A CLP-Based Tool for Computer Aided
Generation and Solving of Maths Exercises*

Ana Paula Tomés and José Paulo Leal

DCC-FC & LIACC, Universidade do Porto, Portugal
{apt,zp}@ncc.up.pt

Abstract. We propose an interesting application of Constraint Logic
Programming to automatic generation and explanation of mathematics
exercises. A particular topic in mathematics is considered to investigate
and illustrate the advantages of using the CLP paradigm. The goal is to
develop software components that make the formulation and explanation
of exercises easier. We describe exercises by grammars which enables us
to get specialized forms almost for free, by imposing further conditions
through constraints. To define the grammars we concentrate on the sol-
ving procedures that are taught instead of trying to abstract an exercise
template from a sample of similar exercises. Prototype programs indicate
that Constraint Logic Programming frameworks may be adequate to
implement such a tool. These languages have the right expressiveness to
encode control on the system in an elegant and declarative way.

1 Introduction

This paper proposes an application of Constraint Logic Programming (CLP)
in education, namely to automatic generation of mathematics exercises for stu-
dents. The ultimate goal of the project is to develop an intelligent tutoring tool
for mathematics that integrates software components to make the formulation
and explanation of exercises easier.

1.1 The Motivation

Though not all students have high mathematical skills, one of the reasons for the
lack of success in mathematics is that too often students merely memorize how
to solve some exercises, instead of trying to understand fundamental concepts
and results. Hence, a possible drawback of classical textbooks and some existing
online course-ware and exercise systems is that the proposed problems are quite
pre-defined, either fixed or at best randomly generated instances of the same
problem template [3, 5].

Rather than to reproduce the classical textbooks, advances in the computer
technology and the Internet should be exploited to develop really interactive and

* Work partially supported by funds granted to LIACC through Programa de Finan-
ciamento Plurianual, Fundag¢do para a Ciéncia e Tecnologia and Programa POSI.

re-usable contents. Sophisticated web-based learning environments are emerging,
that include interactive textbooks projects with user-adaptive contents [15] and
that support exploratory learning through communication with (commercial)
mathematical systems [3, 15].

Some systems, as Geometer’s Sketchpad [6], Maple [11] and Mathematica [13],
just to name a few, are indeed often used as tools for explorations [8, 16], enabling
the students to try their own examples. Some already offer web access to their
applications. The focus of this paper is not on problem solving in the broader
sense of exploration, but rather on the repetitive drills students have to do for
consolidation of concepts and practice of algebraic procedures. For constructive
learning to be effective, students need self-confidence and also basic knowledge.

Web-based systems for computer aided training and/or assessment, with au-
thoring facilities for teachers to create question files are spread over the web
(e.g. [1,5,9,10,15]). Non-negligible effort is required from teachers to generate
problem instances that are not immediately recognized as simple variants of a
few basic expressions. For all the on-line systems we have come to, the exercises
are not generic enough and the user can almost anticipate the form of the next
instance of the problem, after a while. The situation is illustrated by Fig. 1. The

4 1

R S - -5 |v=y=1| =5
[4y+1] (3y+4)* V=T
4 2
_ 2 |3y =2| =
|-y —1]| (=5y 4 2)? [Vv=2| =5

a a N
7|by+c| 7(by+c)" ay/|by+c|+d

Fig. 1. Abstracting types of expressions from samples

ability to generate several distinct types of expressions automatically, in addition
to as many instances of the same basic type of expression as wanted, is surely
an advantage of our approach. Another unusual, and therefore distinguishing,
feature is that we are not simply using samples of problems, say samples of ex-
pressions, to find the possible types, as Fig. 1 may wrongly suggest. As we shall
see, the focus will mainly be on the analysis of solving procedures. For example,
if a solving procedure for cubic equations (i.e., for ax® 4+ bx? + cx +d = 0) could
be used, we would take it into account to characterize generic exercises. Then,
students’ actual background may be somehow encoded by further constraining
the form of the instances of problem templates that the computer will generate.

1.2 The Main Ideas of this Approach

When a student is using mathematical software for exploratory learning, it is
reasonable that the system may output don’t know or rather complicate formulas
as an answer. This is not acceptable when the system is asking the student to
solve a problem that it has automatically generated. Both the computer and the
student (if he/she has learned the topic in assessment) must know how to solve
the exercise. For instance, the system shall not produce an ad-hoc polynomial
of degree greater than four and ask the student to find its roots. Indeed, it is
known that there exist no generic algorithm to solve that. In contrast, there
are algorithms to compute the rational roots of any polynomial with rational
coefficients, which, nevertheless students may not have learned. The fundamental
ideas in our approach are:

— To abstract and represent the forms of the exercises that may be solved by
the procedures that students are taught at different levels of education.

— To support additional (user-defined) constraints on problem instances to
control the difficulty and adequacy of the exercises for a certain curriculum,
stage or user.

— To have some knowledge about the solutions to the generated exercises so
that they may be of pedagogical interest (i.e.: Are the numbers arising in in-
termediate computations awkward? How many steps are required to achieve
a solution? How simple is the solution?)

— To implement the solving procedures so that the computer may either output
a concise explanation (that may help students get familiar with mathematical
language) or, at least, show the solving steps.

This strategy is fairly the same teachers follow to formulate basic problems
in some context. Thus, to design a system based in this approach, it is needed
expertise in the field and some interdisciplinary collaboration may be important.

Other works have implicit a similar idea [17, 18], although they seem not to
be taking enough advantage of that to achieve generality and reduce the burden
of writing the on-line exercises sheets. Sangwin [17] addresses how to generate
exercises that get students to construct instances of mathematical objects with
some properties. How to reduce teachers’ effort to prepare questions is not con-
sidered at all and, moreover, it is assumed that they have some expertise in
writing computer programs. Indeed, it is examined an application of an author-
ing system for computer aided assessment [9], that ultimately uses Maple to
process the exercises but that counts on the teacher to program them and in
some situations their grade scheme. This is quite different from what we have in
mind.

Our approach has many different potentialities that include user-adaptiveness,
easy definition of several curricula, and possible integration in intelligent tutoring
systems.

On the limits of this approach Although not all topics taught in mathema-
tics at high school allow such an automatic treatment, a large number does.

Many of the questions that students have to work out in mathematics courses
may successfully be solved by algebraic procedures. Some procedures are crucial
to different problems. As we noted above, we do not address problem solving in
the broader sense of exploration, but the repetitive drills students do for consoli-
dation of concepts. In general, more elaborate problems that require higher level
mathematical skills or reasoning, such as theorem proving, cannot be generated
in a similar way. Theoretical limitations make evident that in such cases the best
is likely to follow the most traditional approach: to create and use a database of
pre-defined problems and solutions.

1.3 Particular Application Domains

Software applications that automatically generate exercises are highly domain
dependent. Some deep understanding of the topics in assessment is needed. This
work focussed on a particular problem in Calculus, namely the analysis of sign
variation, zeros and domain of real-valued functions. Its interest goes largely
beyond the problem itself. Indeed, it has several applications that include the
study of intervals where a function is monotonic, the study of concavity and
convexity for twice differentiable functions, sketching their graphs, and even the
study of continuity. The difficulties this problem raises help illustrate the main
ideas of the approach.

1.4 The Available Prototype

Demomath - a prototype of the proposed system - was implemented as a web
application, and is available at http://www.ncc.up.pt/ apt/demomath.html.
Using Demomath in a web browser the teacher/user can fill in a sequence of
forms to define user constraints, select an exercise type and produce a set of
exercises formated either in PDF, PS or HTML.

Fig. 2 shows the architecture of the system: modules are represented as strong
rectangles, interface forms are represented as dashed rectangles, data flow is
represented as solid arrows, control flow is represented as dotted arrows, files are
represented standard by file icons.

The two main modules are written in Prolog and act as filters: the expres-
sion generator processes a user constraints file and produces an expressions and
types file; the exercise generator and solver processes this last file and produces
an exercises and solutions file. This last module is the core of the system and
makes use of several libraries that handle arithmetics, set operations, symbolic
constraints (to solve inequations, disequations and equations) and BTEX files.

The control module is responsible for managing user interaction: it receives
data from HTML forms, produces the user constraints files and launches the
execution of the main modules. During the interaction, this module binds inter-
mediate data files (kept in the server side) with each of the users accessing the
system simultaneously. The control module communicates with an HTTP server
using the CGI protocol and was written in Tcl scripting language.

H r
I' define user contraints | choose a problem

i :
1
= forms : I form :
! i i !
L — A i _— i :
& 'y EXErcises
v v & solutions
control module (CGI)
v v
AN .
expression gener ator | arithmetics |
N | set operations |
user expressions
constraints E types | symbolic solver |
| LaTreX |
exercise generator and solver

Fig. 2. The prototype’s architecture

Displaying Mathematical Expressions To illustrate potentialities of the
program, we have written some predicates to convert the internal representations
of mathematical expressions and solutions to ITEX. This allowed us to pretty
print mathematical expressions. IXTEX files can be easily typeset to produce
HTML, PS and PDF files.

Another possibility, that we considered at start and may further investigate,
amounts to use a prototype viewer /editor of MathML documents [14], written to
Tcl/Tk by P. Vasconcelos (some more details may be found in [21]). We would
like to obviate the need for students to learn a special syntax just for typing and
reading formulas on the computer, unlike WebMathematica [13] and AIM [9],
for example.

1.5 The Rest of the Paper

This paper reports on the results achieved so far that support our decision to
proceed with the project. In the rest of the paper we first argue about advantages
of using CLP to develop the work in comparison to, for instance, computer
algebra systems as Maple. For that, we analyze an example that concerns one
of the programs developed in Maple. In Section 3, we present the grammar
we have defined to characterize expressions in our application domain, giving
examples that show the kind of expressions tackled. A vast sample of examples
from some high school textbooks is covered by this grammar although it shall
still be extended to include other basic functions (such as, the trigonometric
ones). Then, relevant aspects of our prototype implementation are described in

Sections 4 and 5. The CLP programs that were developed for this prototype may
be downloaded from the Demomath site. New versions may be made available
because the implementation is not stable yet.

2 Advantages of Using Constraint Logic Programming

Whereas powerful computer algebra systems are quite adequate for exploratory
learning, they do not work well for our purpose. In particular, our experience
with Maple has shown that the algebraic simplifications it does are troublesome.
Additional constraints must be imposed on the expressions that arise in the
exercises, to avoid inconsistencies in explanations. For instance, it is not possible
to pretty print 3(z2 + 5) in Maple since it will naturally yield 322 + 15. By a
similar reason, we would better not ask the student to find the domain of a
rational function defined by f(x) = (x — 1)2/(x — 1), because that expression
would be printed as f(z) = — 1, and hence 1 belongs to domain of the latter
but not of the former one.

This points to a more fundamental problem, that is the need for full control
of the tutoring system, to be able to produce explanations. Logic Programming
based languages offer natural support for implementing symbolic representa-
tions and to do symbolic manipulations. Declarativeness is of help to specify the
form of the expressions and of the problem templates. Moreover, for some prob-
lems in mathematics, we have to do exact computations and present the results
in simplified forms. For that purpose, constraint logic programming solvers for
rationals are of help, whereas the current ones for CLP(R) are less adequate.
Nevertheless, they also act as black-boxes, which may not allow to fully control
the tutor. Being incomplete solvers, that delay nonlinear constraints, they may
not be used to compute the solutions even if we did not want to show the solving
steps. Therefore, we need to implement symbolic processing of algebraic expres-
sions and of constraints both to provide exact representations of solutions and
explanations.

As we mentioned already, to achieve re-usability, the application shall be well
parametrized to easily cater for different curricula or user-defined constraints.
CLP seems to offer the right expressiveness to encode this kind of control in an
elegant way through constraints. In this application, the optimization facilities
of the CLP systems are not utilized, but rather the consistency checking and
constraint propagation mechanisms. Different domains are needed, which cause
some difficulties. It is still not easy to share variables between different solvers in
a natural way. Furthermore, similar built-in constraints have different semantics
and usage modes for different platforms, rendering the code non-portable (e.g.,
the finite domain constraint element).

CLP also plays an important role while giving natural support to tackle

representations of problem templates defined by symbolic type schemes with
constrained domain variables.

2.1 Some Experiments Using a Computer Algebra System

In some preliminary experiments we have used Maple to design worksheets to
present some specific topic in mathematics. Besides some concise notes on the
addressed issue, such Maple worksheets typically include pointers to other ones
where the end-user student may find randomly generated examples and exercises
to work on.

Ezample 1. Fig. 3 contains output from one of our Maple programs, that ex-
plains the determination of the domain of rational functions. Some typesetting
has been done to spare space.

> domains(true);
FIND THE DOMAIN OF THE FUNCTION f DEFINED BY

(822 + 142 — 15)(2z + 1)
(425 — x® — 524) (322 — 17z + 10)?

fz) =

SOLUTION: Being f a rational function, it is defined for all real
numbers except the zeros of the denominator of its expression. We
have

(42° — 2° — 52")(32® — 17z +10)*> =0
if and only if 42® —z° —52* =0 or (32% — 17z +10)? = 0.
As concerns 4z% — 2° — 524 = 0, we have

42° —2® = 52" =0 & 2'(42® —z—-5) =0
S z=0Vi4r’—z-5=0

To solve 4z°—z—5=0, we apply the solving formula for polynomial
equations of degree 2, the roots being -1 and 5/4.
As concerns (3z% — 17z +10)? =0, we have

(32> =172+ 10)> =0 © 32> —17x+10=0

To solve 3z — 17z + 10 = 0, we apply the solving formula for
polynomial equations of degree 2, the roots being 2/3 and 5.

We conclude that all real numbers are in the domain of f, but 2/3,
0, -1, 5 and 5/4.

Fig. 3. Finding the domain of a rational function. To generate f(z), factors were res-
tricted to polynomials P of degree < 2, to the expansion of x" P, for some n, or
to powers of such expressions. This implies that the roots of the expressions in the
numerator and denominator may be exactly found by an algorithm.

As other computer algebra systems, Maple supports polynomial expressions
and thus it is easy to implement this procedure. For educational purposes, it is
important to control the generated expressions, so that the exercise may have

pedagogical interest. Instead of simply using the builtin Maple procedure to gene-
rate random polynomials, the computation of f(z) was driven by the selection
of the set of roots. In this way, the domain of the generated expression is known.
It is important that we do not restrict roots to rational numbers, for that could
mislead the student. Because of that, and to avoid awkward coefficients, we ex-
tended their range to conjugated irrational numbers. Factors with no real roots
were obtained by adding appropriate constants to quadratic polynomial expres-
sions with real roots to shift their representing parabolas upwards or downwards
so that every intersection with the horizontal axis is eliminated. This illustrates
the sort of mathematical expertise that our approach may require.

Further restrictions were imposed on the types of the generated functions to
prevent puzzling inconsistencies in explanations, that may result from automatic
simplification of expressions. In particular, we disallowed repetitions of factors
(either in a product or quotient) and required that the involved polynomials just
have integer coefficients. Since we would like to cover more general expressions,
this does not seem the right way to proceed.

2.2 How to Write Natural Explanations?

An important point that is interesting to investigate further is how to improve
the linguistic quality of output explanations. It is not immediate to obtain good
explanations in natural language by annotating recursive programs. In the exam-
ple in Fig. 3, almost no use was made of global context information, which
renders explanations fairly repetitive and, therefore, unnatural or pedagogically
poor. With traditional applications to Natural Language Processing, Logic Pro-
gramming languages may be also useful to tackle the problem of writing concise
mathematical explanations through the analysis of the resolution steps.

3 Using Grammars and Constraints to Define Expressions

A good abstract representation for expressions makes easier the implementation
of solving procedures and the characterization of problem templates. In this
section, we consider a particular topic in mathematics — introductory calculus —
and introduce a representation for the expressions that define the functions. We
propose a grammar that characterizes a wide range of the function expressions
that may be found in high school textbooks and whose zeros may be exactly
computed by an algorithm.

3.1 Finding a Grammar

In order to be able to abstract the possible forms of function expressions, we
have carried out a thorough analysis of Portuguese textbooks in mathematics
for the latest years (i.e., levels 10 to 12). To design the grammar, we focused on
the solving procedures that are taught, instead of on the form of the sampling
exercises, which does not seem to be a common practice.

For prototyping, the trigonometric, exponential and logarithmic functions
have been left out. Generic functions are built from polynomial functions, the
absolute value function = — |z|, and the power and radix functions x — z™ and
x — ¥z, possibly using composition, addition, product and quotient operations.
Composition is the main operation, being denoted by o. For example, we may
see the expressions in Fig. 1 as

a

T el (k/(abs o p1))(y)
W (k/(powr, o p1))(y)

ay/lby+c|l+d (p1orad, oabsoqi))(y)

where ¢; and p; are linear functions (i.e., defined by polynomials of degree 1), k
denotes a constant function, and abs, rad,,, pow, the absolute value, radix and
power functions, respectively.

To find the grammar we have tried to identify expressions for which the
computation of the domain and zeros may just involve the solving procedures
for linear or quadratic equations (ax+b = 0 or ax®+bx +c = 0), or equations of
the form a X" +b=0,a¥/X +b=0, X"+Y" =0, ¥YX + Y =0, for n > 2,
or XY £ Z/T = 0, with degree(XT) < 2 and degree(YZ) < 2, or even some
case-based reasoning to get rid of the absolute value operators. It is important
to observe that if we are able to compute the zeros of a given expression X, we
are also able to find the zeros of X", ¥/X and |X|. The same may be said of
XY and X/Y when we are able to compute the zeros of X and Y.

Three functions have also been defined as basic, namely z — az?™ + bz™ + ¢,
r — ar"tt + bz" and x — ax"t? + ba" ! + cz™. The last ones result from
the expansion of ™ P, for a polynomial P of degree 1 or 2. We denote them by
expand(z,n, P). Equations that involve these kind of expressions are solved by
factoring them first. The other one is called bisqr, and ax?" +bz™ + ¢ = 0 is seen
as a(z™)? + b(z") 4+ ¢ = 0 and solved as a quadratic equation.

The grammar is shown in Fig. 4. We use (k*)’rad (basici2, N) as an abbrevia-
tion for k*rad(basicis, N) or rad(basicia, N). Here, * means product. We note
that by writing, for instance, (k*)’rad(basicia, N) + (k*)’rad(basici2, N) we
really want to restrict N to be the same for both subterms, so that the grammar
is not context-free (meaning that, the language it defines is not a context-free
language).

In the grammar, some categories have names that are indexed by 1, 2 or 12,
because they result from the basic category when we restrict the degree to be 1,
2, or any of these two. As for vquotiar and quotiax the idea is that the numerator
and denominator have degrees 1, 2, or 0. To avoid defining more grammar rules,
the abbreviated notations poli(T"), ipola(T') and ipoli(T') were introduced. For
instance, ipola(pow(x, N)) rewrites to pol(pow(x, N),[a,b,c]) by applying the
rule (scheme) for ipols(T).

function — (kx)"prodfact | (k*)’divexpr
prodfact — factor | prodsexpr
divexpr — prodfact/prodfact | k/prodfact | prodfact/k
— pow(divexpr, N) | rad(divexpr,N) | abs(divexpr)
prodexpr — factor*factor | factor*prodexpr
— pow(prodsexpr, N) | rad(prodsexpr,N) | abs(prodsexpr)
factor ~ — sumexpr | vzip | basic
sumezxpr — abs(sumexpr) | pow(sumezpr,N) | rad(sumexpr,N) | bsum

bsum — ipoli (vquotiak)
?

— (k*)’rad (basiciz, N) + (kx)’rad(basiciz, N)

— (k%) pow(basiciz, N) + (kx) pow(basiciz, N)

— (k%) "pow(basiciz, N) + (k*) pow(basici, 2N)

— (k%)"rad (basiciz, 2N) + (k*)"rad (basici, N)

— (k*)'rad (2, basici2) + (k*)’basicy

— (k%) pow (2, basicy) + (k*) basiciz

— (k%) basiciz + (kx) basiciz

- (k*)?quOtle + (k*)"basicia, subject to Condition
— (k%) quotiar, + (k%) quotiax, subject to Condition

vquotiar, — pow(vquotiar, N) | rad(vquotisr, N) | quotiog
quotiar, — k/basiciz | basicia/k | basicia/basiciz | abs(quotizg)
basicia — basic1 | basica
basicc ~ — fpoli(abs(basic2)) | ipolz(x) | expand(l,x,ipoli(x))
— basici*basici | fpoli(pow(2,basic1)) | pow(2,basici)
— abs (basics)
basici — abs(basic1) | fpoli(abs(basic1)) | fpoli(x)
basic — ipola(x) | expand(1,x,ipoli(x)) | bisqr | fbasic
— fpoli(fbasic) | fpoli(x)
fbasic ~ — abs(basic) | pow(basic, N) | rad(basic, N),N > 2
VTP — zip | k*vxip | abs(vzip) | pow(vzip, N) | rad(vzip, N),N > 2
zip — expand(N,x,ipol2(x)) | expand(N + 1,x,ipoli(x)), N >1
bisqr — ipola(pow(x,N)), N >2
fpoli(T) — pol(T,[a,bl), a#0

ipola(T) — pol(T, [a,b,cl), abc# 0
ipol1(T) — pol(T,[a,bl), ab#0

X — variable

k — constant

Condition: Being either of the form (kx)’A/B + (kx)"C with degree(BC) < 2 or of
the form (kx)’A/B + (k*)"C/D with degree(AD) < 2 and degree(BC) < 2.

Fig. 4. Describing functions that may appear in exercises and whose zeros can be found
by an algorithm.

It is interesting to observe that pol;(T') plays a central role. In particular,
instead of seeing, for instance, 2|z + 5|+ 3 as the sum of two functions, we view
it as a composition, pol(abs(pol(x,[1,5])),[2,3]). This is quite helpful to
simplify the implementation of solving procedures. Sums increase complexity.

Ezample 2. It may be checked that

(822 + 14z — 15)(2z + 1)
(426 — 25 — 5xt) (322 — 17z + 10)?

is of the form

pol(x, [8,14,-15]) x pol(x, [2,1])
expand (4, x,pol(x, [4,-1,5]1)) * pow(pol(z, [3,-17,10]),2)

And, we may also conclude that e.g., 2|2y + 4| — 4|3y — 3] + 5 belongs to bsum
(i.e., basic sum expression), since it is given by

pol(abs(pol(y, [2,4]1)), [2,0]) + pol(abs(pol(y, [3,-31)), [-4,5])

To solve equations involving sum expressions one may need to know how
to solve X" £ Y™ =0, ¥YX £ VY =0, for n > 2, or X/Y + Z/T = 0, with
degree(XT) < 2 and degree(Y Z) < 2. We notice that, in general we would not
be able to solve the first two if instead of 0 we had a non-null constant k, which
would render the generic problem undecidable.

3.2 Introducing Types

We want to generate expressions that share a similar pattern and also to generate
distinct patterns. We introduce types to represent distinct patterns. For example,

I L
| by + ¢ (by+c)"

would be of types k / abs o pl o xandk / pow(n) o pl o x. Fig. 5 shows
the expressions that correspond to basic types. Types k and x are omitted. They
denote the constant functions and the identity function. In the middle, we see
the symbolic representations for expressions used in the programs. Some types
(e.g., pow(2) o pl o x) may be seen as instances of a type scheme with finite
domain variables. These variables represent the exponents and, hence, may be
constrained. Thus, for example,

—2y—1 ’
—2—— +3
< —3y+4)
that belongs to the grammar category sumexpr, is characterized by

pow()) o ip(1) o (pl o x/pl o x)

Type Expression Pretty — printed

pl o TypeT pol (T, [a,b]) al +b

p2 o TypeT pol (T, [a,b,c]) aT? +bT + ¢

xip(1, N) expand (N, x,pol(x, [a,b])) | az™ "' + bz

xip(2, N) expand (N, x, pol(x, [a,b,¢])) | az™ T2 + bV T 4 e
pow(N) o TypeT pow (T, N) ™

rad(N) o TypeT rad(T, N) NT

abs o TypeT abs(T) |7

p2 o pow(N) o x pol(pow(x,N),[a,b,c]) az® + bz + ¢
instead of bisqr(N)

Fig. 5. Internal representations and output expressions.

and, more specifically by, pow(7) o ip(1) o (pl o x/pl o x). Here, ip(1)
and p1 replace ipol; and pol;, respectively. Patterns correspond actually to the
general types, which are the ones the generator produces first. Although the
variable that occurs in the expression is y, its type does not capture that. Because
types identify patterns, the variable (i.e. z, y, z ...) in the expression is not
relevant to its type.

4 Generating Exercises in a CLP System

CLP languages are quite convenient to constrain the exercises by imposing cons-
traints on some variables of the problems’ generator. In this way, constraints
are useful to control the difficulty and adequacy of the exercises for a certain
curriculum, stage or user. In order to test these ideas, we have developed a
prototype of a generator for expressions, that runs in SICStus Prolog [20] and
uses CLP(FD) [2]. For instance, examples/6 yields NumbInst exercises of each
type for some given specifications.

examples(File,Degree,RateMin,RateMax,X,NumbInst) :-
tell(File), define_counters(CountTypes),
constrs(CountTypes,urestr_function), % user-defined constraints
def_infinity(OpMax), CountOps #>= 0, CountOps #=< OpMax,
Rate in RateMin..RateMax, indomain(Rate),
function(Type,Degree,Rate,CountTypes,CountOps), % finds a type
CountExerc in 1..NumbInst, indomain(CountExerc),
expression(Type,X,Expr), I finds an expression
write(Type), nl, write(Expr), nl, nl,
fail.

examples(_,_,_,_,_,_) :— told.

E.g., if we launch examples (probs2,2,9,12,y,1), the system writes expressions
in the variable y, of degree 2 and difficulty level in 9..12 to the file probs2, one
expression per type. The output looks like this.

abs o pl o abs o xip(1,1)
abs (pol (abs (expand(1,y,pol(y, [-5,-31))),[-3,11))

pow(2)o pl o x+pl o x
pow(pol(y, [-4,-11),2)+pol(y, [2,4])

The difficulty rate may be settled by the user who is given permission to
assign a rate to each type. The overall rate of an exercise is then the sum of such
rates. Different and more sophisticated criteria shall be investigated.

The expressions of a given degree evaluate to polynomials of that degree when
simplified to get rid of abs and pow, and shall not contain quotients and radicals.
For the latter, the degree is undefined. The previous expressions have degree 2,
as wanted.

It is quite impressive how quickly the program may obtain a huge number
of expressions. Throughout this section, it is assumed that the reader is familiar
with CLP systems, and in particular with CLP(FD) (for an introduction and
some references, see e.g. [12]). We note that the finite domain constraint solver
is mainly used to do consistency checking and to propagate constraints on the
exponents and on the number of occurrences of some combinations of particular
function types.

4.1 Finding Type Schemes for Expressions

In general, the grammar rules were implemented by predicates of the form
category(Type,Degree,Rate,CountTypes,Count0Ops)

the main one, function/5, appeared already in examples/6.
function(Type,Degree,Rate,CountTypes,CountOps)

The parameters Degree, Rate, CountTypes, CountOps are used to constrain the
resulting scheme Type. This allows to impose constraints to control the difficulty
level or form of the generated expressions and to tackle user-defined constraints.

Rate. The domain variable Rate gives some control on the application of each
of the clauses that define a predicate. It must be either instantiated or have an
upper bound when function/5 is called. This is important also to guarantee that
the generation terminates. User-defined rates are assigned through user_rate/2
to the primitive functions (i.e., to p2, abs, rad (_), pow(_), xip(_,_),bisqr())
and to particular sub-expressions (as for example, sums of radicals, quotients and
products). The overall rate is then the sum of such rates, as we mentioned before.

Since the teacher/user is not supposed to know CLP to be able to constrain
the generator, an user-friendly interface was developed to help illustrate current

functionalities of the prototype. For the moment, very simple constraints may
be stated using this interface. We would like to achieve high flexibility and ex-
pressiveness, but keep the parameterization task simple. It is not easy to decide
the form of constraints the interface shall support.

Type Counters. The parameter CountTypes is a list of finite domain variables,
each one giving the number of occurrences of a given type. These types in-
clude the primitive constructs but also more general information as, for instance,
prodstype, divstype and sum. The latter is related to the expressions identified
by sumtype in the grammar. The idea is that the user may define constraints on
the values of the counters in CountTypes. These constraints may involve a single
variable (e.g., to specify its domain) or any subset of them. Calls to constrs/2
result in imposing the user-defined constraints on CountTypes for the category
identified by urestr_name. Thus, for example, to state that the number of abs,
bisqr(_), pow(_) and rad(_) shall not exceed four and that there shall be at
least one abs and one bisqr(_), we may write,

elements([abs,bisqr(_),pow(_),rad(_)],CountTypes,Vars),
sum(Vars, #=<, 4),

elements ([abs,bisqr(_)],CountTypes, [Abs,BSqrl),

Abs #>=1, BSqr #>= 1

An integer is associated to each construct by a predicate type_index/2, so that
we may then use the built-in constraint element to implement elements/3.

Counting Operations. The number of operations (i.e., compositions, sums, pro-
ducts and quotients) may be also limited, for which the domain variable CountOps
is used. This parameter is also used to partially filter out symmetries in the type
schemes through the propagation of constraints on the number of operators.
Indeed, abs o pl o x + abs o p2 o x and abs o p2 o x + abs o pl o x
may be viewed as the same type, because + is commutative.

Illustrating the Generation of Type Schemes To provide some further
intuition on the available implementation, we give the code of a predicate that
partially defines the grammar category vzip.

vxnptype (xip(I,N),G,Rate,Ts,0) :-
rate(xip(I,N),Rate), G #>= 3,
sum(Ts,#=,1), incr_restr(xip(I,N),Ts),
degree (xip(I,N),G).

vxnptype(T o Tc,G,Rate,Ts,Ops) :- npftype(T),
rate_restr(T,Rate, [RateC]),
types_restr(T,Ts, [TsC]),
ops_restr(0Ops,1, [0psC]l),
degree(T,Gt), Gc #>= 1, G #= Gt*Gc,
ctype_(T,Tc), vxnptype(Tc,Gc,RateC,TsC,0psC) .

In the implementation, we distinguished the basic constructs for the grammar
categories basic and vzip as polynomial or non-polynomial functions, npftype/1
defines the latter.

npftype(abs). npftype(rad(_)). npftype(pow(_)).

The functions to which a basic function may be applied (i.e., composed with)
are defined by ctype_/2, the relevant clauses for vxnptype/5 being

ctype_(T,xip(_,_)) :- npftype(T).
ctype_(T,Tc o _) :- npftype(T), (pftype(Tc); (npftype(Tc),T \= Tc)).

The predicates rate_restr/3, types_restr/3, and ops_restr/3 increment
the counters, and consistently update the list of variables for recursive calls. This
implementation is not taking full advantage of CLP because it follows a strategy
that is still closer to generate-and-test than to constrain-and-generate. Whereas
in this implementation we are propagating information only on counters, we
could have defined other domain variables to identify the constructs that are
applicable at each derivation step. In SICStus, such patterns shall be encoded by
integers, since finite domain variables must take integer values. A more effective
pruning could then be achieved. This improvement will be the focus of future
implementations.

4.2 Finding Particular Expressions

Instances of the expressions of a given Type may be obtained by calling
expression(Type,X,Expr)

For each type scheme, we may generate several expressions of that type by re-
peated calls to expression/3. The coefficients are first created as finite domain
variables whose range may be constrained by the user. A particular expression is
obtained by labeling the domain variables that represent coefficients and expo-
nents. Variations of the same example, in which the coefficients and exponents
may change, can be easily found by forcing backtracking.

The predicate function/5 generates a type scheme that may contain do-
main variables (representing exponents) with some attached constraints. Now,
instead of saving all these constraints on the exponents for later usage, we would
rather either save a particular instance of the type scheme or some pre-defined
number of expressions that conform the type scheme. Different algorithms may
be implemented to define expression/3, which may be even specialized to the
particular problem we have in mind.

One possibility was described in Example 1, but we may also simply com-
pute coeflicients at random, though within a given range of pedagogical interest.
Another possibility could be to use the program to generate several exercises
which would later be filtered out, in view of the special application.

When only partial consistency is enforced, we have to guarantee that the
(random) labeling process eventually stops, when no solution exists (that is,

when no coefficients and exponents may be found). The program currently im-
plements committed-choice, disallowing backtracking to the random numbers
generator when a feasible value is found to the variable that is being labeled. In
this way, the program may fail to find a solution even if one exists. This problem
is not specific of CLP and other strategies could be devised to overcome it.

The type scheme plays a crucial role not only in the generation phase but
also to render the implementation of problem solvers easier. We are mainly using
CLP(FD) to generate expressions, which then naturally have integer coefficients.
We have also made some simple experiments with other constraint programming
domains, namely CLP(R), to define and tackle some conditions on the final ex-
pressions. However, the preliminary results had almost no interest for educational
purpose. Further experiments could be done.

If a not too elaborate algorithm is implemented to generate expressions, then,
an advantage of using a CLP framework is that expression/3 may be used both
to generate an expression Expr given its type scheme Type, or to generate a type
for the given expression. This means that the predicates we have implemented
to solve constraints, may still be used to solve user-defined problems of the same
kind, provided the type of the expression is found.

5 Solving Problems in CLP

We have mainly addressed the computation of roots and of domains of functions
which involves solving linear and non-linear constraints. As we mentioned earlier
this is a fundamental problem in Calculus, with applications to several other
problems. In general, we need symbolic processing of algebraic expressions to
provide an ezxact representation of solutions. Indeed, CLP(Q) [7] could be used
for finding the solutions, but expressions should have degree 1 and not involve
the abs construct, so that they would be quite elementary.

5.1 Limited Support of Irrationals

To handle irrational numbers we have implemented a simple arithmetic package,
that supports irrational numbers of the special forms 7 {/71, 70 + 71 {/72 and
ro /11 + 72 7/7T3, where the r;’s stand for rational numbers. For educational pur-
poses, we do not need to support full generality. Some of these forms are already
too sophisticated and awkward for the common intended users. We introduced
some normal form {/r7 so that the system would reduce, for instance, &/—40
to —2¢/5, V4 to V/2, \/g to @, {’/g to %Z. When high exponents occur, the
numbers may exponentially grow if we apply the latter transformation, so that
we shall likely revise that in future versions of the programs. The arithmetic
package makes limited usage of CLP(R) and CLP(Q). Irrational numbers are
evaluated to floating point to simplify the implementation of the ordering pred-
icates (i.e., of geq, 1t, ...). As regards the CLP(Q) solver, it is used to perform
exact computations involving rationals.

5.2 Implementing Symbolic Solving of Constraints

To solve problems that require finding the domain of a function, the system
needs to exactly solve disequations and disjunctions, and also non-linear con-
straints. These kind of constraints are not fully solved by CLP(Q) and CLP(R)
solvers, being often delayed. Furthermore, we would like to be able to provide
explanations of the solving steps. For both these reasons, the CLP(Q) solver,
acting as a black-box, cannot be utilized to discard symbolic manipulation of
constraints, even when no irrationals are involved.

We have partially implemented a solver for constraints that may involve any
of the relational operators =, #, <, >, > and <. The solutions are given by a
set in normal form that is an ordered list as, for example

[a(-infty) ,£(8),1(12),i(17),£(1000),a(1002), a(1002),a(infty)]

which means | — oo, 8] U{12,17} U[1000, 1002 U]1002, co[. It represents a union
of intervals and of sets of isolated points, a(X) and f(X) stand for open and
closed at X, respectively, and i (X) says that X is an isolated point. We have also
implemented a package to perform the traditional operations on sets to handle
such symbolic representations.

These programs can be run both in Yap [4] and SICStus Prolog, since only
the CLP(Q) and CLP(R) modules are used.

6 Conclusions

This paper presents an interesting application of Constraint Logic Programming
(CLP) in education, namely to automatic generation of mathematics exercises for
students. We have focused on a particular topic in mathematics, and investigate
the usage of CLP to develop software components that make the formulation
and explanation of exercises easier.

Instead of considering a sample of similar exercises to abstract an exercise
template, we propose to concentrate on the analysis of the solving procedures
that are taught. The interesting point is that we then may get specialized forms of
the exercises almost for free, by adding further restrictions through constraints.

Prototype programs using CLP show that these platforms have the right
expressiveness to encode control on the system in an elegant way. The main
drawback is that we cannot take complete advantage of CLP solvers to reduce
the implementation effort. Indeed, we need to handle symbolic representations
of some types of irrational numbers. Moreover, we also need symbolic processing
of constraints, for example, to be able to find the domain of a function or to
provide explanations. Since the system must have great control on the solving
procedure to be able to explain the solving steps, we think we would not benefit
if we used other languages and platforms to implement the system.

We shall consider the integration in Ganesh [10], although, so far, this dis-
tributed learning environment has been mainly used for Computer Science topics,
with an emphasis on automatic grading and correction of students exercises.

Thanks. To anonymous referees and Inés Dutra for constructive comments.

References

Bryc, W., Pelikan, S.: Online Exercises System. Univ. of Cincinnati, US (1996)

2. Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite Domain Constraint

w

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Solver. In Proceedings of PLILP’97, LNCS 1292. Springer-Verlag, (1997) 191-206
Cohen, A. M., Cuypers, H., Sterk, H.: Algebra Interactive, Springer-Verlag (1999)
Damas, L., Santos Costa, V., Reis, R., Azevedo, R.: YAP User’s Guide and Refe-
rence Manual. Univ. Porto (1998) http://www.ncc.up.pt/ vsc/YAP

Gang, X.: WIMS — An Interactive Mathematics Server. J. Online Mathematics and
its Applications, 1, MAA (2001) http://wims.unice.fr

Geometer Sketchpad, Key Curriculum Press. http://www.keypress.com/
Holzbaur, C.: OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research Institute for
Artificial Intelligence, Vienna, TR-95-09 (1995)

Kent, P.: Computer-Assisted Problem Posing in Undergraduate Mathematics. Ins-
titute of Education, Univ. of London (1996) http://metric.ma.ic.ac.uk

Klai, S., Kolokolnikov, T., Van der Bergh, N.: Using Maple and the web to grade
mathematics tests. Int. Workshop on Advanced Technologies, Palmerston North,
New Zealand (2000) http://allserv.rug.ac.be/ nvdbergh/aim/docs

Leal, J. P., Moreira, N.: Using matching for automatic assessment in computer sci-
ence learning environments. In: Proceedings of Web-based Learning Environments
Conference (2000) http://www.ncc.up.pt/“zp/ganesh

Maple, Waterloo Maple Corporate. http://www.maplesoft.com

Marriott, K., and Stuckey, P.: Programming with Constraints — An Introduction.
The MIT Press (1998)

Mathematica, Wolfram Research Inc. http://www.wolfram.com/

Mathematical Markup Language (MathML) Version 2.0. W3C Recomendation
(2001) http://www.w3.org/Math/

Melis, E. et al.: ActiveMath: A Generic and Adaptive Web-Based Learning Envi-
ronment. Int. J. Artificial Intelligence in Education, 12(4) (2001) 385-407
http://www.activemath.org/

Moore, L., Smith, D. et al.: Connected Curriculum Project CCP. Duke University
(2001) http://www.math.duke.edu/education/ccp

Sangwin, C.J.: New opportunities for encouraging higher level mathematical learn-
ing by creative use of emerging computer aided assessment. Univ. of Birmingham,
UK (2002)

Moura Santos, A., Santos, P. A., Dionisio F. M., Duarte P.: CAL — A System for
generating multiple choice questions and delivering them by Internet. In: Proc. of
the Workshop on Electronic Media in Mathematics, Coimbra, Portugal (2001)
Schronert, M. et al.: GAP — Groups, Algorithms, and Programming. Lehrstuhl D
fiir Mathematik, Rheinisch Westfalische Tecnhische Hochschule, Germany (1995)
SICStus Prolog User Manual Release 3.8.6. SICS, Sweden (2001)
http://www.sics.se/isl/sicstus.html

Tomés, A. P., Vasconcelos, P.: Generating Mathematics Exercises by Computer.
Internal Report DCC-2001-6, DCC - FC & LIACC, University of Porto. Presented
at Workshop CSOR’01, Porto (2001)

WeBWorK. University of Rochester (2001) http://webwork.math.rochester.edu

