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Abstract. In recent years the focus of research in the fields of iris and
face recognition has turned towards alternative traits to aid in the recog-
nition process under less constrained acquisition scenarios. The present
work assesses the potential of the periocular region as an alternative to
both iris and face in such conditions. An automatic modeling of SIFT de-
scriptors, using a GMM-based Universal Background Model method, is
proposed. This framework is based on the Universal Background Model
strategy, first proposed for speaker verification, extrapolated into an
image-based application. Such approach allows a tight coupling between
individual models and a robust likelihood-ratio decision step. The al-
gorithm was tested on the UBIRIS.v2 and the MobBIO databases and
presented state-of-the-art performance for a variety of experimental se-
tups.

Keywords: Biometrics, Iris segmentation, Unconstrained environment,
Gradient flow, Shortest closed path

1 Introduction

Over the past few years face and iris have been on the spotlight of many research
works in biometrics. The face is a easily acquirable trait with a high degree of
uniqueness, while the iris, the coloured part of the eye, presents unique textural
patterns resulting from its random morphogenesis during embryonic develop-
ment [1]. These marked advantages, however, fall short when low-quality images
are presented to the system. It has been noted that the performance of iris and
face recognition algorithms is severely compromised when dealing with non-ideal
scenarios such as non-uniform illumination, pose variations, occlusions, expres-
sion changes and radical appearance changes [1]. Several recent works have tried
to explore alternative hypothesis to overcome this problem, either by develop-
ing more robust algorithms or by exploring new traits to allow or aid in the
recognition process [28].

The periocular region is one of such unique traits. Even though a true defi-
nition of the periocular region is not standardized, it is common to describe it
as the region in the immediate vicinity of the eye [10]. Periocular recognition
can be motivated as a representation in between face and iris recognition. It has
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Fig. 1. Example of periocular regions from both eyes, extracted from a face image [28].

been shown to present increased performance when only degraded facial data [7]
or low quality iris images [26] are made available, as well as promising results as
a soft biometric trait to help improve both face and iris recognition systems in
less constrained acquisition environments [2].

Periocular biometrics is a recent area of research, proposed by the first time in
a feasibility study by Park et al. [12]. In this pioneer work, the authors suggested
the periocular region as a potential alternative to circumvent the significant chal-
lenges posed to iris recognition systems working under unconstrained scenarios.
In recent years, a number of relevant works have helped further the potential of
periocular recognition in the field of biometrics. Padole and Proença [10] explored
the effect of scale, pigmentation and occlusion, as well as gender, and propose
an initial region-of-interest detection step to improve recognition accuracy. Ross
et al. [21], following a recent trend in biometric research, explored information
fusion based on several feature extraction techniques, to handle the significant
variability of input periocular images. Tan et al. [26] studied the benefits of peri-
ocular recognition when highly degraded regions result from the traditional iris
segmentation step. A more in depth analysis of the state-of-the-art in periocular
recognition can be found in our previous work [8] and in the thorough review
work of Santos and Proença [23].

The present work serves as an extension of [8], where we first proposed an
innovative approach to periocular recognition under less ideal acquisition condi-
tions. Such proposal is based on the idea of maximum a posteriori adaptation
of Universal Background Model, as proposed by Reynolds for speaker verifica-
tion [19]. We evaluate the proposed algorithm on two datasets of color peri-
ocular images acquired under visible wavelength (VW) illumination. Multiple
noise factors such as varying gazes/poses and heterogeneous lighting conditions
are characteristic to such images, thus representing the main challenge of the
present work. In addition to the aforementioned objectives, we also aimed to
assess the performance of the proposed algorithm with variable distances be-
tween the captures individuals and the acquisition apparatus. As no objective
definition exists concerning which anatomical structures compose the periocular
region, this analysis might provide significant insight for further research in the
field of periocular recognition.
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2 PROPOSED METHODOLOGY

2.1 Algorithm overview

The proposed algorithm is schematically represented in Figure 2. The two main
blocks - enrollment and recognition - refer to the typical architecture of a biomet-
ric system. During enrollment a new individual’s biometric data is inserted into
a previously existent database of individuals. Such database is probed during the
recognition process to assess either the validity of an identity claim - verification
- or the k most probable identities - identification - given an unknown sample of
biometric data.

Fig. 2. Graphical representation of the main steps in both the enrollment and recog-
nition (verification and identification) phases of the proposed periocular recognition
algorithm.

During the enrollment, a set of N models describing the unique statistical
distribution of biometric features for each individual n ∈ {1, . . . , N} is trained
by maximum a posteriori (MAP) adaptation of an Universal Background Model
(UBM). The UBM is a representation of the variability that the chosen biometric
trait presents in the universe of all individuals. MAP adaptation works as a
specialization of the UBM based on each individual’s biometric data. The idea
of MAP adaptation of the UBM was first proposed by Reynolds [19], for speaker
verification, and will be further motivated in the following sections.

The recognition phase is carried out through the projection of the features ex-
tracted from an unknown sample onto both the UBM and the individual specific
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models (IDSM) of interest. A likelihood-ratio between both projections outputs
the final recognition score. Depending on the functioning mode of the system -
verification or identification - decision is carried out by thresholding or maximum
likelihood-ratio, respectively.

2.2 Universal Background Model

Universal background modeling is a common strategy in the field of voice bio-
metrics [13]. It can be easily understood if the problem of biometric verification
is interpreted as a basic hypothesis test. Given a biometric sample Y and a
claimed ID, S, we define:

H0: Y belongs to S
H1: Y does not belong to S

as the null and alternative hypothesis, respectively. The optimal decision is taken
by a likelihood-ratio test :

p(Y |H0)

p(Y |H1)

{
≥ θ accept H0

≤ θ accept H1

(1)

where θ is the decision threshold for accepting or rejecting H0, and p(Y |Hi), i ∈
{0, 1} is the likelihood of observing sample Y when we consider hypothesis i to
be true.

Biometric recognition can, thus, be reduced to the problem of computing the
likelihood values p(Y |H0) and p(Y |H1). It is intuitive to note that H0 should
be represented by a model λhyp that characterizes the hypothesized individual,
while, alternatively, the representation of H1, λhyp, should be able to model all
the alternatives to the hypothesized individual.

From such formulation arises the need for a model that successfully covers
the space of alternatives to the hypothesized identity. The most common desig-
nation in literature for such a model is universal background model or UBM [20].
Such model must be trained on a large set of data, so as to faithfully cover a
representative user space and a significant amount of sources of variability. The
following section details the chosen strategy to model λhyp and how individual
models, λhyp, can be adapted from the UBM in a fast and robust way.

2.3 Hypothesis Modeling

On the present work we chose Gaussian Mixture Models (GMM) to model both
the UBM, i.e. λhyp, and the individual specific models (IDSM), i.e. λhyp. Such
models are capable of capturing the empirical probability density function (PDF)
of a given set of feature vectors, so as to faithfully model their intrinsic statistical
properties [19]. The choice of GMM to model feature distributions in biometric
data is extensively motivated in many works of related areas. From the most
common interpretations, GMMs are seen as capable of representing broad “hid-
den” classes, reflective of the unique structural arrangements observed in the
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analysed biometric traits [19]. Besides this assumption, Gaussian mixtures dis-
play both the robustness of parametric unimodal Gaussian density estimates, as
well as the ability of non-parametric models to fit non-Gaussian data [18]. This
duality, alongside the fact that GMM have the noteworthy strength of gener-
ating smooth parametric densities, confers such models a strong advantage as
generative model of choice. For computational efficiency, GMM models are often
trained using diagonal covariance matrices. This approximation is often found
in biometrics literature, with no significant accuracy loss associated [29].

All models are trained on sets of Scale Invariant Feature Transform (SIFT)
keypoint descriptors [6]. This choice for periocular image description is thor-
oughly motivated in literature [21, 11], mainly due to the observation that local
descriptors work better than their global counterparts when the available data
presents non-uniform conditions. Furthermore, the invariance of SIFT features
to a set of common undesirable factors (image scaling, translation, rotation and
also partially to illumination and affine or 3D projection), confer them a strong
appeal in the area of unconstrained biometrics.

2.4 H1: UBM Parameter Estimation

To train the Universal Background Model a large amount of “impostor” data, i.e.
a set composed of data from all the enrolled individuals, is used, so as to cover
a wide range of possibilities in the individual search space [25]. The training
process of the UBM is simply performed by fitting a k-mixture GMM to the set
of PCA-reduced feature vectors extracted from all the “impostors”.

If we interpret the UBM as an “impostor” model, its “genuine” counterpart
can be obtained by adaptation of the UBM’s parameters, λhyp, using individ-
ual specific data. For each enrolled individual, ID, an individual specific model
(IDSM), defined by parameters λhyp, is therefore obtained. The adaptation pro-
cess will be outlined in the following section.

2.5 H0: MAP Adaptation of the UBM

IDSMs are generated by the tuning of the UBM parameters in a maximum a
posteriori (MAP) sense, using individual specific biometric data. This approach
provides a tight coupling between the IDSM and the UBM, resulting in better
performance and faster scoring than uncoupled methods [29], as well as a robust
and precise parameter estimation, even when only a small amount of data is
available [25]. This is indeed one of the main advantages of using UBMs. The
determination of appropriate initial values (i.e. seeding) of the parameters of a
GMM remains a challenging issue. A poor initialization may result in a weak
model, especially when the data volume is small. Since the IDSM are learnt
only from each individual data, they are more prone to a poor convergence that
the GMM for the UBM, learnt from a big pool of individuals. In essence, UBM
constitutes a good initialization for the IDSM.
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The adaptation process, as proposed by Reynolds [19], resembles the Expectation-
Maximization (EM) algorithm, with two main estimation steps. The first is sim-
ilar to the expectation step of the EM algorithm, where, for each mixture of
the UBM, a set of sufficient statistics are computed from a set of M individual
specific feature vectors, X = {x1...xM}:

ni =

M∑
m=1

p(i|xm) (2)

Ei(x) =
1

ni

M∑
m=1

p(i|xm)xm (3)

Ei(xx
t) =

1

ni

M∑
m=1

p(i|xm)xmxt
m (4)

where p(i|xm) represents the probabilistic alignment of xm into each UBM mix-
ture. Each UBM mixture is then adapted using the newly computed sufficient
statistics, and considering diagonal covariance matrices. The update process can
be formally expressed as:

ŵi = [αini/M + (1− αi)wi] ξ (5)

µ̂i = αiEi(x) + (1− αi)µi (6)

Σ̂i = αiEi(xxt) + (1− αi)(σiσi
t + µiµi

t)− µ̂iµ̂i
t (7)

σi = diag(Σi) (8)

where {wi,µi,σi} are the original UBM parameters and {ŵi, µ̂i, σ̂i} represent
their adaptation to a specific speaker. To assure that

∑
i wi = 1 a weighting

parameter ξ is introduced. The α parameter is a data-dependent adaptation
coefficient. Formally it can be defined as:

αi =
ni

r + ni
(9)

where r is generally known as the relevance factor. The individual dependent
adaptation parameter serves the purpose of weighting the relative importance of
the original values and the new sufficient statistics in the adaptation process. For
the UBM adaptation we set r = 16, as this is the most commonly observed value
in literature [19]. Most works propose the sole adaptation of the mean values,
i.e. αi = 0 when computing ŵi and σ̂i. This simplification seems to bring no
nefarious effects over the performance of the recognition process, while allowing
faster training of the individual specific models [3].
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2.6 Recognition and Decision

After the training step of both the UBM and each IDSM, the recognition phase
with new data from an unknown source is somewhat trivial. As referred in pre-
vious sections, the identity check is performed through the projection of the new
test data, Xtest = {xt,1, . . . ,xt,N}, where xt,i is the i-th PCA-reduced SIFT vec-
tor extracted from the periocular region of test subject t, onto both the UBM
and either the claimed IDSM (in verification mode) or all such models (in identi-
fication mode). The recognition score is obtained as the average likelihood-ratio
of all keypoint descriptors xt,i,∀i ∈ {1..N}. The decision is then carried out by
checking the condition presented in Equation (1), in the case of verification, or
by detecting the maximum likelihood-ratio value for all enrolled IDs, in the case
of identification.

This is a second big advantage of using UBM. The ratio between the IDSM
and the UBM probabilities of the observed data is a more robust decision crite-
rion than relying solely on the IDSM probability. This results from the fact that
some subjects are more prone to generate high likelihood values than others, i.e.
some people have a more “generic” look than others. The use of a likelihood
ratio with an universal reference works as a normalization step, mapping the
likelihood values in accord to their global projection. Without such step, finding
a global optimal value for the decision threshold, θ, presented in Equation 1
would be a far more complex process.

3 Experimental results

In this section we start by presenting the datasets and the experimental setups
under which performance was assessed. Further sections present a detailed anal-
ysis regarding the effect of model complexity and fusion of color channels in the
global performance of the proposed algorithm.

3.1 Tested datasets

The proposed algorithm was tested on two noisy color iris image databases:
UBIRIS.v2 and MobBIO. Even though both databases were designed in an
attempt to promote the development of robust iris recognition algorithms for
images acquired under VW illumination, their intrinsic properties make them
attractive to study the feasibility of periocular recognition under similar condi-
tions. The following sections detail their main features as well as the reasoning
behind their choice.

UBIRIS.v2 database Images in UBIRIS.v2 [17] database were captured un-
der non-constrained conditions (at-a-distance, on-the-move and on the visible
wavelength), with corresponding realistic noise factors. Figure 3 depicts some
examples of these noise factors (reflections, occlusions, pigmentation, etc.). Two
acquisition sessions were performed with 261 individuals involved and a total of
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11100 300× 400 color images acquired. Each individual’s images were acquired
at variable distances with 15 images per eye and per season.

(a) (b) (c) (d)

Fig. 3. Examples of noisy image from the UBIRIS.v2 database.

MobBIO database The MobBIO multimodal database [24] was created in the
scope of the 1st Biometric Recognition with Portable Devices Competition 2013,
integrated in the ICIAR 2013 conference. The main goal of the competition was
to compare various methodologies for biometric recognition using data acquired
with portable devices. We tested our algorithm on the iris modality present on
this database. Regarding this modality the images were captured under two al-
ternative lighting conditions, with variable eye orientations and occlusion levels,
so as to comprise a larger variability of unconstrained scenarios. Distance to
the camera was, however, kept constant for each individual. For each of the 105
volunteers 16 images (8 of each eye) were acquired. These images were obtained
by cropping a single image comprising both eyes. Each cropped image was set
to a 300× 200 resolution. Figure 4 depicts some examples of such images.

(a) (b) (c) (d)

Fig. 4. Examples of iris images in the MobBIO database.

The MobBIO database presents a face modality which has also been explored
for comparative purposes in the present work. Images were acquired in similar
conditions to those described above for iris images, with 16 images per subject.
Examples of such images can be observed in Figure 5.

3.2 Evaluation metrics

Performance was evaluated for both verification and identification modes. Re-
garding the former we analyzed the equal error rate (EER) and the decidability
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(a) (b) (c) (d)

Fig. 5. Examples of face images in the MobBIO database.

index (DI). The EER is observed at the decision threshold, θ, where the errors
of falsely accepting and falsely rejecting H0 occur with equal frequency. The
global behavior of both types of errors is often analyzed through receiver op-
erating characteristic (ROC) curves. On the other hand, the DI quantifies the
separation of the “genuine” and “impostor” likelihood score distributions, as
follows:

DI =
|µg − µi|√

0.5(σ2
g + σ2

i )
(10)

where (µg, σg) and (µi, σi) are the mean and standard deviation of the genuine
and impostor score distributions, respectively.

For identification we analyze cumulative match curves (CMC). These curves
represent the rate of correctly identified individuals, by checking if the true iden-
tity is present in the N highest ranked identities. The N parameter is generally
referred to as rank. That allows us to define the rank-1 recognition rate as the
value of the CMC at N = 1.

3.3 Experimental setups

Our experiments were conducted in three distinct experimental setups, two of
them regarding the UBIRIS.v2 database and the remaining one the MobBIO
database:

1. In the first setup, for the UBIRIS.v2 images, six samples from 80 different
subjects were used, captured from different distances (4 to 8 meters), with
varying gazes/poses and notable changes in lighting conditions. One image
per individual was randomly chosen as probe, whereas the remaining five
samples were used for the UBM training and MAP adaptation. The results
were cross-validated by changing the probe image, per subject, for each of
the six chosen images.

2. Many works on periocular biometrics evaluate their results using a well-
known subset of the UBIRIS.v2 database, used in the context of the NICE II
competition [14]. This dataset is divided in train and test subsets, with a total
of 1000 images from 171 individuals. In the present work we choose to use test
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subset, composed by 904 images from 152 individuals. Only individuals with
more than 4 available images were considered, as 4 images were randomly
chosen for training and the rest for testing. Results were cross-validated
10-fold. The train dataset composed by the remaining 96 images from 19
individuals was employed in the parameter optimization step described in
further sections.

3. Concerning the MobBIO database, 8 images were randomly chosen from each
of the 105 individuals for the training of the models, whereas the remaining
8 were chosen for testing. The process was cross-validated 10-fold. For com-
parative purposes a similar experiment was carried out on face images from
the same 105 individuals, using the same 8 + 8 image distribution.

As both databases are composed by color images, each of the RGB channels
was considered individually for the entire enrollment and identification process.
For the parameter optimization described in the next section images were pre-
viously converted to grayscale.

3.4 Recognition Results

The results obtained for both databases and experimental setups are represented
through ROC and CMC curves on Figures 6(a) to 6(f). A comparison with
some state-of-the-art algorithms in the UBIRIS.v2 database is also presented in
Table 1. In this table results are grouped according to the experimental setup of
each reported work and also the studied trait: P - Periocular, I - Iris or P + I -
Fusion of both traits.

Work Setup Traits R1 EER Di

Proposed 1 P 97.73% 0.0452 4.9795
Proposed 2 P 88.93% 0.0716 3.6141

Moreno et al. [9] 1 P 97.63% 0.1417 –
Tan et al. [26] 2 P + I 39.4% – –
Tan et al. [27] 2 P + I – – 2.5748

Kumar et al. [5] 2 I 48.01% – –
Proença et al. [16] 2 I – ≈ 0.11 2.848

Table 1. Comparison between the average obtained results with both experimental
setups for the UBIRIS.v2 database and some state-of-the-art algorithms.

Besides testing each of the RGB channels individually, a simple sum-rule
score-level fusion strategy [4] was also considered. It is easily discernible, from
the observation of Figure 6, that the fusion of information from multiple color
channels brings about a significant improvement in performance for all the tested
datasets. When comparing the results obtained with this approach with some
state-of-the-art algorithms a few points deserve further discussion. First, the
proposed algorithm is capable of achieving and even surpassing state-of-the-art
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. ROC and CMC curves for: (a-b) UBIRIS.v2 database, setup (1); (c-d)
UBIRIS.v2 database, setup (2) and (e-f) MobBIO database, setup (3);. ROC curves
present the average results of cross-validation, whereas CMCs present the average value
and error-bars for the first 10 ranked IDs in each setup.

performance in multiple experimental setups. Concerning the most common of
such setups (2), it is interesting to note that a few works attempted to explore
the UBIRIS.v2 dataset for iris recognition. The obtained performance has been
considered “discouraging” in the work by Kumar et al. [5]. Comparing the rank-1
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recognition rate obtained with our algorithm (88.93%) with the 48.1% reported
in the former work, we conclude that the periocular region may represent a
viable alternative to iris in images acquired under visible wavelength (VW) il-
lumination. Such acquisition conditions are known to increase light reflections
from the cornea, resulting in a sub-optimal signal-to-noise ratio (SNR) in the
sensor, lowering the contrast of iris images and the robustness of the system [15].
More recent works have explored multimodal approaches, using combined infor-
mation from both the iris and the periocular region. Analysis of Table 1 shows
that none of such works reaches the performance reported in the present work
for the same experimental setup. Such observation might indicate that most dis-
criminative biometric information from the UBIRIS.v2 images might be present
in the periocular region, and that considering data from the heavily noisy iris
regions might only result in a degradation of the performance obtained by the
periocular region alone.

Concerning the MobBIO database, an alternative comparison was carried
out to analyze the potential of the periocular region as an alternative to face
recognition. The observed performance for periocular images was considerably
close to that using full-face information, with rank-1 recognition rates of 98.98%
and 99.77% respectively. These results are an indication that, under more ideal
acquisition conditions, there is enough discriminative potential in the periocular
region alone to rival with the full face in terms of recognition performance. In
scenarios where some parts of the face are purposely disguised (scarves covering
the mouth for example) this observation might indicate that a non-corrupted pe-
riocular region can, indeed, overperform recognition with the occluded full-face
images. Such conditions were not tested in the present work but might be the
basis for an interesting follow-up. Even though the observed results are promis-
ing, it must be noted that the noise factors present in the MobBIO database are
still far from a highly unconstrained scenario.

The robustness of the likelihood-ratio decision step was also assessed. We
compared the performance observed for the scores obtained with Equation 1
and the scores obtained using only its numerator, i.e. only the likelihood of each
test image without the UBM normalization. For the experimental setup (2) we
obtained an average rank-1 recognition rate of 43.6%, whereas the MobBIO ex-
perimental setup (3) resulted in 90.5% for the same metric. It is easily noted that
performance is less compromised in the MobBIO database. Considering only the
numerator of Equation 1 is the same as considering a constant denominator
value for every tested image. As the denominator represents the projection of
the tested images on the UBM, this alternative decision strategy might be in-
terpreted as assuming a constant background for every tested image. From the
observed results we might conclude that such assumption fits better the images
from the MobBIO database. We also note that for more challenging scenarios,
where the constant background assumption fails, the use of background normal-
ization produces a significant improvement in performance.

A few last considerations regarding the discriminative potential of the pro-
posed algorithm may be taken from the observation of Figure 7. On each row
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we analyze the 4 highest ranked models for the images presented in the first
column. The first two rows depict correct identifications. It is interesting to note
how each of the 4 highest ranked identities in the second row correspond to
individuals wearing glasses. Such observation seems to indicate that the pro-
posed modeling process is capable of describing high-level global features, such
as glasses. Furthermore, the fact that the correct ID was guessed also demon-
strates its capacity of distinguishing between finer details separating individual
models. The third and fourth rows present some test images whose ID was not
correctly assessed by the algorithm. In the third row we present a case where
even though the correct ID and the most likely model were not correctly paired,
the correct guess still appears in the top ranked models. We note that even a
human user analyzing the four highest ranked models would find it very difficult
to detect significant differences. The fourth row presents the extreme case where
none of the top ranked models correspond to the true ID. It is worth noting how
the test images presented in the third and fourth rows are very similar to a large
number of images present in other individual’s models. This observation leads to
the hypothesis that some users are easier to identify than others inside a given
population, an effect known as the Doddington zoo effect [22]. It also shows that
the proposed algorithm is capable of narrowing the range of possible identities
to those subjects who “look more alike”.

Fig. 7. Identification results for rank-4 in the UBIRIS.v2 database. The first column
depicts the tested images while the remaining 4 images exemplify representative images
from the 4 most probable models, after the recognition is performed. The blue squares
mark the true identity.
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3.5 Effect of acquisition distance on performance

An additional test was carried out to assess how the distance between the ac-
quisition apparatus and the captured individual affects the performance of the
proposed algorithm. With this in mind an alternative evaluation setup was de-
signed. We chose the UBIRIS.v2 database for this analysis, as it is comprised by
images acquired at variable distances (4 − 8 meters). Images were divided into
training and testing as defined in Section 3.3 for thes training setup 2. During
the test process, the test images were divided into 5 different groups, according
to the acquisition distance at which they were captured. Figure 8 depicts the
evolution of the decidability index values with respect to the acquisition distance
parameter, da. It is interesting to note that images acquired at farther distances
present higher recognition rates, with exception of the images acquired at the
closest distance. It was expected that farther images presented consistently bet-
ter performance, as more anatomical landmarks (eyebrows, for example) become
accessible to the recognition block, thus increasing the amount of discrimina-
tive information present in each tested image. The fact that the closest images
present an increased performance might be connected either to a peculiarity of
the tested data or to the fact that, in closer images, the iris contributes with a
non-negligible role to the recognition process. The possibility that some of the
closer images present enough detail in the iris region to improve the performance
in such conditions seems legitimate. It is, however, also discernible that even in
this possible semi-iris recognition scenario, performance is still significantly lower
than the one observed when the periocular region is set to incorporate a larger
portion of the vicinity of the eye. It may be argued that this scenario is rapidly
approaching the ideal conditions of full-face recognition. However, as no objective
description of the periocular region is standardized in the research community,
these observations might help in the process of establishing an uniform definition
of such region.

4 CONCLUSIONS AND FUTURE WORK

In the present work we propose an automatic modeling of SIFT descriptors, using
a GMM-based UBM method, to achieve a canonical representation of individual’s
biometric data, regardless of the number of detected SIFT keypoints. We tested
the proposed algorithm on periocular images from two databases and achieved
state-of-the-art performance for all experimental setups. Periocular recognition
has been the focus of many recent works that explore it as a viable alternative
to both iris and face recognition under less ideal acquisition scenarios.

Even though we propose the algorithm for periocular recognition, the frame-
work can be easily extrapolated for other image-based traits. To the extent of our
knowledge, GMM-based UBM methodologies were solely explored for speaker
recognition so far. The proposed work may, thus, represent the first of a series of
experiments that explore its main advantages in the scope of multiple trending
biometric topics. For example, the fact that any number of keypoints triggers a
recognition score may be relevant when only partial or occluded data is available
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Fig. 8. Evolution of the rank-1 recognition rate values observed for increasing dis-
tance between the captured individual and the acquisition apparatus in the UBIRIS.v2
database.

for recognition. Scenarios, like the one described in the last section, where faces
are purposely occluded may be an interesting area to explore.

Besides from the conceptual advantages of the proposed algorithm, a few
technical details may be improved in further works. Exploring further color
channels besides the RGB space could bring benefits to the proposed algorithm.
Regarding fusion, exploring individual specific parameters instead of a global
parametrization, would enable the algorithm to be trained to counter the Dod-
dington zoo effect. As not all people are as easy to identify, fitting the properties
of the designed classification block to adapt to different classes of individuals
seems like an interesting idea.

Finally, and regarding the training setup, some questions might be worthy
of a more thorough research. In the case of voice recognition it is common to
train two separate UBMs for male and female speakers. Extrapolating this idea
to image-based traits, multiple UBMs trained on homogeneous sets of equally
or similarly zoomed images might improve the results when more realistic and
dynamic conditions are presented to the acquisition system. In a related topic
it is also not consensual whether the left and right eyes, due to the intrinsic
symmetry of the face, should be considered in a single model or as separate
entities. All the aforementioned questions demonstrate how much the present
results can be improved, leaving some promising prospects for future works.
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