling general negation.
ProbLog 2 MPE algorithm uses a similar strategy.

5 Conclusion

We presented the added challenges for calculating the MPE for general ProbLog
programs in MetaProbLog. The added challenges compared with the original
ProbLog are imposed by the new features of the new ProbLog implementations.
Furthermore, we outlined how we intent to tackle these challenges. We require
these features in order to apply them in our recent motivating application of
computing the most probable characterization of PCG signals.

As we presented PCG signal characterization is an important motivating
task that can aid in the diagnosis of heart diseases. We have already modeled
the general behaviour of PCG signals in ProbLog as a HMM. We intent to grow
our model to input real PCG signals and by using specific features of the signals
to extract possible characterizations that later are been used as evidence in MPE
inference in order to characterize the remaining signal features.
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